1 | // Copyright 2017 The Abseil Authors. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | // |
15 | // Produce stack trace |
16 | |
17 | #ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ |
18 | #define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ |
19 | |
20 | #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__)) |
21 | #include <ucontext.h> // for ucontext_t |
22 | #endif |
23 | |
24 | #if !defined(_WIN32) |
25 | #include <unistd.h> |
26 | #endif |
27 | |
28 | #include <cassert> |
29 | #include <cstdint> |
30 | |
31 | #include "absl/base/macros.h" |
32 | #include "absl/base/port.h" |
33 | #include "absl/debugging/internal/address_is_readable.h" |
34 | #include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems |
35 | #include "absl/debugging/stacktrace.h" |
36 | |
37 | #include "absl/base/internal/raw_logging.h" |
38 | |
39 | #if defined(__linux__) && defined(__i386__) |
40 | // Count "push %reg" instructions in VDSO __kernel_vsyscall(), |
41 | // preceeding "syscall" or "sysenter". |
42 | // If __kernel_vsyscall uses frame pointer, answer 0. |
43 | // |
44 | // kMaxBytes tells how many instruction bytes of __kernel_vsyscall |
45 | // to analyze before giving up. Up to kMaxBytes+1 bytes of |
46 | // instructions could be accessed. |
47 | // |
48 | // Here are known __kernel_vsyscall instruction sequences: |
49 | // |
50 | // SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S). |
51 | // Used on Intel. |
52 | // 0xffffe400 <__kernel_vsyscall+0>: push %ecx |
53 | // 0xffffe401 <__kernel_vsyscall+1>: push %edx |
54 | // 0xffffe402 <__kernel_vsyscall+2>: push %ebp |
55 | // 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp |
56 | // 0xffffe405 <__kernel_vsyscall+5>: sysenter |
57 | // |
58 | // SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S). |
59 | // Used on AMD. |
60 | // 0xffffe400 <__kernel_vsyscall+0>: push %ebp |
61 | // 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp |
62 | // 0xffffe403 <__kernel_vsyscall+3>: syscall |
63 | // |
64 | |
65 | // The sequence below isn't actually expected in Google fleet, |
66 | // here only for completeness. Remove this comment from OSS release. |
67 | |
68 | // i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S) |
69 | // 0xffffe400 <__kernel_vsyscall+0>: int $0x80 |
70 | // 0xffffe401 <__kernel_vsyscall+1>: ret |
71 | // |
72 | static const int kMaxBytes = 10; |
73 | |
74 | // We use assert()s instead of DCHECK()s -- this is too low level |
75 | // for DCHECK(). |
76 | |
77 | static int CountPushInstructions(const unsigned char *const addr) { |
78 | int result = 0; |
79 | for (int i = 0; i < kMaxBytes; ++i) { |
80 | if (addr[i] == 0x89) { |
81 | // "mov reg,reg" |
82 | if (addr[i + 1] == 0xE5) { |
83 | // Found "mov %esp,%ebp". |
84 | return 0; |
85 | } |
86 | ++i; // Skip register encoding byte. |
87 | } else if (addr[i] == 0x0F && |
88 | (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) { |
89 | // Found "sysenter" or "syscall". |
90 | return result; |
91 | } else if ((addr[i] & 0xF0) == 0x50) { |
92 | // Found "push %reg". |
93 | ++result; |
94 | } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) { |
95 | // Found "int $0x80" |
96 | assert(result == 0); |
97 | return 0; |
98 | } else { |
99 | // Unexpected instruction. |
100 | assert(false && "unexpected instruction in __kernel_vsyscall" ); |
101 | return 0; |
102 | } |
103 | } |
104 | // Unexpected: didn't find SYSENTER or SYSCALL in |
105 | // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval. |
106 | assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall" ); |
107 | return 0; |
108 | } |
109 | #endif |
110 | |
111 | // Assume stack frames larger than 100,000 bytes are bogus. |
112 | static const int kMaxFrameBytes = 100000; |
113 | |
114 | // Returns the stack frame pointer from signal context, 0 if unknown. |
115 | // vuc is a ucontext_t *. We use void* to avoid the use |
116 | // of ucontext_t on non-POSIX systems. |
117 | static uintptr_t GetFP(const void *vuc) { |
118 | #if !defined(__linux__) |
119 | static_cast<void>(vuc); // Avoid an unused argument compiler warning. |
120 | #else |
121 | if (vuc != nullptr) { |
122 | auto *uc = reinterpret_cast<const ucontext_t *>(vuc); |
123 | #if defined(__i386__) |
124 | const auto bp = uc->uc_mcontext.gregs[REG_EBP]; |
125 | const auto sp = uc->uc_mcontext.gregs[REG_ESP]; |
126 | #elif defined(__x86_64__) |
127 | const auto bp = uc->uc_mcontext.gregs[REG_RBP]; |
128 | const auto sp = uc->uc_mcontext.gregs[REG_RSP]; |
129 | #else |
130 | const uintptr_t bp = 0; |
131 | const uintptr_t sp = 0; |
132 | #endif |
133 | // Sanity-check that the base pointer is valid. It should be as long as |
134 | // SHRINK_WRAP_FRAME_POINTER is not set, but it's possible that some code in |
135 | // the process is compiled with --copt=-fomit-frame-pointer or |
136 | // --copt=-momit-leaf-frame-pointer. |
137 | // |
138 | // TODO(bcmills): -momit-leaf-frame-pointer is currently the default |
139 | // behavior when building with clang. Talk to the C++ toolchain team about |
140 | // fixing that. |
141 | if (bp >= sp && bp - sp <= kMaxFrameBytes) return bp; |
142 | |
143 | // If bp isn't a plausible frame pointer, return the stack pointer instead. |
144 | // If we're lucky, it points to the start of a stack frame; otherwise, we'll |
145 | // get one frame of garbage in the stack trace and fail the sanity check on |
146 | // the next iteration. |
147 | return sp; |
148 | } |
149 | #endif |
150 | return 0; |
151 | } |
152 | |
153 | // Given a pointer to a stack frame, locate and return the calling |
154 | // stackframe, or return null if no stackframe can be found. Perform sanity |
155 | // checks (the strictness of which is controlled by the boolean parameter |
156 | // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. |
157 | template <bool STRICT_UNWINDING, bool WITH_CONTEXT> |
158 | ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. |
159 | ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. |
160 | static void **NextStackFrame(void **old_fp, const void *uc) { |
161 | void **new_fp = (void **)*old_fp; |
162 | |
163 | #if defined(__linux__) && defined(__i386__) |
164 | if (WITH_CONTEXT && uc != nullptr) { |
165 | // How many "push %reg" instructions are there at __kernel_vsyscall? |
166 | // This is constant for a given kernel and processor, so compute |
167 | // it only once. |
168 | static int num_push_instructions = -1; // Sentinel: not computed yet. |
169 | // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly |
170 | // be there. |
171 | static const unsigned char *kernel_rt_sigreturn_address = nullptr; |
172 | static const unsigned char *kernel_vsyscall_address = nullptr; |
173 | if (num_push_instructions == -1) { |
174 | absl::debugging_internal::VDSOSupport vdso; |
175 | if (vdso.IsPresent()) { |
176 | absl::debugging_internal::VDSOSupport::SymbolInfo |
177 | rt_sigreturn_symbol_info; |
178 | absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info; |
179 | if (!vdso.LookupSymbol("__kernel_rt_sigreturn" , "LINUX_2.5" , STT_FUNC, |
180 | &rt_sigreturn_symbol_info) || |
181 | !vdso.LookupSymbol("__kernel_vsyscall" , "LINUX_2.5" , STT_FUNC, |
182 | &vsyscall_symbol_info) || |
183 | rt_sigreturn_symbol_info.address == nullptr || |
184 | vsyscall_symbol_info.address == nullptr) { |
185 | // Unexpected: 32-bit VDSO is present, yet one of the expected |
186 | // symbols is missing or null. |
187 | assert(false && "VDSO is present, but doesn't have expected symbols" ); |
188 | num_push_instructions = 0; |
189 | } else { |
190 | kernel_rt_sigreturn_address = |
191 | reinterpret_cast<const unsigned char *>( |
192 | rt_sigreturn_symbol_info.address); |
193 | kernel_vsyscall_address = |
194 | reinterpret_cast<const unsigned char *>( |
195 | vsyscall_symbol_info.address); |
196 | num_push_instructions = |
197 | CountPushInstructions(kernel_vsyscall_address); |
198 | } |
199 | } else { |
200 | num_push_instructions = 0; |
201 | } |
202 | } |
203 | if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr && |
204 | old_fp[1] == kernel_rt_sigreturn_address) { |
205 | const ucontext_t *ucv = static_cast<const ucontext_t *>(uc); |
206 | // This kernel does not use frame pointer in its VDSO code, |
207 | // and so %ebp is not suitable for unwinding. |
208 | void **const reg_ebp = |
209 | reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]); |
210 | const unsigned char *const reg_eip = |
211 | reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]); |
212 | if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip && |
213 | reg_eip - kernel_vsyscall_address < kMaxBytes) { |
214 | // We "stepped up" to __kernel_vsyscall, but %ebp is not usable. |
215 | // Restore from 'ucv' instead. |
216 | void **const reg_esp = |
217 | reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]); |
218 | // Check that alleged %esp is not null and is reasonably aligned. |
219 | if (reg_esp && |
220 | ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) { |
221 | // Check that alleged %esp is actually readable. This is to prevent |
222 | // "double fault" in case we hit the first fault due to e.g. stack |
223 | // corruption. |
224 | void *const reg_esp2 = reg_esp[num_push_instructions - 1]; |
225 | if (absl::debugging_internal::AddressIsReadable(reg_esp2)) { |
226 | // Alleged %esp is readable, use it for further unwinding. |
227 | new_fp = reinterpret_cast<void **>(reg_esp2); |
228 | } |
229 | } |
230 | } |
231 | } |
232 | } |
233 | #endif |
234 | |
235 | const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp); |
236 | const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp); |
237 | |
238 | // Check that the transition from frame pointer old_fp to frame |
239 | // pointer new_fp isn't clearly bogus. Skip the checks if new_fp |
240 | // matches the signal context, so that we don't skip out early when |
241 | // using an alternate signal stack. |
242 | // |
243 | // TODO(bcmills): The GetFP call should be completely unnecessary when |
244 | // SHRINK_WRAP_FRAME_POINTER is set (because we should be back in the thread's |
245 | // stack by this point), but it is empirically still needed (e.g. when the |
246 | // stack includes a call to abort). unw_get_reg returns UNW_EBADREG for some |
247 | // frames. Figure out why GetValidFrameAddr and/or libunwind isn't doing what |
248 | // it's supposed to. |
249 | if (STRICT_UNWINDING && |
250 | (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) { |
251 | // With the stack growing downwards, older stack frame must be |
252 | // at a greater address that the current one. |
253 | if (new_fp_u <= old_fp_u) return nullptr; |
254 | if (new_fp_u - old_fp_u > kMaxFrameBytes) return nullptr; |
255 | } else { |
256 | if (new_fp == nullptr) return nullptr; // skip AddressIsReadable() below |
257 | // In the non-strict mode, allow discontiguous stack frames. |
258 | // (alternate-signal-stacks for example). |
259 | if (new_fp == old_fp) return nullptr; |
260 | } |
261 | |
262 | if (new_fp_u & (sizeof(void *) - 1)) return nullptr; |
263 | #ifdef __i386__ |
264 | // On 32-bit machines, the stack pointer can be very close to |
265 | // 0xffffffff, so we explicitly check for a pointer into the |
266 | // last two pages in the address space |
267 | if (new_fp_u >= 0xffffe000) return nullptr; |
268 | #endif |
269 | #if !defined(_WIN32) |
270 | if (!STRICT_UNWINDING) { |
271 | // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test |
272 | // on AMD-based machines with VDSO-enabled kernels. |
273 | // Make an extra sanity check to insure new_fp is readable. |
274 | // Note: NextStackFrame<false>() is only called while the program |
275 | // is already on its last leg, so it's ok to be slow here. |
276 | |
277 | if (!absl::debugging_internal::AddressIsReadable(new_fp)) { |
278 | return nullptr; |
279 | } |
280 | } |
281 | #endif |
282 | return new_fp; |
283 | } |
284 | |
285 | template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT> |
286 | ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. |
287 | ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. |
288 | ABSL_ATTRIBUTE_NOINLINE |
289 | static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count, |
290 | const void *ucp, int *min_dropped_frames) { |
291 | int n = 0; |
292 | void **fp = reinterpret_cast<void **>(__builtin_frame_address(0)); |
293 | |
294 | while (fp && n < max_depth) { |
295 | if (*(fp + 1) == reinterpret_cast<void *>(0)) { |
296 | // In 64-bit code, we often see a frame that |
297 | // points to itself and has a return address of 0. |
298 | break; |
299 | } |
300 | void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp); |
301 | if (skip_count > 0) { |
302 | skip_count--; |
303 | } else { |
304 | result[n] = *(fp + 1); |
305 | if (IS_STACK_FRAMES) { |
306 | if (next_fp > fp) { |
307 | sizes[n] = (uintptr_t)next_fp - (uintptr_t)fp; |
308 | } else { |
309 | // A frame-size of 0 is used to indicate unknown frame size. |
310 | sizes[n] = 0; |
311 | } |
312 | } |
313 | n++; |
314 | } |
315 | fp = next_fp; |
316 | } |
317 | if (min_dropped_frames != nullptr) { |
318 | // Implementation detail: we clamp the max of frames we are willing to |
319 | // count, so as not to spend too much time in the loop below. |
320 | const int kMaxUnwind = 1000; |
321 | int j = 0; |
322 | for (; fp != nullptr && j < kMaxUnwind; j++) { |
323 | fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp); |
324 | } |
325 | *min_dropped_frames = j; |
326 | } |
327 | return n; |
328 | } |
329 | |
330 | namespace absl { |
331 | namespace debugging_internal { |
332 | bool StackTraceWorksForTest() { |
333 | return true; |
334 | } |
335 | } // namespace debugging_internal |
336 | } // namespace absl |
337 | |
338 | #endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ |
339 | |