| 1 | // Copyright 2017 The Abseil Authors. | 
|---|
| 2 | // | 
|---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|---|
| 4 | // you may not use this file except in compliance with the License. | 
|---|
| 5 | // You may obtain a copy of the License at | 
|---|
| 6 | // | 
|---|
| 7 | //      https://www.apache.org/licenses/LICENSE-2.0 | 
|---|
| 8 | // | 
|---|
| 9 | // Unless required by applicable law or agreed to in writing, software | 
|---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, | 
|---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|---|
| 12 | // See the License for the specific language governing permissions and | 
|---|
| 13 | // limitations under the License. | 
|---|
| 14 |  | 
|---|
| 15 | // This file contains string processing functions related to | 
|---|
| 16 | // numeric values. | 
|---|
| 17 |  | 
|---|
| 18 | #include "absl/strings/numbers.h" | 
|---|
| 19 |  | 
|---|
| 20 | #include <algorithm> | 
|---|
| 21 | #include <cassert> | 
|---|
| 22 | #include <cfloat>          // for DBL_DIG and FLT_DIG | 
|---|
| 23 | #include <cmath>           // for HUGE_VAL | 
|---|
| 24 | #include <cstdint> | 
|---|
| 25 | #include <cstdio> | 
|---|
| 26 | #include <cstdlib> | 
|---|
| 27 | #include <cstring> | 
|---|
| 28 | #include <iterator> | 
|---|
| 29 | #include <limits> | 
|---|
| 30 | #include <memory> | 
|---|
| 31 | #include <utility> | 
|---|
| 32 |  | 
|---|
| 33 | #include "absl/base/internal/bits.h" | 
|---|
| 34 | #include "absl/base/internal/raw_logging.h" | 
|---|
| 35 | #include "absl/strings/ascii.h" | 
|---|
| 36 | #include "absl/strings/charconv.h" | 
|---|
| 37 | #include "absl/strings/internal/memutil.h" | 
|---|
| 38 | #include "absl/strings/match.h" | 
|---|
| 39 | #include "absl/strings/str_cat.h" | 
|---|
| 40 |  | 
|---|
| 41 | namespace absl { | 
|---|
| 42 |  | 
|---|
| 43 | bool SimpleAtof(absl::string_view str, float* out) { | 
|---|
| 44 | *out = 0.0; | 
|---|
| 45 | str = StripAsciiWhitespace(str); | 
|---|
| 46 | if (!str.empty() && str[0] == '+') { | 
|---|
| 47 | str.remove_prefix(1); | 
|---|
| 48 | } | 
|---|
| 49 | auto result = absl::from_chars(str.data(), str.data() + str.size(), *out); | 
|---|
| 50 | if (result.ec == std::errc::invalid_argument) { | 
|---|
| 51 | return false; | 
|---|
| 52 | } | 
|---|
| 53 | if (result.ptr != str.data() + str.size()) { | 
|---|
| 54 | // not all non-whitespace characters consumed | 
|---|
| 55 | return false; | 
|---|
| 56 | } | 
|---|
| 57 | // from_chars() with DR 3081's current wording will return max() on | 
|---|
| 58 | // overflow.  SimpleAtof returns infinity instead. | 
|---|
| 59 | if (result.ec == std::errc::result_out_of_range) { | 
|---|
| 60 | if (*out > 1.0) { | 
|---|
| 61 | *out = std::numeric_limits<float>::infinity(); | 
|---|
| 62 | } else if (*out < -1.0) { | 
|---|
| 63 | *out = -std::numeric_limits<float>::infinity(); | 
|---|
| 64 | } | 
|---|
| 65 | } | 
|---|
| 66 | return true; | 
|---|
| 67 | } | 
|---|
| 68 |  | 
|---|
| 69 | bool SimpleAtod(absl::string_view str, double* out) { | 
|---|
| 70 | *out = 0.0; | 
|---|
| 71 | str = StripAsciiWhitespace(str); | 
|---|
| 72 | if (!str.empty() && str[0] == '+') { | 
|---|
| 73 | str.remove_prefix(1); | 
|---|
| 74 | } | 
|---|
| 75 | auto result = absl::from_chars(str.data(), str.data() + str.size(), *out); | 
|---|
| 76 | if (result.ec == std::errc::invalid_argument) { | 
|---|
| 77 | return false; | 
|---|
| 78 | } | 
|---|
| 79 | if (result.ptr != str.data() + str.size()) { | 
|---|
| 80 | // not all non-whitespace characters consumed | 
|---|
| 81 | return false; | 
|---|
| 82 | } | 
|---|
| 83 | // from_chars() with DR 3081's current wording will return max() on | 
|---|
| 84 | // overflow.  SimpleAtod returns infinity instead. | 
|---|
| 85 | if (result.ec == std::errc::result_out_of_range) { | 
|---|
| 86 | if (*out > 1.0) { | 
|---|
| 87 | *out = std::numeric_limits<double>::infinity(); | 
|---|
| 88 | } else if (*out < -1.0) { | 
|---|
| 89 | *out = -std::numeric_limits<double>::infinity(); | 
|---|
| 90 | } | 
|---|
| 91 | } | 
|---|
| 92 | return true; | 
|---|
| 93 | } | 
|---|
| 94 |  | 
|---|
| 95 | namespace { | 
|---|
| 96 |  | 
|---|
| 97 | // Writes a two-character representation of 'i' to 'buf'. 'i' must be in the | 
|---|
| 98 | // range 0 <= i < 100, and buf must have space for two characters. Example: | 
|---|
| 99 | //   char buf[2]; | 
|---|
| 100 | //   PutTwoDigits(42, buf); | 
|---|
| 101 | //   // buf[0] == '4' | 
|---|
| 102 | //   // buf[1] == '2' | 
|---|
| 103 | inline void PutTwoDigits(size_t i, char* buf) { | 
|---|
| 104 | static const char two_ASCII_digits[100][2] = { | 
|---|
| 105 | {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, | 
|---|
| 106 | {'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, | 
|---|
| 107 | {'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'}, | 
|---|
| 108 | {'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'}, | 
|---|
| 109 | {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'}, | 
|---|
| 110 | {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'}, | 
|---|
| 111 | {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, | 
|---|
| 112 | {'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, | 
|---|
| 113 | {'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'}, | 
|---|
| 114 | {'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'}, | 
|---|
| 115 | {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'}, | 
|---|
| 116 | {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'}, | 
|---|
| 117 | {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, | 
|---|
| 118 | {'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, | 
|---|
| 119 | {'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'}, | 
|---|
| 120 | {'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'}, | 
|---|
| 121 | {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'}, | 
|---|
| 122 | {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'}, | 
|---|
| 123 | {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, | 
|---|
| 124 | {'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'} | 
|---|
| 125 | }; | 
|---|
| 126 | assert(i < 100); | 
|---|
| 127 | memcpy(buf, two_ASCII_digits[i], 2); | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 | }  // namespace | 
|---|
| 131 |  | 
|---|
| 132 | bool SimpleAtob(absl::string_view str, bool* out) { | 
|---|
| 133 | ABSL_RAW_CHECK(out != nullptr, "Output pointer must not be nullptr."); | 
|---|
| 134 | if (EqualsIgnoreCase(str, "true") || EqualsIgnoreCase(str, "t") || | 
|---|
| 135 | EqualsIgnoreCase(str, "yes") || EqualsIgnoreCase(str, "y") || | 
|---|
| 136 | EqualsIgnoreCase(str, "1")) { | 
|---|
| 137 | *out = true; | 
|---|
| 138 | return true; | 
|---|
| 139 | } | 
|---|
| 140 | if (EqualsIgnoreCase(str, "false") || EqualsIgnoreCase(str, "f") || | 
|---|
| 141 | EqualsIgnoreCase(str, "no") || EqualsIgnoreCase(str, "n") || | 
|---|
| 142 | EqualsIgnoreCase(str, "0")) { | 
|---|
| 143 | *out = false; | 
|---|
| 144 | return true; | 
|---|
| 145 | } | 
|---|
| 146 | return false; | 
|---|
| 147 | } | 
|---|
| 148 |  | 
|---|
| 149 | // ---------------------------------------------------------------------- | 
|---|
| 150 | // FastIntToBuffer() overloads | 
|---|
| 151 | // | 
|---|
| 152 | // Like the Fast*ToBuffer() functions above, these are intended for speed. | 
|---|
| 153 | // Unlike the Fast*ToBuffer() functions, however, these functions write | 
|---|
| 154 | // their output to the beginning of the buffer.  The caller is responsible | 
|---|
| 155 | // for ensuring that the buffer has enough space to hold the output. | 
|---|
| 156 | // | 
|---|
| 157 | // Returns a pointer to the end of the string (i.e. the null character | 
|---|
| 158 | // terminating the string). | 
|---|
| 159 | // ---------------------------------------------------------------------- | 
|---|
| 160 |  | 
|---|
| 161 | namespace { | 
|---|
| 162 |  | 
|---|
| 163 | // Used to optimize printing a decimal number's final digit. | 
|---|
| 164 | const char one_ASCII_final_digits[10][2] { | 
|---|
| 165 | {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0}, | 
|---|
| 166 | {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0}, | 
|---|
| 167 | }; | 
|---|
| 168 |  | 
|---|
| 169 | }  // namespace | 
|---|
| 170 |  | 
|---|
| 171 | char* numbers_internal::FastIntToBuffer(uint32_t i, char* buffer) { | 
|---|
| 172 | uint32_t digits; | 
|---|
| 173 | // The idea of this implementation is to trim the number of divides to as few | 
|---|
| 174 | // as possible, and also reducing memory stores and branches, by going in | 
|---|
| 175 | // steps of two digits at a time rather than one whenever possible. | 
|---|
| 176 | // The huge-number case is first, in the hopes that the compiler will output | 
|---|
| 177 | // that case in one branch-free block of code, and only output conditional | 
|---|
| 178 | // branches into it from below. | 
|---|
| 179 | if (i >= 1000000000) {     // >= 1,000,000,000 | 
|---|
| 180 | digits = i / 100000000;  //      100,000,000 | 
|---|
| 181 | i -= digits * 100000000; | 
|---|
| 182 | PutTwoDigits(digits, buffer); | 
|---|
| 183 | buffer += 2; | 
|---|
| 184 | lt100_000_000: | 
|---|
| 185 | digits = i / 1000000;  // 1,000,000 | 
|---|
| 186 | i -= digits * 1000000; | 
|---|
| 187 | PutTwoDigits(digits, buffer); | 
|---|
| 188 | buffer += 2; | 
|---|
| 189 | lt1_000_000: | 
|---|
| 190 | digits = i / 10000;  // 10,000 | 
|---|
| 191 | i -= digits * 10000; | 
|---|
| 192 | PutTwoDigits(digits, buffer); | 
|---|
| 193 | buffer += 2; | 
|---|
| 194 | lt10_000: | 
|---|
| 195 | digits = i / 100; | 
|---|
| 196 | i -= digits * 100; | 
|---|
| 197 | PutTwoDigits(digits, buffer); | 
|---|
| 198 | buffer += 2; | 
|---|
| 199 | lt100: | 
|---|
| 200 | digits = i; | 
|---|
| 201 | PutTwoDigits(digits, buffer); | 
|---|
| 202 | buffer += 2; | 
|---|
| 203 | *buffer = 0; | 
|---|
| 204 | return buffer; | 
|---|
| 205 | } | 
|---|
| 206 |  | 
|---|
| 207 | if (i < 100) { | 
|---|
| 208 | digits = i; | 
|---|
| 209 | if (i >= 10) goto lt100; | 
|---|
| 210 | memcpy(buffer, one_ASCII_final_digits[i], 2); | 
|---|
| 211 | return buffer + 1; | 
|---|
| 212 | } | 
|---|
| 213 | if (i < 10000) {  //    10,000 | 
|---|
| 214 | if (i >= 1000) goto lt10_000; | 
|---|
| 215 | digits = i / 100; | 
|---|
| 216 | i -= digits * 100; | 
|---|
| 217 | *buffer++ = '0' + digits; | 
|---|
| 218 | goto lt100; | 
|---|
| 219 | } | 
|---|
| 220 | if (i < 1000000) {  //    1,000,000 | 
|---|
| 221 | if (i >= 100000) goto lt1_000_000; | 
|---|
| 222 | digits = i / 10000;  //    10,000 | 
|---|
| 223 | i -= digits * 10000; | 
|---|
| 224 | *buffer++ = '0' + digits; | 
|---|
| 225 | goto lt10_000; | 
|---|
| 226 | } | 
|---|
| 227 | if (i < 100000000) {  //    100,000,000 | 
|---|
| 228 | if (i >= 10000000) goto lt100_000_000; | 
|---|
| 229 | digits = i / 1000000;  //   1,000,000 | 
|---|
| 230 | i -= digits * 1000000; | 
|---|
| 231 | *buffer++ = '0' + digits; | 
|---|
| 232 | goto lt1_000_000; | 
|---|
| 233 | } | 
|---|
| 234 | // we already know that i < 1,000,000,000 | 
|---|
| 235 | digits = i / 100000000;  //   100,000,000 | 
|---|
| 236 | i -= digits * 100000000; | 
|---|
| 237 | *buffer++ = '0' + digits; | 
|---|
| 238 | goto lt100_000_000; | 
|---|
| 239 | } | 
|---|
| 240 |  | 
|---|
| 241 | char* numbers_internal::FastIntToBuffer(int32_t i, char* buffer) { | 
|---|
| 242 | uint32_t u = i; | 
|---|
| 243 | if (i < 0) { | 
|---|
| 244 | *buffer++ = '-'; | 
|---|
| 245 | // We need to do the negation in modular (i.e., "unsigned") | 
|---|
| 246 | // arithmetic; MSVC++ apprently warns for plain "-u", so | 
|---|
| 247 | // we write the equivalent expression "0 - u" instead. | 
|---|
| 248 | u = 0 - u; | 
|---|
| 249 | } | 
|---|
| 250 | return numbers_internal::FastIntToBuffer(u, buffer); | 
|---|
| 251 | } | 
|---|
| 252 |  | 
|---|
| 253 | char* numbers_internal::FastIntToBuffer(uint64_t i, char* buffer) { | 
|---|
| 254 | uint32_t u32 = static_cast<uint32_t>(i); | 
|---|
| 255 | if (u32 == i) return numbers_internal::FastIntToBuffer(u32, buffer); | 
|---|
| 256 |  | 
|---|
| 257 | // Here we know i has at least 10 decimal digits. | 
|---|
| 258 | uint64_t top_1to11 = i / 1000000000; | 
|---|
| 259 | u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000); | 
|---|
| 260 | uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11); | 
|---|
| 261 |  | 
|---|
| 262 | if (top_1to11_32 == top_1to11) { | 
|---|
| 263 | buffer = numbers_internal::FastIntToBuffer(top_1to11_32, buffer); | 
|---|
| 264 | } else { | 
|---|
| 265 | // top_1to11 has more than 32 bits too; print it in two steps. | 
|---|
| 266 | uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100); | 
|---|
| 267 | uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100); | 
|---|
| 268 | buffer = numbers_internal::FastIntToBuffer(top_8to9, buffer); | 
|---|
| 269 | PutTwoDigits(mid_2, buffer); | 
|---|
| 270 | buffer += 2; | 
|---|
| 271 | } | 
|---|
| 272 |  | 
|---|
| 273 | // We have only 9 digits now, again the maximum uint32_t can handle fully. | 
|---|
| 274 | uint32_t digits = u32 / 10000000;  // 10,000,000 | 
|---|
| 275 | u32 -= digits * 10000000; | 
|---|
| 276 | PutTwoDigits(digits, buffer); | 
|---|
| 277 | buffer += 2; | 
|---|
| 278 | digits = u32 / 100000;  // 100,000 | 
|---|
| 279 | u32 -= digits * 100000; | 
|---|
| 280 | PutTwoDigits(digits, buffer); | 
|---|
| 281 | buffer += 2; | 
|---|
| 282 | digits = u32 / 1000;  // 1,000 | 
|---|
| 283 | u32 -= digits * 1000; | 
|---|
| 284 | PutTwoDigits(digits, buffer); | 
|---|
| 285 | buffer += 2; | 
|---|
| 286 | digits = u32 / 10; | 
|---|
| 287 | u32 -= digits * 10; | 
|---|
| 288 | PutTwoDigits(digits, buffer); | 
|---|
| 289 | buffer += 2; | 
|---|
| 290 | memcpy(buffer, one_ASCII_final_digits[u32], 2); | 
|---|
| 291 | return buffer + 1; | 
|---|
| 292 | } | 
|---|
| 293 |  | 
|---|
| 294 | char* numbers_internal::FastIntToBuffer(int64_t i, char* buffer) { | 
|---|
| 295 | uint64_t u = i; | 
|---|
| 296 | if (i < 0) { | 
|---|
| 297 | *buffer++ = '-'; | 
|---|
| 298 | u = 0 - u; | 
|---|
| 299 | } | 
|---|
| 300 | return numbers_internal::FastIntToBuffer(u, buffer); | 
|---|
| 301 | } | 
|---|
| 302 |  | 
|---|
| 303 | // Given a 128-bit number expressed as a pair of uint64_t, high half first, | 
|---|
| 304 | // return that number multiplied by the given 32-bit value.  If the result is | 
|---|
| 305 | // too large to fit in a 128-bit number, divide it by 2 until it fits. | 
|---|
| 306 | static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num, | 
|---|
| 307 | uint32_t mul) { | 
|---|
| 308 | uint64_t bits0_31 = num.second & 0xFFFFFFFF; | 
|---|
| 309 | uint64_t bits32_63 = num.second >> 32; | 
|---|
| 310 | uint64_t bits64_95 = num.first & 0xFFFFFFFF; | 
|---|
| 311 | uint64_t bits96_127 = num.first >> 32; | 
|---|
| 312 |  | 
|---|
| 313 | // The picture so far: each of these 64-bit values has only the lower 32 bits | 
|---|
| 314 | // filled in. | 
|---|
| 315 | // bits96_127:          [ 00000000 xxxxxxxx ] | 
|---|
| 316 | // bits64_95:                    [ 00000000 xxxxxxxx ] | 
|---|
| 317 | // bits32_63:                             [ 00000000 xxxxxxxx ] | 
|---|
| 318 | // bits0_31:                                       [ 00000000 xxxxxxxx ] | 
|---|
| 319 |  | 
|---|
| 320 | bits0_31 *= mul; | 
|---|
| 321 | bits32_63 *= mul; | 
|---|
| 322 | bits64_95 *= mul; | 
|---|
| 323 | bits96_127 *= mul; | 
|---|
| 324 |  | 
|---|
| 325 | // Now the top halves may also have value, though all 64 of their bits will | 
|---|
| 326 | // never be set at the same time, since they are a result of a 32x32 bit | 
|---|
| 327 | // multiply.  This makes the carry calculation slightly easier. | 
|---|
| 328 | // bits96_127:          [ mmmmmmmm | mmmmmmmm ] | 
|---|
| 329 | // bits64_95:                    [ | mmmmmmmm mmmmmmmm | ] | 
|---|
| 330 | // bits32_63:                      |        [ mmmmmmmm | mmmmmmmm ] | 
|---|
| 331 | // bits0_31:                       |                 [ | mmmmmmmm mmmmmmmm ] | 
|---|
| 332 | // eventually:        [ bits128_up | ...bits64_127.... | ..bits0_63... ] | 
|---|
| 333 |  | 
|---|
| 334 | uint64_t bits0_63 = bits0_31 + (bits32_63 << 32); | 
|---|
| 335 | uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) + | 
|---|
| 336 | (bits0_63 < bits0_31); | 
|---|
| 337 | uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95); | 
|---|
| 338 | if (bits128_up == 0) return {bits64_127, bits0_63}; | 
|---|
| 339 |  | 
|---|
| 340 | int shift = 64 - base_internal::CountLeadingZeros64(bits128_up); | 
|---|
| 341 | uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift)); | 
|---|
| 342 | uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift)); | 
|---|
| 343 | return {hi, lo}; | 
|---|
| 344 | } | 
|---|
| 345 |  | 
|---|
| 346 | // Compute num * 5 ^ expfive, and return the first 128 bits of the result, | 
|---|
| 347 | // where the first bit is always a one.  So PowFive(1, 0) starts 0b100000, | 
|---|
| 348 | // PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc. | 
|---|
| 349 | static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) { | 
|---|
| 350 | std::pair<uint64_t, uint64_t> result = {num, 0}; | 
|---|
| 351 | while (expfive >= 13) { | 
|---|
| 352 | // 5^13 is the highest power of five that will fit in a 32-bit integer. | 
|---|
| 353 | result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5); | 
|---|
| 354 | expfive -= 13; | 
|---|
| 355 | } | 
|---|
| 356 | constexpr int powers_of_five[13] = { | 
|---|
| 357 | 1, | 
|---|
| 358 | 5, | 
|---|
| 359 | 5 * 5, | 
|---|
| 360 | 5 * 5 * 5, | 
|---|
| 361 | 5 * 5 * 5 * 5, | 
|---|
| 362 | 5 * 5 * 5 * 5 * 5, | 
|---|
| 363 | 5 * 5 * 5 * 5 * 5 * 5, | 
|---|
| 364 | 5 * 5 * 5 * 5 * 5 * 5 * 5, | 
|---|
| 365 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, | 
|---|
| 366 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, | 
|---|
| 367 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, | 
|---|
| 368 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, | 
|---|
| 369 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5}; | 
|---|
| 370 | result = Mul32(result, powers_of_five[expfive & 15]); | 
|---|
| 371 | int shift = base_internal::CountLeadingZeros64(result.first); | 
|---|
| 372 | if (shift != 0) { | 
|---|
| 373 | result.first = (result.first << shift) + (result.second >> (64 - shift)); | 
|---|
| 374 | result.second = (result.second << shift); | 
|---|
| 375 | } | 
|---|
| 376 | return result; | 
|---|
| 377 | } | 
|---|
| 378 |  | 
|---|
| 379 | struct ExpDigits { | 
|---|
| 380 | int32_t exponent; | 
|---|
| 381 | char digits[6]; | 
|---|
| 382 | }; | 
|---|
| 383 |  | 
|---|
| 384 | // SplitToSix converts value, a positive double-precision floating-point number, | 
|---|
| 385 | // into a base-10 exponent and 6 ASCII digits, where the first digit is never | 
|---|
| 386 | // zero.  For example, SplitToSix(1) returns an exponent of zero and a digits | 
|---|
| 387 | // array of {'1', '0', '0', '0', '0', '0'}.  If value is exactly halfway between | 
|---|
| 388 | // two possible representations, e.g. value = 100000.5, then "round to even" is | 
|---|
| 389 | // performed. | 
|---|
| 390 | static ExpDigits SplitToSix(const double value) { | 
|---|
| 391 | ExpDigits exp_dig; | 
|---|
| 392 | int exp = 5; | 
|---|
| 393 | double d = value; | 
|---|
| 394 | // First step: calculate a close approximation of the output, where the | 
|---|
| 395 | // value d will be between 100,000 and 999,999, representing the digits | 
|---|
| 396 | // in the output ASCII array, and exp is the base-10 exponent.  It would be | 
|---|
| 397 | // faster to use a table here, and to look up the base-2 exponent of value, | 
|---|
| 398 | // however value is an IEEE-754 64-bit number, so the table would have 2,000 | 
|---|
| 399 | // entries, which is not cache-friendly. | 
|---|
| 400 | if (d >= 999999.5) { | 
|---|
| 401 | if (d >= 1e+261) exp += 256, d *= 1e-256; | 
|---|
| 402 | if (d >= 1e+133) exp += 128, d *= 1e-128; | 
|---|
| 403 | if (d >= 1e+69) exp += 64, d *= 1e-64; | 
|---|
| 404 | if (d >= 1e+37) exp += 32, d *= 1e-32; | 
|---|
| 405 | if (d >= 1e+21) exp += 16, d *= 1e-16; | 
|---|
| 406 | if (d >= 1e+13) exp += 8, d *= 1e-8; | 
|---|
| 407 | if (d >= 1e+9) exp += 4, d *= 1e-4; | 
|---|
| 408 | if (d >= 1e+7) exp += 2, d *= 1e-2; | 
|---|
| 409 | if (d >= 1e+6) exp += 1, d *= 1e-1; | 
|---|
| 410 | } else { | 
|---|
| 411 | if (d < 1e-250) exp -= 256, d *= 1e256; | 
|---|
| 412 | if (d < 1e-122) exp -= 128, d *= 1e128; | 
|---|
| 413 | if (d < 1e-58) exp -= 64, d *= 1e64; | 
|---|
| 414 | if (d < 1e-26) exp -= 32, d *= 1e32; | 
|---|
| 415 | if (d < 1e-10) exp -= 16, d *= 1e16; | 
|---|
| 416 | if (d < 1e-2) exp -= 8, d *= 1e8; | 
|---|
| 417 | if (d < 1e+2) exp -= 4, d *= 1e4; | 
|---|
| 418 | if (d < 1e+4) exp -= 2, d *= 1e2; | 
|---|
| 419 | if (d < 1e+5) exp -= 1, d *= 1e1; | 
|---|
| 420 | } | 
|---|
| 421 | // At this point, d is in the range [99999.5..999999.5) and exp is in the | 
|---|
| 422 | // range [-324..308]. Since we need to round d up, we want to add a half | 
|---|
| 423 | // and truncate. | 
|---|
| 424 | // However, the technique above may have lost some precision, due to its | 
|---|
| 425 | // repeated multiplication by constants that each may be off by half a bit | 
|---|
| 426 | // of precision.  This only matters if we're close to the edge though. | 
|---|
| 427 | // Since we'd like to know if the fractional part of d is close to a half, | 
|---|
| 428 | // we multiply it by 65536 and see if the fractional part is close to 32768. | 
|---|
| 429 | // (The number doesn't have to be a power of two,but powers of two are faster) | 
|---|
| 430 | uint64_t d64k = d * 65536; | 
|---|
| 431 | int dddddd;  // A 6-digit decimal integer. | 
|---|
| 432 | if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) { | 
|---|
| 433 | // OK, it's fairly likely that precision was lost above, which is | 
|---|
| 434 | // not a surprise given only 52 mantissa bits are available.  Therefore | 
|---|
| 435 | // redo the calculation using 128-bit numbers.  (64 bits are not enough). | 
|---|
| 436 |  | 
|---|
| 437 | // Start out with digits rounded down; maybe add one below. | 
|---|
| 438 | dddddd = static_cast<int>(d64k / 65536); | 
|---|
| 439 |  | 
|---|
| 440 | // mantissa is a 64-bit integer representing M.mmm... * 2^63.  The actual | 
|---|
| 441 | // value we're representing, of course, is M.mmm... * 2^exp2. | 
|---|
| 442 | int exp2; | 
|---|
| 443 | double m = std::frexp(value, &exp2); | 
|---|
| 444 | uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0); | 
|---|
| 445 | // std::frexp returns an m value in the range [0.5, 1.0), however we | 
|---|
| 446 | // can't multiply it by 2^64 and convert to an integer because some FPUs | 
|---|
| 447 | // throw an exception when converting an number higher than 2^63 into an | 
|---|
| 448 | // integer - even an unsigned 64-bit integer!  Fortunately it doesn't matter | 
|---|
| 449 | // since m only has 52 significant bits anyway. | 
|---|
| 450 | mantissa <<= 1; | 
|---|
| 451 | exp2 -= 64;  // not needed, but nice for debugging | 
|---|
| 452 |  | 
|---|
| 453 | // OK, we are here to compare: | 
|---|
| 454 | //     (dddddd + 0.5) * 10^(exp-5)  vs.  mantissa * 2^exp2 | 
|---|
| 455 | // so we can round up dddddd if appropriate.  Those values span the full | 
|---|
| 456 | // range of 600 orders of magnitude of IEE 64-bit floating-point. | 
|---|
| 457 | // Fortunately, we already know they are very close, so we don't need to | 
|---|
| 458 | // track the base-2 exponent of both sides.  This greatly simplifies the | 
|---|
| 459 | // the math since the 2^exp2 calculation is unnecessary and the power-of-10 | 
|---|
| 460 | // calculation can become a power-of-5 instead. | 
|---|
| 461 |  | 
|---|
| 462 | std::pair<uint64_t, uint64_t> edge, val; | 
|---|
| 463 | if (exp >= 6) { | 
|---|
| 464 | // Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa | 
|---|
| 465 | // Since we're tossing powers of two, 2 * dddddd + 1 is the | 
|---|
| 466 | // same as dddddd + 0.5 | 
|---|
| 467 | edge = PowFive(2 * dddddd + 1, exp - 5); | 
|---|
| 468 |  | 
|---|
| 469 | val.first = mantissa; | 
|---|
| 470 | val.second = 0; | 
|---|
| 471 | } else { | 
|---|
| 472 | // We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did | 
|---|
| 473 | // above because (exp - 5) is negative.  So we compare (dddddd + 0.5) to | 
|---|
| 474 | // mantissa * 5 ^ (5 - exp) | 
|---|
| 475 | edge = PowFive(2 * dddddd + 1, 0); | 
|---|
| 476 |  | 
|---|
| 477 | val = PowFive(mantissa, 5 - exp); | 
|---|
| 478 | } | 
|---|
| 479 | // printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first, | 
|---|
| 480 | //        val.second, edge.first, edge.second); | 
|---|
| 481 | if (val > edge) { | 
|---|
| 482 | dddddd++; | 
|---|
| 483 | } else if (val == edge) { | 
|---|
| 484 | dddddd += (dddddd & 1); | 
|---|
| 485 | } | 
|---|
| 486 | } else { | 
|---|
| 487 | // Here, we are not close to the edge. | 
|---|
| 488 | dddddd = static_cast<int>((d64k + 32768) / 65536); | 
|---|
| 489 | } | 
|---|
| 490 | if (dddddd == 1000000) { | 
|---|
| 491 | dddddd = 100000; | 
|---|
| 492 | exp += 1; | 
|---|
| 493 | } | 
|---|
| 494 | exp_dig.exponent = exp; | 
|---|
| 495 |  | 
|---|
| 496 | int two_digits = dddddd / 10000; | 
|---|
| 497 | dddddd -= two_digits * 10000; | 
|---|
| 498 | PutTwoDigits(two_digits, &exp_dig.digits[0]); | 
|---|
| 499 |  | 
|---|
| 500 | two_digits = dddddd / 100; | 
|---|
| 501 | dddddd -= two_digits * 100; | 
|---|
| 502 | PutTwoDigits(two_digits, &exp_dig.digits[2]); | 
|---|
| 503 |  | 
|---|
| 504 | PutTwoDigits(dddddd, &exp_dig.digits[4]); | 
|---|
| 505 | return exp_dig; | 
|---|
| 506 | } | 
|---|
| 507 |  | 
|---|
| 508 | // Helper function for fast formatting of floating-point. | 
|---|
| 509 | // The result is the same as "%g", a.k.a. "%.6g". | 
|---|
| 510 | size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) { | 
|---|
| 511 | static_assert(std::numeric_limits<float>::is_iec559, | 
|---|
| 512 | "IEEE-754/IEC-559 support only"); | 
|---|
| 513 |  | 
|---|
| 514 | char* out = buffer;  // we write data to out, incrementing as we go, but | 
|---|
| 515 | // FloatToBuffer always returns the address of the buffer | 
|---|
| 516 | // passed in. | 
|---|
| 517 |  | 
|---|
| 518 | if (std::isnan(d)) { | 
|---|
| 519 | strcpy(out, "nan");  // NOLINT(runtime/printf) | 
|---|
| 520 | return 3; | 
|---|
| 521 | } | 
|---|
| 522 | if (d == 0) {  // +0 and -0 are handled here | 
|---|
| 523 | if (std::signbit(d)) *out++ = '-'; | 
|---|
| 524 | *out++ = '0'; | 
|---|
| 525 | *out = 0; | 
|---|
| 526 | return out - buffer; | 
|---|
| 527 | } | 
|---|
| 528 | if (d < 0) { | 
|---|
| 529 | *out++ = '-'; | 
|---|
| 530 | d = -d; | 
|---|
| 531 | } | 
|---|
| 532 | if (std::isinf(d)) { | 
|---|
| 533 | strcpy(out, "inf");  // NOLINT(runtime/printf) | 
|---|
| 534 | return out + 3 - buffer; | 
|---|
| 535 | } | 
|---|
| 536 |  | 
|---|
| 537 | auto exp_dig = SplitToSix(d); | 
|---|
| 538 | int exp = exp_dig.exponent; | 
|---|
| 539 | const char* digits = exp_dig.digits; | 
|---|
| 540 | out[0] = '0'; | 
|---|
| 541 | out[1] = '.'; | 
|---|
| 542 | switch (exp) { | 
|---|
| 543 | case 5: | 
|---|
| 544 | memcpy(out, &digits[0], 6), out += 6; | 
|---|
| 545 | *out = 0; | 
|---|
| 546 | return out - buffer; | 
|---|
| 547 | case 4: | 
|---|
| 548 | memcpy(out, &digits[0], 5), out += 5; | 
|---|
| 549 | if (digits[5] != '0') { | 
|---|
| 550 | *out++ = '.'; | 
|---|
| 551 | *out++ = digits[5]; | 
|---|
| 552 | } | 
|---|
| 553 | *out = 0; | 
|---|
| 554 | return out - buffer; | 
|---|
| 555 | case 3: | 
|---|
| 556 | memcpy(out, &digits[0], 4), out += 4; | 
|---|
| 557 | if ((digits[5] | digits[4]) != '0') { | 
|---|
| 558 | *out++ = '.'; | 
|---|
| 559 | *out++ = digits[4]; | 
|---|
| 560 | if (digits[5] != '0') *out++ = digits[5]; | 
|---|
| 561 | } | 
|---|
| 562 | *out = 0; | 
|---|
| 563 | return out - buffer; | 
|---|
| 564 | case 2: | 
|---|
| 565 | memcpy(out, &digits[0], 3), out += 3; | 
|---|
| 566 | *out++ = '.'; | 
|---|
| 567 | memcpy(out, &digits[3], 3); | 
|---|
| 568 | out += 3; | 
|---|
| 569 | while (out[-1] == '0') --out; | 
|---|
| 570 | if (out[-1] == '.') --out; | 
|---|
| 571 | *out = 0; | 
|---|
| 572 | return out - buffer; | 
|---|
| 573 | case 1: | 
|---|
| 574 | memcpy(out, &digits[0], 2), out += 2; | 
|---|
| 575 | *out++ = '.'; | 
|---|
| 576 | memcpy(out, &digits[2], 4); | 
|---|
| 577 | out += 4; | 
|---|
| 578 | while (out[-1] == '0') --out; | 
|---|
| 579 | if (out[-1] == '.') --out; | 
|---|
| 580 | *out = 0; | 
|---|
| 581 | return out - buffer; | 
|---|
| 582 | case 0: | 
|---|
| 583 | memcpy(out, &digits[0], 1), out += 1; | 
|---|
| 584 | *out++ = '.'; | 
|---|
| 585 | memcpy(out, &digits[1], 5); | 
|---|
| 586 | out += 5; | 
|---|
| 587 | while (out[-1] == '0') --out; | 
|---|
| 588 | if (out[-1] == '.') --out; | 
|---|
| 589 | *out = 0; | 
|---|
| 590 | return out - buffer; | 
|---|
| 591 | case -4: | 
|---|
| 592 | out[2] = '0'; | 
|---|
| 593 | ++out; | 
|---|
| 594 | ABSL_FALLTHROUGH_INTENDED; | 
|---|
| 595 | case -3: | 
|---|
| 596 | out[2] = '0'; | 
|---|
| 597 | ++out; | 
|---|
| 598 | ABSL_FALLTHROUGH_INTENDED; | 
|---|
| 599 | case -2: | 
|---|
| 600 | out[2] = '0'; | 
|---|
| 601 | ++out; | 
|---|
| 602 | ABSL_FALLTHROUGH_INTENDED; | 
|---|
| 603 | case -1: | 
|---|
| 604 | out += 2; | 
|---|
| 605 | memcpy(out, &digits[0], 6); | 
|---|
| 606 | out += 6; | 
|---|
| 607 | while (out[-1] == '0') --out; | 
|---|
| 608 | *out = 0; | 
|---|
| 609 | return out - buffer; | 
|---|
| 610 | } | 
|---|
| 611 | assert(exp < -4 || exp >= 6); | 
|---|
| 612 | out[0] = digits[0]; | 
|---|
| 613 | assert(out[1] == '.'); | 
|---|
| 614 | out += 2; | 
|---|
| 615 | memcpy(out, &digits[1], 5), out += 5; | 
|---|
| 616 | while (out[-1] == '0') --out; | 
|---|
| 617 | if (out[-1] == '.') --out; | 
|---|
| 618 | *out++ = 'e'; | 
|---|
| 619 | if (exp > 0) { | 
|---|
| 620 | *out++ = '+'; | 
|---|
| 621 | } else { | 
|---|
| 622 | *out++ = '-'; | 
|---|
| 623 | exp = -exp; | 
|---|
| 624 | } | 
|---|
| 625 | if (exp > 99) { | 
|---|
| 626 | int dig1 = exp / 100; | 
|---|
| 627 | exp -= dig1 * 100; | 
|---|
| 628 | *out++ = '0' + dig1; | 
|---|
| 629 | } | 
|---|
| 630 | PutTwoDigits(exp, out); | 
|---|
| 631 | out += 2; | 
|---|
| 632 | *out = 0; | 
|---|
| 633 | return out - buffer; | 
|---|
| 634 | } | 
|---|
| 635 |  | 
|---|
| 636 | namespace { | 
|---|
| 637 | // Represents integer values of digits. | 
|---|
| 638 | // Uses 36 to indicate an invalid character since we support | 
|---|
| 639 | // bases up to 36. | 
|---|
| 640 | static const int8_t kAsciiToInt[256] = { | 
|---|
| 641 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,  // 16 36s. | 
|---|
| 642 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, | 
|---|
| 643 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0,  1,  2,  3,  4,  5, | 
|---|
| 644 | 6,  7,  8,  9,  36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, | 
|---|
| 645 | 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, | 
|---|
| 646 | 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, | 
|---|
| 647 | 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36, | 
|---|
| 648 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, | 
|---|
| 649 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, | 
|---|
| 650 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, | 
|---|
| 651 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, | 
|---|
| 652 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, | 
|---|
| 653 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, | 
|---|
| 654 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36}; | 
|---|
| 655 |  | 
|---|
| 656 | // Parse the sign and optional hex or oct prefix in text. | 
|---|
| 657 | inline bool safe_parse_sign_and_base(absl::string_view* text /*inout*/, | 
|---|
| 658 | int* base_ptr /*inout*/, | 
|---|
| 659 | bool* negative_ptr /*output*/) { | 
|---|
| 660 | if (text->data() == nullptr) { | 
|---|
| 661 | return false; | 
|---|
| 662 | } | 
|---|
| 663 |  | 
|---|
| 664 | const char* start = text->data(); | 
|---|
| 665 | const char* end = start + text->size(); | 
|---|
| 666 | int base = *base_ptr; | 
|---|
| 667 |  | 
|---|
| 668 | // Consume whitespace. | 
|---|
| 669 | while (start < end && absl::ascii_isspace(start[0])) { | 
|---|
| 670 | ++start; | 
|---|
| 671 | } | 
|---|
| 672 | while (start < end && absl::ascii_isspace(end[-1])) { | 
|---|
| 673 | --end; | 
|---|
| 674 | } | 
|---|
| 675 | if (start >= end) { | 
|---|
| 676 | return false; | 
|---|
| 677 | } | 
|---|
| 678 |  | 
|---|
| 679 | // Consume sign. | 
|---|
| 680 | *negative_ptr = (start[0] == '-'); | 
|---|
| 681 | if (*negative_ptr || start[0] == '+') { | 
|---|
| 682 | ++start; | 
|---|
| 683 | if (start >= end) { | 
|---|
| 684 | return false; | 
|---|
| 685 | } | 
|---|
| 686 | } | 
|---|
| 687 |  | 
|---|
| 688 | // Consume base-dependent prefix. | 
|---|
| 689 | //  base 0: "0x" -> base 16, "0" -> base 8, default -> base 10 | 
|---|
| 690 | //  base 16: "0x" -> base 16 | 
|---|
| 691 | // Also validate the base. | 
|---|
| 692 | if (base == 0) { | 
|---|
| 693 | if (end - start >= 2 && start[0] == '0' && | 
|---|
| 694 | (start[1] == 'x' || start[1] == 'X')) { | 
|---|
| 695 | base = 16; | 
|---|
| 696 | start += 2; | 
|---|
| 697 | if (start >= end) { | 
|---|
| 698 | // "0x" with no digits after is invalid. | 
|---|
| 699 | return false; | 
|---|
| 700 | } | 
|---|
| 701 | } else if (end - start >= 1 && start[0] == '0') { | 
|---|
| 702 | base = 8; | 
|---|
| 703 | start += 1; | 
|---|
| 704 | } else { | 
|---|
| 705 | base = 10; | 
|---|
| 706 | } | 
|---|
| 707 | } else if (base == 16) { | 
|---|
| 708 | if (end - start >= 2 && start[0] == '0' && | 
|---|
| 709 | (start[1] == 'x' || start[1] == 'X')) { | 
|---|
| 710 | start += 2; | 
|---|
| 711 | if (start >= end) { | 
|---|
| 712 | // "0x" with no digits after is invalid. | 
|---|
| 713 | return false; | 
|---|
| 714 | } | 
|---|
| 715 | } | 
|---|
| 716 | } else if (base >= 2 && base <= 36) { | 
|---|
| 717 | // okay | 
|---|
| 718 | } else { | 
|---|
| 719 | return false; | 
|---|
| 720 | } | 
|---|
| 721 | *text = absl::string_view(start, end - start); | 
|---|
| 722 | *base_ptr = base; | 
|---|
| 723 | return true; | 
|---|
| 724 | } | 
|---|
| 725 |  | 
|---|
| 726 | // Consume digits. | 
|---|
| 727 | // | 
|---|
| 728 | // The classic loop: | 
|---|
| 729 | // | 
|---|
| 730 | //   for each digit | 
|---|
| 731 | //     value = value * base + digit | 
|---|
| 732 | //   value *= sign | 
|---|
| 733 | // | 
|---|
| 734 | // The classic loop needs overflow checking.  It also fails on the most | 
|---|
| 735 | // negative integer, -2147483648 in 32-bit two's complement representation. | 
|---|
| 736 | // | 
|---|
| 737 | // My improved loop: | 
|---|
| 738 | // | 
|---|
| 739 | //  if (!negative) | 
|---|
| 740 | //    for each digit | 
|---|
| 741 | //      value = value * base | 
|---|
| 742 | //      value = value + digit | 
|---|
| 743 | //  else | 
|---|
| 744 | //    for each digit | 
|---|
| 745 | //      value = value * base | 
|---|
| 746 | //      value = value - digit | 
|---|
| 747 | // | 
|---|
| 748 | // Overflow checking becomes simple. | 
|---|
| 749 |  | 
|---|
| 750 | // Lookup tables per IntType: | 
|---|
| 751 | // vmax/base and vmin/base are precomputed because division costs at least 8ns. | 
|---|
| 752 | // TODO(junyer): Doing this per base instead (i.e. an array of structs, not a | 
|---|
| 753 | // struct of arrays) would probably be better in terms of d-cache for the most | 
|---|
| 754 | // commonly used bases. | 
|---|
| 755 | template <typename IntType> | 
|---|
| 756 | struct LookupTables { | 
|---|
| 757 | static const IntType kVmaxOverBase[]; | 
|---|
| 758 | static const IntType kVminOverBase[]; | 
|---|
| 759 | }; | 
|---|
| 760 |  | 
|---|
| 761 | // An array initializer macro for X/base where base in [0, 36]. | 
|---|
| 762 | // However, note that lookups for base in [0, 1] should never happen because | 
|---|
| 763 | // base has been validated to be in [2, 36] by safe_parse_sign_and_base(). | 
|---|
| 764 | #define X_OVER_BASE_INITIALIZER(X)                                        \ | 
|---|
| 765 | {                                                                       \ | 
|---|
| 766 | 0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \ | 
|---|
| 767 | X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18,   \ | 
|---|
| 768 | X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26,   \ | 
|---|
| 769 | X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34,   \ | 
|---|
| 770 | X / 35, X / 36,                                                   \ | 
|---|
| 771 | } | 
|---|
| 772 |  | 
|---|
| 773 | template <typename IntType> | 
|---|
| 774 | const IntType LookupTables<IntType>::kVmaxOverBase[] = | 
|---|
| 775 | X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max()); | 
|---|
| 776 |  | 
|---|
| 777 | template <typename IntType> | 
|---|
| 778 | const IntType LookupTables<IntType>::kVminOverBase[] = | 
|---|
| 779 | X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min()); | 
|---|
| 780 |  | 
|---|
| 781 | #undef X_OVER_BASE_INITIALIZER | 
|---|
| 782 |  | 
|---|
| 783 | template <typename IntType> | 
|---|
| 784 | inline bool safe_parse_positive_int(absl::string_view text, int base, | 
|---|
| 785 | IntType* value_p) { | 
|---|
| 786 | IntType value = 0; | 
|---|
| 787 | const IntType vmax = std::numeric_limits<IntType>::max(); | 
|---|
| 788 | assert(vmax > 0); | 
|---|
| 789 | assert(base >= 0); | 
|---|
| 790 | assert(vmax >= static_cast<IntType>(base)); | 
|---|
| 791 | const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base]; | 
|---|
| 792 | const char* start = text.data(); | 
|---|
| 793 | const char* end = start + text.size(); | 
|---|
| 794 | // loop over digits | 
|---|
| 795 | for (; start < end; ++start) { | 
|---|
| 796 | unsigned char c = static_cast<unsigned char>(start[0]); | 
|---|
| 797 | int digit = kAsciiToInt[c]; | 
|---|
| 798 | if (digit >= base) { | 
|---|
| 799 | *value_p = value; | 
|---|
| 800 | return false; | 
|---|
| 801 | } | 
|---|
| 802 | if (value > vmax_over_base) { | 
|---|
| 803 | *value_p = vmax; | 
|---|
| 804 | return false; | 
|---|
| 805 | } | 
|---|
| 806 | value *= base; | 
|---|
| 807 | if (value > vmax - digit) { | 
|---|
| 808 | *value_p = vmax; | 
|---|
| 809 | return false; | 
|---|
| 810 | } | 
|---|
| 811 | value += digit; | 
|---|
| 812 | } | 
|---|
| 813 | *value_p = value; | 
|---|
| 814 | return true; | 
|---|
| 815 | } | 
|---|
| 816 |  | 
|---|
| 817 | template <typename IntType> | 
|---|
| 818 | inline bool safe_parse_negative_int(absl::string_view text, int base, | 
|---|
| 819 | IntType* value_p) { | 
|---|
| 820 | IntType value = 0; | 
|---|
| 821 | const IntType vmin = std::numeric_limits<IntType>::min(); | 
|---|
| 822 | assert(vmin < 0); | 
|---|
| 823 | assert(vmin <= 0 - base); | 
|---|
| 824 | IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base]; | 
|---|
| 825 | // 2003 c++ standard [expr.mul] | 
|---|
| 826 | // "... the sign of the remainder is implementation-defined." | 
|---|
| 827 | // Although (vmin/base)*base + vmin%base is always vmin. | 
|---|
| 828 | // 2011 c++ standard tightens the spec but we cannot rely on it. | 
|---|
| 829 | // TODO(junyer): Handle this in the lookup table generation. | 
|---|
| 830 | if (vmin % base > 0) { | 
|---|
| 831 | vmin_over_base += 1; | 
|---|
| 832 | } | 
|---|
| 833 | const char* start = text.data(); | 
|---|
| 834 | const char* end = start + text.size(); | 
|---|
| 835 | // loop over digits | 
|---|
| 836 | for (; start < end; ++start) { | 
|---|
| 837 | unsigned char c = static_cast<unsigned char>(start[0]); | 
|---|
| 838 | int digit = kAsciiToInt[c]; | 
|---|
| 839 | if (digit >= base) { | 
|---|
| 840 | *value_p = value; | 
|---|
| 841 | return false; | 
|---|
| 842 | } | 
|---|
| 843 | if (value < vmin_over_base) { | 
|---|
| 844 | *value_p = vmin; | 
|---|
| 845 | return false; | 
|---|
| 846 | } | 
|---|
| 847 | value *= base; | 
|---|
| 848 | if (value < vmin + digit) { | 
|---|
| 849 | *value_p = vmin; | 
|---|
| 850 | return false; | 
|---|
| 851 | } | 
|---|
| 852 | value -= digit; | 
|---|
| 853 | } | 
|---|
| 854 | *value_p = value; | 
|---|
| 855 | return true; | 
|---|
| 856 | } | 
|---|
| 857 |  | 
|---|
| 858 | // Input format based on POSIX.1-2008 strtol | 
|---|
| 859 | // http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html | 
|---|
| 860 | template <typename IntType> | 
|---|
| 861 | inline bool safe_int_internal(absl::string_view text, IntType* value_p, | 
|---|
| 862 | int base) { | 
|---|
| 863 | *value_p = 0; | 
|---|
| 864 | bool negative; | 
|---|
| 865 | if (!safe_parse_sign_and_base(&text, &base, &negative)) { | 
|---|
| 866 | return false; | 
|---|
| 867 | } | 
|---|
| 868 | if (!negative) { | 
|---|
| 869 | return safe_parse_positive_int(text, base, value_p); | 
|---|
| 870 | } else { | 
|---|
| 871 | return safe_parse_negative_int(text, base, value_p); | 
|---|
| 872 | } | 
|---|
| 873 | } | 
|---|
| 874 |  | 
|---|
| 875 | template <typename IntType> | 
|---|
| 876 | inline bool safe_uint_internal(absl::string_view text, IntType* value_p, | 
|---|
| 877 | int base) { | 
|---|
| 878 | *value_p = 0; | 
|---|
| 879 | bool negative; | 
|---|
| 880 | if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) { | 
|---|
| 881 | return false; | 
|---|
| 882 | } | 
|---|
| 883 | return safe_parse_positive_int(text, base, value_p); | 
|---|
| 884 | } | 
|---|
| 885 | }  // anonymous namespace | 
|---|
| 886 |  | 
|---|
| 887 | namespace numbers_internal { | 
|---|
| 888 | bool safe_strto32_base(absl::string_view text, int32_t* value, int base) { | 
|---|
| 889 | return safe_int_internal<int32_t>(text, value, base); | 
|---|
| 890 | } | 
|---|
| 891 |  | 
|---|
| 892 | bool safe_strto64_base(absl::string_view text, int64_t* value, int base) { | 
|---|
| 893 | return safe_int_internal<int64_t>(text, value, base); | 
|---|
| 894 | } | 
|---|
| 895 |  | 
|---|
| 896 | bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) { | 
|---|
| 897 | return safe_uint_internal<uint32_t>(text, value, base); | 
|---|
| 898 | } | 
|---|
| 899 |  | 
|---|
| 900 | bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base) { | 
|---|
| 901 | return safe_uint_internal<uint64_t>(text, value, base); | 
|---|
| 902 | } | 
|---|
| 903 | }  // namespace numbers_internal | 
|---|
| 904 |  | 
|---|
| 905 | }  // namespace absl | 
|---|
| 906 |  | 
|---|