1 | // Copyright 2018 The Abseil Authors. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | // For reference check out: |
16 | // https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling |
17 | // |
18 | // Note that we only have partial C++11 support yet. |
19 | |
20 | #include "absl/debugging/internal/demangle.h" |
21 | |
22 | #include <cstdint> |
23 | #include <cstdio> |
24 | #include <limits> |
25 | |
26 | namespace absl { |
27 | namespace debugging_internal { |
28 | |
29 | typedef struct { |
30 | const char *abbrev; |
31 | const char *real_name; |
32 | // Number of arguments in <expression> context, or 0 if disallowed. |
33 | int arity; |
34 | } AbbrevPair; |
35 | |
36 | // List of operators from Itanium C++ ABI. |
37 | static const AbbrevPair kOperatorList[] = { |
38 | // New has special syntax (not currently supported). |
39 | {"nw" , "new" , 0}, |
40 | {"na" , "new[]" , 0}, |
41 | |
42 | // Works except that the 'gs' prefix is not supported. |
43 | {"dl" , "delete" , 1}, |
44 | {"da" , "delete[]" , 1}, |
45 | |
46 | {"ps" , "+" , 1}, // "positive" |
47 | {"ng" , "-" , 1}, // "negative" |
48 | {"ad" , "&" , 1}, // "address-of" |
49 | {"de" , "*" , 1}, // "dereference" |
50 | {"co" , "~" , 1}, |
51 | |
52 | {"pl" , "+" , 2}, |
53 | {"mi" , "-" , 2}, |
54 | {"ml" , "*" , 2}, |
55 | {"dv" , "/" , 2}, |
56 | {"rm" , "%" , 2}, |
57 | {"an" , "&" , 2}, |
58 | {"or" , "|" , 2}, |
59 | {"eo" , "^" , 2}, |
60 | {"aS" , "=" , 2}, |
61 | {"pL" , "+=" , 2}, |
62 | {"mI" , "-=" , 2}, |
63 | {"mL" , "*=" , 2}, |
64 | {"dV" , "/=" , 2}, |
65 | {"rM" , "%=" , 2}, |
66 | {"aN" , "&=" , 2}, |
67 | {"oR" , "|=" , 2}, |
68 | {"eO" , "^=" , 2}, |
69 | {"ls" , "<<" , 2}, |
70 | {"rs" , ">>" , 2}, |
71 | {"lS" , "<<=" , 2}, |
72 | {"rS" , ">>=" , 2}, |
73 | {"eq" , "==" , 2}, |
74 | {"ne" , "!=" , 2}, |
75 | {"lt" , "<" , 2}, |
76 | {"gt" , ">" , 2}, |
77 | {"le" , "<=" , 2}, |
78 | {"ge" , ">=" , 2}, |
79 | {"nt" , "!" , 1}, |
80 | {"aa" , "&&" , 2}, |
81 | {"oo" , "||" , 2}, |
82 | {"pp" , "++" , 1}, |
83 | {"mm" , "--" , 1}, |
84 | {"cm" , "," , 2}, |
85 | {"pm" , "->*" , 2}, |
86 | {"pt" , "->" , 0}, // Special syntax |
87 | {"cl" , "()" , 0}, // Special syntax |
88 | {"ix" , "[]" , 2}, |
89 | {"qu" , "?" , 3}, |
90 | {"st" , "sizeof" , 0}, // Special syntax |
91 | {"sz" , "sizeof" , 1}, // Not a real operator name, but used in expressions. |
92 | {nullptr, nullptr, 0}, |
93 | }; |
94 | |
95 | // List of builtin types from Itanium C++ ABI. |
96 | static const AbbrevPair kBuiltinTypeList[] = { |
97 | {"v" , "void" , 0}, |
98 | {"w" , "wchar_t" , 0}, |
99 | {"b" , "bool" , 0}, |
100 | {"c" , "char" , 0}, |
101 | {"a" , "signed char" , 0}, |
102 | {"h" , "unsigned char" , 0}, |
103 | {"s" , "short" , 0}, |
104 | {"t" , "unsigned short" , 0}, |
105 | {"i" , "int" , 0}, |
106 | {"j" , "unsigned int" , 0}, |
107 | {"l" , "long" , 0}, |
108 | {"m" , "unsigned long" , 0}, |
109 | {"x" , "long long" , 0}, |
110 | {"y" , "unsigned long long" , 0}, |
111 | {"n" , "__int128" , 0}, |
112 | {"o" , "unsigned __int128" , 0}, |
113 | {"f" , "float" , 0}, |
114 | {"d" , "double" , 0}, |
115 | {"e" , "long double" , 0}, |
116 | {"g" , "__float128" , 0}, |
117 | {"z" , "ellipsis" , 0}, |
118 | {nullptr, nullptr, 0}, |
119 | }; |
120 | |
121 | // List of substitutions Itanium C++ ABI. |
122 | static const AbbrevPair kSubstitutionList[] = { |
123 | {"St" , "" , 0}, |
124 | {"Sa" , "allocator" , 0}, |
125 | {"Sb" , "basic_string" , 0}, |
126 | // std::basic_string<char, std::char_traits<char>,std::allocator<char> > |
127 | {"Ss" , "string" , 0}, |
128 | // std::basic_istream<char, std::char_traits<char> > |
129 | {"Si" , "istream" , 0}, |
130 | // std::basic_ostream<char, std::char_traits<char> > |
131 | {"So" , "ostream" , 0}, |
132 | // std::basic_iostream<char, std::char_traits<char> > |
133 | {"Sd" , "iostream" , 0}, |
134 | {nullptr, nullptr, 0}, |
135 | }; |
136 | |
137 | // State needed for demangling. This struct is copied in almost every stack |
138 | // frame, so every byte counts. |
139 | typedef struct { |
140 | int mangled_idx; // Cursor of mangled name. |
141 | int out_cur_idx; // Cursor of output std::string. |
142 | int prev_name_idx; // For constructors/destructors. |
143 | signed int prev_name_length : 16; // For constructors/destructors. |
144 | signed int nest_level : 15; // For nested names. |
145 | unsigned int append : 1; // Append flag. |
146 | // Note: for some reason MSVC can't pack "bool append : 1" into the same int |
147 | // with the above two fields, so we use an int instead. Amusingly it can pack |
148 | // "signed bool" as expected, but relying on that to continue to be a legal |
149 | // type seems ill-advised (as it's illegal in at least clang). |
150 | } ParseState; |
151 | |
152 | static_assert(sizeof(ParseState) == 4 * sizeof(int), |
153 | "unexpected size of ParseState" ); |
154 | |
155 | // One-off state for demangling that's not subject to backtracking -- either |
156 | // constant data, data that's intentionally immune to backtracking (steps), or |
157 | // data that would never be changed by backtracking anyway (recursion_depth). |
158 | // |
159 | // Only one copy of this exists for each call to Demangle, so the size of this |
160 | // struct is nearly inconsequential. |
161 | typedef struct { |
162 | const char *mangled_begin; // Beginning of input std::string. |
163 | char *out; // Beginning of output std::string. |
164 | int out_end_idx; // One past last allowed output character. |
165 | int recursion_depth; // For stack exhaustion prevention. |
166 | int steps; // Cap how much work we'll do, regardless of depth. |
167 | ParseState parse_state; // Backtrackable state copied for most frames. |
168 | } State; |
169 | |
170 | namespace { |
171 | // Prevent deep recursion / stack exhaustion. |
172 | // Also prevent unbounded handling of complex inputs. |
173 | class ComplexityGuard { |
174 | public: |
175 | explicit ComplexityGuard(State *state) : state_(state) { |
176 | ++state->recursion_depth; |
177 | ++state->steps; |
178 | } |
179 | ~ComplexityGuard() { --state_->recursion_depth; } |
180 | |
181 | // 256 levels of recursion seems like a reasonable upper limit on depth. |
182 | // 128 is not enough to demagle synthetic tests from demangle_unittest.txt: |
183 | // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..." |
184 | static constexpr int kRecursionDepthLimit = 256; |
185 | |
186 | // We're trying to pick a charitable upper-limit on how many parse steps are |
187 | // necessary to handle something that a human could actually make use of. |
188 | // This is mostly in place as a bound on how much work we'll do if we are |
189 | // asked to demangle an mangled name from an untrusted source, so it should be |
190 | // much larger than the largest expected symbol, but much smaller than the |
191 | // amount of work we can do in, e.g., a second. |
192 | // |
193 | // Some real-world symbols from an arbitrary binary started failing between |
194 | // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set |
195 | // the limit. |
196 | // |
197 | // Spending one second on 2^17 parse steps would require each step to take |
198 | // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in |
199 | // under a second. |
200 | static constexpr int kParseStepsLimit = 1 << 17; |
201 | |
202 | bool IsTooComplex() const { |
203 | return state_->recursion_depth > kRecursionDepthLimit || |
204 | state_->steps > kParseStepsLimit; |
205 | } |
206 | |
207 | private: |
208 | State *state_; |
209 | }; |
210 | } // namespace |
211 | |
212 | // We don't use strlen() in libc since it's not guaranteed to be async |
213 | // signal safe. |
214 | static size_t StrLen(const char *str) { |
215 | size_t len = 0; |
216 | while (*str != '\0') { |
217 | ++str; |
218 | ++len; |
219 | } |
220 | return len; |
221 | } |
222 | |
223 | // Returns true if "str" has at least "n" characters remaining. |
224 | static bool AtLeastNumCharsRemaining(const char *str, int n) { |
225 | for (int i = 0; i < n; ++i) { |
226 | if (str[i] == '\0') { |
227 | return false; |
228 | } |
229 | } |
230 | return true; |
231 | } |
232 | |
233 | // Returns true if "str" has "prefix" as a prefix. |
234 | static bool StrPrefix(const char *str, const char *prefix) { |
235 | size_t i = 0; |
236 | while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) { |
237 | ++i; |
238 | } |
239 | return prefix[i] == '\0'; // Consumed everything in "prefix". |
240 | } |
241 | |
242 | static void InitState(State *state, const char *mangled, char *out, |
243 | int out_size) { |
244 | state->mangled_begin = mangled; |
245 | state->out = out; |
246 | state->out_end_idx = out_size; |
247 | state->recursion_depth = 0; |
248 | state->steps = 0; |
249 | |
250 | state->parse_state.mangled_idx = 0; |
251 | state->parse_state.out_cur_idx = 0; |
252 | state->parse_state.prev_name_idx = 0; |
253 | state->parse_state.prev_name_length = -1; |
254 | state->parse_state.nest_level = -1; |
255 | state->parse_state.append = true; |
256 | } |
257 | |
258 | static inline const char *RemainingInput(State *state) { |
259 | return &state->mangled_begin[state->parse_state.mangled_idx]; |
260 | } |
261 | |
262 | // Returns true and advances "mangled_idx" if we find "one_char_token" |
263 | // at "mangled_idx" position. It is assumed that "one_char_token" does |
264 | // not contain '\0'. |
265 | static bool ParseOneCharToken(State *state, const char one_char_token) { |
266 | ComplexityGuard guard(state); |
267 | if (guard.IsTooComplex()) return false; |
268 | if (RemainingInput(state)[0] == one_char_token) { |
269 | ++state->parse_state.mangled_idx; |
270 | return true; |
271 | } |
272 | return false; |
273 | } |
274 | |
275 | // Returns true and advances "mangled_cur" if we find "two_char_token" |
276 | // at "mangled_cur" position. It is assumed that "two_char_token" does |
277 | // not contain '\0'. |
278 | static bool ParseTwoCharToken(State *state, const char *two_char_token) { |
279 | ComplexityGuard guard(state); |
280 | if (guard.IsTooComplex()) return false; |
281 | if (RemainingInput(state)[0] == two_char_token[0] && |
282 | RemainingInput(state)[1] == two_char_token[1]) { |
283 | state->parse_state.mangled_idx += 2; |
284 | return true; |
285 | } |
286 | return false; |
287 | } |
288 | |
289 | // Returns true and advances "mangled_cur" if we find any character in |
290 | // "char_class" at "mangled_cur" position. |
291 | static bool ParseCharClass(State *state, const char *char_class) { |
292 | ComplexityGuard guard(state); |
293 | if (guard.IsTooComplex()) return false; |
294 | if (RemainingInput(state)[0] == '\0') { |
295 | return false; |
296 | } |
297 | const char *p = char_class; |
298 | for (; *p != '\0'; ++p) { |
299 | if (RemainingInput(state)[0] == *p) { |
300 | ++state->parse_state.mangled_idx; |
301 | return true; |
302 | } |
303 | } |
304 | return false; |
305 | } |
306 | |
307 | static bool ParseDigit(State *state, int *digit) { |
308 | char c = RemainingInput(state)[0]; |
309 | if (ParseCharClass(state, "0123456789" )) { |
310 | if (digit != nullptr) { |
311 | *digit = c - '0'; |
312 | } |
313 | return true; |
314 | } |
315 | return false; |
316 | } |
317 | |
318 | // This function is used for handling an optional non-terminal. |
319 | static bool Optional(bool /*status*/) { return true; } |
320 | |
321 | // This function is used for handling <non-terminal>+ syntax. |
322 | typedef bool (*ParseFunc)(State *); |
323 | static bool OneOrMore(ParseFunc parse_func, State *state) { |
324 | if (parse_func(state)) { |
325 | while (parse_func(state)) { |
326 | } |
327 | return true; |
328 | } |
329 | return false; |
330 | } |
331 | |
332 | // This function is used for handling <non-terminal>* syntax. The function |
333 | // always returns true and must be followed by a termination token or a |
334 | // terminating sequence not handled by parse_func (e.g. |
335 | // ParseOneCharToken(state, 'E')). |
336 | static bool ZeroOrMore(ParseFunc parse_func, State *state) { |
337 | while (parse_func(state)) { |
338 | } |
339 | return true; |
340 | } |
341 | |
342 | // Append "str" at "out_cur_idx". If there is an overflow, out_cur_idx is |
343 | // set to out_end_idx+1. The output string is ensured to |
344 | // always terminate with '\0' as long as there is no overflow. |
345 | static void Append(State *state, const char *const str, const int length) { |
346 | for (int i = 0; i < length; ++i) { |
347 | if (state->parse_state.out_cur_idx + 1 < |
348 | state->out_end_idx) { // +1 for '\0' |
349 | state->out[state->parse_state.out_cur_idx++] = str[i]; |
350 | } else { |
351 | // signal overflow |
352 | state->parse_state.out_cur_idx = state->out_end_idx + 1; |
353 | break; |
354 | } |
355 | } |
356 | if (state->parse_state.out_cur_idx < state->out_end_idx) { |
357 | state->out[state->parse_state.out_cur_idx] = |
358 | '\0'; // Terminate it with '\0' |
359 | } |
360 | } |
361 | |
362 | // We don't use equivalents in libc to avoid locale issues. |
363 | static bool IsLower(char c) { return c >= 'a' && c <= 'z'; } |
364 | |
365 | static bool IsAlpha(char c) { |
366 | return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); |
367 | } |
368 | |
369 | static bool IsDigit(char c) { return c >= '0' && c <= '9'; } |
370 | |
371 | // Returns true if "str" is a function clone suffix. These suffixes are used |
372 | // by GCC 4.5.x and later versions (and our locally-modified version of GCC |
373 | // 4.4.x) to indicate functions which have been cloned during optimization. |
374 | // We treat any sequence (.<alpha>+.<digit>+)+ as a function clone suffix. |
375 | static bool IsFunctionCloneSuffix(const char *str) { |
376 | size_t i = 0; |
377 | while (str[i] != '\0') { |
378 | // Consume a single .<alpha>+.<digit>+ sequence. |
379 | if (str[i] != '.' || !IsAlpha(str[i + 1])) { |
380 | return false; |
381 | } |
382 | i += 2; |
383 | while (IsAlpha(str[i])) { |
384 | ++i; |
385 | } |
386 | if (str[i] != '.' || !IsDigit(str[i + 1])) { |
387 | return false; |
388 | } |
389 | i += 2; |
390 | while (IsDigit(str[i])) { |
391 | ++i; |
392 | } |
393 | } |
394 | return true; // Consumed everything in "str". |
395 | } |
396 | |
397 | static bool EndsWith(State *state, const char chr) { |
398 | return state->parse_state.out_cur_idx > 0 && |
399 | chr == state->out[state->parse_state.out_cur_idx - 1]; |
400 | } |
401 | |
402 | // Append "str" with some tweaks, iff "append" state is true. |
403 | static void MaybeAppendWithLength(State *state, const char *const str, |
404 | const int length) { |
405 | if (state->parse_state.append && length > 0) { |
406 | // Append a space if the output buffer ends with '<' and "str" |
407 | // starts with '<' to avoid <<<. |
408 | if (str[0] == '<' && EndsWith(state, '<')) { |
409 | Append(state, " " , 1); |
410 | } |
411 | // Remember the last identifier name for ctors/dtors. |
412 | if (IsAlpha(str[0]) || str[0] == '_') { |
413 | state->parse_state.prev_name_idx = state->parse_state.out_cur_idx; |
414 | state->parse_state.prev_name_length = length; |
415 | } |
416 | Append(state, str, length); |
417 | } |
418 | } |
419 | |
420 | // Appends a positive decimal number to the output if appending is enabled. |
421 | static bool MaybeAppendDecimal(State *state, unsigned int val) { |
422 | // Max {32-64}-bit unsigned int is 20 digits. |
423 | constexpr size_t kMaxLength = 20; |
424 | char buf[kMaxLength]; |
425 | |
426 | // We can't use itoa or sprintf as neither is specified to be |
427 | // async-signal-safe. |
428 | if (state->parse_state.append) { |
429 | // We can't have a one-before-the-beginning pointer, so instead start with |
430 | // one-past-the-end and manipulate one character before the pointer. |
431 | char *p = &buf[kMaxLength]; |
432 | do { // val=0 is the only input that should write a leading zero digit. |
433 | *--p = (val % 10) + '0'; |
434 | val /= 10; |
435 | } while (p > buf && val != 0); |
436 | |
437 | // 'p' landed on the last character we set. How convenient. |
438 | Append(state, p, kMaxLength - (p - buf)); |
439 | } |
440 | |
441 | return true; |
442 | } |
443 | |
444 | // A convenient wrapper around MaybeAppendWithLength(). |
445 | // Returns true so that it can be placed in "if" conditions. |
446 | static bool MaybeAppend(State *state, const char *const str) { |
447 | if (state->parse_state.append) { |
448 | int length = StrLen(str); |
449 | MaybeAppendWithLength(state, str, length); |
450 | } |
451 | return true; |
452 | } |
453 | |
454 | // This function is used for handling nested names. |
455 | static bool EnterNestedName(State *state) { |
456 | state->parse_state.nest_level = 0; |
457 | return true; |
458 | } |
459 | |
460 | // This function is used for handling nested names. |
461 | static bool LeaveNestedName(State *state, int16_t prev_value) { |
462 | state->parse_state.nest_level = prev_value; |
463 | return true; |
464 | } |
465 | |
466 | // Disable the append mode not to print function parameters, etc. |
467 | static bool DisableAppend(State *state) { |
468 | state->parse_state.append = false; |
469 | return true; |
470 | } |
471 | |
472 | // Restore the append mode to the previous state. |
473 | static bool RestoreAppend(State *state, bool prev_value) { |
474 | state->parse_state.append = prev_value; |
475 | return true; |
476 | } |
477 | |
478 | // Increase the nest level for nested names. |
479 | static void MaybeIncreaseNestLevel(State *state) { |
480 | if (state->parse_state.nest_level > -1) { |
481 | ++state->parse_state.nest_level; |
482 | } |
483 | } |
484 | |
485 | // Appends :: for nested names if necessary. |
486 | static void MaybeAppendSeparator(State *state) { |
487 | if (state->parse_state.nest_level >= 1) { |
488 | MaybeAppend(state, "::" ); |
489 | } |
490 | } |
491 | |
492 | // Cancel the last separator if necessary. |
493 | static void MaybeCancelLastSeparator(State *state) { |
494 | if (state->parse_state.nest_level >= 1 && state->parse_state.append && |
495 | state->parse_state.out_cur_idx >= 2) { |
496 | state->parse_state.out_cur_idx -= 2; |
497 | state->out[state->parse_state.out_cur_idx] = '\0'; |
498 | } |
499 | } |
500 | |
501 | // Returns true if the identifier of the given length pointed to by |
502 | // "mangled_cur" is anonymous namespace. |
503 | static bool IdentifierIsAnonymousNamespace(State *state, int length) { |
504 | // Returns true if "anon_prefix" is a proper prefix of "mangled_cur". |
505 | static const char anon_prefix[] = "_GLOBAL__N_" ; |
506 | return (length > static_cast<int>(sizeof(anon_prefix) - 1) && |
507 | StrPrefix(RemainingInput(state), anon_prefix)); |
508 | } |
509 | |
510 | // Forward declarations of our parsing functions. |
511 | static bool ParseMangledName(State *state); |
512 | static bool ParseEncoding(State *state); |
513 | static bool ParseName(State *state); |
514 | static bool ParseUnscopedName(State *state); |
515 | static bool ParseNestedName(State *state); |
516 | static bool ParsePrefix(State *state); |
517 | static bool ParseUnqualifiedName(State *state); |
518 | static bool ParseSourceName(State *state); |
519 | static bool ParseLocalSourceName(State *state); |
520 | static bool ParseUnnamedTypeName(State *state); |
521 | static bool ParseNumber(State *state, int *number_out); |
522 | static bool ParseFloatNumber(State *state); |
523 | static bool ParseSeqId(State *state); |
524 | static bool ParseIdentifier(State *state, int length); |
525 | static bool ParseOperatorName(State *state, int *arity); |
526 | static bool ParseSpecialName(State *state); |
527 | static bool ParseCallOffset(State *state); |
528 | static bool ParseNVOffset(State *state); |
529 | static bool ParseVOffset(State *state); |
530 | static bool ParseCtorDtorName(State *state); |
531 | static bool ParseDecltype(State *state); |
532 | static bool ParseType(State *state); |
533 | static bool ParseCVQualifiers(State *state); |
534 | static bool ParseBuiltinType(State *state); |
535 | static bool ParseFunctionType(State *state); |
536 | static bool ParseBareFunctionType(State *state); |
537 | static bool ParseClassEnumType(State *state); |
538 | static bool ParseArrayType(State *state); |
539 | static bool ParsePointerToMemberType(State *state); |
540 | static bool ParseTemplateParam(State *state); |
541 | static bool ParseTemplateTemplateParam(State *state); |
542 | static bool ParseTemplateArgs(State *state); |
543 | static bool ParseTemplateArg(State *state); |
544 | static bool ParseBaseUnresolvedName(State *state); |
545 | static bool ParseUnresolvedName(State *state); |
546 | static bool ParseExpression(State *state); |
547 | static bool ParseExprPrimary(State *state); |
548 | static bool ParseExprCastValue(State *state); |
549 | static bool ParseLocalName(State *state); |
550 | static bool ParseLocalNameSuffix(State *state); |
551 | static bool ParseDiscriminator(State *state); |
552 | static bool ParseSubstitution(State *state, bool accept_std); |
553 | |
554 | // Implementation note: the following code is a straightforward |
555 | // translation of the Itanium C++ ABI defined in BNF with a couple of |
556 | // exceptions. |
557 | // |
558 | // - Support GNU extensions not defined in the Itanium C++ ABI |
559 | // - <prefix> and <template-prefix> are combined to avoid infinite loop |
560 | // - Reorder patterns to shorten the code |
561 | // - Reorder patterns to give greedier functions precedence |
562 | // We'll mark "Less greedy than" for these cases in the code |
563 | // |
564 | // Each parsing function changes the parse state and returns true on |
565 | // success, or returns false and doesn't change the parse state (note: |
566 | // the parse-steps counter increases regardless of success or failure). |
567 | // To ensure that the parse state isn't changed in the latter case, we |
568 | // save the original state before we call multiple parsing functions |
569 | // consecutively with &&, and restore it if unsuccessful. See |
570 | // ParseEncoding() as an example of this convention. We follow the |
571 | // convention throughout the code. |
572 | // |
573 | // Originally we tried to do demangling without following the full ABI |
574 | // syntax but it turned out we needed to follow the full syntax to |
575 | // parse complicated cases like nested template arguments. Note that |
576 | // implementing a full-fledged demangler isn't trivial (libiberty's |
577 | // cp-demangle.c has +4300 lines). |
578 | // |
579 | // Note that (foo) in <(foo) ...> is a modifier to be ignored. |
580 | // |
581 | // Reference: |
582 | // - Itanium C++ ABI |
583 | // <https://mentorembedded.github.io/cxx-abi/abi.html#mangling> |
584 | |
585 | // <mangled-name> ::= _Z <encoding> |
586 | static bool ParseMangledName(State *state) { |
587 | ComplexityGuard guard(state); |
588 | if (guard.IsTooComplex()) return false; |
589 | return ParseTwoCharToken(state, "_Z" ) && ParseEncoding(state); |
590 | } |
591 | |
592 | // <encoding> ::= <(function) name> <bare-function-type> |
593 | // ::= <(data) name> |
594 | // ::= <special-name> |
595 | static bool ParseEncoding(State *state) { |
596 | ComplexityGuard guard(state); |
597 | if (guard.IsTooComplex()) return false; |
598 | // Implementing the first two productions together as <name> |
599 | // [<bare-function-type>] avoids exponential blowup of backtracking. |
600 | // |
601 | // Since Optional(...) can't fail, there's no need to copy the state for |
602 | // backtracking. |
603 | if (ParseName(state) && Optional(ParseBareFunctionType(state))) { |
604 | return true; |
605 | } |
606 | |
607 | if (ParseSpecialName(state)) { |
608 | return true; |
609 | } |
610 | return false; |
611 | } |
612 | |
613 | // <name> ::= <nested-name> |
614 | // ::= <unscoped-template-name> <template-args> |
615 | // ::= <unscoped-name> |
616 | // ::= <local-name> |
617 | static bool ParseName(State *state) { |
618 | ComplexityGuard guard(state); |
619 | if (guard.IsTooComplex()) return false; |
620 | if (ParseNestedName(state) || ParseLocalName(state)) { |
621 | return true; |
622 | } |
623 | |
624 | // We reorganize the productions to avoid re-parsing unscoped names. |
625 | // - Inline <unscoped-template-name> productions: |
626 | // <name> ::= <substitution> <template-args> |
627 | // ::= <unscoped-name> <template-args> |
628 | // ::= <unscoped-name> |
629 | // - Merge the two productions that start with unscoped-name: |
630 | // <name> ::= <unscoped-name> [<template-args>] |
631 | |
632 | ParseState copy = state->parse_state; |
633 | // "std<...>" isn't a valid name. |
634 | if (ParseSubstitution(state, /*accept_std=*/false) && |
635 | ParseTemplateArgs(state)) { |
636 | return true; |
637 | } |
638 | state->parse_state = copy; |
639 | |
640 | // Note there's no need to restore state after this since only the first |
641 | // subparser can fail. |
642 | return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state)); |
643 | } |
644 | |
645 | // <unscoped-name> ::= <unqualified-name> |
646 | // ::= St <unqualified-name> |
647 | static bool ParseUnscopedName(State *state) { |
648 | ComplexityGuard guard(state); |
649 | if (guard.IsTooComplex()) return false; |
650 | if (ParseUnqualifiedName(state)) { |
651 | return true; |
652 | } |
653 | |
654 | ParseState copy = state->parse_state; |
655 | if (ParseTwoCharToken(state, "St" ) && MaybeAppend(state, "std::" ) && |
656 | ParseUnqualifiedName(state)) { |
657 | return true; |
658 | } |
659 | state->parse_state = copy; |
660 | return false; |
661 | } |
662 | |
663 | // <ref-qualifer> ::= R // lvalue method reference qualifier |
664 | // ::= O // rvalue method reference qualifier |
665 | static inline bool ParseRefQualifier(State *state) { |
666 | return ParseCharClass(state, "OR" ); |
667 | } |
668 | |
669 | // <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> |
670 | // <unqualified-name> E |
671 | // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> |
672 | // <template-args> E |
673 | static bool ParseNestedName(State *state) { |
674 | ComplexityGuard guard(state); |
675 | if (guard.IsTooComplex()) return false; |
676 | ParseState copy = state->parse_state; |
677 | if (ParseOneCharToken(state, 'N') && EnterNestedName(state) && |
678 | Optional(ParseCVQualifiers(state)) && |
679 | Optional(ParseRefQualifier(state)) && ParsePrefix(state) && |
680 | LeaveNestedName(state, copy.nest_level) && |
681 | ParseOneCharToken(state, 'E')) { |
682 | return true; |
683 | } |
684 | state->parse_state = copy; |
685 | return false; |
686 | } |
687 | |
688 | // This part is tricky. If we literally translate them to code, we'll |
689 | // end up infinite loop. Hence we merge them to avoid the case. |
690 | // |
691 | // <prefix> ::= <prefix> <unqualified-name> |
692 | // ::= <template-prefix> <template-args> |
693 | // ::= <template-param> |
694 | // ::= <substitution> |
695 | // ::= # empty |
696 | // <template-prefix> ::= <prefix> <(template) unqualified-name> |
697 | // ::= <template-param> |
698 | // ::= <substitution> |
699 | static bool ParsePrefix(State *state) { |
700 | ComplexityGuard guard(state); |
701 | if (guard.IsTooComplex()) return false; |
702 | bool has_something = false; |
703 | while (true) { |
704 | MaybeAppendSeparator(state); |
705 | if (ParseTemplateParam(state) || |
706 | ParseSubstitution(state, /*accept_std=*/true) || |
707 | ParseUnscopedName(state) || |
708 | (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) { |
709 | has_something = true; |
710 | MaybeIncreaseNestLevel(state); |
711 | continue; |
712 | } |
713 | MaybeCancelLastSeparator(state); |
714 | if (has_something && ParseTemplateArgs(state)) { |
715 | return ParsePrefix(state); |
716 | } else { |
717 | break; |
718 | } |
719 | } |
720 | return true; |
721 | } |
722 | |
723 | // <unqualified-name> ::= <operator-name> |
724 | // ::= <ctor-dtor-name> |
725 | // ::= <source-name> |
726 | // ::= <local-source-name> // GCC extension; see below. |
727 | // ::= <unnamed-type-name> |
728 | static bool ParseUnqualifiedName(State *state) { |
729 | ComplexityGuard guard(state); |
730 | if (guard.IsTooComplex()) return false; |
731 | return (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) || |
732 | ParseSourceName(state) || ParseLocalSourceName(state) || |
733 | ParseUnnamedTypeName(state)); |
734 | } |
735 | |
736 | // <source-name> ::= <positive length number> <identifier> |
737 | static bool ParseSourceName(State *state) { |
738 | ComplexityGuard guard(state); |
739 | if (guard.IsTooComplex()) return false; |
740 | ParseState copy = state->parse_state; |
741 | int length = -1; |
742 | if (ParseNumber(state, &length) && ParseIdentifier(state, length)) { |
743 | return true; |
744 | } |
745 | state->parse_state = copy; |
746 | return false; |
747 | } |
748 | |
749 | // <local-source-name> ::= L <source-name> [<discriminator>] |
750 | // |
751 | // References: |
752 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775 |
753 | // https://gcc.gnu.org/viewcvs?view=rev&revision=124467 |
754 | static bool ParseLocalSourceName(State *state) { |
755 | ComplexityGuard guard(state); |
756 | if (guard.IsTooComplex()) return false; |
757 | ParseState copy = state->parse_state; |
758 | if (ParseOneCharToken(state, 'L') && ParseSourceName(state) && |
759 | Optional(ParseDiscriminator(state))) { |
760 | return true; |
761 | } |
762 | state->parse_state = copy; |
763 | return false; |
764 | } |
765 | |
766 | // <unnamed-type-name> ::= Ut [<(nonnegative) number>] _ |
767 | // ::= <closure-type-name> |
768 | // <closure-type-name> ::= Ul <lambda-sig> E [<(nonnegative) number>] _ |
769 | // <lambda-sig> ::= <(parameter) type>+ |
770 | static bool ParseUnnamedTypeName(State *state) { |
771 | ComplexityGuard guard(state); |
772 | if (guard.IsTooComplex()) return false; |
773 | ParseState copy = state->parse_state; |
774 | // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }. |
775 | // Optionally parse the encoded value into 'which' and add 2 to get the index. |
776 | int which = -1; |
777 | |
778 | // Unnamed type local to function or class. |
779 | if (ParseTwoCharToken(state, "Ut" ) && Optional(ParseNumber(state, &which)) && |
780 | which <= std::numeric_limits<int>::max() - 2 && // Don't overflow. |
781 | ParseOneCharToken(state, '_')) { |
782 | MaybeAppend(state, "{unnamed type#" ); |
783 | MaybeAppendDecimal(state, 2 + which); |
784 | MaybeAppend(state, "}" ); |
785 | return true; |
786 | } |
787 | state->parse_state = copy; |
788 | |
789 | // Closure type. |
790 | which = -1; |
791 | if (ParseTwoCharToken(state, "Ul" ) && DisableAppend(state) && |
792 | OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) && |
793 | ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) && |
794 | which <= std::numeric_limits<int>::max() - 2 && // Don't overflow. |
795 | ParseOneCharToken(state, '_')) { |
796 | MaybeAppend(state, "{lambda()#" ); |
797 | MaybeAppendDecimal(state, 2 + which); |
798 | MaybeAppend(state, "}" ); |
799 | return true; |
800 | } |
801 | state->parse_state = copy; |
802 | |
803 | return false; |
804 | } |
805 | |
806 | // <number> ::= [n] <non-negative decimal integer> |
807 | // If "number_out" is non-null, then *number_out is set to the value of the |
808 | // parsed number on success. |
809 | static bool ParseNumber(State *state, int *number_out) { |
810 | ComplexityGuard guard(state); |
811 | if (guard.IsTooComplex()) return false; |
812 | bool negative = false; |
813 | if (ParseOneCharToken(state, 'n')) { |
814 | negative = true; |
815 | } |
816 | const char *p = RemainingInput(state); |
817 | uint64_t number = 0; |
818 | for (; *p != '\0'; ++p) { |
819 | if (IsDigit(*p)) { |
820 | number = number * 10 + (*p - '0'); |
821 | } else { |
822 | break; |
823 | } |
824 | } |
825 | // Apply the sign with uint64_t arithmetic so overflows aren't UB. Gives |
826 | // "incorrect" results for out-of-range inputs, but negative values only |
827 | // appear for literals, which aren't printed. |
828 | if (negative) { |
829 | number = ~number + 1; |
830 | } |
831 | if (p != RemainingInput(state)) { // Conversion succeeded. |
832 | state->parse_state.mangled_idx += p - RemainingInput(state); |
833 | if (number_out != nullptr) { |
834 | // Note: possibly truncate "number". |
835 | *number_out = number; |
836 | } |
837 | return true; |
838 | } |
839 | return false; |
840 | } |
841 | |
842 | // Floating-point literals are encoded using a fixed-length lowercase |
843 | // hexadecimal string. |
844 | static bool ParseFloatNumber(State *state) { |
845 | ComplexityGuard guard(state); |
846 | if (guard.IsTooComplex()) return false; |
847 | const char *p = RemainingInput(state); |
848 | for (; *p != '\0'; ++p) { |
849 | if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) { |
850 | break; |
851 | } |
852 | } |
853 | if (p != RemainingInput(state)) { // Conversion succeeded. |
854 | state->parse_state.mangled_idx += p - RemainingInput(state); |
855 | return true; |
856 | } |
857 | return false; |
858 | } |
859 | |
860 | // The <seq-id> is a sequence number in base 36, |
861 | // using digits and upper case letters |
862 | static bool ParseSeqId(State *state) { |
863 | ComplexityGuard guard(state); |
864 | if (guard.IsTooComplex()) return false; |
865 | const char *p = RemainingInput(state); |
866 | for (; *p != '\0'; ++p) { |
867 | if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) { |
868 | break; |
869 | } |
870 | } |
871 | if (p != RemainingInput(state)) { // Conversion succeeded. |
872 | state->parse_state.mangled_idx += p - RemainingInput(state); |
873 | return true; |
874 | } |
875 | return false; |
876 | } |
877 | |
878 | // <identifier> ::= <unqualified source code identifier> (of given length) |
879 | static bool ParseIdentifier(State *state, int length) { |
880 | ComplexityGuard guard(state); |
881 | if (guard.IsTooComplex()) return false; |
882 | if (length < 0 || !AtLeastNumCharsRemaining(RemainingInput(state), length)) { |
883 | return false; |
884 | } |
885 | if (IdentifierIsAnonymousNamespace(state, length)) { |
886 | MaybeAppend(state, "(anonymous namespace)" ); |
887 | } else { |
888 | MaybeAppendWithLength(state, RemainingInput(state), length); |
889 | } |
890 | state->parse_state.mangled_idx += length; |
891 | return true; |
892 | } |
893 | |
894 | // <operator-name> ::= nw, and other two letters cases |
895 | // ::= cv <type> # (cast) |
896 | // ::= v <digit> <source-name> # vendor extended operator |
897 | static bool ParseOperatorName(State *state, int *arity) { |
898 | ComplexityGuard guard(state); |
899 | if (guard.IsTooComplex()) return false; |
900 | if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) { |
901 | return false; |
902 | } |
903 | // First check with "cv" (cast) case. |
904 | ParseState copy = state->parse_state; |
905 | if (ParseTwoCharToken(state, "cv" ) && MaybeAppend(state, "operator " ) && |
906 | EnterNestedName(state) && ParseType(state) && |
907 | LeaveNestedName(state, copy.nest_level)) { |
908 | if (arity != nullptr) { |
909 | *arity = 1; |
910 | } |
911 | return true; |
912 | } |
913 | state->parse_state = copy; |
914 | |
915 | // Then vendor extended operators. |
916 | if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) && |
917 | ParseSourceName(state)) { |
918 | return true; |
919 | } |
920 | state->parse_state = copy; |
921 | |
922 | // Other operator names should start with a lower alphabet followed |
923 | // by a lower/upper alphabet. |
924 | if (!(IsLower(RemainingInput(state)[0]) && |
925 | IsAlpha(RemainingInput(state)[1]))) { |
926 | return false; |
927 | } |
928 | // We may want to perform a binary search if we really need speed. |
929 | const AbbrevPair *p; |
930 | for (p = kOperatorList; p->abbrev != nullptr; ++p) { |
931 | if (RemainingInput(state)[0] == p->abbrev[0] && |
932 | RemainingInput(state)[1] == p->abbrev[1]) { |
933 | if (arity != nullptr) { |
934 | *arity = p->arity; |
935 | } |
936 | MaybeAppend(state, "operator" ); |
937 | if (IsLower(*p->real_name)) { // new, delete, etc. |
938 | MaybeAppend(state, " " ); |
939 | } |
940 | MaybeAppend(state, p->real_name); |
941 | state->parse_state.mangled_idx += 2; |
942 | return true; |
943 | } |
944 | } |
945 | return false; |
946 | } |
947 | |
948 | // <special-name> ::= TV <type> |
949 | // ::= TT <type> |
950 | // ::= TI <type> |
951 | // ::= TS <type> |
952 | // ::= Tc <call-offset> <call-offset> <(base) encoding> |
953 | // ::= GV <(object) name> |
954 | // ::= T <call-offset> <(base) encoding> |
955 | // G++ extensions: |
956 | // ::= TC <type> <(offset) number> _ <(base) type> |
957 | // ::= TF <type> |
958 | // ::= TJ <type> |
959 | // ::= GR <name> |
960 | // ::= GA <encoding> |
961 | // ::= Th <call-offset> <(base) encoding> |
962 | // ::= Tv <call-offset> <(base) encoding> |
963 | // |
964 | // Note: we don't care much about them since they don't appear in |
965 | // stack traces. The are special data. |
966 | static bool ParseSpecialName(State *state) { |
967 | ComplexityGuard guard(state); |
968 | if (guard.IsTooComplex()) return false; |
969 | ParseState copy = state->parse_state; |
970 | if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTIS" ) && |
971 | ParseType(state)) { |
972 | return true; |
973 | } |
974 | state->parse_state = copy; |
975 | |
976 | if (ParseTwoCharToken(state, "Tc" ) && ParseCallOffset(state) && |
977 | ParseCallOffset(state) && ParseEncoding(state)) { |
978 | return true; |
979 | } |
980 | state->parse_state = copy; |
981 | |
982 | if (ParseTwoCharToken(state, "GV" ) && ParseName(state)) { |
983 | return true; |
984 | } |
985 | state->parse_state = copy; |
986 | |
987 | if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) && |
988 | ParseEncoding(state)) { |
989 | return true; |
990 | } |
991 | state->parse_state = copy; |
992 | |
993 | // G++ extensions |
994 | if (ParseTwoCharToken(state, "TC" ) && ParseType(state) && |
995 | ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && |
996 | DisableAppend(state) && ParseType(state)) { |
997 | RestoreAppend(state, copy.append); |
998 | return true; |
999 | } |
1000 | state->parse_state = copy; |
1001 | |
1002 | if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ" ) && |
1003 | ParseType(state)) { |
1004 | return true; |
1005 | } |
1006 | state->parse_state = copy; |
1007 | |
1008 | if (ParseTwoCharToken(state, "GR" ) && ParseName(state)) { |
1009 | return true; |
1010 | } |
1011 | state->parse_state = copy; |
1012 | |
1013 | if (ParseTwoCharToken(state, "GA" ) && ParseEncoding(state)) { |
1014 | return true; |
1015 | } |
1016 | state->parse_state = copy; |
1017 | |
1018 | if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv" ) && |
1019 | ParseCallOffset(state) && ParseEncoding(state)) { |
1020 | return true; |
1021 | } |
1022 | state->parse_state = copy; |
1023 | return false; |
1024 | } |
1025 | |
1026 | // <call-offset> ::= h <nv-offset> _ |
1027 | // ::= v <v-offset> _ |
1028 | static bool ParseCallOffset(State *state) { |
1029 | ComplexityGuard guard(state); |
1030 | if (guard.IsTooComplex()) return false; |
1031 | ParseState copy = state->parse_state; |
1032 | if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) && |
1033 | ParseOneCharToken(state, '_')) { |
1034 | return true; |
1035 | } |
1036 | state->parse_state = copy; |
1037 | |
1038 | if (ParseOneCharToken(state, 'v') && ParseVOffset(state) && |
1039 | ParseOneCharToken(state, '_')) { |
1040 | return true; |
1041 | } |
1042 | state->parse_state = copy; |
1043 | |
1044 | return false; |
1045 | } |
1046 | |
1047 | // <nv-offset> ::= <(offset) number> |
1048 | static bool ParseNVOffset(State *state) { |
1049 | ComplexityGuard guard(state); |
1050 | if (guard.IsTooComplex()) return false; |
1051 | return ParseNumber(state, nullptr); |
1052 | } |
1053 | |
1054 | // <v-offset> ::= <(offset) number> _ <(virtual offset) number> |
1055 | static bool ParseVOffset(State *state) { |
1056 | ComplexityGuard guard(state); |
1057 | if (guard.IsTooComplex()) return false; |
1058 | ParseState copy = state->parse_state; |
1059 | if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && |
1060 | ParseNumber(state, nullptr)) { |
1061 | return true; |
1062 | } |
1063 | state->parse_state = copy; |
1064 | return false; |
1065 | } |
1066 | |
1067 | // <ctor-dtor-name> ::= C1 | C2 | C3 |
1068 | // ::= D0 | D1 | D2 |
1069 | // # GCC extensions: "unified" constructor/destructor. See |
1070 | // # https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847 |
1071 | // ::= C4 | D4 |
1072 | static bool ParseCtorDtorName(State *state) { |
1073 | ComplexityGuard guard(state); |
1074 | if (guard.IsTooComplex()) return false; |
1075 | ParseState copy = state->parse_state; |
1076 | if (ParseOneCharToken(state, 'C') && ParseCharClass(state, "1234" )) { |
1077 | const char *const prev_name = state->out + state->parse_state.prev_name_idx; |
1078 | MaybeAppendWithLength(state, prev_name, |
1079 | state->parse_state.prev_name_length); |
1080 | return true; |
1081 | } |
1082 | state->parse_state = copy; |
1083 | |
1084 | if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124" )) { |
1085 | const char *const prev_name = state->out + state->parse_state.prev_name_idx; |
1086 | MaybeAppend(state, "~" ); |
1087 | MaybeAppendWithLength(state, prev_name, |
1088 | state->parse_state.prev_name_length); |
1089 | return true; |
1090 | } |
1091 | state->parse_state = copy; |
1092 | return false; |
1093 | } |
1094 | |
1095 | // <decltype> ::= Dt <expression> E # decltype of an id-expression or class |
1096 | // # member access (C++0x) |
1097 | // ::= DT <expression> E # decltype of an expression (C++0x) |
1098 | static bool ParseDecltype(State *state) { |
1099 | ComplexityGuard guard(state); |
1100 | if (guard.IsTooComplex()) return false; |
1101 | |
1102 | ParseState copy = state->parse_state; |
1103 | if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT" ) && |
1104 | ParseExpression(state) && ParseOneCharToken(state, 'E')) { |
1105 | return true; |
1106 | } |
1107 | state->parse_state = copy; |
1108 | |
1109 | return false; |
1110 | } |
1111 | |
1112 | // <type> ::= <CV-qualifiers> <type> |
1113 | // ::= P <type> # pointer-to |
1114 | // ::= R <type> # reference-to |
1115 | // ::= O <type> # rvalue reference-to (C++0x) |
1116 | // ::= C <type> # complex pair (C 2000) |
1117 | // ::= G <type> # imaginary (C 2000) |
1118 | // ::= U <source-name> <type> # vendor extended type qualifier |
1119 | // ::= <builtin-type> |
1120 | // ::= <function-type> |
1121 | // ::= <class-enum-type> # note: just an alias for <name> |
1122 | // ::= <array-type> |
1123 | // ::= <pointer-to-member-type> |
1124 | // ::= <template-template-param> <template-args> |
1125 | // ::= <template-param> |
1126 | // ::= <decltype> |
1127 | // ::= <substitution> |
1128 | // ::= Dp <type> # pack expansion of (C++0x) |
1129 | // |
1130 | static bool ParseType(State *state) { |
1131 | ComplexityGuard guard(state); |
1132 | if (guard.IsTooComplex()) return false; |
1133 | ParseState copy = state->parse_state; |
1134 | |
1135 | // We should check CV-qualifers, and PRGC things first. |
1136 | // |
1137 | // CV-qualifiers overlap with some operator names, but an operator name is not |
1138 | // valid as a type. To avoid an ambiguity that can lead to exponential time |
1139 | // complexity, refuse to backtrack the CV-qualifiers. |
1140 | // |
1141 | // _Z4aoeuIrMvvE |
1142 | // => _Z 4aoeuI rM v v E |
1143 | // aoeu<operator%=, void, void> |
1144 | // => _Z 4aoeuI r Mv v E |
1145 | // aoeu<void void::* restrict> |
1146 | // |
1147 | // By consuming the CV-qualifiers first, the former parse is disabled. |
1148 | if (ParseCVQualifiers(state)) { |
1149 | const bool result = ParseType(state); |
1150 | if (!result) state->parse_state = copy; |
1151 | return result; |
1152 | } |
1153 | state->parse_state = copy; |
1154 | |
1155 | // Similarly, these tag characters can overlap with other <name>s resulting in |
1156 | // two different parse prefixes that land on <template-args> in the same |
1157 | // place, such as "C3r1xI...". So, disable the "ctor-name = C3" parse by |
1158 | // refusing to backtrack the tag characters. |
1159 | if (ParseCharClass(state, "OPRCG" )) { |
1160 | const bool result = ParseType(state); |
1161 | if (!result) state->parse_state = copy; |
1162 | return result; |
1163 | } |
1164 | state->parse_state = copy; |
1165 | |
1166 | if (ParseTwoCharToken(state, "Dp" ) && ParseType(state)) { |
1167 | return true; |
1168 | } |
1169 | state->parse_state = copy; |
1170 | |
1171 | // nullptr_t, i.e. decltype(nullptr). |
1172 | if (ParseTwoCharToken(state, "Dn" )) { |
1173 | return true; |
1174 | } |
1175 | state->parse_state = copy; |
1176 | |
1177 | if (ParseOneCharToken(state, 'U') && ParseSourceName(state) && |
1178 | ParseType(state)) { |
1179 | return true; |
1180 | } |
1181 | state->parse_state = copy; |
1182 | |
1183 | if (ParseBuiltinType(state) || ParseFunctionType(state) || |
1184 | ParseClassEnumType(state) || ParseArrayType(state) || |
1185 | ParsePointerToMemberType(state) || ParseDecltype(state) || |
1186 | // "std" on its own isn't a type. |
1187 | ParseSubstitution(state, /*accept_std=*/false)) { |
1188 | return true; |
1189 | } |
1190 | |
1191 | if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) { |
1192 | return true; |
1193 | } |
1194 | state->parse_state = copy; |
1195 | |
1196 | // Less greedy than <template-template-param> <template-args>. |
1197 | if (ParseTemplateParam(state)) { |
1198 | return true; |
1199 | } |
1200 | |
1201 | return false; |
1202 | } |
1203 | |
1204 | // <CV-qualifiers> ::= [r] [V] [K] |
1205 | // We don't allow empty <CV-qualifiers> to avoid infinite loop in |
1206 | // ParseType(). |
1207 | static bool ParseCVQualifiers(State *state) { |
1208 | ComplexityGuard guard(state); |
1209 | if (guard.IsTooComplex()) return false; |
1210 | int num_cv_qualifiers = 0; |
1211 | num_cv_qualifiers += ParseOneCharToken(state, 'r'); |
1212 | num_cv_qualifiers += ParseOneCharToken(state, 'V'); |
1213 | num_cv_qualifiers += ParseOneCharToken(state, 'K'); |
1214 | return num_cv_qualifiers > 0; |
1215 | } |
1216 | |
1217 | // <builtin-type> ::= v, etc. |
1218 | // ::= u <source-name> |
1219 | static bool ParseBuiltinType(State *state) { |
1220 | ComplexityGuard guard(state); |
1221 | if (guard.IsTooComplex()) return false; |
1222 | const AbbrevPair *p; |
1223 | for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) { |
1224 | if (RemainingInput(state)[0] == p->abbrev[0]) { |
1225 | MaybeAppend(state, p->real_name); |
1226 | ++state->parse_state.mangled_idx; |
1227 | return true; |
1228 | } |
1229 | } |
1230 | |
1231 | ParseState copy = state->parse_state; |
1232 | if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) { |
1233 | return true; |
1234 | } |
1235 | state->parse_state = copy; |
1236 | return false; |
1237 | } |
1238 | |
1239 | // <function-type> ::= F [Y] <bare-function-type> E |
1240 | static bool ParseFunctionType(State *state) { |
1241 | ComplexityGuard guard(state); |
1242 | if (guard.IsTooComplex()) return false; |
1243 | ParseState copy = state->parse_state; |
1244 | if (ParseOneCharToken(state, 'F') && |
1245 | Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) && |
1246 | ParseOneCharToken(state, 'E')) { |
1247 | return true; |
1248 | } |
1249 | state->parse_state = copy; |
1250 | return false; |
1251 | } |
1252 | |
1253 | // <bare-function-type> ::= <(signature) type>+ |
1254 | static bool ParseBareFunctionType(State *state) { |
1255 | ComplexityGuard guard(state); |
1256 | if (guard.IsTooComplex()) return false; |
1257 | ParseState copy = state->parse_state; |
1258 | DisableAppend(state); |
1259 | if (OneOrMore(ParseType, state)) { |
1260 | RestoreAppend(state, copy.append); |
1261 | MaybeAppend(state, "()" ); |
1262 | return true; |
1263 | } |
1264 | state->parse_state = copy; |
1265 | return false; |
1266 | } |
1267 | |
1268 | // <class-enum-type> ::= <name> |
1269 | static bool ParseClassEnumType(State *state) { |
1270 | ComplexityGuard guard(state); |
1271 | if (guard.IsTooComplex()) return false; |
1272 | return ParseName(state); |
1273 | } |
1274 | |
1275 | // <array-type> ::= A <(positive dimension) number> _ <(element) type> |
1276 | // ::= A [<(dimension) expression>] _ <(element) type> |
1277 | static bool ParseArrayType(State *state) { |
1278 | ComplexityGuard guard(state); |
1279 | if (guard.IsTooComplex()) return false; |
1280 | ParseState copy = state->parse_state; |
1281 | if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) && |
1282 | ParseOneCharToken(state, '_') && ParseType(state)) { |
1283 | return true; |
1284 | } |
1285 | state->parse_state = copy; |
1286 | |
1287 | if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) && |
1288 | ParseOneCharToken(state, '_') && ParseType(state)) { |
1289 | return true; |
1290 | } |
1291 | state->parse_state = copy; |
1292 | return false; |
1293 | } |
1294 | |
1295 | // <pointer-to-member-type> ::= M <(class) type> <(member) type> |
1296 | static bool ParsePointerToMemberType(State *state) { |
1297 | ComplexityGuard guard(state); |
1298 | if (guard.IsTooComplex()) return false; |
1299 | ParseState copy = state->parse_state; |
1300 | if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) { |
1301 | return true; |
1302 | } |
1303 | state->parse_state = copy; |
1304 | return false; |
1305 | } |
1306 | |
1307 | // <template-param> ::= T_ |
1308 | // ::= T <parameter-2 non-negative number> _ |
1309 | static bool ParseTemplateParam(State *state) { |
1310 | ComplexityGuard guard(state); |
1311 | if (guard.IsTooComplex()) return false; |
1312 | if (ParseTwoCharToken(state, "T_" )) { |
1313 | MaybeAppend(state, "?" ); // We don't support template substitutions. |
1314 | return true; |
1315 | } |
1316 | |
1317 | ParseState copy = state->parse_state; |
1318 | if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) && |
1319 | ParseOneCharToken(state, '_')) { |
1320 | MaybeAppend(state, "?" ); // We don't support template substitutions. |
1321 | return true; |
1322 | } |
1323 | state->parse_state = copy; |
1324 | return false; |
1325 | } |
1326 | |
1327 | // <template-template-param> ::= <template-param> |
1328 | // ::= <substitution> |
1329 | static bool ParseTemplateTemplateParam(State *state) { |
1330 | ComplexityGuard guard(state); |
1331 | if (guard.IsTooComplex()) return false; |
1332 | return (ParseTemplateParam(state) || |
1333 | // "std" on its own isn't a template. |
1334 | ParseSubstitution(state, /*accept_std=*/false)); |
1335 | } |
1336 | |
1337 | // <template-args> ::= I <template-arg>+ E |
1338 | static bool ParseTemplateArgs(State *state) { |
1339 | ComplexityGuard guard(state); |
1340 | if (guard.IsTooComplex()) return false; |
1341 | ParseState copy = state->parse_state; |
1342 | DisableAppend(state); |
1343 | if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) && |
1344 | ParseOneCharToken(state, 'E')) { |
1345 | RestoreAppend(state, copy.append); |
1346 | MaybeAppend(state, "<>" ); |
1347 | return true; |
1348 | } |
1349 | state->parse_state = copy; |
1350 | return false; |
1351 | } |
1352 | |
1353 | // <template-arg> ::= <type> |
1354 | // ::= <expr-primary> |
1355 | // ::= J <template-arg>* E # argument pack |
1356 | // ::= X <expression> E |
1357 | static bool ParseTemplateArg(State *state) { |
1358 | ComplexityGuard guard(state); |
1359 | if (guard.IsTooComplex()) return false; |
1360 | ParseState copy = state->parse_state; |
1361 | if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) && |
1362 | ParseOneCharToken(state, 'E')) { |
1363 | return true; |
1364 | } |
1365 | state->parse_state = copy; |
1366 | |
1367 | // There can be significant overlap between the following leading to |
1368 | // exponential backtracking: |
1369 | // |
1370 | // <expr-primary> ::= L <type> <expr-cast-value> E |
1371 | // e.g. L 2xxIvE 1 E |
1372 | // <type> ==> <local-source-name> <template-args> |
1373 | // e.g. L 2xx IvE |
1374 | // |
1375 | // This means parsing an entire <type> twice, and <type> can contain |
1376 | // <template-arg>, so this can generate exponential backtracking. There is |
1377 | // only overlap when the remaining input starts with "L <source-name>", so |
1378 | // parse all cases that can start this way jointly to share the common prefix. |
1379 | // |
1380 | // We have: |
1381 | // |
1382 | // <template-arg> ::= <type> |
1383 | // ::= <expr-primary> |
1384 | // |
1385 | // First, drop all the productions of <type> that must start with something |
1386 | // other than 'L'. All that's left is <class-enum-type>; inline it. |
1387 | // |
1388 | // <type> ::= <nested-name> # starts with 'N' |
1389 | // ::= <unscoped-name> |
1390 | // ::= <unscoped-template-name> <template-args> |
1391 | // ::= <local-name> # starts with 'Z' |
1392 | // |
1393 | // Drop and inline again: |
1394 | // |
1395 | // <type> ::= <unscoped-name> |
1396 | // ::= <unscoped-name> <template-args> |
1397 | // ::= <substitution> <template-args> # starts with 'S' |
1398 | // |
1399 | // Merge the first two, inline <unscoped-name>, drop last: |
1400 | // |
1401 | // <type> ::= <unqualified-name> [<template-args>] |
1402 | // ::= St <unqualified-name> [<template-args>] # starts with 'S' |
1403 | // |
1404 | // Drop and inline: |
1405 | // |
1406 | // <type> ::= <operator-name> [<template-args>] # starts with lowercase |
1407 | // ::= <ctor-dtor-name> [<template-args>] # starts with 'C' or 'D' |
1408 | // ::= <source-name> [<template-args>] # starts with digit |
1409 | // ::= <local-source-name> [<template-args>] |
1410 | // ::= <unnamed-type-name> [<template-args>] # starts with 'U' |
1411 | // |
1412 | // One more time: |
1413 | // |
1414 | // <type> ::= L <source-name> [<template-args>] |
1415 | // |
1416 | // Likewise with <expr-primary>: |
1417 | // |
1418 | // <expr-primary> ::= L <type> <expr-cast-value> E |
1419 | // ::= LZ <encoding> E # cannot overlap; drop |
1420 | // ::= L <mangled_name> E # cannot overlap; drop |
1421 | // |
1422 | // By similar reasoning as shown above, the only <type>s starting with |
1423 | // <source-name> are "<source-name> [<template-args>]". Inline this. |
1424 | // |
1425 | // <expr-primary> ::= L <source-name> [<template-args>] <expr-cast-value> E |
1426 | // |
1427 | // Now inline both of these into <template-arg>: |
1428 | // |
1429 | // <template-arg> ::= L <source-name> [<template-args>] |
1430 | // ::= L <source-name> [<template-args>] <expr-cast-value> E |
1431 | // |
1432 | // Merge them and we're done: |
1433 | // <template-arg> |
1434 | // ::= L <source-name> [<template-args>] [<expr-cast-value> E] |
1435 | if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) { |
1436 | copy = state->parse_state; |
1437 | if (ParseExprCastValue(state) && ParseOneCharToken(state, 'E')) { |
1438 | return true; |
1439 | } |
1440 | state->parse_state = copy; |
1441 | return true; |
1442 | } |
1443 | |
1444 | // Now that the overlapping cases can't reach this code, we can safely call |
1445 | // both of these. |
1446 | if (ParseType(state) || ParseExprPrimary(state)) { |
1447 | return true; |
1448 | } |
1449 | state->parse_state = copy; |
1450 | |
1451 | if (ParseOneCharToken(state, 'X') && ParseExpression(state) && |
1452 | ParseOneCharToken(state, 'E')) { |
1453 | return true; |
1454 | } |
1455 | state->parse_state = copy; |
1456 | return false; |
1457 | } |
1458 | |
1459 | // <unresolved-type> ::= <template-param> [<template-args>] |
1460 | // ::= <decltype> |
1461 | // ::= <substitution> |
1462 | static inline bool ParseUnresolvedType(State *state) { |
1463 | // No ComplexityGuard because we don't copy the state in this stack frame. |
1464 | return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) || |
1465 | ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false); |
1466 | } |
1467 | |
1468 | // <simple-id> ::= <source-name> [<template-args>] |
1469 | static inline bool ParseSimpleId(State *state) { |
1470 | // No ComplexityGuard because we don't copy the state in this stack frame. |
1471 | |
1472 | // Note: <simple-id> cannot be followed by a parameter pack; see comment in |
1473 | // ParseUnresolvedType. |
1474 | return ParseSourceName(state) && Optional(ParseTemplateArgs(state)); |
1475 | } |
1476 | |
1477 | // <base-unresolved-name> ::= <source-name> [<template-args>] |
1478 | // ::= on <operator-name> [<template-args>] |
1479 | // ::= dn <destructor-name> |
1480 | static bool ParseBaseUnresolvedName(State *state) { |
1481 | ComplexityGuard guard(state); |
1482 | if (guard.IsTooComplex()) return false; |
1483 | |
1484 | if (ParseSimpleId(state)) { |
1485 | return true; |
1486 | } |
1487 | |
1488 | ParseState copy = state->parse_state; |
1489 | if (ParseTwoCharToken(state, "on" ) && ParseOperatorName(state, nullptr) && |
1490 | Optional(ParseTemplateArgs(state))) { |
1491 | return true; |
1492 | } |
1493 | state->parse_state = copy; |
1494 | |
1495 | if (ParseTwoCharToken(state, "dn" ) && |
1496 | (ParseUnresolvedType(state) || ParseSimpleId(state))) { |
1497 | return true; |
1498 | } |
1499 | state->parse_state = copy; |
1500 | |
1501 | return false; |
1502 | } |
1503 | |
1504 | // <unresolved-name> ::= [gs] <base-unresolved-name> |
1505 | // ::= sr <unresolved-type> <base-unresolved-name> |
1506 | // ::= srN <unresolved-type> <unresolved-qualifier-level>+ E |
1507 | // <base-unresolved-name> |
1508 | // ::= [gs] sr <unresolved-qualifier-level>+ E |
1509 | // <base-unresolved-name> |
1510 | static bool ParseUnresolvedName(State *state) { |
1511 | ComplexityGuard guard(state); |
1512 | if (guard.IsTooComplex()) return false; |
1513 | |
1514 | ParseState copy = state->parse_state; |
1515 | if (Optional(ParseTwoCharToken(state, "gs" )) && |
1516 | ParseBaseUnresolvedName(state)) { |
1517 | return true; |
1518 | } |
1519 | state->parse_state = copy; |
1520 | |
1521 | if (ParseTwoCharToken(state, "sr" ) && ParseUnresolvedType(state) && |
1522 | ParseBaseUnresolvedName(state)) { |
1523 | return true; |
1524 | } |
1525 | state->parse_state = copy; |
1526 | |
1527 | if (ParseTwoCharToken(state, "sr" ) && ParseOneCharToken(state, 'N') && |
1528 | ParseUnresolvedType(state) && |
1529 | OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) && |
1530 | ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) { |
1531 | return true; |
1532 | } |
1533 | state->parse_state = copy; |
1534 | |
1535 | if (Optional(ParseTwoCharToken(state, "gs" )) && |
1536 | ParseTwoCharToken(state, "sr" ) && |
1537 | OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) && |
1538 | ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) { |
1539 | return true; |
1540 | } |
1541 | state->parse_state = copy; |
1542 | |
1543 | return false; |
1544 | } |
1545 | |
1546 | // <expression> ::= <1-ary operator-name> <expression> |
1547 | // ::= <2-ary operator-name> <expression> <expression> |
1548 | // ::= <3-ary operator-name> <expression> <expression> <expression> |
1549 | // ::= cl <expression>+ E |
1550 | // ::= cv <type> <expression> # type (expression) |
1551 | // ::= cv <type> _ <expression>* E # type (expr-list) |
1552 | // ::= st <type> |
1553 | // ::= <template-param> |
1554 | // ::= <function-param> |
1555 | // ::= <expr-primary> |
1556 | // ::= dt <expression> <unresolved-name> # expr.name |
1557 | // ::= pt <expression> <unresolved-name> # expr->name |
1558 | // ::= sp <expression> # argument pack expansion |
1559 | // ::= sr <type> <unqualified-name> <template-args> |
1560 | // ::= sr <type> <unqualified-name> |
1561 | // <function-param> ::= fp <(top-level) CV-qualifiers> _ |
1562 | // ::= fp <(top-level) CV-qualifiers> <number> _ |
1563 | // ::= fL <number> p <(top-level) CV-qualifiers> _ |
1564 | // ::= fL <number> p <(top-level) CV-qualifiers> <number> _ |
1565 | static bool ParseExpression(State *state) { |
1566 | ComplexityGuard guard(state); |
1567 | if (guard.IsTooComplex()) return false; |
1568 | if (ParseTemplateParam(state) || ParseExprPrimary(state)) { |
1569 | return true; |
1570 | } |
1571 | |
1572 | // Object/function call expression. |
1573 | ParseState copy = state->parse_state; |
1574 | if (ParseTwoCharToken(state, "cl" ) && OneOrMore(ParseExpression, state) && |
1575 | ParseOneCharToken(state, 'E')) { |
1576 | return true; |
1577 | } |
1578 | state->parse_state = copy; |
1579 | |
1580 | // Function-param expression (level 0). |
1581 | if (ParseTwoCharToken(state, "fp" ) && Optional(ParseCVQualifiers(state)) && |
1582 | Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) { |
1583 | return true; |
1584 | } |
1585 | state->parse_state = copy; |
1586 | |
1587 | // Function-param expression (level 1+). |
1588 | if (ParseTwoCharToken(state, "fL" ) && Optional(ParseNumber(state, nullptr)) && |
1589 | ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) && |
1590 | Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) { |
1591 | return true; |
1592 | } |
1593 | state->parse_state = copy; |
1594 | |
1595 | // Parse the conversion expressions jointly to avoid re-parsing the <type> in |
1596 | // their common prefix. Parsed as: |
1597 | // <expression> ::= cv <type> <conversion-args> |
1598 | // <conversion-args> ::= _ <expression>* E |
1599 | // ::= <expression> |
1600 | // |
1601 | // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName |
1602 | // also needs to accept "cv <type>" in other contexts. |
1603 | if (ParseTwoCharToken(state, "cv" )) { |
1604 | if (ParseType(state)) { |
1605 | ParseState copy2 = state->parse_state; |
1606 | if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) && |
1607 | ParseOneCharToken(state, 'E')) { |
1608 | return true; |
1609 | } |
1610 | state->parse_state = copy2; |
1611 | if (ParseExpression(state)) { |
1612 | return true; |
1613 | } |
1614 | } |
1615 | } else { |
1616 | // Parse unary, binary, and ternary operator expressions jointly, taking |
1617 | // care not to re-parse subexpressions repeatedly. Parse like: |
1618 | // <expression> ::= <operator-name> <expression> |
1619 | // [<one-to-two-expressions>] |
1620 | // <one-to-two-expressions> ::= <expression> [<expression>] |
1621 | int arity = -1; |
1622 | if (ParseOperatorName(state, &arity) && |
1623 | arity > 0 && // 0 arity => disabled. |
1624 | (arity < 3 || ParseExpression(state)) && |
1625 | (arity < 2 || ParseExpression(state)) && |
1626 | (arity < 1 || ParseExpression(state))) { |
1627 | return true; |
1628 | } |
1629 | } |
1630 | state->parse_state = copy; |
1631 | |
1632 | // sizeof type |
1633 | if (ParseTwoCharToken(state, "st" ) && ParseType(state)) { |
1634 | return true; |
1635 | } |
1636 | state->parse_state = copy; |
1637 | |
1638 | // Object and pointer member access expressions. |
1639 | if ((ParseTwoCharToken(state, "dt" ) || ParseTwoCharToken(state, "pt" )) && |
1640 | ParseExpression(state) && ParseType(state)) { |
1641 | return true; |
1642 | } |
1643 | state->parse_state = copy; |
1644 | |
1645 | // Pointer-to-member access expressions. This parses the same as a binary |
1646 | // operator, but it's implemented separately because "ds" shouldn't be |
1647 | // accepted in other contexts that parse an operator name. |
1648 | if (ParseTwoCharToken(state, "ds" ) && ParseExpression(state) && |
1649 | ParseExpression(state)) { |
1650 | return true; |
1651 | } |
1652 | state->parse_state = copy; |
1653 | |
1654 | // Parameter pack expansion |
1655 | if (ParseTwoCharToken(state, "sp" ) && ParseExpression(state)) { |
1656 | return true; |
1657 | } |
1658 | state->parse_state = copy; |
1659 | |
1660 | return ParseUnresolvedName(state); |
1661 | } |
1662 | |
1663 | // <expr-primary> ::= L <type> <(value) number> E |
1664 | // ::= L <type> <(value) float> E |
1665 | // ::= L <mangled-name> E |
1666 | // // A bug in g++'s C++ ABI version 2 (-fabi-version=2). |
1667 | // ::= LZ <encoding> E |
1668 | // |
1669 | // Warning, subtle: the "bug" LZ production above is ambiguous with the first |
1670 | // production where <type> starts with <local-name>, which can lead to |
1671 | // exponential backtracking in two scenarios: |
1672 | // |
1673 | // - When whatever follows the E in the <local-name> in the first production is |
1674 | // not a name, we backtrack the whole <encoding> and re-parse the whole thing. |
1675 | // |
1676 | // - When whatever follows the <local-name> in the first production is not a |
1677 | // number and this <expr-primary> may be followed by a name, we backtrack the |
1678 | // <name> and re-parse it. |
1679 | // |
1680 | // Moreover this ambiguity isn't always resolved -- for example, the following |
1681 | // has two different parses: |
1682 | // |
1683 | // _ZaaILZ4aoeuE1x1EvE |
1684 | // => operator&&<aoeu, x, E, void> |
1685 | // => operator&&<(aoeu::x)(1), void> |
1686 | // |
1687 | // To resolve this, we just do what GCC's demangler does, and refuse to parse |
1688 | // casts to <local-name> types. |
1689 | static bool ParseExprPrimary(State *state) { |
1690 | ComplexityGuard guard(state); |
1691 | if (guard.IsTooComplex()) return false; |
1692 | ParseState copy = state->parse_state; |
1693 | |
1694 | // The "LZ" special case: if we see LZ, we commit to accept "LZ <encoding> E" |
1695 | // or fail, no backtracking. |
1696 | if (ParseTwoCharToken(state, "LZ" )) { |
1697 | if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) { |
1698 | return true; |
1699 | } |
1700 | |
1701 | state->parse_state = copy; |
1702 | return false; |
1703 | } |
1704 | |
1705 | // The merged cast production. |
1706 | if (ParseOneCharToken(state, 'L') && ParseType(state) && |
1707 | ParseExprCastValue(state)) { |
1708 | return true; |
1709 | } |
1710 | state->parse_state = copy; |
1711 | |
1712 | if (ParseOneCharToken(state, 'L') && ParseMangledName(state) && |
1713 | ParseOneCharToken(state, 'E')) { |
1714 | return true; |
1715 | } |
1716 | state->parse_state = copy; |
1717 | |
1718 | return false; |
1719 | } |
1720 | |
1721 | // <number> or <float>, followed by 'E', as described above ParseExprPrimary. |
1722 | static bool ParseExprCastValue(State *state) { |
1723 | ComplexityGuard guard(state); |
1724 | if (guard.IsTooComplex()) return false; |
1725 | // We have to be able to backtrack after accepting a number because we could |
1726 | // have e.g. "7fffE", which will accept "7" as a number but then fail to find |
1727 | // the 'E'. |
1728 | ParseState copy = state->parse_state; |
1729 | if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) { |
1730 | return true; |
1731 | } |
1732 | state->parse_state = copy; |
1733 | |
1734 | if (ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) { |
1735 | return true; |
1736 | } |
1737 | state->parse_state = copy; |
1738 | |
1739 | return false; |
1740 | } |
1741 | |
1742 | // <local-name> ::= Z <(function) encoding> E <(entity) name> [<discriminator>] |
1743 | // ::= Z <(function) encoding> E s [<discriminator>] |
1744 | // |
1745 | // Parsing a common prefix of these two productions together avoids an |
1746 | // exponential blowup of backtracking. Parse like: |
1747 | // <local-name> := Z <encoding> E <local-name-suffix> |
1748 | // <local-name-suffix> ::= s [<discriminator>] |
1749 | // ::= <name> [<discriminator>] |
1750 | |
1751 | static bool ParseLocalNameSuffix(State *state) { |
1752 | ComplexityGuard guard(state); |
1753 | if (guard.IsTooComplex()) return false; |
1754 | |
1755 | if (MaybeAppend(state, "::" ) && ParseName(state) && |
1756 | Optional(ParseDiscriminator(state))) { |
1757 | return true; |
1758 | } |
1759 | |
1760 | // Since we're not going to overwrite the above "::" by re-parsing the |
1761 | // <encoding> (whose trailing '\0' byte was in the byte now holding the |
1762 | // first ':'), we have to rollback the "::" if the <name> parse failed. |
1763 | if (state->parse_state.append) { |
1764 | state->out[state->parse_state.out_cur_idx - 2] = '\0'; |
1765 | } |
1766 | |
1767 | return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state)); |
1768 | } |
1769 | |
1770 | static bool ParseLocalName(State *state) { |
1771 | ComplexityGuard guard(state); |
1772 | if (guard.IsTooComplex()) return false; |
1773 | ParseState copy = state->parse_state; |
1774 | if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) && |
1775 | ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) { |
1776 | return true; |
1777 | } |
1778 | state->parse_state = copy; |
1779 | return false; |
1780 | } |
1781 | |
1782 | // <discriminator> := _ <(non-negative) number> |
1783 | static bool ParseDiscriminator(State *state) { |
1784 | ComplexityGuard guard(state); |
1785 | if (guard.IsTooComplex()) return false; |
1786 | ParseState copy = state->parse_state; |
1787 | if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) { |
1788 | return true; |
1789 | } |
1790 | state->parse_state = copy; |
1791 | return false; |
1792 | } |
1793 | |
1794 | // <substitution> ::= S_ |
1795 | // ::= S <seq-id> _ |
1796 | // ::= St, etc. |
1797 | // |
1798 | // "St" is special in that it's not valid as a standalone name, and it *is* |
1799 | // allowed to precede a name without being wrapped in "N...E". This means that |
1800 | // if we accept it on its own, we can accept "St1a" and try to parse |
1801 | // template-args, then fail and backtrack, accept "St" on its own, then "1a" as |
1802 | // an unqualified name and re-parse the same template-args. To block this |
1803 | // exponential backtracking, we disable it with 'accept_std=false' in |
1804 | // problematic contexts. |
1805 | static bool ParseSubstitution(State *state, bool accept_std) { |
1806 | ComplexityGuard guard(state); |
1807 | if (guard.IsTooComplex()) return false; |
1808 | if (ParseTwoCharToken(state, "S_" )) { |
1809 | MaybeAppend(state, "?" ); // We don't support substitutions. |
1810 | return true; |
1811 | } |
1812 | |
1813 | ParseState copy = state->parse_state; |
1814 | if (ParseOneCharToken(state, 'S') && ParseSeqId(state) && |
1815 | ParseOneCharToken(state, '_')) { |
1816 | MaybeAppend(state, "?" ); // We don't support substitutions. |
1817 | return true; |
1818 | } |
1819 | state->parse_state = copy; |
1820 | |
1821 | // Expand abbreviations like "St" => "std". |
1822 | if (ParseOneCharToken(state, 'S')) { |
1823 | const AbbrevPair *p; |
1824 | for (p = kSubstitutionList; p->abbrev != nullptr; ++p) { |
1825 | if (RemainingInput(state)[0] == p->abbrev[1] && |
1826 | (accept_std || p->abbrev[1] != 't')) { |
1827 | MaybeAppend(state, "std" ); |
1828 | if (p->real_name[0] != '\0') { |
1829 | MaybeAppend(state, "::" ); |
1830 | MaybeAppend(state, p->real_name); |
1831 | } |
1832 | ++state->parse_state.mangled_idx; |
1833 | return true; |
1834 | } |
1835 | } |
1836 | } |
1837 | state->parse_state = copy; |
1838 | return false; |
1839 | } |
1840 | |
1841 | // Parse <mangled-name>, optionally followed by either a function-clone suffix |
1842 | // or version suffix. Returns true only if all of "mangled_cur" was consumed. |
1843 | static bool ParseTopLevelMangledName(State *state) { |
1844 | ComplexityGuard guard(state); |
1845 | if (guard.IsTooComplex()) return false; |
1846 | if (ParseMangledName(state)) { |
1847 | if (RemainingInput(state)[0] != '\0') { |
1848 | // Drop trailing function clone suffix, if any. |
1849 | if (IsFunctionCloneSuffix(RemainingInput(state))) { |
1850 | return true; |
1851 | } |
1852 | // Append trailing version suffix if any. |
1853 | // ex. _Z3foo@@GLIBCXX_3.4 |
1854 | if (RemainingInput(state)[0] == '@') { |
1855 | MaybeAppend(state, RemainingInput(state)); |
1856 | return true; |
1857 | } |
1858 | return false; // Unconsumed suffix. |
1859 | } |
1860 | return true; |
1861 | } |
1862 | return false; |
1863 | } |
1864 | |
1865 | static bool Overflowed(const State *state) { |
1866 | return state->parse_state.out_cur_idx >= state->out_end_idx; |
1867 | } |
1868 | |
1869 | // The demangler entry point. |
1870 | bool Demangle(const char *mangled, char *out, int out_size) { |
1871 | State state; |
1872 | InitState(&state, mangled, out, out_size); |
1873 | return ParseTopLevelMangledName(&state) && !Overflowed(&state); |
1874 | } |
1875 | |
1876 | } // namespace debugging_internal |
1877 | } // namespace absl |
1878 | |