1 | // Copyright 2018 The Abseil Authors. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | // |
15 | // ----------------------------------------------------------------------------- |
16 | // File: civil_time.h |
17 | // ----------------------------------------------------------------------------- |
18 | // |
19 | // This header file defines abstractions for computing with "civil time". |
20 | // The term "civil time" refers to the legally recognized human-scale time |
21 | // that is represented by the six fields `YYYY-MM-DD hh:mm:ss`. A "date" |
22 | // is perhaps the most common example of a civil time (represented here as |
23 | // an `absl::CivilDay`). |
24 | // |
25 | // Modern-day civil time follows the Gregorian Calendar and is a |
26 | // time-zone-independent concept: a civil time of "2015-06-01 12:00:00", for |
27 | // example, is not tied to a time zone. Put another way, a civil time does not |
28 | // map to a unique point in time; a civil time must be mapped to an absolute |
29 | // time *through* a time zone. |
30 | // |
31 | // Because a civil time is what most people think of as "time," it is common to |
32 | // map absolute times to civil times to present to users. |
33 | // |
34 | // Time zones define the relationship between absolute and civil times. Given an |
35 | // absolute or civil time and a time zone, you can compute the other time: |
36 | // |
37 | // Civil Time = F(Absolute Time, Time Zone) |
38 | // Absolute Time = G(Civil Time, Time Zone) |
39 | // |
40 | // The Abseil time library allows you to construct such civil times from |
41 | // absolute times; consult time.h for such functionality. |
42 | // |
43 | // This library provides six classes for constructing civil-time objects, and |
44 | // provides several helper functions for rounding, iterating, and performing |
45 | // arithmetic on civil-time objects, while avoiding complications like |
46 | // daylight-saving time (DST): |
47 | // |
48 | // * `absl::CivilSecond` |
49 | // * `absl::CivilMinute` |
50 | // * `absl::CivilHour` |
51 | // * `absl::CivilDay` |
52 | // * `absl::CivilMonth` |
53 | // * `absl::CivilYear` |
54 | // |
55 | // Example: |
56 | // |
57 | // // Construct a civil-time object for a specific day |
58 | // const absl::CivilDay cd(1969, 07, 20); |
59 | // |
60 | // // Construct a civil-time object for a specific second |
61 | // const absl::CivilSecond cd(2018, 8, 1, 12, 0, 1); |
62 | // |
63 | // Note: In C++14 and later, this library is usable in a constexpr context. |
64 | // |
65 | // Example: |
66 | // |
67 | // // Valid in C++14 |
68 | // constexpr absl::CivilDay cd(1969, 07, 20); |
69 | |
70 | #ifndef ABSL_TIME_CIVIL_TIME_H_ |
71 | #define ABSL_TIME_CIVIL_TIME_H_ |
72 | |
73 | #include <string> |
74 | |
75 | #include "absl/strings/string_view.h" |
76 | #include "absl/time/internal/cctz/include/cctz/civil_time.h" |
77 | |
78 | namespace absl { |
79 | |
80 | namespace time_internal { |
81 | struct second_tag : cctz::detail::second_tag {}; |
82 | struct minute_tag : second_tag, cctz::detail::minute_tag {}; |
83 | struct hour_tag : minute_tag, cctz::detail::hour_tag {}; |
84 | struct day_tag : hour_tag, cctz::detail::day_tag {}; |
85 | struct month_tag : day_tag, cctz::detail::month_tag {}; |
86 | struct year_tag : month_tag, cctz::detail::year_tag {}; |
87 | } // namespace time_internal |
88 | |
89 | // ----------------------------------------------------------------------------- |
90 | // CivilSecond, CivilMinute, CivilHour, CivilDay, CivilMonth, CivilYear |
91 | // ----------------------------------------------------------------------------- |
92 | // |
93 | // Each of these civil-time types is a simple value type with the same |
94 | // interface for construction and the same six accessors for each of the civil |
95 | // time fields (year, month, day, hour, minute, and second, aka YMDHMS). These |
96 | // classes differ only in their alignment, which is indicated by the type name |
97 | // and specifies the field on which arithmetic operates. |
98 | // |
99 | // CONSTRUCTION |
100 | // |
101 | // Each of the civil-time types can be constructed in two ways: by directly |
102 | // passing to the constructor up to six integers representing the YMDHMS fields, |
103 | // or by copying the YMDHMS fields from a differently aligned civil-time type. |
104 | // Omitted fields are assigned their minimum valid value. Hours, minutes, and |
105 | // seconds will be set to 0, month and day will be set to 1. Since there is no |
106 | // minimum year, the default is 1970. |
107 | // |
108 | // Examples: |
109 | // |
110 | // absl::CivilDay default_value; // 1970-01-01 00:00:00 |
111 | // |
112 | // absl::CivilDay a(2015, 2, 3); // 2015-02-03 00:00:00 |
113 | // absl::CivilDay b(2015, 2, 3, 4, 5, 6); // 2015-02-03 00:00:00 |
114 | // absl::CivilDay c(2015); // 2015-01-01 00:00:00 |
115 | // |
116 | // absl::CivilSecond ss(2015, 2, 3, 4, 5, 6); // 2015-02-03 04:05:06 |
117 | // absl::CivilMinute mm(ss); // 2015-02-03 04:05:00 |
118 | // absl::CivilHour hh(mm); // 2015-02-03 04:00:00 |
119 | // absl::CivilDay d(hh); // 2015-02-03 00:00:00 |
120 | // absl::CivilMonth m(d); // 2015-02-01 00:00:00 |
121 | // absl::CivilYear y(m); // 2015-01-01 00:00:00 |
122 | // |
123 | // m = absl::CivilMonth(y); // 2015-01-01 00:00:00 |
124 | // d = absl::CivilDay(m); // 2015-01-01 00:00:00 |
125 | // hh = absl::CivilHour(d); // 2015-01-01 00:00:00 |
126 | // mm = absl::CivilMinute(hh); // 2015-01-01 00:00:00 |
127 | // ss = absl::CivilSecond(mm); // 2015-01-01 00:00:00 |
128 | // |
129 | // Each civil-time class is aligned to the civil-time field indicated in the |
130 | // class's name after normalization. Alignment is performed by setting all the |
131 | // inferior fields to their minimum valid value (as described above). The |
132 | // following are examples of how each of the six types would align the fields |
133 | // representing November 22, 2015 at 12:34:56 in the afternoon. (Note: the |
134 | // string format used here is not important; it's just a shorthand way of |
135 | // showing the six YMDHMS fields.) |
136 | // |
137 | // absl::CivilSecond : 2015-11-22 12:34:56 |
138 | // absl::CivilMinute : 2015-11-22 12:34:00 |
139 | // absl::CivilHour : 2015-11-22 12:00:00 |
140 | // absl::CivilDay : 2015-11-22 00:00:00 |
141 | // absl::CivilMonth : 2015-11-01 00:00:00 |
142 | // absl::CivilYear : 2015-01-01 00:00:00 |
143 | // |
144 | // Each civil-time type performs arithmetic on the field to which it is |
145 | // aligned. This means that adding 1 to an absl::CivilDay increments the day |
146 | // field (normalizing as necessary), and subtracting 7 from an absl::CivilMonth |
147 | // operates on the month field (normalizing as necessary). All arithmetic |
148 | // produces a valid civil time. Difference requires two similarly aligned |
149 | // civil-time objects and returns the scalar answer in units of the objects' |
150 | // alignment. For example, the difference between two absl::CivilHour objects |
151 | // will give an answer in units of civil hours. |
152 | // |
153 | // ALIGNMENT CONVERSION |
154 | // |
155 | // The alignment of a civil-time object cannot change, but the object may be |
156 | // used to construct a new object with a different alignment. This is referred |
157 | // to as "realigning". When realigning to a type with the same or more |
158 | // precision (e.g., absl::CivilDay -> absl::CivilSecond), the conversion may be |
159 | // performed implicitly since no information is lost. However, if information |
160 | // could be discarded (e.g., CivilSecond -> CivilDay), the conversion must |
161 | // be explicit at the call site. |
162 | // |
163 | // Examples: |
164 | // |
165 | // void UseDay(absl::CivilDay day); |
166 | // |
167 | // absl::CivilSecond cs; |
168 | // UseDay(cs); // Won't compile because data may be discarded |
169 | // UseDay(absl::CivilDay(cs)); // OK: explicit conversion |
170 | // |
171 | // absl::CivilDay cd; |
172 | // UseDay(cd); // OK: no conversion needed |
173 | // |
174 | // absl::CivilMonth cm; |
175 | // UseDay(cm); // OK: implicit conversion to absl::CivilDay |
176 | // |
177 | // NORMALIZATION |
178 | // |
179 | // Normalization takes invalid values and adjusts them to produce valid values. |
180 | // Within the civil-time library, integer arguments passed to the Civil* |
181 | // constructors may be out-of-range, in which case they are normalized by |
182 | // carrying overflow into a field of courser granularity to produce valid |
183 | // civil-time objects. This normalization enables natural arithmetic on |
184 | // constructor arguments without worrying about the field's range. |
185 | // |
186 | // Examples: |
187 | // |
188 | // // Out-of-range; normalized to 2016-11-01 |
189 | // absl::CivilDay d(2016, 10, 32); |
190 | // // Out-of-range, negative: normalized to 2016-10-30T23 |
191 | // absl::CivilHour h1(2016, 10, 31, -1); |
192 | // // Normalization is cumulative: normalized to 2016-10-30T23 |
193 | // absl::CivilHour h2(2016, 10, 32, -25); |
194 | // |
195 | // Note: If normalization is undesired, you can signal an error by comparing |
196 | // the constructor arguments to the normalized values returned by the YMDHMS |
197 | // properties. |
198 | // |
199 | // COMPARISON |
200 | // |
201 | // Comparison between civil-time objects considers all six YMDHMS fields, |
202 | // regardless of the type's alignment. Comparison between differently aligned |
203 | // civil-time types is allowed. |
204 | // |
205 | // Examples: |
206 | // |
207 | // absl::CivilDay feb_3(2015, 2, 3); // 2015-02-03 00:00:00 |
208 | // absl::CivilDay mar_4(2015, 3, 4); // 2015-03-04 00:00:00 |
209 | // // feb_3 < mar_4 |
210 | // // absl::CivilYear(feb_3) == absl::CivilYear(mar_4) |
211 | // |
212 | // absl::CivilSecond feb_3_noon(2015, 2, 3, 12, 0, 0); // 2015-02-03 12:00:00 |
213 | // // feb_3 < feb_3_noon |
214 | // // feb_3 == absl::CivilDay(feb_3_noon) |
215 | // |
216 | // // Iterates all the days of February 2015. |
217 | // for (absl::CivilDay d(2015, 2, 1); d < absl::CivilMonth(2015, 3); ++d) { |
218 | // // ... |
219 | // } |
220 | // |
221 | // ARITHMETIC |
222 | // |
223 | // Civil-time types support natural arithmetic operators such as addition, |
224 | // subtraction, and difference. Arithmetic operates on the civil-time field |
225 | // indicated in the type's name. Difference operators require arguments with |
226 | // the same alignment and return the answer in units of the alignment. |
227 | // |
228 | // Example: |
229 | // |
230 | // absl::CivilDay a(2015, 2, 3); |
231 | // ++a; // 2015-02-04 00:00:00 |
232 | // --a; // 2015-02-03 00:00:00 |
233 | // absl::CivilDay b = a + 1; // 2015-02-04 00:00:00 |
234 | // absl::CivilDay c = 1 + b; // 2015-02-05 00:00:00 |
235 | // int n = c - a; // n = 2 (civil days) |
236 | // int m = c - absl::CivilMonth(c); // Won't compile: different types. |
237 | // |
238 | // ACCESSORS |
239 | // |
240 | // Each civil-time type has accessors for all six of the civil-time fields: |
241 | // year, month, day, hour, minute, and second. |
242 | // |
243 | // civil_year_t year() |
244 | // int month() |
245 | // int day() |
246 | // int hour() |
247 | // int minute() |
248 | // int second() |
249 | // |
250 | // Recall that fields inferior to the type's aligment will be set to their |
251 | // minimum valid value. |
252 | // |
253 | // Example: |
254 | // |
255 | // absl::CivilDay d(2015, 6, 28); |
256 | // // d.year() == 2015 |
257 | // // d.month() == 6 |
258 | // // d.day() == 28 |
259 | // // d.hour() == 0 |
260 | // // d.minute() == 0 |
261 | // // d.second() == 0 |
262 | // |
263 | // CASE STUDY: Adding a month to January 31. |
264 | // |
265 | // One of the classic questions that arises when considering a civil time |
266 | // library (or a date library or a date/time library) is this: |
267 | // "What is the result of adding a month to January 31?" |
268 | // This is an interesting question because it is unclear what is meant by a |
269 | // "month", and several different answers are possible, depending on context: |
270 | // |
271 | // 1. March 3 (or 2 if a leap year), if "add a month" means to add a month to |
272 | // the current month, and adjust the date to overflow the extra days into |
273 | // March. In this case the result of "February 31" would be normalized as |
274 | // within the civil-time library. |
275 | // 2. February 28 (or 29 if a leap year), if "add a month" means to add a |
276 | // month, and adjust the date while holding the resulting month constant. |
277 | // In this case, the result of "February 31" would be truncated to the last |
278 | // day in February. |
279 | // 3. An error. The caller may get some error, an exception, an invalid date |
280 | // object, or perhaps return `false`. This may make sense because there is |
281 | // no single unambiguously correct answer to the question. |
282 | // |
283 | // Practically speaking, any answer that is not what the programmer intended |
284 | // is the wrong answer. |
285 | // |
286 | // The Abseil time library avoids this problem by making it impossible to |
287 | // ask ambiguous questions. All civil-time objects are aligned to a particular |
288 | // civil-field boundary (such as aligned to a year, month, day, hour, minute, |
289 | // or second), and arithmetic operates on the field to which the object is |
290 | // aligned. This means that in order to "add a month" the object must first be |
291 | // aligned to a month boundary, which is equivalent to the first day of that |
292 | // month. |
293 | // |
294 | // Of course, there are ways to compute an answer the question at hand using |
295 | // this Abseil time library, but they require the programmer to be explicit |
296 | // about the answer they expect. To illustrate, let's see how to compute all |
297 | // three of the above possible answers to the question of "Jan 31 plus 1 |
298 | // month": |
299 | // |
300 | // Example: |
301 | // |
302 | // const absl::CivilDay d(2015, 1, 31); |
303 | // |
304 | // // Answer 1: |
305 | // // Add 1 to the month field in the constructor, and rely on normalization. |
306 | // const auto normalized = absl::CivilDay(d.year(), d.month() + 1, d.day()); |
307 | // // normalized == 2015-03-03 (aka Feb 31) |
308 | // |
309 | // // Answer 2: |
310 | // // Add 1 to month field, capping to the end of next month. |
311 | // const auto next_month = absl::CivilMonth(d) + 1; |
312 | // const auto last_day_of_next_month = absl::CivilDay(next_month + 1) - 1; |
313 | // const auto capped = std::min(normalized, last_day_of_next_month); |
314 | // // capped == 2015-02-28 |
315 | // |
316 | // // Answer 3: |
317 | // // Signal an error if the normalized answer is not in next month. |
318 | // if (absl::CivilMonth(normalized) != next_month) { |
319 | // // error, month overflow |
320 | // } |
321 | // |
322 | using CivilSecond = |
323 | time_internal::cctz::detail::civil_time<time_internal::second_tag>; |
324 | using CivilMinute = |
325 | time_internal::cctz::detail::civil_time<time_internal::minute_tag>; |
326 | using CivilHour = |
327 | time_internal::cctz::detail::civil_time<time_internal::hour_tag>; |
328 | using CivilDay = |
329 | time_internal::cctz::detail::civil_time<time_internal::day_tag>; |
330 | using CivilMonth = |
331 | time_internal::cctz::detail::civil_time<time_internal::month_tag>; |
332 | using CivilYear = |
333 | time_internal::cctz::detail::civil_time<time_internal::year_tag>; |
334 | |
335 | // civil_year_t |
336 | // |
337 | // Type alias of a civil-time year value. This type is guaranteed to (at least) |
338 | // support any year value supported by `time_t`. |
339 | // |
340 | // Example: |
341 | // |
342 | // absl::CivilSecond cs = ...; |
343 | // absl::civil_year_t y = cs.year(); |
344 | // cs = absl::CivilSecond(y, 1, 1, 0, 0, 0); // CivilSecond(CivilYear(cs)) |
345 | // |
346 | using civil_year_t = time_internal::cctz::year_t; |
347 | |
348 | // civil_diff_t |
349 | // |
350 | // Type alias of the difference between two civil-time values. |
351 | // This type is used to indicate arguments that are not |
352 | // normalized (such as parameters to the civil-time constructors), the results |
353 | // of civil-time subtraction, or the operand to civil-time addition. |
354 | // |
355 | // Example: |
356 | // |
357 | // absl::civil_diff_t n_sec = cs1 - cs2; // cs1 == cs2 + n_sec; |
358 | // |
359 | using civil_diff_t = time_internal::cctz::diff_t; |
360 | |
361 | // Weekday::monday, Weekday::tuesday, Weekday::wednesday, Weekday::thursday, |
362 | // Weekday::friday, Weekday::saturday, Weekday::sunday |
363 | // |
364 | // The Weekday enum class represents the civil-time concept of a "weekday" with |
365 | // members for all days of the week. |
366 | // |
367 | // absl::Weekday wd = absl::Weekday::thursday; |
368 | // |
369 | using Weekday = time_internal::cctz::weekday; |
370 | |
371 | // GetWeekday() |
372 | // |
373 | // Returns the absl::Weekday for the given absl::CivilDay. |
374 | // |
375 | // Example: |
376 | // |
377 | // absl::CivilDay a(2015, 8, 13); |
378 | // absl::Weekday wd = absl::GetWeekday(a); // wd == absl::Weekday::thursday |
379 | // |
380 | inline Weekday GetWeekday(CivilDay cd) { |
381 | return time_internal::cctz::get_weekday(cd); |
382 | } |
383 | |
384 | // NextWeekday() |
385 | // PrevWeekday() |
386 | // |
387 | // Returns the absl::CivilDay that strictly follows or precedes a given |
388 | // absl::CivilDay, and that falls on the given absl::Weekday. |
389 | // |
390 | // Example, given the following month: |
391 | // |
392 | // August 2015 |
393 | // Su Mo Tu We Th Fr Sa |
394 | // 1 |
395 | // 2 3 4 5 6 7 8 |
396 | // 9 10 11 12 13 14 15 |
397 | // 16 17 18 19 20 21 22 |
398 | // 23 24 25 26 27 28 29 |
399 | // 30 31 |
400 | // |
401 | // absl::CivilDay a(2015, 8, 13); |
402 | // // absl::GetWeekday(a) == absl::Weekday::thursday |
403 | // absl::CivilDay b = absl::NextWeekday(a, absl::Weekday::thursday); |
404 | // // b = 2015-08-20 |
405 | // absl::CivilDay c = absl::PrevWeekday(a, absl::Weekday::thursday); |
406 | // // c = 2015-08-06 |
407 | // |
408 | // absl::CivilDay d = ... |
409 | // // Gets the following Thursday if d is not already Thursday |
410 | // absl::CivilDay thurs1 = absl::NextWeekday(d - 1, absl::Weekday::thursday); |
411 | // // Gets the previous Thursday if d is not already Thursday |
412 | // absl::CivilDay thurs2 = absl::PrevWeekday(d + 1, absl::Weekday::thursday); |
413 | // |
414 | inline CivilDay NextWeekday(CivilDay cd, Weekday wd) { |
415 | return CivilDay(time_internal::cctz::next_weekday(cd, wd)); |
416 | } |
417 | inline CivilDay PrevWeekday(CivilDay cd, Weekday wd) { |
418 | return CivilDay(time_internal::cctz::prev_weekday(cd, wd)); |
419 | } |
420 | |
421 | // GetYearDay() |
422 | // |
423 | // Returns the day-of-year for the given absl::CivilDay. |
424 | // |
425 | // Example: |
426 | // |
427 | // absl::CivilDay a(2015, 1, 1); |
428 | // int yd_jan_1 = absl::GetYearDay(a); // yd_jan_1 = 1 |
429 | // absl::CivilDay b(2015, 12, 31); |
430 | // int yd_dec_31 = absl::GetYearDay(b); // yd_dec_31 = 365 |
431 | // |
432 | inline int GetYearDay(CivilDay cd) { |
433 | return time_internal::cctz::get_yearday(cd); |
434 | } |
435 | |
436 | // FormatCivilTime() |
437 | // |
438 | // Formats the given civil-time value into a string value of the following |
439 | // format: |
440 | // |
441 | // Type | Format |
442 | // --------------------------------- |
443 | // CivilSecond | YYYY-MM-DDTHH:MM:SS |
444 | // CivilMinute | YYYY-MM-DDTHH:MM |
445 | // CivilHour | YYYY-MM-DDTHH |
446 | // CivilDay | YYYY-MM-DD |
447 | // CivilMonth | YYYY-MM |
448 | // CivilYear | YYYY |
449 | // |
450 | // Example: |
451 | // |
452 | // absl::CivilDay d = absl::CivilDay(1969, 7, 20); |
453 | // std::string day_string = absl::FormatCivilTime(d); // "1969-07-20" |
454 | // |
455 | std::string FormatCivilTime(CivilSecond c); |
456 | std::string FormatCivilTime(CivilMinute c); |
457 | std::string FormatCivilTime(CivilHour c); |
458 | std::string FormatCivilTime(CivilDay c); |
459 | std::string FormatCivilTime(CivilMonth c); |
460 | std::string FormatCivilTime(CivilYear c); |
461 | |
462 | namespace time_internal { // For functions found via ADL on civil-time tags. |
463 | |
464 | // Streaming Operators |
465 | // |
466 | // Each civil-time type may be sent to an output stream using operator<<(). |
467 | // The result matches the string produced by `FormatCivilTime()`. |
468 | // |
469 | // Example: |
470 | // |
471 | // absl::CivilDay d = absl::CivilDay("1969-07-20"); |
472 | // std::cout << "Date is: " << d << "\n"; |
473 | // |
474 | std::ostream& operator<<(std::ostream& os, CivilYear y); |
475 | std::ostream& operator<<(std::ostream& os, CivilMonth m); |
476 | std::ostream& operator<<(std::ostream& os, CivilDay d); |
477 | std::ostream& operator<<(std::ostream& os, CivilHour h); |
478 | std::ostream& operator<<(std::ostream& os, CivilMinute m); |
479 | std::ostream& operator<<(std::ostream& os, CivilSecond s); |
480 | |
481 | } // namespace time_internal |
482 | |
483 | } // namespace absl |
484 | |
485 | #endif // ABSL_TIME_CIVIL_TIME_H_ |
486 | |