1 | // Copyright 2017 The Abseil Authors. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | // |
15 | // ----------------------------------------------------------------------------- |
16 | // File: algorithm.h |
17 | // ----------------------------------------------------------------------------- |
18 | // |
19 | // This header file contains Google extensions to the standard <algorithm> C++ |
20 | // header. |
21 | |
22 | #ifndef ABSL_ALGORITHM_ALGORITHM_H_ |
23 | #define ABSL_ALGORITHM_ALGORITHM_H_ |
24 | |
25 | #include <algorithm> |
26 | #include <iterator> |
27 | #include <type_traits> |
28 | |
29 | namespace absl { |
30 | |
31 | namespace algorithm_internal { |
32 | |
33 | // Performs comparisons with operator==, similar to C++14's `std::equal_to<>`. |
34 | struct EqualTo { |
35 | template <typename T, typename U> |
36 | bool operator()(const T& a, const U& b) const { |
37 | return a == b; |
38 | } |
39 | }; |
40 | |
41 | template <typename InputIter1, typename InputIter2, typename Pred> |
42 | bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2, |
43 | InputIter2 last2, Pred pred, std::input_iterator_tag, |
44 | std::input_iterator_tag) { |
45 | while (true) { |
46 | if (first1 == last1) return first2 == last2; |
47 | if (first2 == last2) return false; |
48 | if (!pred(*first1, *first2)) return false; |
49 | ++first1; |
50 | ++first2; |
51 | } |
52 | } |
53 | |
54 | template <typename InputIter1, typename InputIter2, typename Pred> |
55 | bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2, |
56 | InputIter2 last2, Pred&& pred, std::random_access_iterator_tag, |
57 | std::random_access_iterator_tag) { |
58 | return (last1 - first1 == last2 - first2) && |
59 | std::equal(first1, last1, first2, std::forward<Pred>(pred)); |
60 | } |
61 | |
62 | // When we are using our own internal predicate that just applies operator==, we |
63 | // forward to the non-predicate form of std::equal. This enables an optimization |
64 | // in libstdc++ that can result in std::memcmp being used for integer types. |
65 | template <typename InputIter1, typename InputIter2> |
66 | bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2, |
67 | InputIter2 last2, algorithm_internal::EqualTo /* unused */, |
68 | std::random_access_iterator_tag, |
69 | std::random_access_iterator_tag) { |
70 | return (last1 - first1 == last2 - first2) && |
71 | std::equal(first1, last1, first2); |
72 | } |
73 | |
74 | template <typename It> |
75 | It RotateImpl(It first, It middle, It last, std::true_type) { |
76 | return std::rotate(first, middle, last); |
77 | } |
78 | |
79 | template <typename It> |
80 | It RotateImpl(It first, It middle, It last, std::false_type) { |
81 | std::rotate(first, middle, last); |
82 | return std::next(first, std::distance(middle, last)); |
83 | } |
84 | |
85 | } // namespace algorithm_internal |
86 | |
87 | // Compares the equality of two ranges specified by pairs of iterators, using |
88 | // the given predicate, returning true iff for each corresponding iterator i1 |
89 | // and i2 in the first and second range respectively, pred(*i1, *i2) == true |
90 | // |
91 | // This comparison takes at most min(`last1` - `first1`, `last2` - `first2`) |
92 | // invocations of the predicate. Additionally, if InputIter1 and InputIter2 are |
93 | // both random-access iterators, and `last1` - `first1` != `last2` - `first2`, |
94 | // then the predicate is never invoked and the function returns false. |
95 | // |
96 | // This is a C++11-compatible implementation of C++14 `std::equal`. See |
97 | // https://en.cppreference.com/w/cpp/algorithm/equal for more information. |
98 | template <typename InputIter1, typename InputIter2, typename Pred> |
99 | bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2, |
100 | InputIter2 last2, Pred&& pred) { |
101 | return algorithm_internal::EqualImpl( |
102 | first1, last1, first2, last2, std::forward<Pred>(pred), |
103 | typename std::iterator_traits<InputIter1>::iterator_category{}, |
104 | typename std::iterator_traits<InputIter2>::iterator_category{}); |
105 | } |
106 | |
107 | // Performs comparison of two ranges specified by pairs of iterators using |
108 | // operator==. |
109 | template <typename InputIter1, typename InputIter2> |
110 | bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2, |
111 | InputIter2 last2) { |
112 | return absl::equal(first1, last1, first2, last2, |
113 | algorithm_internal::EqualTo{}); |
114 | } |
115 | |
116 | // Performs a linear search for `value` using the iterator `first` up to |
117 | // but not including `last`, returning true if [`first`, `last`) contains an |
118 | // element equal to `value`. |
119 | // |
120 | // A linear search is of O(n) complexity which is guaranteed to make at most |
121 | // n = (`last` - `first`) comparisons. A linear search over short containers |
122 | // may be faster than a binary search, even when the container is sorted. |
123 | template <typename InputIterator, typename EqualityComparable> |
124 | bool linear_search(InputIterator first, InputIterator last, |
125 | const EqualityComparable& value) { |
126 | return std::find(first, last, value) != last; |
127 | } |
128 | |
129 | // Performs a left rotation on a range of elements (`first`, `last`) such that |
130 | // `middle` is now the first element. `rotate()` returns an iterator pointing to |
131 | // the first element before rotation. This function is exactly the same as |
132 | // `std::rotate`, but fixes a bug in gcc |
133 | // <= 4.9 where `std::rotate` returns `void` instead of an iterator. |
134 | // |
135 | // The complexity of this algorithm is the same as that of `std::rotate`, but if |
136 | // `ForwardIterator` is not a random-access iterator, then `absl::rotate` |
137 | // performs an additional pass over the range to construct the return value. |
138 | |
139 | template <typename ForwardIterator> |
140 | ForwardIterator rotate(ForwardIterator first, ForwardIterator middle, |
141 | ForwardIterator last) { |
142 | return algorithm_internal::RotateImpl( |
143 | first, middle, last, |
144 | std::is_same<decltype(std::rotate(first, middle, last)), |
145 | ForwardIterator>()); |
146 | } |
147 | |
148 | } // namespace absl |
149 | |
150 | #endif // ABSL_ALGORITHM_ALGORITHM_H_ |
151 | |