1 | // |
2 | // Copyright 2017 The Abseil Authors. |
3 | // |
4 | // Licensed under the Apache License, Version 2.0 (the "License"); |
5 | // you may not use this file except in compliance with the License. |
6 | // You may obtain a copy of the License at |
7 | // |
8 | // https://www.apache.org/licenses/LICENSE-2.0 |
9 | // |
10 | // Unless required by applicable law or agreed to in writing, software |
11 | // distributed under the License is distributed on an "AS IS" BASIS, |
12 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | // See the License for the specific language governing permissions and |
14 | // limitations under the License. |
15 | // |
16 | // ----------------------------------------------------------------------------- |
17 | // span.h |
18 | // ----------------------------------------------------------------------------- |
19 | // |
20 | // This header file defines a `Span<T>` type for holding a view of an existing |
21 | // array of data. The `Span` object, much like the `absl::string_view` object, |
22 | // does not own such data itself. A span provides a lightweight way to pass |
23 | // around view of such data. |
24 | // |
25 | // Additionally, this header file defines `MakeSpan()` and `MakeConstSpan()` |
26 | // factory functions, for clearly creating spans of type `Span<T>` or read-only |
27 | // `Span<const T>` when such types may be difficult to identify due to issues |
28 | // with implicit conversion. |
29 | // |
30 | // The C++ standards committee currently has a proposal for a `std::span` type, |
31 | // (http://wg21.link/p0122), which is not yet part of the standard (though may |
32 | // become part of C++20). As of August 2017, the differences between |
33 | // `absl::Span` and this proposal are: |
34 | // * `absl::Span` uses `size_t` for `size_type` |
35 | // * `absl::Span` has no `operator()` |
36 | // * `absl::Span` has no constructors for `std::unique_ptr` or |
37 | // `std::shared_ptr` |
38 | // * `absl::Span` has the factory functions `MakeSpan()` and |
39 | // `MakeConstSpan()` |
40 | // * `absl::Span` has `front()` and `back()` methods |
41 | // * bounds-checked access to `absl::Span` is accomplished with `at()` |
42 | // * `absl::Span` has compiler-provided move and copy constructors and |
43 | // assignment. This is due to them being specified as `constexpr`, but that |
44 | // implies const in C++11. |
45 | // * `absl::Span` has no `element_type` or `index_type` typedefs |
46 | // * A read-only `absl::Span<const T>` can be implicitly constructed from an |
47 | // initializer list. |
48 | // * `absl::Span` has no `bytes()`, `size_bytes()`, `as_bytes()`, or |
49 | // `as_mutable_bytes()` methods |
50 | // * `absl::Span` has no static extent template parameter, nor constructors |
51 | // which exist only because of the static extent parameter. |
52 | // * `absl::Span` has an explicit mutable-reference constructor |
53 | // |
54 | // For more information, see the class comments below. |
55 | #ifndef ABSL_TYPES_SPAN_H_ |
56 | #define ABSL_TYPES_SPAN_H_ |
57 | |
58 | #include <algorithm> |
59 | #include <cassert> |
60 | #include <cstddef> |
61 | #include <initializer_list> |
62 | #include <iterator> |
63 | #include <type_traits> |
64 | #include <utility> |
65 | |
66 | #include "absl/base/internal/throw_delegate.h" |
67 | #include "absl/base/macros.h" |
68 | #include "absl/base/optimization.h" |
69 | #include "absl/base/port.h" // TODO(strel): remove this include |
70 | #include "absl/meta/type_traits.h" |
71 | #include "absl/types/internal/span.h" |
72 | |
73 | namespace absl { |
74 | |
75 | //------------------------------------------------------------------------------ |
76 | // Span |
77 | //------------------------------------------------------------------------------ |
78 | // |
79 | // A `Span` is an "array view" type for holding a view of a contiguous data |
80 | // array; the `Span` object does not and cannot own such data itself. A span |
81 | // provides an easy way to provide overloads for anything operating on |
82 | // contiguous sequences without needing to manage pointers and array lengths |
83 | // manually. |
84 | |
85 | // A span is conceptually a pointer (ptr) and a length (size) into an already |
86 | // existing array of contiguous memory; the array it represents references the |
87 | // elements "ptr[0] .. ptr[size-1]". Passing a properly-constructed `Span` |
88 | // instead of raw pointers avoids many issues related to index out of bounds |
89 | // errors. |
90 | // |
91 | // Spans may also be constructed from containers holding contiguous sequences. |
92 | // Such containers must supply `data()` and `size() const` methods (e.g |
93 | // `std::vector<T>`, `absl::InlinedVector<T, N>`). All implicit conversions to |
94 | // `absl::Span` from such containers will create spans of type `const T`; |
95 | // spans which can mutate their values (of type `T`) must use explicit |
96 | // constructors. |
97 | // |
98 | // A `Span<T>` is somewhat analogous to an `absl::string_view`, but for an array |
99 | // of elements of type `T`. A user of `Span` must ensure that the data being |
100 | // pointed to outlives the `Span` itself. |
101 | // |
102 | // You can construct a `Span<T>` in several ways: |
103 | // |
104 | // * Explicitly from a reference to a container type |
105 | // * Explicitly from a pointer and size |
106 | // * Implicitly from a container type (but only for spans of type `const T`) |
107 | // * Using the `MakeSpan()` or `MakeConstSpan()` factory functions. |
108 | // |
109 | // Examples: |
110 | // |
111 | // // Construct a Span explicitly from a container: |
112 | // std::vector<int> v = {1, 2, 3, 4, 5}; |
113 | // auto span = absl::Span<const int>(v); |
114 | // |
115 | // // Construct a Span explicitly from a C-style array: |
116 | // int a[5] = {1, 2, 3, 4, 5}; |
117 | // auto span = absl::Span<const int>(a); |
118 | // |
119 | // // Construct a Span implicitly from a container |
120 | // void MyRoutine(absl::Span<const int> a) { |
121 | // ... |
122 | // } |
123 | // std::vector v = {1,2,3,4,5}; |
124 | // MyRoutine(v) // convert to Span<const T> |
125 | // |
126 | // Note that `Span` objects, in addition to requiring that the memory they |
127 | // point to remains alive, must also ensure that such memory does not get |
128 | // reallocated. Therefore, to avoid undefined behavior, containers with |
129 | // associated span views should not invoke operations that may reallocate memory |
130 | // (such as resizing) or invalidate iterators into the container. |
131 | // |
132 | // One common use for a `Span` is when passing arguments to a routine that can |
133 | // accept a variety of array types (e.g. a `std::vector`, `absl::InlinedVector`, |
134 | // a C-style array, etc.). Instead of creating overloads for each case, you |
135 | // can simply specify a `Span` as the argument to such a routine. |
136 | // |
137 | // Example: |
138 | // |
139 | // void MyRoutine(absl::Span<const int> a) { |
140 | // ... |
141 | // } |
142 | // |
143 | // std::vector v = {1,2,3,4,5}; |
144 | // MyRoutine(v); |
145 | // |
146 | // absl::InlinedVector<int, 4> my_inline_vector; |
147 | // MyRoutine(my_inline_vector); |
148 | // |
149 | // // Explicit constructor from pointer,size |
150 | // int* my_array = new int[10]; |
151 | // MyRoutine(absl::Span<const int>(my_array, 10)); |
152 | template <typename T> |
153 | class Span { |
154 | private: |
155 | // Used to determine whether a Span can be constructed from a container of |
156 | // type C. |
157 | template <typename C> |
158 | using EnableIfConvertibleFrom = |
159 | typename std::enable_if<span_internal::HasData<T, C>::value && |
160 | span_internal::HasSize<C>::value>::type; |
161 | |
162 | // Used to SFINAE-enable a function when the slice elements are const. |
163 | template <typename U> |
164 | using EnableIfConstView = |
165 | typename std::enable_if<std::is_const<T>::value, U>::type; |
166 | |
167 | // Used to SFINAE-enable a function when the slice elements are mutable. |
168 | template <typename U> |
169 | using EnableIfMutableView = |
170 | typename std::enable_if<!std::is_const<T>::value, U>::type; |
171 | |
172 | public: |
173 | using value_type = absl::remove_cv_t<T>; |
174 | using pointer = T*; |
175 | using const_pointer = const T*; |
176 | using reference = T&; |
177 | using const_reference = const T&; |
178 | using iterator = pointer; |
179 | using const_iterator = const_pointer; |
180 | using reverse_iterator = std::reverse_iterator<iterator>; |
181 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
182 | using size_type = size_t; |
183 | using difference_type = ptrdiff_t; |
184 | |
185 | static const size_type npos = ~(size_type(0)); |
186 | |
187 | constexpr Span() noexcept : Span(nullptr, 0) {} |
188 | constexpr Span(pointer array, size_type length) noexcept |
189 | : ptr_(array), len_(length) {} |
190 | |
191 | // Implicit conversion constructors |
192 | template <size_t N> |
193 | constexpr Span(T (&a)[N]) noexcept // NOLINT(runtime/explicit) |
194 | : Span(a, N) {} |
195 | |
196 | // Explicit reference constructor for a mutable `Span<T>` type. Can be |
197 | // replaced with MakeSpan() to infer the type parameter. |
198 | template <typename V, typename = EnableIfConvertibleFrom<V>, |
199 | typename = EnableIfMutableView<V>> |
200 | explicit Span(V& v) noexcept // NOLINT(runtime/references) |
201 | : Span(span_internal::GetData(v), v.size()) {} |
202 | |
203 | // Implicit reference constructor for a read-only `Span<const T>` type |
204 | template <typename V, typename = EnableIfConvertibleFrom<V>, |
205 | typename = EnableIfConstView<V>> |
206 | constexpr Span(const V& v) noexcept // NOLINT(runtime/explicit) |
207 | : Span(span_internal::GetData(v), v.size()) {} |
208 | |
209 | // Implicit constructor from an initializer list, making it possible to pass a |
210 | // brace-enclosed initializer list to a function expecting a `Span`. Such |
211 | // spans constructed from an initializer list must be of type `Span<const T>`. |
212 | // |
213 | // void Process(absl::Span<const int> x); |
214 | // Process({1, 2, 3}); |
215 | // |
216 | // Note that as always the array referenced by the span must outlive the span. |
217 | // Since an initializer list constructor acts as if it is fed a temporary |
218 | // array (cf. C++ standard [dcl.init.list]/5), it's safe to use this |
219 | // constructor only when the `std::initializer_list` itself outlives the span. |
220 | // In order to meet this requirement it's sufficient to ensure that neither |
221 | // the span nor a copy of it is used outside of the expression in which it's |
222 | // created: |
223 | // |
224 | // // Assume that this function uses the array directly, not retaining any |
225 | // // copy of the span or pointer to any of its elements. |
226 | // void Process(absl::Span<const int> ints); |
227 | // |
228 | // // Okay: the std::initializer_list<int> will reference a temporary array |
229 | // // that isn't destroyed until after the call to Process returns. |
230 | // Process({ 17, 19 }); |
231 | // |
232 | // // Not okay: the storage used by the std::initializer_list<int> is not |
233 | // // allowed to be referenced after the first line. |
234 | // absl::Span<const int> ints = { 17, 19 }; |
235 | // Process(ints); |
236 | // |
237 | // // Not okay for the same reason as above: even when the elements of the |
238 | // // initializer list expression are not temporaries the underlying array |
239 | // // is, so the initializer list must still outlive the span. |
240 | // const int foo = 17; |
241 | // absl::Span<const int> ints = { foo }; |
242 | // Process(ints); |
243 | // |
244 | template <typename LazyT = T, |
245 | typename = EnableIfConstView<LazyT>> |
246 | Span( |
247 | std::initializer_list<value_type> v) noexcept // NOLINT(runtime/explicit) |
248 | : Span(v.begin(), v.size()) {} |
249 | |
250 | // Accessors |
251 | |
252 | // Span::data() |
253 | // |
254 | // Returns a pointer to the span's underlying array of data (which is held |
255 | // outside the span). |
256 | constexpr pointer data() const noexcept { return ptr_; } |
257 | |
258 | // Span::size() |
259 | // |
260 | // Returns the size of this span. |
261 | constexpr size_type size() const noexcept { return len_; } |
262 | |
263 | // Span::length() |
264 | // |
265 | // Returns the length (size) of this span. |
266 | constexpr size_type length() const noexcept { return size(); } |
267 | |
268 | // Span::empty() |
269 | // |
270 | // Returns a boolean indicating whether or not this span is considered empty. |
271 | constexpr bool empty() const noexcept { return size() == 0; } |
272 | |
273 | // Span::operator[] |
274 | // |
275 | // Returns a reference to the i'th element of this span. |
276 | constexpr reference operator[](size_type i) const noexcept { |
277 | // MSVC 2015 accepts this as constexpr, but not ptr_[i] |
278 | return *(data() + i); |
279 | } |
280 | |
281 | // Span::at() |
282 | // |
283 | // Returns a reference to the i'th element of this span. |
284 | constexpr reference at(size_type i) const { |
285 | return ABSL_PREDICT_TRUE(i < size()) // |
286 | ? *(data() + i) |
287 | : (base_internal::ThrowStdOutOfRange( |
288 | "Span::at failed bounds check" ), |
289 | *(data() + i)); |
290 | } |
291 | |
292 | // Span::front() |
293 | // |
294 | // Returns a reference to the first element of this span. |
295 | constexpr reference front() const noexcept { |
296 | return ABSL_ASSERT(size() > 0), *data(); |
297 | } |
298 | |
299 | // Span::back() |
300 | // |
301 | // Returns a reference to the last element of this span. |
302 | constexpr reference back() const noexcept { |
303 | return ABSL_ASSERT(size() > 0), *(data() + size() - 1); |
304 | } |
305 | |
306 | // Span::begin() |
307 | // |
308 | // Returns an iterator to the first element of this span. |
309 | constexpr iterator begin() const noexcept { return data(); } |
310 | |
311 | // Span::cbegin() |
312 | // |
313 | // Returns a const iterator to the first element of this span. |
314 | constexpr const_iterator cbegin() const noexcept { return begin(); } |
315 | |
316 | // Span::end() |
317 | // |
318 | // Returns an iterator to the last element of this span. |
319 | constexpr iterator end() const noexcept { return data() + size(); } |
320 | |
321 | // Span::cend() |
322 | // |
323 | // Returns a const iterator to the last element of this span. |
324 | constexpr const_iterator cend() const noexcept { return end(); } |
325 | |
326 | // Span::rbegin() |
327 | // |
328 | // Returns a reverse iterator starting at the last element of this span. |
329 | constexpr reverse_iterator rbegin() const noexcept { |
330 | return reverse_iterator(end()); |
331 | } |
332 | |
333 | // Span::crbegin() |
334 | // |
335 | // Returns a reverse const iterator starting at the last element of this span. |
336 | constexpr const_reverse_iterator crbegin() const noexcept { return rbegin(); } |
337 | |
338 | // Span::rend() |
339 | // |
340 | // Returns a reverse iterator starting at the first element of this span. |
341 | constexpr reverse_iterator rend() const noexcept { |
342 | return reverse_iterator(begin()); |
343 | } |
344 | |
345 | // Span::crend() |
346 | // |
347 | // Returns a reverse iterator starting at the first element of this span. |
348 | constexpr const_reverse_iterator crend() const noexcept { return rend(); } |
349 | |
350 | // Span mutations |
351 | |
352 | // Span::remove_prefix() |
353 | // |
354 | // Removes the first `n` elements from the span. |
355 | void remove_prefix(size_type n) noexcept { |
356 | assert(size() >= n); |
357 | ptr_ += n; |
358 | len_ -= n; |
359 | } |
360 | |
361 | // Span::remove_suffix() |
362 | // |
363 | // Removes the last `n` elements from the span. |
364 | void remove_suffix(size_type n) noexcept { |
365 | assert(size() >= n); |
366 | len_ -= n; |
367 | } |
368 | |
369 | // Span::subspan() |
370 | // |
371 | // Returns a `Span` starting at element `pos` and of length `len`. Both `pos` |
372 | // and `len` are of type `size_type` and thus non-negative. Parameter `pos` |
373 | // must be <= size(). Any `len` value that points past the end of the span |
374 | // will be trimmed to at most size() - `pos`. A default `len` value of `npos` |
375 | // ensures the returned subspan continues until the end of the span. |
376 | // |
377 | // Examples: |
378 | // |
379 | // std::vector<int> vec = {10, 11, 12, 13}; |
380 | // absl::MakeSpan(vec).subspan(1, 2); // {11, 12} |
381 | // absl::MakeSpan(vec).subspan(2, 8); // {12, 13} |
382 | // absl::MakeSpan(vec).subspan(1); // {11, 12, 13} |
383 | // absl::MakeSpan(vec).subspan(4); // {} |
384 | // absl::MakeSpan(vec).subspan(5); // throws std::out_of_range |
385 | constexpr Span subspan(size_type pos = 0, size_type len = npos) const { |
386 | return (pos <= size()) |
387 | ? Span(data() + pos, span_internal::Min(size() - pos, len)) |
388 | : (base_internal::ThrowStdOutOfRange("pos > size()" ), Span()); |
389 | } |
390 | |
391 | // Span::first() |
392 | // |
393 | // Returns a `Span` containing first `len` elements. Parameter `len` is of |
394 | // type `size_type` and thus non-negative. `len` value must be <= size(). |
395 | // |
396 | // Examples: |
397 | // |
398 | // std::vector<int> vec = {10, 11, 12, 13}; |
399 | // absl::MakeSpan(vec).first(1); // {10} |
400 | // absl::MakeSpan(vec).first(3); // {10, 11, 12} |
401 | // absl::MakeSpan(vec).first(5); // throws std::out_of_range |
402 | constexpr Span first(size_type len) const { |
403 | return (len <= size()) |
404 | ? Span(data(), len) |
405 | : (base_internal::ThrowStdOutOfRange("len > size()" ), Span()); |
406 | } |
407 | |
408 | // Span::last() |
409 | // |
410 | // Returns a `Span` containing last `len` elements. Parameter `len` is of |
411 | // type `size_type` and thus non-negative. `len` value must be <= size(). |
412 | // |
413 | // Examples: |
414 | // |
415 | // std::vector<int> vec = {10, 11, 12, 13}; |
416 | // absl::MakeSpan(vec).last(1); // {13} |
417 | // absl::MakeSpan(vec).last(3); // {11, 12, 13} |
418 | // absl::MakeSpan(vec).last(5); // throws std::out_of_range |
419 | constexpr Span last(size_type len) const { |
420 | return (len <= size()) |
421 | ? Span(size() - len + data(), len) |
422 | : (base_internal::ThrowStdOutOfRange("len > size()" ), Span()); |
423 | } |
424 | |
425 | // Support for absl::Hash. |
426 | template <typename H> |
427 | friend H AbslHashValue(H h, Span v) { |
428 | return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()), |
429 | v.size()); |
430 | } |
431 | |
432 | private: |
433 | pointer ptr_; |
434 | size_type len_; |
435 | }; |
436 | |
437 | template <typename T> |
438 | const typename Span<T>::size_type Span<T>::npos; |
439 | |
440 | // Span relationals |
441 | |
442 | // Equality is compared element-by-element, while ordering is lexicographical. |
443 | // We provide three overloads for each operator to cover any combination on the |
444 | // left or right hand side of mutable Span<T>, read-only Span<const T>, and |
445 | // convertible-to-read-only Span<T>. |
446 | // TODO(zhangxy): Due to MSVC overload resolution bug with partial ordering |
447 | // template functions, 5 overloads per operator is needed as a workaround. We |
448 | // should update them to 3 overloads per operator using non-deduced context like |
449 | // string_view, i.e. |
450 | // - (Span<T>, Span<T>) |
451 | // - (Span<T>, non_deduced<Span<const T>>) |
452 | // - (non_deduced<Span<const T>>, Span<T>) |
453 | |
454 | // operator== |
455 | template <typename T> |
456 | bool operator==(Span<T> a, Span<T> b) { |
457 | return span_internal::EqualImpl<Span, const T>(a, b); |
458 | } |
459 | template <typename T> |
460 | bool operator==(Span<const T> a, Span<T> b) { |
461 | return span_internal::EqualImpl<Span, const T>(a, b); |
462 | } |
463 | template <typename T> |
464 | bool operator==(Span<T> a, Span<const T> b) { |
465 | return span_internal::EqualImpl<Span, const T>(a, b); |
466 | } |
467 | template < |
468 | typename T, typename U, |
469 | typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>> |
470 | bool operator==(const U& a, Span<T> b) { |
471 | return span_internal::EqualImpl<Span, const T>(a, b); |
472 | } |
473 | template < |
474 | typename T, typename U, |
475 | typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>> |
476 | bool operator==(Span<T> a, const U& b) { |
477 | return span_internal::EqualImpl<Span, const T>(a, b); |
478 | } |
479 | |
480 | // operator!= |
481 | template <typename T> |
482 | bool operator!=(Span<T> a, Span<T> b) { |
483 | return !(a == b); |
484 | } |
485 | template <typename T> |
486 | bool operator!=(Span<const T> a, Span<T> b) { |
487 | return !(a == b); |
488 | } |
489 | template <typename T> |
490 | bool operator!=(Span<T> a, Span<const T> b) { |
491 | return !(a == b); |
492 | } |
493 | template < |
494 | typename T, typename U, |
495 | typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>> |
496 | bool operator!=(const U& a, Span<T> b) { |
497 | return !(a == b); |
498 | } |
499 | template < |
500 | typename T, typename U, |
501 | typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>> |
502 | bool operator!=(Span<T> a, const U& b) { |
503 | return !(a == b); |
504 | } |
505 | |
506 | // operator< |
507 | template <typename T> |
508 | bool operator<(Span<T> a, Span<T> b) { |
509 | return span_internal::LessThanImpl<Span, const T>(a, b); |
510 | } |
511 | template <typename T> |
512 | bool operator<(Span<const T> a, Span<T> b) { |
513 | return span_internal::LessThanImpl<Span, const T>(a, b); |
514 | } |
515 | template <typename T> |
516 | bool operator<(Span<T> a, Span<const T> b) { |
517 | return span_internal::LessThanImpl<Span, const T>(a, b); |
518 | } |
519 | template < |
520 | typename T, typename U, |
521 | typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>> |
522 | bool operator<(const U& a, Span<T> b) { |
523 | return span_internal::LessThanImpl<Span, const T>(a, b); |
524 | } |
525 | template < |
526 | typename T, typename U, |
527 | typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>> |
528 | bool operator<(Span<T> a, const U& b) { |
529 | return span_internal::LessThanImpl<Span, const T>(a, b); |
530 | } |
531 | |
532 | // operator> |
533 | template <typename T> |
534 | bool operator>(Span<T> a, Span<T> b) { |
535 | return b < a; |
536 | } |
537 | template <typename T> |
538 | bool operator>(Span<const T> a, Span<T> b) { |
539 | return b < a; |
540 | } |
541 | template <typename T> |
542 | bool operator>(Span<T> a, Span<const T> b) { |
543 | return b < a; |
544 | } |
545 | template < |
546 | typename T, typename U, |
547 | typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>> |
548 | bool operator>(const U& a, Span<T> b) { |
549 | return b < a; |
550 | } |
551 | template < |
552 | typename T, typename U, |
553 | typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>> |
554 | bool operator>(Span<T> a, const U& b) { |
555 | return b < a; |
556 | } |
557 | |
558 | // operator<= |
559 | template <typename T> |
560 | bool operator<=(Span<T> a, Span<T> b) { |
561 | return !(b < a); |
562 | } |
563 | template <typename T> |
564 | bool operator<=(Span<const T> a, Span<T> b) { |
565 | return !(b < a); |
566 | } |
567 | template <typename T> |
568 | bool operator<=(Span<T> a, Span<const T> b) { |
569 | return !(b < a); |
570 | } |
571 | template < |
572 | typename T, typename U, |
573 | typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>> |
574 | bool operator<=(const U& a, Span<T> b) { |
575 | return !(b < a); |
576 | } |
577 | template < |
578 | typename T, typename U, |
579 | typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>> |
580 | bool operator<=(Span<T> a, const U& b) { |
581 | return !(b < a); |
582 | } |
583 | |
584 | // operator>= |
585 | template <typename T> |
586 | bool operator>=(Span<T> a, Span<T> b) { |
587 | return !(a < b); |
588 | } |
589 | template <typename T> |
590 | bool operator>=(Span<const T> a, Span<T> b) { |
591 | return !(a < b); |
592 | } |
593 | template <typename T> |
594 | bool operator>=(Span<T> a, Span<const T> b) { |
595 | return !(a < b); |
596 | } |
597 | template < |
598 | typename T, typename U, |
599 | typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>> |
600 | bool operator>=(const U& a, Span<T> b) { |
601 | return !(a < b); |
602 | } |
603 | template < |
604 | typename T, typename U, |
605 | typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>> |
606 | bool operator>=(Span<T> a, const U& b) { |
607 | return !(a < b); |
608 | } |
609 | |
610 | // MakeSpan() |
611 | // |
612 | // Constructs a mutable `Span<T>`, deducing `T` automatically from either a |
613 | // container or pointer+size. |
614 | // |
615 | // Because a read-only `Span<const T>` is implicitly constructed from container |
616 | // types regardless of whether the container itself is a const container, |
617 | // constructing mutable spans of type `Span<T>` from containers requires |
618 | // explicit constructors. The container-accepting version of `MakeSpan()` |
619 | // deduces the type of `T` by the constness of the pointer received from the |
620 | // container's `data()` member. Similarly, the pointer-accepting version returns |
621 | // a `Span<const T>` if `T` is `const`, and a `Span<T>` otherwise. |
622 | // |
623 | // Examples: |
624 | // |
625 | // void MyRoutine(absl::Span<MyComplicatedType> a) { |
626 | // ... |
627 | // }; |
628 | // // my_vector is a container of non-const types |
629 | // std::vector<MyComplicatedType> my_vector; |
630 | // |
631 | // // Constructing a Span implicitly attempts to create a Span of type |
632 | // // `Span<const T>` |
633 | // MyRoutine(my_vector); // error, type mismatch |
634 | // |
635 | // // Explicitly constructing the Span is verbose |
636 | // MyRoutine(absl::Span<MyComplicatedType>(my_vector)); |
637 | // |
638 | // // Use MakeSpan() to make an absl::Span<T> |
639 | // MyRoutine(absl::MakeSpan(my_vector)); |
640 | // |
641 | // // Construct a span from an array ptr+size |
642 | // absl::Span<T> my_span() { |
643 | // return absl::MakeSpan(&array[0], num_elements_); |
644 | // } |
645 | // |
646 | template <int&... ExplicitArgumentBarrier, typename T> |
647 | constexpr Span<T> MakeSpan(T* ptr, size_t size) noexcept { |
648 | return Span<T>(ptr, size); |
649 | } |
650 | |
651 | template <int&... ExplicitArgumentBarrier, typename T> |
652 | Span<T> MakeSpan(T* begin, T* end) noexcept { |
653 | return ABSL_ASSERT(begin <= end), Span<T>(begin, end - begin); |
654 | } |
655 | |
656 | template <int&... ExplicitArgumentBarrier, typename C> |
657 | constexpr auto MakeSpan(C& c) noexcept // NOLINT(runtime/references) |
658 | -> decltype(absl::MakeSpan(span_internal::GetData(c), c.size())) { |
659 | return MakeSpan(span_internal::GetData(c), c.size()); |
660 | } |
661 | |
662 | template <int&... ExplicitArgumentBarrier, typename T, size_t N> |
663 | constexpr Span<T> MakeSpan(T (&array)[N]) noexcept { |
664 | return Span<T>(array, N); |
665 | } |
666 | |
667 | // MakeConstSpan() |
668 | // |
669 | // Constructs a `Span<const T>` as with `MakeSpan`, deducing `T` automatically, |
670 | // but always returning a `Span<const T>`. |
671 | // |
672 | // Examples: |
673 | // |
674 | // void ProcessInts(absl::Span<const int> some_ints); |
675 | // |
676 | // // Call with a pointer and size. |
677 | // int array[3] = { 0, 0, 0 }; |
678 | // ProcessInts(absl::MakeConstSpan(&array[0], 3)); |
679 | // |
680 | // // Call with a [begin, end) pair. |
681 | // ProcessInts(absl::MakeConstSpan(&array[0], &array[3])); |
682 | // |
683 | // // Call directly with an array. |
684 | // ProcessInts(absl::MakeConstSpan(array)); |
685 | // |
686 | // // Call with a contiguous container. |
687 | // std::vector<int> some_ints = ...; |
688 | // ProcessInts(absl::MakeConstSpan(some_ints)); |
689 | // ProcessInts(absl::MakeConstSpan(std::vector<int>{ 0, 0, 0 })); |
690 | // |
691 | template <int&... ExplicitArgumentBarrier, typename T> |
692 | constexpr Span<const T> MakeConstSpan(T* ptr, size_t size) noexcept { |
693 | return Span<const T>(ptr, size); |
694 | } |
695 | |
696 | template <int&... ExplicitArgumentBarrier, typename T> |
697 | Span<const T> MakeConstSpan(T* begin, T* end) noexcept { |
698 | return ABSL_ASSERT(begin <= end), Span<const T>(begin, end - begin); |
699 | } |
700 | |
701 | template <int&... ExplicitArgumentBarrier, typename C> |
702 | constexpr auto MakeConstSpan(const C& c) noexcept -> decltype(MakeSpan(c)) { |
703 | return MakeSpan(c); |
704 | } |
705 | |
706 | template <int&... ExplicitArgumentBarrier, typename T, size_t N> |
707 | constexpr Span<const T> MakeConstSpan(const T (&array)[N]) noexcept { |
708 | return Span<const T>(array, N); |
709 | } |
710 | } // namespace absl |
711 | #endif // ABSL_TYPES_SPAN_H_ |
712 | |