1 | // Copyright 2017 The Abseil Authors. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | // |
15 | // ----------------------------------------------------------------------------- |
16 | // File: memory.h |
17 | // ----------------------------------------------------------------------------- |
18 | // |
19 | // This header file contains utility functions for managing the creation and |
20 | // conversion of smart pointers. This file is an extension to the C++ |
21 | // standard <memory> library header file. |
22 | |
23 | #ifndef ABSL_MEMORY_MEMORY_H_ |
24 | #define ABSL_MEMORY_MEMORY_H_ |
25 | |
26 | #include <cstddef> |
27 | #include <limits> |
28 | #include <memory> |
29 | #include <new> |
30 | #include <type_traits> |
31 | #include <utility> |
32 | |
33 | #include "absl/base/macros.h" |
34 | #include "absl/meta/type_traits.h" |
35 | |
36 | namespace absl { |
37 | |
38 | // ----------------------------------------------------------------------------- |
39 | // Function Template: WrapUnique() |
40 | // ----------------------------------------------------------------------------- |
41 | // |
42 | // Adopts ownership from a raw pointer and transfers it to the returned |
43 | // `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not* |
44 | // specify the template type `T` when calling `WrapUnique`. |
45 | // |
46 | // Example: |
47 | // X* NewX(int, int); |
48 | // auto x = WrapUnique(NewX(1, 2)); // 'x' is std::unique_ptr<X>. |
49 | // |
50 | // Do not call WrapUnique with an explicit type, as in |
51 | // `WrapUnique<X>(NewX(1, 2))`. The purpose of WrapUnique is to automatically |
52 | // deduce the pointer type. If you wish to make the type explicit, just use |
53 | // `std::unique_ptr` directly. |
54 | // |
55 | // auto x = std::unique_ptr<X>(NewX(1, 2)); |
56 | // - or - |
57 | // std::unique_ptr<X> x(NewX(1, 2)); |
58 | // |
59 | // While `absl::WrapUnique` is useful for capturing the output of a raw |
60 | // pointer factory, prefer 'absl::make_unique<T>(args...)' over |
61 | // 'absl::WrapUnique(new T(args...))'. |
62 | // |
63 | // auto x = WrapUnique(new X(1, 2)); // works, but nonideal. |
64 | // auto x = make_unique<X>(1, 2); // safer, standard, avoids raw 'new'. |
65 | // |
66 | // Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid |
67 | // expression. In particular, `absl::WrapUnique()` cannot wrap pointers to |
68 | // arrays, functions or void, and it must not be used to capture pointers |
69 | // obtained from array-new expressions (even though that would compile!). |
70 | template <typename T> |
71 | std::unique_ptr<T> WrapUnique(T* ptr) { |
72 | static_assert(!std::is_array<T>::value, "array types are unsupported" ); |
73 | static_assert(std::is_object<T>::value, "non-object types are unsupported" ); |
74 | return std::unique_ptr<T>(ptr); |
75 | } |
76 | |
77 | namespace memory_internal { |
78 | |
79 | // Traits to select proper overload and return type for `absl::make_unique<>`. |
80 | template <typename T> |
81 | struct MakeUniqueResult { |
82 | using scalar = std::unique_ptr<T>; |
83 | }; |
84 | template <typename T> |
85 | struct MakeUniqueResult<T[]> { |
86 | using array = std::unique_ptr<T[]>; |
87 | }; |
88 | template <typename T, size_t N> |
89 | struct MakeUniqueResult<T[N]> { |
90 | using invalid = void; |
91 | }; |
92 | |
93 | } // namespace memory_internal |
94 | |
95 | // gcc 4.8 has __cplusplus at 201301 but doesn't define make_unique. Other |
96 | // supported compilers either just define __cplusplus as 201103 but have |
97 | // make_unique (msvc), or have make_unique whenever __cplusplus > 201103 (clang) |
98 | #if (__cplusplus > 201103L || defined(_MSC_VER)) && \ |
99 | !(defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 8) |
100 | using std::make_unique; |
101 | #else |
102 | // ----------------------------------------------------------------------------- |
103 | // Function Template: make_unique<T>() |
104 | // ----------------------------------------------------------------------------- |
105 | // |
106 | // Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries |
107 | // during the construction process. `absl::make_unique<>` also avoids redundant |
108 | // type declarations, by avoiding the need to explicitly use the `new` operator. |
109 | // |
110 | // This implementation of `absl::make_unique<>` is designed for C++11 code and |
111 | // will be replaced in C++14 by the equivalent `std::make_unique<>` abstraction. |
112 | // `absl::make_unique<>` is designed to be 100% compatible with |
113 | // `std::make_unique<>` so that the eventual migration will involve a simple |
114 | // rename operation. |
115 | // |
116 | // For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic, |
117 | // see Herb Sutter's explanation on |
118 | // (Exception-Safe Function Calls)[https://herbsutter.com/gotw/_102/]. |
119 | // (In general, reviewers should treat `new T(a,b)` with scrutiny.) |
120 | // |
121 | // Example usage: |
122 | // |
123 | // auto p = make_unique<X>(args...); // 'p' is a std::unique_ptr<X> |
124 | // auto pa = make_unique<X[]>(5); // 'pa' is a std::unique_ptr<X[]> |
125 | // |
126 | // Three overloads of `absl::make_unique` are required: |
127 | // |
128 | // - For non-array T: |
129 | // |
130 | // Allocates a T with `new T(std::forward<Args> args...)`, |
131 | // forwarding all `args` to T's constructor. |
132 | // Returns a `std::unique_ptr<T>` owning that object. |
133 | // |
134 | // - For an array of unknown bounds T[]: |
135 | // |
136 | // `absl::make_unique<>` will allocate an array T of type U[] with |
137 | // `new U[n]()` and return a `std::unique_ptr<U[]>` owning that array. |
138 | // |
139 | // Note that 'U[n]()' is different from 'U[n]', and elements will be |
140 | // value-initialized. Note as well that `std::unique_ptr` will perform its |
141 | // own destruction of the array elements upon leaving scope, even though |
142 | // the array [] does not have a default destructor. |
143 | // |
144 | // NOTE: an array of unknown bounds T[] may still be (and often will be) |
145 | // initialized to have a size, and will still use this overload. E.g: |
146 | // |
147 | // auto my_array = absl::make_unique<int[]>(10); |
148 | // |
149 | // - For an array of known bounds T[N]: |
150 | // |
151 | // `absl::make_unique<>` is deleted (like with `std::make_unique<>`) as |
152 | // this overload is not useful. |
153 | // |
154 | // NOTE: an array of known bounds T[N] is not considered a useful |
155 | // construction, and may cause undefined behavior in templates. E.g: |
156 | // |
157 | // auto my_array = absl::make_unique<int[10]>(); |
158 | // |
159 | // In those cases, of course, you can still use the overload above and |
160 | // simply initialize it to its desired size: |
161 | // |
162 | // auto my_array = absl::make_unique<int[]>(10); |
163 | |
164 | // `absl::make_unique` overload for non-array types. |
165 | template <typename T, typename... Args> |
166 | typename memory_internal::MakeUniqueResult<T>::scalar make_unique( |
167 | Args&&... args) { |
168 | return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); |
169 | } |
170 | |
171 | // `absl::make_unique` overload for an array T[] of unknown bounds. |
172 | // The array allocation needs to use the `new T[size]` form and cannot take |
173 | // element constructor arguments. The `std::unique_ptr` will manage destructing |
174 | // these array elements. |
175 | template <typename T> |
176 | typename memory_internal::MakeUniqueResult<T>::array make_unique(size_t n) { |
177 | return std::unique_ptr<T>(new typename absl::remove_extent_t<T>[n]()); |
178 | } |
179 | |
180 | // `absl::make_unique` overload for an array T[N] of known bounds. |
181 | // This construction will be rejected. |
182 | template <typename T, typename... Args> |
183 | typename memory_internal::MakeUniqueResult<T>::invalid make_unique( |
184 | Args&&... /* args */) = delete; |
185 | #endif |
186 | |
187 | // ----------------------------------------------------------------------------- |
188 | // Function Template: RawPtr() |
189 | // ----------------------------------------------------------------------------- |
190 | // |
191 | // Extracts the raw pointer from a pointer-like value `ptr`. `absl::RawPtr` is |
192 | // useful within templates that need to handle a complement of raw pointers, |
193 | // `std::nullptr_t`, and smart pointers. |
194 | template <typename T> |
195 | auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) { |
196 | // ptr is a forwarding reference to support Ts with non-const operators. |
197 | return (ptr != nullptr) ? std::addressof(*ptr) : nullptr; |
198 | } |
199 | inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; } |
200 | |
201 | // ----------------------------------------------------------------------------- |
202 | // Function Template: ShareUniquePtr() |
203 | // ----------------------------------------------------------------------------- |
204 | // |
205 | // Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced |
206 | // type. Ownership (if any) of the held value is transferred to the returned |
207 | // shared pointer. |
208 | // |
209 | // Example: |
210 | // |
211 | // auto up = absl::make_unique<int>(10); |
212 | // auto sp = absl::ShareUniquePtr(std::move(up)); // shared_ptr<int> |
213 | // CHECK_EQ(*sp, 10); |
214 | // CHECK(up == nullptr); |
215 | // |
216 | // Note that this conversion is correct even when T is an array type, and more |
217 | // generally it works for *any* deleter of the `unique_ptr` (single-object |
218 | // deleter, array deleter, or any custom deleter), since the deleter is adopted |
219 | // by the shared pointer as well. The deleter is copied (unless it is a |
220 | // reference). |
221 | // |
222 | // Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a |
223 | // null shared pointer does not attempt to call the deleter. |
224 | template <typename T, typename D> |
225 | std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) { |
226 | return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>(); |
227 | } |
228 | |
229 | // ----------------------------------------------------------------------------- |
230 | // Function Template: WeakenPtr() |
231 | // ----------------------------------------------------------------------------- |
232 | // |
233 | // Creates a weak pointer associated with a given shared pointer. The returned |
234 | // value is a `std::weak_ptr` of deduced type. |
235 | // |
236 | // Example: |
237 | // |
238 | // auto sp = std::make_shared<int>(10); |
239 | // auto wp = absl::WeakenPtr(sp); |
240 | // CHECK_EQ(sp.get(), wp.lock().get()); |
241 | // sp.reset(); |
242 | // CHECK(wp.lock() == nullptr); |
243 | // |
244 | template <typename T> |
245 | std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) { |
246 | return std::weak_ptr<T>(ptr); |
247 | } |
248 | |
249 | namespace memory_internal { |
250 | |
251 | // ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D. |
252 | template <template <typename> class Extract, typename Obj, typename Default, |
253 | typename> |
254 | struct { |
255 | using = Default; |
256 | }; |
257 | |
258 | template <template <typename> class Extract, typename Obj, typename Default> |
259 | struct <Extract, Obj, Default, void_t<Extract<Obj>>> { |
260 | using = Extract<Obj>; |
261 | }; |
262 | |
263 | template <template <typename> class Extract, typename Obj, typename Default> |
264 | using = typename ExtractOr<Extract, Obj, Default, void>::type; |
265 | |
266 | // Extractors for the features of allocators. |
267 | template <typename T> |
268 | using GetPointer = typename T::pointer; |
269 | |
270 | template <typename T> |
271 | using GetConstPointer = typename T::const_pointer; |
272 | |
273 | template <typename T> |
274 | using GetVoidPointer = typename T::void_pointer; |
275 | |
276 | template <typename T> |
277 | using GetConstVoidPointer = typename T::const_void_pointer; |
278 | |
279 | template <typename T> |
280 | using GetDifferenceType = typename T::difference_type; |
281 | |
282 | template <typename T> |
283 | using GetSizeType = typename T::size_type; |
284 | |
285 | template <typename T> |
286 | using GetPropagateOnContainerCopyAssignment = |
287 | typename T::propagate_on_container_copy_assignment; |
288 | |
289 | template <typename T> |
290 | using GetPropagateOnContainerMoveAssignment = |
291 | typename T::propagate_on_container_move_assignment; |
292 | |
293 | template <typename T> |
294 | using GetPropagateOnContainerSwap = typename T::propagate_on_container_swap; |
295 | |
296 | template <typename T> |
297 | using GetIsAlwaysEqual = typename T::is_always_equal; |
298 | |
299 | template <typename T> |
300 | struct GetFirstArg; |
301 | |
302 | template <template <typename...> class Class, typename T, typename... Args> |
303 | struct GetFirstArg<Class<T, Args...>> { |
304 | using type = T; |
305 | }; |
306 | |
307 | template <typename Ptr, typename = void> |
308 | struct ElementType { |
309 | using type = typename GetFirstArg<Ptr>::type; |
310 | }; |
311 | |
312 | template <typename T> |
313 | struct ElementType<T, void_t<typename T::element_type>> { |
314 | using type = typename T::element_type; |
315 | }; |
316 | |
317 | template <typename T, typename U> |
318 | struct RebindFirstArg; |
319 | |
320 | template <template <typename...> class Class, typename T, typename... Args, |
321 | typename U> |
322 | struct RebindFirstArg<Class<T, Args...>, U> { |
323 | using type = Class<U, Args...>; |
324 | }; |
325 | |
326 | template <typename T, typename U, typename = void> |
327 | struct RebindPtr { |
328 | using type = typename RebindFirstArg<T, U>::type; |
329 | }; |
330 | |
331 | template <typename T, typename U> |
332 | struct RebindPtr<T, U, void_t<typename T::template rebind<U>>> { |
333 | using type = typename T::template rebind<U>; |
334 | }; |
335 | |
336 | template <typename T, typename U> |
337 | constexpr bool HasRebindAlloc(...) { |
338 | return false; |
339 | } |
340 | |
341 | template <typename T, typename U> |
342 | constexpr bool HasRebindAlloc(typename T::template rebind<U>::other*) { |
343 | return true; |
344 | } |
345 | |
346 | template <typename T, typename U, bool = HasRebindAlloc<T, U>(nullptr)> |
347 | struct RebindAlloc { |
348 | using type = typename RebindFirstArg<T, U>::type; |
349 | }; |
350 | |
351 | template <typename T, typename U> |
352 | struct RebindAlloc<T, U, true> { |
353 | using type = typename T::template rebind<U>::other; |
354 | }; |
355 | |
356 | } // namespace memory_internal |
357 | |
358 | // ----------------------------------------------------------------------------- |
359 | // Class Template: pointer_traits |
360 | // ----------------------------------------------------------------------------- |
361 | // |
362 | // An implementation of C++11's std::pointer_traits. |
363 | // |
364 | // Provided for portability on toolchains that have a working C++11 compiler, |
365 | // but the standard library is lacking in C++11 support. For example, some |
366 | // version of the Android NDK. |
367 | // |
368 | |
369 | template <typename Ptr> |
370 | struct pointer_traits { |
371 | using pointer = Ptr; |
372 | |
373 | // element_type: |
374 | // Ptr::element_type if present. Otherwise T if Ptr is a template |
375 | // instantiation Template<T, Args...> |
376 | using element_type = typename memory_internal::ElementType<Ptr>::type; |
377 | |
378 | // difference_type: |
379 | // Ptr::difference_type if present, otherwise std::ptrdiff_t |
380 | using difference_type = |
381 | memory_internal::ExtractOrT<memory_internal::GetDifferenceType, Ptr, |
382 | std::ptrdiff_t>; |
383 | |
384 | // rebind: |
385 | // Ptr::rebind<U> if exists, otherwise Template<U, Args...> if Ptr is a |
386 | // template instantiation Template<T, Args...> |
387 | template <typename U> |
388 | using rebind = typename memory_internal::RebindPtr<Ptr, U>::type; |
389 | |
390 | // pointer_to: |
391 | // Calls Ptr::pointer_to(r) |
392 | static pointer pointer_to(element_type& r) { // NOLINT(runtime/references) |
393 | return Ptr::pointer_to(r); |
394 | } |
395 | }; |
396 | |
397 | // Specialization for T*. |
398 | template <typename T> |
399 | struct pointer_traits<T*> { |
400 | using pointer = T*; |
401 | using element_type = T; |
402 | using difference_type = std::ptrdiff_t; |
403 | |
404 | template <typename U> |
405 | using rebind = U*; |
406 | |
407 | // pointer_to: |
408 | // Calls std::addressof(r) |
409 | static pointer pointer_to( |
410 | element_type& r) noexcept { // NOLINT(runtime/references) |
411 | return std::addressof(r); |
412 | } |
413 | }; |
414 | |
415 | // ----------------------------------------------------------------------------- |
416 | // Class Template: allocator_traits |
417 | // ----------------------------------------------------------------------------- |
418 | // |
419 | // A C++11 compatible implementation of C++17's std::allocator_traits. |
420 | // |
421 | template <typename Alloc> |
422 | struct allocator_traits { |
423 | using allocator_type = Alloc; |
424 | |
425 | // value_type: |
426 | // Alloc::value_type |
427 | using value_type = typename Alloc::value_type; |
428 | |
429 | // pointer: |
430 | // Alloc::pointer if present, otherwise value_type* |
431 | using pointer = memory_internal::ExtractOrT<memory_internal::GetPointer, |
432 | Alloc, value_type*>; |
433 | |
434 | // const_pointer: |
435 | // Alloc::const_pointer if present, otherwise |
436 | // absl::pointer_traits<pointer>::rebind<const value_type> |
437 | using const_pointer = |
438 | memory_internal::ExtractOrT<memory_internal::GetConstPointer, Alloc, |
439 | typename absl::pointer_traits<pointer>:: |
440 | template rebind<const value_type>>; |
441 | |
442 | // void_pointer: |
443 | // Alloc::void_pointer if present, otherwise |
444 | // absl::pointer_traits<pointer>::rebind<void> |
445 | using void_pointer = memory_internal::ExtractOrT< |
446 | memory_internal::GetVoidPointer, Alloc, |
447 | typename absl::pointer_traits<pointer>::template rebind<void>>; |
448 | |
449 | // const_void_pointer: |
450 | // Alloc::const_void_pointer if present, otherwise |
451 | // absl::pointer_traits<pointer>::rebind<const void> |
452 | using const_void_pointer = memory_internal::ExtractOrT< |
453 | memory_internal::GetConstVoidPointer, Alloc, |
454 | typename absl::pointer_traits<pointer>::template rebind<const void>>; |
455 | |
456 | // difference_type: |
457 | // Alloc::difference_type if present, otherwise |
458 | // absl::pointer_traits<pointer>::difference_type |
459 | using difference_type = memory_internal::ExtractOrT< |
460 | memory_internal::GetDifferenceType, Alloc, |
461 | typename absl::pointer_traits<pointer>::difference_type>; |
462 | |
463 | // size_type: |
464 | // Alloc::size_type if present, otherwise |
465 | // std::make_unsigned<difference_type>::type |
466 | using size_type = memory_internal::ExtractOrT< |
467 | memory_internal::GetSizeType, Alloc, |
468 | typename std::make_unsigned<difference_type>::type>; |
469 | |
470 | // propagate_on_container_copy_assignment: |
471 | // Alloc::propagate_on_container_copy_assignment if present, otherwise |
472 | // std::false_type |
473 | using propagate_on_container_copy_assignment = memory_internal::ExtractOrT< |
474 | memory_internal::GetPropagateOnContainerCopyAssignment, Alloc, |
475 | std::false_type>; |
476 | |
477 | // propagate_on_container_move_assignment: |
478 | // Alloc::propagate_on_container_move_assignment if present, otherwise |
479 | // std::false_type |
480 | using propagate_on_container_move_assignment = memory_internal::ExtractOrT< |
481 | memory_internal::GetPropagateOnContainerMoveAssignment, Alloc, |
482 | std::false_type>; |
483 | |
484 | // propagate_on_container_swap: |
485 | // Alloc::propagate_on_container_swap if present, otherwise std::false_type |
486 | using propagate_on_container_swap = |
487 | memory_internal::ExtractOrT<memory_internal::GetPropagateOnContainerSwap, |
488 | Alloc, std::false_type>; |
489 | |
490 | // is_always_equal: |
491 | // Alloc::is_always_equal if present, otherwise std::is_empty<Alloc>::type |
492 | using is_always_equal = |
493 | memory_internal::ExtractOrT<memory_internal::GetIsAlwaysEqual, Alloc, |
494 | typename std::is_empty<Alloc>::type>; |
495 | |
496 | // rebind_alloc: |
497 | // Alloc::rebind<T>::other if present, otherwise Alloc<T, Args> if this Alloc |
498 | // is Alloc<U, Args> |
499 | template <typename T> |
500 | using rebind_alloc = typename memory_internal::RebindAlloc<Alloc, T>::type; |
501 | |
502 | // rebind_traits: |
503 | // absl::allocator_traits<rebind_alloc<T>> |
504 | template <typename T> |
505 | using rebind_traits = absl::allocator_traits<rebind_alloc<T>>; |
506 | |
507 | // allocate(Alloc& a, size_type n): |
508 | // Calls a.allocate(n) |
509 | static pointer (Alloc& a, // NOLINT(runtime/references) |
510 | size_type n) { |
511 | return a.allocate(n); |
512 | } |
513 | |
514 | // allocate(Alloc& a, size_type n, const_void_pointer hint): |
515 | // Calls a.allocate(n, hint) if possible. |
516 | // If not possible, calls a.allocate(n) |
517 | static pointer (Alloc& a, size_type n, // NOLINT(runtime/references) |
518 | const_void_pointer hint) { |
519 | return allocate_impl(0, a, n, hint); |
520 | } |
521 | |
522 | // deallocate(Alloc& a, pointer p, size_type n): |
523 | // Calls a.deallocate(p, n) |
524 | static void (Alloc& a, pointer p, // NOLINT(runtime/references) |
525 | size_type n) { |
526 | a.deallocate(p, n); |
527 | } |
528 | |
529 | // construct(Alloc& a, T* p, Args&&... args): |
530 | // Calls a.construct(p, std::forward<Args>(args)...) if possible. |
531 | // If not possible, calls |
532 | // ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...) |
533 | template <typename T, typename... Args> |
534 | static void construct(Alloc& a, T* p, // NOLINT(runtime/references) |
535 | Args&&... args) { |
536 | construct_impl(0, a, p, std::forward<Args>(args)...); |
537 | } |
538 | |
539 | // destroy(Alloc& a, T* p): |
540 | // Calls a.destroy(p) if possible. If not possible, calls p->~T(). |
541 | template <typename T> |
542 | static void destroy(Alloc& a, T* p) { // NOLINT(runtime/references) |
543 | destroy_impl(0, a, p); |
544 | } |
545 | |
546 | // max_size(const Alloc& a): |
547 | // Returns a.max_size() if possible. If not possible, returns |
548 | // std::numeric_limits<size_type>::max() / sizeof(value_type) |
549 | static size_type max_size(const Alloc& a) { return max_size_impl(0, a); } |
550 | |
551 | // select_on_container_copy_construction(const Alloc& a): |
552 | // Returns a.select_on_container_copy_construction() if possible. |
553 | // If not possible, returns a. |
554 | static Alloc select_on_container_copy_construction(const Alloc& a) { |
555 | return select_on_container_copy_construction_impl(0, a); |
556 | } |
557 | |
558 | private: |
559 | template <typename A> |
560 | static auto (int, A& a, // NOLINT(runtime/references) |
561 | size_type n, const_void_pointer hint) |
562 | -> decltype(a.allocate(n, hint)) { |
563 | return a.allocate(n, hint); |
564 | } |
565 | static pointer (char, Alloc& a, // NOLINT(runtime/references) |
566 | size_type n, const_void_pointer) { |
567 | return a.allocate(n); |
568 | } |
569 | |
570 | template <typename A, typename... Args> |
571 | static auto construct_impl(int, A& a, // NOLINT(runtime/references) |
572 | Args&&... args) |
573 | -> decltype(a.construct(std::forward<Args>(args)...)) { |
574 | a.construct(std::forward<Args>(args)...); |
575 | } |
576 | |
577 | template <typename T, typename... Args> |
578 | static void construct_impl(char, Alloc&, T* p, Args&&... args) { |
579 | ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...); |
580 | } |
581 | |
582 | template <typename A, typename T> |
583 | static auto destroy_impl(int, A& a, // NOLINT(runtime/references) |
584 | T* p) -> decltype(a.destroy(p)) { |
585 | a.destroy(p); |
586 | } |
587 | template <typename T> |
588 | static void destroy_impl(char, Alloc&, T* p) { |
589 | p->~T(); |
590 | } |
591 | |
592 | template <typename A> |
593 | static auto max_size_impl(int, const A& a) -> decltype(a.max_size()) { |
594 | return a.max_size(); |
595 | } |
596 | static size_type max_size_impl(char, const Alloc&) { |
597 | return (std::numeric_limits<size_type>::max)() / sizeof(value_type); |
598 | } |
599 | |
600 | template <typename A> |
601 | static auto select_on_container_copy_construction_impl(int, const A& a) |
602 | -> decltype(a.select_on_container_copy_construction()) { |
603 | return a.select_on_container_copy_construction(); |
604 | } |
605 | static Alloc select_on_container_copy_construction_impl(char, |
606 | const Alloc& a) { |
607 | return a; |
608 | } |
609 | }; |
610 | |
611 | namespace memory_internal { |
612 | |
613 | // This template alias transforms Alloc::is_nothrow into a metafunction with |
614 | // Alloc as a parameter so it can be used with ExtractOrT<>. |
615 | template <typename Alloc> |
616 | using GetIsNothrow = typename Alloc::is_nothrow; |
617 | |
618 | } // namespace memory_internal |
619 | |
620 | // ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to |
621 | // specify whether the default allocation function can throw or never throws. |
622 | // If the allocation function never throws, user should define it to a non-zero |
623 | // value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`). |
624 | // If the allocation function can throw, user should leave it undefined or |
625 | // define it to zero. |
626 | // |
627 | // allocator_is_nothrow<Alloc> is a traits class that derives from |
628 | // Alloc::is_nothrow if present, otherwise std::false_type. It's specialized |
629 | // for Alloc = std::allocator<T> for any type T according to the state of |
630 | // ABSL_ALLOCATOR_NOTHROW. |
631 | // |
632 | // default_allocator_is_nothrow is a class that derives from std::true_type |
633 | // when the default allocator (global operator new) never throws, and |
634 | // std::false_type when it can throw. It is a convenience shorthand for writing |
635 | // allocator_is_nothrow<std::allocator<T>> (T can be any type). |
636 | // NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from |
637 | // the same type for all T, because users should specialize neither |
638 | // allocator_is_nothrow nor std::allocator. |
639 | template <typename Alloc> |
640 | struct allocator_is_nothrow |
641 | : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc, |
642 | std::false_type> {}; |
643 | |
644 | #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW |
645 | template <typename T> |
646 | struct allocator_is_nothrow<std::allocator<T>> : std::true_type {}; |
647 | struct default_allocator_is_nothrow : std::true_type {}; |
648 | #else |
649 | struct default_allocator_is_nothrow : std::false_type {}; |
650 | #endif |
651 | |
652 | namespace memory_internal { |
653 | template <typename Allocator, typename Iterator, typename... Args> |
654 | void ConstructRange(Allocator& alloc, Iterator first, Iterator last, |
655 | const Args&... args) { |
656 | for (Iterator cur = first; cur != last; ++cur) { |
657 | ABSL_INTERNAL_TRY { |
658 | std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur), |
659 | args...); |
660 | } |
661 | ABSL_INTERNAL_CATCH_ANY { |
662 | while (cur != first) { |
663 | --cur; |
664 | std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur)); |
665 | } |
666 | ABSL_INTERNAL_RETHROW; |
667 | } |
668 | } |
669 | } |
670 | |
671 | template <typename Allocator, typename Iterator, typename InputIterator> |
672 | void CopyRange(Allocator& alloc, Iterator destination, InputIterator first, |
673 | InputIterator last) { |
674 | for (Iterator cur = destination; first != last; |
675 | static_cast<void>(++cur), static_cast<void>(++first)) { |
676 | ABSL_INTERNAL_TRY { |
677 | std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur), |
678 | *first); |
679 | } |
680 | ABSL_INTERNAL_CATCH_ANY { |
681 | while (cur != destination) { |
682 | --cur; |
683 | std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur)); |
684 | } |
685 | ABSL_INTERNAL_RETHROW; |
686 | } |
687 | } |
688 | } |
689 | } // namespace memory_internal |
690 | } // namespace absl |
691 | |
692 | #endif // ABSL_MEMORY_MEMORY_H_ |
693 | |