| 1 | // Copyright 2007, Google Inc. |
| 2 | // All rights reserved. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are |
| 6 | // met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright |
| 9 | // notice, this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above |
| 11 | // copyright notice, this list of conditions and the following disclaimer |
| 12 | // in the documentation and/or other materials provided with the |
| 13 | // distribution. |
| 14 | // * Neither the name of Google Inc. nor the names of its |
| 15 | // contributors may be used to endorse or promote products derived from |
| 16 | // this software without specific prior written permission. |
| 17 | // |
| 18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | |
| 30 | |
| 31 | // Google Mock - a framework for writing C++ mock classes. |
| 32 | // |
| 33 | // This file implements some commonly used argument matchers. More |
| 34 | // matchers can be defined by the user implementing the |
| 35 | // MatcherInterface<T> interface if necessary. |
| 36 | // |
| 37 | // See googletest/include/gtest/gtest-matchers.h for the definition of class |
| 38 | // Matcher, class MatcherInterface, and others. |
| 39 | |
| 40 | // GOOGLETEST_CM0002 DO NOT DELETE |
| 41 | |
| 42 | #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| 43 | #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| 44 | |
| 45 | #include <math.h> |
| 46 | #include <algorithm> |
| 47 | #include <initializer_list> |
| 48 | #include <iterator> |
| 49 | #include <limits> |
| 50 | #include <memory> |
| 51 | #include <ostream> // NOLINT |
| 52 | #include <sstream> |
| 53 | #include <string> |
| 54 | #include <type_traits> |
| 55 | #include <utility> |
| 56 | #include <vector> |
| 57 | #include "gmock/internal/gmock-internal-utils.h" |
| 58 | #include "gmock/internal/gmock-port.h" |
| 59 | #include "gtest/gtest.h" |
| 60 | |
| 61 | // MSVC warning C5046 is new as of VS2017 version 15.8. |
| 62 | #if defined(_MSC_VER) && _MSC_VER >= 1915 |
| 63 | #define GMOCK_MAYBE_5046_ 5046 |
| 64 | #else |
| 65 | #define GMOCK_MAYBE_5046_ |
| 66 | #endif |
| 67 | |
| 68 | GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
| 69 | 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by |
| 70 | clients of class B */ |
| 71 | /* Symbol involving type with internal linkage not defined */) |
| 72 | |
| 73 | namespace testing { |
| 74 | |
| 75 | // To implement a matcher Foo for type T, define: |
| 76 | // 1. a class FooMatcherImpl that implements the |
| 77 | // MatcherInterface<T> interface, and |
| 78 | // 2. a factory function that creates a Matcher<T> object from a |
| 79 | // FooMatcherImpl*. |
| 80 | // |
| 81 | // The two-level delegation design makes it possible to allow a user |
| 82 | // to write "v" instead of "Eq(v)" where a Matcher is expected, which |
| 83 | // is impossible if we pass matchers by pointers. It also eases |
| 84 | // ownership management as Matcher objects can now be copied like |
| 85 | // plain values. |
| 86 | |
| 87 | // A match result listener that stores the explanation in a string. |
| 88 | class StringMatchResultListener : public MatchResultListener { |
| 89 | public: |
| 90 | StringMatchResultListener() : MatchResultListener(&ss_) {} |
| 91 | |
| 92 | // Returns the explanation accumulated so far. |
| 93 | std::string str() const { return ss_.str(); } |
| 94 | |
| 95 | // Clears the explanation accumulated so far. |
| 96 | void Clear() { ss_.str("" ); } |
| 97 | |
| 98 | private: |
| 99 | ::std::stringstream ss_; |
| 100 | |
| 101 | GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); |
| 102 | }; |
| 103 | |
| 104 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
| 105 | // and MUST NOT BE USED IN USER CODE!!! |
| 106 | namespace internal { |
| 107 | |
| 108 | // The MatcherCastImpl class template is a helper for implementing |
| 109 | // MatcherCast(). We need this helper in order to partially |
| 110 | // specialize the implementation of MatcherCast() (C++ allows |
| 111 | // class/struct templates to be partially specialized, but not |
| 112 | // function templates.). |
| 113 | |
| 114 | // This general version is used when MatcherCast()'s argument is a |
| 115 | // polymorphic matcher (i.e. something that can be converted to a |
| 116 | // Matcher but is not one yet; for example, Eq(value)) or a value (for |
| 117 | // example, "hello"). |
| 118 | template <typename T, typename M> |
| 119 | class MatcherCastImpl { |
| 120 | public: |
| 121 | static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
| 122 | // M can be a polymorphic matcher, in which case we want to use |
| 123 | // its conversion operator to create Matcher<T>. Or it can be a value |
| 124 | // that should be passed to the Matcher<T>'s constructor. |
| 125 | // |
| 126 | // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a |
| 127 | // polymorphic matcher because it'll be ambiguous if T has an implicit |
| 128 | // constructor from M (this usually happens when T has an implicit |
| 129 | // constructor from any type). |
| 130 | // |
| 131 | // It won't work to unconditionally implict_cast |
| 132 | // polymorphic_matcher_or_value to Matcher<T> because it won't trigger |
| 133 | // a user-defined conversion from M to T if one exists (assuming M is |
| 134 | // a value). |
| 135 | return CastImpl( |
| 136 | polymorphic_matcher_or_value, |
| 137 | BooleanConstant< |
| 138 | std::is_convertible<M, Matcher<T> >::value>(), |
| 139 | BooleanConstant< |
| 140 | std::is_convertible<M, T>::value>()); |
| 141 | } |
| 142 | |
| 143 | private: |
| 144 | template <bool Ignore> |
| 145 | static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, |
| 146 | BooleanConstant<true> /* convertible_to_matcher */, |
| 147 | BooleanConstant<Ignore>) { |
| 148 | // M is implicitly convertible to Matcher<T>, which means that either |
| 149 | // M is a polymorphic matcher or Matcher<T> has an implicit constructor |
| 150 | // from M. In both cases using the implicit conversion will produce a |
| 151 | // matcher. |
| 152 | // |
| 153 | // Even if T has an implicit constructor from M, it won't be called because |
| 154 | // creating Matcher<T> would require a chain of two user-defined conversions |
| 155 | // (first to create T from M and then to create Matcher<T> from T). |
| 156 | return polymorphic_matcher_or_value; |
| 157 | } |
| 158 | |
| 159 | // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic |
| 160 | // matcher. It's a value of a type implicitly convertible to T. Use direct |
| 161 | // initialization to create a matcher. |
| 162 | static Matcher<T> CastImpl( |
| 163 | const M& value, BooleanConstant<false> /* convertible_to_matcher */, |
| 164 | BooleanConstant<true> /* convertible_to_T */) { |
| 165 | return Matcher<T>(ImplicitCast_<T>(value)); |
| 166 | } |
| 167 | |
| 168 | // M can't be implicitly converted to either Matcher<T> or T. Attempt to use |
| 169 | // polymorphic matcher Eq(value) in this case. |
| 170 | // |
| 171 | // Note that we first attempt to perform an implicit cast on the value and |
| 172 | // only fall back to the polymorphic Eq() matcher afterwards because the |
| 173 | // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end |
| 174 | // which might be undefined even when Rhs is implicitly convertible to Lhs |
| 175 | // (e.g. std::pair<const int, int> vs. std::pair<int, int>). |
| 176 | // |
| 177 | // We don't define this method inline as we need the declaration of Eq(). |
| 178 | static Matcher<T> CastImpl( |
| 179 | const M& value, BooleanConstant<false> /* convertible_to_matcher */, |
| 180 | BooleanConstant<false> /* convertible_to_T */); |
| 181 | }; |
| 182 | |
| 183 | // This more specialized version is used when MatcherCast()'s argument |
| 184 | // is already a Matcher. This only compiles when type T can be |
| 185 | // statically converted to type U. |
| 186 | template <typename T, typename U> |
| 187 | class MatcherCastImpl<T, Matcher<U> > { |
| 188 | public: |
| 189 | static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
| 190 | return Matcher<T>(new Impl(source_matcher)); |
| 191 | } |
| 192 | |
| 193 | private: |
| 194 | class Impl : public MatcherInterface<T> { |
| 195 | public: |
| 196 | explicit Impl(const Matcher<U>& source_matcher) |
| 197 | : source_matcher_(source_matcher) {} |
| 198 | |
| 199 | // We delegate the matching logic to the source matcher. |
| 200 | bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
| 201 | using FromType = typename std::remove_cv<typename std::remove_pointer< |
| 202 | typename std::remove_reference<T>::type>::type>::type; |
| 203 | using ToType = typename std::remove_cv<typename std::remove_pointer< |
| 204 | typename std::remove_reference<U>::type>::type>::type; |
| 205 | // Do not allow implicitly converting base*/& to derived*/&. |
| 206 | static_assert( |
| 207 | // Do not trigger if only one of them is a pointer. That implies a |
| 208 | // regular conversion and not a down_cast. |
| 209 | (std::is_pointer<typename std::remove_reference<T>::type>::value != |
| 210 | std::is_pointer<typename std::remove_reference<U>::type>::value) || |
| 211 | std::is_same<FromType, ToType>::value || |
| 212 | !std::is_base_of<FromType, ToType>::value, |
| 213 | "Can't implicitly convert from <base> to <derived>" ); |
| 214 | |
| 215 | return source_matcher_.MatchAndExplain(static_cast<U>(x), listener); |
| 216 | } |
| 217 | |
| 218 | void DescribeTo(::std::ostream* os) const override { |
| 219 | source_matcher_.DescribeTo(os); |
| 220 | } |
| 221 | |
| 222 | void DescribeNegationTo(::std::ostream* os) const override { |
| 223 | source_matcher_.DescribeNegationTo(os); |
| 224 | } |
| 225 | |
| 226 | private: |
| 227 | const Matcher<U> source_matcher_; |
| 228 | |
| 229 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 230 | }; |
| 231 | }; |
| 232 | |
| 233 | // This even more specialized version is used for efficiently casting |
| 234 | // a matcher to its own type. |
| 235 | template <typename T> |
| 236 | class MatcherCastImpl<T, Matcher<T> > { |
| 237 | public: |
| 238 | static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
| 239 | }; |
| 240 | |
| 241 | } // namespace internal |
| 242 | |
| 243 | // In order to be safe and clear, casting between different matcher |
| 244 | // types is done explicitly via MatcherCast<T>(m), which takes a |
| 245 | // matcher m and returns a Matcher<T>. It compiles only when T can be |
| 246 | // statically converted to the argument type of m. |
| 247 | template <typename T, typename M> |
| 248 | inline Matcher<T> MatcherCast(const M& matcher) { |
| 249 | return internal::MatcherCastImpl<T, M>::Cast(matcher); |
| 250 | } |
| 251 | |
| 252 | // Implements SafeMatcherCast(). |
| 253 | // |
| 254 | // FIXME: The intermediate SafeMatcherCastImpl class was introduced as a |
| 255 | // workaround for a compiler bug, and can now be removed. |
| 256 | template <typename T> |
| 257 | class SafeMatcherCastImpl { |
| 258 | public: |
| 259 | // This overload handles polymorphic matchers and values only since |
| 260 | // monomorphic matchers are handled by the next one. |
| 261 | template <typename M> |
| 262 | static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
| 263 | return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value); |
| 264 | } |
| 265 | |
| 266 | // This overload handles monomorphic matchers. |
| 267 | // |
| 268 | // In general, if type T can be implicitly converted to type U, we can |
| 269 | // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
| 270 | // contravariant): just keep a copy of the original Matcher<U>, convert the |
| 271 | // argument from type T to U, and then pass it to the underlying Matcher<U>. |
| 272 | // The only exception is when U is a reference and T is not, as the |
| 273 | // underlying Matcher<U> may be interested in the argument's address, which |
| 274 | // is not preserved in the conversion from T to U. |
| 275 | template <typename U> |
| 276 | static inline Matcher<T> Cast(const Matcher<U>& matcher) { |
| 277 | // Enforce that T can be implicitly converted to U. |
| 278 | GTEST_COMPILE_ASSERT_((std::is_convertible<T, U>::value), |
| 279 | "T must be implicitly convertible to U" ); |
| 280 | // Enforce that we are not converting a non-reference type T to a reference |
| 281 | // type U. |
| 282 | GTEST_COMPILE_ASSERT_( |
| 283 | internal::is_reference<T>::value || !internal::is_reference<U>::value, |
| 284 | cannot_convert_non_reference_arg_to_reference); |
| 285 | // In case both T and U are arithmetic types, enforce that the |
| 286 | // conversion is not lossy. |
| 287 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; |
| 288 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; |
| 289 | const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
| 290 | const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
| 291 | GTEST_COMPILE_ASSERT_( |
| 292 | kTIsOther || kUIsOther || |
| 293 | (internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
| 294 | conversion_of_arithmetic_types_must_be_lossless); |
| 295 | return MatcherCast<T>(matcher); |
| 296 | } |
| 297 | }; |
| 298 | |
| 299 | template <typename T, typename M> |
| 300 | inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) { |
| 301 | return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher); |
| 302 | } |
| 303 | |
| 304 | // A<T>() returns a matcher that matches any value of type T. |
| 305 | template <typename T> |
| 306 | Matcher<T> A(); |
| 307 | |
| 308 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
| 309 | // and MUST NOT BE USED IN USER CODE!!! |
| 310 | namespace internal { |
| 311 | |
| 312 | // If the explanation is not empty, prints it to the ostream. |
| 313 | inline void PrintIfNotEmpty(const std::string& explanation, |
| 314 | ::std::ostream* os) { |
| 315 | if (explanation != "" && os != nullptr) { |
| 316 | *os << ", " << explanation; |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | // Returns true if the given type name is easy to read by a human. |
| 321 | // This is used to decide whether printing the type of a value might |
| 322 | // be helpful. |
| 323 | inline bool IsReadableTypeName(const std::string& type_name) { |
| 324 | // We consider a type name readable if it's short or doesn't contain |
| 325 | // a template or function type. |
| 326 | return (type_name.length() <= 20 || |
| 327 | type_name.find_first_of("<(" ) == std::string::npos); |
| 328 | } |
| 329 | |
| 330 | // Matches the value against the given matcher, prints the value and explains |
| 331 | // the match result to the listener. Returns the match result. |
| 332 | // 'listener' must not be NULL. |
| 333 | // Value cannot be passed by const reference, because some matchers take a |
| 334 | // non-const argument. |
| 335 | template <typename Value, typename T> |
| 336 | bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, |
| 337 | MatchResultListener* listener) { |
| 338 | if (!listener->IsInterested()) { |
| 339 | // If the listener is not interested, we do not need to construct the |
| 340 | // inner explanation. |
| 341 | return matcher.Matches(value); |
| 342 | } |
| 343 | |
| 344 | StringMatchResultListener inner_listener; |
| 345 | const bool match = matcher.MatchAndExplain(value, &inner_listener); |
| 346 | |
| 347 | UniversalPrint(value, listener->stream()); |
| 348 | #if GTEST_HAS_RTTI |
| 349 | const std::string& type_name = GetTypeName<Value>(); |
| 350 | if (IsReadableTypeName(type_name)) |
| 351 | *listener->stream() << " (of type " << type_name << ")" ; |
| 352 | #endif |
| 353 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| 354 | |
| 355 | return match; |
| 356 | } |
| 357 | |
| 358 | // An internal helper class for doing compile-time loop on a tuple's |
| 359 | // fields. |
| 360 | template <size_t N> |
| 361 | class TuplePrefix { |
| 362 | public: |
| 363 | // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
| 364 | // iff the first N fields of matcher_tuple matches the first N |
| 365 | // fields of value_tuple, respectively. |
| 366 | template <typename MatcherTuple, typename ValueTuple> |
| 367 | static bool Matches(const MatcherTuple& matcher_tuple, |
| 368 | const ValueTuple& value_tuple) { |
| 369 | return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && |
| 370 | std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); |
| 371 | } |
| 372 | |
| 373 | // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) |
| 374 | // describes failures in matching the first N fields of matchers |
| 375 | // against the first N fields of values. If there is no failure, |
| 376 | // nothing will be streamed to os. |
| 377 | template <typename MatcherTuple, typename ValueTuple> |
| 378 | static void ExplainMatchFailuresTo(const MatcherTuple& matchers, |
| 379 | const ValueTuple& values, |
| 380 | ::std::ostream* os) { |
| 381 | // First, describes failures in the first N - 1 fields. |
| 382 | TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); |
| 383 | |
| 384 | // Then describes the failure (if any) in the (N - 1)-th (0-based) |
| 385 | // field. |
| 386 | typename std::tuple_element<N - 1, MatcherTuple>::type matcher = |
| 387 | std::get<N - 1>(matchers); |
| 388 | typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; |
| 389 | const Value& value = std::get<N - 1>(values); |
| 390 | StringMatchResultListener listener; |
| 391 | if (!matcher.MatchAndExplain(value, &listener)) { |
| 392 | *os << " Expected arg #" << N - 1 << ": " ; |
| 393 | std::get<N - 1>(matchers).DescribeTo(os); |
| 394 | *os << "\n Actual: " ; |
| 395 | // We remove the reference in type Value to prevent the |
| 396 | // universal printer from printing the address of value, which |
| 397 | // isn't interesting to the user most of the time. The |
| 398 | // matcher's MatchAndExplain() method handles the case when |
| 399 | // the address is interesting. |
| 400 | internal::UniversalPrint(value, os); |
| 401 | PrintIfNotEmpty(listener.str(), os); |
| 402 | *os << "\n" ; |
| 403 | } |
| 404 | } |
| 405 | }; |
| 406 | |
| 407 | // The base case. |
| 408 | template <> |
| 409 | class TuplePrefix<0> { |
| 410 | public: |
| 411 | template <typename MatcherTuple, typename ValueTuple> |
| 412 | static bool Matches(const MatcherTuple& /* matcher_tuple */, |
| 413 | const ValueTuple& /* value_tuple */) { |
| 414 | return true; |
| 415 | } |
| 416 | |
| 417 | template <typename MatcherTuple, typename ValueTuple> |
| 418 | static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, |
| 419 | const ValueTuple& /* values */, |
| 420 | ::std::ostream* /* os */) {} |
| 421 | }; |
| 422 | |
| 423 | // TupleMatches(matcher_tuple, value_tuple) returns true iff all |
| 424 | // matchers in matcher_tuple match the corresponding fields in |
| 425 | // value_tuple. It is a compiler error if matcher_tuple and |
| 426 | // value_tuple have different number of fields or incompatible field |
| 427 | // types. |
| 428 | template <typename MatcherTuple, typename ValueTuple> |
| 429 | bool TupleMatches(const MatcherTuple& matcher_tuple, |
| 430 | const ValueTuple& value_tuple) { |
| 431 | // Makes sure that matcher_tuple and value_tuple have the same |
| 432 | // number of fields. |
| 433 | GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value == |
| 434 | std::tuple_size<ValueTuple>::value, |
| 435 | matcher_and_value_have_different_numbers_of_fields); |
| 436 | return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, |
| 437 | value_tuple); |
| 438 | } |
| 439 | |
| 440 | // Describes failures in matching matchers against values. If there |
| 441 | // is no failure, nothing will be streamed to os. |
| 442 | template <typename MatcherTuple, typename ValueTuple> |
| 443 | void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, |
| 444 | const ValueTuple& values, |
| 445 | ::std::ostream* os) { |
| 446 | TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( |
| 447 | matchers, values, os); |
| 448 | } |
| 449 | |
| 450 | // TransformTupleValues and its helper. |
| 451 | // |
| 452 | // TransformTupleValuesHelper hides the internal machinery that |
| 453 | // TransformTupleValues uses to implement a tuple traversal. |
| 454 | template <typename Tuple, typename Func, typename OutIter> |
| 455 | class TransformTupleValuesHelper { |
| 456 | private: |
| 457 | typedef ::std::tuple_size<Tuple> TupleSize; |
| 458 | |
| 459 | public: |
| 460 | // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. |
| 461 | // Returns the final value of 'out' in case the caller needs it. |
| 462 | static OutIter Run(Func f, const Tuple& t, OutIter out) { |
| 463 | return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); |
| 464 | } |
| 465 | |
| 466 | private: |
| 467 | template <typename Tup, size_t kRemainingSize> |
| 468 | struct IterateOverTuple { |
| 469 | OutIter operator() (Func f, const Tup& t, OutIter out) const { |
| 470 | *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); |
| 471 | return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); |
| 472 | } |
| 473 | }; |
| 474 | template <typename Tup> |
| 475 | struct IterateOverTuple<Tup, 0> { |
| 476 | OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { |
| 477 | return out; |
| 478 | } |
| 479 | }; |
| 480 | }; |
| 481 | |
| 482 | // Successively invokes 'f(element)' on each element of the tuple 't', |
| 483 | // appending each result to the 'out' iterator. Returns the final value |
| 484 | // of 'out'. |
| 485 | template <typename Tuple, typename Func, typename OutIter> |
| 486 | OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { |
| 487 | return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); |
| 488 | } |
| 489 | |
| 490 | // Implements A<T>(). |
| 491 | template <typename T> |
| 492 | class AnyMatcherImpl : public MatcherInterface<const T&> { |
| 493 | public: |
| 494 | bool MatchAndExplain(const T& /* x */, |
| 495 | MatchResultListener* /* listener */) const override { |
| 496 | return true; |
| 497 | } |
| 498 | void DescribeTo(::std::ostream* os) const override { *os << "is anything" ; } |
| 499 | void DescribeNegationTo(::std::ostream* os) const override { |
| 500 | // This is mostly for completeness' safe, as it's not very useful |
| 501 | // to write Not(A<bool>()). However we cannot completely rule out |
| 502 | // such a possibility, and it doesn't hurt to be prepared. |
| 503 | *os << "never matches" ; |
| 504 | } |
| 505 | }; |
| 506 | |
| 507 | // Implements _, a matcher that matches any value of any |
| 508 | // type. This is a polymorphic matcher, so we need a template type |
| 509 | // conversion operator to make it appearing as a Matcher<T> for any |
| 510 | // type T. |
| 511 | class AnythingMatcher { |
| 512 | public: |
| 513 | template <typename T> |
| 514 | operator Matcher<T>() const { return A<T>(); } |
| 515 | }; |
| 516 | |
| 517 | // Implements the polymorphic IsNull() matcher, which matches any raw or smart |
| 518 | // pointer that is NULL. |
| 519 | class IsNullMatcher { |
| 520 | public: |
| 521 | template <typename Pointer> |
| 522 | bool MatchAndExplain(const Pointer& p, |
| 523 | MatchResultListener* /* listener */) const { |
| 524 | return p == nullptr; |
| 525 | } |
| 526 | |
| 527 | void DescribeTo(::std::ostream* os) const { *os << "is NULL" ; } |
| 528 | void DescribeNegationTo(::std::ostream* os) const { |
| 529 | *os << "isn't NULL" ; |
| 530 | } |
| 531 | }; |
| 532 | |
| 533 | // Implements the polymorphic NotNull() matcher, which matches any raw or smart |
| 534 | // pointer that is not NULL. |
| 535 | class NotNullMatcher { |
| 536 | public: |
| 537 | template <typename Pointer> |
| 538 | bool MatchAndExplain(const Pointer& p, |
| 539 | MatchResultListener* /* listener */) const { |
| 540 | return p != nullptr; |
| 541 | } |
| 542 | |
| 543 | void DescribeTo(::std::ostream* os) const { *os << "isn't NULL" ; } |
| 544 | void DescribeNegationTo(::std::ostream* os) const { |
| 545 | *os << "is NULL" ; |
| 546 | } |
| 547 | }; |
| 548 | |
| 549 | // Ref(variable) matches any argument that is a reference to |
| 550 | // 'variable'. This matcher is polymorphic as it can match any |
| 551 | // super type of the type of 'variable'. |
| 552 | // |
| 553 | // The RefMatcher template class implements Ref(variable). It can |
| 554 | // only be instantiated with a reference type. This prevents a user |
| 555 | // from mistakenly using Ref(x) to match a non-reference function |
| 556 | // argument. For example, the following will righteously cause a |
| 557 | // compiler error: |
| 558 | // |
| 559 | // int n; |
| 560 | // Matcher<int> m1 = Ref(n); // This won't compile. |
| 561 | // Matcher<int&> m2 = Ref(n); // This will compile. |
| 562 | template <typename T> |
| 563 | class RefMatcher; |
| 564 | |
| 565 | template <typename T> |
| 566 | class RefMatcher<T&> { |
| 567 | // Google Mock is a generic framework and thus needs to support |
| 568 | // mocking any function types, including those that take non-const |
| 569 | // reference arguments. Therefore the template parameter T (and |
| 570 | // Super below) can be instantiated to either a const type or a |
| 571 | // non-const type. |
| 572 | public: |
| 573 | // RefMatcher() takes a T& instead of const T&, as we want the |
| 574 | // compiler to catch using Ref(const_value) as a matcher for a |
| 575 | // non-const reference. |
| 576 | explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
| 577 | |
| 578 | template <typename Super> |
| 579 | operator Matcher<Super&>() const { |
| 580 | // By passing object_ (type T&) to Impl(), which expects a Super&, |
| 581 | // we make sure that Super is a super type of T. In particular, |
| 582 | // this catches using Ref(const_value) as a matcher for a |
| 583 | // non-const reference, as you cannot implicitly convert a const |
| 584 | // reference to a non-const reference. |
| 585 | return MakeMatcher(new Impl<Super>(object_)); |
| 586 | } |
| 587 | |
| 588 | private: |
| 589 | template <typename Super> |
| 590 | class Impl : public MatcherInterface<Super&> { |
| 591 | public: |
| 592 | explicit Impl(Super& x) : object_(x) {} // NOLINT |
| 593 | |
| 594 | // MatchAndExplain() takes a Super& (as opposed to const Super&) |
| 595 | // in order to match the interface MatcherInterface<Super&>. |
| 596 | bool MatchAndExplain(Super& x, |
| 597 | MatchResultListener* listener) const override { |
| 598 | *listener << "which is located @" << static_cast<const void*>(&x); |
| 599 | return &x == &object_; |
| 600 | } |
| 601 | |
| 602 | void DescribeTo(::std::ostream* os) const override { |
| 603 | *os << "references the variable " ; |
| 604 | UniversalPrinter<Super&>::Print(object_, os); |
| 605 | } |
| 606 | |
| 607 | void DescribeNegationTo(::std::ostream* os) const override { |
| 608 | *os << "does not reference the variable " ; |
| 609 | UniversalPrinter<Super&>::Print(object_, os); |
| 610 | } |
| 611 | |
| 612 | private: |
| 613 | const Super& object_; |
| 614 | |
| 615 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 616 | }; |
| 617 | |
| 618 | T& object_; |
| 619 | |
| 620 | GTEST_DISALLOW_ASSIGN_(RefMatcher); |
| 621 | }; |
| 622 | |
| 623 | // Polymorphic helper functions for narrow and wide string matchers. |
| 624 | inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
| 625 | return String::CaseInsensitiveCStringEquals(lhs, rhs); |
| 626 | } |
| 627 | |
| 628 | inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
| 629 | const wchar_t* rhs) { |
| 630 | return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
| 631 | } |
| 632 | |
| 633 | // String comparison for narrow or wide strings that can have embedded NUL |
| 634 | // characters. |
| 635 | template <typename StringType> |
| 636 | bool CaseInsensitiveStringEquals(const StringType& s1, |
| 637 | const StringType& s2) { |
| 638 | // Are the heads equal? |
| 639 | if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
| 640 | return false; |
| 641 | } |
| 642 | |
| 643 | // Skip the equal heads. |
| 644 | const typename StringType::value_type nul = 0; |
| 645 | const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
| 646 | |
| 647 | // Are we at the end of either s1 or s2? |
| 648 | if (i1 == StringType::npos || i2 == StringType::npos) { |
| 649 | return i1 == i2; |
| 650 | } |
| 651 | |
| 652 | // Are the tails equal? |
| 653 | return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
| 654 | } |
| 655 | |
| 656 | // String matchers. |
| 657 | |
| 658 | // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
| 659 | template <typename StringType> |
| 660 | class StrEqualityMatcher { |
| 661 | public: |
| 662 | StrEqualityMatcher(const StringType& str, bool expect_eq, |
| 663 | bool case_sensitive) |
| 664 | : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} |
| 665 | |
| 666 | #if GTEST_HAS_ABSL |
| 667 | bool MatchAndExplain(const absl::string_view& s, |
| 668 | MatchResultListener* listener) const { |
| 669 | // This should fail to compile if absl::string_view is used with wide |
| 670 | // strings. |
| 671 | const StringType& str = std::string(s); |
| 672 | return MatchAndExplain(str, listener); |
| 673 | } |
| 674 | #endif // GTEST_HAS_ABSL |
| 675 | |
| 676 | // Accepts pointer types, particularly: |
| 677 | // const char* |
| 678 | // char* |
| 679 | // const wchar_t* |
| 680 | // wchar_t* |
| 681 | template <typename CharType> |
| 682 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| 683 | if (s == nullptr) { |
| 684 | return !expect_eq_; |
| 685 | } |
| 686 | return MatchAndExplain(StringType(s), listener); |
| 687 | } |
| 688 | |
| 689 | // Matches anything that can convert to StringType. |
| 690 | // |
| 691 | // This is a template, not just a plain function with const StringType&, |
| 692 | // because absl::string_view has some interfering non-explicit constructors. |
| 693 | template <typename MatcheeStringType> |
| 694 | bool MatchAndExplain(const MatcheeStringType& s, |
| 695 | MatchResultListener* /* listener */) const { |
| 696 | const StringType& s2(s); |
| 697 | const bool eq = case_sensitive_ ? s2 == string_ : |
| 698 | CaseInsensitiveStringEquals(s2, string_); |
| 699 | return expect_eq_ == eq; |
| 700 | } |
| 701 | |
| 702 | void DescribeTo(::std::ostream* os) const { |
| 703 | DescribeToHelper(expect_eq_, os); |
| 704 | } |
| 705 | |
| 706 | void DescribeNegationTo(::std::ostream* os) const { |
| 707 | DescribeToHelper(!expect_eq_, os); |
| 708 | } |
| 709 | |
| 710 | private: |
| 711 | void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
| 712 | *os << (expect_eq ? "is " : "isn't " ); |
| 713 | *os << "equal to " ; |
| 714 | if (!case_sensitive_) { |
| 715 | *os << "(ignoring case) " ; |
| 716 | } |
| 717 | UniversalPrint(string_, os); |
| 718 | } |
| 719 | |
| 720 | const StringType string_; |
| 721 | const bool expect_eq_; |
| 722 | const bool case_sensitive_; |
| 723 | |
| 724 | GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); |
| 725 | }; |
| 726 | |
| 727 | // Implements the polymorphic HasSubstr(substring) matcher, which |
| 728 | // can be used as a Matcher<T> as long as T can be converted to a |
| 729 | // string. |
| 730 | template <typename StringType> |
| 731 | class HasSubstrMatcher { |
| 732 | public: |
| 733 | explicit HasSubstrMatcher(const StringType& substring) |
| 734 | : substring_(substring) {} |
| 735 | |
| 736 | #if GTEST_HAS_ABSL |
| 737 | bool MatchAndExplain(const absl::string_view& s, |
| 738 | MatchResultListener* listener) const { |
| 739 | // This should fail to compile if absl::string_view is used with wide |
| 740 | // strings. |
| 741 | const StringType& str = std::string(s); |
| 742 | return MatchAndExplain(str, listener); |
| 743 | } |
| 744 | #endif // GTEST_HAS_ABSL |
| 745 | |
| 746 | // Accepts pointer types, particularly: |
| 747 | // const char* |
| 748 | // char* |
| 749 | // const wchar_t* |
| 750 | // wchar_t* |
| 751 | template <typename CharType> |
| 752 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| 753 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
| 754 | } |
| 755 | |
| 756 | // Matches anything that can convert to StringType. |
| 757 | // |
| 758 | // This is a template, not just a plain function with const StringType&, |
| 759 | // because absl::string_view has some interfering non-explicit constructors. |
| 760 | template <typename MatcheeStringType> |
| 761 | bool MatchAndExplain(const MatcheeStringType& s, |
| 762 | MatchResultListener* /* listener */) const { |
| 763 | const StringType& s2(s); |
| 764 | return s2.find(substring_) != StringType::npos; |
| 765 | } |
| 766 | |
| 767 | // Describes what this matcher matches. |
| 768 | void DescribeTo(::std::ostream* os) const { |
| 769 | *os << "has substring " ; |
| 770 | UniversalPrint(substring_, os); |
| 771 | } |
| 772 | |
| 773 | void DescribeNegationTo(::std::ostream* os) const { |
| 774 | *os << "has no substring " ; |
| 775 | UniversalPrint(substring_, os); |
| 776 | } |
| 777 | |
| 778 | private: |
| 779 | const StringType substring_; |
| 780 | |
| 781 | GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); |
| 782 | }; |
| 783 | |
| 784 | // Implements the polymorphic StartsWith(substring) matcher, which |
| 785 | // can be used as a Matcher<T> as long as T can be converted to a |
| 786 | // string. |
| 787 | template <typename StringType> |
| 788 | class StartsWithMatcher { |
| 789 | public: |
| 790 | explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { |
| 791 | } |
| 792 | |
| 793 | #if GTEST_HAS_ABSL |
| 794 | bool MatchAndExplain(const absl::string_view& s, |
| 795 | MatchResultListener* listener) const { |
| 796 | // This should fail to compile if absl::string_view is used with wide |
| 797 | // strings. |
| 798 | const StringType& str = std::string(s); |
| 799 | return MatchAndExplain(str, listener); |
| 800 | } |
| 801 | #endif // GTEST_HAS_ABSL |
| 802 | |
| 803 | // Accepts pointer types, particularly: |
| 804 | // const char* |
| 805 | // char* |
| 806 | // const wchar_t* |
| 807 | // wchar_t* |
| 808 | template <typename CharType> |
| 809 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| 810 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
| 811 | } |
| 812 | |
| 813 | // Matches anything that can convert to StringType. |
| 814 | // |
| 815 | // This is a template, not just a plain function with const StringType&, |
| 816 | // because absl::string_view has some interfering non-explicit constructors. |
| 817 | template <typename MatcheeStringType> |
| 818 | bool MatchAndExplain(const MatcheeStringType& s, |
| 819 | MatchResultListener* /* listener */) const { |
| 820 | const StringType& s2(s); |
| 821 | return s2.length() >= prefix_.length() && |
| 822 | s2.substr(0, prefix_.length()) == prefix_; |
| 823 | } |
| 824 | |
| 825 | void DescribeTo(::std::ostream* os) const { |
| 826 | *os << "starts with " ; |
| 827 | UniversalPrint(prefix_, os); |
| 828 | } |
| 829 | |
| 830 | void DescribeNegationTo(::std::ostream* os) const { |
| 831 | *os << "doesn't start with " ; |
| 832 | UniversalPrint(prefix_, os); |
| 833 | } |
| 834 | |
| 835 | private: |
| 836 | const StringType prefix_; |
| 837 | |
| 838 | GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); |
| 839 | }; |
| 840 | |
| 841 | // Implements the polymorphic EndsWith(substring) matcher, which |
| 842 | // can be used as a Matcher<T> as long as T can be converted to a |
| 843 | // string. |
| 844 | template <typename StringType> |
| 845 | class EndsWithMatcher { |
| 846 | public: |
| 847 | explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
| 848 | |
| 849 | #if GTEST_HAS_ABSL |
| 850 | bool MatchAndExplain(const absl::string_view& s, |
| 851 | MatchResultListener* listener) const { |
| 852 | // This should fail to compile if absl::string_view is used with wide |
| 853 | // strings. |
| 854 | const StringType& str = std::string(s); |
| 855 | return MatchAndExplain(str, listener); |
| 856 | } |
| 857 | #endif // GTEST_HAS_ABSL |
| 858 | |
| 859 | // Accepts pointer types, particularly: |
| 860 | // const char* |
| 861 | // char* |
| 862 | // const wchar_t* |
| 863 | // wchar_t* |
| 864 | template <typename CharType> |
| 865 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| 866 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
| 867 | } |
| 868 | |
| 869 | // Matches anything that can convert to StringType. |
| 870 | // |
| 871 | // This is a template, not just a plain function with const StringType&, |
| 872 | // because absl::string_view has some interfering non-explicit constructors. |
| 873 | template <typename MatcheeStringType> |
| 874 | bool MatchAndExplain(const MatcheeStringType& s, |
| 875 | MatchResultListener* /* listener */) const { |
| 876 | const StringType& s2(s); |
| 877 | return s2.length() >= suffix_.length() && |
| 878 | s2.substr(s2.length() - suffix_.length()) == suffix_; |
| 879 | } |
| 880 | |
| 881 | void DescribeTo(::std::ostream* os) const { |
| 882 | *os << "ends with " ; |
| 883 | UniversalPrint(suffix_, os); |
| 884 | } |
| 885 | |
| 886 | void DescribeNegationTo(::std::ostream* os) const { |
| 887 | *os << "doesn't end with " ; |
| 888 | UniversalPrint(suffix_, os); |
| 889 | } |
| 890 | |
| 891 | private: |
| 892 | const StringType suffix_; |
| 893 | |
| 894 | GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); |
| 895 | }; |
| 896 | |
| 897 | // Implements a matcher that compares the two fields of a 2-tuple |
| 898 | // using one of the ==, <=, <, etc, operators. The two fields being |
| 899 | // compared don't have to have the same type. |
| 900 | // |
| 901 | // The matcher defined here is polymorphic (for example, Eq() can be |
| 902 | // used to match a std::tuple<int, short>, a std::tuple<const long&, double>, |
| 903 | // etc). Therefore we use a template type conversion operator in the |
| 904 | // implementation. |
| 905 | template <typename D, typename Op> |
| 906 | class PairMatchBase { |
| 907 | public: |
| 908 | template <typename T1, typename T2> |
| 909 | operator Matcher<::std::tuple<T1, T2>>() const { |
| 910 | return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); |
| 911 | } |
| 912 | template <typename T1, typename T2> |
| 913 | operator Matcher<const ::std::tuple<T1, T2>&>() const { |
| 914 | return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); |
| 915 | } |
| 916 | |
| 917 | private: |
| 918 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
| 919 | return os << D::Desc(); |
| 920 | } |
| 921 | |
| 922 | template <typename Tuple> |
| 923 | class Impl : public MatcherInterface<Tuple> { |
| 924 | public: |
| 925 | bool MatchAndExplain(Tuple args, |
| 926 | MatchResultListener* /* listener */) const override { |
| 927 | return Op()(::std::get<0>(args), ::std::get<1>(args)); |
| 928 | } |
| 929 | void DescribeTo(::std::ostream* os) const override { |
| 930 | *os << "are " << GetDesc; |
| 931 | } |
| 932 | void DescribeNegationTo(::std::ostream* os) const override { |
| 933 | *os << "aren't " << GetDesc; |
| 934 | } |
| 935 | }; |
| 936 | }; |
| 937 | |
| 938 | class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { |
| 939 | public: |
| 940 | static const char* Desc() { return "an equal pair" ; } |
| 941 | }; |
| 942 | class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { |
| 943 | public: |
| 944 | static const char* Desc() { return "an unequal pair" ; } |
| 945 | }; |
| 946 | class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { |
| 947 | public: |
| 948 | static const char* Desc() { return "a pair where the first < the second" ; } |
| 949 | }; |
| 950 | class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { |
| 951 | public: |
| 952 | static const char* Desc() { return "a pair where the first > the second" ; } |
| 953 | }; |
| 954 | class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { |
| 955 | public: |
| 956 | static const char* Desc() { return "a pair where the first <= the second" ; } |
| 957 | }; |
| 958 | class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { |
| 959 | public: |
| 960 | static const char* Desc() { return "a pair where the first >= the second" ; } |
| 961 | }; |
| 962 | |
| 963 | // Implements the Not(...) matcher for a particular argument type T. |
| 964 | // We do not nest it inside the NotMatcher class template, as that |
| 965 | // will prevent different instantiations of NotMatcher from sharing |
| 966 | // the same NotMatcherImpl<T> class. |
| 967 | template <typename T> |
| 968 | class NotMatcherImpl : public MatcherInterface<const T&> { |
| 969 | public: |
| 970 | explicit NotMatcherImpl(const Matcher<T>& matcher) |
| 971 | : matcher_(matcher) {} |
| 972 | |
| 973 | bool MatchAndExplain(const T& x, |
| 974 | MatchResultListener* listener) const override { |
| 975 | return !matcher_.MatchAndExplain(x, listener); |
| 976 | } |
| 977 | |
| 978 | void DescribeTo(::std::ostream* os) const override { |
| 979 | matcher_.DescribeNegationTo(os); |
| 980 | } |
| 981 | |
| 982 | void DescribeNegationTo(::std::ostream* os) const override { |
| 983 | matcher_.DescribeTo(os); |
| 984 | } |
| 985 | |
| 986 | private: |
| 987 | const Matcher<T> matcher_; |
| 988 | |
| 989 | GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); |
| 990 | }; |
| 991 | |
| 992 | // Implements the Not(m) matcher, which matches a value that doesn't |
| 993 | // match matcher m. |
| 994 | template <typename InnerMatcher> |
| 995 | class NotMatcher { |
| 996 | public: |
| 997 | explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
| 998 | |
| 999 | // This template type conversion operator allows Not(m) to be used |
| 1000 | // to match any type m can match. |
| 1001 | template <typename T> |
| 1002 | operator Matcher<T>() const { |
| 1003 | return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
| 1004 | } |
| 1005 | |
| 1006 | private: |
| 1007 | InnerMatcher matcher_; |
| 1008 | |
| 1009 | GTEST_DISALLOW_ASSIGN_(NotMatcher); |
| 1010 | }; |
| 1011 | |
| 1012 | // Implements the AllOf(m1, m2) matcher for a particular argument type |
| 1013 | // T. We do not nest it inside the BothOfMatcher class template, as |
| 1014 | // that will prevent different instantiations of BothOfMatcher from |
| 1015 | // sharing the same BothOfMatcherImpl<T> class. |
| 1016 | template <typename T> |
| 1017 | class AllOfMatcherImpl : public MatcherInterface<const T&> { |
| 1018 | public: |
| 1019 | explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) |
| 1020 | : matchers_(std::move(matchers)) {} |
| 1021 | |
| 1022 | void DescribeTo(::std::ostream* os) const override { |
| 1023 | *os << "(" ; |
| 1024 | for (size_t i = 0; i < matchers_.size(); ++i) { |
| 1025 | if (i != 0) *os << ") and (" ; |
| 1026 | matchers_[i].DescribeTo(os); |
| 1027 | } |
| 1028 | *os << ")" ; |
| 1029 | } |
| 1030 | |
| 1031 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1032 | *os << "(" ; |
| 1033 | for (size_t i = 0; i < matchers_.size(); ++i) { |
| 1034 | if (i != 0) *os << ") or (" ; |
| 1035 | matchers_[i].DescribeNegationTo(os); |
| 1036 | } |
| 1037 | *os << ")" ; |
| 1038 | } |
| 1039 | |
| 1040 | bool MatchAndExplain(const T& x, |
| 1041 | MatchResultListener* listener) const override { |
| 1042 | // If either matcher1_ or matcher2_ doesn't match x, we only need |
| 1043 | // to explain why one of them fails. |
| 1044 | std::string all_match_result; |
| 1045 | |
| 1046 | for (size_t i = 0; i < matchers_.size(); ++i) { |
| 1047 | StringMatchResultListener slistener; |
| 1048 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
| 1049 | if (all_match_result.empty()) { |
| 1050 | all_match_result = slistener.str(); |
| 1051 | } else { |
| 1052 | std::string result = slistener.str(); |
| 1053 | if (!result.empty()) { |
| 1054 | all_match_result += ", and " ; |
| 1055 | all_match_result += result; |
| 1056 | } |
| 1057 | } |
| 1058 | } else { |
| 1059 | *listener << slistener.str(); |
| 1060 | return false; |
| 1061 | } |
| 1062 | } |
| 1063 | |
| 1064 | // Otherwise we need to explain why *both* of them match. |
| 1065 | *listener << all_match_result; |
| 1066 | return true; |
| 1067 | } |
| 1068 | |
| 1069 | private: |
| 1070 | const std::vector<Matcher<T> > matchers_; |
| 1071 | |
| 1072 | GTEST_DISALLOW_ASSIGN_(AllOfMatcherImpl); |
| 1073 | }; |
| 1074 | |
| 1075 | // VariadicMatcher is used for the variadic implementation of |
| 1076 | // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). |
| 1077 | // CombiningMatcher<T> is used to recursively combine the provided matchers |
| 1078 | // (of type Args...). |
| 1079 | template <template <typename T> class CombiningMatcher, typename... Args> |
| 1080 | class VariadicMatcher { |
| 1081 | public: |
| 1082 | VariadicMatcher(const Args&... matchers) // NOLINT |
| 1083 | : matchers_(matchers...) { |
| 1084 | static_assert(sizeof...(Args) > 0, "Must have at least one matcher." ); |
| 1085 | } |
| 1086 | |
| 1087 | // This template type conversion operator allows an |
| 1088 | // VariadicMatcher<Matcher1, Matcher2...> object to match any type that |
| 1089 | // all of the provided matchers (Matcher1, Matcher2, ...) can match. |
| 1090 | template <typename T> |
| 1091 | operator Matcher<T>() const { |
| 1092 | std::vector<Matcher<T> > values; |
| 1093 | CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); |
| 1094 | return Matcher<T>(new CombiningMatcher<T>(std::move(values))); |
| 1095 | } |
| 1096 | |
| 1097 | private: |
| 1098 | template <typename T, size_t I> |
| 1099 | void CreateVariadicMatcher(std::vector<Matcher<T> >* values, |
| 1100 | std::integral_constant<size_t, I>) const { |
| 1101 | values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); |
| 1102 | CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); |
| 1103 | } |
| 1104 | |
| 1105 | template <typename T> |
| 1106 | void CreateVariadicMatcher( |
| 1107 | std::vector<Matcher<T> >*, |
| 1108 | std::integral_constant<size_t, sizeof...(Args)>) const {} |
| 1109 | |
| 1110 | std::tuple<Args...> matchers_; |
| 1111 | |
| 1112 | GTEST_DISALLOW_ASSIGN_(VariadicMatcher); |
| 1113 | }; |
| 1114 | |
| 1115 | template <typename... Args> |
| 1116 | using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; |
| 1117 | |
| 1118 | // Implements the AnyOf(m1, m2) matcher for a particular argument type |
| 1119 | // T. We do not nest it inside the AnyOfMatcher class template, as |
| 1120 | // that will prevent different instantiations of AnyOfMatcher from |
| 1121 | // sharing the same EitherOfMatcherImpl<T> class. |
| 1122 | template <typename T> |
| 1123 | class AnyOfMatcherImpl : public MatcherInterface<const T&> { |
| 1124 | public: |
| 1125 | explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) |
| 1126 | : matchers_(std::move(matchers)) {} |
| 1127 | |
| 1128 | void DescribeTo(::std::ostream* os) const override { |
| 1129 | *os << "(" ; |
| 1130 | for (size_t i = 0; i < matchers_.size(); ++i) { |
| 1131 | if (i != 0) *os << ") or (" ; |
| 1132 | matchers_[i].DescribeTo(os); |
| 1133 | } |
| 1134 | *os << ")" ; |
| 1135 | } |
| 1136 | |
| 1137 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1138 | *os << "(" ; |
| 1139 | for (size_t i = 0; i < matchers_.size(); ++i) { |
| 1140 | if (i != 0) *os << ") and (" ; |
| 1141 | matchers_[i].DescribeNegationTo(os); |
| 1142 | } |
| 1143 | *os << ")" ; |
| 1144 | } |
| 1145 | |
| 1146 | bool MatchAndExplain(const T& x, |
| 1147 | MatchResultListener* listener) const override { |
| 1148 | std::string no_match_result; |
| 1149 | |
| 1150 | // If either matcher1_ or matcher2_ matches x, we just need to |
| 1151 | // explain why *one* of them matches. |
| 1152 | for (size_t i = 0; i < matchers_.size(); ++i) { |
| 1153 | StringMatchResultListener slistener; |
| 1154 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
| 1155 | *listener << slistener.str(); |
| 1156 | return true; |
| 1157 | } else { |
| 1158 | if (no_match_result.empty()) { |
| 1159 | no_match_result = slistener.str(); |
| 1160 | } else { |
| 1161 | std::string result = slistener.str(); |
| 1162 | if (!result.empty()) { |
| 1163 | no_match_result += ", and " ; |
| 1164 | no_match_result += result; |
| 1165 | } |
| 1166 | } |
| 1167 | } |
| 1168 | } |
| 1169 | |
| 1170 | // Otherwise we need to explain why *both* of them fail. |
| 1171 | *listener << no_match_result; |
| 1172 | return false; |
| 1173 | } |
| 1174 | |
| 1175 | private: |
| 1176 | const std::vector<Matcher<T> > matchers_; |
| 1177 | |
| 1178 | GTEST_DISALLOW_ASSIGN_(AnyOfMatcherImpl); |
| 1179 | }; |
| 1180 | |
| 1181 | // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). |
| 1182 | template <typename... Args> |
| 1183 | using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; |
| 1184 | |
| 1185 | // Wrapper for implementation of Any/AllOfArray(). |
| 1186 | template <template <class> class MatcherImpl, typename T> |
| 1187 | class SomeOfArrayMatcher { |
| 1188 | public: |
| 1189 | // Constructs the matcher from a sequence of element values or |
| 1190 | // element matchers. |
| 1191 | template <typename Iter> |
| 1192 | SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
| 1193 | |
| 1194 | template <typename U> |
| 1195 | operator Matcher<U>() const { // NOLINT |
| 1196 | using RawU = typename std::decay<U>::type; |
| 1197 | std::vector<Matcher<RawU>> matchers; |
| 1198 | for (const auto& matcher : matchers_) { |
| 1199 | matchers.push_back(MatcherCast<RawU>(matcher)); |
| 1200 | } |
| 1201 | return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); |
| 1202 | } |
| 1203 | |
| 1204 | private: |
| 1205 | const ::std::vector<T> matchers_; |
| 1206 | |
| 1207 | GTEST_DISALLOW_ASSIGN_(SomeOfArrayMatcher); |
| 1208 | }; |
| 1209 | |
| 1210 | template <typename T> |
| 1211 | using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; |
| 1212 | |
| 1213 | template <typename T> |
| 1214 | using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; |
| 1215 | |
| 1216 | // Used for implementing Truly(pred), which turns a predicate into a |
| 1217 | // matcher. |
| 1218 | template <typename Predicate> |
| 1219 | class TrulyMatcher { |
| 1220 | public: |
| 1221 | explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
| 1222 | |
| 1223 | // This method template allows Truly(pred) to be used as a matcher |
| 1224 | // for type T where T is the argument type of predicate 'pred'. The |
| 1225 | // argument is passed by reference as the predicate may be |
| 1226 | // interested in the address of the argument. |
| 1227 | template <typename T> |
| 1228 | bool MatchAndExplain(T& x, // NOLINT |
| 1229 | MatchResultListener* /* listener */) const { |
| 1230 | // Without the if-statement, MSVC sometimes warns about converting |
| 1231 | // a value to bool (warning 4800). |
| 1232 | // |
| 1233 | // We cannot write 'return !!predicate_(x);' as that doesn't work |
| 1234 | // when predicate_(x) returns a class convertible to bool but |
| 1235 | // having no operator!(). |
| 1236 | if (predicate_(x)) |
| 1237 | return true; |
| 1238 | return false; |
| 1239 | } |
| 1240 | |
| 1241 | void DescribeTo(::std::ostream* os) const { |
| 1242 | *os << "satisfies the given predicate" ; |
| 1243 | } |
| 1244 | |
| 1245 | void DescribeNegationTo(::std::ostream* os) const { |
| 1246 | *os << "doesn't satisfy the given predicate" ; |
| 1247 | } |
| 1248 | |
| 1249 | private: |
| 1250 | Predicate predicate_; |
| 1251 | |
| 1252 | GTEST_DISALLOW_ASSIGN_(TrulyMatcher); |
| 1253 | }; |
| 1254 | |
| 1255 | // Used for implementing Matches(matcher), which turns a matcher into |
| 1256 | // a predicate. |
| 1257 | template <typename M> |
| 1258 | class MatcherAsPredicate { |
| 1259 | public: |
| 1260 | explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
| 1261 | |
| 1262 | // This template operator() allows Matches(m) to be used as a |
| 1263 | // predicate on type T where m is a matcher on type T. |
| 1264 | // |
| 1265 | // The argument x is passed by reference instead of by value, as |
| 1266 | // some matcher may be interested in its address (e.g. as in |
| 1267 | // Matches(Ref(n))(x)). |
| 1268 | template <typename T> |
| 1269 | bool operator()(const T& x) const { |
| 1270 | // We let matcher_ commit to a particular type here instead of |
| 1271 | // when the MatcherAsPredicate object was constructed. This |
| 1272 | // allows us to write Matches(m) where m is a polymorphic matcher |
| 1273 | // (e.g. Eq(5)). |
| 1274 | // |
| 1275 | // If we write Matcher<T>(matcher_).Matches(x) here, it won't |
| 1276 | // compile when matcher_ has type Matcher<const T&>; if we write |
| 1277 | // Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
| 1278 | // when matcher_ has type Matcher<T>; if we just write |
| 1279 | // matcher_.Matches(x), it won't compile when matcher_ is |
| 1280 | // polymorphic, e.g. Eq(5). |
| 1281 | // |
| 1282 | // MatcherCast<const T&>() is necessary for making the code work |
| 1283 | // in all of the above situations. |
| 1284 | return MatcherCast<const T&>(matcher_).Matches(x); |
| 1285 | } |
| 1286 | |
| 1287 | private: |
| 1288 | M matcher_; |
| 1289 | |
| 1290 | GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate); |
| 1291 | }; |
| 1292 | |
| 1293 | // For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
| 1294 | // argument M must be a type that can be converted to a matcher. |
| 1295 | template <typename M> |
| 1296 | class PredicateFormatterFromMatcher { |
| 1297 | public: |
| 1298 | explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} |
| 1299 | |
| 1300 | // This template () operator allows a PredicateFormatterFromMatcher |
| 1301 | // object to act as a predicate-formatter suitable for using with |
| 1302 | // Google Test's EXPECT_PRED_FORMAT1() macro. |
| 1303 | template <typename T> |
| 1304 | AssertionResult operator()(const char* value_text, const T& x) const { |
| 1305 | // We convert matcher_ to a Matcher<const T&> *now* instead of |
| 1306 | // when the PredicateFormatterFromMatcher object was constructed, |
| 1307 | // as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
| 1308 | // know which type to instantiate it to until we actually see the |
| 1309 | // type of x here. |
| 1310 | // |
| 1311 | // We write SafeMatcherCast<const T&>(matcher_) instead of |
| 1312 | // Matcher<const T&>(matcher_), as the latter won't compile when |
| 1313 | // matcher_ has type Matcher<T> (e.g. An<int>()). |
| 1314 | // We don't write MatcherCast<const T&> either, as that allows |
| 1315 | // potentially unsafe downcasting of the matcher argument. |
| 1316 | const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); |
| 1317 | |
| 1318 | // The expected path here is that the matcher should match (i.e. that most |
| 1319 | // tests pass) so optimize for this case. |
| 1320 | if (matcher.Matches(x)) { |
| 1321 | return AssertionSuccess(); |
| 1322 | } |
| 1323 | |
| 1324 | ::std::stringstream ss; |
| 1325 | ss << "Value of: " << value_text << "\n" |
| 1326 | << "Expected: " ; |
| 1327 | matcher.DescribeTo(&ss); |
| 1328 | |
| 1329 | // Rerun the matcher to "PrintAndExain" the failure. |
| 1330 | StringMatchResultListener listener; |
| 1331 | if (MatchPrintAndExplain(x, matcher, &listener)) { |
| 1332 | ss << "\n The matcher failed on the initial attempt; but passed when " |
| 1333 | "rerun to generate the explanation." ; |
| 1334 | } |
| 1335 | ss << "\n Actual: " << listener.str(); |
| 1336 | return AssertionFailure() << ss.str(); |
| 1337 | } |
| 1338 | |
| 1339 | private: |
| 1340 | const M matcher_; |
| 1341 | |
| 1342 | GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher); |
| 1343 | }; |
| 1344 | |
| 1345 | // A helper function for converting a matcher to a predicate-formatter |
| 1346 | // without the user needing to explicitly write the type. This is |
| 1347 | // used for implementing ASSERT_THAT() and EXPECT_THAT(). |
| 1348 | // Implementation detail: 'matcher' is received by-value to force decaying. |
| 1349 | template <typename M> |
| 1350 | inline PredicateFormatterFromMatcher<M> |
| 1351 | MakePredicateFormatterFromMatcher(M matcher) { |
| 1352 | return PredicateFormatterFromMatcher<M>(std::move(matcher)); |
| 1353 | } |
| 1354 | |
| 1355 | // Implements the polymorphic floating point equality matcher, which matches |
| 1356 | // two float values using ULP-based approximation or, optionally, a |
| 1357 | // user-specified epsilon. The template is meant to be instantiated with |
| 1358 | // FloatType being either float or double. |
| 1359 | template <typename FloatType> |
| 1360 | class FloatingEqMatcher { |
| 1361 | public: |
| 1362 | // Constructor for FloatingEqMatcher. |
| 1363 | // The matcher's input will be compared with expected. The matcher treats two |
| 1364 | // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
| 1365 | // equality comparisons between NANs will always return false. We specify a |
| 1366 | // negative max_abs_error_ term to indicate that ULP-based approximation will |
| 1367 | // be used for comparison. |
| 1368 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : |
| 1369 | expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { |
| 1370 | } |
| 1371 | |
| 1372 | // Constructor that supports a user-specified max_abs_error that will be used |
| 1373 | // for comparison instead of ULP-based approximation. The max absolute |
| 1374 | // should be non-negative. |
| 1375 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan, |
| 1376 | FloatType max_abs_error) |
| 1377 | : expected_(expected), |
| 1378 | nan_eq_nan_(nan_eq_nan), |
| 1379 | max_abs_error_(max_abs_error) { |
| 1380 | GTEST_CHECK_(max_abs_error >= 0) |
| 1381 | << ", where max_abs_error is" << max_abs_error; |
| 1382 | } |
| 1383 | |
| 1384 | // Implements floating point equality matcher as a Matcher<T>. |
| 1385 | template <typename T> |
| 1386 | class Impl : public MatcherInterface<T> { |
| 1387 | public: |
| 1388 | Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) |
| 1389 | : expected_(expected), |
| 1390 | nan_eq_nan_(nan_eq_nan), |
| 1391 | max_abs_error_(max_abs_error) {} |
| 1392 | |
| 1393 | bool MatchAndExplain(T value, |
| 1394 | MatchResultListener* listener) const override { |
| 1395 | const FloatingPoint<FloatType> actual(value), expected(expected_); |
| 1396 | |
| 1397 | // Compares NaNs first, if nan_eq_nan_ is true. |
| 1398 | if (actual.is_nan() || expected.is_nan()) { |
| 1399 | if (actual.is_nan() && expected.is_nan()) { |
| 1400 | return nan_eq_nan_; |
| 1401 | } |
| 1402 | // One is nan; the other is not nan. |
| 1403 | return false; |
| 1404 | } |
| 1405 | if (HasMaxAbsError()) { |
| 1406 | // We perform an equality check so that inf will match inf, regardless |
| 1407 | // of error bounds. If the result of value - expected_ would result in |
| 1408 | // overflow or if either value is inf, the default result is infinity, |
| 1409 | // which should only match if max_abs_error_ is also infinity. |
| 1410 | if (value == expected_) { |
| 1411 | return true; |
| 1412 | } |
| 1413 | |
| 1414 | const FloatType diff = value - expected_; |
| 1415 | if (fabs(diff) <= max_abs_error_) { |
| 1416 | return true; |
| 1417 | } |
| 1418 | |
| 1419 | if (listener->IsInterested()) { |
| 1420 | *listener << "which is " << diff << " from " << expected_; |
| 1421 | } |
| 1422 | return false; |
| 1423 | } else { |
| 1424 | return actual.AlmostEquals(expected); |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | void DescribeTo(::std::ostream* os) const override { |
| 1429 | // os->precision() returns the previously set precision, which we |
| 1430 | // store to restore the ostream to its original configuration |
| 1431 | // after outputting. |
| 1432 | const ::std::streamsize old_precision = os->precision( |
| 1433 | ::std::numeric_limits<FloatType>::digits10 + 2); |
| 1434 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
| 1435 | if (nan_eq_nan_) { |
| 1436 | *os << "is NaN" ; |
| 1437 | } else { |
| 1438 | *os << "never matches" ; |
| 1439 | } |
| 1440 | } else { |
| 1441 | *os << "is approximately " << expected_; |
| 1442 | if (HasMaxAbsError()) { |
| 1443 | *os << " (absolute error <= " << max_abs_error_ << ")" ; |
| 1444 | } |
| 1445 | } |
| 1446 | os->precision(old_precision); |
| 1447 | } |
| 1448 | |
| 1449 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1450 | // As before, get original precision. |
| 1451 | const ::std::streamsize old_precision = os->precision( |
| 1452 | ::std::numeric_limits<FloatType>::digits10 + 2); |
| 1453 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
| 1454 | if (nan_eq_nan_) { |
| 1455 | *os << "isn't NaN" ; |
| 1456 | } else { |
| 1457 | *os << "is anything" ; |
| 1458 | } |
| 1459 | } else { |
| 1460 | *os << "isn't approximately " << expected_; |
| 1461 | if (HasMaxAbsError()) { |
| 1462 | *os << " (absolute error > " << max_abs_error_ << ")" ; |
| 1463 | } |
| 1464 | } |
| 1465 | // Restore original precision. |
| 1466 | os->precision(old_precision); |
| 1467 | } |
| 1468 | |
| 1469 | private: |
| 1470 | bool HasMaxAbsError() const { |
| 1471 | return max_abs_error_ >= 0; |
| 1472 | } |
| 1473 | |
| 1474 | const FloatType expected_; |
| 1475 | const bool nan_eq_nan_; |
| 1476 | // max_abs_error will be used for value comparison when >= 0. |
| 1477 | const FloatType max_abs_error_; |
| 1478 | |
| 1479 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 1480 | }; |
| 1481 | |
| 1482 | // The following 3 type conversion operators allow FloatEq(expected) and |
| 1483 | // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a |
| 1484 | // Matcher<const float&>, or a Matcher<float&>, but nothing else. |
| 1485 | // (While Google's C++ coding style doesn't allow arguments passed |
| 1486 | // by non-const reference, we may see them in code not conforming to |
| 1487 | // the style. Therefore Google Mock needs to support them.) |
| 1488 | operator Matcher<FloatType>() const { |
| 1489 | return MakeMatcher( |
| 1490 | new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); |
| 1491 | } |
| 1492 | |
| 1493 | operator Matcher<const FloatType&>() const { |
| 1494 | return MakeMatcher( |
| 1495 | new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
| 1496 | } |
| 1497 | |
| 1498 | operator Matcher<FloatType&>() const { |
| 1499 | return MakeMatcher( |
| 1500 | new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
| 1501 | } |
| 1502 | |
| 1503 | private: |
| 1504 | const FloatType expected_; |
| 1505 | const bool nan_eq_nan_; |
| 1506 | // max_abs_error will be used for value comparison when >= 0. |
| 1507 | const FloatType max_abs_error_; |
| 1508 | |
| 1509 | GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher); |
| 1510 | }; |
| 1511 | |
| 1512 | // A 2-tuple ("binary") wrapper around FloatingEqMatcher: |
| 1513 | // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) |
| 1514 | // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) |
| 1515 | // against y. The former implements "Eq", the latter "Near". At present, there |
| 1516 | // is no version that compares NaNs as equal. |
| 1517 | template <typename FloatType> |
| 1518 | class FloatingEq2Matcher { |
| 1519 | public: |
| 1520 | FloatingEq2Matcher() { Init(-1, false); } |
| 1521 | |
| 1522 | explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } |
| 1523 | |
| 1524 | explicit FloatingEq2Matcher(FloatType max_abs_error) { |
| 1525 | Init(max_abs_error, false); |
| 1526 | } |
| 1527 | |
| 1528 | FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { |
| 1529 | Init(max_abs_error, nan_eq_nan); |
| 1530 | } |
| 1531 | |
| 1532 | template <typename T1, typename T2> |
| 1533 | operator Matcher<::std::tuple<T1, T2>>() const { |
| 1534 | return MakeMatcher( |
| 1535 | new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); |
| 1536 | } |
| 1537 | template <typename T1, typename T2> |
| 1538 | operator Matcher<const ::std::tuple<T1, T2>&>() const { |
| 1539 | return MakeMatcher( |
| 1540 | new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); |
| 1541 | } |
| 1542 | |
| 1543 | private: |
| 1544 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
| 1545 | return os << "an almost-equal pair" ; |
| 1546 | } |
| 1547 | |
| 1548 | template <typename Tuple> |
| 1549 | class Impl : public MatcherInterface<Tuple> { |
| 1550 | public: |
| 1551 | Impl(FloatType max_abs_error, bool nan_eq_nan) : |
| 1552 | max_abs_error_(max_abs_error), |
| 1553 | nan_eq_nan_(nan_eq_nan) {} |
| 1554 | |
| 1555 | bool MatchAndExplain(Tuple args, |
| 1556 | MatchResultListener* listener) const override { |
| 1557 | if (max_abs_error_ == -1) { |
| 1558 | FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); |
| 1559 | return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
| 1560 | ::std::get<1>(args), listener); |
| 1561 | } else { |
| 1562 | FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, |
| 1563 | max_abs_error_); |
| 1564 | return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
| 1565 | ::std::get<1>(args), listener); |
| 1566 | } |
| 1567 | } |
| 1568 | void DescribeTo(::std::ostream* os) const override { |
| 1569 | *os << "are " << GetDesc; |
| 1570 | } |
| 1571 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1572 | *os << "aren't " << GetDesc; |
| 1573 | } |
| 1574 | |
| 1575 | private: |
| 1576 | FloatType max_abs_error_; |
| 1577 | const bool nan_eq_nan_; |
| 1578 | }; |
| 1579 | |
| 1580 | void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { |
| 1581 | max_abs_error_ = max_abs_error_val; |
| 1582 | nan_eq_nan_ = nan_eq_nan_val; |
| 1583 | } |
| 1584 | FloatType max_abs_error_; |
| 1585 | bool nan_eq_nan_; |
| 1586 | }; |
| 1587 | |
| 1588 | // Implements the Pointee(m) matcher for matching a pointer whose |
| 1589 | // pointee matches matcher m. The pointer can be either raw or smart. |
| 1590 | template <typename InnerMatcher> |
| 1591 | class PointeeMatcher { |
| 1592 | public: |
| 1593 | explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
| 1594 | |
| 1595 | // This type conversion operator template allows Pointee(m) to be |
| 1596 | // used as a matcher for any pointer type whose pointee type is |
| 1597 | // compatible with the inner matcher, where type Pointer can be |
| 1598 | // either a raw pointer or a smart pointer. |
| 1599 | // |
| 1600 | // The reason we do this instead of relying on |
| 1601 | // MakePolymorphicMatcher() is that the latter is not flexible |
| 1602 | // enough for implementing the DescribeTo() method of Pointee(). |
| 1603 | template <typename Pointer> |
| 1604 | operator Matcher<Pointer>() const { |
| 1605 | return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); |
| 1606 | } |
| 1607 | |
| 1608 | private: |
| 1609 | // The monomorphic implementation that works for a particular pointer type. |
| 1610 | template <typename Pointer> |
| 1611 | class Impl : public MatcherInterface<Pointer> { |
| 1612 | public: |
| 1613 | typedef typename PointeeOf<GTEST_REMOVE_CONST_( // NOLINT |
| 1614 | GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee; |
| 1615 | |
| 1616 | explicit Impl(const InnerMatcher& matcher) |
| 1617 | : matcher_(MatcherCast<const Pointee&>(matcher)) {} |
| 1618 | |
| 1619 | void DescribeTo(::std::ostream* os) const override { |
| 1620 | *os << "points to a value that " ; |
| 1621 | matcher_.DescribeTo(os); |
| 1622 | } |
| 1623 | |
| 1624 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1625 | *os << "does not point to a value that " ; |
| 1626 | matcher_.DescribeTo(os); |
| 1627 | } |
| 1628 | |
| 1629 | bool MatchAndExplain(Pointer pointer, |
| 1630 | MatchResultListener* listener) const override { |
| 1631 | if (GetRawPointer(pointer) == nullptr) return false; |
| 1632 | |
| 1633 | *listener << "which points to " ; |
| 1634 | return MatchPrintAndExplain(*pointer, matcher_, listener); |
| 1635 | } |
| 1636 | |
| 1637 | private: |
| 1638 | const Matcher<const Pointee&> matcher_; |
| 1639 | |
| 1640 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 1641 | }; |
| 1642 | |
| 1643 | const InnerMatcher matcher_; |
| 1644 | |
| 1645 | GTEST_DISALLOW_ASSIGN_(PointeeMatcher); |
| 1646 | }; |
| 1647 | |
| 1648 | #if GTEST_HAS_RTTI |
| 1649 | // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or |
| 1650 | // reference that matches inner_matcher when dynamic_cast<T> is applied. |
| 1651 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
| 1652 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
| 1653 | // If To is a reference and the cast fails, this matcher returns false |
| 1654 | // immediately. |
| 1655 | template <typename To> |
| 1656 | class WhenDynamicCastToMatcherBase { |
| 1657 | public: |
| 1658 | explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) |
| 1659 | : matcher_(matcher) {} |
| 1660 | |
| 1661 | void DescribeTo(::std::ostream* os) const { |
| 1662 | GetCastTypeDescription(os); |
| 1663 | matcher_.DescribeTo(os); |
| 1664 | } |
| 1665 | |
| 1666 | void DescribeNegationTo(::std::ostream* os) const { |
| 1667 | GetCastTypeDescription(os); |
| 1668 | matcher_.DescribeNegationTo(os); |
| 1669 | } |
| 1670 | |
| 1671 | protected: |
| 1672 | const Matcher<To> matcher_; |
| 1673 | |
| 1674 | static std::string GetToName() { |
| 1675 | return GetTypeName<To>(); |
| 1676 | } |
| 1677 | |
| 1678 | private: |
| 1679 | static void GetCastTypeDescription(::std::ostream* os) { |
| 1680 | *os << "when dynamic_cast to " << GetToName() << ", " ; |
| 1681 | } |
| 1682 | |
| 1683 | GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase); |
| 1684 | }; |
| 1685 | |
| 1686 | // Primary template. |
| 1687 | // To is a pointer. Cast and forward the result. |
| 1688 | template <typename To> |
| 1689 | class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { |
| 1690 | public: |
| 1691 | explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) |
| 1692 | : WhenDynamicCastToMatcherBase<To>(matcher) {} |
| 1693 | |
| 1694 | template <typename From> |
| 1695 | bool MatchAndExplain(From from, MatchResultListener* listener) const { |
| 1696 | To to = dynamic_cast<To>(from); |
| 1697 | return MatchPrintAndExplain(to, this->matcher_, listener); |
| 1698 | } |
| 1699 | }; |
| 1700 | |
| 1701 | // Specialize for references. |
| 1702 | // In this case we return false if the dynamic_cast fails. |
| 1703 | template <typename To> |
| 1704 | class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { |
| 1705 | public: |
| 1706 | explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) |
| 1707 | : WhenDynamicCastToMatcherBase<To&>(matcher) {} |
| 1708 | |
| 1709 | template <typename From> |
| 1710 | bool MatchAndExplain(From& from, MatchResultListener* listener) const { |
| 1711 | // We don't want an std::bad_cast here, so do the cast with pointers. |
| 1712 | To* to = dynamic_cast<To*>(&from); |
| 1713 | if (to == nullptr) { |
| 1714 | *listener << "which cannot be dynamic_cast to " << this->GetToName(); |
| 1715 | return false; |
| 1716 | } |
| 1717 | return MatchPrintAndExplain(*to, this->matcher_, listener); |
| 1718 | } |
| 1719 | }; |
| 1720 | #endif // GTEST_HAS_RTTI |
| 1721 | |
| 1722 | // Implements the Field() matcher for matching a field (i.e. member |
| 1723 | // variable) of an object. |
| 1724 | template <typename Class, typename FieldType> |
| 1725 | class FieldMatcher { |
| 1726 | public: |
| 1727 | FieldMatcher(FieldType Class::*field, |
| 1728 | const Matcher<const FieldType&>& matcher) |
| 1729 | : field_(field), matcher_(matcher), whose_field_("whose given field " ) {} |
| 1730 | |
| 1731 | FieldMatcher(const std::string& field_name, FieldType Class::*field, |
| 1732 | const Matcher<const FieldType&>& matcher) |
| 1733 | : field_(field), |
| 1734 | matcher_(matcher), |
| 1735 | whose_field_("whose field `" + field_name + "` " ) {} |
| 1736 | |
| 1737 | void DescribeTo(::std::ostream* os) const { |
| 1738 | *os << "is an object " << whose_field_; |
| 1739 | matcher_.DescribeTo(os); |
| 1740 | } |
| 1741 | |
| 1742 | void DescribeNegationTo(::std::ostream* os) const { |
| 1743 | *os << "is an object " << whose_field_; |
| 1744 | matcher_.DescribeNegationTo(os); |
| 1745 | } |
| 1746 | |
| 1747 | template <typename T> |
| 1748 | bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
| 1749 | // FIXME: The dispatch on std::is_pointer was introduced as a workaround for |
| 1750 | // a compiler bug, and can now be removed. |
| 1751 | return MatchAndExplainImpl( |
| 1752 | typename std::is_pointer<GTEST_REMOVE_CONST_(T)>::type(), value, |
| 1753 | listener); |
| 1754 | } |
| 1755 | |
| 1756 | private: |
| 1757 | bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
| 1758 | const Class& obj, |
| 1759 | MatchResultListener* listener) const { |
| 1760 | *listener << whose_field_ << "is " ; |
| 1761 | return MatchPrintAndExplain(obj.*field_, matcher_, listener); |
| 1762 | } |
| 1763 | |
| 1764 | bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
| 1765 | MatchResultListener* listener) const { |
| 1766 | if (p == nullptr) return false; |
| 1767 | |
| 1768 | *listener << "which points to an object " ; |
| 1769 | // Since *p has a field, it must be a class/struct/union type and |
| 1770 | // thus cannot be a pointer. Therefore we pass false_type() as |
| 1771 | // the first argument. |
| 1772 | return MatchAndExplainImpl(std::false_type(), *p, listener); |
| 1773 | } |
| 1774 | |
| 1775 | const FieldType Class::*field_; |
| 1776 | const Matcher<const FieldType&> matcher_; |
| 1777 | |
| 1778 | // Contains either "whose given field " if the name of the field is unknown |
| 1779 | // or "whose field `name_of_field` " if the name is known. |
| 1780 | const std::string whose_field_; |
| 1781 | |
| 1782 | GTEST_DISALLOW_ASSIGN_(FieldMatcher); |
| 1783 | }; |
| 1784 | |
| 1785 | // Implements the Property() matcher for matching a property |
| 1786 | // (i.e. return value of a getter method) of an object. |
| 1787 | // |
| 1788 | // Property is a const-qualified member function of Class returning |
| 1789 | // PropertyType. |
| 1790 | template <typename Class, typename PropertyType, typename Property> |
| 1791 | class PropertyMatcher { |
| 1792 | public: |
| 1793 | typedef const PropertyType& RefToConstProperty; |
| 1794 | |
| 1795 | PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) |
| 1796 | : property_(property), |
| 1797 | matcher_(matcher), |
| 1798 | whose_property_("whose given property " ) {} |
| 1799 | |
| 1800 | PropertyMatcher(const std::string& property_name, Property property, |
| 1801 | const Matcher<RefToConstProperty>& matcher) |
| 1802 | : property_(property), |
| 1803 | matcher_(matcher), |
| 1804 | whose_property_("whose property `" + property_name + "` " ) {} |
| 1805 | |
| 1806 | void DescribeTo(::std::ostream* os) const { |
| 1807 | *os << "is an object " << whose_property_; |
| 1808 | matcher_.DescribeTo(os); |
| 1809 | } |
| 1810 | |
| 1811 | void DescribeNegationTo(::std::ostream* os) const { |
| 1812 | *os << "is an object " << whose_property_; |
| 1813 | matcher_.DescribeNegationTo(os); |
| 1814 | } |
| 1815 | |
| 1816 | template <typename T> |
| 1817 | bool MatchAndExplain(const T&value, MatchResultListener* listener) const { |
| 1818 | return MatchAndExplainImpl( |
| 1819 | typename std::is_pointer<GTEST_REMOVE_CONST_(T)>::type(), value, |
| 1820 | listener); |
| 1821 | } |
| 1822 | |
| 1823 | private: |
| 1824 | bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
| 1825 | const Class& obj, |
| 1826 | MatchResultListener* listener) const { |
| 1827 | *listener << whose_property_ << "is " ; |
| 1828 | // Cannot pass the return value (for example, int) to MatchPrintAndExplain, |
| 1829 | // which takes a non-const reference as argument. |
| 1830 | RefToConstProperty result = (obj.*property_)(); |
| 1831 | return MatchPrintAndExplain(result, matcher_, listener); |
| 1832 | } |
| 1833 | |
| 1834 | bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
| 1835 | MatchResultListener* listener) const { |
| 1836 | if (p == nullptr) return false; |
| 1837 | |
| 1838 | *listener << "which points to an object " ; |
| 1839 | // Since *p has a property method, it must be a class/struct/union |
| 1840 | // type and thus cannot be a pointer. Therefore we pass |
| 1841 | // false_type() as the first argument. |
| 1842 | return MatchAndExplainImpl(std::false_type(), *p, listener); |
| 1843 | } |
| 1844 | |
| 1845 | Property property_; |
| 1846 | const Matcher<RefToConstProperty> matcher_; |
| 1847 | |
| 1848 | // Contains either "whose given property " if the name of the property is |
| 1849 | // unknown or "whose property `name_of_property` " if the name is known. |
| 1850 | const std::string whose_property_; |
| 1851 | |
| 1852 | GTEST_DISALLOW_ASSIGN_(PropertyMatcher); |
| 1853 | }; |
| 1854 | |
| 1855 | // Type traits specifying various features of different functors for ResultOf. |
| 1856 | // The default template specifies features for functor objects. |
| 1857 | template <typename Functor> |
| 1858 | struct CallableTraits { |
| 1859 | typedef Functor StorageType; |
| 1860 | |
| 1861 | static void CheckIsValid(Functor /* functor */) {} |
| 1862 | |
| 1863 | template <typename T> |
| 1864 | static auto Invoke(Functor f, T arg) -> decltype(f(arg)) { return f(arg); } |
| 1865 | }; |
| 1866 | |
| 1867 | // Specialization for function pointers. |
| 1868 | template <typename ArgType, typename ResType> |
| 1869 | struct CallableTraits<ResType(*)(ArgType)> { |
| 1870 | typedef ResType ResultType; |
| 1871 | typedef ResType(*StorageType)(ArgType); |
| 1872 | |
| 1873 | static void CheckIsValid(ResType(*f)(ArgType)) { |
| 1874 | GTEST_CHECK_(f != nullptr) |
| 1875 | << "NULL function pointer is passed into ResultOf()." ; |
| 1876 | } |
| 1877 | template <typename T> |
| 1878 | static ResType Invoke(ResType(*f)(ArgType), T arg) { |
| 1879 | return (*f)(arg); |
| 1880 | } |
| 1881 | }; |
| 1882 | |
| 1883 | // Implements the ResultOf() matcher for matching a return value of a |
| 1884 | // unary function of an object. |
| 1885 | template <typename Callable, typename InnerMatcher> |
| 1886 | class ResultOfMatcher { |
| 1887 | public: |
| 1888 | ResultOfMatcher(Callable callable, InnerMatcher matcher) |
| 1889 | : callable_(std::move(callable)), matcher_(std::move(matcher)) { |
| 1890 | CallableTraits<Callable>::CheckIsValid(callable_); |
| 1891 | } |
| 1892 | |
| 1893 | template <typename T> |
| 1894 | operator Matcher<T>() const { |
| 1895 | return Matcher<T>(new Impl<T>(callable_, matcher_)); |
| 1896 | } |
| 1897 | |
| 1898 | private: |
| 1899 | typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
| 1900 | |
| 1901 | template <typename T> |
| 1902 | class Impl : public MatcherInterface<T> { |
| 1903 | using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( |
| 1904 | std::declval<CallableStorageType>(), std::declval<T>())); |
| 1905 | |
| 1906 | public: |
| 1907 | template <typename M> |
| 1908 | Impl(const CallableStorageType& callable, const M& matcher) |
| 1909 | : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {} |
| 1910 | |
| 1911 | void DescribeTo(::std::ostream* os) const override { |
| 1912 | *os << "is mapped by the given callable to a value that " ; |
| 1913 | matcher_.DescribeTo(os); |
| 1914 | } |
| 1915 | |
| 1916 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1917 | *os << "is mapped by the given callable to a value that " ; |
| 1918 | matcher_.DescribeNegationTo(os); |
| 1919 | } |
| 1920 | |
| 1921 | bool MatchAndExplain(T obj, MatchResultListener* listener) const override { |
| 1922 | *listener << "which is mapped by the given callable to " ; |
| 1923 | // Cannot pass the return value directly to MatchPrintAndExplain, which |
| 1924 | // takes a non-const reference as argument. |
| 1925 | // Also, specifying template argument explicitly is needed because T could |
| 1926 | // be a non-const reference (e.g. Matcher<Uncopyable&>). |
| 1927 | ResultType result = |
| 1928 | CallableTraits<Callable>::template Invoke<T>(callable_, obj); |
| 1929 | return MatchPrintAndExplain(result, matcher_, listener); |
| 1930 | } |
| 1931 | |
| 1932 | private: |
| 1933 | // Functors often define operator() as non-const method even though |
| 1934 | // they are actually stateless. But we need to use them even when |
| 1935 | // 'this' is a const pointer. It's the user's responsibility not to |
| 1936 | // use stateful callables with ResultOf(), which doesn't guarantee |
| 1937 | // how many times the callable will be invoked. |
| 1938 | mutable CallableStorageType callable_; |
| 1939 | const Matcher<ResultType> matcher_; |
| 1940 | |
| 1941 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 1942 | }; // class Impl |
| 1943 | |
| 1944 | const CallableStorageType callable_; |
| 1945 | const InnerMatcher matcher_; |
| 1946 | |
| 1947 | GTEST_DISALLOW_ASSIGN_(ResultOfMatcher); |
| 1948 | }; |
| 1949 | |
| 1950 | // Implements a matcher that checks the size of an STL-style container. |
| 1951 | template <typename SizeMatcher> |
| 1952 | class SizeIsMatcher { |
| 1953 | public: |
| 1954 | explicit SizeIsMatcher(const SizeMatcher& size_matcher) |
| 1955 | : size_matcher_(size_matcher) { |
| 1956 | } |
| 1957 | |
| 1958 | template <typename Container> |
| 1959 | operator Matcher<Container>() const { |
| 1960 | return Matcher<Container>(new Impl<const Container&>(size_matcher_)); |
| 1961 | } |
| 1962 | |
| 1963 | template <typename Container> |
| 1964 | class Impl : public MatcherInterface<Container> { |
| 1965 | public: |
| 1966 | using SizeType = decltype(std::declval<Container>().size()); |
| 1967 | explicit Impl(const SizeMatcher& size_matcher) |
| 1968 | : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} |
| 1969 | |
| 1970 | void DescribeTo(::std::ostream* os) const override { |
| 1971 | *os << "size " ; |
| 1972 | size_matcher_.DescribeTo(os); |
| 1973 | } |
| 1974 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1975 | *os << "size " ; |
| 1976 | size_matcher_.DescribeNegationTo(os); |
| 1977 | } |
| 1978 | |
| 1979 | bool MatchAndExplain(Container container, |
| 1980 | MatchResultListener* listener) const override { |
| 1981 | SizeType size = container.size(); |
| 1982 | StringMatchResultListener size_listener; |
| 1983 | const bool result = size_matcher_.MatchAndExplain(size, &size_listener); |
| 1984 | *listener |
| 1985 | << "whose size " << size << (result ? " matches" : " doesn't match" ); |
| 1986 | PrintIfNotEmpty(size_listener.str(), listener->stream()); |
| 1987 | return result; |
| 1988 | } |
| 1989 | |
| 1990 | private: |
| 1991 | const Matcher<SizeType> size_matcher_; |
| 1992 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 1993 | }; |
| 1994 | |
| 1995 | private: |
| 1996 | const SizeMatcher size_matcher_; |
| 1997 | GTEST_DISALLOW_ASSIGN_(SizeIsMatcher); |
| 1998 | }; |
| 1999 | |
| 2000 | // Implements a matcher that checks the begin()..end() distance of an STL-style |
| 2001 | // container. |
| 2002 | template <typename DistanceMatcher> |
| 2003 | class BeginEndDistanceIsMatcher { |
| 2004 | public: |
| 2005 | explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) |
| 2006 | : distance_matcher_(distance_matcher) {} |
| 2007 | |
| 2008 | template <typename Container> |
| 2009 | operator Matcher<Container>() const { |
| 2010 | return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); |
| 2011 | } |
| 2012 | |
| 2013 | template <typename Container> |
| 2014 | class Impl : public MatcherInterface<Container> { |
| 2015 | public: |
| 2016 | typedef internal::StlContainerView< |
| 2017 | GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; |
| 2018 | typedef typename std::iterator_traits< |
| 2019 | typename ContainerView::type::const_iterator>::difference_type |
| 2020 | DistanceType; |
| 2021 | explicit Impl(const DistanceMatcher& distance_matcher) |
| 2022 | : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} |
| 2023 | |
| 2024 | void DescribeTo(::std::ostream* os) const override { |
| 2025 | *os << "distance between begin() and end() " ; |
| 2026 | distance_matcher_.DescribeTo(os); |
| 2027 | } |
| 2028 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2029 | *os << "distance between begin() and end() " ; |
| 2030 | distance_matcher_.DescribeNegationTo(os); |
| 2031 | } |
| 2032 | |
| 2033 | bool MatchAndExplain(Container container, |
| 2034 | MatchResultListener* listener) const override { |
| 2035 | using std::begin; |
| 2036 | using std::end; |
| 2037 | DistanceType distance = std::distance(begin(container), end(container)); |
| 2038 | StringMatchResultListener distance_listener; |
| 2039 | const bool result = |
| 2040 | distance_matcher_.MatchAndExplain(distance, &distance_listener); |
| 2041 | *listener << "whose distance between begin() and end() " << distance |
| 2042 | << (result ? " matches" : " doesn't match" ); |
| 2043 | PrintIfNotEmpty(distance_listener.str(), listener->stream()); |
| 2044 | return result; |
| 2045 | } |
| 2046 | |
| 2047 | private: |
| 2048 | const Matcher<DistanceType> distance_matcher_; |
| 2049 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 2050 | }; |
| 2051 | |
| 2052 | private: |
| 2053 | const DistanceMatcher distance_matcher_; |
| 2054 | GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher); |
| 2055 | }; |
| 2056 | |
| 2057 | // Implements an equality matcher for any STL-style container whose elements |
| 2058 | // support ==. This matcher is like Eq(), but its failure explanations provide |
| 2059 | // more detailed information that is useful when the container is used as a set. |
| 2060 | // The failure message reports elements that are in one of the operands but not |
| 2061 | // the other. The failure messages do not report duplicate or out-of-order |
| 2062 | // elements in the containers (which don't properly matter to sets, but can |
| 2063 | // occur if the containers are vectors or lists, for example). |
| 2064 | // |
| 2065 | // Uses the container's const_iterator, value_type, operator ==, |
| 2066 | // begin(), and end(). |
| 2067 | template <typename Container> |
| 2068 | class ContainerEqMatcher { |
| 2069 | public: |
| 2070 | typedef internal::StlContainerView<Container> View; |
| 2071 | typedef typename View::type StlContainer; |
| 2072 | typedef typename View::const_reference StlContainerReference; |
| 2073 | |
| 2074 | // We make a copy of expected in case the elements in it are modified |
| 2075 | // after this matcher is created. |
| 2076 | explicit ContainerEqMatcher(const Container& expected) |
| 2077 | : expected_(View::Copy(expected)) { |
| 2078 | // Makes sure the user doesn't instantiate this class template |
| 2079 | // with a const or reference type. |
| 2080 | (void)testing::StaticAssertTypeEq<Container, |
| 2081 | GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>(); |
| 2082 | } |
| 2083 | |
| 2084 | void DescribeTo(::std::ostream* os) const { |
| 2085 | *os << "equals " ; |
| 2086 | UniversalPrint(expected_, os); |
| 2087 | } |
| 2088 | void DescribeNegationTo(::std::ostream* os) const { |
| 2089 | *os << "does not equal " ; |
| 2090 | UniversalPrint(expected_, os); |
| 2091 | } |
| 2092 | |
| 2093 | template <typename LhsContainer> |
| 2094 | bool MatchAndExplain(const LhsContainer& lhs, |
| 2095 | MatchResultListener* listener) const { |
| 2096 | // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug |
| 2097 | // that causes LhsContainer to be a const type sometimes. |
| 2098 | typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)> |
| 2099 | LhsView; |
| 2100 | typedef typename LhsView::type LhsStlContainer; |
| 2101 | StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| 2102 | if (lhs_stl_container == expected_) |
| 2103 | return true; |
| 2104 | |
| 2105 | ::std::ostream* const os = listener->stream(); |
| 2106 | if (os != nullptr) { |
| 2107 | // Something is different. Check for extra values first. |
| 2108 | bool = false; |
| 2109 | for (typename LhsStlContainer::const_iterator it = |
| 2110 | lhs_stl_container.begin(); |
| 2111 | it != lhs_stl_container.end(); ++it) { |
| 2112 | if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == |
| 2113 | expected_.end()) { |
| 2114 | if (printed_header) { |
| 2115 | *os << ", " ; |
| 2116 | } else { |
| 2117 | *os << "which has these unexpected elements: " ; |
| 2118 | printed_header = true; |
| 2119 | } |
| 2120 | UniversalPrint(*it, os); |
| 2121 | } |
| 2122 | } |
| 2123 | |
| 2124 | // Now check for missing values. |
| 2125 | bool = false; |
| 2126 | for (typename StlContainer::const_iterator it = expected_.begin(); |
| 2127 | it != expected_.end(); ++it) { |
| 2128 | if (internal::ArrayAwareFind( |
| 2129 | lhs_stl_container.begin(), lhs_stl_container.end(), *it) == |
| 2130 | lhs_stl_container.end()) { |
| 2131 | if (printed_header2) { |
| 2132 | *os << ", " ; |
| 2133 | } else { |
| 2134 | *os << (printed_header ? ",\nand" : "which" ) |
| 2135 | << " doesn't have these expected elements: " ; |
| 2136 | printed_header2 = true; |
| 2137 | } |
| 2138 | UniversalPrint(*it, os); |
| 2139 | } |
| 2140 | } |
| 2141 | } |
| 2142 | |
| 2143 | return false; |
| 2144 | } |
| 2145 | |
| 2146 | private: |
| 2147 | const StlContainer expected_; |
| 2148 | |
| 2149 | GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher); |
| 2150 | }; |
| 2151 | |
| 2152 | // A comparator functor that uses the < operator to compare two values. |
| 2153 | struct LessComparator { |
| 2154 | template <typename T, typename U> |
| 2155 | bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } |
| 2156 | }; |
| 2157 | |
| 2158 | // Implements WhenSortedBy(comparator, container_matcher). |
| 2159 | template <typename Comparator, typename ContainerMatcher> |
| 2160 | class WhenSortedByMatcher { |
| 2161 | public: |
| 2162 | WhenSortedByMatcher(const Comparator& comparator, |
| 2163 | const ContainerMatcher& matcher) |
| 2164 | : comparator_(comparator), matcher_(matcher) {} |
| 2165 | |
| 2166 | template <typename LhsContainer> |
| 2167 | operator Matcher<LhsContainer>() const { |
| 2168 | return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); |
| 2169 | } |
| 2170 | |
| 2171 | template <typename LhsContainer> |
| 2172 | class Impl : public MatcherInterface<LhsContainer> { |
| 2173 | public: |
| 2174 | typedef internal::StlContainerView< |
| 2175 | GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
| 2176 | typedef typename LhsView::type LhsStlContainer; |
| 2177 | typedef typename LhsView::const_reference LhsStlContainerReference; |
| 2178 | // Transforms std::pair<const Key, Value> into std::pair<Key, Value> |
| 2179 | // so that we can match associative containers. |
| 2180 | typedef typename RemoveConstFromKey< |
| 2181 | typename LhsStlContainer::value_type>::type LhsValue; |
| 2182 | |
| 2183 | Impl(const Comparator& comparator, const ContainerMatcher& matcher) |
| 2184 | : comparator_(comparator), matcher_(matcher) {} |
| 2185 | |
| 2186 | void DescribeTo(::std::ostream* os) const override { |
| 2187 | *os << "(when sorted) " ; |
| 2188 | matcher_.DescribeTo(os); |
| 2189 | } |
| 2190 | |
| 2191 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2192 | *os << "(when sorted) " ; |
| 2193 | matcher_.DescribeNegationTo(os); |
| 2194 | } |
| 2195 | |
| 2196 | bool MatchAndExplain(LhsContainer lhs, |
| 2197 | MatchResultListener* listener) const override { |
| 2198 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| 2199 | ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), |
| 2200 | lhs_stl_container.end()); |
| 2201 | ::std::sort( |
| 2202 | sorted_container.begin(), sorted_container.end(), comparator_); |
| 2203 | |
| 2204 | if (!listener->IsInterested()) { |
| 2205 | // If the listener is not interested, we do not need to |
| 2206 | // construct the inner explanation. |
| 2207 | return matcher_.Matches(sorted_container); |
| 2208 | } |
| 2209 | |
| 2210 | *listener << "which is " ; |
| 2211 | UniversalPrint(sorted_container, listener->stream()); |
| 2212 | *listener << " when sorted" ; |
| 2213 | |
| 2214 | StringMatchResultListener inner_listener; |
| 2215 | const bool match = matcher_.MatchAndExplain(sorted_container, |
| 2216 | &inner_listener); |
| 2217 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| 2218 | return match; |
| 2219 | } |
| 2220 | |
| 2221 | private: |
| 2222 | const Comparator comparator_; |
| 2223 | const Matcher<const ::std::vector<LhsValue>&> matcher_; |
| 2224 | |
| 2225 | GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); |
| 2226 | }; |
| 2227 | |
| 2228 | private: |
| 2229 | const Comparator comparator_; |
| 2230 | const ContainerMatcher matcher_; |
| 2231 | |
| 2232 | GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher); |
| 2233 | }; |
| 2234 | |
| 2235 | // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher |
| 2236 | // must be able to be safely cast to Matcher<std::tuple<const T1&, const |
| 2237 | // T2&> >, where T1 and T2 are the types of elements in the LHS |
| 2238 | // container and the RHS container respectively. |
| 2239 | template <typename TupleMatcher, typename RhsContainer> |
| 2240 | class PointwiseMatcher { |
| 2241 | GTEST_COMPILE_ASSERT_( |
| 2242 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, |
| 2243 | use_UnorderedPointwise_with_hash_tables); |
| 2244 | |
| 2245 | public: |
| 2246 | typedef internal::StlContainerView<RhsContainer> RhsView; |
| 2247 | typedef typename RhsView::type RhsStlContainer; |
| 2248 | typedef typename RhsStlContainer::value_type RhsValue; |
| 2249 | |
| 2250 | // Like ContainerEq, we make a copy of rhs in case the elements in |
| 2251 | // it are modified after this matcher is created. |
| 2252 | PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) |
| 2253 | : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) { |
| 2254 | // Makes sure the user doesn't instantiate this class template |
| 2255 | // with a const or reference type. |
| 2256 | (void)testing::StaticAssertTypeEq<RhsContainer, |
| 2257 | GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>(); |
| 2258 | } |
| 2259 | |
| 2260 | template <typename LhsContainer> |
| 2261 | operator Matcher<LhsContainer>() const { |
| 2262 | GTEST_COMPILE_ASSERT_( |
| 2263 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, |
| 2264 | use_UnorderedPointwise_with_hash_tables); |
| 2265 | |
| 2266 | return Matcher<LhsContainer>( |
| 2267 | new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); |
| 2268 | } |
| 2269 | |
| 2270 | template <typename LhsContainer> |
| 2271 | class Impl : public MatcherInterface<LhsContainer> { |
| 2272 | public: |
| 2273 | typedef internal::StlContainerView< |
| 2274 | GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
| 2275 | typedef typename LhsView::type LhsStlContainer; |
| 2276 | typedef typename LhsView::const_reference LhsStlContainerReference; |
| 2277 | typedef typename LhsStlContainer::value_type LhsValue; |
| 2278 | // We pass the LHS value and the RHS value to the inner matcher by |
| 2279 | // reference, as they may be expensive to copy. We must use tuple |
| 2280 | // instead of pair here, as a pair cannot hold references (C++ 98, |
| 2281 | // 20.2.2 [lib.pairs]). |
| 2282 | typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; |
| 2283 | |
| 2284 | Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) |
| 2285 | // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. |
| 2286 | : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), |
| 2287 | rhs_(rhs) {} |
| 2288 | |
| 2289 | void DescribeTo(::std::ostream* os) const override { |
| 2290 | *os << "contains " << rhs_.size() |
| 2291 | << " values, where each value and its corresponding value in " ; |
| 2292 | UniversalPrinter<RhsStlContainer>::Print(rhs_, os); |
| 2293 | *os << " " ; |
| 2294 | mono_tuple_matcher_.DescribeTo(os); |
| 2295 | } |
| 2296 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2297 | *os << "doesn't contain exactly " << rhs_.size() |
| 2298 | << " values, or contains a value x at some index i" |
| 2299 | << " where x and the i-th value of " ; |
| 2300 | UniversalPrint(rhs_, os); |
| 2301 | *os << " " ; |
| 2302 | mono_tuple_matcher_.DescribeNegationTo(os); |
| 2303 | } |
| 2304 | |
| 2305 | bool MatchAndExplain(LhsContainer lhs, |
| 2306 | MatchResultListener* listener) const override { |
| 2307 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| 2308 | const size_t actual_size = lhs_stl_container.size(); |
| 2309 | if (actual_size != rhs_.size()) { |
| 2310 | *listener << "which contains " << actual_size << " values" ; |
| 2311 | return false; |
| 2312 | } |
| 2313 | |
| 2314 | typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); |
| 2315 | typename RhsStlContainer::const_iterator right = rhs_.begin(); |
| 2316 | for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { |
| 2317 | if (listener->IsInterested()) { |
| 2318 | StringMatchResultListener inner_listener; |
| 2319 | // Create InnerMatcherArg as a temporarily object to avoid it outlives |
| 2320 | // *left and *right. Dereference or the conversion to `const T&` may |
| 2321 | // return temp objects, e.g for vector<bool>. |
| 2322 | if (!mono_tuple_matcher_.MatchAndExplain( |
| 2323 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
| 2324 | ImplicitCast_<const RhsValue&>(*right)), |
| 2325 | &inner_listener)) { |
| 2326 | *listener << "where the value pair (" ; |
| 2327 | UniversalPrint(*left, listener->stream()); |
| 2328 | *listener << ", " ; |
| 2329 | UniversalPrint(*right, listener->stream()); |
| 2330 | *listener << ") at index #" << i << " don't match" ; |
| 2331 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| 2332 | return false; |
| 2333 | } |
| 2334 | } else { |
| 2335 | if (!mono_tuple_matcher_.Matches( |
| 2336 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
| 2337 | ImplicitCast_<const RhsValue&>(*right)))) |
| 2338 | return false; |
| 2339 | } |
| 2340 | } |
| 2341 | |
| 2342 | return true; |
| 2343 | } |
| 2344 | |
| 2345 | private: |
| 2346 | const Matcher<InnerMatcherArg> mono_tuple_matcher_; |
| 2347 | const RhsStlContainer rhs_; |
| 2348 | |
| 2349 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 2350 | }; |
| 2351 | |
| 2352 | private: |
| 2353 | const TupleMatcher tuple_matcher_; |
| 2354 | const RhsStlContainer rhs_; |
| 2355 | |
| 2356 | GTEST_DISALLOW_ASSIGN_(PointwiseMatcher); |
| 2357 | }; |
| 2358 | |
| 2359 | // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. |
| 2360 | template <typename Container> |
| 2361 | class QuantifierMatcherImpl : public MatcherInterface<Container> { |
| 2362 | public: |
| 2363 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| 2364 | typedef StlContainerView<RawContainer> View; |
| 2365 | typedef typename View::type StlContainer; |
| 2366 | typedef typename View::const_reference StlContainerReference; |
| 2367 | typedef typename StlContainer::value_type Element; |
| 2368 | |
| 2369 | template <typename InnerMatcher> |
| 2370 | explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) |
| 2371 | : inner_matcher_( |
| 2372 | testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
| 2373 | |
| 2374 | // Checks whether: |
| 2375 | // * All elements in the container match, if all_elements_should_match. |
| 2376 | // * Any element in the container matches, if !all_elements_should_match. |
| 2377 | bool MatchAndExplainImpl(bool all_elements_should_match, |
| 2378 | Container container, |
| 2379 | MatchResultListener* listener) const { |
| 2380 | StlContainerReference stl_container = View::ConstReference(container); |
| 2381 | size_t i = 0; |
| 2382 | for (typename StlContainer::const_iterator it = stl_container.begin(); |
| 2383 | it != stl_container.end(); ++it, ++i) { |
| 2384 | StringMatchResultListener inner_listener; |
| 2385 | const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
| 2386 | |
| 2387 | if (matches != all_elements_should_match) { |
| 2388 | *listener << "whose element #" << i |
| 2389 | << (matches ? " matches" : " doesn't match" ); |
| 2390 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| 2391 | return !all_elements_should_match; |
| 2392 | } |
| 2393 | } |
| 2394 | return all_elements_should_match; |
| 2395 | } |
| 2396 | |
| 2397 | protected: |
| 2398 | const Matcher<const Element&> inner_matcher_; |
| 2399 | |
| 2400 | GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl); |
| 2401 | }; |
| 2402 | |
| 2403 | // Implements Contains(element_matcher) for the given argument type Container. |
| 2404 | // Symmetric to EachMatcherImpl. |
| 2405 | template <typename Container> |
| 2406 | class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { |
| 2407 | public: |
| 2408 | template <typename InnerMatcher> |
| 2409 | explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
| 2410 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
| 2411 | |
| 2412 | // Describes what this matcher does. |
| 2413 | void DescribeTo(::std::ostream* os) const override { |
| 2414 | *os << "contains at least one element that " ; |
| 2415 | this->inner_matcher_.DescribeTo(os); |
| 2416 | } |
| 2417 | |
| 2418 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2419 | *os << "doesn't contain any element that " ; |
| 2420 | this->inner_matcher_.DescribeTo(os); |
| 2421 | } |
| 2422 | |
| 2423 | bool MatchAndExplain(Container container, |
| 2424 | MatchResultListener* listener) const override { |
| 2425 | return this->MatchAndExplainImpl(false, container, listener); |
| 2426 | } |
| 2427 | |
| 2428 | private: |
| 2429 | GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl); |
| 2430 | }; |
| 2431 | |
| 2432 | // Implements Each(element_matcher) for the given argument type Container. |
| 2433 | // Symmetric to ContainsMatcherImpl. |
| 2434 | template <typename Container> |
| 2435 | class EachMatcherImpl : public QuantifierMatcherImpl<Container> { |
| 2436 | public: |
| 2437 | template <typename InnerMatcher> |
| 2438 | explicit EachMatcherImpl(InnerMatcher inner_matcher) |
| 2439 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
| 2440 | |
| 2441 | // Describes what this matcher does. |
| 2442 | void DescribeTo(::std::ostream* os) const override { |
| 2443 | *os << "only contains elements that " ; |
| 2444 | this->inner_matcher_.DescribeTo(os); |
| 2445 | } |
| 2446 | |
| 2447 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2448 | *os << "contains some element that " ; |
| 2449 | this->inner_matcher_.DescribeNegationTo(os); |
| 2450 | } |
| 2451 | |
| 2452 | bool MatchAndExplain(Container container, |
| 2453 | MatchResultListener* listener) const override { |
| 2454 | return this->MatchAndExplainImpl(true, container, listener); |
| 2455 | } |
| 2456 | |
| 2457 | private: |
| 2458 | GTEST_DISALLOW_ASSIGN_(EachMatcherImpl); |
| 2459 | }; |
| 2460 | |
| 2461 | // Implements polymorphic Contains(element_matcher). |
| 2462 | template <typename M> |
| 2463 | class ContainsMatcher { |
| 2464 | public: |
| 2465 | explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
| 2466 | |
| 2467 | template <typename Container> |
| 2468 | operator Matcher<Container>() const { |
| 2469 | return Matcher<Container>( |
| 2470 | new ContainsMatcherImpl<const Container&>(inner_matcher_)); |
| 2471 | } |
| 2472 | |
| 2473 | private: |
| 2474 | const M inner_matcher_; |
| 2475 | |
| 2476 | GTEST_DISALLOW_ASSIGN_(ContainsMatcher); |
| 2477 | }; |
| 2478 | |
| 2479 | // Implements polymorphic Each(element_matcher). |
| 2480 | template <typename M> |
| 2481 | class EachMatcher { |
| 2482 | public: |
| 2483 | explicit EachMatcher(M m) : inner_matcher_(m) {} |
| 2484 | |
| 2485 | template <typename Container> |
| 2486 | operator Matcher<Container>() const { |
| 2487 | return Matcher<Container>( |
| 2488 | new EachMatcherImpl<const Container&>(inner_matcher_)); |
| 2489 | } |
| 2490 | |
| 2491 | private: |
| 2492 | const M inner_matcher_; |
| 2493 | |
| 2494 | GTEST_DISALLOW_ASSIGN_(EachMatcher); |
| 2495 | }; |
| 2496 | |
| 2497 | struct Rank1 {}; |
| 2498 | struct Rank0 : Rank1 {}; |
| 2499 | |
| 2500 | namespace pair_getters { |
| 2501 | using std::get; |
| 2502 | template <typename T> |
| 2503 | auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT |
| 2504 | return get<0>(x); |
| 2505 | } |
| 2506 | template <typename T> |
| 2507 | auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT |
| 2508 | return x.first; |
| 2509 | } |
| 2510 | |
| 2511 | template <typename T> |
| 2512 | auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT |
| 2513 | return get<1>(x); |
| 2514 | } |
| 2515 | template <typename T> |
| 2516 | auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT |
| 2517 | return x.second; |
| 2518 | } |
| 2519 | } // namespace pair_getters |
| 2520 | |
| 2521 | // Implements Key(inner_matcher) for the given argument pair type. |
| 2522 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
| 2523 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
| 2524 | // std::map that contains at least one element whose key is >= 5. |
| 2525 | template <typename PairType> |
| 2526 | class KeyMatcherImpl : public MatcherInterface<PairType> { |
| 2527 | public: |
| 2528 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
| 2529 | typedef typename RawPairType::first_type KeyType; |
| 2530 | |
| 2531 | template <typename InnerMatcher> |
| 2532 | explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
| 2533 | : inner_matcher_( |
| 2534 | testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { |
| 2535 | } |
| 2536 | |
| 2537 | // Returns true iff 'key_value.first' (the key) matches the inner matcher. |
| 2538 | bool MatchAndExplain(PairType key_value, |
| 2539 | MatchResultListener* listener) const override { |
| 2540 | StringMatchResultListener inner_listener; |
| 2541 | const bool match = inner_matcher_.MatchAndExplain( |
| 2542 | pair_getters::First(key_value, Rank0()), &inner_listener); |
| 2543 | const std::string explanation = inner_listener.str(); |
| 2544 | if (explanation != "" ) { |
| 2545 | *listener << "whose first field is a value " << explanation; |
| 2546 | } |
| 2547 | return match; |
| 2548 | } |
| 2549 | |
| 2550 | // Describes what this matcher does. |
| 2551 | void DescribeTo(::std::ostream* os) const override { |
| 2552 | *os << "has a key that " ; |
| 2553 | inner_matcher_.DescribeTo(os); |
| 2554 | } |
| 2555 | |
| 2556 | // Describes what the negation of this matcher does. |
| 2557 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2558 | *os << "doesn't have a key that " ; |
| 2559 | inner_matcher_.DescribeTo(os); |
| 2560 | } |
| 2561 | |
| 2562 | private: |
| 2563 | const Matcher<const KeyType&> inner_matcher_; |
| 2564 | |
| 2565 | GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl); |
| 2566 | }; |
| 2567 | |
| 2568 | // Implements polymorphic Key(matcher_for_key). |
| 2569 | template <typename M> |
| 2570 | class KeyMatcher { |
| 2571 | public: |
| 2572 | explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
| 2573 | |
| 2574 | template <typename PairType> |
| 2575 | operator Matcher<PairType>() const { |
| 2576 | return Matcher<PairType>( |
| 2577 | new KeyMatcherImpl<const PairType&>(matcher_for_key_)); |
| 2578 | } |
| 2579 | |
| 2580 | private: |
| 2581 | const M matcher_for_key_; |
| 2582 | |
| 2583 | GTEST_DISALLOW_ASSIGN_(KeyMatcher); |
| 2584 | }; |
| 2585 | |
| 2586 | // Implements Pair(first_matcher, second_matcher) for the given argument pair |
| 2587 | // type with its two matchers. See Pair() function below. |
| 2588 | template <typename PairType> |
| 2589 | class PairMatcherImpl : public MatcherInterface<PairType> { |
| 2590 | public: |
| 2591 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
| 2592 | typedef typename RawPairType::first_type FirstType; |
| 2593 | typedef typename RawPairType::second_type SecondType; |
| 2594 | |
| 2595 | template <typename FirstMatcher, typename SecondMatcher> |
| 2596 | PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
| 2597 | : first_matcher_( |
| 2598 | testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
| 2599 | second_matcher_( |
| 2600 | testing::SafeMatcherCast<const SecondType&>(second_matcher)) { |
| 2601 | } |
| 2602 | |
| 2603 | // Describes what this matcher does. |
| 2604 | void DescribeTo(::std::ostream* os) const override { |
| 2605 | *os << "has a first field that " ; |
| 2606 | first_matcher_.DescribeTo(os); |
| 2607 | *os << ", and has a second field that " ; |
| 2608 | second_matcher_.DescribeTo(os); |
| 2609 | } |
| 2610 | |
| 2611 | // Describes what the negation of this matcher does. |
| 2612 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2613 | *os << "has a first field that " ; |
| 2614 | first_matcher_.DescribeNegationTo(os); |
| 2615 | *os << ", or has a second field that " ; |
| 2616 | second_matcher_.DescribeNegationTo(os); |
| 2617 | } |
| 2618 | |
| 2619 | // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second' |
| 2620 | // matches second_matcher. |
| 2621 | bool MatchAndExplain(PairType a_pair, |
| 2622 | MatchResultListener* listener) const override { |
| 2623 | if (!listener->IsInterested()) { |
| 2624 | // If the listener is not interested, we don't need to construct the |
| 2625 | // explanation. |
| 2626 | return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && |
| 2627 | second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); |
| 2628 | } |
| 2629 | StringMatchResultListener first_inner_listener; |
| 2630 | if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), |
| 2631 | &first_inner_listener)) { |
| 2632 | *listener << "whose first field does not match" ; |
| 2633 | PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); |
| 2634 | return false; |
| 2635 | } |
| 2636 | StringMatchResultListener second_inner_listener; |
| 2637 | if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), |
| 2638 | &second_inner_listener)) { |
| 2639 | *listener << "whose second field does not match" ; |
| 2640 | PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); |
| 2641 | return false; |
| 2642 | } |
| 2643 | ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), |
| 2644 | listener); |
| 2645 | return true; |
| 2646 | } |
| 2647 | |
| 2648 | private: |
| 2649 | void ExplainSuccess(const std::string& first_explanation, |
| 2650 | const std::string& second_explanation, |
| 2651 | MatchResultListener* listener) const { |
| 2652 | *listener << "whose both fields match" ; |
| 2653 | if (first_explanation != "" ) { |
| 2654 | *listener << ", where the first field is a value " << first_explanation; |
| 2655 | } |
| 2656 | if (second_explanation != "" ) { |
| 2657 | *listener << ", " ; |
| 2658 | if (first_explanation != "" ) { |
| 2659 | *listener << "and " ; |
| 2660 | } else { |
| 2661 | *listener << "where " ; |
| 2662 | } |
| 2663 | *listener << "the second field is a value " << second_explanation; |
| 2664 | } |
| 2665 | } |
| 2666 | |
| 2667 | const Matcher<const FirstType&> first_matcher_; |
| 2668 | const Matcher<const SecondType&> second_matcher_; |
| 2669 | |
| 2670 | GTEST_DISALLOW_ASSIGN_(PairMatcherImpl); |
| 2671 | }; |
| 2672 | |
| 2673 | // Implements polymorphic Pair(first_matcher, second_matcher). |
| 2674 | template <typename FirstMatcher, typename SecondMatcher> |
| 2675 | class PairMatcher { |
| 2676 | public: |
| 2677 | PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
| 2678 | : first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
| 2679 | |
| 2680 | template <typename PairType> |
| 2681 | operator Matcher<PairType> () const { |
| 2682 | return Matcher<PairType>( |
| 2683 | new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); |
| 2684 | } |
| 2685 | |
| 2686 | private: |
| 2687 | const FirstMatcher first_matcher_; |
| 2688 | const SecondMatcher second_matcher_; |
| 2689 | |
| 2690 | GTEST_DISALLOW_ASSIGN_(PairMatcher); |
| 2691 | }; |
| 2692 | |
| 2693 | // Implements ElementsAre() and ElementsAreArray(). |
| 2694 | template <typename Container> |
| 2695 | class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
| 2696 | public: |
| 2697 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| 2698 | typedef internal::StlContainerView<RawContainer> View; |
| 2699 | typedef typename View::type StlContainer; |
| 2700 | typedef typename View::const_reference StlContainerReference; |
| 2701 | typedef typename StlContainer::value_type Element; |
| 2702 | |
| 2703 | // Constructs the matcher from a sequence of element values or |
| 2704 | // element matchers. |
| 2705 | template <typename InputIter> |
| 2706 | ElementsAreMatcherImpl(InputIter first, InputIter last) { |
| 2707 | while (first != last) { |
| 2708 | matchers_.push_back(MatcherCast<const Element&>(*first++)); |
| 2709 | } |
| 2710 | } |
| 2711 | |
| 2712 | // Describes what this matcher does. |
| 2713 | void DescribeTo(::std::ostream* os) const override { |
| 2714 | if (count() == 0) { |
| 2715 | *os << "is empty" ; |
| 2716 | } else if (count() == 1) { |
| 2717 | *os << "has 1 element that " ; |
| 2718 | matchers_[0].DescribeTo(os); |
| 2719 | } else { |
| 2720 | *os << "has " << Elements(count()) << " where\n" ; |
| 2721 | for (size_t i = 0; i != count(); ++i) { |
| 2722 | *os << "element #" << i << " " ; |
| 2723 | matchers_[i].DescribeTo(os); |
| 2724 | if (i + 1 < count()) { |
| 2725 | *os << ",\n" ; |
| 2726 | } |
| 2727 | } |
| 2728 | } |
| 2729 | } |
| 2730 | |
| 2731 | // Describes what the negation of this matcher does. |
| 2732 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2733 | if (count() == 0) { |
| 2734 | *os << "isn't empty" ; |
| 2735 | return; |
| 2736 | } |
| 2737 | |
| 2738 | *os << "doesn't have " << Elements(count()) << ", or\n" ; |
| 2739 | for (size_t i = 0; i != count(); ++i) { |
| 2740 | *os << "element #" << i << " " ; |
| 2741 | matchers_[i].DescribeNegationTo(os); |
| 2742 | if (i + 1 < count()) { |
| 2743 | *os << ", or\n" ; |
| 2744 | } |
| 2745 | } |
| 2746 | } |
| 2747 | |
| 2748 | bool MatchAndExplain(Container container, |
| 2749 | MatchResultListener* listener) const override { |
| 2750 | // To work with stream-like "containers", we must only walk |
| 2751 | // through the elements in one pass. |
| 2752 | |
| 2753 | const bool listener_interested = listener->IsInterested(); |
| 2754 | |
| 2755 | // explanations[i] is the explanation of the element at index i. |
| 2756 | ::std::vector<std::string> explanations(count()); |
| 2757 | StlContainerReference stl_container = View::ConstReference(container); |
| 2758 | typename StlContainer::const_iterator it = stl_container.begin(); |
| 2759 | size_t exam_pos = 0; |
| 2760 | bool mismatch_found = false; // Have we found a mismatched element yet? |
| 2761 | |
| 2762 | // Go through the elements and matchers in pairs, until we reach |
| 2763 | // the end of either the elements or the matchers, or until we find a |
| 2764 | // mismatch. |
| 2765 | for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { |
| 2766 | bool match; // Does the current element match the current matcher? |
| 2767 | if (listener_interested) { |
| 2768 | StringMatchResultListener s; |
| 2769 | match = matchers_[exam_pos].MatchAndExplain(*it, &s); |
| 2770 | explanations[exam_pos] = s.str(); |
| 2771 | } else { |
| 2772 | match = matchers_[exam_pos].Matches(*it); |
| 2773 | } |
| 2774 | |
| 2775 | if (!match) { |
| 2776 | mismatch_found = true; |
| 2777 | break; |
| 2778 | } |
| 2779 | } |
| 2780 | // If mismatch_found is true, 'exam_pos' is the index of the mismatch. |
| 2781 | |
| 2782 | // Find how many elements the actual container has. We avoid |
| 2783 | // calling size() s.t. this code works for stream-like "containers" |
| 2784 | // that don't define size(). |
| 2785 | size_t actual_count = exam_pos; |
| 2786 | for (; it != stl_container.end(); ++it) { |
| 2787 | ++actual_count; |
| 2788 | } |
| 2789 | |
| 2790 | if (actual_count != count()) { |
| 2791 | // The element count doesn't match. If the container is empty, |
| 2792 | // there's no need to explain anything as Google Mock already |
| 2793 | // prints the empty container. Otherwise we just need to show |
| 2794 | // how many elements there actually are. |
| 2795 | if (listener_interested && (actual_count != 0)) { |
| 2796 | *listener << "which has " << Elements(actual_count); |
| 2797 | } |
| 2798 | return false; |
| 2799 | } |
| 2800 | |
| 2801 | if (mismatch_found) { |
| 2802 | // The element count matches, but the exam_pos-th element doesn't match. |
| 2803 | if (listener_interested) { |
| 2804 | *listener << "whose element #" << exam_pos << " doesn't match" ; |
| 2805 | PrintIfNotEmpty(explanations[exam_pos], listener->stream()); |
| 2806 | } |
| 2807 | return false; |
| 2808 | } |
| 2809 | |
| 2810 | // Every element matches its expectation. We need to explain why |
| 2811 | // (the obvious ones can be skipped). |
| 2812 | if (listener_interested) { |
| 2813 | bool reason_printed = false; |
| 2814 | for (size_t i = 0; i != count(); ++i) { |
| 2815 | const std::string& s = explanations[i]; |
| 2816 | if (!s.empty()) { |
| 2817 | if (reason_printed) { |
| 2818 | *listener << ",\nand " ; |
| 2819 | } |
| 2820 | *listener << "whose element #" << i << " matches, " << s; |
| 2821 | reason_printed = true; |
| 2822 | } |
| 2823 | } |
| 2824 | } |
| 2825 | return true; |
| 2826 | } |
| 2827 | |
| 2828 | private: |
| 2829 | static Message Elements(size_t count) { |
| 2830 | return Message() << count << (count == 1 ? " element" : " elements" ); |
| 2831 | } |
| 2832 | |
| 2833 | size_t count() const { return matchers_.size(); } |
| 2834 | |
| 2835 | ::std::vector<Matcher<const Element&> > matchers_; |
| 2836 | |
| 2837 | GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl); |
| 2838 | }; |
| 2839 | |
| 2840 | // Connectivity matrix of (elements X matchers), in element-major order. |
| 2841 | // Initially, there are no edges. |
| 2842 | // Use NextGraph() to iterate over all possible edge configurations. |
| 2843 | // Use Randomize() to generate a random edge configuration. |
| 2844 | class GTEST_API_ MatchMatrix { |
| 2845 | public: |
| 2846 | MatchMatrix(size_t num_elements, size_t num_matchers) |
| 2847 | : num_elements_(num_elements), |
| 2848 | num_matchers_(num_matchers), |
| 2849 | matched_(num_elements_* num_matchers_, 0) { |
| 2850 | } |
| 2851 | |
| 2852 | size_t LhsSize() const { return num_elements_; } |
| 2853 | size_t RhsSize() const { return num_matchers_; } |
| 2854 | bool HasEdge(size_t ilhs, size_t irhs) const { |
| 2855 | return matched_[SpaceIndex(ilhs, irhs)] == 1; |
| 2856 | } |
| 2857 | void SetEdge(size_t ilhs, size_t irhs, bool b) { |
| 2858 | matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; |
| 2859 | } |
| 2860 | |
| 2861 | // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, |
| 2862 | // adds 1 to that number; returns false if incrementing the graph left it |
| 2863 | // empty. |
| 2864 | bool NextGraph(); |
| 2865 | |
| 2866 | void Randomize(); |
| 2867 | |
| 2868 | std::string DebugString() const; |
| 2869 | |
| 2870 | private: |
| 2871 | size_t SpaceIndex(size_t ilhs, size_t irhs) const { |
| 2872 | return ilhs * num_matchers_ + irhs; |
| 2873 | } |
| 2874 | |
| 2875 | size_t num_elements_; |
| 2876 | size_t num_matchers_; |
| 2877 | |
| 2878 | // Each element is a char interpreted as bool. They are stored as a |
| 2879 | // flattened array in lhs-major order, use 'SpaceIndex()' to translate |
| 2880 | // a (ilhs, irhs) matrix coordinate into an offset. |
| 2881 | ::std::vector<char> matched_; |
| 2882 | }; |
| 2883 | |
| 2884 | typedef ::std::pair<size_t, size_t> ElementMatcherPair; |
| 2885 | typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; |
| 2886 | |
| 2887 | // Returns a maximum bipartite matching for the specified graph 'g'. |
| 2888 | // The matching is represented as a vector of {element, matcher} pairs. |
| 2889 | GTEST_API_ ElementMatcherPairs |
| 2890 | FindMaxBipartiteMatching(const MatchMatrix& g); |
| 2891 | |
| 2892 | struct UnorderedMatcherRequire { |
| 2893 | enum Flags { |
| 2894 | Superset = 1 << 0, |
| 2895 | Subset = 1 << 1, |
| 2896 | ExactMatch = Superset | Subset, |
| 2897 | }; |
| 2898 | }; |
| 2899 | |
| 2900 | // Untyped base class for implementing UnorderedElementsAre. By |
| 2901 | // putting logic that's not specific to the element type here, we |
| 2902 | // reduce binary bloat and increase compilation speed. |
| 2903 | class GTEST_API_ UnorderedElementsAreMatcherImplBase { |
| 2904 | protected: |
| 2905 | explicit UnorderedElementsAreMatcherImplBase( |
| 2906 | UnorderedMatcherRequire::Flags matcher_flags) |
| 2907 | : match_flags_(matcher_flags) {} |
| 2908 | |
| 2909 | // A vector of matcher describers, one for each element matcher. |
| 2910 | // Does not own the describers (and thus can be used only when the |
| 2911 | // element matchers are alive). |
| 2912 | typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; |
| 2913 | |
| 2914 | // Describes this UnorderedElementsAre matcher. |
| 2915 | void DescribeToImpl(::std::ostream* os) const; |
| 2916 | |
| 2917 | // Describes the negation of this UnorderedElementsAre matcher. |
| 2918 | void DescribeNegationToImpl(::std::ostream* os) const; |
| 2919 | |
| 2920 | bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, |
| 2921 | const MatchMatrix& matrix, |
| 2922 | MatchResultListener* listener) const; |
| 2923 | |
| 2924 | bool FindPairing(const MatchMatrix& matrix, |
| 2925 | MatchResultListener* listener) const; |
| 2926 | |
| 2927 | MatcherDescriberVec& matcher_describers() { |
| 2928 | return matcher_describers_; |
| 2929 | } |
| 2930 | |
| 2931 | static Message Elements(size_t n) { |
| 2932 | return Message() << n << " element" << (n == 1 ? "" : "s" ); |
| 2933 | } |
| 2934 | |
| 2935 | UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } |
| 2936 | |
| 2937 | private: |
| 2938 | UnorderedMatcherRequire::Flags match_flags_; |
| 2939 | MatcherDescriberVec matcher_describers_; |
| 2940 | |
| 2941 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase); |
| 2942 | }; |
| 2943 | |
| 2944 | // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and |
| 2945 | // IsSupersetOf. |
| 2946 | template <typename Container> |
| 2947 | class UnorderedElementsAreMatcherImpl |
| 2948 | : public MatcherInterface<Container>, |
| 2949 | public UnorderedElementsAreMatcherImplBase { |
| 2950 | public: |
| 2951 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| 2952 | typedef internal::StlContainerView<RawContainer> View; |
| 2953 | typedef typename View::type StlContainer; |
| 2954 | typedef typename View::const_reference StlContainerReference; |
| 2955 | typedef typename StlContainer::const_iterator StlContainerConstIterator; |
| 2956 | typedef typename StlContainer::value_type Element; |
| 2957 | |
| 2958 | template <typename InputIter> |
| 2959 | UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, |
| 2960 | InputIter first, InputIter last) |
| 2961 | : UnorderedElementsAreMatcherImplBase(matcher_flags) { |
| 2962 | for (; first != last; ++first) { |
| 2963 | matchers_.push_back(MatcherCast<const Element&>(*first)); |
| 2964 | matcher_describers().push_back(matchers_.back().GetDescriber()); |
| 2965 | } |
| 2966 | } |
| 2967 | |
| 2968 | // Describes what this matcher does. |
| 2969 | void DescribeTo(::std::ostream* os) const override { |
| 2970 | return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); |
| 2971 | } |
| 2972 | |
| 2973 | // Describes what the negation of this matcher does. |
| 2974 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2975 | return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); |
| 2976 | } |
| 2977 | |
| 2978 | bool MatchAndExplain(Container container, |
| 2979 | MatchResultListener* listener) const override { |
| 2980 | StlContainerReference stl_container = View::ConstReference(container); |
| 2981 | ::std::vector<std::string> element_printouts; |
| 2982 | MatchMatrix matrix = |
| 2983 | AnalyzeElements(stl_container.begin(), stl_container.end(), |
| 2984 | &element_printouts, listener); |
| 2985 | |
| 2986 | if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { |
| 2987 | return true; |
| 2988 | } |
| 2989 | |
| 2990 | if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
| 2991 | if (matrix.LhsSize() != matrix.RhsSize()) { |
| 2992 | // The element count doesn't match. If the container is empty, |
| 2993 | // there's no need to explain anything as Google Mock already |
| 2994 | // prints the empty container. Otherwise we just need to show |
| 2995 | // how many elements there actually are. |
| 2996 | if (matrix.LhsSize() != 0 && listener->IsInterested()) { |
| 2997 | *listener << "which has " << Elements(matrix.LhsSize()); |
| 2998 | } |
| 2999 | return false; |
| 3000 | } |
| 3001 | } |
| 3002 | |
| 3003 | return VerifyMatchMatrix(element_printouts, matrix, listener) && |
| 3004 | FindPairing(matrix, listener); |
| 3005 | } |
| 3006 | |
| 3007 | private: |
| 3008 | template <typename ElementIter> |
| 3009 | MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, |
| 3010 | ::std::vector<std::string>* element_printouts, |
| 3011 | MatchResultListener* listener) const { |
| 3012 | element_printouts->clear(); |
| 3013 | ::std::vector<char> did_match; |
| 3014 | size_t num_elements = 0; |
| 3015 | for (; elem_first != elem_last; ++num_elements, ++elem_first) { |
| 3016 | if (listener->IsInterested()) { |
| 3017 | element_printouts->push_back(PrintToString(*elem_first)); |
| 3018 | } |
| 3019 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
| 3020 | did_match.push_back(Matches(matchers_[irhs])(*elem_first)); |
| 3021 | } |
| 3022 | } |
| 3023 | |
| 3024 | MatchMatrix matrix(num_elements, matchers_.size()); |
| 3025 | ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); |
| 3026 | for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { |
| 3027 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
| 3028 | matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); |
| 3029 | } |
| 3030 | } |
| 3031 | return matrix; |
| 3032 | } |
| 3033 | |
| 3034 | ::std::vector<Matcher<const Element&> > matchers_; |
| 3035 | |
| 3036 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl); |
| 3037 | }; |
| 3038 | |
| 3039 | // Functor for use in TransformTuple. |
| 3040 | // Performs MatcherCast<Target> on an input argument of any type. |
| 3041 | template <typename Target> |
| 3042 | struct CastAndAppendTransform { |
| 3043 | template <typename Arg> |
| 3044 | Matcher<Target> operator()(const Arg& a) const { |
| 3045 | return MatcherCast<Target>(a); |
| 3046 | } |
| 3047 | }; |
| 3048 | |
| 3049 | // Implements UnorderedElementsAre. |
| 3050 | template <typename MatcherTuple> |
| 3051 | class UnorderedElementsAreMatcher { |
| 3052 | public: |
| 3053 | explicit UnorderedElementsAreMatcher(const MatcherTuple& args) |
| 3054 | : matchers_(args) {} |
| 3055 | |
| 3056 | template <typename Container> |
| 3057 | operator Matcher<Container>() const { |
| 3058 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| 3059 | typedef typename internal::StlContainerView<RawContainer>::type View; |
| 3060 | typedef typename View::value_type Element; |
| 3061 | typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
| 3062 | MatcherVec matchers; |
| 3063 | matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
| 3064 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
| 3065 | ::std::back_inserter(matchers)); |
| 3066 | return Matcher<Container>( |
| 3067 | new UnorderedElementsAreMatcherImpl<const Container&>( |
| 3068 | UnorderedMatcherRequire::ExactMatch, matchers.begin(), |
| 3069 | matchers.end())); |
| 3070 | } |
| 3071 | |
| 3072 | private: |
| 3073 | const MatcherTuple matchers_; |
| 3074 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher); |
| 3075 | }; |
| 3076 | |
| 3077 | // Implements ElementsAre. |
| 3078 | template <typename MatcherTuple> |
| 3079 | class ElementsAreMatcher { |
| 3080 | public: |
| 3081 | explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} |
| 3082 | |
| 3083 | template <typename Container> |
| 3084 | operator Matcher<Container>() const { |
| 3085 | GTEST_COMPILE_ASSERT_( |
| 3086 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || |
| 3087 | ::std::tuple_size<MatcherTuple>::value < 2, |
| 3088 | use_UnorderedElementsAre_with_hash_tables); |
| 3089 | |
| 3090 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| 3091 | typedef typename internal::StlContainerView<RawContainer>::type View; |
| 3092 | typedef typename View::value_type Element; |
| 3093 | typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
| 3094 | MatcherVec matchers; |
| 3095 | matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
| 3096 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
| 3097 | ::std::back_inserter(matchers)); |
| 3098 | return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
| 3099 | matchers.begin(), matchers.end())); |
| 3100 | } |
| 3101 | |
| 3102 | private: |
| 3103 | const MatcherTuple matchers_; |
| 3104 | GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher); |
| 3105 | }; |
| 3106 | |
| 3107 | // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). |
| 3108 | template <typename T> |
| 3109 | class UnorderedElementsAreArrayMatcher { |
| 3110 | public: |
| 3111 | template <typename Iter> |
| 3112 | UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, |
| 3113 | Iter first, Iter last) |
| 3114 | : match_flags_(match_flags), matchers_(first, last) {} |
| 3115 | |
| 3116 | template <typename Container> |
| 3117 | operator Matcher<Container>() const { |
| 3118 | return Matcher<Container>( |
| 3119 | new UnorderedElementsAreMatcherImpl<const Container&>( |
| 3120 | match_flags_, matchers_.begin(), matchers_.end())); |
| 3121 | } |
| 3122 | |
| 3123 | private: |
| 3124 | UnorderedMatcherRequire::Flags match_flags_; |
| 3125 | ::std::vector<T> matchers_; |
| 3126 | |
| 3127 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher); |
| 3128 | }; |
| 3129 | |
| 3130 | // Implements ElementsAreArray(). |
| 3131 | template <typename T> |
| 3132 | class ElementsAreArrayMatcher { |
| 3133 | public: |
| 3134 | template <typename Iter> |
| 3135 | ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
| 3136 | |
| 3137 | template <typename Container> |
| 3138 | operator Matcher<Container>() const { |
| 3139 | GTEST_COMPILE_ASSERT_( |
| 3140 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, |
| 3141 | use_UnorderedElementsAreArray_with_hash_tables); |
| 3142 | |
| 3143 | return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
| 3144 | matchers_.begin(), matchers_.end())); |
| 3145 | } |
| 3146 | |
| 3147 | private: |
| 3148 | const ::std::vector<T> matchers_; |
| 3149 | |
| 3150 | GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher); |
| 3151 | }; |
| 3152 | |
| 3153 | // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second |
| 3154 | // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, |
| 3155 | // second) is a polymorphic matcher that matches a value x iff tm |
| 3156 | // matches tuple (x, second). Useful for implementing |
| 3157 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
| 3158 | // |
| 3159 | // BoundSecondMatcher is copyable and assignable, as we need to put |
| 3160 | // instances of this class in a vector when implementing |
| 3161 | // UnorderedPointwise(). |
| 3162 | template <typename Tuple2Matcher, typename Second> |
| 3163 | class BoundSecondMatcher { |
| 3164 | public: |
| 3165 | BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) |
| 3166 | : tuple2_matcher_(tm), second_value_(second) {} |
| 3167 | |
| 3168 | template <typename T> |
| 3169 | operator Matcher<T>() const { |
| 3170 | return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); |
| 3171 | } |
| 3172 | |
| 3173 | // We have to define this for UnorderedPointwise() to compile in |
| 3174 | // C++98 mode, as it puts BoundSecondMatcher instances in a vector, |
| 3175 | // which requires the elements to be assignable in C++98. The |
| 3176 | // compiler cannot generate the operator= for us, as Tuple2Matcher |
| 3177 | // and Second may not be assignable. |
| 3178 | // |
| 3179 | // However, this should never be called, so the implementation just |
| 3180 | // need to assert. |
| 3181 | void operator=(const BoundSecondMatcher& /*rhs*/) { |
| 3182 | GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned." ; |
| 3183 | } |
| 3184 | |
| 3185 | private: |
| 3186 | template <typename T> |
| 3187 | class Impl : public MatcherInterface<T> { |
| 3188 | public: |
| 3189 | typedef ::std::tuple<T, Second> ArgTuple; |
| 3190 | |
| 3191 | Impl(const Tuple2Matcher& tm, const Second& second) |
| 3192 | : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), |
| 3193 | second_value_(second) {} |
| 3194 | |
| 3195 | void DescribeTo(::std::ostream* os) const override { |
| 3196 | *os << "and " ; |
| 3197 | UniversalPrint(second_value_, os); |
| 3198 | *os << " " ; |
| 3199 | mono_tuple2_matcher_.DescribeTo(os); |
| 3200 | } |
| 3201 | |
| 3202 | bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
| 3203 | return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), |
| 3204 | listener); |
| 3205 | } |
| 3206 | |
| 3207 | private: |
| 3208 | const Matcher<const ArgTuple&> mono_tuple2_matcher_; |
| 3209 | const Second second_value_; |
| 3210 | |
| 3211 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 3212 | }; |
| 3213 | |
| 3214 | const Tuple2Matcher tuple2_matcher_; |
| 3215 | const Second second_value_; |
| 3216 | }; |
| 3217 | |
| 3218 | // Given a 2-tuple matcher tm and a value second, |
| 3219 | // MatcherBindSecond(tm, second) returns a matcher that matches a |
| 3220 | // value x iff tm matches tuple (x, second). Useful for implementing |
| 3221 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
| 3222 | template <typename Tuple2Matcher, typename Second> |
| 3223 | BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( |
| 3224 | const Tuple2Matcher& tm, const Second& second) { |
| 3225 | return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); |
| 3226 | } |
| 3227 | |
| 3228 | // Returns the description for a matcher defined using the MATCHER*() |
| 3229 | // macro where the user-supplied description string is "", if |
| 3230 | // 'negation' is false; otherwise returns the description of the |
| 3231 | // negation of the matcher. 'param_values' contains a list of strings |
| 3232 | // that are the print-out of the matcher's parameters. |
| 3233 | GTEST_API_ std::string FormatMatcherDescription(bool negation, |
| 3234 | const char* matcher_name, |
| 3235 | const Strings& param_values); |
| 3236 | |
| 3237 | // Implements a matcher that checks the value of a optional<> type variable. |
| 3238 | template <typename ValueMatcher> |
| 3239 | class OptionalMatcher { |
| 3240 | public: |
| 3241 | explicit OptionalMatcher(const ValueMatcher& value_matcher) |
| 3242 | : value_matcher_(value_matcher) {} |
| 3243 | |
| 3244 | template <typename Optional> |
| 3245 | operator Matcher<Optional>() const { |
| 3246 | return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); |
| 3247 | } |
| 3248 | |
| 3249 | template <typename Optional> |
| 3250 | class Impl : public MatcherInterface<Optional> { |
| 3251 | public: |
| 3252 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; |
| 3253 | typedef typename OptionalView::value_type ValueType; |
| 3254 | explicit Impl(const ValueMatcher& value_matcher) |
| 3255 | : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} |
| 3256 | |
| 3257 | void DescribeTo(::std::ostream* os) const override { |
| 3258 | *os << "value " ; |
| 3259 | value_matcher_.DescribeTo(os); |
| 3260 | } |
| 3261 | |
| 3262 | void DescribeNegationTo(::std::ostream* os) const override { |
| 3263 | *os << "value " ; |
| 3264 | value_matcher_.DescribeNegationTo(os); |
| 3265 | } |
| 3266 | |
| 3267 | bool MatchAndExplain(Optional optional, |
| 3268 | MatchResultListener* listener) const override { |
| 3269 | if (!optional) { |
| 3270 | *listener << "which is not engaged" ; |
| 3271 | return false; |
| 3272 | } |
| 3273 | const ValueType& value = *optional; |
| 3274 | StringMatchResultListener value_listener; |
| 3275 | const bool match = value_matcher_.MatchAndExplain(value, &value_listener); |
| 3276 | *listener << "whose value " << PrintToString(value) |
| 3277 | << (match ? " matches" : " doesn't match" ); |
| 3278 | PrintIfNotEmpty(value_listener.str(), listener->stream()); |
| 3279 | return match; |
| 3280 | } |
| 3281 | |
| 3282 | private: |
| 3283 | const Matcher<ValueType> value_matcher_; |
| 3284 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 3285 | }; |
| 3286 | |
| 3287 | private: |
| 3288 | const ValueMatcher value_matcher_; |
| 3289 | GTEST_DISALLOW_ASSIGN_(OptionalMatcher); |
| 3290 | }; |
| 3291 | |
| 3292 | namespace variant_matcher { |
| 3293 | // Overloads to allow VariantMatcher to do proper ADL lookup. |
| 3294 | template <typename T> |
| 3295 | void holds_alternative() {} |
| 3296 | template <typename T> |
| 3297 | void get() {} |
| 3298 | |
| 3299 | // Implements a matcher that checks the value of a variant<> type variable. |
| 3300 | template <typename T> |
| 3301 | class VariantMatcher { |
| 3302 | public: |
| 3303 | explicit VariantMatcher(::testing::Matcher<const T&> matcher) |
| 3304 | : matcher_(std::move(matcher)) {} |
| 3305 | |
| 3306 | template <typename Variant> |
| 3307 | bool MatchAndExplain(const Variant& value, |
| 3308 | ::testing::MatchResultListener* listener) const { |
| 3309 | using std::get; |
| 3310 | if (!listener->IsInterested()) { |
| 3311 | return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); |
| 3312 | } |
| 3313 | |
| 3314 | if (!holds_alternative<T>(value)) { |
| 3315 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
| 3316 | return false; |
| 3317 | } |
| 3318 | |
| 3319 | const T& elem = get<T>(value); |
| 3320 | StringMatchResultListener elem_listener; |
| 3321 | const bool match = matcher_.MatchAndExplain(elem, &elem_listener); |
| 3322 | *listener << "whose value " << PrintToString(elem) |
| 3323 | << (match ? " matches" : " doesn't match" ); |
| 3324 | PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
| 3325 | return match; |
| 3326 | } |
| 3327 | |
| 3328 | void DescribeTo(std::ostream* os) const { |
| 3329 | *os << "is a variant<> with value of type '" << GetTypeName() |
| 3330 | << "' and the value " ; |
| 3331 | matcher_.DescribeTo(os); |
| 3332 | } |
| 3333 | |
| 3334 | void DescribeNegationTo(std::ostream* os) const { |
| 3335 | *os << "is a variant<> with value of type other than '" << GetTypeName() |
| 3336 | << "' or the value " ; |
| 3337 | matcher_.DescribeNegationTo(os); |
| 3338 | } |
| 3339 | |
| 3340 | private: |
| 3341 | static std::string GetTypeName() { |
| 3342 | #if GTEST_HAS_RTTI |
| 3343 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
| 3344 | return internal::GetTypeName<T>()); |
| 3345 | #endif |
| 3346 | return "the element type" ; |
| 3347 | } |
| 3348 | |
| 3349 | const ::testing::Matcher<const T&> matcher_; |
| 3350 | }; |
| 3351 | |
| 3352 | } // namespace variant_matcher |
| 3353 | |
| 3354 | namespace any_cast_matcher { |
| 3355 | |
| 3356 | // Overloads to allow AnyCastMatcher to do proper ADL lookup. |
| 3357 | template <typename T> |
| 3358 | void any_cast() {} |
| 3359 | |
| 3360 | // Implements a matcher that any_casts the value. |
| 3361 | template <typename T> |
| 3362 | class AnyCastMatcher { |
| 3363 | public: |
| 3364 | explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) |
| 3365 | : matcher_(matcher) {} |
| 3366 | |
| 3367 | template <typename AnyType> |
| 3368 | bool MatchAndExplain(const AnyType& value, |
| 3369 | ::testing::MatchResultListener* listener) const { |
| 3370 | if (!listener->IsInterested()) { |
| 3371 | const T* ptr = any_cast<T>(&value); |
| 3372 | return ptr != nullptr && matcher_.Matches(*ptr); |
| 3373 | } |
| 3374 | |
| 3375 | const T* elem = any_cast<T>(&value); |
| 3376 | if (elem == nullptr) { |
| 3377 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
| 3378 | return false; |
| 3379 | } |
| 3380 | |
| 3381 | StringMatchResultListener elem_listener; |
| 3382 | const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); |
| 3383 | *listener << "whose value " << PrintToString(*elem) |
| 3384 | << (match ? " matches" : " doesn't match" ); |
| 3385 | PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
| 3386 | return match; |
| 3387 | } |
| 3388 | |
| 3389 | void DescribeTo(std::ostream* os) const { |
| 3390 | *os << "is an 'any' type with value of type '" << GetTypeName() |
| 3391 | << "' and the value " ; |
| 3392 | matcher_.DescribeTo(os); |
| 3393 | } |
| 3394 | |
| 3395 | void DescribeNegationTo(std::ostream* os) const { |
| 3396 | *os << "is an 'any' type with value of type other than '" << GetTypeName() |
| 3397 | << "' or the value " ; |
| 3398 | matcher_.DescribeNegationTo(os); |
| 3399 | } |
| 3400 | |
| 3401 | private: |
| 3402 | static std::string GetTypeName() { |
| 3403 | #if GTEST_HAS_RTTI |
| 3404 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
| 3405 | return internal::GetTypeName<T>()); |
| 3406 | #endif |
| 3407 | return "the element type" ; |
| 3408 | } |
| 3409 | |
| 3410 | const ::testing::Matcher<const T&> matcher_; |
| 3411 | }; |
| 3412 | |
| 3413 | } // namespace any_cast_matcher |
| 3414 | |
| 3415 | // Implements the Args() matcher. |
| 3416 | template <class ArgsTuple, size_t... k> |
| 3417 | class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { |
| 3418 | public: |
| 3419 | using RawArgsTuple = typename std::decay<ArgsTuple>::type; |
| 3420 | using SelectedArgs = |
| 3421 | std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; |
| 3422 | using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; |
| 3423 | |
| 3424 | template <typename InnerMatcher> |
| 3425 | explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) |
| 3426 | : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} |
| 3427 | |
| 3428 | bool MatchAndExplain(ArgsTuple args, |
| 3429 | MatchResultListener* listener) const override { |
| 3430 | // Workaround spurious C4100 on MSVC<=15.7 when k is empty. |
| 3431 | (void)args; |
| 3432 | const SelectedArgs& selected_args = |
| 3433 | std::forward_as_tuple(std::get<k>(args)...); |
| 3434 | if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); |
| 3435 | |
| 3436 | PrintIndices(listener->stream()); |
| 3437 | *listener << "are " << PrintToString(selected_args); |
| 3438 | |
| 3439 | StringMatchResultListener inner_listener; |
| 3440 | const bool match = |
| 3441 | inner_matcher_.MatchAndExplain(selected_args, &inner_listener); |
| 3442 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| 3443 | return match; |
| 3444 | } |
| 3445 | |
| 3446 | void DescribeTo(::std::ostream* os) const override { |
| 3447 | *os << "are a tuple " ; |
| 3448 | PrintIndices(os); |
| 3449 | inner_matcher_.DescribeTo(os); |
| 3450 | } |
| 3451 | |
| 3452 | void DescribeNegationTo(::std::ostream* os) const override { |
| 3453 | *os << "are a tuple " ; |
| 3454 | PrintIndices(os); |
| 3455 | inner_matcher_.DescribeNegationTo(os); |
| 3456 | } |
| 3457 | |
| 3458 | private: |
| 3459 | // Prints the indices of the selected fields. |
| 3460 | static void PrintIndices(::std::ostream* os) { |
| 3461 | *os << "whose fields (" ; |
| 3462 | const char* sep = "" ; |
| 3463 | // Workaround spurious C4189 on MSVC<=15.7 when k is empty. |
| 3464 | (void)sep; |
| 3465 | const char* dummy[] = {"" , (*os << sep << "#" << k, sep = ", " )...}; |
| 3466 | (void)dummy; |
| 3467 | *os << ") " ; |
| 3468 | } |
| 3469 | |
| 3470 | MonomorphicInnerMatcher inner_matcher_; |
| 3471 | }; |
| 3472 | |
| 3473 | template <class InnerMatcher, size_t... k> |
| 3474 | class ArgsMatcher { |
| 3475 | public: |
| 3476 | explicit ArgsMatcher(InnerMatcher inner_matcher) |
| 3477 | : inner_matcher_(std::move(inner_matcher)) {} |
| 3478 | |
| 3479 | template <typename ArgsTuple> |
| 3480 | operator Matcher<ArgsTuple>() const { // NOLINT |
| 3481 | return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); |
| 3482 | } |
| 3483 | |
| 3484 | private: |
| 3485 | InnerMatcher inner_matcher_; |
| 3486 | }; |
| 3487 | |
| 3488 | } // namespace internal |
| 3489 | |
| 3490 | // ElementsAreArray(iterator_first, iterator_last) |
| 3491 | // ElementsAreArray(pointer, count) |
| 3492 | // ElementsAreArray(array) |
| 3493 | // ElementsAreArray(container) |
| 3494 | // ElementsAreArray({ e1, e2, ..., en }) |
| 3495 | // |
| 3496 | // The ElementsAreArray() functions are like ElementsAre(...), except |
| 3497 | // that they are given a homogeneous sequence rather than taking each |
| 3498 | // element as a function argument. The sequence can be specified as an |
| 3499 | // array, a pointer and count, a vector, an initializer list, or an |
| 3500 | // STL iterator range. In each of these cases, the underlying sequence |
| 3501 | // can be either a sequence of values or a sequence of matchers. |
| 3502 | // |
| 3503 | // All forms of ElementsAreArray() make a copy of the input matcher sequence. |
| 3504 | |
| 3505 | template <typename Iter> |
| 3506 | inline internal::ElementsAreArrayMatcher< |
| 3507 | typename ::std::iterator_traits<Iter>::value_type> |
| 3508 | ElementsAreArray(Iter first, Iter last) { |
| 3509 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
| 3510 | return internal::ElementsAreArrayMatcher<T>(first, last); |
| 3511 | } |
| 3512 | |
| 3513 | template <typename T> |
| 3514 | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
| 3515 | const T* pointer, size_t count) { |
| 3516 | return ElementsAreArray(pointer, pointer + count); |
| 3517 | } |
| 3518 | |
| 3519 | template <typename T, size_t N> |
| 3520 | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
| 3521 | const T (&array)[N]) { |
| 3522 | return ElementsAreArray(array, N); |
| 3523 | } |
| 3524 | |
| 3525 | template <typename Container> |
| 3526 | inline internal::ElementsAreArrayMatcher<typename Container::value_type> |
| 3527 | ElementsAreArray(const Container& container) { |
| 3528 | return ElementsAreArray(container.begin(), container.end()); |
| 3529 | } |
| 3530 | |
| 3531 | template <typename T> |
| 3532 | inline internal::ElementsAreArrayMatcher<T> |
| 3533 | ElementsAreArray(::std::initializer_list<T> xs) { |
| 3534 | return ElementsAreArray(xs.begin(), xs.end()); |
| 3535 | } |
| 3536 | |
| 3537 | // UnorderedElementsAreArray(iterator_first, iterator_last) |
| 3538 | // UnorderedElementsAreArray(pointer, count) |
| 3539 | // UnorderedElementsAreArray(array) |
| 3540 | // UnorderedElementsAreArray(container) |
| 3541 | // UnorderedElementsAreArray({ e1, e2, ..., en }) |
| 3542 | // |
| 3543 | // UnorderedElementsAreArray() verifies that a bijective mapping onto a |
| 3544 | // collection of matchers exists. |
| 3545 | // |
| 3546 | // The matchers can be specified as an array, a pointer and count, a container, |
| 3547 | // an initializer list, or an STL iterator range. In each of these cases, the |
| 3548 | // underlying matchers can be either values or matchers. |
| 3549 | |
| 3550 | template <typename Iter> |
| 3551 | inline internal::UnorderedElementsAreArrayMatcher< |
| 3552 | typename ::std::iterator_traits<Iter>::value_type> |
| 3553 | UnorderedElementsAreArray(Iter first, Iter last) { |
| 3554 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
| 3555 | return internal::UnorderedElementsAreArrayMatcher<T>( |
| 3556 | internal::UnorderedMatcherRequire::ExactMatch, first, last); |
| 3557 | } |
| 3558 | |
| 3559 | template <typename T> |
| 3560 | inline internal::UnorderedElementsAreArrayMatcher<T> |
| 3561 | UnorderedElementsAreArray(const T* pointer, size_t count) { |
| 3562 | return UnorderedElementsAreArray(pointer, pointer + count); |
| 3563 | } |
| 3564 | |
| 3565 | template <typename T, size_t N> |
| 3566 | inline internal::UnorderedElementsAreArrayMatcher<T> |
| 3567 | UnorderedElementsAreArray(const T (&array)[N]) { |
| 3568 | return UnorderedElementsAreArray(array, N); |
| 3569 | } |
| 3570 | |
| 3571 | template <typename Container> |
| 3572 | inline internal::UnorderedElementsAreArrayMatcher< |
| 3573 | typename Container::value_type> |
| 3574 | UnorderedElementsAreArray(const Container& container) { |
| 3575 | return UnorderedElementsAreArray(container.begin(), container.end()); |
| 3576 | } |
| 3577 | |
| 3578 | template <typename T> |
| 3579 | inline internal::UnorderedElementsAreArrayMatcher<T> |
| 3580 | UnorderedElementsAreArray(::std::initializer_list<T> xs) { |
| 3581 | return UnorderedElementsAreArray(xs.begin(), xs.end()); |
| 3582 | } |
| 3583 | |
| 3584 | // _ is a matcher that matches anything of any type. |
| 3585 | // |
| 3586 | // This definition is fine as: |
| 3587 | // |
| 3588 | // 1. The C++ standard permits using the name _ in a namespace that |
| 3589 | // is not the global namespace or ::std. |
| 3590 | // 2. The AnythingMatcher class has no data member or constructor, |
| 3591 | // so it's OK to create global variables of this type. |
| 3592 | // 3. c-style has approved of using _ in this case. |
| 3593 | const internal::AnythingMatcher _ = {}; |
| 3594 | // Creates a matcher that matches any value of the given type T. |
| 3595 | template <typename T> |
| 3596 | inline Matcher<T> A() { |
| 3597 | return Matcher<T>(new internal::AnyMatcherImpl<T>()); |
| 3598 | } |
| 3599 | |
| 3600 | // Creates a matcher that matches any value of the given type T. |
| 3601 | template <typename T> |
| 3602 | inline Matcher<T> An() { return A<T>(); } |
| 3603 | |
| 3604 | template <typename T, typename M> |
| 3605 | Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( |
| 3606 | const M& value, |
| 3607 | internal::BooleanConstant<false> /* convertible_to_matcher */, |
| 3608 | internal::BooleanConstant<false> /* convertible_to_T */) { |
| 3609 | return Eq(value); |
| 3610 | } |
| 3611 | |
| 3612 | // Creates a polymorphic matcher that matches any NULL pointer. |
| 3613 | inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { |
| 3614 | return MakePolymorphicMatcher(internal::IsNullMatcher()); |
| 3615 | } |
| 3616 | |
| 3617 | // Creates a polymorphic matcher that matches any non-NULL pointer. |
| 3618 | // This is convenient as Not(NULL) doesn't compile (the compiler |
| 3619 | // thinks that that expression is comparing a pointer with an integer). |
| 3620 | inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { |
| 3621 | return MakePolymorphicMatcher(internal::NotNullMatcher()); |
| 3622 | } |
| 3623 | |
| 3624 | // Creates a polymorphic matcher that matches any argument that |
| 3625 | // references variable x. |
| 3626 | template <typename T> |
| 3627 | inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
| 3628 | return internal::RefMatcher<T&>(x); |
| 3629 | } |
| 3630 | |
| 3631 | // Creates a matcher that matches any double argument approximately |
| 3632 | // equal to rhs, where two NANs are considered unequal. |
| 3633 | inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
| 3634 | return internal::FloatingEqMatcher<double>(rhs, false); |
| 3635 | } |
| 3636 | |
| 3637 | // Creates a matcher that matches any double argument approximately |
| 3638 | // equal to rhs, including NaN values when rhs is NaN. |
| 3639 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
| 3640 | return internal::FloatingEqMatcher<double>(rhs, true); |
| 3641 | } |
| 3642 | |
| 3643 | // Creates a matcher that matches any double argument approximately equal to |
| 3644 | // rhs, up to the specified max absolute error bound, where two NANs are |
| 3645 | // considered unequal. The max absolute error bound must be non-negative. |
| 3646 | inline internal::FloatingEqMatcher<double> DoubleNear( |
| 3647 | double rhs, double max_abs_error) { |
| 3648 | return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); |
| 3649 | } |
| 3650 | |
| 3651 | // Creates a matcher that matches any double argument approximately equal to |
| 3652 | // rhs, up to the specified max absolute error bound, including NaN values when |
| 3653 | // rhs is NaN. The max absolute error bound must be non-negative. |
| 3654 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( |
| 3655 | double rhs, double max_abs_error) { |
| 3656 | return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); |
| 3657 | } |
| 3658 | |
| 3659 | // Creates a matcher that matches any float argument approximately |
| 3660 | // equal to rhs, where two NANs are considered unequal. |
| 3661 | inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
| 3662 | return internal::FloatingEqMatcher<float>(rhs, false); |
| 3663 | } |
| 3664 | |
| 3665 | // Creates a matcher that matches any float argument approximately |
| 3666 | // equal to rhs, including NaN values when rhs is NaN. |
| 3667 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
| 3668 | return internal::FloatingEqMatcher<float>(rhs, true); |
| 3669 | } |
| 3670 | |
| 3671 | // Creates a matcher that matches any float argument approximately equal to |
| 3672 | // rhs, up to the specified max absolute error bound, where two NANs are |
| 3673 | // considered unequal. The max absolute error bound must be non-negative. |
| 3674 | inline internal::FloatingEqMatcher<float> FloatNear( |
| 3675 | float rhs, float max_abs_error) { |
| 3676 | return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); |
| 3677 | } |
| 3678 | |
| 3679 | // Creates a matcher that matches any float argument approximately equal to |
| 3680 | // rhs, up to the specified max absolute error bound, including NaN values when |
| 3681 | // rhs is NaN. The max absolute error bound must be non-negative. |
| 3682 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( |
| 3683 | float rhs, float max_abs_error) { |
| 3684 | return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); |
| 3685 | } |
| 3686 | |
| 3687 | // Creates a matcher that matches a pointer (raw or smart) that points |
| 3688 | // to a value that matches inner_matcher. |
| 3689 | template <typename InnerMatcher> |
| 3690 | inline internal::PointeeMatcher<InnerMatcher> Pointee( |
| 3691 | const InnerMatcher& inner_matcher) { |
| 3692 | return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
| 3693 | } |
| 3694 | |
| 3695 | #if GTEST_HAS_RTTI |
| 3696 | // Creates a matcher that matches a pointer or reference that matches |
| 3697 | // inner_matcher when dynamic_cast<To> is applied. |
| 3698 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
| 3699 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
| 3700 | // If To is a reference and the cast fails, this matcher returns false |
| 3701 | // immediately. |
| 3702 | template <typename To> |
| 3703 | inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > |
| 3704 | WhenDynamicCastTo(const Matcher<To>& inner_matcher) { |
| 3705 | return MakePolymorphicMatcher( |
| 3706 | internal::WhenDynamicCastToMatcher<To>(inner_matcher)); |
| 3707 | } |
| 3708 | #endif // GTEST_HAS_RTTI |
| 3709 | |
| 3710 | // Creates a matcher that matches an object whose given field matches |
| 3711 | // 'matcher'. For example, |
| 3712 | // Field(&Foo::number, Ge(5)) |
| 3713 | // matches a Foo object x iff x.number >= 5. |
| 3714 | template <typename Class, typename FieldType, typename FieldMatcher> |
| 3715 | inline PolymorphicMatcher< |
| 3716 | internal::FieldMatcher<Class, FieldType> > Field( |
| 3717 | FieldType Class::*field, const FieldMatcher& matcher) { |
| 3718 | return MakePolymorphicMatcher( |
| 3719 | internal::FieldMatcher<Class, FieldType>( |
| 3720 | field, MatcherCast<const FieldType&>(matcher))); |
| 3721 | // The call to MatcherCast() is required for supporting inner |
| 3722 | // matchers of compatible types. For example, it allows |
| 3723 | // Field(&Foo::bar, m) |
| 3724 | // to compile where bar is an int32 and m is a matcher for int64. |
| 3725 | } |
| 3726 | |
| 3727 | // Same as Field() but also takes the name of the field to provide better error |
| 3728 | // messages. |
| 3729 | template <typename Class, typename FieldType, typename FieldMatcher> |
| 3730 | inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( |
| 3731 | const std::string& field_name, FieldType Class::*field, |
| 3732 | const FieldMatcher& matcher) { |
| 3733 | return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
| 3734 | field_name, field, MatcherCast<const FieldType&>(matcher))); |
| 3735 | } |
| 3736 | |
| 3737 | // Creates a matcher that matches an object whose given property |
| 3738 | // matches 'matcher'. For example, |
| 3739 | // Property(&Foo::str, StartsWith("hi")) |
| 3740 | // matches a Foo object x iff x.str() starts with "hi". |
| 3741 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
| 3742 | inline PolymorphicMatcher<internal::PropertyMatcher< |
| 3743 | Class, PropertyType, PropertyType (Class::*)() const> > |
| 3744 | Property(PropertyType (Class::*property)() const, |
| 3745 | const PropertyMatcher& matcher) { |
| 3746 | return MakePolymorphicMatcher( |
| 3747 | internal::PropertyMatcher<Class, PropertyType, |
| 3748 | PropertyType (Class::*)() const>( |
| 3749 | property, MatcherCast<const PropertyType&>(matcher))); |
| 3750 | // The call to MatcherCast() is required for supporting inner |
| 3751 | // matchers of compatible types. For example, it allows |
| 3752 | // Property(&Foo::bar, m) |
| 3753 | // to compile where bar() returns an int32 and m is a matcher for int64. |
| 3754 | } |
| 3755 | |
| 3756 | // Same as Property() above, but also takes the name of the property to provide |
| 3757 | // better error messages. |
| 3758 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
| 3759 | inline PolymorphicMatcher<internal::PropertyMatcher< |
| 3760 | Class, PropertyType, PropertyType (Class::*)() const> > |
| 3761 | Property(const std::string& property_name, |
| 3762 | PropertyType (Class::*property)() const, |
| 3763 | const PropertyMatcher& matcher) { |
| 3764 | return MakePolymorphicMatcher( |
| 3765 | internal::PropertyMatcher<Class, PropertyType, |
| 3766 | PropertyType (Class::*)() const>( |
| 3767 | property_name, property, MatcherCast<const PropertyType&>(matcher))); |
| 3768 | } |
| 3769 | |
| 3770 | // The same as above but for reference-qualified member functions. |
| 3771 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
| 3772 | inline PolymorphicMatcher<internal::PropertyMatcher< |
| 3773 | Class, PropertyType, PropertyType (Class::*)() const &> > |
| 3774 | Property(PropertyType (Class::*property)() const &, |
| 3775 | const PropertyMatcher& matcher) { |
| 3776 | return MakePolymorphicMatcher( |
| 3777 | internal::PropertyMatcher<Class, PropertyType, |
| 3778 | PropertyType (Class::*)() const&>( |
| 3779 | property, MatcherCast<const PropertyType&>(matcher))); |
| 3780 | } |
| 3781 | |
| 3782 | // Three-argument form for reference-qualified member functions. |
| 3783 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
| 3784 | inline PolymorphicMatcher<internal::PropertyMatcher< |
| 3785 | Class, PropertyType, PropertyType (Class::*)() const &> > |
| 3786 | Property(const std::string& property_name, |
| 3787 | PropertyType (Class::*property)() const &, |
| 3788 | const PropertyMatcher& matcher) { |
| 3789 | return MakePolymorphicMatcher( |
| 3790 | internal::PropertyMatcher<Class, PropertyType, |
| 3791 | PropertyType (Class::*)() const&>( |
| 3792 | property_name, property, MatcherCast<const PropertyType&>(matcher))); |
| 3793 | } |
| 3794 | |
| 3795 | // Creates a matcher that matches an object iff the result of applying |
| 3796 | // a callable to x matches 'matcher'. |
| 3797 | // For example, |
| 3798 | // ResultOf(f, StartsWith("hi")) |
| 3799 | // matches a Foo object x iff f(x) starts with "hi". |
| 3800 | // `callable` parameter can be a function, function pointer, or a functor. It is |
| 3801 | // required to keep no state affecting the results of the calls on it and make |
| 3802 | // no assumptions about how many calls will be made. Any state it keeps must be |
| 3803 | // protected from the concurrent access. |
| 3804 | template <typename Callable, typename InnerMatcher> |
| 3805 | internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
| 3806 | Callable callable, InnerMatcher matcher) { |
| 3807 | return internal::ResultOfMatcher<Callable, InnerMatcher>( |
| 3808 | std::move(callable), std::move(matcher)); |
| 3809 | } |
| 3810 | |
| 3811 | // String matchers. |
| 3812 | |
| 3813 | // Matches a string equal to str. |
| 3814 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( |
| 3815 | const std::string& str) { |
| 3816 | return MakePolymorphicMatcher( |
| 3817 | internal::StrEqualityMatcher<std::string>(str, true, true)); |
| 3818 | } |
| 3819 | |
| 3820 | // Matches a string not equal to str. |
| 3821 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( |
| 3822 | const std::string& str) { |
| 3823 | return MakePolymorphicMatcher( |
| 3824 | internal::StrEqualityMatcher<std::string>(str, false, true)); |
| 3825 | } |
| 3826 | |
| 3827 | // Matches a string equal to str, ignoring case. |
| 3828 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( |
| 3829 | const std::string& str) { |
| 3830 | return MakePolymorphicMatcher( |
| 3831 | internal::StrEqualityMatcher<std::string>(str, true, false)); |
| 3832 | } |
| 3833 | |
| 3834 | // Matches a string not equal to str, ignoring case. |
| 3835 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( |
| 3836 | const std::string& str) { |
| 3837 | return MakePolymorphicMatcher( |
| 3838 | internal::StrEqualityMatcher<std::string>(str, false, false)); |
| 3839 | } |
| 3840 | |
| 3841 | // Creates a matcher that matches any string, std::string, or C string |
| 3842 | // that contains the given substring. |
| 3843 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( |
| 3844 | const std::string& substring) { |
| 3845 | return MakePolymorphicMatcher( |
| 3846 | internal::HasSubstrMatcher<std::string>(substring)); |
| 3847 | } |
| 3848 | |
| 3849 | // Matches a string that starts with 'prefix' (case-sensitive). |
| 3850 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( |
| 3851 | const std::string& prefix) { |
| 3852 | return MakePolymorphicMatcher( |
| 3853 | internal::StartsWithMatcher<std::string>(prefix)); |
| 3854 | } |
| 3855 | |
| 3856 | // Matches a string that ends with 'suffix' (case-sensitive). |
| 3857 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( |
| 3858 | const std::string& suffix) { |
| 3859 | return MakePolymorphicMatcher(internal::EndsWithMatcher<std::string>(suffix)); |
| 3860 | } |
| 3861 | |
| 3862 | #if GTEST_HAS_STD_WSTRING |
| 3863 | // Wide string matchers. |
| 3864 | |
| 3865 | // Matches a string equal to str. |
| 3866 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( |
| 3867 | const std::wstring& str) { |
| 3868 | return MakePolymorphicMatcher( |
| 3869 | internal::StrEqualityMatcher<std::wstring>(str, true, true)); |
| 3870 | } |
| 3871 | |
| 3872 | // Matches a string not equal to str. |
| 3873 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( |
| 3874 | const std::wstring& str) { |
| 3875 | return MakePolymorphicMatcher( |
| 3876 | internal::StrEqualityMatcher<std::wstring>(str, false, true)); |
| 3877 | } |
| 3878 | |
| 3879 | // Matches a string equal to str, ignoring case. |
| 3880 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
| 3881 | StrCaseEq(const std::wstring& str) { |
| 3882 | return MakePolymorphicMatcher( |
| 3883 | internal::StrEqualityMatcher<std::wstring>(str, true, false)); |
| 3884 | } |
| 3885 | |
| 3886 | // Matches a string not equal to str, ignoring case. |
| 3887 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
| 3888 | StrCaseNe(const std::wstring& str) { |
| 3889 | return MakePolymorphicMatcher( |
| 3890 | internal::StrEqualityMatcher<std::wstring>(str, false, false)); |
| 3891 | } |
| 3892 | |
| 3893 | // Creates a matcher that matches any ::wstring, std::wstring, or C wide string |
| 3894 | // that contains the given substring. |
| 3895 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( |
| 3896 | const std::wstring& substring) { |
| 3897 | return MakePolymorphicMatcher( |
| 3898 | internal::HasSubstrMatcher<std::wstring>(substring)); |
| 3899 | } |
| 3900 | |
| 3901 | // Matches a string that starts with 'prefix' (case-sensitive). |
| 3902 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > |
| 3903 | StartsWith(const std::wstring& prefix) { |
| 3904 | return MakePolymorphicMatcher( |
| 3905 | internal::StartsWithMatcher<std::wstring>(prefix)); |
| 3906 | } |
| 3907 | |
| 3908 | // Matches a string that ends with 'suffix' (case-sensitive). |
| 3909 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( |
| 3910 | const std::wstring& suffix) { |
| 3911 | return MakePolymorphicMatcher( |
| 3912 | internal::EndsWithMatcher<std::wstring>(suffix)); |
| 3913 | } |
| 3914 | |
| 3915 | #endif // GTEST_HAS_STD_WSTRING |
| 3916 | |
| 3917 | // Creates a polymorphic matcher that matches a 2-tuple where the |
| 3918 | // first field == the second field. |
| 3919 | inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
| 3920 | |
| 3921 | // Creates a polymorphic matcher that matches a 2-tuple where the |
| 3922 | // first field >= the second field. |
| 3923 | inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
| 3924 | |
| 3925 | // Creates a polymorphic matcher that matches a 2-tuple where the |
| 3926 | // first field > the second field. |
| 3927 | inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
| 3928 | |
| 3929 | // Creates a polymorphic matcher that matches a 2-tuple where the |
| 3930 | // first field <= the second field. |
| 3931 | inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
| 3932 | |
| 3933 | // Creates a polymorphic matcher that matches a 2-tuple where the |
| 3934 | // first field < the second field. |
| 3935 | inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
| 3936 | |
| 3937 | // Creates a polymorphic matcher that matches a 2-tuple where the |
| 3938 | // first field != the second field. |
| 3939 | inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
| 3940 | |
| 3941 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 3942 | // FloatEq(first field) matches the second field. |
| 3943 | inline internal::FloatingEq2Matcher<float> FloatEq() { |
| 3944 | return internal::FloatingEq2Matcher<float>(); |
| 3945 | } |
| 3946 | |
| 3947 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 3948 | // DoubleEq(first field) matches the second field. |
| 3949 | inline internal::FloatingEq2Matcher<double> DoubleEq() { |
| 3950 | return internal::FloatingEq2Matcher<double>(); |
| 3951 | } |
| 3952 | |
| 3953 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 3954 | // FloatEq(first field) matches the second field with NaN equality. |
| 3955 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { |
| 3956 | return internal::FloatingEq2Matcher<float>(true); |
| 3957 | } |
| 3958 | |
| 3959 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 3960 | // DoubleEq(first field) matches the second field with NaN equality. |
| 3961 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { |
| 3962 | return internal::FloatingEq2Matcher<double>(true); |
| 3963 | } |
| 3964 | |
| 3965 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 3966 | // FloatNear(first field, max_abs_error) matches the second field. |
| 3967 | inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { |
| 3968 | return internal::FloatingEq2Matcher<float>(max_abs_error); |
| 3969 | } |
| 3970 | |
| 3971 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 3972 | // DoubleNear(first field, max_abs_error) matches the second field. |
| 3973 | inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { |
| 3974 | return internal::FloatingEq2Matcher<double>(max_abs_error); |
| 3975 | } |
| 3976 | |
| 3977 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 3978 | // FloatNear(first field, max_abs_error) matches the second field with NaN |
| 3979 | // equality. |
| 3980 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( |
| 3981 | float max_abs_error) { |
| 3982 | return internal::FloatingEq2Matcher<float>(max_abs_error, true); |
| 3983 | } |
| 3984 | |
| 3985 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 3986 | // DoubleNear(first field, max_abs_error) matches the second field with NaN |
| 3987 | // equality. |
| 3988 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( |
| 3989 | double max_abs_error) { |
| 3990 | return internal::FloatingEq2Matcher<double>(max_abs_error, true); |
| 3991 | } |
| 3992 | |
| 3993 | // Creates a matcher that matches any value of type T that m doesn't |
| 3994 | // match. |
| 3995 | template <typename InnerMatcher> |
| 3996 | inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
| 3997 | return internal::NotMatcher<InnerMatcher>(m); |
| 3998 | } |
| 3999 | |
| 4000 | // Returns a matcher that matches anything that satisfies the given |
| 4001 | // predicate. The predicate can be any unary function or functor |
| 4002 | // whose return type can be implicitly converted to bool. |
| 4003 | template <typename Predicate> |
| 4004 | inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > |
| 4005 | Truly(Predicate pred) { |
| 4006 | return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
| 4007 | } |
| 4008 | |
| 4009 | // Returns a matcher that matches the container size. The container must |
| 4010 | // support both size() and size_type which all STL-like containers provide. |
| 4011 | // Note that the parameter 'size' can be a value of type size_type as well as |
| 4012 | // matcher. For instance: |
| 4013 | // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. |
| 4014 | // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. |
| 4015 | template <typename SizeMatcher> |
| 4016 | inline internal::SizeIsMatcher<SizeMatcher> |
| 4017 | SizeIs(const SizeMatcher& size_matcher) { |
| 4018 | return internal::SizeIsMatcher<SizeMatcher>(size_matcher); |
| 4019 | } |
| 4020 | |
| 4021 | // Returns a matcher that matches the distance between the container's begin() |
| 4022 | // iterator and its end() iterator, i.e. the size of the container. This matcher |
| 4023 | // can be used instead of SizeIs with containers such as std::forward_list which |
| 4024 | // do not implement size(). The container must provide const_iterator (with |
| 4025 | // valid iterator_traits), begin() and end(). |
| 4026 | template <typename DistanceMatcher> |
| 4027 | inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> |
| 4028 | BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { |
| 4029 | return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); |
| 4030 | } |
| 4031 | |
| 4032 | // Returns a matcher that matches an equal container. |
| 4033 | // This matcher behaves like Eq(), but in the event of mismatch lists the |
| 4034 | // values that are included in one container but not the other. (Duplicate |
| 4035 | // values and order differences are not explained.) |
| 4036 | template <typename Container> |
| 4037 | inline PolymorphicMatcher<internal::ContainerEqMatcher< // NOLINT |
| 4038 | GTEST_REMOVE_CONST_(Container)> > |
| 4039 | ContainerEq(const Container& rhs) { |
| 4040 | // This following line is for working around a bug in MSVC 8.0, |
| 4041 | // which causes Container to be a const type sometimes. |
| 4042 | typedef GTEST_REMOVE_CONST_(Container) RawContainer; |
| 4043 | return MakePolymorphicMatcher( |
| 4044 | internal::ContainerEqMatcher<RawContainer>(rhs)); |
| 4045 | } |
| 4046 | |
| 4047 | // Returns a matcher that matches a container that, when sorted using |
| 4048 | // the given comparator, matches container_matcher. |
| 4049 | template <typename Comparator, typename ContainerMatcher> |
| 4050 | inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> |
| 4051 | WhenSortedBy(const Comparator& comparator, |
| 4052 | const ContainerMatcher& container_matcher) { |
| 4053 | return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( |
| 4054 | comparator, container_matcher); |
| 4055 | } |
| 4056 | |
| 4057 | // Returns a matcher that matches a container that, when sorted using |
| 4058 | // the < operator, matches container_matcher. |
| 4059 | template <typename ContainerMatcher> |
| 4060 | inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> |
| 4061 | WhenSorted(const ContainerMatcher& container_matcher) { |
| 4062 | return |
| 4063 | internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( |
| 4064 | internal::LessComparator(), container_matcher); |
| 4065 | } |
| 4066 | |
| 4067 | // Matches an STL-style container or a native array that contains the |
| 4068 | // same number of elements as in rhs, where its i-th element and rhs's |
| 4069 | // i-th element (as a pair) satisfy the given pair matcher, for all i. |
| 4070 | // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const |
| 4071 | // T1&, const T2&> >, where T1 and T2 are the types of elements in the |
| 4072 | // LHS container and the RHS container respectively. |
| 4073 | template <typename TupleMatcher, typename Container> |
| 4074 | inline internal::PointwiseMatcher<TupleMatcher, |
| 4075 | GTEST_REMOVE_CONST_(Container)> |
| 4076 | Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { |
| 4077 | // This following line is for working around a bug in MSVC 8.0, |
| 4078 | // which causes Container to be a const type sometimes (e.g. when |
| 4079 | // rhs is a const int[]).. |
| 4080 | typedef GTEST_REMOVE_CONST_(Container) RawContainer; |
| 4081 | return internal::PointwiseMatcher<TupleMatcher, RawContainer>( |
| 4082 | tuple_matcher, rhs); |
| 4083 | } |
| 4084 | |
| 4085 | |
| 4086 | // Supports the Pointwise(m, {a, b, c}) syntax. |
| 4087 | template <typename TupleMatcher, typename T> |
| 4088 | inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( |
| 4089 | const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { |
| 4090 | return Pointwise(tuple_matcher, std::vector<T>(rhs)); |
| 4091 | } |
| 4092 | |
| 4093 | |
| 4094 | // UnorderedPointwise(pair_matcher, rhs) matches an STL-style |
| 4095 | // container or a native array that contains the same number of |
| 4096 | // elements as in rhs, where in some permutation of the container, its |
| 4097 | // i-th element and rhs's i-th element (as a pair) satisfy the given |
| 4098 | // pair matcher, for all i. Tuple2Matcher must be able to be safely |
| 4099 | // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are |
| 4100 | // the types of elements in the LHS container and the RHS container |
| 4101 | // respectively. |
| 4102 | // |
| 4103 | // This is like Pointwise(pair_matcher, rhs), except that the element |
| 4104 | // order doesn't matter. |
| 4105 | template <typename Tuple2Matcher, typename RhsContainer> |
| 4106 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4107 | typename internal::BoundSecondMatcher< |
| 4108 | Tuple2Matcher, typename internal::StlContainerView<GTEST_REMOVE_CONST_( |
| 4109 | RhsContainer)>::type::value_type> > |
| 4110 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
| 4111 | const RhsContainer& rhs_container) { |
| 4112 | // This following line is for working around a bug in MSVC 8.0, |
| 4113 | // which causes RhsContainer to be a const type sometimes (e.g. when |
| 4114 | // rhs_container is a const int[]). |
| 4115 | typedef GTEST_REMOVE_CONST_(RhsContainer) RawRhsContainer; |
| 4116 | |
| 4117 | // RhsView allows the same code to handle RhsContainer being a |
| 4118 | // STL-style container and it being a native C-style array. |
| 4119 | typedef typename internal::StlContainerView<RawRhsContainer> RhsView; |
| 4120 | typedef typename RhsView::type RhsStlContainer; |
| 4121 | typedef typename RhsStlContainer::value_type Second; |
| 4122 | const RhsStlContainer& rhs_stl_container = |
| 4123 | RhsView::ConstReference(rhs_container); |
| 4124 | |
| 4125 | // Create a matcher for each element in rhs_container. |
| 4126 | ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; |
| 4127 | for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); |
| 4128 | it != rhs_stl_container.end(); ++it) { |
| 4129 | matchers.push_back( |
| 4130 | internal::MatcherBindSecond(tuple2_matcher, *it)); |
| 4131 | } |
| 4132 | |
| 4133 | // Delegate the work to UnorderedElementsAreArray(). |
| 4134 | return UnorderedElementsAreArray(matchers); |
| 4135 | } |
| 4136 | |
| 4137 | |
| 4138 | // Supports the UnorderedPointwise(m, {a, b, c}) syntax. |
| 4139 | template <typename Tuple2Matcher, typename T> |
| 4140 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4141 | typename internal::BoundSecondMatcher<Tuple2Matcher, T> > |
| 4142 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
| 4143 | std::initializer_list<T> rhs) { |
| 4144 | return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); |
| 4145 | } |
| 4146 | |
| 4147 | |
| 4148 | // Matches an STL-style container or a native array that contains at |
| 4149 | // least one element matching the given value or matcher. |
| 4150 | // |
| 4151 | // Examples: |
| 4152 | // ::std::set<int> page_ids; |
| 4153 | // page_ids.insert(3); |
| 4154 | // page_ids.insert(1); |
| 4155 | // EXPECT_THAT(page_ids, Contains(1)); |
| 4156 | // EXPECT_THAT(page_ids, Contains(Gt(2))); |
| 4157 | // EXPECT_THAT(page_ids, Not(Contains(4))); |
| 4158 | // |
| 4159 | // ::std::map<int, size_t> page_lengths; |
| 4160 | // page_lengths[1] = 100; |
| 4161 | // EXPECT_THAT(page_lengths, |
| 4162 | // Contains(::std::pair<const int, size_t>(1, 100))); |
| 4163 | // |
| 4164 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
| 4165 | // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
| 4166 | template <typename M> |
| 4167 | inline internal::ContainsMatcher<M> Contains(M matcher) { |
| 4168 | return internal::ContainsMatcher<M>(matcher); |
| 4169 | } |
| 4170 | |
| 4171 | // IsSupersetOf(iterator_first, iterator_last) |
| 4172 | // IsSupersetOf(pointer, count) |
| 4173 | // IsSupersetOf(array) |
| 4174 | // IsSupersetOf(container) |
| 4175 | // IsSupersetOf({e1, e2, ..., en}) |
| 4176 | // |
| 4177 | // IsSupersetOf() verifies that a surjective partial mapping onto a collection |
| 4178 | // of matchers exists. In other words, a container matches |
| 4179 | // IsSupersetOf({e1, ..., en}) if and only if there is a permutation |
| 4180 | // {y1, ..., yn} of some of the container's elements where y1 matches e1, |
| 4181 | // ..., and yn matches en. Obviously, the size of the container must be >= n |
| 4182 | // in order to have a match. Examples: |
| 4183 | // |
| 4184 | // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and |
| 4185 | // 1 matches Ne(0). |
| 4186 | // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches |
| 4187 | // both Eq(1) and Lt(2). The reason is that different matchers must be used |
| 4188 | // for elements in different slots of the container. |
| 4189 | // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches |
| 4190 | // Eq(1) and (the second) 1 matches Lt(2). |
| 4191 | // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) |
| 4192 | // Gt(1) and 3 matches (the second) Gt(1). |
| 4193 | // |
| 4194 | // The matchers can be specified as an array, a pointer and count, a container, |
| 4195 | // an initializer list, or an STL iterator range. In each of these cases, the |
| 4196 | // underlying matchers can be either values or matchers. |
| 4197 | |
| 4198 | template <typename Iter> |
| 4199 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4200 | typename ::std::iterator_traits<Iter>::value_type> |
| 4201 | IsSupersetOf(Iter first, Iter last) { |
| 4202 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
| 4203 | return internal::UnorderedElementsAreArrayMatcher<T>( |
| 4204 | internal::UnorderedMatcherRequire::Superset, first, last); |
| 4205 | } |
| 4206 | |
| 4207 | template <typename T> |
| 4208 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
| 4209 | const T* pointer, size_t count) { |
| 4210 | return IsSupersetOf(pointer, pointer + count); |
| 4211 | } |
| 4212 | |
| 4213 | template <typename T, size_t N> |
| 4214 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
| 4215 | const T (&array)[N]) { |
| 4216 | return IsSupersetOf(array, N); |
| 4217 | } |
| 4218 | |
| 4219 | template <typename Container> |
| 4220 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4221 | typename Container::value_type> |
| 4222 | IsSupersetOf(const Container& container) { |
| 4223 | return IsSupersetOf(container.begin(), container.end()); |
| 4224 | } |
| 4225 | |
| 4226 | template <typename T> |
| 4227 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
| 4228 | ::std::initializer_list<T> xs) { |
| 4229 | return IsSupersetOf(xs.begin(), xs.end()); |
| 4230 | } |
| 4231 | |
| 4232 | // IsSubsetOf(iterator_first, iterator_last) |
| 4233 | // IsSubsetOf(pointer, count) |
| 4234 | // IsSubsetOf(array) |
| 4235 | // IsSubsetOf(container) |
| 4236 | // IsSubsetOf({e1, e2, ..., en}) |
| 4237 | // |
| 4238 | // IsSubsetOf() verifies that an injective mapping onto a collection of matchers |
| 4239 | // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and |
| 4240 | // only if there is a subset of matchers {m1, ..., mk} which would match the |
| 4241 | // container using UnorderedElementsAre. Obviously, the size of the container |
| 4242 | // must be <= n in order to have a match. Examples: |
| 4243 | // |
| 4244 | // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). |
| 4245 | // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 |
| 4246 | // matches Lt(0). |
| 4247 | // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both |
| 4248 | // match Gt(0). The reason is that different matchers must be used for |
| 4249 | // elements in different slots of the container. |
| 4250 | // |
| 4251 | // The matchers can be specified as an array, a pointer and count, a container, |
| 4252 | // an initializer list, or an STL iterator range. In each of these cases, the |
| 4253 | // underlying matchers can be either values or matchers. |
| 4254 | |
| 4255 | template <typename Iter> |
| 4256 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4257 | typename ::std::iterator_traits<Iter>::value_type> |
| 4258 | IsSubsetOf(Iter first, Iter last) { |
| 4259 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
| 4260 | return internal::UnorderedElementsAreArrayMatcher<T>( |
| 4261 | internal::UnorderedMatcherRequire::Subset, first, last); |
| 4262 | } |
| 4263 | |
| 4264 | template <typename T> |
| 4265 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
| 4266 | const T* pointer, size_t count) { |
| 4267 | return IsSubsetOf(pointer, pointer + count); |
| 4268 | } |
| 4269 | |
| 4270 | template <typename T, size_t N> |
| 4271 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
| 4272 | const T (&array)[N]) { |
| 4273 | return IsSubsetOf(array, N); |
| 4274 | } |
| 4275 | |
| 4276 | template <typename Container> |
| 4277 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4278 | typename Container::value_type> |
| 4279 | IsSubsetOf(const Container& container) { |
| 4280 | return IsSubsetOf(container.begin(), container.end()); |
| 4281 | } |
| 4282 | |
| 4283 | template <typename T> |
| 4284 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
| 4285 | ::std::initializer_list<T> xs) { |
| 4286 | return IsSubsetOf(xs.begin(), xs.end()); |
| 4287 | } |
| 4288 | |
| 4289 | // Matches an STL-style container or a native array that contains only |
| 4290 | // elements matching the given value or matcher. |
| 4291 | // |
| 4292 | // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only |
| 4293 | // the messages are different. |
| 4294 | // |
| 4295 | // Examples: |
| 4296 | // ::std::set<int> page_ids; |
| 4297 | // // Each(m) matches an empty container, regardless of what m is. |
| 4298 | // EXPECT_THAT(page_ids, Each(Eq(1))); |
| 4299 | // EXPECT_THAT(page_ids, Each(Eq(77))); |
| 4300 | // |
| 4301 | // page_ids.insert(3); |
| 4302 | // EXPECT_THAT(page_ids, Each(Gt(0))); |
| 4303 | // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); |
| 4304 | // page_ids.insert(1); |
| 4305 | // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); |
| 4306 | // |
| 4307 | // ::std::map<int, size_t> page_lengths; |
| 4308 | // page_lengths[1] = 100; |
| 4309 | // page_lengths[2] = 200; |
| 4310 | // page_lengths[3] = 300; |
| 4311 | // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); |
| 4312 | // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); |
| 4313 | // |
| 4314 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
| 4315 | // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); |
| 4316 | template <typename M> |
| 4317 | inline internal::EachMatcher<M> Each(M matcher) { |
| 4318 | return internal::EachMatcher<M>(matcher); |
| 4319 | } |
| 4320 | |
| 4321 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
| 4322 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
| 4323 | // std::map that contains at least one element whose key is >= 5. |
| 4324 | template <typename M> |
| 4325 | inline internal::KeyMatcher<M> Key(M inner_matcher) { |
| 4326 | return internal::KeyMatcher<M>(inner_matcher); |
| 4327 | } |
| 4328 | |
| 4329 | // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
| 4330 | // matches first_matcher and whose 'second' field matches second_matcher. For |
| 4331 | // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
| 4332 | // to match a std::map<int, string> that contains exactly one element whose key |
| 4333 | // is >= 5 and whose value equals "foo". |
| 4334 | template <typename FirstMatcher, typename SecondMatcher> |
| 4335 | inline internal::PairMatcher<FirstMatcher, SecondMatcher> |
| 4336 | Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { |
| 4337 | return internal::PairMatcher<FirstMatcher, SecondMatcher>( |
| 4338 | first_matcher, second_matcher); |
| 4339 | } |
| 4340 | |
| 4341 | // Returns a predicate that is satisfied by anything that matches the |
| 4342 | // given matcher. |
| 4343 | template <typename M> |
| 4344 | inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
| 4345 | return internal::MatcherAsPredicate<M>(matcher); |
| 4346 | } |
| 4347 | |
| 4348 | // Returns true iff the value matches the matcher. |
| 4349 | template <typename T, typename M> |
| 4350 | inline bool Value(const T& value, M matcher) { |
| 4351 | return testing::Matches(matcher)(value); |
| 4352 | } |
| 4353 | |
| 4354 | // Matches the value against the given matcher and explains the match |
| 4355 | // result to listener. |
| 4356 | template <typename T, typename M> |
| 4357 | inline bool ExplainMatchResult( |
| 4358 | M matcher, const T& value, MatchResultListener* listener) { |
| 4359 | return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); |
| 4360 | } |
| 4361 | |
| 4362 | // Returns a string representation of the given matcher. Useful for description |
| 4363 | // strings of matchers defined using MATCHER_P* macros that accept matchers as |
| 4364 | // their arguments. For example: |
| 4365 | // |
| 4366 | // MATCHER_P(XAndYThat, matcher, |
| 4367 | // "X that " + DescribeMatcher<int>(matcher, negation) + |
| 4368 | // " and Y that " + DescribeMatcher<double>(matcher, negation)) { |
| 4369 | // return ExplainMatchResult(matcher, arg.x(), result_listener) && |
| 4370 | // ExplainMatchResult(matcher, arg.y(), result_listener); |
| 4371 | // } |
| 4372 | template <typename T, typename M> |
| 4373 | std::string DescribeMatcher(const M& matcher, bool negation = false) { |
| 4374 | ::std::stringstream ss; |
| 4375 | Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); |
| 4376 | if (negation) { |
| 4377 | monomorphic_matcher.DescribeNegationTo(&ss); |
| 4378 | } else { |
| 4379 | monomorphic_matcher.DescribeTo(&ss); |
| 4380 | } |
| 4381 | return ss.str(); |
| 4382 | } |
| 4383 | |
| 4384 | template <typename... Args> |
| 4385 | internal::ElementsAreMatcher< |
| 4386 | std::tuple<typename std::decay<const Args&>::type...>> |
| 4387 | ElementsAre(const Args&... matchers) { |
| 4388 | return internal::ElementsAreMatcher< |
| 4389 | std::tuple<typename std::decay<const Args&>::type...>>( |
| 4390 | std::make_tuple(matchers...)); |
| 4391 | } |
| 4392 | |
| 4393 | template <typename... Args> |
| 4394 | internal::UnorderedElementsAreMatcher< |
| 4395 | std::tuple<typename std::decay<const Args&>::type...>> |
| 4396 | UnorderedElementsAre(const Args&... matchers) { |
| 4397 | return internal::UnorderedElementsAreMatcher< |
| 4398 | std::tuple<typename std::decay<const Args&>::type...>>( |
| 4399 | std::make_tuple(matchers...)); |
| 4400 | } |
| 4401 | |
| 4402 | // Define variadic matcher versions. |
| 4403 | template <typename... Args> |
| 4404 | internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( |
| 4405 | const Args&... matchers) { |
| 4406 | return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( |
| 4407 | matchers...); |
| 4408 | } |
| 4409 | |
| 4410 | template <typename... Args> |
| 4411 | internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( |
| 4412 | const Args&... matchers) { |
| 4413 | return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( |
| 4414 | matchers...); |
| 4415 | } |
| 4416 | |
| 4417 | // AnyOfArray(array) |
| 4418 | // AnyOfArray(pointer, count) |
| 4419 | // AnyOfArray(container) |
| 4420 | // AnyOfArray({ e1, e2, ..., en }) |
| 4421 | // AnyOfArray(iterator_first, iterator_last) |
| 4422 | // |
| 4423 | // AnyOfArray() verifies whether a given value matches any member of a |
| 4424 | // collection of matchers. |
| 4425 | // |
| 4426 | // AllOfArray(array) |
| 4427 | // AllOfArray(pointer, count) |
| 4428 | // AllOfArray(container) |
| 4429 | // AllOfArray({ e1, e2, ..., en }) |
| 4430 | // AllOfArray(iterator_first, iterator_last) |
| 4431 | // |
| 4432 | // AllOfArray() verifies whether a given value matches all members of a |
| 4433 | // collection of matchers. |
| 4434 | // |
| 4435 | // The matchers can be specified as an array, a pointer and count, a container, |
| 4436 | // an initializer list, or an STL iterator range. In each of these cases, the |
| 4437 | // underlying matchers can be either values or matchers. |
| 4438 | |
| 4439 | template <typename Iter> |
| 4440 | inline internal::AnyOfArrayMatcher< |
| 4441 | typename ::std::iterator_traits<Iter>::value_type> |
| 4442 | AnyOfArray(Iter first, Iter last) { |
| 4443 | return internal::AnyOfArrayMatcher< |
| 4444 | typename ::std::iterator_traits<Iter>::value_type>(first, last); |
| 4445 | } |
| 4446 | |
| 4447 | template <typename Iter> |
| 4448 | inline internal::AllOfArrayMatcher< |
| 4449 | typename ::std::iterator_traits<Iter>::value_type> |
| 4450 | AllOfArray(Iter first, Iter last) { |
| 4451 | return internal::AllOfArrayMatcher< |
| 4452 | typename ::std::iterator_traits<Iter>::value_type>(first, last); |
| 4453 | } |
| 4454 | |
| 4455 | template <typename T> |
| 4456 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { |
| 4457 | return AnyOfArray(ptr, ptr + count); |
| 4458 | } |
| 4459 | |
| 4460 | template <typename T> |
| 4461 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { |
| 4462 | return AllOfArray(ptr, ptr + count); |
| 4463 | } |
| 4464 | |
| 4465 | template <typename T, size_t N> |
| 4466 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { |
| 4467 | return AnyOfArray(array, N); |
| 4468 | } |
| 4469 | |
| 4470 | template <typename T, size_t N> |
| 4471 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { |
| 4472 | return AllOfArray(array, N); |
| 4473 | } |
| 4474 | |
| 4475 | template <typename Container> |
| 4476 | inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( |
| 4477 | const Container& container) { |
| 4478 | return AnyOfArray(container.begin(), container.end()); |
| 4479 | } |
| 4480 | |
| 4481 | template <typename Container> |
| 4482 | inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( |
| 4483 | const Container& container) { |
| 4484 | return AllOfArray(container.begin(), container.end()); |
| 4485 | } |
| 4486 | |
| 4487 | template <typename T> |
| 4488 | inline internal::AnyOfArrayMatcher<T> AnyOfArray( |
| 4489 | ::std::initializer_list<T> xs) { |
| 4490 | return AnyOfArray(xs.begin(), xs.end()); |
| 4491 | } |
| 4492 | |
| 4493 | template <typename T> |
| 4494 | inline internal::AllOfArrayMatcher<T> AllOfArray( |
| 4495 | ::std::initializer_list<T> xs) { |
| 4496 | return AllOfArray(xs.begin(), xs.end()); |
| 4497 | } |
| 4498 | |
| 4499 | // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected |
| 4500 | // fields of it matches a_matcher. C++ doesn't support default |
| 4501 | // arguments for function templates, so we have to overload it. |
| 4502 | template <size_t... k, typename InnerMatcher> |
| 4503 | internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( |
| 4504 | InnerMatcher&& matcher) { |
| 4505 | return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( |
| 4506 | std::forward<InnerMatcher>(matcher)); |
| 4507 | } |
| 4508 | |
| 4509 | // AllArgs(m) is a synonym of m. This is useful in |
| 4510 | // |
| 4511 | // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
| 4512 | // |
| 4513 | // which is easier to read than |
| 4514 | // |
| 4515 | // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
| 4516 | template <typename InnerMatcher> |
| 4517 | inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } |
| 4518 | |
| 4519 | // Returns a matcher that matches the value of an optional<> type variable. |
| 4520 | // The matcher implementation only uses '!arg' and requires that the optional<> |
| 4521 | // type has a 'value_type' member type and that '*arg' is of type 'value_type' |
| 4522 | // and is printable using 'PrintToString'. It is compatible with |
| 4523 | // std::optional/std::experimental::optional. |
| 4524 | // Note that to compare an optional type variable against nullopt you should |
| 4525 | // use Eq(nullopt) and not Optional(Eq(nullopt)). The latter implies that the |
| 4526 | // optional value contains an optional itself. |
| 4527 | template <typename ValueMatcher> |
| 4528 | inline internal::OptionalMatcher<ValueMatcher> Optional( |
| 4529 | const ValueMatcher& value_matcher) { |
| 4530 | return internal::OptionalMatcher<ValueMatcher>(value_matcher); |
| 4531 | } |
| 4532 | |
| 4533 | // Returns a matcher that matches the value of a absl::any type variable. |
| 4534 | template <typename T> |
| 4535 | PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( |
| 4536 | const Matcher<const T&>& matcher) { |
| 4537 | return MakePolymorphicMatcher( |
| 4538 | internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); |
| 4539 | } |
| 4540 | |
| 4541 | // Returns a matcher that matches the value of a variant<> type variable. |
| 4542 | // The matcher implementation uses ADL to find the holds_alternative and get |
| 4543 | // functions. |
| 4544 | // It is compatible with std::variant. |
| 4545 | template <typename T> |
| 4546 | PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( |
| 4547 | const Matcher<const T&>& matcher) { |
| 4548 | return MakePolymorphicMatcher( |
| 4549 | internal::variant_matcher::VariantMatcher<T>(matcher)); |
| 4550 | } |
| 4551 | |
| 4552 | // These macros allow using matchers to check values in Google Test |
| 4553 | // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
| 4554 | // succeed iff the value matches the matcher. If the assertion fails, |
| 4555 | // the value and the description of the matcher will be printed. |
| 4556 | #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ |
| 4557 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
| 4558 | #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ |
| 4559 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
| 4560 | |
| 4561 | } // namespace testing |
| 4562 | |
| 4563 | GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 |
| 4564 | |
| 4565 | // Include any custom callback matchers added by the local installation. |
| 4566 | // We must include this header at the end to make sure it can use the |
| 4567 | // declarations from this file. |
| 4568 | #include "gmock/internal/custom/gmock-matchers.h" |
| 4569 | |
| 4570 | #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| 4571 | |