1 | // Copyright 2018 The Abseil Authors. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #include "absl/strings/charconv.h" |
16 | |
17 | #include <algorithm> |
18 | #include <cassert> |
19 | #include <cmath> |
20 | #include <cstring> |
21 | |
22 | #include "absl/base/casts.h" |
23 | #include "absl/base/internal/bits.h" |
24 | #include "absl/numeric/int128.h" |
25 | #include "absl/strings/internal/charconv_bigint.h" |
26 | #include "absl/strings/internal/charconv_parse.h" |
27 | |
28 | // The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating |
29 | // point numbers have the same endianness in memory as a bitfield struct |
30 | // containing the corresponding parts. |
31 | // |
32 | // When set, we replace calls to ldexp() with manual bit packing, which is |
33 | // faster and is unaffected by floating point environment. |
34 | #ifdef ABSL_BIT_PACK_FLOATS |
35 | #error ABSL_BIT_PACK_FLOATS cannot be directly set |
36 | #elif defined(__x86_64__) || defined(_M_X64) |
37 | #define ABSL_BIT_PACK_FLOATS 1 |
38 | #endif |
39 | |
40 | // A note about subnormals: |
41 | // |
42 | // The code below talks about "normals" and "subnormals". A normal IEEE float |
43 | // has a fixed-width mantissa and power of two exponent. For example, a normal |
44 | // `double` has a 53-bit mantissa. Because the high bit is always 1, it is not |
45 | // stored in the representation. The implicit bit buys an extra bit of |
46 | // resolution in the datatype. |
47 | // |
48 | // The downside of this scheme is that there is a large gap between DBL_MIN and |
49 | // zero. (Large, at least, relative to the different between DBL_MIN and the |
50 | // next representable number). This gap is softened by the "subnormal" numbers, |
51 | // which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd |
52 | // bit. An all-bits-zero exponent in the encoding represents subnormals. (Zero |
53 | // is represented as a subnormal with an all-bits-zero mantissa.) |
54 | // |
55 | // The code below, in calculations, represents the mantissa as a uint64_t. The |
56 | // end result normally has the 53rd bit set. It represents subnormals by using |
57 | // narrower mantissas. |
58 | |
59 | namespace absl { |
60 | namespace { |
61 | |
62 | template <typename FloatType> |
63 | struct FloatTraits; |
64 | |
65 | template <> |
66 | struct FloatTraits<double> { |
67 | // The number of mantissa bits in the given float type. This includes the |
68 | // implied high bit. |
69 | static constexpr int kTargetMantissaBits = 53; |
70 | |
71 | // The largest supported IEEE exponent, in our integral mantissa |
72 | // representation. |
73 | // |
74 | // If `m` is the largest possible int kTargetMantissaBits bits wide, then |
75 | // m * 2**kMaxExponent is exactly equal to DBL_MAX. |
76 | static constexpr int kMaxExponent = 971; |
77 | |
78 | // The smallest supported IEEE normal exponent, in our integral mantissa |
79 | // representation. |
80 | // |
81 | // If `m` is the smallest possible int kTargetMantissaBits bits wide, then |
82 | // m * 2**kMinNormalExponent is exactly equal to DBL_MIN. |
83 | static constexpr int kMinNormalExponent = -1074; |
84 | |
85 | static double MakeNan(const char* tagp) { |
86 | // Support nan no matter which namespace it's in. Some platforms |
87 | // incorrectly don't put it in namespace std. |
88 | using namespace std; // NOLINT |
89 | return nan(tagp); |
90 | } |
91 | |
92 | // Builds a nonzero floating point number out of the provided parts. |
93 | // |
94 | // This is intended to do the same operation as ldexp(mantissa, exponent), |
95 | // but using purely integer math, to avoid -ffastmath and floating |
96 | // point environment issues. Using type punning is also faster. We fall back |
97 | // to ldexp on a per-platform basis for portability. |
98 | // |
99 | // `exponent` must be between kMinNormalExponent and kMaxExponent. |
100 | // |
101 | // `mantissa` must either be exactly kTargetMantissaBits wide, in which case |
102 | // a normal value is made, or it must be less narrow than that, in which case |
103 | // `exponent` must be exactly kMinNormalExponent, and a subnormal value is |
104 | // made. |
105 | static double Make(uint64_t mantissa, int exponent, bool sign) { |
106 | #ifndef ABSL_BIT_PACK_FLOATS |
107 | // Support ldexp no matter which namespace it's in. Some platforms |
108 | // incorrectly don't put it in namespace std. |
109 | using namespace std; // NOLINT |
110 | return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent); |
111 | #else |
112 | constexpr uint64_t kMantissaMask = |
113 | (uint64_t(1) << (kTargetMantissaBits - 1)) - 1; |
114 | uint64_t dbl = static_cast<uint64_t>(sign) << 63; |
115 | if (mantissa > kMantissaMask) { |
116 | // Normal value. |
117 | // Adjust by 1023 for the exponent representation bias, and an additional |
118 | // 52 due to the implied decimal point in the IEEE mantissa represenation. |
119 | dbl += uint64_t{exponent + 1023u + kTargetMantissaBits - 1} << 52; |
120 | mantissa &= kMantissaMask; |
121 | } else { |
122 | // subnormal value |
123 | assert(exponent == kMinNormalExponent); |
124 | } |
125 | dbl += mantissa; |
126 | return absl::bit_cast<double>(dbl); |
127 | #endif // ABSL_BIT_PACK_FLOATS |
128 | } |
129 | }; |
130 | |
131 | // Specialization of floating point traits for the `float` type. See the |
132 | // FloatTraits<double> specialization above for meaning of each of the following |
133 | // members and methods. |
134 | template <> |
135 | struct FloatTraits<float> { |
136 | static constexpr int kTargetMantissaBits = 24; |
137 | static constexpr int kMaxExponent = 104; |
138 | static constexpr int kMinNormalExponent = -149; |
139 | static float MakeNan(const char* tagp) { |
140 | // Support nanf no matter which namespace it's in. Some platforms |
141 | // incorrectly don't put it in namespace std. |
142 | using namespace std; // NOLINT |
143 | return nanf(tagp); |
144 | } |
145 | static float Make(uint32_t mantissa, int exponent, bool sign) { |
146 | #ifndef ABSL_BIT_PACK_FLOATS |
147 | // Support ldexpf no matter which namespace it's in. Some platforms |
148 | // incorrectly don't put it in namespace std. |
149 | using namespace std; // NOLINT |
150 | return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent); |
151 | #else |
152 | constexpr uint32_t kMantissaMask = |
153 | (uint32_t(1) << (kTargetMantissaBits - 1)) - 1; |
154 | uint32_t flt = static_cast<uint32_t>(sign) << 31; |
155 | if (mantissa > kMantissaMask) { |
156 | // Normal value. |
157 | // Adjust by 127 for the exponent representation bias, and an additional |
158 | // 23 due to the implied decimal point in the IEEE mantissa represenation. |
159 | flt += uint32_t{exponent + 127u + kTargetMantissaBits - 1} << 23; |
160 | mantissa &= kMantissaMask; |
161 | } else { |
162 | // subnormal value |
163 | assert(exponent == kMinNormalExponent); |
164 | } |
165 | flt += mantissa; |
166 | return absl::bit_cast<float>(flt); |
167 | #endif // ABSL_BIT_PACK_FLOATS |
168 | } |
169 | }; |
170 | |
171 | // Decimal-to-binary conversions require coercing powers of 10 into a mantissa |
172 | // and a power of 2. The two helper functions Power10Mantissa(n) and |
173 | // Power10Exponent(n) perform this task. Together, these represent a hand- |
174 | // rolled floating point value which is equal to or just less than 10**n. |
175 | // |
176 | // The return values satisfy two range guarantees: |
177 | // |
178 | // Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n |
179 | // < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n) |
180 | // |
181 | // 2**63 <= Power10Mantissa(n) < 2**64. |
182 | // |
183 | // Lookups into the power-of-10 table must first check the Power10Overflow() and |
184 | // Power10Underflow() functions, to avoid out-of-bounds table access. |
185 | // |
186 | // Indexes into these tables are biased by -kPower10TableMin, and the table has |
187 | // values in the range [kPower10TableMin, kPower10TableMax]. |
188 | extern const uint64_t kPower10MantissaTable[]; |
189 | extern const int16_t kPower10ExponentTable[]; |
190 | |
191 | // The smallest allowed value for use with the Power10Mantissa() and |
192 | // Power10Exponent() functions below. (If a smaller exponent is needed in |
193 | // calculations, the end result is guaranteed to underflow.) |
194 | constexpr int kPower10TableMin = -342; |
195 | |
196 | // The largest allowed value for use with the Power10Mantissa() and |
197 | // Power10Exponent() functions below. (If a smaller exponent is needed in |
198 | // calculations, the end result is guaranteed to overflow.) |
199 | constexpr int kPower10TableMax = 308; |
200 | |
201 | uint64_t Power10Mantissa(int n) { |
202 | return kPower10MantissaTable[n - kPower10TableMin]; |
203 | } |
204 | |
205 | int Power10Exponent(int n) { |
206 | return kPower10ExponentTable[n - kPower10TableMin]; |
207 | } |
208 | |
209 | // Returns true if n is large enough that 10**n always results in an IEEE |
210 | // overflow. |
211 | bool Power10Overflow(int n) { return n > kPower10TableMax; } |
212 | |
213 | // Returns true if n is small enough that 10**n times a ParsedFloat mantissa |
214 | // always results in an IEEE underflow. |
215 | bool Power10Underflow(int n) { return n < kPower10TableMin; } |
216 | |
217 | // Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal |
218 | // to 10**n numerically. Put another way, this returns true if there is no |
219 | // truncation error in Power10Mantissa(n). |
220 | bool Power10Exact(int n) { return n >= 0 && n <= 27; } |
221 | |
222 | // Sentinel exponent values for representing numbers too large or too close to |
223 | // zero to represent in a double. |
224 | constexpr int kOverflow = 99999; |
225 | constexpr int kUnderflow = -99999; |
226 | |
227 | // Struct representing the calculated conversion result of a positive (nonzero) |
228 | // floating point number. |
229 | // |
230 | // The calculated number is mantissa * 2**exponent (mantissa is treated as an |
231 | // integer.) `mantissa` is chosen to be the correct width for the IEEE float |
232 | // representation being calculated. (`mantissa` will always have the same bit |
233 | // width for normal values, and narrower bit widths for subnormals.) |
234 | // |
235 | // If the result of conversion was an underflow or overflow, exponent is set |
236 | // to kUnderflow or kOverflow. |
237 | struct CalculatedFloat { |
238 | uint64_t mantissa = 0; |
239 | int exponent = 0; |
240 | }; |
241 | |
242 | // Returns the bit width of the given uint128. (Equivalently, returns 128 |
243 | // minus the number of leading zero bits.) |
244 | int BitWidth(uint128 value) { |
245 | if (Uint128High64(value) == 0) { |
246 | return 64 - base_internal::CountLeadingZeros64(Uint128Low64(value)); |
247 | } |
248 | return 128 - base_internal::CountLeadingZeros64(Uint128High64(value)); |
249 | } |
250 | |
251 | // Calculates how far to the right a mantissa needs to be shifted to create a |
252 | // properly adjusted mantissa for an IEEE floating point number. |
253 | // |
254 | // `mantissa_width` is the bit width of the mantissa to be shifted, and |
255 | // `binary_exponent` is the exponent of the number before the shift. |
256 | // |
257 | // This accounts for subnormal values, and will return a larger-than-normal |
258 | // shift if binary_exponent would otherwise be too low. |
259 | template <typename FloatType> |
260 | int NormalizedShiftSize(int mantissa_width, int binary_exponent) { |
261 | const int normal_shift = |
262 | mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits; |
263 | const int minimum_shift = |
264 | FloatTraits<FloatType>::kMinNormalExponent - binary_exponent; |
265 | return std::max(normal_shift, minimum_shift); |
266 | } |
267 | |
268 | // Right shifts a uint128 so that it has the requested bit width. (The |
269 | // resulting value will have 128 - bit_width leading zeroes.) The initial |
270 | // `value` must be wider than the requested bit width. |
271 | // |
272 | // Returns the number of bits shifted. |
273 | int TruncateToBitWidth(int bit_width, uint128* value) { |
274 | const int current_bit_width = BitWidth(*value); |
275 | const int shift = current_bit_width - bit_width; |
276 | *value >>= shift; |
277 | return shift; |
278 | } |
279 | |
280 | // Checks if the given ParsedFloat represents one of the edge cases that are |
281 | // not dependent on number base: zero, infinity, or NaN. If so, sets *value |
282 | // the appropriate double, and returns true. |
283 | template <typename FloatType> |
284 | bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative, |
285 | FloatType* value) { |
286 | if (input.type == strings_internal::FloatType::kNan) { |
287 | // A bug in both clang and gcc would cause the compiler to optimize away the |
288 | // buffer we are building below. Declaring the buffer volatile avoids the |
289 | // issue, and has no measurable performance impact in microbenchmarks. |
290 | // |
291 | // https://bugs.llvm.org/show_bug.cgi?id=37778 |
292 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113 |
293 | constexpr ptrdiff_t kNanBufferSize = 128; |
294 | volatile char n_char_sequence[kNanBufferSize]; |
295 | if (input.subrange_begin == nullptr) { |
296 | n_char_sequence[0] = '\0'; |
297 | } else { |
298 | ptrdiff_t nan_size = input.subrange_end - input.subrange_begin; |
299 | nan_size = std::min(nan_size, kNanBufferSize - 1); |
300 | std::copy_n(input.subrange_begin, nan_size, n_char_sequence); |
301 | n_char_sequence[nan_size] = '\0'; |
302 | } |
303 | char* nan_argument = const_cast<char*>(n_char_sequence); |
304 | *value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument) |
305 | : FloatTraits<FloatType>::MakeNan(nan_argument); |
306 | return true; |
307 | } |
308 | if (input.type == strings_internal::FloatType::kInfinity) { |
309 | *value = negative ? -std::numeric_limits<FloatType>::infinity() |
310 | : std::numeric_limits<FloatType>::infinity(); |
311 | return true; |
312 | } |
313 | if (input.mantissa == 0) { |
314 | *value = negative ? -0.0 : 0.0; |
315 | return true; |
316 | } |
317 | return false; |
318 | } |
319 | |
320 | // Given a CalculatedFloat result of a from_chars conversion, generate the |
321 | // correct output values. |
322 | // |
323 | // CalculatedFloat can represent an underflow or overflow, in which case the |
324 | // error code in *result is set. Otherwise, the calculated floating point |
325 | // number is stored in *value. |
326 | template <typename FloatType> |
327 | void EncodeResult(const CalculatedFloat& calculated, bool negative, |
328 | absl::from_chars_result* result, FloatType* value) { |
329 | if (calculated.exponent == kOverflow) { |
330 | result->ec = std::errc::result_out_of_range; |
331 | *value = negative ? -std::numeric_limits<FloatType>::max() |
332 | : std::numeric_limits<FloatType>::max(); |
333 | return; |
334 | } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) { |
335 | result->ec = std::errc::result_out_of_range; |
336 | *value = negative ? -0.0 : 0.0; |
337 | return; |
338 | } |
339 | *value = FloatTraits<FloatType>::Make(calculated.mantissa, |
340 | calculated.exponent, negative); |
341 | } |
342 | |
343 | // Returns the given uint128 shifted to the right by `shift` bits, and rounds |
344 | // the remaining bits using round_to_nearest logic. The value is returned as a |
345 | // uint64_t, since this is the type used by this library for storing calculated |
346 | // floating point mantissas. |
347 | // |
348 | // It is expected that the width of the input value shifted by `shift` will |
349 | // be the correct bit-width for the target mantissa, which is strictly narrower |
350 | // than a uint64_t. |
351 | // |
352 | // If `input_exact` is false, then a nonzero error epsilon is assumed. For |
353 | // rounding purposes, the true value being rounded is strictly greater than the |
354 | // input value. The error may represent a single lost carry bit. |
355 | // |
356 | // When input_exact, shifted bits of the form 1000000... represent a tie, which |
357 | // is broken by rounding to even -- the rounding direction is chosen so the low |
358 | // bit of the returned value is 0. |
359 | // |
360 | // When !input_exact, shifted bits of the form 10000000... represent a value |
361 | // strictly greater than one half (due to the error epsilon), and so ties are |
362 | // always broken by rounding up. |
363 | // |
364 | // When !input_exact, shifted bits of the form 01111111... are uncertain; |
365 | // the true value may or may not be greater than 10000000..., due to the |
366 | // possible lost carry bit. The correct rounding direction is unknown. In this |
367 | // case, the result is rounded down, and `output_exact` is set to false. |
368 | // |
369 | // Zero and negative values of `shift` are accepted, in which case the word is |
370 | // shifted left, as necessary. |
371 | uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact, |
372 | bool* output_exact) { |
373 | if (shift <= 0) { |
374 | *output_exact = input_exact; |
375 | return static_cast<uint64_t>(value << -shift); |
376 | } |
377 | if (shift >= 128) { |
378 | // Exponent is so small that we are shifting away all significant bits. |
379 | // Answer will not be representable, even as a subnormal, so return a zero |
380 | // mantissa (which represents underflow). |
381 | *output_exact = true; |
382 | return 0; |
383 | } |
384 | |
385 | *output_exact = true; |
386 | const uint128 shift_mask = (uint128(1) << shift) - 1; |
387 | const uint128 halfway_point = uint128(1) << (shift - 1); |
388 | |
389 | const uint128 shifted_bits = value & shift_mask; |
390 | value >>= shift; |
391 | if (shifted_bits > halfway_point) { |
392 | // Shifted bits greater than 10000... require rounding up. |
393 | return static_cast<uint64_t>(value + 1); |
394 | } |
395 | if (shifted_bits == halfway_point) { |
396 | // In exact mode, shifted bits of 10000... mean we're exactly halfway |
397 | // between two numbers, and we must round to even. So only round up if |
398 | // the low bit of `value` is set. |
399 | // |
400 | // In inexact mode, the nonzero error means the actual value is greater |
401 | // than the halfway point and we must alway round up. |
402 | if ((value & 1) == 1 || !input_exact) { |
403 | ++value; |
404 | } |
405 | return static_cast<uint64_t>(value); |
406 | } |
407 | if (!input_exact && shifted_bits == halfway_point - 1) { |
408 | // Rounding direction is unclear, due to error. |
409 | *output_exact = false; |
410 | } |
411 | // Otherwise, round down. |
412 | return static_cast<uint64_t>(value); |
413 | } |
414 | |
415 | // Checks if a floating point guess needs to be rounded up, using high precision |
416 | // math. |
417 | // |
418 | // `guess_mantissa` and `guess_exponent` represent a candidate guess for the |
419 | // number represented by `parsed_decimal`. |
420 | // |
421 | // The exact number represented by `parsed_decimal` must lie between the two |
422 | // numbers: |
423 | // A = `guess_mantissa * 2**guess_exponent` |
424 | // B = `(guess_mantissa + 1) * 2**guess_exponent` |
425 | // |
426 | // This function returns false if `A` is the better guess, and true if `B` is |
427 | // the better guess, with rounding ties broken by rounding to even. |
428 | bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent, |
429 | const strings_internal::ParsedFloat& parsed_decimal) { |
430 | // 768 is the number of digits needed in the worst case. We could determine a |
431 | // better limit dynamically based on the value of parsed_decimal.exponent. |
432 | // This would optimize pathological input cases only. (Sane inputs won't have |
433 | // hundreds of digits of mantissa.) |
434 | absl::strings_internal::BigUnsigned<84> exact_mantissa; |
435 | int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768); |
436 | |
437 | // Adjust the `guess` arguments to be halfway between A and B. |
438 | guess_mantissa = guess_mantissa * 2 + 1; |
439 | guess_exponent -= 1; |
440 | |
441 | // In our comparison: |
442 | // lhs = exact = exact_mantissa * 10**exact_exponent |
443 | // = exact_mantissa * 5**exact_exponent * 2**exact_exponent |
444 | // rhs = guess = guess_mantissa * 2**guess_exponent |
445 | // |
446 | // Because we are doing integer math, we can't directly deal with negative |
447 | // exponents. We instead move these to the other side of the inequality. |
448 | absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa; |
449 | int comparison; |
450 | if (exact_exponent >= 0) { |
451 | lhs.MultiplyByFiveToTheNth(exact_exponent); |
452 | absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa); |
453 | // There are powers of 2 on both sides of the inequality; reduce this to |
454 | // a single bit-shift. |
455 | if (exact_exponent > guess_exponent) { |
456 | lhs.ShiftLeft(exact_exponent - guess_exponent); |
457 | } else { |
458 | rhs.ShiftLeft(guess_exponent - exact_exponent); |
459 | } |
460 | comparison = Compare(lhs, rhs); |
461 | } else { |
462 | // Move the power of 5 to the other side of the equation, giving us: |
463 | // lhs = exact_mantissa * 2**exact_exponent |
464 | // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent |
465 | absl::strings_internal::BigUnsigned<84> rhs = |
466 | absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent); |
467 | rhs.MultiplyBy(guess_mantissa); |
468 | if (exact_exponent > guess_exponent) { |
469 | lhs.ShiftLeft(exact_exponent - guess_exponent); |
470 | } else { |
471 | rhs.ShiftLeft(guess_exponent - exact_exponent); |
472 | } |
473 | comparison = Compare(lhs, rhs); |
474 | } |
475 | if (comparison < 0) { |
476 | return false; |
477 | } else if (comparison > 0) { |
478 | return true; |
479 | } else { |
480 | // When lhs == rhs, the decimal input is exactly between A and B. |
481 | // Round towards even -- round up only if the low bit of the initial |
482 | // `guess_mantissa` was a 1. We shifted guess_mantissa left 1 bit at |
483 | // the beginning of this function, so test the 2nd bit here. |
484 | return (guess_mantissa & 2) == 2; |
485 | } |
486 | } |
487 | |
488 | // Constructs a CalculatedFloat from a given mantissa and exponent, but |
489 | // with the following normalizations applied: |
490 | // |
491 | // If rounding has caused mantissa to increase just past the allowed bit |
492 | // width, shift and adjust exponent. |
493 | // |
494 | // If exponent is too high, sets kOverflow. |
495 | // |
496 | // If mantissa is zero (representing a non-zero value not representable, even |
497 | // as a subnormal), sets kUnderflow. |
498 | template <typename FloatType> |
499 | CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) { |
500 | CalculatedFloat result; |
501 | if (mantissa == uint64_t(1) << FloatTraits<FloatType>::kTargetMantissaBits) { |
502 | mantissa >>= 1; |
503 | exponent += 1; |
504 | } |
505 | if (exponent > FloatTraits<FloatType>::kMaxExponent) { |
506 | result.exponent = kOverflow; |
507 | } else if (mantissa == 0) { |
508 | result.exponent = kUnderflow; |
509 | } else { |
510 | result.exponent = exponent; |
511 | result.mantissa = mantissa; |
512 | } |
513 | return result; |
514 | } |
515 | |
516 | template <typename FloatType> |
517 | CalculatedFloat CalculateFromParsedHexadecimal( |
518 | const strings_internal::ParsedFloat& parsed_hex) { |
519 | uint64_t mantissa = parsed_hex.mantissa; |
520 | int exponent = parsed_hex.exponent; |
521 | int mantissa_width = 64 - base_internal::CountLeadingZeros64(mantissa); |
522 | const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent); |
523 | bool result_exact; |
524 | exponent += shift; |
525 | mantissa = ShiftRightAndRound(mantissa, shift, |
526 | /* input exact= */ true, &result_exact); |
527 | // ParseFloat handles rounding in the hexadecimal case, so we don't have to |
528 | // check `result_exact` here. |
529 | return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent); |
530 | } |
531 | |
532 | template <typename FloatType> |
533 | CalculatedFloat CalculateFromParsedDecimal( |
534 | const strings_internal::ParsedFloat& parsed_decimal) { |
535 | CalculatedFloat result; |
536 | |
537 | // Large or small enough decimal exponents will always result in overflow |
538 | // or underflow. |
539 | if (Power10Underflow(parsed_decimal.exponent)) { |
540 | result.exponent = kUnderflow; |
541 | return result; |
542 | } else if (Power10Overflow(parsed_decimal.exponent)) { |
543 | result.exponent = kOverflow; |
544 | return result; |
545 | } |
546 | |
547 | // Otherwise convert our power of 10 into a power of 2 times an integer |
548 | // mantissa, and multiply this by our parsed decimal mantissa. |
549 | uint128 wide_binary_mantissa = parsed_decimal.mantissa; |
550 | wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent); |
551 | int binary_exponent = Power10Exponent(parsed_decimal.exponent); |
552 | |
553 | // Discard bits that are inaccurate due to truncation error. The magic |
554 | // `mantissa_width` constants below are justified in |
555 | // https://abseil.io/about/design/charconv. They represent the number of bits |
556 | // in `wide_binary_mantissa` that are guaranteed to be unaffected by error |
557 | // propagation. |
558 | bool mantissa_exact; |
559 | int mantissa_width; |
560 | if (parsed_decimal.subrange_begin) { |
561 | // Truncated mantissa |
562 | mantissa_width = 58; |
563 | mantissa_exact = false; |
564 | binary_exponent += |
565 | TruncateToBitWidth(mantissa_width, &wide_binary_mantissa); |
566 | } else if (!Power10Exact(parsed_decimal.exponent)) { |
567 | // Exact mantissa, truncated power of ten |
568 | mantissa_width = 63; |
569 | mantissa_exact = false; |
570 | binary_exponent += |
571 | TruncateToBitWidth(mantissa_width, &wide_binary_mantissa); |
572 | } else { |
573 | // Product is exact |
574 | mantissa_width = BitWidth(wide_binary_mantissa); |
575 | mantissa_exact = true; |
576 | } |
577 | |
578 | // Shift into an FloatType-sized mantissa, and round to nearest. |
579 | const int shift = |
580 | NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent); |
581 | bool result_exact; |
582 | binary_exponent += shift; |
583 | uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift, |
584 | mantissa_exact, &result_exact); |
585 | if (!result_exact) { |
586 | // We could not determine the rounding direction using int128 math. Use |
587 | // full resolution math instead. |
588 | if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) { |
589 | binary_mantissa += 1; |
590 | } |
591 | } |
592 | |
593 | return CalculatedFloatFromRawValues<FloatType>(binary_mantissa, |
594 | binary_exponent); |
595 | } |
596 | |
597 | template <typename FloatType> |
598 | from_chars_result FromCharsImpl(const char* first, const char* last, |
599 | FloatType& value, chars_format fmt_flags) { |
600 | from_chars_result result; |
601 | result.ptr = first; // overwritten on successful parse |
602 | result.ec = std::errc(); |
603 | |
604 | bool negative = false; |
605 | if (first != last && *first == '-') { |
606 | ++first; |
607 | negative = true; |
608 | } |
609 | // If the `hex` flag is *not* set, then we will accept a 0x prefix and try |
610 | // to parse a hexadecimal float. |
611 | if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 && |
612 | *first == '0' && (first[1] == 'x' || first[1] == 'X')) { |
613 | const char* hex_first = first + 2; |
614 | strings_internal::ParsedFloat hex_parse = |
615 | strings_internal::ParseFloat<16>(hex_first, last, fmt_flags); |
616 | if (hex_parse.end == nullptr || |
617 | hex_parse.type != strings_internal::FloatType::kNumber) { |
618 | // Either we failed to parse a hex float after the "0x", or we read |
619 | // "0xinf" or "0xnan" which we don't want to match. |
620 | // |
621 | // However, a std::string that begins with "0x" also begins with "0", which |
622 | // is normally a valid match for the number zero. So we want these |
623 | // strings to match zero unless fmt_flags is `scientific`. (This flag |
624 | // means an exponent is required, which the std::string "0" does not have.) |
625 | if (fmt_flags == chars_format::scientific) { |
626 | result.ec = std::errc::invalid_argument; |
627 | } else { |
628 | result.ptr = first + 1; |
629 | value = negative ? -0.0 : 0.0; |
630 | } |
631 | return result; |
632 | } |
633 | // We matched a value. |
634 | result.ptr = hex_parse.end; |
635 | if (HandleEdgeCase(hex_parse, negative, &value)) { |
636 | return result; |
637 | } |
638 | CalculatedFloat calculated = |
639 | CalculateFromParsedHexadecimal<FloatType>(hex_parse); |
640 | EncodeResult(calculated, negative, &result, &value); |
641 | return result; |
642 | } |
643 | // Otherwise, we choose the number base based on the flags. |
644 | if ((fmt_flags & chars_format::hex) == chars_format::hex) { |
645 | strings_internal::ParsedFloat hex_parse = |
646 | strings_internal::ParseFloat<16>(first, last, fmt_flags); |
647 | if (hex_parse.end == nullptr) { |
648 | result.ec = std::errc::invalid_argument; |
649 | return result; |
650 | } |
651 | result.ptr = hex_parse.end; |
652 | if (HandleEdgeCase(hex_parse, negative, &value)) { |
653 | return result; |
654 | } |
655 | CalculatedFloat calculated = |
656 | CalculateFromParsedHexadecimal<FloatType>(hex_parse); |
657 | EncodeResult(calculated, negative, &result, &value); |
658 | return result; |
659 | } else { |
660 | strings_internal::ParsedFloat decimal_parse = |
661 | strings_internal::ParseFloat<10>(first, last, fmt_flags); |
662 | if (decimal_parse.end == nullptr) { |
663 | result.ec = std::errc::invalid_argument; |
664 | return result; |
665 | } |
666 | result.ptr = decimal_parse.end; |
667 | if (HandleEdgeCase(decimal_parse, negative, &value)) { |
668 | return result; |
669 | } |
670 | CalculatedFloat calculated = |
671 | CalculateFromParsedDecimal<FloatType>(decimal_parse); |
672 | EncodeResult(calculated, negative, &result, &value); |
673 | return result; |
674 | } |
675 | return result; |
676 | } |
677 | } // namespace |
678 | |
679 | from_chars_result from_chars(const char* first, const char* last, double& value, |
680 | chars_format fmt) { |
681 | return FromCharsImpl(first, last, value, fmt); |
682 | } |
683 | |
684 | from_chars_result from_chars(const char* first, const char* last, float& value, |
685 | chars_format fmt) { |
686 | return FromCharsImpl(first, last, value, fmt); |
687 | } |
688 | |
689 | namespace { |
690 | |
691 | // Table of powers of 10, from kPower10TableMin to kPower10TableMax. |
692 | // |
693 | // kPower10MantissaTable[i - kPower10TableMin] stores the 64-bit mantissa (high |
694 | // bit always on), and kPower10ExponentTable[i - kPower10TableMin] stores the |
695 | // power-of-two exponent. For a given number i, this gives the unique mantissa |
696 | // and exponent such that mantissa * 2**exponent <= 10**i < (mantissa + 1) * |
697 | // 2**exponent. |
698 | |
699 | const uint64_t kPower10MantissaTable[] = { |
700 | 0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U, |
701 | 0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U, |
702 | 0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU, |
703 | 0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U, |
704 | 0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U, |
705 | 0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U, |
706 | 0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU, |
707 | 0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U, |
708 | 0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU, |
709 | 0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU, |
710 | 0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U, |
711 | 0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU, |
712 | 0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U, |
713 | 0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU, |
714 | 0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU, |
715 | 0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU, |
716 | 0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU, |
717 | 0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U, |
718 | 0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU, |
719 | 0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU, |
720 | 0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U, |
721 | 0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U, |
722 | 0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU, |
723 | 0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U, |
724 | 0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U, |
725 | 0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U, |
726 | 0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU, |
727 | 0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U, |
728 | 0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U, |
729 | 0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U, |
730 | 0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U, |
731 | 0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U, |
732 | 0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU, |
733 | 0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U, |
734 | 0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU, |
735 | 0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU, |
736 | 0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U, |
737 | 0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U, |
738 | 0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU, |
739 | 0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U, |
740 | 0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU, |
741 | 0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU, |
742 | 0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U, |
743 | 0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU, |
744 | 0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U, |
745 | 0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U, |
746 | 0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU, |
747 | 0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU, |
748 | 0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U, |
749 | 0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U, |
750 | 0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU, |
751 | 0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U, |
752 | 0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U, |
753 | 0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU, |
754 | 0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU, |
755 | 0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU, |
756 | 0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU, |
757 | 0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U, |
758 | 0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU, |
759 | 0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU, |
760 | 0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U, |
761 | 0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU, |
762 | 0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU, |
763 | 0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U, |
764 | 0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U, |
765 | 0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U, |
766 | 0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU, |
767 | 0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U, |
768 | 0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU, |
769 | 0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U, |
770 | 0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU, |
771 | 0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U, |
772 | 0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU, |
773 | 0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU, |
774 | 0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U, |
775 | 0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U, |
776 | 0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU, |
777 | 0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U, |
778 | 0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U, |
779 | 0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU, |
780 | 0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU, |
781 | 0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U, |
782 | 0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U, |
783 | 0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U, |
784 | 0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU, |
785 | 0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U, |
786 | 0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU, |
787 | 0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU, |
788 | 0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU, |
789 | 0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U, |
790 | 0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U, |
791 | 0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U, |
792 | 0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U, |
793 | 0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU, |
794 | 0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U, |
795 | 0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU, |
796 | 0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU, |
797 | 0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU, |
798 | 0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU, |
799 | 0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U, |
800 | 0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U, |
801 | 0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U, |
802 | 0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U, |
803 | 0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U, |
804 | 0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU, |
805 | 0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U, |
806 | 0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U, |
807 | 0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U, |
808 | 0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU, |
809 | 0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U, |
810 | 0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU, |
811 | 0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU, |
812 | 0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU, |
813 | 0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU, |
814 | 0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U, |
815 | 0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U, |
816 | 0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U, |
817 | 0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U, |
818 | 0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U, |
819 | 0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U, |
820 | 0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U, |
821 | 0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U, |
822 | 0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U, |
823 | 0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U, |
824 | 0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU, |
825 | 0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU, |
826 | 0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U, |
827 | 0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU, |
828 | 0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU, |
829 | 0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U, |
830 | 0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU, |
831 | 0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U, |
832 | 0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU, |
833 | 0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U, |
834 | 0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU, |
835 | 0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU, |
836 | 0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U, |
837 | 0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U, |
838 | 0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U, |
839 | 0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U, |
840 | 0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU, |
841 | 0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU, |
842 | 0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U, |
843 | 0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU, |
844 | 0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU, |
845 | 0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U, |
846 | 0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU, |
847 | 0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU, |
848 | 0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U, |
849 | 0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U, |
850 | 0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU, |
851 | 0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U, |
852 | 0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U, |
853 | 0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU, |
854 | 0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU, |
855 | 0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U, |
856 | 0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU, |
857 | 0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U, |
858 | 0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU, |
859 | 0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU, |
860 | 0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U, |
861 | 0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU, |
862 | 0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U, |
863 | 0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU, |
864 | 0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U, |
865 | 0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U, |
866 | 0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U, |
867 | 0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U, |
868 | 0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U, |
869 | 0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U, |
870 | 0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U, |
871 | 0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU, |
872 | 0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U, |
873 | 0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U, |
874 | 0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU, |
875 | 0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U, |
876 | 0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU, |
877 | 0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U, |
878 | 0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU, |
879 | 0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU, |
880 | 0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU, |
881 | 0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U, |
882 | 0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U, |
883 | 0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU, |
884 | 0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU, |
885 | 0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U, |
886 | 0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U, |
887 | 0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U, |
888 | 0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU, |
889 | 0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U, |
890 | 0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU, |
891 | 0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U, |
892 | 0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU, |
893 | 0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U, |
894 | 0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU, |
895 | 0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U, |
896 | 0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U, |
897 | 0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U, |
898 | 0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U, |
899 | 0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U, |
900 | 0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU, |
901 | 0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U, |
902 | 0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U, |
903 | 0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U, |
904 | 0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U, |
905 | 0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U, |
906 | 0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU, |
907 | 0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU, |
908 | 0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U, |
909 | 0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U, |
910 | 0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U, |
911 | 0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U, |
912 | 0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U, |
913 | 0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU, |
914 | 0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU, |
915 | 0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU, |
916 | 0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU, |
917 | }; |
918 | |
919 | const int16_t kPower10ExponentTable[] = { |
920 | -1200, -1196, -1193, -1190, -1186, -1183, -1180, -1176, -1173, -1170, -1166, |
921 | -1163, -1160, -1156, -1153, -1150, -1146, -1143, -1140, -1136, -1133, -1130, |
922 | -1127, -1123, -1120, -1117, -1113, -1110, -1107, -1103, -1100, -1097, -1093, |
923 | -1090, -1087, -1083, -1080, -1077, -1073, -1070, -1067, -1063, -1060, -1057, |
924 | -1053, -1050, -1047, -1043, -1040, -1037, -1034, -1030, -1027, -1024, -1020, |
925 | -1017, -1014, -1010, -1007, -1004, -1000, -997, -994, -990, -987, -984, |
926 | -980, -977, -974, -970, -967, -964, -960, -957, -954, -950, -947, |
927 | -944, -940, -937, -934, -931, -927, -924, -921, -917, -914, -911, |
928 | -907, -904, -901, -897, -894, -891, -887, -884, -881, -877, -874, |
929 | -871, -867, -864, -861, -857, -854, -851, -847, -844, -841, -838, |
930 | -834, -831, -828, -824, -821, -818, -814, -811, -808, -804, -801, |
931 | -798, -794, -791, -788, -784, -781, -778, -774, -771, -768, -764, |
932 | -761, -758, -754, -751, -748, -744, -741, -738, -735, -731, -728, |
933 | -725, -721, -718, -715, -711, -708, -705, -701, -698, -695, -691, |
934 | -688, -685, -681, -678, -675, -671, -668, -665, -661, -658, -655, |
935 | -651, -648, -645, -642, -638, -635, -632, -628, -625, -622, -618, |
936 | -615, -612, -608, -605, -602, -598, -595, -592, -588, -585, -582, |
937 | -578, -575, -572, -568, -565, -562, -558, -555, -552, -549, -545, |
938 | -542, -539, -535, -532, -529, -525, -522, -519, -515, -512, -509, |
939 | -505, -502, -499, -495, -492, -489, -485, -482, -479, -475, -472, |
940 | -469, -465, -462, -459, -455, -452, -449, -446, -442, -439, -436, |
941 | -432, -429, -426, -422, -419, -416, -412, -409, -406, -402, -399, |
942 | -396, -392, -389, -386, -382, -379, -376, -372, -369, -366, -362, |
943 | -359, -356, -353, -349, -346, -343, -339, -336, -333, -329, -326, |
944 | -323, -319, -316, -313, -309, -306, -303, -299, -296, -293, -289, |
945 | -286, -283, -279, -276, -273, -269, -266, -263, -259, -256, -253, |
946 | -250, -246, -243, -240, -236, -233, -230, -226, -223, -220, -216, |
947 | -213, -210, -206, -203, -200, -196, -193, -190, -186, -183, -180, |
948 | -176, -173, -170, -166, -163, -160, -157, -153, -150, -147, -143, |
949 | -140, -137, -133, -130, -127, -123, -120, -117, -113, -110, -107, |
950 | -103, -100, -97, -93, -90, -87, -83, -80, -77, -73, -70, |
951 | -67, -63, -60, -57, -54, -50, -47, -44, -40, -37, -34, |
952 | -30, -27, -24, -20, -17, -14, -10, -7, -4, 0, 3, |
953 | 6, 10, 13, 16, 20, 23, 26, 30, 33, 36, 39, |
954 | 43, 46, 49, 53, 56, 59, 63, 66, 69, 73, 76, |
955 | 79, 83, 86, 89, 93, 96, 99, 103, 106, 109, 113, |
956 | 116, 119, 123, 126, 129, 132, 136, 139, 142, 146, 149, |
957 | 152, 156, 159, 162, 166, 169, 172, 176, 179, 182, 186, |
958 | 189, 192, 196, 199, 202, 206, 209, 212, 216, 219, 222, |
959 | 226, 229, 232, 235, 239, 242, 245, 249, 252, 255, 259, |
960 | 262, 265, 269, 272, 275, 279, 282, 285, 289, 292, 295, |
961 | 299, 302, 305, 309, 312, 315, 319, 322, 325, 328, 332, |
962 | 335, 338, 342, 345, 348, 352, 355, 358, 362, 365, 368, |
963 | 372, 375, 378, 382, 385, 388, 392, 395, 398, 402, 405, |
964 | 408, 412, 415, 418, 422, 425, 428, 431, 435, 438, 441, |
965 | 445, 448, 451, 455, 458, 461, 465, 468, 471, 475, 478, |
966 | 481, 485, 488, 491, 495, 498, 501, 505, 508, 511, 515, |
967 | 518, 521, 524, 528, 531, 534, 538, 541, 544, 548, 551, |
968 | 554, 558, 561, 564, 568, 571, 574, 578, 581, 584, 588, |
969 | 591, 594, 598, 601, 604, 608, 611, 614, 617, 621, 624, |
970 | 627, 631, 634, 637, 641, 644, 647, 651, 654, 657, 661, |
971 | 664, 667, 671, 674, 677, 681, 684, 687, 691, 694, 697, |
972 | 701, 704, 707, 711, 714, 717, 720, 724, 727, 730, 734, |
973 | 737, 740, 744, 747, 750, 754, 757, 760, 764, 767, 770, |
974 | 774, 777, 780, 784, 787, 790, 794, 797, 800, 804, 807, |
975 | 810, 813, 817, 820, 823, 827, 830, 833, 837, 840, 843, |
976 | 847, 850, 853, 857, 860, 863, 867, 870, 873, 877, 880, |
977 | 883, 887, 890, 893, 897, 900, 903, 907, 910, 913, 916, |
978 | 920, 923, 926, 930, 933, 936, 940, 943, 946, 950, 953, |
979 | 956, 960, |
980 | }; |
981 | |
982 | } // namespace |
983 | } // namespace absl |
984 | |