| 1 | /* |
| 2 | * drv_ssd.h |
| 3 | * |
| 4 | * Copyright (C) 2014 Aerospike, Inc. |
| 5 | * |
| 6 | * Portions may be licensed to Aerospike, Inc. under one or more contributor |
| 7 | * license agreements. |
| 8 | * |
| 9 | * This program is free software: you can redistribute it and/or modify it under |
| 10 | * the terms of the GNU Affero General Public License as published by the Free |
| 11 | * Software Foundation, either version 3 of the License, or (at your option) any |
| 12 | * later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 15 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 16 | * FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more |
| 17 | * details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU Affero General Public License |
| 20 | * along with this program. If not, see http://www.gnu.org/licenses/ |
| 21 | */ |
| 22 | |
| 23 | #pragma once |
| 24 | |
| 25 | //========================================================== |
| 26 | // Includes. |
| 27 | // |
| 28 | |
| 29 | #include <errno.h> |
| 30 | #include <stdbool.h> |
| 31 | #include <stddef.h> |
| 32 | #include <stdint.h> |
| 33 | #include <sys/types.h> |
| 34 | #include <unistd.h> |
| 35 | |
| 36 | #include "citrusleaf/cf_atomic.h" |
| 37 | #include "citrusleaf/cf_queue.h" |
| 38 | |
| 39 | #include "cf_mutex.h" |
| 40 | #include "cf_thread.h" |
| 41 | #include "fault.h" |
| 42 | #include "hist.h" |
| 43 | |
| 44 | #include "base/datamodel.h" |
| 45 | #include "fabric/partition.h" |
| 46 | #include "storage/flat.h" |
| 47 | #include "storage/storage.h" |
| 48 | |
| 49 | |
| 50 | //========================================================== |
| 51 | // Forward declarations. |
| 52 | // |
| 53 | |
| 54 | struct as_flat_opt_meta_s; |
| 55 | struct as_flat_record_s; |
| 56 | struct as_index_s; |
| 57 | struct as_namespace_s; |
| 58 | struct as_storage_rd_s; |
| 59 | struct drv_ssd_s; |
| 60 | |
| 61 | |
| 62 | //========================================================== |
| 63 | // Typedefs & constants. |
| 64 | // |
| 65 | |
| 66 | #define (0x4349747275730707L) |
| 67 | #define (0x4349747275730322L) |
| 68 | #define SSD_VERSION 3 |
| 69 | // SSD_VERSION history: |
| 70 | // 1 - original |
| 71 | // 2 - minimum storage increment (RBLOCK_SIZE) from 512 to 128 bytes |
| 72 | // 3 - total overhaul including changed magic and moved version |
| 73 | |
| 74 | // Device header flags. |
| 75 | #define 0x01 |
| 76 | #define 0x02 |
| 77 | #define 0x04 |
| 78 | #define 0x08 |
| 79 | #define 0x10 |
| 80 | |
| 81 | // Used when determining a device's io_min_size. |
| 82 | #define LO_IO_MIN_SIZE 512 |
| 83 | #define HI_IO_MIN_SIZE 4096 |
| 84 | |
| 85 | // SSD_HEADER_SIZE must be a power of 2 and >= MAX_WRITE_BLOCK_SIZE. |
| 86 | // Do NOT change SSD_HEADER_SIZE! |
| 87 | #define (8 * 1024 * 1024) |
| 88 | |
| 89 | |
| 90 | //------------------------------------------------ |
| 91 | // Device header. |
| 92 | // |
| 93 | |
| 94 | // TODO - were we going to change 'prefix' to 'base'? |
| 95 | typedef struct ssd_common_prefix_s { |
| 96 | uint64_t magic; |
| 97 | uint32_t version; |
| 98 | char namespace[32]; |
| 99 | uint32_t n_devices; |
| 100 | uint64_t random; // identify matching set of devices |
| 101 | uint32_t flags; |
| 102 | uint32_t write_block_size; |
| 103 | uint32_t eventual_regime; |
| 104 | uint32_t last_evict_void_time; |
| 105 | uint32_t roster_generation; |
| 106 | } ssd_common_prefix; |
| 107 | |
| 108 | // Because we pad explicitly: |
| 109 | COMPILER_ASSERT(sizeof(ssd_common_prefix) <= HI_IO_MIN_SIZE); |
| 110 | |
| 111 | // TODO - deal with the name and the name of as_storage_info_set/get! |
| 112 | typedef struct ssd_common_pmeta_s { |
| 113 | as_partition_version version; |
| 114 | uint8_t tree_id; |
| 115 | uint8_t unused[7]; |
| 116 | } ssd_common_pmeta; |
| 117 | |
| 118 | // Make sure a ssd_common_pmeta never unnecessarily crosses an IO size boundary. |
| 119 | COMPILER_ASSERT((sizeof(ssd_common_pmeta) & (sizeof(ssd_common_pmeta) - 1)) == 0); |
| 120 | |
| 121 | typedef struct ssd_device_common_s { |
| 122 | ssd_common_prefix prefix; |
| 123 | uint8_t pad_prefix[HI_IO_MIN_SIZE - sizeof(ssd_common_prefix)]; |
| 124 | ssd_common_pmeta pmeta[AS_PARTITIONS]; |
| 125 | } ssd_device_common; |
| 126 | |
| 127 | typedef struct ssd_device_unique_s { |
| 128 | uint32_t device_id; |
| 129 | uint32_t unused; |
| 130 | uint8_t encrypted_key[64]; |
| 131 | uint8_t canary[16]; |
| 132 | uint64_t pristine_offset; |
| 133 | } ssd_device_unique; |
| 134 | |
| 135 | #define ROUND_UP_COMMON \ |
| 136 | ((sizeof(ssd_device_common) + (HI_IO_MIN_SIZE - 1)) & -HI_IO_MIN_SIZE) |
| 137 | |
| 138 | typedef struct { |
| 139 | ssd_device_common ; |
| 140 | uint8_t [ROUND_UP_COMMON - sizeof(ssd_device_common)]; |
| 141 | ssd_device_unique ; |
| 142 | } ; |
| 143 | |
| 144 | COMPILER_ASSERT(sizeof(ssd_device_header) <= SSD_HEADER_SIZE); |
| 145 | |
| 146 | COMPILER_ASSERT(offsetof(ssd_device_header, common) == 0); |
| 147 | COMPILER_ASSERT(offsetof(ssd_device_header, common.prefix) == 0); |
| 148 | |
| 149 | #define SSD_OFFSET_UNIQUE (offsetof(ssd_device_header, unique)) |
| 150 | |
| 151 | |
| 152 | //------------------------------------------------ |
| 153 | // A defragged wblock waiting to be freed. |
| 154 | // |
| 155 | typedef struct vacated_wblock_s { |
| 156 | uint32_t file_id; |
| 157 | uint32_t wblock_id; |
| 158 | } vacated_wblock; |
| 159 | |
| 160 | |
| 161 | //------------------------------------------------ |
| 162 | // Write buffer - where records accumulate until |
| 163 | // (the full buffer is) flushed to a device. |
| 164 | // |
| 165 | typedef struct { |
| 166 | cf_atomic32 rc; |
| 167 | cf_atomic32 n_writers; // number of concurrent writers |
| 168 | bool dirty; // written to since last flushed |
| 169 | bool skip_post_write_q; |
| 170 | uint32_t n_vacated; |
| 171 | uint32_t vacated_capacity; |
| 172 | vacated_wblock *vacated_wblocks; |
| 173 | struct drv_ssd_s *ssd; |
| 174 | uint32_t wblock_id; |
| 175 | uint32_t pos; |
| 176 | uint8_t *buf; |
| 177 | } ssd_write_buf; |
| 178 | |
| 179 | |
| 180 | //------------------------------------------------ |
| 181 | // Per-wblock information. |
| 182 | // |
| 183 | typedef struct ssd_wblock_state_s { |
| 184 | cf_atomic32 inuse_sz; // number of bytes currently used in the wblock |
| 185 | cf_mutex LOCK; // transactions, write_worker, and defrag all are interested in wblock_state |
| 186 | ssd_write_buf *swb; // pending writes for the wblock, also treated as a cache for reads |
| 187 | uint32_t state; // for now just a defrag flag |
| 188 | cf_atomic32 n_vac_dests; // number of wblocks into which this wblock defragged |
| 189 | } ssd_wblock_state; |
| 190 | |
| 191 | // wblock state |
| 192 | // |
| 193 | // Ultimately this may become a full-blown state, but for now it's effectively |
| 194 | // just a defrag flag. |
| 195 | #define WBLOCK_STATE_NONE 0 |
| 196 | #define WBLOCK_STATE_DEFRAG 1 |
| 197 | |
| 198 | |
| 199 | //------------------------------------------------ |
| 200 | // Per-device information. |
| 201 | // |
| 202 | typedef struct drv_ssd_s { |
| 203 | struct as_namespace_s *ns; |
| 204 | |
| 205 | const char *name; // this device's name |
| 206 | const char *shadow_name; // this device's shadow's name, if any |
| 207 | |
| 208 | uint32_t running; |
| 209 | |
| 210 | cf_mutex write_lock; // lock protects writes to current swb |
| 211 | ssd_write_buf *current_swb; // swb currently being filled by writes |
| 212 | |
| 213 | int commit_fd; // relevant for enterprise edition only |
| 214 | int shadow_commit_fd; // relevant for enterprise edition only |
| 215 | |
| 216 | cf_mutex defrag_lock; // lock protects writes to defrag swb |
| 217 | ssd_write_buf *defrag_swb; // swb currently being filled by defrag |
| 218 | |
| 219 | cf_queue *fd_q; // queue of open fds |
| 220 | cf_queue *fd_cache_q; // queue of open fds that use page cache |
| 221 | cf_queue *shadow_fd_q; // queue of open fds on shadow, if any |
| 222 | |
| 223 | cf_queue *free_wblock_q; // IDs of free wblocks |
| 224 | cf_queue *defrag_wblock_q; // IDs of wblocks to defrag |
| 225 | |
| 226 | cf_queue *swb_write_q; // pointers to swbs ready to write |
| 227 | cf_queue *swb_shadow_q; // pointers to swbs ready to write to shadow, if any |
| 228 | cf_queue *swb_free_q; // pointers to swbs free and waiting |
| 229 | cf_queue *post_write_q; // pointers to swbs that have been written but are cached |
| 230 | |
| 231 | uint8_t encryption_key[64]; // relevant for enterprise edition only |
| 232 | |
| 233 | cf_atomic64 n_defrag_wblock_reads; // total number of wblocks added to the defrag_wblock_q |
| 234 | cf_atomic64 n_defrag_wblock_writes; // total number of swbs added to the swb_write_q by defrag |
| 235 | cf_atomic64 n_wblock_writes; // total number of swbs added to the swb_write_q by writes |
| 236 | |
| 237 | cf_atomic64 n_wblock_defrag_io_skips; // total number of wblocks empty on defrag_wblock_q pop |
| 238 | cf_atomic64 n_wblock_direct_frees; // total number of wblocks freed by other than defrag |
| 239 | |
| 240 | volatile uint64_t n_tomb_raider_reads; // relevant for enterprise edition only |
| 241 | |
| 242 | cf_atomic32 defrag_sweep; // defrag sweep flag |
| 243 | |
| 244 | uint64_t file_size; |
| 245 | int file_id; |
| 246 | |
| 247 | uint32_t open_flag; |
| 248 | |
| 249 | uint64_t io_min_size; // device IO operations are aligned and sized in multiples of this |
| 250 | uint64_t shadow_io_min_size; // shadow device IO operations are aligned and sized in multiples of this |
| 251 | |
| 252 | uint64_t commit_min_size; // commit (write) operations are aligned and sized in multiples of this |
| 253 | uint64_t shadow_commit_min_size; // shadow commit (write) operations are aligned and sized in multiples of this |
| 254 | |
| 255 | cf_atomic64 inuse_size; // number of bytes in actual use on this device |
| 256 | |
| 257 | uint32_t write_block_size; // number of bytes to write at a time |
| 258 | uint32_t first_wblock_id; // wblock-id of first non-header wblock |
| 259 | |
| 260 | uint32_t pristine_wblock_id; // minimum wblock-id of "pristine" region |
| 261 | |
| 262 | uint32_t n_wblocks; // number of wblocks on this device |
| 263 | ssd_wblock_state *wblock_state; // array of info per wblock on this device |
| 264 | |
| 265 | uint32_t sweep_wblock_id; // wblocks read at startup |
| 266 | uint64_t record_add_older_counter; // records not inserted due to better existing one |
| 267 | uint64_t record_add_expired_counter; // records not inserted due to expiration |
| 268 | uint64_t record_add_evicted_counter; // records not inserted due to eviction |
| 269 | uint64_t record_add_replace_counter; // records reinserted |
| 270 | uint64_t record_add_unique_counter; // records inserted |
| 271 | |
| 272 | cf_tid write_tid; |
| 273 | cf_tid shadow_tid; |
| 274 | |
| 275 | histogram *hist_read; |
| 276 | histogram *hist_large_block_read; |
| 277 | histogram *hist_write; |
| 278 | histogram *hist_shadow_write; |
| 279 | } drv_ssd; |
| 280 | |
| 281 | |
| 282 | //------------------------------------------------ |
| 283 | // Per-namespace storage information. |
| 284 | // |
| 285 | typedef struct drv_ssds_s { |
| 286 | struct as_namespace_s *ns; |
| 287 | ssd_device_common *common; |
| 288 | |
| 289 | // Not a great place for this - used only at startup to determine whether to |
| 290 | // load a record. |
| 291 | bool get_state_from_storage[AS_PARTITIONS]; |
| 292 | |
| 293 | // Indexed by previous device-id to get new device-id. -1 means device is |
| 294 | // "fresh" or absent. Used only at startup to fix index elements' file-id. |
| 295 | int8_t device_translation[AS_STORAGE_MAX_DEVICES]; |
| 296 | |
| 297 | // Used only at startup, set true if all devices are fresh. |
| 298 | bool all_fresh; |
| 299 | |
| 300 | cf_mutex flush_lock; |
| 301 | |
| 302 | int n_ssds; |
| 303 | drv_ssd ssds[]; |
| 304 | } drv_ssds; |
| 305 | |
| 306 | |
| 307 | //========================================================== |
| 308 | // Private API - for enterprise separation only. |
| 309 | // |
| 310 | |
| 311 | typedef struct ssd_load_records_info_s { |
| 312 | drv_ssds *ssds; |
| 313 | drv_ssd *ssd; |
| 314 | cf_queue *complete_q; |
| 315 | void *complete_rc; |
| 316 | } ssd_load_records_info; |
| 317 | |
| 318 | // Warm and cool restart. |
| 319 | void ssd_resume_devices(drv_ssds *ssds); |
| 320 | void *run_ssd_cool_start(void *udata); |
| 321 | void ssd_load_wblock_queues(drv_ssds *ssds); |
| 322 | void ssd_start_maintenance_threads(drv_ssds *ssds); |
| 323 | void ssd_start_write_threads(drv_ssds *ssds); |
| 324 | void ssd_start_defrag_threads(drv_ssds *ssds); |
| 325 | void apply_opt_meta(struct as_index_s *r, struct as_namespace_s *ns, const struct as_flat_opt_meta_s *opt_meta); |
| 326 | |
| 327 | // Tomb raider. |
| 328 | void ssd_cold_start_adjust_cenotaph(struct as_namespace_s *ns, bool block_has_bins, uint32_t block_void_time, struct as_index_s *r); |
| 329 | void ssd_cold_start_transition_record(struct as_namespace_s *ns, const struct as_flat_record_s *flat, struct as_index_s *r, bool is_create); |
| 330 | void ssd_cold_start_drop_cenotaphs(struct as_namespace_s *ns); |
| 331 | |
| 332 | // Record encryption. |
| 333 | void ssd_encrypt(drv_ssd *ssd, uint64_t off, struct as_flat_record_s *flat); |
| 334 | void ssd_decrypt(drv_ssd *ssd, uint64_t off, struct as_flat_record_s *flat); |
| 335 | void ssd_decrypt_whole(drv_ssd *ssd, uint64_t off, uint32_t n_rblocks, struct as_flat_record_s *flat); |
| 336 | |
| 337 | // CP. |
| 338 | void ssd_adjust_versions(struct as_namespace_s *ns, ssd_common_pmeta* pmeta); |
| 339 | conflict_resolution_pol ssd_cold_start_policy(struct as_namespace_s *ns); |
| 340 | void ssd_cold_start_init_repl_state(struct as_namespace_s *ns, struct as_index_s* r); |
| 341 | |
| 342 | // Miscellaneous. |
| 343 | int ssd_fd_get(drv_ssd *ssd); |
| 344 | int ssd_shadow_fd_get(drv_ssd *ssd); |
| 345 | void ssd_fd_put(drv_ssd *ssd, int fd); |
| 346 | void (const struct as_namespace_s *ns, drv_ssd* ssd, ssd_device_header *); |
| 347 | void (const struct as_namespace_s *ns, drv_ssd* ssd, const ssd_device_header *); |
| 348 | void ssd_flush_final_cfg(struct as_namespace_s *ns); |
| 349 | bool ssd_cold_start_is_valid_n_bins(uint32_t n_bins); |
| 350 | void (drv_ssd *ssd, uint8_t *, uint8_t *from, size_t size); |
| 351 | void ssd_prefetch_wblock(drv_ssd *ssd, uint64_t file_offset, uint8_t *read_buf); |
| 352 | |
| 353 | // Durability. |
| 354 | void ssd_init_commit(drv_ssd *ssd); |
| 355 | uint64_t ssd_flush_max_us(const struct as_namespace_s *ns); |
| 356 | void ssd_post_write(drv_ssd *ssd, ssd_write_buf *swb); |
| 357 | int ssd_write_bins(struct as_storage_rd_s *rd); |
| 358 | int ssd_buffer_bins(struct as_storage_rd_s *rd); |
| 359 | ssd_write_buf *swb_get(drv_ssd *ssd); |
| 360 | |
| 361 | // Called in (enterprise-split) storage table function. |
| 362 | int ssd_write(struct as_storage_rd_s *rd); |
| 363 | |
| 364 | |
| 365 | // |
| 366 | // Conversions between offsets and rblocks. |
| 367 | // |
| 368 | |
| 369 | // TODO - make checks stricter (exclude drive header, consider drive size) ??? |
| 370 | #define STORAGE_RBLOCK_IS_VALID(__x) ((__x) != 0) |
| 371 | #define STORAGE_RBLOCK_IS_INVALID(__x) ((__x) == 0) |
| 372 | |
| 373 | // Convert byte offset to rblock_id, as long as offset is already a multiple of |
| 374 | // rblock size. |
| 375 | static inline uint64_t OFFSET_TO_RBLOCK_ID(uint64_t offset) { |
| 376 | return offset >> LOG_2_RBLOCK_SIZE; |
| 377 | } |
| 378 | |
| 379 | // Convert rblock_id to byte offset. |
| 380 | static inline uint64_t RBLOCK_ID_TO_OFFSET(uint64_t rblocks) { |
| 381 | return rblocks << LOG_2_RBLOCK_SIZE; |
| 382 | } |
| 383 | |
| 384 | |
| 385 | // |
| 386 | // Conversions between bytes/rblocks and wblocks. |
| 387 | // |
| 388 | |
| 389 | #define STORAGE_INVALID_WBLOCK 0xFFFFffff |
| 390 | |
| 391 | // Convert byte offset to wblock_id. |
| 392 | static inline uint32_t OFFSET_TO_WBLOCK_ID(drv_ssd *ssd, uint64_t offset) { |
| 393 | return (uint32_t)(offset / ssd->write_block_size); |
| 394 | } |
| 395 | |
| 396 | // Convert wblock_id to byte offset. |
| 397 | static inline uint64_t WBLOCK_ID_TO_OFFSET(drv_ssd *ssd, uint32_t wblock_id) { |
| 398 | return (uint64_t)wblock_id * (uint64_t)ssd->write_block_size; |
| 399 | } |
| 400 | |
| 401 | // Convert rblock_id to wblock_id. |
| 402 | static inline uint32_t RBLOCK_ID_TO_WBLOCK_ID(drv_ssd *ssd, uint64_t rblock_id) { |
| 403 | return (uint32_t)((rblock_id << LOG_2_RBLOCK_SIZE) / ssd->write_block_size); |
| 404 | } |
| 405 | |
| 406 | |
| 407 | // |
| 408 | // Size rounding needed for sanity checking. |
| 409 | // |
| 410 | |
| 411 | #define SSD_RECORD_MIN_SIZE \ |
| 412 | (((uint32_t)sizeof(as_flat_record) + (RBLOCK_SIZE - 1)) & -RBLOCK_SIZE) |
| 413 | |
| 414 | |
| 415 | // |
| 416 | // Size rounding needed for direct IO. |
| 417 | // |
| 418 | |
| 419 | // Round bytes down to a multiple of device's minimum IO operation size. |
| 420 | static inline uint64_t BYTES_DOWN_TO_IO_MIN(drv_ssd *ssd, uint64_t bytes) { |
| 421 | return bytes & -ssd->io_min_size; |
| 422 | } |
| 423 | |
| 424 | // Round bytes up to a multiple of device's minimum IO operation size. |
| 425 | static inline uint64_t BYTES_UP_TO_IO_MIN(drv_ssd *ssd, uint64_t bytes) { |
| 426 | return (bytes + (ssd->io_min_size - 1)) & -ssd->io_min_size; |
| 427 | } |
| 428 | |
| 429 | // Round bytes down to a multiple of shadow device's minimum IO operation size. |
| 430 | static inline uint64_t |
| 431 | BYTES_DOWN_TO_SHADOW_IO_MIN(drv_ssd *ssd, uint64_t bytes) { |
| 432 | return bytes & -ssd->shadow_io_min_size; |
| 433 | } |
| 434 | |
| 435 | // Round bytes up to a multiple of shadow device's minimum IO operation size. |
| 436 | static inline uint64_t |
| 437 | BYTES_UP_TO_SHADOW_IO_MIN(drv_ssd *ssd, uint64_t bytes) { |
| 438 | return (bytes + (ssd->shadow_io_min_size - 1)) & -ssd->shadow_io_min_size; |
| 439 | } |
| 440 | |
| 441 | |
| 442 | // |
| 443 | // Device IO. |
| 444 | // |
| 445 | |
| 446 | static inline bool |
| 447 | pread_all(int fd, void* buf, size_t size, off_t offset) |
| 448 | { |
| 449 | ssize_t result; |
| 450 | |
| 451 | while ((result = pread(fd, buf, size, offset)) != (ssize_t)size) { |
| 452 | if (result < 0) { |
| 453 | return false; // let the caller log errors |
| 454 | } |
| 455 | |
| 456 | if (result == 0) { // should only happen if caller passed 0 size |
| 457 | errno = EINVAL; |
| 458 | return false; |
| 459 | } |
| 460 | |
| 461 | buf += result; |
| 462 | offset += result; |
| 463 | size -= result; |
| 464 | } |
| 465 | |
| 466 | return true; |
| 467 | } |
| 468 | |
| 469 | static inline bool |
| 470 | pwrite_all(int fd, void* buf, size_t size, off_t offset) |
| 471 | { |
| 472 | ssize_t result; |
| 473 | |
| 474 | while ((result = pwrite(fd, buf, size, offset)) != (ssize_t)size) { |
| 475 | if (result < 0) { |
| 476 | return false; // let the caller log errors |
| 477 | } |
| 478 | |
| 479 | if (result == 0) { // should only happen if caller passed 0 size |
| 480 | errno = EINVAL; |
| 481 | return false; |
| 482 | } |
| 483 | |
| 484 | buf += result; |
| 485 | offset += result; |
| 486 | size -= result; |
| 487 | } |
| 488 | |
| 489 | return true; |
| 490 | } |
| 491 | |