1 | // Copyright 2018 The Abseil Authors. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | // |
15 | // This file provides CityHash64() and related functions. |
16 | // |
17 | // It's probably possible to create even faster hash functions by |
18 | // writing a program that systematically explores some of the space of |
19 | // possible hash functions, by using SIMD instructions, or by |
20 | // compromising on hash quality. |
21 | |
22 | #include "absl/hash/internal/city.h" |
23 | |
24 | #include <string.h> // for memcpy and memset |
25 | #include <algorithm> |
26 | |
27 | #include "absl/base/config.h" |
28 | #include "absl/base/internal/endian.h" |
29 | #include "absl/base/internal/unaligned_access.h" |
30 | #include "absl/base/optimization.h" |
31 | |
32 | namespace absl { |
33 | namespace hash_internal { |
34 | |
35 | #ifdef ABSL_IS_BIG_ENDIAN |
36 | #define uint32_in_expected_order(x) (absl::gbswap_32(x)) |
37 | #define uint64_in_expected_order(x) (absl::gbswap_64(x)) |
38 | #else |
39 | #define uint32_in_expected_order(x) (x) |
40 | #define uint64_in_expected_order(x) (x) |
41 | #endif |
42 | |
43 | static uint64_t Fetch64(const char *p) { |
44 | return uint64_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD64(p)); |
45 | } |
46 | |
47 | static uint32_t Fetch32(const char *p) { |
48 | return uint32_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD32(p)); |
49 | } |
50 | |
51 | // Some primes between 2^63 and 2^64 for various uses. |
52 | static const uint64_t k0 = 0xc3a5c85c97cb3127ULL; |
53 | static const uint64_t k1 = 0xb492b66fbe98f273ULL; |
54 | static const uint64_t k2 = 0x9ae16a3b2f90404fULL; |
55 | |
56 | // Magic numbers for 32-bit hashing. Copied from Murmur3. |
57 | static const uint32_t c1 = 0xcc9e2d51; |
58 | static const uint32_t c2 = 0x1b873593; |
59 | |
60 | // A 32-bit to 32-bit integer hash copied from Murmur3. |
61 | static uint32_t fmix(uint32_t h) { |
62 | h ^= h >> 16; |
63 | h *= 0x85ebca6b; |
64 | h ^= h >> 13; |
65 | h *= 0xc2b2ae35; |
66 | h ^= h >> 16; |
67 | return h; |
68 | } |
69 | |
70 | static uint32_t Rotate32(uint32_t val, int shift) { |
71 | // Avoid shifting by 32: doing so yields an undefined result. |
72 | return shift == 0 ? val : ((val >> shift) | (val << (32 - shift))); |
73 | } |
74 | |
75 | #undef PERMUTE3 |
76 | #define PERMUTE3(a, b, c) \ |
77 | do { \ |
78 | std::swap(a, b); \ |
79 | std::swap(a, c); \ |
80 | } while (0) |
81 | |
82 | static uint32_t Mur(uint32_t a, uint32_t h) { |
83 | // Helper from Murmur3 for combining two 32-bit values. |
84 | a *= c1; |
85 | a = Rotate32(a, 17); |
86 | a *= c2; |
87 | h ^= a; |
88 | h = Rotate32(h, 19); |
89 | return h * 5 + 0xe6546b64; |
90 | } |
91 | |
92 | static uint32_t Hash32Len13to24(const char *s, size_t len) { |
93 | uint32_t a = Fetch32(s - 4 + (len >> 1)); |
94 | uint32_t b = Fetch32(s + 4); |
95 | uint32_t c = Fetch32(s + len - 8); |
96 | uint32_t d = Fetch32(s + (len >> 1)); |
97 | uint32_t e = Fetch32(s); |
98 | uint32_t f = Fetch32(s + len - 4); |
99 | uint32_t h = len; |
100 | |
101 | return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h))))))); |
102 | } |
103 | |
104 | static uint32_t Hash32Len0to4(const char *s, size_t len) { |
105 | uint32_t b = 0; |
106 | uint32_t c = 9; |
107 | for (size_t i = 0; i < len; i++) { |
108 | signed char v = s[i]; |
109 | b = b * c1 + v; |
110 | c ^= b; |
111 | } |
112 | return fmix(Mur(b, Mur(len, c))); |
113 | } |
114 | |
115 | static uint32_t Hash32Len5to12(const char *s, size_t len) { |
116 | uint32_t a = len, b = len * 5, c = 9, d = b; |
117 | a += Fetch32(s); |
118 | b += Fetch32(s + len - 4); |
119 | c += Fetch32(s + ((len >> 1) & 4)); |
120 | return fmix(Mur(c, Mur(b, Mur(a, d)))); |
121 | } |
122 | |
123 | uint32_t CityHash32(const char *s, size_t len) { |
124 | if (len <= 24) { |
125 | return len <= 12 |
126 | ? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len)) |
127 | : Hash32Len13to24(s, len); |
128 | } |
129 | |
130 | // len > 24 |
131 | uint32_t h = len, g = c1 * len, f = g; |
132 | |
133 | uint32_t a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2; |
134 | uint32_t a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2; |
135 | uint32_t a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2; |
136 | uint32_t a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2; |
137 | uint32_t a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2; |
138 | h ^= a0; |
139 | h = Rotate32(h, 19); |
140 | h = h * 5 + 0xe6546b64; |
141 | h ^= a2; |
142 | h = Rotate32(h, 19); |
143 | h = h * 5 + 0xe6546b64; |
144 | g ^= a1; |
145 | g = Rotate32(g, 19); |
146 | g = g * 5 + 0xe6546b64; |
147 | g ^= a3; |
148 | g = Rotate32(g, 19); |
149 | g = g * 5 + 0xe6546b64; |
150 | f += a4; |
151 | f = Rotate32(f, 19); |
152 | f = f * 5 + 0xe6546b64; |
153 | size_t iters = (len - 1) / 20; |
154 | do { |
155 | uint32_t b0 = Rotate32(Fetch32(s) * c1, 17) * c2; |
156 | uint32_t b1 = Fetch32(s + 4); |
157 | uint32_t b2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2; |
158 | uint32_t b3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2; |
159 | uint32_t b4 = Fetch32(s + 16); |
160 | h ^= b0; |
161 | h = Rotate32(h, 18); |
162 | h = h * 5 + 0xe6546b64; |
163 | f += b1; |
164 | f = Rotate32(f, 19); |
165 | f = f * c1; |
166 | g += b2; |
167 | g = Rotate32(g, 18); |
168 | g = g * 5 + 0xe6546b64; |
169 | h ^= b3 + b1; |
170 | h = Rotate32(h, 19); |
171 | h = h * 5 + 0xe6546b64; |
172 | g ^= b4; |
173 | g = absl::gbswap_32(g) * 5; |
174 | h += b4 * 5; |
175 | h = absl::gbswap_32(h); |
176 | f += b0; |
177 | PERMUTE3(f, h, g); |
178 | s += 20; |
179 | } while (--iters != 0); |
180 | g = Rotate32(g, 11) * c1; |
181 | g = Rotate32(g, 17) * c1; |
182 | f = Rotate32(f, 11) * c1; |
183 | f = Rotate32(f, 17) * c1; |
184 | h = Rotate32(h + g, 19); |
185 | h = h * 5 + 0xe6546b64; |
186 | h = Rotate32(h, 17) * c1; |
187 | h = Rotate32(h + f, 19); |
188 | h = h * 5 + 0xe6546b64; |
189 | h = Rotate32(h, 17) * c1; |
190 | return h; |
191 | } |
192 | |
193 | // Bitwise right rotate. Normally this will compile to a single |
194 | // instruction, especially if the shift is a manifest constant. |
195 | static uint64_t Rotate(uint64_t val, int shift) { |
196 | // Avoid shifting by 64: doing so yields an undefined result. |
197 | return shift == 0 ? val : ((val >> shift) | (val << (64 - shift))); |
198 | } |
199 | |
200 | static uint64_t ShiftMix(uint64_t val) { return val ^ (val >> 47); } |
201 | |
202 | static uint64_t HashLen16(uint64_t u, uint64_t v) { |
203 | return Hash128to64(uint128(u, v)); |
204 | } |
205 | |
206 | static uint64_t HashLen16(uint64_t u, uint64_t v, uint64_t mul) { |
207 | // Murmur-inspired hashing. |
208 | uint64_t a = (u ^ v) * mul; |
209 | a ^= (a >> 47); |
210 | uint64_t b = (v ^ a) * mul; |
211 | b ^= (b >> 47); |
212 | b *= mul; |
213 | return b; |
214 | } |
215 | |
216 | static uint64_t HashLen0to16(const char *s, size_t len) { |
217 | if (len >= 8) { |
218 | uint64_t mul = k2 + len * 2; |
219 | uint64_t a = Fetch64(s) + k2; |
220 | uint64_t b = Fetch64(s + len - 8); |
221 | uint64_t c = Rotate(b, 37) * mul + a; |
222 | uint64_t d = (Rotate(a, 25) + b) * mul; |
223 | return HashLen16(c, d, mul); |
224 | } |
225 | if (len >= 4) { |
226 | uint64_t mul = k2 + len * 2; |
227 | uint64_t a = Fetch32(s); |
228 | return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul); |
229 | } |
230 | if (len > 0) { |
231 | uint8_t a = s[0]; |
232 | uint8_t b = s[len >> 1]; |
233 | uint8_t c = s[len - 1]; |
234 | uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8); |
235 | uint32_t z = len + (static_cast<uint32_t>(c) << 2); |
236 | return ShiftMix(y * k2 ^ z * k0) * k2; |
237 | } |
238 | return k2; |
239 | } |
240 | |
241 | // This probably works well for 16-byte strings as well, but it may be overkill |
242 | // in that case. |
243 | static uint64_t HashLen17to32(const char *s, size_t len) { |
244 | uint64_t mul = k2 + len * 2; |
245 | uint64_t a = Fetch64(s) * k1; |
246 | uint64_t b = Fetch64(s + 8); |
247 | uint64_t c = Fetch64(s + len - 8) * mul; |
248 | uint64_t d = Fetch64(s + len - 16) * k2; |
249 | return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d, |
250 | a + Rotate(b + k2, 18) + c, mul); |
251 | } |
252 | |
253 | // Return a 16-byte hash for 48 bytes. Quick and dirty. |
254 | // Callers do best to use "random-looking" values for a and b. |
255 | static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(uint64_t w, uint64_t x, |
256 | uint64_t y, uint64_t z, |
257 | uint64_t a, uint64_t b) { |
258 | a += w; |
259 | b = Rotate(b + a + z, 21); |
260 | uint64_t c = a; |
261 | a += x; |
262 | a += y; |
263 | b += Rotate(a, 44); |
264 | return std::make_pair(a + z, b + c); |
265 | } |
266 | |
267 | // Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty. |
268 | static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(const char *s, uint64_t a, |
269 | uint64_t b) { |
270 | return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16), |
271 | Fetch64(s + 24), a, b); |
272 | } |
273 | |
274 | // Return an 8-byte hash for 33 to 64 bytes. |
275 | static uint64_t HashLen33to64(const char *s, size_t len) { |
276 | uint64_t mul = k2 + len * 2; |
277 | uint64_t a = Fetch64(s) * k2; |
278 | uint64_t b = Fetch64(s + 8); |
279 | uint64_t c = Fetch64(s + len - 24); |
280 | uint64_t d = Fetch64(s + len - 32); |
281 | uint64_t e = Fetch64(s + 16) * k2; |
282 | uint64_t f = Fetch64(s + 24) * 9; |
283 | uint64_t g = Fetch64(s + len - 8); |
284 | uint64_t h = Fetch64(s + len - 16) * mul; |
285 | uint64_t u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9; |
286 | uint64_t v = ((a + g) ^ d) + f + 1; |
287 | uint64_t w = absl::gbswap_64((u + v) * mul) + h; |
288 | uint64_t x = Rotate(e + f, 42) + c; |
289 | uint64_t y = (absl::gbswap_64((v + w) * mul) + g) * mul; |
290 | uint64_t z = e + f + c; |
291 | a = absl::gbswap_64((x + z) * mul + y) + b; |
292 | b = ShiftMix((z + a) * mul + d + h) * mul; |
293 | return b + x; |
294 | } |
295 | |
296 | uint64_t CityHash64(const char *s, size_t len) { |
297 | if (len <= 32) { |
298 | if (len <= 16) { |
299 | return HashLen0to16(s, len); |
300 | } else { |
301 | return HashLen17to32(s, len); |
302 | } |
303 | } else if (len <= 64) { |
304 | return HashLen33to64(s, len); |
305 | } |
306 | |
307 | // For strings over 64 bytes we hash the end first, and then as we |
308 | // loop we keep 56 bytes of state: v, w, x, y, and z. |
309 | uint64_t x = Fetch64(s + len - 40); |
310 | uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56); |
311 | uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24)); |
312 | std::pair<uint64_t, uint64_t> v = WeakHashLen32WithSeeds(s + len - 64, len, z); |
313 | std::pair<uint64_t, uint64_t> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x); |
314 | x = x * k1 + Fetch64(s); |
315 | |
316 | // Decrease len to the nearest multiple of 64, and operate on 64-byte chunks. |
317 | len = (len - 1) & ~static_cast<size_t>(63); |
318 | do { |
319 | x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; |
320 | y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; |
321 | x ^= w.second; |
322 | y += v.first + Fetch64(s + 40); |
323 | z = Rotate(z + w.first, 33) * k1; |
324 | v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); |
325 | w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); |
326 | std::swap(z, x); |
327 | s += 64; |
328 | len -= 64; |
329 | } while (len != 0); |
330 | return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z, |
331 | HashLen16(v.second, w.second) + x); |
332 | } |
333 | |
334 | uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed) { |
335 | return CityHash64WithSeeds(s, len, k2, seed); |
336 | } |
337 | |
338 | uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0, |
339 | uint64_t seed1) { |
340 | return HashLen16(CityHash64(s, len) - seed0, seed1); |
341 | } |
342 | |
343 | } // namespace hash_internal |
344 | } // namespace absl |
345 | |