| 1 | /* |
| 2 | * ai_btree.c |
| 3 | * |
| 4 | * Copyright (C) 2013-2014 Aerospike, Inc. |
| 5 | * |
| 6 | * Portions may be licensed to Aerospike, Inc. under one or more contributor |
| 7 | * license agreements. |
| 8 | * |
| 9 | * This program is free software: you can redistribute it and/or modify it under |
| 10 | * the terms of the GNU Affero General Public License as published by the Free |
| 11 | * Software Foundation, either version 3 of the License, or (at your option) any |
| 12 | * later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 15 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 16 | * FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more |
| 17 | * details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU Affero General Public License |
| 20 | * along with this program. If not, see http://www.gnu.org/licenses/ |
| 21 | */ |
| 22 | |
| 23 | #include <sys/time.h> |
| 24 | #include <assert.h> |
| 25 | #include <errno.h> |
| 26 | #include <stdio.h> |
| 27 | #include <string.h> |
| 28 | |
| 29 | #include "ai_obj.h" |
| 30 | #include "ai_btree.h" |
| 31 | #include "bt_iterator.h" |
| 32 | #include "bt_output.h" |
| 33 | #include "stream.h" |
| 34 | #include "base/thr_sindex.h" |
| 35 | #include "base/cfg.h" |
| 36 | #include "fabric/partition.h" |
| 37 | |
| 38 | #include <citrusleaf/alloc.h> |
| 39 | #include <citrusleaf/cf_clock.h> |
| 40 | #include <citrusleaf/cf_digest.h> |
| 41 | #include <citrusleaf/cf_ll.h> |
| 42 | |
| 43 | #include "fault.h" |
| 44 | |
| 45 | #define AI_ARR_MAX_USED 32 |
| 46 | |
| 47 | /* |
| 48 | * Global determining whether to use array rather than B-Tree. |
| 49 | */ |
| 50 | bool g_use_arr = true; |
| 51 | |
| 52 | static void |
| 53 | cloneDigestFromai_obj(cf_digest *d, ai_obj *akey) |
| 54 | { |
| 55 | memcpy(d, &akey->y, CF_DIGEST_KEY_SZ); |
| 56 | } |
| 57 | |
| 58 | static void |
| 59 | init_ai_objFromDigest(ai_obj *akey, cf_digest *d) |
| 60 | { |
| 61 | init_ai_objU160(akey, *(uint160 *)d); |
| 62 | } |
| 63 | |
| 64 | const uint8_t INIT_CAPACITY = 1; |
| 65 | |
| 66 | static ai_arr * |
| 67 | ai_arr_new() |
| 68 | { |
| 69 | ai_arr *arr = cf_malloc(sizeof(ai_arr) + (INIT_CAPACITY * CF_DIGEST_KEY_SZ)); |
| 70 | arr->capacity = INIT_CAPACITY; |
| 71 | arr->used = 0; |
| 72 | return arr; |
| 73 | } |
| 74 | |
| 75 | static void |
| 76 | ai_arr_move_to_tree(ai_arr *arr, bt *nbtr) |
| 77 | { |
| 78 | for (int i = 0; i < arr->used; i++) { |
| 79 | ai_obj apk; |
| 80 | init_ai_objFromDigest(&apk, (cf_digest *)&arr->data[i * CF_DIGEST_KEY_SZ]); |
| 81 | if (!btIndNodeAdd(nbtr, &apk)) { |
| 82 | // what to do ?? |
| 83 | continue; |
| 84 | } |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | /* |
| 89 | * Side effect if success full *arr will be freed |
| 90 | */ |
| 91 | static void |
| 92 | ai_arr_destroy(ai_arr *arr) |
| 93 | { |
| 94 | if (!arr) return; |
| 95 | cf_free(arr); |
| 96 | } |
| 97 | |
| 98 | static int |
| 99 | ai_arr_size(ai_arr *arr) |
| 100 | { |
| 101 | if (!arr) return 0; |
| 102 | return(sizeof(ai_arr) + (arr->capacity * CF_DIGEST_KEY_SZ)); |
| 103 | } |
| 104 | |
| 105 | /* |
| 106 | * Finds the digest in the AI array. |
| 107 | * Returns |
| 108 | * idx if found |
| 109 | * -1 if not found |
| 110 | */ |
| 111 | static int |
| 112 | ai_arr_find(ai_arr *arr, cf_digest *dig) |
| 113 | { |
| 114 | for (int i = 0; i < arr->used; i++) { |
| 115 | if (0 == cf_digest_compare(dig, (cf_digest *)&arr->data[i * CF_DIGEST_KEY_SZ])) { |
| 116 | return i; |
| 117 | } |
| 118 | } |
| 119 | return -1; |
| 120 | } |
| 121 | |
| 122 | static ai_arr * |
| 123 | ai_arr_shrink(ai_arr *arr) |
| 124 | { |
| 125 | int size = arr->capacity / 2; |
| 126 | |
| 127 | // Do not shrink if the capacity not greater than 4 |
| 128 | // or if the halving capacity is not a extra level |
| 129 | // over currently used |
| 130 | if ((arr->capacity <= 4) || |
| 131 | (size < arr->used * 2)) { |
| 132 | return arr; |
| 133 | } |
| 134 | |
| 135 | ai_arr * temp_arr = cf_realloc(arr, sizeof(ai_arr) + (size * CF_DIGEST_KEY_SZ)); |
| 136 | temp_arr->capacity = size; |
| 137 | return temp_arr; |
| 138 | } |
| 139 | |
| 140 | static ai_arr * |
| 141 | ai_arr_delete(ai_arr *arr, cf_digest *dig, bool *notfound) |
| 142 | { |
| 143 | int idx = ai_arr_find(arr, dig); |
| 144 | // Nothing to delete |
| 145 | if (idx < 0) { |
| 146 | *notfound = true; |
| 147 | return arr; |
| 148 | } |
| 149 | if (idx != arr->used - 1) { |
| 150 | int dest_offset = idx * CF_DIGEST_KEY_SZ; |
| 151 | int src_offset = (arr->used - 1) * CF_DIGEST_KEY_SZ; |
| 152 | // move last element |
| 153 | memcpy(&arr->data[dest_offset], &arr->data[src_offset], CF_DIGEST_KEY_SZ); |
| 154 | } |
| 155 | arr->used--; |
| 156 | return ai_arr_shrink(arr); |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * Returns |
| 161 | * arr pointer in case of successful operation |
| 162 | * NULL in case of failure |
| 163 | */ |
| 164 | static ai_arr * |
| 165 | ai_arr_expand(ai_arr *arr) |
| 166 | { |
| 167 | int size = arr->capacity * 2; |
| 168 | |
| 169 | if (size > AI_ARR_MAX_SIZE) { |
| 170 | cf_crash(AS_SINDEX, "Refusing to expand ai_arr to %d (beyond limit of %d)" , size, AI_ARR_MAX_SIZE); |
| 171 | } |
| 172 | |
| 173 | arr = cf_realloc(arr, sizeof(ai_arr) + (size * CF_DIGEST_KEY_SZ)); |
| 174 | //cf_info(AS_SINDEX, "EXPAND REALLOC to %d", size); |
| 175 | arr->capacity = size; |
| 176 | return arr; |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * Returns |
| 181 | * arr in case of success |
| 182 | * NULL in case of failure |
| 183 | */ |
| 184 | static ai_arr * |
| 185 | ai_arr_insert(ai_arr *arr, cf_digest *dig, bool *found) |
| 186 | { |
| 187 | int idx = ai_arr_find(arr, dig); |
| 188 | // already found |
| 189 | if (idx >= 0) { |
| 190 | *found = true; |
| 191 | return arr; |
| 192 | } |
| 193 | if (arr->used == arr->capacity) { |
| 194 | arr = ai_arr_expand(arr); |
| 195 | } |
| 196 | memcpy(&arr->data[arr->used * CF_DIGEST_KEY_SZ], dig, CF_DIGEST_KEY_SZ); |
| 197 | arr->used++; |
| 198 | return arr; |
| 199 | } |
| 200 | |
| 201 | /* |
| 202 | * Returns the size diff |
| 203 | */ |
| 204 | static int |
| 205 | anbtr_check_convert(ai_nbtr *anbtr, col_type_t sktype) |
| 206 | { |
| 207 | // Nothing to do |
| 208 | if (anbtr->is_btree) |
| 209 | return 0; |
| 210 | |
| 211 | ai_arr *arr = anbtr->u.arr; |
| 212 | if (arr && (arr->used >= AI_ARR_MAX_USED)) { |
| 213 | //cf_info(AS_SINDEX,"Flipped @ %d", arr->used); |
| 214 | ulong ba = ai_arr_size(arr); |
| 215 | // Allocate btree move digest from arr to btree |
| 216 | bt *nbtr = createNBT(sktype); |
| 217 | if (!nbtr) { |
| 218 | cf_warning(AS_SINDEX, "btree allocation failure" ); |
| 219 | return 0; |
| 220 | } |
| 221 | |
| 222 | ai_arr_move_to_tree(arr, nbtr); |
| 223 | ai_arr_destroy(anbtr->u.arr); |
| 224 | |
| 225 | // Update anbtr |
| 226 | anbtr->u.nbtr = nbtr; |
| 227 | anbtr->is_btree = true; |
| 228 | |
| 229 | ulong aa = nbtr->msize; |
| 230 | return (aa - ba); |
| 231 | } |
| 232 | return 0; |
| 233 | } |
| 234 | |
| 235 | /* |
| 236 | * return -1 in case of failure |
| 237 | * size of allocation in case of success |
| 238 | */ |
| 239 | static int |
| 240 | anbtr_check_init(ai_nbtr *anbtr, col_type_t sktype) |
| 241 | { |
| 242 | bool create_arr = false; |
| 243 | bool create_nbtr = false; |
| 244 | |
| 245 | if (anbtr->is_btree) { |
| 246 | if (anbtr->u.nbtr) { |
| 247 | create_nbtr = false; |
| 248 | } else { |
| 249 | create_nbtr = true; |
| 250 | } |
| 251 | } else { |
| 252 | if (anbtr->u.arr) { |
| 253 | create_arr = false; |
| 254 | } else { |
| 255 | if (g_use_arr) { |
| 256 | create_arr = true; |
| 257 | } else { |
| 258 | create_nbtr = true; |
| 259 | } |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | // create array or btree |
| 264 | if (create_arr) { |
| 265 | anbtr->u.arr = ai_arr_new(); |
| 266 | return ai_arr_size(anbtr->u.arr); |
| 267 | } else if (create_nbtr) { |
| 268 | anbtr->u.nbtr = createNBT(sktype); |
| 269 | if (!anbtr->u.nbtr) { |
| 270 | return -1; |
| 271 | } |
| 272 | anbtr->is_btree = true; |
| 273 | return anbtr->u.nbtr->msize; |
| 274 | } else { |
| 275 | if (!anbtr->u.arr && !anbtr->u.nbtr) { |
| 276 | cf_warning(AS_SINDEX, "Something wrong!!!" ); |
| 277 | return -1; |
| 278 | } |
| 279 | } |
| 280 | return 0; |
| 281 | } |
| 282 | |
| 283 | /* |
| 284 | * Insert operation for the nbtr does the following |
| 285 | * 1. Sets up anbtr if it is set up |
| 286 | * 2. Inserts in the arr or nbtr depending number of elements. |
| 287 | * 3. Cuts over from arr to btr at AI_ARR_MAX_USED |
| 288 | * |
| 289 | * Parameter: ibtr : Btree of key |
| 290 | * acol : Secondary index key |
| 291 | * apk : value (primary key to be inserted) |
| 292 | * sktype : value type (U160 currently) |
| 293 | * |
| 294 | * Returns: |
| 295 | * AS_SINDEX_OK : In case of success |
| 296 | * AS_SINDEX_ERR : In case of failure |
| 297 | * AS_SINDEX_KEY_FOUND : If key already exists |
| 298 | */ |
| 299 | static int |
| 300 | reduced_iAdd(bt *ibtr, ai_obj *acol, ai_obj *apk, col_type_t sktype) |
| 301 | { |
| 302 | ai_nbtr *anbtr = (ai_nbtr *)btIndFind(ibtr, acol); |
| 303 | ulong ba = 0, aa = 0; |
| 304 | bool allocated_anbtr = false; |
| 305 | if (!anbtr) { |
| 306 | anbtr = cf_malloc(sizeof(ai_nbtr)); |
| 307 | aa += sizeof(ai_nbtr); |
| 308 | memset(anbtr, 0, sizeof(ai_nbtr)); |
| 309 | allocated_anbtr = true; |
| 310 | } |
| 311 | |
| 312 | // Init the array |
| 313 | int ret = anbtr_check_init(anbtr, sktype); |
| 314 | if (ret < 0) { |
| 315 | if (allocated_anbtr) { |
| 316 | cf_free(anbtr); |
| 317 | } |
| 318 | return AS_SINDEX_ERR; |
| 319 | } else if (ret) { |
| 320 | ibtr->nsize += ret; |
| 321 | btIndAdd(ibtr, acol, (bt *)anbtr); |
| 322 | } |
| 323 | |
| 324 | // Convert from arr to nbtr if limit is hit |
| 325 | ibtr->nsize += anbtr_check_convert(anbtr, sktype); |
| 326 | |
| 327 | // If already a btree use it |
| 328 | if (anbtr->is_btree) { |
| 329 | bt *nbtr = anbtr->u.nbtr; |
| 330 | if (!nbtr) { |
| 331 | return AS_SINDEX_ERR; |
| 332 | } |
| 333 | |
| 334 | if (btIndNodeExist(nbtr, apk)) { |
| 335 | return AS_SINDEX_KEY_FOUND; |
| 336 | } |
| 337 | |
| 338 | ba += nbtr->msize; |
| 339 | if (!btIndNodeAdd(nbtr, apk)) { |
| 340 | return AS_SINDEX_ERR; |
| 341 | } |
| 342 | aa += nbtr->msize; |
| 343 | |
| 344 | } else { |
| 345 | ai_arr *arr = anbtr->u.arr; |
| 346 | if (!arr) { |
| 347 | return AS_SINDEX_ERR; |
| 348 | } |
| 349 | |
| 350 | ba += ai_arr_size(anbtr->u.arr); |
| 351 | bool found = false; |
| 352 | ai_arr *t_arr = ai_arr_insert(arr, (cf_digest *)&apk->y, &found); |
| 353 | if (found) { |
| 354 | return AS_SINDEX_KEY_FOUND; |
| 355 | } |
| 356 | anbtr->u.arr = t_arr; |
| 357 | aa += ai_arr_size(anbtr->u.arr); |
| 358 | } |
| 359 | ibtr->nsize += (aa - ba); // ibtr inherits nbtr |
| 360 | |
| 361 | return AS_SINDEX_OK; |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * Delete operation for the nbtr does the following. Delete in the arr or nbtr |
| 366 | * based on state of anbtr |
| 367 | * |
| 368 | * Parameter: ibtr : Btree of key |
| 369 | * acol : Secondary index key |
| 370 | * apk : value (primary key to be inserted) |
| 371 | * |
| 372 | * Returns: |
| 373 | * AS_SINDEX_OK : In case of success |
| 374 | * AS_SINDEX_ERR : In case of failure |
| 375 | * AS_SINDEX_KEY_NOTFOUND : If key does not exist |
| 376 | */ |
| 377 | static int |
| 378 | reduced_iRem(bt *ibtr, ai_obj *acol, ai_obj *apk) |
| 379 | { |
| 380 | ai_nbtr *anbtr = (ai_nbtr *)btIndFind(ibtr, acol); |
| 381 | ulong ba = 0, aa = 0; |
| 382 | if (!anbtr) { |
| 383 | return AS_SINDEX_KEY_NOTFOUND; |
| 384 | } |
| 385 | if (anbtr->is_btree) { |
| 386 | if (!anbtr->u.nbtr) return AS_SINDEX_ERR; |
| 387 | |
| 388 | // Remove from nbtr if found |
| 389 | bt *nbtr = anbtr->u.nbtr; |
| 390 | if (!btIndNodeExist(nbtr, apk)) { |
| 391 | return AS_SINDEX_KEY_NOTFOUND; |
| 392 | } |
| 393 | ba = nbtr->msize; |
| 394 | |
| 395 | // TODO - Needs to be cleaner, type convert from signed |
| 396 | // to unsigned. Should be 64 bit !! |
| 397 | int nkeys_before = nbtr->numkeys; |
| 398 | int nkeys_after = btIndNodeDelete(nbtr, apk, NULL); |
| 399 | aa = nbtr->msize; |
| 400 | |
| 401 | if (nkeys_after == nkeys_before) { |
| 402 | return AS_SINDEX_KEY_NOTFOUND; |
| 403 | } |
| 404 | |
| 405 | // remove from ibtr |
| 406 | if (nkeys_after == 0) { |
| 407 | btIndDelete(ibtr, acol); |
| 408 | aa = 0; |
| 409 | bt_destroy(nbtr); |
| 410 | ba += sizeof(ai_nbtr); |
| 411 | cf_free(anbtr); |
| 412 | } |
| 413 | } else { |
| 414 | if (!anbtr->u.arr) return AS_SINDEX_ERR; |
| 415 | |
| 416 | // Remove from arr if found |
| 417 | bool notfound = false; |
| 418 | ba = ai_arr_size(anbtr->u.arr); |
| 419 | anbtr->u.arr = ai_arr_delete(anbtr->u.arr, (cf_digest *)&apk->y, ¬found); |
| 420 | if (notfound) return AS_SINDEX_KEY_NOTFOUND; |
| 421 | aa = ai_arr_size(anbtr->u.arr); |
| 422 | |
| 423 | // Remove from ibtr |
| 424 | if (anbtr->u.arr->used == 0) { |
| 425 | btIndDelete(ibtr, acol); |
| 426 | aa = 0; |
| 427 | ai_arr_destroy(anbtr->u.arr); |
| 428 | ba += sizeof(ai_nbtr); |
| 429 | cf_free(anbtr); |
| 430 | } |
| 431 | } |
| 432 | ibtr->nsize -= (ba - aa); |
| 433 | |
| 434 | return AS_SINDEX_OK; |
| 435 | } |
| 436 | |
| 437 | int |
| 438 | ai_btree_key_hash_from_sbin(as_sindex_metadata *imd, as_sindex_bin_data *b) |
| 439 | { |
| 440 | uint64_t u; |
| 441 | |
| 442 | if (C_IS_DG(imd->sktype)) { |
| 443 | char *x = (char *) &b->digest; // x += 4; |
| 444 | u = ((* (uint128 *) x) % imd->nprts); |
| 445 | } else { |
| 446 | u = (((uint64_t) b->u.i64) % imd->nprts); |
| 447 | } |
| 448 | |
| 449 | return (int) u; |
| 450 | } |
| 451 | |
| 452 | int |
| 453 | ai_btree_key_hash(as_sindex_metadata *imd, void *skey) |
| 454 | { |
| 455 | uint64_t u; |
| 456 | |
| 457 | if (C_IS_DG(imd->sktype)) { |
| 458 | char *x = (char *) ((cf_digest *)skey); // x += 4; |
| 459 | u = ((* (uint128 *) x) % imd->nprts); |
| 460 | } else { |
| 461 | u = ((*(uint64_t*)skey) % imd->nprts); |
| 462 | } |
| 463 | |
| 464 | return (int) u; |
| 465 | } |
| 466 | |
| 467 | /* |
| 468 | * Return 0 in case of success |
| 469 | * -1 in case of failure |
| 470 | */ |
| 471 | static int |
| 472 | btree_addsinglerec(as_sindex_metadata *imd, ai_obj * key, cf_digest *dig, cf_ll *recl, uint64_t *n_bdigs, |
| 473 | bool * can_partition_query, bool partitions_pre_reserved) |
| 474 | { |
| 475 | // The digests which belongs to one of the query-able partitions are elligible to go into recl |
| 476 | uint32_t pid = as_partition_getid(dig); |
| 477 | as_namespace * ns = imd->si->ns; |
| 478 | if (partitions_pre_reserved) { |
| 479 | if (!can_partition_query[pid]) { |
| 480 | return 0; |
| 481 | } |
| 482 | } |
| 483 | else { |
| 484 | if (! client_replica_maps_is_partition_queryable(ns, pid)) { |
| 485 | return 0; |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | bool create = (cf_ll_size(recl) == 0) ? true : false; |
| 490 | as_index_keys_arr * keys_arr = NULL; |
| 491 | if (!create) { |
| 492 | cf_ll_element * ele = cf_ll_get_tail(recl); |
| 493 | keys_arr = ((as_index_keys_ll_element*)ele)->keys_arr; |
| 494 | if (keys_arr->num == AS_INDEX_KEYS_PER_ARR) { |
| 495 | create = true; |
| 496 | } |
| 497 | } |
| 498 | if (create) { |
| 499 | keys_arr = as_index_get_keys_arr(); |
| 500 | if (!keys_arr) { |
| 501 | cf_warning(AS_SINDEX, "Fail to allocate sindex key value array" ); |
| 502 | return -1; |
| 503 | } |
| 504 | as_index_keys_ll_element * node = cf_malloc(sizeof(as_index_keys_ll_element)); |
| 505 | node->keys_arr = keys_arr; |
| 506 | cf_ll_append(recl, (cf_ll_element *)node); |
| 507 | } |
| 508 | // Copy the digest (value) |
| 509 | memcpy(&keys_arr->pindex_digs[keys_arr->num], dig, CF_DIGEST_KEY_SZ); |
| 510 | |
| 511 | // Copy the key |
| 512 | if (C_IS_DG(imd->sktype)) { |
| 513 | memcpy(&keys_arr->sindex_keys[keys_arr->num].key.str_key, &key->y, CF_DIGEST_KEY_SZ); |
| 514 | } |
| 515 | else { |
| 516 | keys_arr->sindex_keys[keys_arr->num].key.int_key = key->l; |
| 517 | } |
| 518 | |
| 519 | keys_arr->num++; |
| 520 | *n_bdigs = *n_bdigs + 1; |
| 521 | return 0; |
| 522 | } |
| 523 | |
| 524 | /* |
| 525 | * Return 0 in case of success |
| 526 | * -1 in case of failure |
| 527 | */ |
| 528 | static int |
| 529 | add_recs_from_nbtr(as_sindex_metadata *imd, ai_obj *ikey, bt *nbtr, as_sindex_qctx *qctx, bool fullrng) |
| 530 | { |
| 531 | int ret = 0; |
| 532 | ai_obj sfk, efk; |
| 533 | init_ai_obj(&sfk); |
| 534 | init_ai_obj(&efk); |
| 535 | btSIter *nbi; |
| 536 | btEntry *nbe; |
| 537 | btSIter stack_nbi; |
| 538 | |
| 539 | if (fullrng) { |
| 540 | nbi = btSetFullRangeIter(&stack_nbi, nbtr, 1, NULL); |
| 541 | } else { // search from LAST batches end-point |
| 542 | init_ai_objFromDigest(&sfk, &qctx->bdig); |
| 543 | assignMaxKey(nbtr, &efk); |
| 544 | nbi = btSetRangeIter(&stack_nbi, nbtr, &sfk, &efk, 1); |
| 545 | } |
| 546 | if (nbi) { |
| 547 | while ((nbe = btRangeNext(nbi, 1))) { |
| 548 | ai_obj *akey = nbe->key; |
| 549 | // FIRST can be REPEAT (last batch) |
| 550 | if (!fullrng && ai_objEQ(&sfk, akey)) { |
| 551 | continue; |
| 552 | } |
| 553 | if (btree_addsinglerec(imd, ikey, (cf_digest *)&akey->y, qctx->recl, &qctx->n_bdigs, |
| 554 | qctx->can_partition_query, qctx->partitions_pre_reserved)) { |
| 555 | ret = -1; |
| 556 | break; |
| 557 | } |
| 558 | if (qctx->n_bdigs == qctx->bsize) { |
| 559 | if (ikey) { |
| 560 | ai_objClone(qctx->bkey, ikey); |
| 561 | } |
| 562 | cloneDigestFromai_obj(&qctx->bdig, akey); |
| 563 | break; |
| 564 | } |
| 565 | } |
| 566 | btReleaseRangeIterator(nbi); |
| 567 | } else { |
| 568 | cf_warning(AS_QUERY, "Could not find nbtr iterator.. skipping !!" ); |
| 569 | } |
| 570 | return ret; |
| 571 | } |
| 572 | |
| 573 | static int |
| 574 | add_recs_from_arr(as_sindex_metadata *imd, ai_obj *ikey, ai_arr *arr, as_sindex_qctx *qctx) |
| 575 | { |
| 576 | bool ret = 0; |
| 577 | |
| 578 | for (int i = 0; i < arr->used; i++) { |
| 579 | if (btree_addsinglerec(imd, ikey, (cf_digest *)&arr->data[i * CF_DIGEST_KEY_SZ], qctx->recl, |
| 580 | &qctx->n_bdigs, qctx->can_partition_query, qctx->partitions_pre_reserved)) { |
| 581 | ret = -1; |
| 582 | break; |
| 583 | } |
| 584 | // do not break on hitting batch limit, if the tree converts to |
| 585 | // bt from arr, there is no way to know which digest were already |
| 586 | // returned when attempting subsequent batch. Return the entire |
| 587 | // thing. |
| 588 | } |
| 589 | // mark nbtr as finished and copy the offset |
| 590 | qctx->nbtr_done = true; |
| 591 | if (ikey) { |
| 592 | ai_objClone(qctx->bkey, ikey); |
| 593 | } |
| 594 | |
| 595 | return ret; |
| 596 | } |
| 597 | |
| 598 | /* |
| 599 | * Return 0 in case of success |
| 600 | * -1 in case of failure |
| 601 | */ |
| 602 | static int |
| 603 | get_recl(as_sindex_metadata *imd, ai_obj *afk, as_sindex_qctx *qctx) |
| 604 | { |
| 605 | as_sindex_pmetadata *pimd = &imd->pimd[qctx->pimd_idx]; |
| 606 | ai_nbtr *anbtr = (ai_nbtr *)btIndFind(pimd->ibtr, afk); |
| 607 | |
| 608 | if (!anbtr) { |
| 609 | return 0; |
| 610 | } |
| 611 | |
| 612 | if (anbtr->is_btree) { |
| 613 | if (add_recs_from_nbtr(imd, afk, anbtr->u.nbtr, qctx, qctx->new_ibtr)) { |
| 614 | return -1; |
| 615 | } |
| 616 | } else { |
| 617 | // If already entire batch is returned |
| 618 | if (qctx->nbtr_done) { |
| 619 | return 0; |
| 620 | } |
| 621 | if (add_recs_from_arr(imd, afk, anbtr->u.arr, qctx)) { |
| 622 | return -1; |
| 623 | } |
| 624 | } |
| 625 | return 0; |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * Return 0 in case of success |
| 630 | * -1 in case of failure |
| 631 | */ |
| 632 | static int |
| 633 | get_numeric_range_recl(as_sindex_metadata *imd, uint64_t begk, uint64_t endk, as_sindex_qctx *qctx) |
| 634 | { |
| 635 | ai_obj sfk; |
| 636 | init_ai_objLong(&sfk, qctx->new_ibtr ? begk : qctx->bkey->l); |
| 637 | ai_obj efk; |
| 638 | init_ai_objLong(&efk, endk); |
| 639 | as_sindex_pmetadata *pimd = &imd->pimd[qctx->pimd_idx]; |
| 640 | bool fullrng = qctx->new_ibtr; |
| 641 | int ret = 0; |
| 642 | btSIter *bi = btGetRangeIter(pimd->ibtr, &sfk, &efk, 1); |
| 643 | btEntry *be; |
| 644 | |
| 645 | if (bi) { |
| 646 | while ((be = btRangeNext(bi, 1))) { |
| 647 | ai_obj *ikey = be->key; |
| 648 | ai_nbtr *anbtr = be->val; |
| 649 | |
| 650 | if (!anbtr) { |
| 651 | ret = -1; |
| 652 | break; |
| 653 | } |
| 654 | |
| 655 | // figure out nbtr to deal with. If the key which was |
| 656 | // used last time vanishes work with next key. If the |
| 657 | // key exist but 'last' entry made to list in the last |
| 658 | // iteration; Move to next nbtr |
| 659 | if (!fullrng) { |
| 660 | if (!ai_objEQ(&sfk, ikey)) { |
| 661 | fullrng = 1; // bkey disappeared |
| 662 | } else if (qctx->nbtr_done) { |
| 663 | qctx->nbtr_done = false; |
| 664 | // If we are moving to the next key, we need |
| 665 | // to search the full range. |
| 666 | fullrng = 1; |
| 667 | continue; |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | if (anbtr->is_btree) { |
| 672 | if (add_recs_from_nbtr(imd, ikey, anbtr->u.nbtr, qctx, fullrng)) { |
| 673 | ret = -1; |
| 674 | break; |
| 675 | } |
| 676 | } else { |
| 677 | if (add_recs_from_arr(imd, ikey, anbtr->u.arr, qctx)) { |
| 678 | ret = -1; |
| 679 | break; |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | // Since add_recs_from_arr() returns entire thing and do not support the batch limit, |
| 684 | // >= operator is needed here. |
| 685 | if (qctx->n_bdigs >= qctx->bsize) { |
| 686 | break; |
| 687 | } |
| 688 | |
| 689 | // If it reaches here, this means last key could not fill the batch. |
| 690 | // So if we are to start a new key, search should be done on full range |
| 691 | // and the new nbtr is obviously not done. |
| 692 | fullrng = 1; |
| 693 | qctx->nbtr_done = false; |
| 694 | } |
| 695 | btReleaseRangeIterator(bi); |
| 696 | } |
| 697 | return ret; |
| 698 | } |
| 699 | |
| 700 | int |
| 701 | ai_btree_query(as_sindex_metadata *imd, as_sindex_range *srange, as_sindex_qctx *qctx) |
| 702 | { |
| 703 | bool err = 1; |
| 704 | if (!srange->isrange) { // EQUALITY LOOKUP |
| 705 | ai_obj afk; |
| 706 | init_ai_obj(&afk); |
| 707 | if (C_IS_DG(imd->sktype)) { |
| 708 | init_ai_objFromDigest(&afk, &srange->start.digest); |
| 709 | } |
| 710 | else { |
| 711 | init_ai_objLong(&afk, srange->start.u.i64); |
| 712 | } |
| 713 | err = get_recl(imd, &afk, qctx); |
| 714 | } else { // RANGE LOOKUP |
| 715 | err = get_numeric_range_recl(imd, srange->start.u.i64, srange->end.u.i64, qctx); |
| 716 | } |
| 717 | return (err ? AS_SINDEX_ERR_NO_MEMORY : |
| 718 | (qctx->n_bdigs >= qctx->bsize) ? AS_SINDEX_CONTINUE : AS_SINDEX_OK); |
| 719 | } |
| 720 | |
| 721 | int |
| 722 | ai_btree_put(as_sindex_metadata *imd, as_sindex_pmetadata *pimd, void *skey, cf_digest *value) |
| 723 | { |
| 724 | ai_obj ncol; |
| 725 | if (C_IS_DG(imd->sktype)) { |
| 726 | init_ai_objFromDigest(&ncol, (cf_digest*)skey); |
| 727 | } |
| 728 | else { |
| 729 | // TODO - ai_obj type is LONG for both Geo and Long |
| 730 | init_ai_objLong(&ncol, *(ulong *)skey); |
| 731 | } |
| 732 | |
| 733 | ai_obj apk; |
| 734 | init_ai_objFromDigest(&apk, value); |
| 735 | |
| 736 | |
| 737 | uint64_t before = pimd->ibtr->msize + pimd->ibtr->nsize; |
| 738 | int ret = reduced_iAdd(pimd->ibtr, &ncol, &apk, COL_TYPE_DIGEST); |
| 739 | uint64_t after = pimd->ibtr->msize + pimd->ibtr->nsize; |
| 740 | cf_atomic64_add(&imd->si->ns->n_bytes_sindex_memory, (after - before)); |
| 741 | |
| 742 | if (ret && ret != AS_SINDEX_KEY_FOUND) { |
| 743 | cf_warning(AS_SINDEX, "Insert into the btree failed" ); |
| 744 | return AS_SINDEX_ERR_NO_MEMORY; |
| 745 | } |
| 746 | return ret; |
| 747 | } |
| 748 | |
| 749 | int |
| 750 | ai_btree_delete(as_sindex_metadata *imd, as_sindex_pmetadata *pimd, void * skey, cf_digest * value) |
| 751 | { |
| 752 | int ret = AS_SINDEX_OK; |
| 753 | |
| 754 | if (!pimd->ibtr) { |
| 755 | return AS_SINDEX_KEY_NOTFOUND; |
| 756 | } |
| 757 | |
| 758 | ai_obj ncol; |
| 759 | if (C_IS_DG(imd->sktype)) { |
| 760 | init_ai_objFromDigest(&ncol, (cf_digest *)skey); |
| 761 | } |
| 762 | else { |
| 763 | // TODO - ai_obj type is LONG for both Geo and Long |
| 764 | init_ai_objLong(&ncol, *(ulong *)skey); |
| 765 | } |
| 766 | |
| 767 | ai_obj apk; |
| 768 | init_ai_objFromDigest(&apk, value); |
| 769 | |
| 770 | uint64_t before = pimd->ibtr->msize + pimd->ibtr->nsize; |
| 771 | ret = reduced_iRem(pimd->ibtr, &ncol, &apk); |
| 772 | uint64_t after = pimd->ibtr->msize + pimd->ibtr->nsize; |
| 773 | cf_atomic64_sub(&imd->si->ns->n_bytes_sindex_memory, (before - after)); |
| 774 | |
| 775 | return ret; |
| 776 | } |
| 777 | |
| 778 | /* |
| 779 | * Internal function which adds digests to the defrag_list |
| 780 | * Mallocs the nodes of defrag_list |
| 781 | * Returns : |
| 782 | * -1 : Error |
| 783 | * number of digests found : success |
| 784 | * |
| 785 | */ |
| 786 | static long |
| 787 | build_defrag_list_from_nbtr(as_namespace *ns, ai_obj *acol, bt *nbtr, ulong nofst, ulong *limit, uint64_t * tot_found, cf_ll *gc_list) |
| 788 | { |
| 789 | int error = -1; |
| 790 | btEntry *nbe; |
| 791 | // STEP 1: go thru a portion of the nbtr and find to-be-deleted-PKs |
| 792 | // TODO: a range query may be smarter then using the Xth Iterator |
| 793 | btSIter *nbi = (nofst ? btGetFullXthIter(nbtr, nofst, 1, NULL, 0) : |
| 794 | btGetFullRangeIter(nbtr, 1, NULL)); |
| 795 | if (!nbi) { |
| 796 | return error; |
| 797 | } |
| 798 | |
| 799 | long found = 0; |
| 800 | long processed = 0; |
| 801 | while ((nbe = btRangeNext(nbi, 1))) { |
| 802 | ai_obj *akey = nbe->key; |
| 803 | int ret = as_sindex_can_defrag_record(ns, (cf_digest *) (&akey->y)); |
| 804 | |
| 805 | if (ret == AS_SINDEX_GC_SKIP_ITERATION) { |
| 806 | *limit = 0; |
| 807 | break; |
| 808 | } else if (ret == AS_SINDEX_GC_OK) { |
| 809 | |
| 810 | bool create = (cf_ll_size(gc_list) == 0) ? true : false; |
| 811 | objs_to_defrag_arr *dt; |
| 812 | |
| 813 | if (!create) { |
| 814 | cf_ll_element * ele = cf_ll_get_tail(gc_list); |
| 815 | dt = ((ll_sindex_gc_element*)ele)->objs_to_defrag; |
| 816 | if (dt->num == SINDEX_GC_NUM_OBJS_PER_ARR) { |
| 817 | create = true; |
| 818 | } |
| 819 | } |
| 820 | if (create) { |
| 821 | dt = as_sindex_gc_get_defrag_arr(); |
| 822 | if (!dt) { |
| 823 | *tot_found += found; |
| 824 | return -1; |
| 825 | } |
| 826 | ll_sindex_gc_element * node; |
| 827 | node = cf_malloc(sizeof(ll_sindex_gc_element)); |
| 828 | node->objs_to_defrag = dt; |
| 829 | cf_ll_append(gc_list, (cf_ll_element *)node); |
| 830 | } |
| 831 | cloneDigestFromai_obj(&(dt->acol_digs[dt->num].dig), akey); |
| 832 | ai_objClone(&(dt->acol_digs[dt->num].acol), acol); |
| 833 | |
| 834 | dt->num += 1; |
| 835 | found++; |
| 836 | } |
| 837 | processed++; |
| 838 | (*limit)--; |
| 839 | if (*limit == 0) break; |
| 840 | } |
| 841 | btReleaseRangeIterator(nbi); |
| 842 | *tot_found += found; |
| 843 | return processed; |
| 844 | } |
| 845 | |
| 846 | static long |
| 847 | build_defrag_list_from_arr(as_namespace *ns, ai_obj *acol, ai_arr *arr, ulong nofst, ulong *limit, uint64_t * tot_found, cf_ll *gc_list) |
| 848 | { |
| 849 | long found = 0; |
| 850 | long processed = 0; |
| 851 | |
| 852 | for (ulong i = nofst; i < arr->used; i++) { |
| 853 | int ret = as_sindex_can_defrag_record(ns, (cf_digest *) &arr->data[i * CF_DIGEST_KEY_SZ]); |
| 854 | if (ret == AS_SINDEX_GC_SKIP_ITERATION) { |
| 855 | *limit = 0; |
| 856 | break; |
| 857 | } else if (ret == AS_SINDEX_GC_OK) { |
| 858 | bool create = (cf_ll_size(gc_list) == 0) ? true : false; |
| 859 | objs_to_defrag_arr *dt; |
| 860 | |
| 861 | if (!create) { |
| 862 | cf_ll_element * ele = cf_ll_get_tail(gc_list); |
| 863 | dt = ((ll_sindex_gc_element*)ele)->objs_to_defrag; |
| 864 | if (dt->num == SINDEX_GC_NUM_OBJS_PER_ARR) { |
| 865 | create = true; |
| 866 | } |
| 867 | } |
| 868 | if (create) { |
| 869 | dt = as_sindex_gc_get_defrag_arr(); |
| 870 | if (!dt) { |
| 871 | *tot_found += found; |
| 872 | return -1; |
| 873 | } |
| 874 | ll_sindex_gc_element * node; |
| 875 | node = cf_malloc(sizeof(ll_sindex_gc_element)); |
| 876 | node->objs_to_defrag = dt; |
| 877 | cf_ll_append(gc_list, (cf_ll_element *)node); |
| 878 | } |
| 879 | memcpy(&(dt->acol_digs[dt->num].dig), (cf_digest *) &arr->data[i * CF_DIGEST_KEY_SZ], CF_DIGEST_KEY_SZ); |
| 880 | ai_objClone(&(dt->acol_digs[dt->num].acol), acol); |
| 881 | |
| 882 | dt->num += 1; |
| 883 | found++; |
| 884 | } |
| 885 | processed++; |
| 886 | (*limit)--; |
| 887 | if (*limit == 0) { |
| 888 | break; |
| 889 | } |
| 890 | } |
| 891 | *tot_found += found; |
| 892 | return processed; |
| 893 | } |
| 894 | |
| 895 | /* |
| 896 | * Aerospike Index interface to build a defrag_list. |
| 897 | * |
| 898 | * Returns : |
| 899 | * AS_SINDEX_DONE ---> The current pimd has been scanned completely for defragging |
| 900 | * AS_SINDEX_CONTINUE ---> Current pimd sill may have some candidate digest to be defragged |
| 901 | * AS_SINDEX_ERR ---> Error. Abort this pimd. |
| 902 | * |
| 903 | * Notes : Caller has the responsibility to free the iterators. |
| 904 | * Requires a proper offset value from the caller. |
| 905 | */ |
| 906 | int |
| 907 | ai_btree_build_defrag_list(as_sindex_metadata *imd, as_sindex_pmetadata *pimd, ai_obj *icol, |
| 908 | ulong *nofst, ulong limit, uint64_t * tot_processed, uint64_t * tot_found, cf_ll *gc_list) |
| 909 | { |
| 910 | int ret = AS_SINDEX_ERR; |
| 911 | |
| 912 | if (!pimd || !imd) { |
| 913 | return ret; |
| 914 | } |
| 915 | |
| 916 | as_namespace *ns = imd->si->ns; |
| 917 | if (!ns) { |
| 918 | ns = as_namespace_get_byname((char *)imd->ns_name); |
| 919 | } |
| 920 | |
| 921 | if (!pimd || !pimd->ibtr || !pimd->ibtr->numkeys) { |
| 922 | goto END; |
| 923 | } |
| 924 | //Entry is range query, FROM previous icol TO maxKey(ibtr) |
| 925 | if (icol->type == COL_TYPE_INVALID) { |
| 926 | assignMinKey(pimd->ibtr, icol); // init first call |
| 927 | } |
| 928 | ai_obj iH; |
| 929 | assignMaxKey(pimd->ibtr, &iH); |
| 930 | btEntry *be = NULL; |
| 931 | btSIter *bi = btGetRangeIter(pimd->ibtr, icol, &iH, 1); |
| 932 | if (!bi) { |
| 933 | goto END; |
| 934 | } |
| 935 | |
| 936 | while ( true ) { |
| 937 | be = btRangeNext(bi, 1); |
| 938 | if (!be) { |
| 939 | ret = AS_SINDEX_DONE; |
| 940 | break; |
| 941 | } |
| 942 | ai_obj *acol = be->key; |
| 943 | ai_nbtr *anbtr = be->val; |
| 944 | long processed = 0; |
| 945 | if (!anbtr) { |
| 946 | break; |
| 947 | } |
| 948 | if (anbtr->is_btree) { |
| 949 | processed = build_defrag_list_from_nbtr(ns, acol, anbtr->u.nbtr, *nofst, &limit, tot_found, gc_list); |
| 950 | } else { |
| 951 | processed = build_defrag_list_from_arr(ns, acol, anbtr->u.arr, *nofst, &limit, tot_found, gc_list); |
| 952 | } |
| 953 | |
| 954 | if (processed < 0) { // error .. abort everything. |
| 955 | cf_detail(AS_SINDEX, "build_defrag_list returns an error. Aborting defrag on current pimd" ); |
| 956 | ret = AS_SINDEX_ERR; |
| 957 | break; |
| 958 | } |
| 959 | *tot_processed += processed; |
| 960 | // This tree may have some more digest to defrag |
| 961 | if (limit == 0) { |
| 962 | *nofst = *nofst + processed; |
| 963 | ai_objClone(icol, acol); |
| 964 | cf_detail(AS_SINDEX, "Current pimd may need more iteration of defragging." ); |
| 965 | ret = AS_SINDEX_CONTINUE; |
| 966 | break; |
| 967 | } |
| 968 | |
| 969 | // We have finished this tree. Yet we have not reached our limit to defrag. |
| 970 | // Goes to next iteration |
| 971 | *nofst = 0; |
| 972 | ai_objClone(icol, acol); |
| 973 | }; |
| 974 | btReleaseRangeIterator(bi); |
| 975 | END: |
| 976 | |
| 977 | return ret; |
| 978 | } |
| 979 | |
| 980 | /* |
| 981 | * Deletes the digest as in the passed in as gc_list, bound by n2del number of |
| 982 | * elements per iteration, with *deleted successful deletes. |
| 983 | */ |
| 984 | bool |
| 985 | ai_btree_defrag_list(as_sindex_metadata *imd, as_sindex_pmetadata *pimd, cf_ll *gc_list, ulong n2del, ulong *deleted) |
| 986 | { |
| 987 | // If n2del is zero here, that means caller do not want to defrag |
| 988 | if (n2del == 0) { |
| 989 | return false; |
| 990 | } |
| 991 | ulong success = 0; |
| 992 | as_namespace *ns = imd->si->ns; |
| 993 | // STEP 3: go thru the PKtoDeleteList and delete the keys |
| 994 | |
| 995 | uint64_t before = 0; |
| 996 | uint64_t after = 0; |
| 997 | |
| 998 | while (cf_ll_size(gc_list)) { |
| 999 | cf_ll_element * ele = cf_ll_get_head(gc_list); |
| 1000 | ll_sindex_gc_element * node = (ll_sindex_gc_element * )ele; |
| 1001 | objs_to_defrag_arr * dt = node->objs_to_defrag; |
| 1002 | |
| 1003 | // check before deleting. The digest may re-appear after the list |
| 1004 | // creation and before deletion from the secondary index |
| 1005 | |
| 1006 | int i = 0; |
| 1007 | while (dt->num != 0) { |
| 1008 | i = dt->num - 1; |
| 1009 | int ret = as_sindex_can_defrag_record(ns, &(dt->acol_digs[i].dig)); |
| 1010 | if (ret == AS_SINDEX_GC_SKIP_ITERATION) { |
| 1011 | goto END; |
| 1012 | } else if (ret == AS_SINDEX_GC_OK) { |
| 1013 | ai_obj apk; |
| 1014 | init_ai_objFromDigest(&apk, &(dt->acol_digs[i].dig)); |
| 1015 | ai_obj *acol = &(dt->acol_digs[i].acol); |
| 1016 | cf_detail(AS_SINDEX, "Defragged %lu %ld" , acol->l, *((uint64_t *)&apk.y)); |
| 1017 | |
| 1018 | before += pimd->ibtr->msize + pimd->ibtr->nsize; |
| 1019 | if (reduced_iRem(pimd->ibtr, acol, &apk) == AS_SINDEX_OK) { |
| 1020 | success++; |
| 1021 | } |
| 1022 | after += pimd->ibtr->msize + pimd->ibtr->nsize; |
| 1023 | } |
| 1024 | dt->num -= 1; |
| 1025 | n2del--; |
| 1026 | if (n2del == 0) { |
| 1027 | goto END; |
| 1028 | } |
| 1029 | } |
| 1030 | cf_ll_delete(gc_list, (cf_ll_element*)node); |
| 1031 | } |
| 1032 | |
| 1033 | END: |
| 1034 | cf_atomic64_sub(&imd->si->ns->n_bytes_sindex_memory, (before - after)); |
| 1035 | *deleted += success; |
| 1036 | return cf_ll_size(gc_list) ? true : false; |
| 1037 | } |
| 1038 | |
| 1039 | void |
| 1040 | ai_btree_create(as_sindex_metadata *imd) |
| 1041 | { |
| 1042 | for (int i = 0; i < imd->nprts; i++) { |
| 1043 | as_sindex_pmetadata *pimd = &imd->pimd[i]; |
| 1044 | pimd->ibtr = createIBT(imd->sktype, -1); |
| 1045 | if (! pimd->ibtr) { |
| 1046 | cf_crash(AS_SINDEX, "Failed to allocate secondary index tree for ns:%s, indexname:%s" , |
| 1047 | imd->ns_name, imd->iname); |
| 1048 | } |
| 1049 | } |
| 1050 | } |
| 1051 | |
| 1052 | static void |
| 1053 | destroy_index(bt *ibtr, bt_n *n) |
| 1054 | { |
| 1055 | if (! n->leaf) { |
| 1056 | for (int i = 0; i <= n->n; i++) { |
| 1057 | destroy_index(ibtr, NODES(ibtr, n)[i]); |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | for (int i = 0; i < n->n; i++) { |
| 1062 | void *be = KEYS(ibtr, n, i); |
| 1063 | ai_nbtr *anbtr = (ai_nbtr *) parseStream(be, ibtr); |
| 1064 | if (anbtr) { |
| 1065 | if (anbtr->is_btree) { |
| 1066 | bt_destroy(anbtr->u.nbtr); |
| 1067 | } else { |
| 1068 | ai_arr_destroy(anbtr->u.arr); |
| 1069 | } |
| 1070 | cf_free(anbtr); |
| 1071 | } |
| 1072 | } |
| 1073 | } |
| 1074 | |
| 1075 | void |
| 1076 | ai_btree_dump(as_sindex_metadata *imd, char *fname, bool verbose) |
| 1077 | { |
| 1078 | FILE *fp = NULL; |
| 1079 | if (!(fp = fopen(fname, "w" ))) { |
| 1080 | return; |
| 1081 | } |
| 1082 | |
| 1083 | fprintf(fp, "Namespace: %s set: %s\n" , imd->ns_name, imd->set ? imd->set : "None" ); |
| 1084 | |
| 1085 | for (int i = 0; i < imd->nprts; i++) { |
| 1086 | as_sindex_pmetadata *pimd = &imd->pimd[i]; |
| 1087 | fprintf(fp, "INDEX: name: %s:%d (%p)\n" , imd->iname, i, (void *) pimd->ibtr); |
| 1088 | if (pimd->ibtr) { |
| 1089 | bt_dumptree(fp, pimd->ibtr, 1, verbose); |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | fclose(fp); |
| 1094 | } |
| 1095 | |
| 1096 | uint64_t |
| 1097 | ai_btree_get_numkeys(as_sindex_metadata *imd) |
| 1098 | { |
| 1099 | uint64_t val = 0; |
| 1100 | |
| 1101 | for (int i = 0; i < imd->nprts; i++) { |
| 1102 | as_sindex_pmetadata *pimd = &imd->pimd[i]; |
| 1103 | PIMD_RLOCK(&pimd->slock); |
| 1104 | val += pimd->ibtr->numkeys; |
| 1105 | PIMD_RUNLOCK(&pimd->slock); |
| 1106 | } |
| 1107 | |
| 1108 | return val; |
| 1109 | } |
| 1110 | |
| 1111 | uint64_t |
| 1112 | ai_btree_get_pimd_isize(as_sindex_pmetadata *pimd) |
| 1113 | { |
| 1114 | // TODO - Why check of > 0 |
| 1115 | return pimd->ibtr->msize > 0 ? pimd->ibtr->msize : 0; |
| 1116 | } |
| 1117 | |
| 1118 | uint64_t |
| 1119 | ai_btree_get_isize(as_sindex_metadata *imd) |
| 1120 | { |
| 1121 | uint64_t size = 0; |
| 1122 | for (int i = 0; i < imd->nprts; i++) { |
| 1123 | as_sindex_pmetadata *pimd = &imd->pimd[i]; |
| 1124 | PIMD_RLOCK(&pimd->slock); |
| 1125 | size += ai_btree_get_pimd_isize(pimd); |
| 1126 | PIMD_RUNLOCK(&pimd->slock); |
| 1127 | } |
| 1128 | return size; |
| 1129 | } |
| 1130 | |
| 1131 | uint64_t |
| 1132 | ai_btree_get_pimd_nsize(as_sindex_pmetadata *pimd) |
| 1133 | { |
| 1134 | // TODO - Why check of > 0 |
| 1135 | return pimd->ibtr->nsize > 0 ? pimd->ibtr->nsize : 0; |
| 1136 | } |
| 1137 | |
| 1138 | uint64_t |
| 1139 | ai_btree_get_nsize(as_sindex_metadata *imd) |
| 1140 | { |
| 1141 | uint64_t size = 0; |
| 1142 | for (int i = 0; i < imd->nprts; i++) { |
| 1143 | as_sindex_pmetadata *pimd = &imd->pimd[i]; |
| 1144 | PIMD_RLOCK(&pimd->slock); |
| 1145 | size += ai_btree_get_pimd_nsize(pimd); |
| 1146 | PIMD_RUNLOCK(&pimd->slock) |
| 1147 | } |
| 1148 | |
| 1149 | return size; |
| 1150 | } |
| 1151 | |
| 1152 | void |
| 1153 | ai_btree_reinit_pimd(as_sindex_pmetadata * pimd, col_type_t sktype) |
| 1154 | { |
| 1155 | if (! pimd->ibtr) { |
| 1156 | cf_crash(AS_SINDEX, "IBTR is null" ); |
| 1157 | } |
| 1158 | pimd->ibtr = createIBT(sktype, -1); |
| 1159 | } |
| 1160 | |
| 1161 | void |
| 1162 | ai_btree_reset_pimd(as_sindex_pmetadata *pimd) |
| 1163 | { |
| 1164 | if (! pimd->ibtr) { |
| 1165 | cf_crash(AS_SINDEX, "IBTR is null" ); |
| 1166 | } |
| 1167 | pimd->ibtr = NULL; |
| 1168 | } |
| 1169 | |
| 1170 | void |
| 1171 | ai_btree_delete_ibtr(bt * ibtr) |
| 1172 | { |
| 1173 | if (! ibtr) { |
| 1174 | cf_crash(AS_SINDEX, "IBTR is null" ); |
| 1175 | } |
| 1176 | destroy_index(ibtr, ibtr->root); |
| 1177 | } |
| 1178 | |