| 1 | // Copyright 2016 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #if defined(_WIN32) || defined(_WIN64) |
| 16 | #define _CRT_SECURE_NO_WARNINGS 1 |
| 17 | #endif |
| 18 | |
| 19 | #include "time_zone_libc.h" |
| 20 | |
| 21 | #include <chrono> |
| 22 | #include <ctime> |
| 23 | #include <limits> |
| 24 | #include <utility> |
| 25 | |
| 26 | #include "absl/time/internal/cctz/include/cctz/civil_time.h" |
| 27 | #include "absl/time/internal/cctz/include/cctz/time_zone.h" |
| 28 | |
| 29 | namespace absl { |
| 30 | namespace time_internal { |
| 31 | namespace cctz { |
| 32 | |
| 33 | namespace { |
| 34 | |
| 35 | #if defined(_WIN32) || defined(_WIN64) |
| 36 | // Uses the globals: '_timezone', '_dstbias' and '_tzname'. |
| 37 | auto tm_gmtoff(const std::tm& tm) -> decltype(_timezone + _dstbias) { |
| 38 | const bool is_dst = tm.tm_isdst > 0; |
| 39 | return _timezone + (is_dst ? _dstbias : 0); |
| 40 | } |
| 41 | auto tm_zone(const std::tm& tm) -> decltype(_tzname[0]) { |
| 42 | const bool is_dst = tm.tm_isdst > 0; |
| 43 | return _tzname[is_dst]; |
| 44 | } |
| 45 | #elif defined(__sun) |
| 46 | // Uses the globals: 'timezone', 'altzone' and 'tzname'. |
| 47 | auto tm_gmtoff(const std::tm& tm) -> decltype(timezone) { |
| 48 | const bool is_dst = tm.tm_isdst > 0; |
| 49 | return is_dst ? altzone : timezone; |
| 50 | } |
| 51 | auto tm_zone(const std::tm& tm) -> decltype(tzname[0]) { |
| 52 | const bool is_dst = tm.tm_isdst > 0; |
| 53 | return tzname[is_dst]; |
| 54 | } |
| 55 | #elif defined(__native_client__) || defined(__myriad2__) || \ |
| 56 | defined(__EMSCRIPTEN__) |
| 57 | // Uses the globals: 'timezone' and 'tzname'. |
| 58 | auto tm_gmtoff(const std::tm& tm) -> decltype(_timezone + 0) { |
| 59 | const bool is_dst = tm.tm_isdst > 0; |
| 60 | return _timezone + (is_dst ? 60 * 60 : 0); |
| 61 | } |
| 62 | auto tm_zone(const std::tm& tm) -> decltype(tzname[0]) { |
| 63 | const bool is_dst = tm.tm_isdst > 0; |
| 64 | return tzname[is_dst]; |
| 65 | } |
| 66 | #else |
| 67 | // Adapt to different spellings of the struct std::tm extension fields. |
| 68 | #if defined(tm_gmtoff) |
| 69 | auto tm_gmtoff(const std::tm& tm) -> decltype(tm.tm_gmtoff) { |
| 70 | return tm.tm_gmtoff; |
| 71 | } |
| 72 | #elif defined(__tm_gmtoff) |
| 73 | auto tm_gmtoff(const std::tm& tm) -> decltype(tm.__tm_gmtoff) { |
| 74 | return tm.__tm_gmtoff; |
| 75 | } |
| 76 | #else |
| 77 | template <typename T> |
| 78 | auto tm_gmtoff(const T& tm) -> decltype(tm.tm_gmtoff) { |
| 79 | return tm.tm_gmtoff; |
| 80 | } |
| 81 | template <typename T> |
| 82 | auto tm_gmtoff(const T& tm) -> decltype(tm.__tm_gmtoff) { |
| 83 | return tm.__tm_gmtoff; |
| 84 | } |
| 85 | #endif // tm_gmtoff |
| 86 | #if defined(tm_zone) |
| 87 | auto tm_zone(const std::tm& tm) -> decltype(tm.tm_zone) { |
| 88 | return tm.tm_zone; |
| 89 | } |
| 90 | #elif defined(__tm_zone) |
| 91 | auto tm_zone(const std::tm& tm) -> decltype(tm.__tm_zone) { |
| 92 | return tm.__tm_zone; |
| 93 | } |
| 94 | #else |
| 95 | template <typename T> |
| 96 | auto tm_zone(const T& tm) -> decltype(tm.tm_zone) { |
| 97 | return tm.tm_zone; |
| 98 | } |
| 99 | template <typename T> |
| 100 | auto tm_zone(const T& tm) -> decltype(tm.__tm_zone) { |
| 101 | return tm.__tm_zone; |
| 102 | } |
| 103 | #endif // tm_zone |
| 104 | #endif |
| 105 | |
| 106 | inline std::tm* gm_time(const std::time_t *timep, std::tm *result) { |
| 107 | #if defined(_WIN32) || defined(_WIN64) |
| 108 | return gmtime_s(result, timep) ? nullptr : result; |
| 109 | #else |
| 110 | return gmtime_r(timep, result); |
| 111 | #endif |
| 112 | } |
| 113 | |
| 114 | inline std::tm* local_time(const std::time_t *timep, std::tm *result) { |
| 115 | #if defined(_WIN32) || defined(_WIN64) |
| 116 | return localtime_s(result, timep) ? nullptr : result; |
| 117 | #else |
| 118 | return localtime_r(timep, result); |
| 119 | #endif |
| 120 | } |
| 121 | |
| 122 | // Converts a civil second and "dst" flag into a time_t and UTC offset. |
| 123 | // Returns false if time_t cannot represent the requested civil second. |
| 124 | // Caller must have already checked that cs.year() will fit into a tm_year. |
| 125 | bool make_time(const civil_second& cs, int is_dst, std::time_t* t, int* off) { |
| 126 | std::tm tm; |
| 127 | tm.tm_year = static_cast<int>(cs.year() - year_t{1900}); |
| 128 | tm.tm_mon = cs.month() - 1; |
| 129 | tm.tm_mday = cs.day(); |
| 130 | tm.tm_hour = cs.hour(); |
| 131 | tm.tm_min = cs.minute(); |
| 132 | tm.tm_sec = cs.second(); |
| 133 | tm.tm_isdst = is_dst; |
| 134 | *t = std::mktime(&tm); |
| 135 | if (*t == std::time_t{-1}) { |
| 136 | std::tm tm2; |
| 137 | const std::tm* tmp = local_time(t, &tm2); |
| 138 | if (tmp == nullptr || tmp->tm_year != tm.tm_year || |
| 139 | tmp->tm_mon != tm.tm_mon || tmp->tm_mday != tm.tm_mday || |
| 140 | tmp->tm_hour != tm.tm_hour || tmp->tm_min != tm.tm_min || |
| 141 | tmp->tm_sec != tm.tm_sec) { |
| 142 | // A true error (not just one second before the epoch). |
| 143 | return false; |
| 144 | } |
| 145 | } |
| 146 | *off = static_cast<int>(tm_gmtoff(tm)); |
| 147 | return true; |
| 148 | } |
| 149 | |
| 150 | // Find the least time_t in [lo:hi] where local time matches offset, given: |
| 151 | // (1) lo doesn't match, (2) hi does, and (3) there is only one transition. |
| 152 | std::time_t find_trans(std::time_t lo, std::time_t hi, int offset) { |
| 153 | std::tm tm; |
| 154 | while (lo + 1 != hi) { |
| 155 | const std::time_t mid = lo + (hi - lo) / 2; |
| 156 | if (std::tm* tmp = local_time(&mid, &tm)) { |
| 157 | if (tm_gmtoff(*tmp) == offset) { |
| 158 | hi = mid; |
| 159 | } else { |
| 160 | lo = mid; |
| 161 | } |
| 162 | } else { |
| 163 | // If std::tm cannot hold some result we resort to a linear search, |
| 164 | // ignoring all failed conversions. Slow, but never really happens. |
| 165 | while (++lo != hi) { |
| 166 | if (std::tm* tmp = local_time(&lo, &tm)) { |
| 167 | if (tm_gmtoff(*tmp) == offset) break; |
| 168 | } |
| 169 | } |
| 170 | return lo; |
| 171 | } |
| 172 | } |
| 173 | return hi; |
| 174 | } |
| 175 | |
| 176 | } // namespace |
| 177 | |
| 178 | TimeZoneLibC::TimeZoneLibC(const std::string& name) |
| 179 | : local_(name == "localtime" ) {} |
| 180 | |
| 181 | time_zone::absolute_lookup TimeZoneLibC::BreakTime( |
| 182 | const time_point<seconds>& tp) const { |
| 183 | time_zone::absolute_lookup al; |
| 184 | al.offset = 0; |
| 185 | al.is_dst = false; |
| 186 | al.abbr = "-00" ; |
| 187 | |
| 188 | const std::int_fast64_t s = ToUnixSeconds(tp); |
| 189 | |
| 190 | // If std::time_t cannot hold the input we saturate the output. |
| 191 | if (s < std::numeric_limits<std::time_t>::min()) { |
| 192 | al.cs = civil_second::min(); |
| 193 | return al; |
| 194 | } |
| 195 | if (s > std::numeric_limits<std::time_t>::max()) { |
| 196 | al.cs = civil_second::max(); |
| 197 | return al; |
| 198 | } |
| 199 | |
| 200 | const std::time_t t = static_cast<std::time_t>(s); |
| 201 | std::tm tm; |
| 202 | std::tm* tmp = local_ ? local_time(&t, &tm) : gm_time(&t, &tm); |
| 203 | |
| 204 | // If std::tm cannot hold the result we saturate the output. |
| 205 | if (tmp == nullptr) { |
| 206 | al.cs = (s < 0) ? civil_second::min() : civil_second::max(); |
| 207 | return al; |
| 208 | } |
| 209 | |
| 210 | const year_t year = tmp->tm_year + year_t{1900}; |
| 211 | al.cs = civil_second(year, tmp->tm_mon + 1, tmp->tm_mday, |
| 212 | tmp->tm_hour, tmp->tm_min, tmp->tm_sec); |
| 213 | al.offset = static_cast<int>(tm_gmtoff(*tmp)); |
| 214 | al.abbr = local_ ? tm_zone(*tmp) : "UTC" ; // as expected by cctz |
| 215 | al.is_dst = tmp->tm_isdst > 0; |
| 216 | return al; |
| 217 | } |
| 218 | |
| 219 | time_zone::civil_lookup TimeZoneLibC::MakeTime(const civil_second& cs) const { |
| 220 | if (!local_) { |
| 221 | // If time_point<seconds> cannot hold the result we saturate. |
| 222 | static const civil_second min_tp_cs = |
| 223 | civil_second() + ToUnixSeconds(time_point<seconds>::min()); |
| 224 | static const civil_second max_tp_cs = |
| 225 | civil_second() + ToUnixSeconds(time_point<seconds>::max()); |
| 226 | const time_point<seconds> tp = |
| 227 | (cs < min_tp_cs) |
| 228 | ? time_point<seconds>::min() |
| 229 | : (cs > max_tp_cs) ? time_point<seconds>::max() |
| 230 | : FromUnixSeconds(cs - civil_second()); |
| 231 | return {time_zone::civil_lookup::UNIQUE, tp, tp, tp}; |
| 232 | } |
| 233 | |
| 234 | // If tm_year cannot hold the requested year we saturate the result. |
| 235 | if (cs.year() < 0) { |
| 236 | if (cs.year() < std::numeric_limits<int>::min() + year_t{1900}) { |
| 237 | const time_point<seconds> tp = time_point<seconds>::min(); |
| 238 | return {time_zone::civil_lookup::UNIQUE, tp, tp, tp}; |
| 239 | } |
| 240 | } else { |
| 241 | if (cs.year() - year_t{1900} > std::numeric_limits<int>::max()) { |
| 242 | const time_point<seconds> tp = time_point<seconds>::max(); |
| 243 | return {time_zone::civil_lookup::UNIQUE, tp, tp, tp}; |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | // We probe with "is_dst" values of 0 and 1 to try to distinguish unique |
| 248 | // civil seconds from skipped or repeated ones. This is not always possible |
| 249 | // however, as the "dst" flag does not change over some offset transitions. |
| 250 | // We are also subject to the vagaries of mktime() implementations. |
| 251 | std::time_t t0, t1; |
| 252 | int offset0, offset1; |
| 253 | if (make_time(cs, 0, &t0, &offset0) && make_time(cs, 1, &t1, &offset1)) { |
| 254 | if (t0 == t1) { |
| 255 | // The civil time was singular (pre == trans == post). |
| 256 | const time_point<seconds> tp = FromUnixSeconds(t0); |
| 257 | return {time_zone::civil_lookup::UNIQUE, tp, tp, tp}; |
| 258 | } |
| 259 | |
| 260 | if (t0 > t1) { |
| 261 | std::swap(t0, t1); |
| 262 | std::swap(offset0, offset1); |
| 263 | } |
| 264 | const std::time_t tt = find_trans(t0, t1, offset1); |
| 265 | const time_point<seconds> trans = FromUnixSeconds(tt); |
| 266 | |
| 267 | if (offset0 < offset1) { |
| 268 | // The civil time did not exist (pre >= trans > post). |
| 269 | const time_point<seconds> pre = FromUnixSeconds(t1); |
| 270 | const time_point<seconds> post = FromUnixSeconds(t0); |
| 271 | return {time_zone::civil_lookup::SKIPPED, pre, trans, post}; |
| 272 | } |
| 273 | |
| 274 | // The civil time was ambiguous (pre < trans <= post). |
| 275 | const time_point<seconds> pre = FromUnixSeconds(t0); |
| 276 | const time_point<seconds> post = FromUnixSeconds(t1); |
| 277 | return {time_zone::civil_lookup::REPEATED, pre, trans, post}; |
| 278 | } |
| 279 | |
| 280 | // make_time() failed somehow so we saturate the result. |
| 281 | const time_point<seconds> tp = (cs < civil_second()) |
| 282 | ? time_point<seconds>::min() |
| 283 | : time_point<seconds>::max(); |
| 284 | return {time_zone::civil_lookup::UNIQUE, tp, tp, tp}; |
| 285 | } |
| 286 | |
| 287 | bool TimeZoneLibC::NextTransition(const time_point<seconds>&, |
| 288 | time_zone::civil_transition*) const { |
| 289 | return false; |
| 290 | } |
| 291 | |
| 292 | bool TimeZoneLibC::PrevTransition(const time_point<seconds>&, |
| 293 | time_zone::civil_transition*) const { |
| 294 | return false; |
| 295 | } |
| 296 | |
| 297 | std::string TimeZoneLibC::Version() const { |
| 298 | return std::string(); // unknown |
| 299 | } |
| 300 | |
| 301 | std::string TimeZoneLibC::Description() const { |
| 302 | return local_ ? "localtime" : "UTC" ; |
| 303 | } |
| 304 | |
| 305 | } // namespace cctz |
| 306 | } // namespace time_internal |
| 307 | } // namespace absl |
| 308 | |