| 1 | /* |
| 2 | * clustering.c |
| 3 | * |
| 4 | * Copyright (C) 2016 Aerospike, Inc. |
| 5 | * |
| 6 | * Portions may be licensed to Aerospike, Inc. under one or more contributor |
| 7 | * license agreements. |
| 8 | * |
| 9 | * This program is free software: you can redistribute it and/or modify it under |
| 10 | * the terms of the GNU Affero General Public License as published by the Free |
| 11 | * Software Foundation, either version 3 of the License, or (at your option) any |
| 12 | * later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 15 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 16 | * FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more |
| 17 | * details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU Affero General Public License |
| 20 | * along with this program. If not, see http://www.gnu.org/licenses/ |
| 21 | */ |
| 22 | |
| 23 | #include "fabric/clustering.h" |
| 24 | |
| 25 | #include <errno.h> |
| 26 | #include <math.h> |
| 27 | #include <stdio.h> |
| 28 | #include <unistd.h> |
| 29 | #include <sys/param.h> // For MAX() and MIN(). |
| 30 | |
| 31 | #include "citrusleaf/alloc.h" |
| 32 | #include "citrusleaf/cf_clock.h" |
| 33 | #include "citrusleaf/cf_random.h" |
| 34 | |
| 35 | #include "cf_thread.h" |
| 36 | #include "fault.h" |
| 37 | #include "msg.h" |
| 38 | #include "node.h" |
| 39 | #include "shash.h" |
| 40 | |
| 41 | #include "base/cfg.h" |
| 42 | #include "fabric/fabric.h" |
| 43 | #include "fabric/hlc.h" |
| 44 | |
| 45 | /* |
| 46 | * Overview |
| 47 | * ======== |
| 48 | * Clustering v5 implementation based on the design at |
| 49 | * https://aerospike.atlassian.net/wiki/pages/viewpage.action?spaceKey=DEV&title=Central+Wiki%3A++Clustering+V5 |
| 50 | * |
| 51 | * Public and private view of the cluster |
| 52 | * ======================================= |
| 53 | * This clustering algorithm introduces an orphan state, in which this node is |
| 54 | * not part of a cluster, but is looking to form/join a cluster. During this |
| 55 | * transitionary phase, the public view of the cluster the tuple, <cluster_key, |
| 56 | * succession_list), does not change from the last view. However the internal |
| 57 | * view, which is published along with the heartbeat messages, is set to <0, |
| 58 | * []>. |
| 59 | * |
| 60 | * This ensures clients continue to function, (maybe with errors), during the |
| 61 | * transition from orphan to part of a cluster state. This is in line with the |
| 62 | * clustering v4 and prior behaviour. |
| 63 | * |
| 64 | * TODO: (revise) |
| 65 | * |
| 66 | * Deviations from paxos |
| 67 | * ===================== |
| 68 | * |
| 69 | * Accepted value |
| 70 | * --------------- |
| 71 | * |
| 72 | * Accepted value is not send along with accept and accepted message. The latest |
| 73 | * accepted value overwrites the previous value at a node. In paxos if a node |
| 74 | * has already accepted a value, it is send back to the proposer who should use |
| 75 | * the value with highest proposal id as the final value. The proposer generates |
| 76 | * the final consensus value as the succession list with the nodes that have |
| 77 | * both returned promise and accepted replies. |
| 78 | * |
| 79 | * This is not safe in terms of achieveing a single paxos value, however it is |
| 80 | * safe in that nodes courted by other principals will get filtered out during |
| 81 | * paxos and not require additional paxos rounds. |
| 82 | * |
| 83 | * It is still possible that the final consensus succession list might has a few |
| 84 | * nodes moving out owing to a neighboring principal. However the faulty node |
| 85 | * check in the next quantum interval will fix this. |
| 86 | * |
| 87 | * Quorum |
| 88 | * ------ |
| 89 | * The prepare phase uses a majority quorum for the promise messages, to speed |
| 90 | * through the paxos round. However the accept phase uses a complete / full |
| 91 | * quorum for accepted messages. This helps with ensuring that when a node |
| 92 | * generartes a cluster change event all cluster member have applied the current |
| 93 | * cluster membership. |
| 94 | * |
| 95 | * Design |
| 96 | * ====== |
| 97 | * The clustering sub-system with rest of Aerospike via input event notification |
| 98 | * (primarily heartbeat events) and output events notifications (primary cluster |
| 99 | * change notifications). |
| 100 | * |
| 101 | * The subsystem is driven by internal events (that also encapsulate external |
| 102 | * input event notifications) like timer, quantum interval start, adjaceny |
| 103 | * changed, message received, etc. |
| 104 | * |
| 105 | * The clustering-v5 subsystem is further organized as the following sub-modules |
| 106 | * each of which reacts to the above mentioned events based on individual state |
| 107 | * transition diagrams. |
| 108 | * |
| 109 | * 1. Timer |
| 110 | * 2. Quantum interval generator |
| 111 | * 3. Paxos proposer |
| 112 | * 4. Paxos acceptor |
| 113 | * 5. Register |
| 114 | * 6. External event publisher |
| 115 | * 7. Internal event dispatcher |
| 116 | * 8. Clustering main |
| 117 | * |
| 118 | * The sub modules also interact with each other via inline internal event |
| 119 | * dispatch and handling. |
| 120 | * |
| 121 | * Timer |
| 122 | * ----- |
| 123 | * Generates timer events that serve as the internal tick/clock for the |
| 124 | * clustering-v5 sub system. Other sub-modules use the timer events to drive |
| 125 | * actions to be performed at fixed intervals, for e.g. message retransmits. |
| 126 | * |
| 127 | * Quantum interval generator |
| 128 | * -------------------------- |
| 129 | * Generates quantum interval start events, at which cluster change decision are |
| 130 | * taken. |
| 131 | * |
| 132 | * Paxos proposer |
| 133 | * -------------- |
| 134 | * The paxos proposer proposes a cluster change. The node may or may not be the |
| 135 | * eventual principal for the cluster. |
| 136 | * |
| 137 | * Paxos acceptor |
| 138 | * -------------- |
| 139 | * Participates in voting for a proposal. A paxos proposer is also necessarily |
| 140 | * an accetor in this design. |
| 141 | * |
| 142 | * Register |
| 143 | * -------- |
| 144 | * Holds current cluster membership and cluster key. It is responsible for |
| 145 | * ensuring all cluster members have their registers in sync before publishing |
| 146 | * an external cluster change event. |
| 147 | * |
| 148 | * External event publisher |
| 149 | * ------------------------ |
| 150 | * Generate and publishes external events or cluster changes. Runs as a separate |
| 151 | * thread to prevent interference and potential deadlocks with the clustering |
| 152 | * subsystem. |
| 153 | * |
| 154 | * Internal event dispatcher |
| 155 | * ------------------------- |
| 156 | * Dispatches internal events to current function based in the event type and |
| 157 | * current state. |
| 158 | * |
| 159 | * Clustering main |
| 160 | * --------------- |
| 161 | * Monitors the cluster and triggers cluster changes. |
| 162 | * |
| 163 | * State transitions |
| 164 | * ================= |
| 165 | * TODO: diagrams for each sub-module |
| 166 | * |
| 167 | * Message send rules |
| 168 | * ================== |
| 169 | * Message send should preferably be outside the main clustering lock and should |
| 170 | * not be followed by any state change in the same function. This is because |
| 171 | * fabric relays messages to self inline in the send call itself which can lead |
| 172 | * to corruption if the message handler involves a state change as well or can |
| 173 | * result in the message handler seeing inconsistent partially updated state. |
| 174 | */ |
| 175 | |
| 176 | /* |
| 177 | * ---------------------------------------------------------------------------- |
| 178 | * Constants |
| 179 | * ---------------------------------------------------------------------------- |
| 180 | */ |
| 181 | |
| 182 | /** |
| 183 | * A soft limit for the maximum cluster size. Meant to be optimize hash and list |
| 184 | * data structures and not as a limit on the number of nodes. |
| 185 | */ |
| 186 | #define AS_CLUSTERING_CLUSTER_MAX_SIZE_SOFT 200 |
| 187 | |
| 188 | /** |
| 189 | * Timer event generation interval. |
| 190 | */ |
| 191 | #define CLUSTERING_TIMER_TICK_INTERVAL 75 |
| 192 | |
| 193 | /** |
| 194 | * Maximum time paxos round would take for completion. 3 RTTs paxos message |
| 195 | * exchanges and 1 RTT as a buffer. |
| 196 | */ |
| 197 | #define PAXOS_COMPLETION_TIME_MAX (4 * network_rtt_max()) |
| 198 | |
| 199 | /** |
| 200 | * Maximum quantum interval duration, should be at least two heartbeat |
| 201 | * intervals, to ensure there is at least one exchange of clustering information |
| 202 | * over heartbeats. |
| 203 | */ |
| 204 | #define QUANTUM_INTERVAL_MAX MAX(5000, 2 * as_hb_tx_interval_get()) |
| 205 | |
| 206 | /** |
| 207 | * Block size for allocating node plugin data. Ensure the allocation is in |
| 208 | * multiples of 128 bytes, allowing expansion to 16 nodes without reallocating. |
| 209 | */ |
| 210 | #define HB_PLUGIN_DATA_BLOCK_SIZE 128 |
| 211 | |
| 212 | /** |
| 213 | * Scratch size for clustering messages. |
| 214 | * |
| 215 | * TODO: Compute this properly. |
| 216 | */ |
| 217 | #define AS_CLUSTERING_MSG_SCRATCH_SIZE 1024 |
| 218 | |
| 219 | /** |
| 220 | * Majority value for preferred principal to be selected for move. Use tow |
| 221 | * thirds as the majority value. |
| 222 | */ |
| 223 | #define AS_CLUSTERING_PREFERRRED_PRINCIPAL_MAJORITY (2 / 3) |
| 224 | |
| 225 | /* |
| 226 | * ---------------------------------------------------------------------------- |
| 227 | * Paxos data structures |
| 228 | * ---------------------------------------------------------------------------- |
| 229 | */ |
| 230 | |
| 231 | /** |
| 232 | * Paxos sequence number. We will use the hybrid logical clock timestamp as |
| 233 | * sequence numbers, to ensure node restarts do not reset the sequence number |
| 234 | * back to zero and sequence numbers are monotoniocally increasing. A sequence |
| 235 | * number value of zero is invalid. |
| 236 | */ |
| 237 | typedef as_hlc_timestamp as_paxos_sequence_number; |
| 238 | |
| 239 | /** |
| 240 | * Paxos proposal identifier. |
| 241 | * Note: The nodeid can be skipped when sending the proposal id over the wire |
| 242 | * and can be inferred from the source duirng paxos message exchanges. |
| 243 | */ |
| 244 | typedef struct as_paxos_proposal_id_s |
| 245 | { |
| 246 | /** |
| 247 | * The sequence number. |
| 248 | */ |
| 249 | as_paxos_sequence_number sequence_number; |
| 250 | |
| 251 | /** |
| 252 | * The proposing node's nodeid to break ties. |
| 253 | */ |
| 254 | cf_node src_nodeid; |
| 255 | } as_paxos_proposal_id; |
| 256 | |
| 257 | /** |
| 258 | * The proposed cluster membership. |
| 259 | */ |
| 260 | typedef struct as_paxos_proposed_value_s |
| 261 | { |
| 262 | /** |
| 263 | * The cluster key. |
| 264 | */ |
| 265 | as_cluster_key cluster_key; |
| 266 | |
| 267 | /** |
| 268 | * The succession list. |
| 269 | */ |
| 270 | cf_vector succession_list; |
| 271 | } as_paxos_proposed_value; |
| 272 | |
| 273 | /** |
| 274 | * Paxos acceptor state. |
| 275 | */ |
| 276 | typedef enum |
| 277 | { |
| 278 | /** |
| 279 | * Acceptor is idel with no active paxos round. |
| 280 | */ |
| 281 | AS_PAXOS_ACCEPTOR_STATE_IDLE, |
| 282 | |
| 283 | /** |
| 284 | * Acceptor has received and acked a promise message. |
| 285 | */ |
| 286 | AS_PAXOS_ACCEPTOR_STATE_PROMISED, |
| 287 | |
| 288 | /** |
| 289 | * Acceptor has received and accepted an accept message from a proposer. |
| 290 | */ |
| 291 | AS_PAXOS_ACCEPTOR_STATE_ACCEPTED |
| 292 | } as_paxos_acceptor_state; |
| 293 | |
| 294 | /** |
| 295 | * Data tracked by the node in the role of a paxos acceptor. |
| 296 | * All nodes are paxos acceptors. |
| 297 | */ |
| 298 | typedef struct as_paxos_acceptor_s |
| 299 | { |
| 300 | /** |
| 301 | * The paxos acceptor state. |
| 302 | */ |
| 303 | as_paxos_acceptor_state state; |
| 304 | |
| 305 | /** |
| 306 | * Monotonic timestamp when the first message for current proposal was |
| 307 | * received from the proposer. |
| 308 | */ |
| 309 | cf_clock acceptor_round_start; |
| 310 | |
| 311 | /** |
| 312 | * Monotonic timestamp when the promise message was sent. |
| 313 | */ |
| 314 | cf_clock promise_send_time; |
| 315 | |
| 316 | /** |
| 317 | * Monotonic timestamp when the promise message was sent. |
| 318 | */ |
| 319 | cf_clock accepted_send_time; |
| 320 | |
| 321 | /** |
| 322 | * Id of the last proposal, promised or accepted by this node. |
| 323 | */ |
| 324 | as_paxos_proposal_id last_proposal_received_id; |
| 325 | } as_paxos_acceptor; |
| 326 | |
| 327 | /** |
| 328 | * State of a paxos proposer. |
| 329 | */ |
| 330 | typedef enum as_paxos_proposer_state_e |
| 331 | { |
| 332 | /** |
| 333 | * Paxos proposer is idle. No pending paxos rounds. |
| 334 | */ |
| 335 | AS_PAXOS_PROPOSER_STATE_IDLE, |
| 336 | |
| 337 | /** |
| 338 | * Paxos proposer sent out a prepare message. |
| 339 | */ |
| 340 | AS_PAXOS_PROPOSER_STATE_PREPARE_SENT, |
| 341 | |
| 342 | /** |
| 343 | * Paxos proposer has sent out an accept message. |
| 344 | */ |
| 345 | AS_PAXOS_PROPOSER_STATE_ACCEPT_SENT |
| 346 | } as_paxos_proposer_state; |
| 347 | |
| 348 | /** |
| 349 | * Data tracked by the node in the role of a paxos proposer. The proposer node |
| 350 | * may or may not be the current or eventual principal. |
| 351 | */ |
| 352 | typedef struct as_paxos_proposer_s |
| 353 | { |
| 354 | /** |
| 355 | * The state of the proposer. |
| 356 | */ |
| 357 | as_paxos_proposer_state state; |
| 358 | |
| 359 | /** |
| 360 | * The sequence number / id for the last proposed paxos value. |
| 361 | */ |
| 362 | as_paxos_sequence_number sequence_number; |
| 363 | |
| 364 | /** |
| 365 | * The proposed cluster value. |
| 366 | */ |
| 367 | as_paxos_proposed_value proposed_value; |
| 368 | |
| 369 | /** |
| 370 | * The time current paxos round was started. |
| 371 | */ |
| 372 | cf_clock paxos_round_start_time; |
| 373 | |
| 374 | /** |
| 375 | * The time current proposal's prepare message was sent. |
| 376 | */ |
| 377 | cf_clock prepare_send_time; |
| 378 | |
| 379 | /** |
| 380 | * The time current proposal's accept message was sent. |
| 381 | */ |
| 382 | cf_clock accept_send_time; |
| 383 | |
| 384 | /** |
| 385 | * The time current proposal's learn message was sent. |
| 386 | */ |
| 387 | cf_clock learn_send_time; |
| 388 | |
| 389 | /** |
| 390 | * Indicates if learn message needs retransmit. |
| 391 | */ |
| 392 | bool learn_retransmit_needed; |
| 393 | |
| 394 | /** |
| 395 | * The set of acceptor nodes including self. |
| 396 | */ |
| 397 | cf_vector acceptors; |
| 398 | |
| 399 | /** |
| 400 | * Set of nodeids that send out a promise response to the current prepare |
| 401 | * message. |
| 402 | */ |
| 403 | cf_vector promises_received; |
| 404 | |
| 405 | /** |
| 406 | * Set of nodeids that send out an accepted response to the current accept |
| 407 | * message. |
| 408 | */ |
| 409 | cf_vector accepted_received; |
| 410 | } as_paxos_proposer; |
| 411 | |
| 412 | /** |
| 413 | * Result of paxos round start call. |
| 414 | */ |
| 415 | typedef enum as_paxos_start_result_e |
| 416 | { |
| 417 | /** |
| 418 | * Paxos round started successfully. |
| 419 | */ |
| 420 | AS_PAXOS_RESULT_STARTED, |
| 421 | |
| 422 | /** |
| 423 | * cluster size is less than minimum required cluster size. |
| 424 | */ |
| 425 | AS_PAXOS_RESULT_CLUSTER_TOO_SMALL, |
| 426 | |
| 427 | /** |
| 428 | * Paxos round already in progress. Paxos not started. |
| 429 | */ |
| 430 | AS_PAXOS_RESULT_ROUND_RUNNING |
| 431 | } as_paxos_start_result; |
| 432 | |
| 433 | /** |
| 434 | * Node clustering status. |
| 435 | */ |
| 436 | typedef enum |
| 437 | { |
| 438 | /** |
| 439 | * Peer node is orphaned. |
| 440 | */ |
| 441 | AS_NODE_ORPHAN, |
| 442 | |
| 443 | /** |
| 444 | * Peer node has a cluster assigned. |
| 445 | */ |
| 446 | AS_NODE_CLUSTER_ASSIGNED, |
| 447 | |
| 448 | /** |
| 449 | * Peer node status is unknown. |
| 450 | */ |
| 451 | AS_NODE_UNKNOWN |
| 452 | } as_clustering_peer_node_state; |
| 453 | |
| 454 | /* |
| 455 | * ---------------------------------------------------------------------------- |
| 456 | * Clustering data structures |
| 457 | * ---------------------------------------------------------------------------- |
| 458 | */ |
| 459 | |
| 460 | /** |
| 461 | * Clustering message types. |
| 462 | */ |
| 463 | typedef enum |
| 464 | { |
| 465 | /* |
| 466 | * ---- Clustering management messages ---- |
| 467 | */ |
| 468 | AS_CLUSTERING_MSG_TYPE_JOIN_REQUEST, |
| 469 | AS_CLUSTERING_MSG_TYPE_JOIN_REJECT, |
| 470 | AS_CLUSTERING_MSG_TYPE_MERGE_MOVE, |
| 471 | AS_CLUSTERING_MSG_TYPE_CLUSTER_CHANGE_APPLIED, |
| 472 | |
| 473 | /* |
| 474 | * ---- Paxos messages ---- |
| 475 | */ |
| 476 | AS_CLUSTERING_MSG_TYPE_PAXOS_PREPARE, |
| 477 | AS_CLUSTERING_MSG_TYPE_PAXOS_PROMISE, |
| 478 | AS_CLUSTERING_MSG_TYPE_PAXOS_PREPARE_NACK, |
| 479 | AS_CLUSTERING_MSG_TYPE_PAXOS_ACCEPT, |
| 480 | AS_CLUSTERING_MSG_TYPE_PAXOS_ACCEPTED, |
| 481 | AS_CLUSTERING_MSG_TYPE_PAXOS_ACCEPT_NACK, |
| 482 | AS_CLUSTERING_MSG_TYPE_PAXOS_LEARN, |
| 483 | } as_clustering_msg_type; |
| 484 | |
| 485 | /** |
| 486 | * The fields in the clustering message. |
| 487 | */ |
| 488 | typedef enum |
| 489 | { |
| 490 | /** |
| 491 | * Clustering message identifier. |
| 492 | */ |
| 493 | AS_CLUSTERING_MSG_ID, |
| 494 | |
| 495 | /** |
| 496 | * Clustering message type. |
| 497 | */ |
| 498 | AS_CLUSTERING_MSG_TYPE, |
| 499 | |
| 500 | /** |
| 501 | * The source node send timestamp. |
| 502 | */ |
| 503 | AS_CLUSTERING_MSG_HLC_TIMESTAMP, |
| 504 | |
| 505 | /** |
| 506 | * The paxos sequence number. Not all messages will have this. |
| 507 | */ |
| 508 | AS_CLUSTERING_MSG_SEQUENCE_NUMBER, |
| 509 | |
| 510 | /** |
| 511 | * The proposed cluster key. Only part of the paxos accept message. |
| 512 | */ |
| 513 | AS_CLUSTERING_MSG_CLUSTER_KEY, |
| 514 | |
| 515 | /** |
| 516 | * The proposed succession list. Only part of the paxos accept message. |
| 517 | */ |
| 518 | AS_CLUSTERING_MSG_SUCCESSION_LIST, |
| 519 | |
| 520 | /** |
| 521 | * The proposed principal relevant only to cluster move commands, which will |
| 522 | * merge two well formed paxos clusters. |
| 523 | */ |
| 524 | AS_CLUSTERING_MSG_PROPOSED_PRINCIPAL, |
| 525 | |
| 526 | /** |
| 527 | * Sentinel value to keep track of the number of message fields. |
| 528 | */ |
| 529 | AS_CLUSTERING_MGS_SENTINEL |
| 530 | } as_clustering_msg_field; |
| 531 | |
| 532 | /** |
| 533 | * Internal clustering event type. |
| 534 | */ |
| 535 | typedef enum |
| 536 | { |
| 537 | /** |
| 538 | * Timer event. |
| 539 | */ |
| 540 | AS_CLUSTERING_INTERNAL_EVENT_TIMER, |
| 541 | |
| 542 | /** |
| 543 | * Incoming message event. |
| 544 | */ |
| 545 | AS_CLUSTERING_INTERNAL_EVENT_MSG, |
| 546 | |
| 547 | /** |
| 548 | * A join request was accepted. |
| 549 | */ |
| 550 | AS_CLUSTERING_INTERNAL_EVENT_JOIN_REQUEST_ACCEPTED, |
| 551 | |
| 552 | /** |
| 553 | * Indicates the start of a quantum interval. |
| 554 | */ |
| 555 | AS_CLUSTERING_INTERNAL_EVENT_QUANTUM_INTERVAL_START, |
| 556 | |
| 557 | /** |
| 558 | * Indicates that self node's cluster membership changed. |
| 559 | */ |
| 560 | AS_CLUSTERING_INTERNAL_EVENT_REGISTER_CLUSTER_CHANGED, |
| 561 | |
| 562 | /** |
| 563 | * Indicates that self node's cluster membership has been synced across all |
| 564 | * cluster members. |
| 565 | */ |
| 566 | AS_CLUSTERING_INTERNAL_EVENT_REGISTER_CLUSTER_SYNCED, |
| 567 | |
| 568 | /** |
| 569 | * Indicates that self node has been marked as an orphan. |
| 570 | */ |
| 571 | AS_CLUSTERING_INTERNAL_EVENT_REGISTER_ORPHANED, |
| 572 | |
| 573 | /** |
| 574 | * Indicates an incoming heartbeat event. |
| 575 | */ |
| 576 | AS_CLUSTERING_INTERNAL_EVENT_HB, |
| 577 | |
| 578 | /** |
| 579 | * Indicates that plugin data for a node has changed. |
| 580 | */ |
| 581 | AS_CLUSTERING_INTERNAL_EVENT_HB_PLUGIN_DATA_CHANGED, |
| 582 | |
| 583 | /** |
| 584 | * The paxos round being accepted succeeded and the proposed value should be |
| 585 | * committed. |
| 586 | * This implies that all the proposed cluster members have all agreed on the |
| 587 | * proposed cluster key and the proposed cluster membership. |
| 588 | */ |
| 589 | AS_CLUSTERING_INTERNAL_EVENT_PAXOS_ACCEPTOR_SUCCESS, |
| 590 | |
| 591 | /** |
| 592 | * The last paxos round being accepted failed. |
| 593 | */ |
| 594 | AS_CLUSTERING_INTERNAL_EVENT_PAXOS_ACCEPTOR_FAIL, |
| 595 | |
| 596 | /** |
| 597 | * The paxos round proposed by this node. |
| 598 | */ |
| 599 | AS_CLUSTERING_INTERNAL_EVENT_PAXOS_PROPOSER_SUCCESS, |
| 600 | |
| 601 | /** |
| 602 | * The last paxos round proposed failed. |
| 603 | */ |
| 604 | AS_CLUSTERING_INTERNAL_EVENT_PAXOS_PROPOSER_FAIL, |
| 605 | } as_clustering_internal_event_type; |
| 606 | |
| 607 | /** |
| 608 | * An event used internally by the clustering subsystem. |
| 609 | */ |
| 610 | typedef struct as_clustering_internal_event_s |
| 611 | { |
| 612 | /** |
| 613 | * The event type. |
| 614 | */ |
| 615 | as_clustering_internal_event_type type; |
| 616 | |
| 617 | /** |
| 618 | * The event qualifier. |
| 619 | */ |
| 620 | as_clustering_event_qualifier qualifier; |
| 621 | |
| 622 | /* |
| 623 | * ----- Quantum interval start event related fields |
| 624 | */ |
| 625 | /** |
| 626 | * Indicates if this quantum interval start can be skipped by the event |
| 627 | * handler. |
| 628 | */ |
| 629 | bool quantum_interval_is_skippable; |
| 630 | |
| 631 | /* |
| 632 | * ----- Message event related fields. |
| 633 | */ |
| 634 | /** |
| 635 | * The source node id. |
| 636 | */ |
| 637 | cf_node msg_src_nodeid; |
| 638 | |
| 639 | /** |
| 640 | * Incoming message type. |
| 641 | */ |
| 642 | as_clustering_msg_type msg_type; |
| 643 | |
| 644 | /** |
| 645 | * The hlc timestamp for message receipt. |
| 646 | */ |
| 647 | as_hlc_msg_timestamp msg_hlc_ts; |
| 648 | |
| 649 | /** |
| 650 | * Local monotonic received timestamp. |
| 651 | */ |
| 652 | cf_clock msg_recvd_ts; |
| 653 | |
| 654 | /** |
| 655 | * The received message. |
| 656 | */ |
| 657 | msg* msg; |
| 658 | |
| 659 | /* |
| 660 | * ----- HB event related fields. |
| 661 | */ |
| 662 | /** |
| 663 | * Number of heartbeat events. |
| 664 | */ |
| 665 | int hb_n_events; |
| 666 | |
| 667 | /** |
| 668 | * Heartbeat events. |
| 669 | */ |
| 670 | as_hb_event_node* hb_events; |
| 671 | |
| 672 | /* |
| 673 | * ----- HB plugin data changed event related fields. |
| 674 | */ |
| 675 | /** |
| 676 | * Node id of the node whose plugin data has changed. |
| 677 | */ |
| 678 | cf_node plugin_data_changed_nodeid; |
| 679 | |
| 680 | /** |
| 681 | * Node's plugin data. |
| 682 | */ |
| 683 | as_hb_plugin_node_data* plugin_data; |
| 684 | |
| 685 | /** |
| 686 | * The hlc timestamp for message receipt. |
| 687 | */ |
| 688 | as_hlc_msg_timestamp plugin_data_changed_hlc_ts; |
| 689 | |
| 690 | /** |
| 691 | * Local monotonic received timestamp. |
| 692 | */ |
| 693 | cf_clock plugin_data_changed_ts; |
| 694 | |
| 695 | /* |
| 696 | * ----- Join request handled related fields. |
| 697 | */ |
| 698 | cf_node join_request_source_nodeid; |
| 699 | |
| 700 | /* |
| 701 | * ----- Paxos success related fields. |
| 702 | */ |
| 703 | /** |
| 704 | * New succession list. |
| 705 | */ |
| 706 | cf_vector *new_succession_list; |
| 707 | |
| 708 | /** |
| 709 | * New cluster key. |
| 710 | */ |
| 711 | as_cluster_key new_cluster_key; |
| 712 | |
| 713 | /** |
| 714 | * New paxos sequence number. |
| 715 | */ |
| 716 | as_paxos_sequence_number new_sequence_number; |
| 717 | } as_clustering_internal_event; |
| 718 | |
| 719 | /** |
| 720 | * The clustering timer state. |
| 721 | */ |
| 722 | typedef struct as_clustering_timer_s |
| 723 | { |
| 724 | /** |
| 725 | * The timer thread id. |
| 726 | */ |
| 727 | pthread_t timer_tid; |
| 728 | } as_clustering_timer; |
| 729 | |
| 730 | /** |
| 731 | * Clustering subsystem state. |
| 732 | */ |
| 733 | typedef enum |
| 734 | { |
| 735 | AS_CLUSTERING_SYS_STATE_UNINITIALIZED, |
| 736 | AS_CLUSTERING_SYS_STATE_RUNNING, |
| 737 | AS_CLUSTERING_SYS_STATE_SHUTTING_DOWN, |
| 738 | AS_CLUSTERING_SYS_STATE_STOPPED |
| 739 | } as_clustering_sys_state; |
| 740 | |
| 741 | /** |
| 742 | * Type of quantum interval fault. Ensure the vtable in quantum iterval table is |
| 743 | * updated for each type. |
| 744 | */ |
| 745 | typedef enum as_clustering_quantum_fault_type_e |
| 746 | { |
| 747 | /** |
| 748 | * A new node arrived. |
| 749 | */ |
| 750 | QUANTUM_FAULT_NODE_ARRIVED, |
| 751 | |
| 752 | /** |
| 753 | * A node not our principal departed from the cluster. |
| 754 | */ |
| 755 | QUANTUM_FAULT_NODE_DEPARTED, |
| 756 | |
| 757 | /** |
| 758 | * We are in a cluster and out principal departed. |
| 759 | */ |
| 760 | QUANTUM_FAULT_PRINCIPAL_DEPARTED, |
| 761 | |
| 762 | /** |
| 763 | * A member node's adjacency list has changed. |
| 764 | */ |
| 765 | QUANTUM_FAULT_PEER_ADJACENCY_CHANGED, |
| 766 | |
| 767 | /** |
| 768 | * Join request accepted. |
| 769 | */ |
| 770 | QUANTUM_FAULT_JOIN_ACCEPTED, |
| 771 | |
| 772 | /** |
| 773 | * We have seen a principal who might send us a merge request. |
| 774 | */ |
| 775 | QUANTUM_FAULT_INBOUND_MERGE_CANDIDATE_SEEN, |
| 776 | |
| 777 | /** |
| 778 | * A node in our cluster has been orphaned. |
| 779 | */ |
| 780 | QUANTUM_FAULT_CLUSTER_MEMBER_ORPHANED, |
| 781 | |
| 782 | /** |
| 783 | * Sentinel value. Should be the last in the enum. |
| 784 | */ |
| 785 | QUANTUM_FAULT_TYPE_SENTINEL |
| 786 | } as_clustering_quantum_fault_type; |
| 787 | |
| 788 | /** |
| 789 | * Fault information for for first fault event detected in a quantum interval. |
| 790 | */ |
| 791 | typedef struct as_clustering_quantum_fault_s |
| 792 | { |
| 793 | /** |
| 794 | * First time the fault event was detected in current quantum based on |
| 795 | * monotonic clock. Should be initialized to zero at quantum start / end. |
| 796 | */ |
| 797 | cf_clock event_ts; |
| 798 | |
| 799 | /** |
| 800 | * Last time the fault event was detected in current quantum based on |
| 801 | * monotonic clock. Should be initialized to zero at quantum start / end. |
| 802 | */ |
| 803 | cf_clock last_event_ts; |
| 804 | } as_clustering_quantum_fault; |
| 805 | |
| 806 | /** |
| 807 | * Function to determine the minimum wait time after given fault happens. |
| 808 | */ |
| 809 | typedef uint32_t |
| 810 | (as_clustering_quantum_fault_wait_fn)(as_clustering_quantum_fault* fault); |
| 811 | |
| 812 | /** |
| 813 | * Vtable for different types of faults. |
| 814 | */ |
| 815 | typedef struct as_clustering_quantum_fault_vtable_s |
| 816 | { |
| 817 | /** |
| 818 | * String used to log this fault type. |
| 819 | */ |
| 820 | char *fault_log_str; |
| 821 | |
| 822 | /** |
| 823 | * Function providing the wait time for this fault type. |
| 824 | */ |
| 825 | as_clustering_quantum_fault_wait_fn* wait_fn; |
| 826 | } as_clustering_quantum_fault_vtable; |
| 827 | |
| 828 | /** |
| 829 | * Generates quantum intervals. |
| 830 | */ |
| 831 | typedef struct as_clustering_quantum_interval_generator_s |
| 832 | { |
| 833 | /** |
| 834 | * Quantum interval fault vtable. |
| 835 | */ |
| 836 | as_clustering_quantum_fault_vtable vtable[QUANTUM_FAULT_TYPE_SENTINEL]; |
| 837 | |
| 838 | /** |
| 839 | * Quantum interval faults. |
| 840 | */ |
| 841 | as_clustering_quantum_fault fault[QUANTUM_FAULT_TYPE_SENTINEL]; |
| 842 | |
| 843 | /** |
| 844 | * Time quantum interval last started. |
| 845 | */ |
| 846 | cf_clock last_quantum_start_time; |
| 847 | |
| 848 | /** |
| 849 | * For quantum interval being skippable respect the last quantum interval |
| 850 | * since quantum_interval() will be affected by changes to hb config. |
| 851 | */ |
| 852 | uint32_t last_quantum_interval; |
| 853 | |
| 854 | /** |
| 855 | * Indicates if current quantum interval should be postponed. |
| 856 | */ |
| 857 | bool is_interval_postponed; |
| 858 | } as_clustering_quantum_interval_generator; |
| 859 | |
| 860 | /** |
| 861 | * State of the clustering register. |
| 862 | */ |
| 863 | typedef enum |
| 864 | { |
| 865 | /** |
| 866 | * The register contents are in synced with all cluster members. |
| 867 | */ |
| 868 | AS_CLUSTERING_REGISTER_STATE_SYNCED, |
| 869 | |
| 870 | /** |
| 871 | * The register contents are being synced with other cluster members. |
| 872 | */ |
| 873 | AS_CLUSTERING_REGISTER_STATE_SYNCING |
| 874 | } as_clustering_register_state; |
| 875 | |
| 876 | /** |
| 877 | * Stores current cluster key and succession list and generates external events. |
| 878 | */ |
| 879 | typedef struct as_clustering_register_s |
| 880 | { |
| 881 | /** |
| 882 | * The register state. |
| 883 | */ |
| 884 | as_clustering_register_state state; |
| 885 | |
| 886 | /** |
| 887 | * Current cluster key. |
| 888 | */ |
| 889 | as_cluster_key cluster_key; |
| 890 | |
| 891 | /** |
| 892 | * Current succession list. |
| 893 | */ |
| 894 | cf_vector succession_list; |
| 895 | |
| 896 | /** |
| 897 | * Indicates if this node has transitioned to orphan state after being in a |
| 898 | * valid cluster. |
| 899 | */ |
| 900 | bool has_orphan_transitioned; |
| 901 | |
| 902 | /** |
| 903 | * The sequence number for the current cluster. |
| 904 | */ |
| 905 | as_paxos_sequence_number sequence_number; |
| 906 | |
| 907 | /** |
| 908 | * Nodes pending sync. |
| 909 | */ |
| 910 | cf_vector sync_pending; |
| 911 | |
| 912 | /** |
| 913 | * Nodes that send a sync applied for an unexpected cluster. Store it in |
| 914 | * case this is an imminent cluster change we will see in the future. All |
| 915 | * the nodes in this vector have sent the same cluster key and the same |
| 916 | * succession list. |
| 917 | */ |
| 918 | cf_vector ooo_change_applied_received; |
| 919 | |
| 920 | /** |
| 921 | * Cluster key sent by nodes in ooo_change_applied_received vector. |
| 922 | */ |
| 923 | as_cluster_key ooo_cluster_key; |
| 924 | |
| 925 | /** |
| 926 | * Succession sent by nodes in ooo_change_applied_received vector. |
| 927 | */ |
| 928 | cf_vector ooo_succession_list; |
| 929 | |
| 930 | /** |
| 931 | * Timestamp of the first ooo change applied message. |
| 932 | */ |
| 933 | as_hlc_timestamp ooo_hlc_timestamp; |
| 934 | |
| 935 | /** |
| 936 | * The time cluster last changed. |
| 937 | */ |
| 938 | as_hlc_timestamp cluster_modified_hlc_ts; |
| 939 | |
| 940 | /** |
| 941 | * The monotonic clock time cluster last changed. |
| 942 | */ |
| 943 | cf_clock cluster_modified_time; |
| 944 | |
| 945 | /** |
| 946 | * The last time the register sync was checked in the syncing state. |
| 947 | */ |
| 948 | cf_clock last_sync_check_time; |
| 949 | } as_clustering_register; |
| 950 | |
| 951 | /** |
| 952 | * * Clustering state. |
| 953 | */ |
| 954 | typedef enum |
| 955 | { |
| 956 | /** |
| 957 | * Self node is not part of a cluster. |
| 958 | */ |
| 959 | AS_CLUSTERING_STATE_ORPHAN, |
| 960 | |
| 961 | /** |
| 962 | * Self node is not part of a cluster. |
| 963 | */ |
| 964 | AS_CLUSTERING_STATE_PRINCIPAL, |
| 965 | |
| 966 | /** |
| 967 | * Self node is part of a cluster but not the principal. |
| 968 | */ |
| 969 | AS_CLUSTERING_STATE_NON_PRINCIPAL |
| 970 | } as_clustering_state; |
| 971 | |
| 972 | /** |
| 973 | * Clustering state maintained by this node. |
| 974 | */ |
| 975 | typedef struct as_clustering_s |
| 976 | { |
| 977 | |
| 978 | /** |
| 979 | * Clustering submodule state, indicates if the clustering sub system is |
| 980 | * running, stopped or initialized. |
| 981 | */ |
| 982 | as_clustering_sys_state sys_state; |
| 983 | |
| 984 | /** |
| 985 | * Simple view of whether or not the cluster is well-formed. |
| 986 | */ |
| 987 | bool has_integrity; |
| 988 | |
| 989 | /** |
| 990 | * Clustering relevant state, e.g. orphan, principal, non-principal. |
| 991 | */ |
| 992 | as_clustering_state state; |
| 993 | |
| 994 | /** |
| 995 | * The preferred principal is a node such that removing current principal |
| 996 | * and making said node new principal will lead to a larger cluster. This is |
| 997 | * updated in the non-principal state at each quantum interval and is sent |
| 998 | * out with each heartbeat pulse. |
| 999 | */ |
| 1000 | cf_node preferred_principal; |
| 1001 | |
| 1002 | /** |
| 1003 | * Pending join requests. |
| 1004 | */ |
| 1005 | cf_vector pending_join_requests; |
| 1006 | |
| 1007 | /** |
| 1008 | * The monotonic clock time when this node entered orphan state. |
| 1009 | * Will be set to zero when the node is not an orphan. |
| 1010 | */ |
| 1011 | cf_clock orphan_state_start_time; |
| 1012 | |
| 1013 | /** |
| 1014 | * Time when the last move command was sent. |
| 1015 | */ |
| 1016 | cf_clock move_cmd_issue_time; |
| 1017 | |
| 1018 | /** |
| 1019 | * Hash from nodes whom join request was sent to the time the join request |
| 1020 | * was send . Used to prevent sending join request too quickly to the same |
| 1021 | * principal again and again. |
| 1022 | */ |
| 1023 | cf_shash* join_request_blackout; |
| 1024 | |
| 1025 | /** |
| 1026 | * The principal to which the last join request was sent. |
| 1027 | */ |
| 1028 | cf_node last_join_request_principal; |
| 1029 | |
| 1030 | /** |
| 1031 | * The time at which the last join request was sent, to track and timeout |
| 1032 | * join requests. |
| 1033 | */ |
| 1034 | cf_clock last_join_request_sent_time; |
| 1035 | |
| 1036 | /** |
| 1037 | * The time at which the last join request was retransmitted, to track and |
| 1038 | * retransmit join requests. |
| 1039 | */ |
| 1040 | cf_clock last_join_request_retransmit_time; |
| 1041 | } as_clustering; |
| 1042 | |
| 1043 | /** |
| 1044 | * Result of sending out a join request. |
| 1045 | */ |
| 1046 | typedef enum as_clustering_join_request_result_e |
| 1047 | { |
| 1048 | /** |
| 1049 | * |
| 1050 | * Join request was sent out. |
| 1051 | */ |
| 1052 | AS_CLUSTERING_JOIN_REQUEST_SENT, |
| 1053 | |
| 1054 | /** |
| 1055 | * |
| 1056 | * Join request was attempted, but sending failed. |
| 1057 | */ |
| 1058 | AS_CLUSTERING_JOIN_REQUEST_SEND_FAILED, |
| 1059 | |
| 1060 | /** |
| 1061 | * Join request already pending. A new join request was not sent. |
| 1062 | */ |
| 1063 | AS_CLUSTERING_JOIN_REQUEST_PENDING, |
| 1064 | |
| 1065 | /** |
| 1066 | * No neighboring principals present to send the join request. |
| 1067 | */ |
| 1068 | AS_CLUSTERING_JOIN_REQUEST_NO_PRINCIPALS |
| 1069 | } as_clustering_join_request_result; |
| 1070 | |
| 1071 | /** |
| 1072 | * External event publisher state. |
| 1073 | */ |
| 1074 | typedef struct as_clustering_external_event_publisher_s |
| 1075 | { |
| 1076 | /** |
| 1077 | * State of the external event publisher. |
| 1078 | */ |
| 1079 | as_clustering_sys_state sys_state; |
| 1080 | |
| 1081 | /** |
| 1082 | * Inidicates if there is an event to publish. |
| 1083 | */ |
| 1084 | bool event_queued; |
| 1085 | |
| 1086 | /** |
| 1087 | * The pending event to publish. |
| 1088 | */ |
| 1089 | as_clustering_event to_publish; |
| 1090 | |
| 1091 | /** |
| 1092 | * The static succession list published with the message. |
| 1093 | */ |
| 1094 | cf_vector published_succession_list; |
| 1095 | |
| 1096 | /** |
| 1097 | * Conditional variable to signal pending event to publish. |
| 1098 | */ |
| 1099 | pthread_cond_t is_pending; |
| 1100 | |
| 1101 | /** |
| 1102 | * Thread id of the publisher thread. |
| 1103 | */ |
| 1104 | pthread_t event_publisher_tid; |
| 1105 | |
| 1106 | /** |
| 1107 | * Mutex to protect the conditional variable. |
| 1108 | */ |
| 1109 | pthread_mutex_t is_pending_mutex; |
| 1110 | } as_clustering_external_event_publisher; |
| 1111 | |
| 1112 | /* |
| 1113 | * ---------------------------------------------------------------------------- |
| 1114 | * Forward declarations |
| 1115 | * ---------------------------------------------------------------------------- |
| 1116 | */ |
| 1117 | static void |
| 1118 | internal_event_dispatch(as_clustering_internal_event* event); |
| 1119 | static bool |
| 1120 | clustering_is_our_principal(cf_node nodeid); |
| 1121 | static bool |
| 1122 | clustering_is_principal(); |
| 1123 | static bool |
| 1124 | clustering_is_cluster_member(cf_node nodeid); |
| 1125 | |
| 1126 | /* |
| 1127 | * ---------------------------------------------------------------------------- |
| 1128 | * Non-public hooks to exchange subsystem. |
| 1129 | * ---------------------------------------------------------------------------- |
| 1130 | */ |
| 1131 | extern void |
| 1132 | exchange_clustering_event_listener(as_clustering_event* event); |
| 1133 | |
| 1134 | /* |
| 1135 | * ---------------------------------------------------------------------------- |
| 1136 | * Timer, timeout values and intervals |
| 1137 | * |
| 1138 | * All values should be multiples of timer tick interval. |
| 1139 | * ---------------------------------------------------------------------------- |
| 1140 | */ |
| 1141 | |
| 1142 | /** |
| 1143 | * Timer tick interval, which should be a GCD of all clustering intervals. |
| 1144 | */ |
| 1145 | static uint32_t |
| 1146 | timer_tick_interval() |
| 1147 | { |
| 1148 | return CLUSTERING_TIMER_TICK_INTERVAL; |
| 1149 | } |
| 1150 | |
| 1151 | /** |
| 1152 | * Maximum network latency for the cluster. |
| 1153 | */ |
| 1154 | static uint32_t |
| 1155 | network_latency_max() |
| 1156 | { |
| 1157 | return g_config.fabric_latency_max_ms; |
| 1158 | } |
| 1159 | |
| 1160 | /** |
| 1161 | * Maximum network rtt for the cluster. |
| 1162 | */ |
| 1163 | static uint32_t |
| 1164 | network_rtt_max() |
| 1165 | { |
| 1166 | return 2 * network_latency_max(); |
| 1167 | } |
| 1168 | |
| 1169 | /** |
| 1170 | * Quantum interval in milliseconds. |
| 1171 | */ |
| 1172 | static uint32_t |
| 1173 | quantum_interval() |
| 1174 | { |
| 1175 | uint32_t std_quantum_interval = MIN(QUANTUM_INTERVAL_MAX, |
| 1176 | as_hb_node_timeout_get() |
| 1177 | + 2 * (as_hb_tx_interval_get() + network_latency_max())); |
| 1178 | |
| 1179 | // Ensure we give paxos enough time to complete. |
| 1180 | return MAX(PAXOS_COMPLETION_TIME_MAX, std_quantum_interval); |
| 1181 | } |
| 1182 | |
| 1183 | /** |
| 1184 | * Maximum number of times quantum interval start can be skipped. |
| 1185 | */ |
| 1186 | static uint32_t |
| 1187 | quantum_interval_skip_max() |
| 1188 | { |
| 1189 | return 2; |
| 1190 | } |
| 1191 | |
| 1192 | /** |
| 1193 | * Interval at which register sync is checked. |
| 1194 | */ |
| 1195 | static uint32_t |
| 1196 | register_sync_check_interval() |
| 1197 | { |
| 1198 | return MAX(network_rtt_max(), as_hb_tx_interval_get()); |
| 1199 | } |
| 1200 | |
| 1201 | /** |
| 1202 | * Timeout for a join request, should definitely be larger than a quantum |
| 1203 | * interval to prevent the requesting node from making new requests before the |
| 1204 | * current requested principal node can finish the paxos round. |
| 1205 | */ |
| 1206 | static uint32_t |
| 1207 | join_request_timeout() |
| 1208 | { |
| 1209 | // Allow for |
| 1210 | // - 1 quantum interval, where our request lands just after the potential |
| 1211 | // principal's quantum interval start. |
| 1212 | // - 0.5 quantum intervals to give time for a paxos round to finish |
| 1213 | // - (quantum_interval_skip_max -1) intervals if the principal had to skip |
| 1214 | // quantum intervals. |
| 1215 | return (uint32_t)( |
| 1216 | (1 + 0.5 + (quantum_interval_skip_max() - 1)) * quantum_interval()); |
| 1217 | } |
| 1218 | |
| 1219 | /** |
| 1220 | * Timeout for a retransmitting a join request. |
| 1221 | */ |
| 1222 | static uint32_t |
| 1223 | join_request_retransmit_timeout() |
| 1224 | { |
| 1225 | return (uint32_t)(MIN(as_hb_tx_interval_get() / 2, quantum_interval() / 2)); |
| 1226 | } |
| 1227 | |
| 1228 | /** |
| 1229 | * The interval at which a node checks to see if it should join a cluster. |
| 1230 | */ |
| 1231 | static uint32_t |
| 1232 | join_cluster_check_interval() |
| 1233 | { |
| 1234 | return timer_tick_interval(); |
| 1235 | } |
| 1236 | |
| 1237 | /** |
| 1238 | * Blackout period for join requests to a particular principal to prevent |
| 1239 | * bombarding it with join requests. Should be less than join_request_timeout(). |
| 1240 | */ |
| 1241 | static uint32_t |
| 1242 | join_request_blackout_interval() |
| 1243 | { |
| 1244 | return MIN(join_request_timeout(), |
| 1245 | MIN(quantum_interval() / 2, 2 * as_hb_tx_interval_get())); |
| 1246 | } |
| 1247 | |
| 1248 | /** |
| 1249 | * Blackout period after sending a move command, during which join requests will |
| 1250 | * be rejected. |
| 1251 | */ |
| 1252 | static uint32_t |
| 1253 | join_request_move_reject_interval() |
| 1254 | { |
| 1255 | // Wait for one quantum interval before accepting join requests after |
| 1256 | // sending a move command. |
| 1257 | return quantum_interval(); |
| 1258 | } |
| 1259 | |
| 1260 | /** |
| 1261 | * Maximum tolerable join request transmission delay in milliseconds. Join |
| 1262 | * requests delayed by more than this amount will not be accepted. |
| 1263 | */ |
| 1264 | static uint32_t |
| 1265 | join_request_accept_delay_max() |
| 1266 | { |
| 1267 | // Join request is considered stale / delayed if the (received hlc timestamp |
| 1268 | // - send hlc timestamp) > this value; |
| 1269 | return (2 * as_hb_tx_interval_get() + network_latency_max()); |
| 1270 | } |
| 1271 | |
| 1272 | /** |
| 1273 | * Timeout in milliseconds for a paxos proposal. Give a paxos round two thirds |
| 1274 | * of an interval to timeout. |
| 1275 | * A paxos round should definitely timeout before the next quantum interval, so |
| 1276 | * that it does not delay cluster convergence. |
| 1277 | */ |
| 1278 | static uint32_t |
| 1279 | paxos_proposal_timeout() |
| 1280 | { |
| 1281 | return MAX(quantum_interval() / 2, network_rtt_max()); |
| 1282 | } |
| 1283 | |
| 1284 | /** |
| 1285 | * Timeout in milliseconds after which a paxos message is retransmitted. |
| 1286 | */ |
| 1287 | static uint32_t |
| 1288 | paxos_msg_timeout() |
| 1289 | { |
| 1290 | return MAX(MIN(quantum_interval() / 4, 100), network_rtt_max()); |
| 1291 | } |
| 1292 | |
| 1293 | /** |
| 1294 | * Maximum amount of time a node will be in orphan state. After this timeout the |
| 1295 | * node will try forming a new cluster even if there are other adjacent |
| 1296 | * clusters/nodes visible. |
| 1297 | */ |
| 1298 | static uint32_t |
| 1299 | clustering_orphan_timeout() |
| 1300 | { |
| 1301 | return UINT_MAX; |
| 1302 | } |
| 1303 | |
| 1304 | /* |
| 1305 | * ---------------------------------------------------------------------------- |
| 1306 | * Stack allocation |
| 1307 | * ---------------------------------------------------------------------------- |
| 1308 | */ |
| 1309 | |
| 1310 | /** |
| 1311 | * Maximum memory size allocated on the call stack. |
| 1312 | */ |
| 1313 | #define STACK_ALLOC_LIMIT() (16 * 1024) |
| 1314 | |
| 1315 | /** |
| 1316 | * Allocate a buffer on stack if possible. Larger buffers are heap allocated to |
| 1317 | * prevent stack overflows. |
| 1318 | */ |
| 1319 | #define BUFFER_ALLOC_OR_DIE(size) \ |
| 1320 | (((size) > STACK_ALLOC_LIMIT()) ? cf_malloc(size) : alloca(size)) |
| 1321 | |
| 1322 | /** |
| 1323 | * Free the buffer allocated by BUFFER_ALLOC |
| 1324 | */ |
| 1325 | #define BUFFER_FREE(buffer, size) \ |
| 1326 | if (((size) > STACK_ALLOC_LIMIT()) && buffer) {cf_free(buffer);} |
| 1327 | |
| 1328 | /* |
| 1329 | * ---------------------------------------------------------------------------- |
| 1330 | * Logging |
| 1331 | * ---------------------------------------------------------------------------- |
| 1332 | */ |
| 1333 | #define LOG_LENGTH_MAX() (800) |
| 1334 | #define CRASH(format, ...) cf_crash(AS_CLUSTERING, format, ##__VA_ARGS__) |
| 1335 | #define WARNING(format, ...) cf_warning(AS_CLUSTERING, format, ##__VA_ARGS__) |
| 1336 | #define INFO(format, ...) cf_info(AS_CLUSTERING, format, ##__VA_ARGS__) |
| 1337 | #define DEBUG(format, ...) cf_debug(AS_CLUSTERING, format, ##__VA_ARGS__) |
| 1338 | #define DETAIL(format, ...) cf_detail(AS_CLUSTERING, format, ##__VA_ARGS__) |
| 1339 | |
| 1340 | #define ASSERT(expression, message, ...) \ |
| 1341 | if (!(expression)) {WARNING(message, ##__VA_ARGS__);} |
| 1342 | |
| 1343 | #define log_cf_node_array(message, nodes, node_count, severity) \ |
| 1344 | as_clustering_log_cf_node_array(severity, AS_CLUSTERING, message, \ |
| 1345 | nodes, node_count) |
| 1346 | #define log_cf_node_vector(message, nodes, severity) \ |
| 1347 | as_clustering_log_cf_node_vector(severity, AS_CLUSTERING, message, \ |
| 1348 | nodes) |
| 1349 | |
| 1350 | /* |
| 1351 | * ---------------------------------------------------------------------------- |
| 1352 | * Vector functions |
| 1353 | * ---------------------------------------------------------------------------- |
| 1354 | */ |
| 1355 | |
| 1356 | /** |
| 1357 | * Clear / delete all entries in a vector. |
| 1358 | */ |
| 1359 | static void |
| 1360 | vector_clear(cf_vector* vector) |
| 1361 | { |
| 1362 | cf_vector_delete_range(vector, 0, cf_vector_size(vector)); |
| 1363 | } |
| 1364 | |
| 1365 | /** |
| 1366 | * Create temporary stack variables. |
| 1367 | */ |
| 1368 | #define TOKEN_PASTE(x, y) x##y |
| 1369 | #define STACK_VAR(x, y) TOKEN_PASTE(x, y) |
| 1370 | |
| 1371 | /** |
| 1372 | * Initialize a lockless vector, initially sized to store cluster node number |
| 1373 | * of elements. |
| 1374 | */ |
| 1375 | #define vector_lockless_init(vectorp, value_type) \ |
| 1376 | ({ \ |
| 1377 | cf_vector_init(vectorp, sizeof(value_type), \ |
| 1378 | AS_CLUSTERING_CLUSTER_MAX_SIZE_SOFT, VECTOR_FLAG_INITZERO); \ |
| 1379 | }) |
| 1380 | |
| 1381 | /** |
| 1382 | * Create and initialize a lockless stack allocated vector to initially sized to |
| 1383 | * store cluster node number of elements. |
| 1384 | */ |
| 1385 | #define vector_stack_lockless_create(value_type) \ |
| 1386 | ({ \ |
| 1387 | cf_vector * STACK_VAR(vector, __LINE__) = (cf_vector*)alloca( \ |
| 1388 | sizeof(cf_vector)); \ |
| 1389 | size_t buffer_size = AS_CLUSTERING_CLUSTER_MAX_SIZE_SOFT \ |
| 1390 | * sizeof(value_type); \ |
| 1391 | void* STACK_VAR(buff, __LINE__) = alloca(buffer_size); cf_vector_init_smalloc( \ |
| 1392 | STACK_VAR(vector, __LINE__), sizeof(value_type), \ |
| 1393 | (uint8_t*)STACK_VAR(buff, __LINE__), buffer_size, \ |
| 1394 | VECTOR_FLAG_INITZERO); \ |
| 1395 | STACK_VAR(vector, __LINE__); \ |
| 1396 | }) |
| 1397 | |
| 1398 | /** |
| 1399 | * Check two vector for equality. Two vector are euql if they have the same |
| 1400 | * number of elements and corresponding elements are equal. For now simple |
| 1401 | * memory compare is used to compare elements. Assumes the vectors are not |
| 1402 | * accessed by other threads during this operation. |
| 1403 | * |
| 1404 | * @param v1 the first vector to compare. |
| 1405 | * @param v2 the second vector to compare. |
| 1406 | * @return true if the vectors are true, false otherwise. |
| 1407 | */ |
| 1408 | static bool |
| 1409 | vector_equals(cf_vector* v1, cf_vector* v2) |
| 1410 | { |
| 1411 | int v1_count = cf_vector_size(v1); |
| 1412 | int v2_count = cf_vector_size(v2); |
| 1413 | int v1_elem_sz = VECTOR_ELEM_SZ(v1); |
| 1414 | int v2_elem_sz = VECTOR_ELEM_SZ(v2); |
| 1415 | |
| 1416 | if (v1_count != v2_count || v1_elem_sz != v2_elem_sz) { |
| 1417 | return false; |
| 1418 | } |
| 1419 | |
| 1420 | for (int i = 0; i < v1_count; i++) { |
| 1421 | // No null check required since we are iterating under a lock and within |
| 1422 | // vector bounds. |
| 1423 | void* v1_element = cf_vector_getp(v1, i); |
| 1424 | void* v2_element = cf_vector_getp(v2, i); |
| 1425 | |
| 1426 | if (v1_element == v2_element) { |
| 1427 | // Same reference or both are NULL. |
| 1428 | continue; |
| 1429 | } |
| 1430 | |
| 1431 | if (v1_element == NULL || v2_element == NULL) { |
| 1432 | // Exactly one reference is NULL. |
| 1433 | return false; |
| 1434 | } |
| 1435 | |
| 1436 | if (memcmp(v1_element, v2_element, v1_elem_sz) != 0) { |
| 1437 | return false; |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | return true; |
| 1442 | } |
| 1443 | |
| 1444 | /** |
| 1445 | * Find the index of an element in the vector. Equality is based on mem compare. |
| 1446 | * |
| 1447 | * @param vector the source vector. |
| 1448 | * @param element the element to find. |
| 1449 | * @return the index if the element is found, -1 otherwise. |
| 1450 | */ |
| 1451 | static int |
| 1452 | vector_find(cf_vector* vector, void* element) |
| 1453 | { |
| 1454 | int element_count = cf_vector_size(vector); |
| 1455 | size_t value_len = VECTOR_ELEM_SZ(vector); |
| 1456 | for (int i = 0; i < element_count; i++) { |
| 1457 | // No null check required since we are iterating under a lock and within |
| 1458 | // vector bounds. |
| 1459 | void* src_element = cf_vector_getp(vector, i); |
| 1460 | if (src_element) { |
| 1461 | if (memcmp(element, src_element, value_len) == 0) { |
| 1462 | return i; |
| 1463 | } |
| 1464 | } |
| 1465 | } |
| 1466 | return -1; |
| 1467 | } |
| 1468 | |
| 1469 | /** |
| 1470 | * Copy all elements form the source vector to the destination vector to the |
| 1471 | * destination vector. Assumes the source and destination vector are not being |
| 1472 | * modified while the copy operation is in progress. |
| 1473 | * |
| 1474 | * @param dest the destination vector. |
| 1475 | * @param src the source vector. |
| 1476 | * @return the number of elements copied. |
| 1477 | */ |
| 1478 | static int |
| 1479 | vector_copy(cf_vector* dest, cf_vector* src) |
| 1480 | { |
| 1481 | int element_count = cf_vector_size(src); |
| 1482 | int copied_count = 0; |
| 1483 | for (int i = 0; i < element_count; i++) { |
| 1484 | // No null check required since we are iterating under a lock and within |
| 1485 | // vector bounds. |
| 1486 | void* src_element = cf_vector_getp(src, i); |
| 1487 | if (src_element) { |
| 1488 | cf_vector_append(dest, src_element); |
| 1489 | copied_count++; |
| 1490 | } |
| 1491 | } |
| 1492 | return copied_count; |
| 1493 | } |
| 1494 | |
| 1495 | /** |
| 1496 | * Copy all elements form the source vector to the destination vector only if |
| 1497 | * they do not exist in the destination vector. Assumes the source and |
| 1498 | * destination vector are not being modified while the copy operation is in |
| 1499 | * progress. |
| 1500 | * |
| 1501 | * @param dest the destination vector. |
| 1502 | * @param src the source vector. |
| 1503 | * @return the number of elements copied. |
| 1504 | */ |
| 1505 | static int |
| 1506 | vector_copy_unique(cf_vector* dest, cf_vector* src) |
| 1507 | { |
| 1508 | int element_count = cf_vector_size(src); |
| 1509 | int copied_count = 0; |
| 1510 | for (int i = 0; i < element_count; i++) { |
| 1511 | // No null check required since we are iterating under a lock and within |
| 1512 | // vector bounds. |
| 1513 | void* src_element = cf_vector_getp(src, i); |
| 1514 | if (src_element) { |
| 1515 | cf_vector_append_unique(dest, src_element); |
| 1516 | copied_count++; |
| 1517 | } |
| 1518 | } |
| 1519 | return copied_count; |
| 1520 | } |
| 1521 | |
| 1522 | /** |
| 1523 | * Sorts in place the elements in the vector using the inout comparator function |
| 1524 | * and retains only unique elements. Assumes the source vector is not being |
| 1525 | * modified while the sort operation is in progress. |
| 1526 | * |
| 1527 | * @param src the source vector. |
| 1528 | * @return comparator the comparator function, which must return an integer less |
| 1529 | * than, equal to, or greater than zero if the first argument is considered to |
| 1530 | * be respectively less than, equal to, or greater than the second |
| 1531 | */ |
| 1532 | static void |
| 1533 | vector_sort_unique(cf_vector* src, int |
| 1534 | (*comparator)(const void*, const void*)) |
| 1535 | { |
| 1536 | int element_count = cf_vector_size(src); |
| 1537 | size_t value_len = VECTOR_ELEM_SZ(src); |
| 1538 | size_t array_size = element_count * value_len; |
| 1539 | void* element_array = BUFFER_ALLOC_OR_DIE(array_size); |
| 1540 | |
| 1541 | // A lame approach to sorting. Copying the elements to an array and invoking |
| 1542 | // qsort. |
| 1543 | uint8_t* next_element_ptr = element_array; |
| 1544 | int array_element_count = 0; |
| 1545 | for (int i = 0; i < element_count; i++) { |
| 1546 | // No null check required since we are iterating under a lock and within |
| 1547 | // vector bounds. |
| 1548 | void* src_element = cf_vector_getp(src, i); |
| 1549 | if (src_element) { |
| 1550 | memcpy(next_element_ptr, src_element, value_len); |
| 1551 | next_element_ptr += value_len; |
| 1552 | array_element_count++; |
| 1553 | } |
| 1554 | } |
| 1555 | |
| 1556 | qsort(element_array, array_element_count, value_len, comparator); |
| 1557 | |
| 1558 | vector_clear(src); |
| 1559 | next_element_ptr = element_array; |
| 1560 | for (int i = 0; i < array_element_count; i++) { |
| 1561 | cf_vector_append_unique(src, next_element_ptr); |
| 1562 | next_element_ptr += value_len; |
| 1563 | } |
| 1564 | |
| 1565 | BUFFER_FREE(element_array, array_size); |
| 1566 | return; |
| 1567 | } |
| 1568 | |
| 1569 | /** |
| 1570 | * Remove all elements from the to_remove vector present in the target vector. |
| 1571 | * Equality is based on simple mem compare. |
| 1572 | * |
| 1573 | * @param target the target vector being modified. |
| 1574 | * @param to_remove the vector whose elements must be removed from the target. |
| 1575 | * @return the number of elements removed. |
| 1576 | */ |
| 1577 | static int |
| 1578 | vector_subtract(cf_vector* target, cf_vector* to_remove) |
| 1579 | { |
| 1580 | int element_count = cf_vector_size(to_remove); |
| 1581 | int removed_count = 0; |
| 1582 | for (int i = 0; i < element_count; i++) { |
| 1583 | // No null check required since we are iterating under a lock and within |
| 1584 | // vector bounds. |
| 1585 | void* to_remove_element = cf_vector_getp(to_remove, i); |
| 1586 | if (to_remove_element) { |
| 1587 | int found_at = 0; |
| 1588 | while ((found_at = vector_find(target, to_remove_element)) >= 0) { |
| 1589 | cf_vector_delete(target, found_at); |
| 1590 | removed_count++; |
| 1591 | } |
| 1592 | } |
| 1593 | } |
| 1594 | |
| 1595 | return removed_count; |
| 1596 | } |
| 1597 | |
| 1598 | /** |
| 1599 | * Convert a vector to an array. |
| 1600 | * FIXME: return pointer to the internal vector storage. |
| 1601 | */ |
| 1602 | static cf_node* |
| 1603 | vector_to_array(cf_vector* vector) |
| 1604 | { |
| 1605 | return (cf_node*)vector->vector; |
| 1606 | } |
| 1607 | |
| 1608 | /** |
| 1609 | * Copy elements in a vector to an array. |
| 1610 | * @param array the destination array. Should be large enough to hold the number |
| 1611 | * all elements in the vector. |
| 1612 | * @param src the source vector. |
| 1613 | * @param element_count the number of elements to copy from the source vector. |
| 1614 | */ |
| 1615 | static void |
| 1616 | vector_array_cpy(void* array, cf_vector* src, int element_count) |
| 1617 | { |
| 1618 | uint8_t* element_ptr = array; |
| 1619 | int element_size = VECTOR_ELEM_SZ(src); |
| 1620 | for (int i = 0; i < element_count; i++) { |
| 1621 | cf_vector_get(src, i, element_ptr); |
| 1622 | element_ptr += element_size; |
| 1623 | } |
| 1624 | } |
| 1625 | |
| 1626 | /* |
| 1627 | * ---------------------------------------------------------------------------- |
| 1628 | * Globals |
| 1629 | * ---------------------------------------------------------------------------- |
| 1630 | */ |
| 1631 | |
| 1632 | /** |
| 1633 | * The big fat lock for all clustering state. |
| 1634 | */ |
| 1635 | static pthread_mutex_t g_clustering_lock = |
| 1636 | PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; |
| 1637 | |
| 1638 | /** |
| 1639 | * The fat lock for all clustering events listener changes. |
| 1640 | */ |
| 1641 | static pthread_mutex_t g_clustering_event_publisher_lock = |
| 1642 | PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; |
| 1643 | |
| 1644 | /** |
| 1645 | * Debugging lock acquition. |
| 1646 | * #define LOCK_DEBUG_ENABLED 1 |
| 1647 | */ |
| 1648 | #ifdef LOCK_DEBUG_ENABLED |
| 1649 | #define LOCK_DEBUG(format, ...) DEBUG(format, ##__VA_ARGS__) |
| 1650 | #else |
| 1651 | #define LOCK_DEBUG(format, ...) |
| 1652 | #endif |
| 1653 | |
| 1654 | /** |
| 1655 | * Acquire a lock on the clustering module. |
| 1656 | */ |
| 1657 | #define CLUSTERING_LOCK() \ |
| 1658 | ({ \ |
| 1659 | pthread_mutex_lock (&g_clustering_lock); \ |
| 1660 | LOCK_DEBUG("locked in %s", __FUNCTION__); \ |
| 1661 | }) |
| 1662 | |
| 1663 | /** |
| 1664 | * Relinquish the lock on the clustering module. |
| 1665 | */ |
| 1666 | #define CLUSTERING_UNLOCK() \ |
| 1667 | ({ \ |
| 1668 | pthread_mutex_unlock (&g_clustering_lock); \ |
| 1669 | LOCK_DEBUG("unLocked in %s", __FUNCTION__); \ |
| 1670 | }) |
| 1671 | |
| 1672 | /** |
| 1673 | * Acquire a lock on the clustering publisher. |
| 1674 | */ |
| 1675 | #define CLUSTERING_EVENT_PUBLISHER_LOCK() \ |
| 1676 | ({ \ |
| 1677 | pthread_mutex_lock (&g_clustering_event_publisher_lock); \ |
| 1678 | LOCK_DEBUG("publisher locked in %s", __FUNCTION__); \ |
| 1679 | }) |
| 1680 | |
| 1681 | /** |
| 1682 | * Relinquish the lock on the clustering publisher. |
| 1683 | */ |
| 1684 | #define CLUSTERING_EVENT_PUBLISHER_UNLOCK() \ |
| 1685 | ({ \ |
| 1686 | pthread_mutex_unlock (&g_clustering_event_publisher_lock); \ |
| 1687 | LOCK_DEBUG("publisher unLocked in %s", __FUNCTION__); \ |
| 1688 | }) |
| 1689 | |
| 1690 | /** |
| 1691 | * Singleton timer. |
| 1692 | */ |
| 1693 | static as_clustering_timer g_timer; |
| 1694 | |
| 1695 | /** |
| 1696 | * Singleton external events publisher. |
| 1697 | */ |
| 1698 | static as_clustering_external_event_publisher g_external_event_publisher; |
| 1699 | |
| 1700 | /** |
| 1701 | * Singleton cluster register to store this node's cluster membership. |
| 1702 | */ |
| 1703 | static as_clustering_register g_register; |
| 1704 | |
| 1705 | /** |
| 1706 | * Singleton clustrering state all initialized to zero. |
| 1707 | */ |
| 1708 | static as_clustering g_clustering = { 0 }; |
| 1709 | |
| 1710 | /** |
| 1711 | * Singleton paxos proposer. |
| 1712 | */ |
| 1713 | static as_paxos_proposer g_proposer; |
| 1714 | |
| 1715 | /** |
| 1716 | * Singleton paxos acceptor. |
| 1717 | */ |
| 1718 | static as_paxos_acceptor g_acceptor; |
| 1719 | |
| 1720 | /** |
| 1721 | * Singleton quantum interval generator. |
| 1722 | */ |
| 1723 | static as_clustering_quantum_interval_generator g_quantum_interval_generator; |
| 1724 | |
| 1725 | /** |
| 1726 | * Message template for heart beat messages. |
| 1727 | */ |
| 1728 | static msg_template g_clustering_msg_template[] = { |
| 1729 | |
| 1730 | { AS_CLUSTERING_MSG_ID, M_FT_UINT32 }, |
| 1731 | |
| 1732 | { AS_CLUSTERING_MSG_TYPE, M_FT_UINT32 }, |
| 1733 | |
| 1734 | { AS_CLUSTERING_MSG_HLC_TIMESTAMP, M_FT_UINT64 }, |
| 1735 | |
| 1736 | { AS_CLUSTERING_MSG_SEQUENCE_NUMBER, M_FT_UINT64 }, |
| 1737 | |
| 1738 | { AS_CLUSTERING_MSG_CLUSTER_KEY, M_FT_UINT64 }, |
| 1739 | |
| 1740 | { AS_CLUSTERING_MSG_SUCCESSION_LIST, M_FT_BUF }, |
| 1741 | |
| 1742 | { AS_CLUSTERING_MSG_PROPOSED_PRINCIPAL, M_FT_UINT64 } |
| 1743 | |
| 1744 | }; |
| 1745 | |
| 1746 | /* |
| 1747 | * ---------------------------------------------------------------------------- |
| 1748 | * Clustering life cycle |
| 1749 | * ---------------------------------------------------------------------------- |
| 1750 | */ |
| 1751 | |
| 1752 | /** |
| 1753 | * Check if clustering is initialized. |
| 1754 | */ |
| 1755 | static bool |
| 1756 | clustering_is_initialized() |
| 1757 | { |
| 1758 | CLUSTERING_LOCK(); |
| 1759 | bool initialized = (g_clustering.sys_state |
| 1760 | != AS_CLUSTERING_SYS_STATE_UNINITIALIZED); |
| 1761 | CLUSTERING_UNLOCK(); |
| 1762 | return initialized; |
| 1763 | } |
| 1764 | |
| 1765 | /** |
| 1766 | * * Check if clustering is running. |
| 1767 | */ |
| 1768 | static bool |
| 1769 | clustering_is_running() |
| 1770 | { |
| 1771 | CLUSTERING_LOCK(); |
| 1772 | bool running = g_clustering.sys_state == AS_CLUSTERING_SYS_STATE_RUNNING; |
| 1773 | CLUSTERING_UNLOCK(); |
| 1774 | return running; |
| 1775 | } |
| 1776 | |
| 1777 | /* |
| 1778 | * ---------------------------------------------------------------------------- |
| 1779 | * Config related functions |
| 1780 | * ---------------------------------------------------------------------------- |
| 1781 | */ |
| 1782 | |
| 1783 | /** |
| 1784 | * The nodeid for this node. |
| 1785 | */ |
| 1786 | static cf_node |
| 1787 | config_self_nodeid_get() |
| 1788 | { |
| 1789 | return g_config.self_node; |
| 1790 | } |
| 1791 | |
| 1792 | /* |
| 1793 | * ---------------------------------------------------------------------------- |
| 1794 | * Compatibility mode functions |
| 1795 | * ---------------------------------------------------------------------------- |
| 1796 | */ |
| 1797 | |
| 1798 | /** |
| 1799 | * Return current protocol version identifier. |
| 1800 | */ |
| 1801 | as_cluster_proto_identifier |
| 1802 | clustering_protocol_identifier_get() |
| 1803 | { |
| 1804 | return 0x707C; |
| 1805 | } |
| 1806 | |
| 1807 | /** |
| 1808 | * Compare clustering protocol versions for compatibility. |
| 1809 | */ |
| 1810 | bool |
| 1811 | clustering_versions_are_compatible(as_cluster_proto_identifier v1, |
| 1812 | as_cluster_proto_identifier v2) |
| 1813 | { |
| 1814 | return v1 == v2; |
| 1815 | } |
| 1816 | |
| 1817 | /* |
| 1818 | * ---------------------------------------------------------------------------- |
| 1819 | * Timer event generator |
| 1820 | * |
| 1821 | * TODO: Can be abstracted out as a single scheduler single utility across |
| 1822 | * modules. |
| 1823 | * ---------------------------------------------------------------------------- |
| 1824 | */ |
| 1825 | |
| 1826 | static void |
| 1827 | timer_init() |
| 1828 | { |
| 1829 | CLUSTERING_LOCK(); |
| 1830 | memset(&g_timer, 0, sizeof(g_timer)); |
| 1831 | CLUSTERING_UNLOCK(); |
| 1832 | } |
| 1833 | |
| 1834 | /** |
| 1835 | * Clustering timer event generator thread, to help with retries and retransmits |
| 1836 | * across all states. |
| 1837 | */ |
| 1838 | static void* |
| 1839 | timer_thr(void* arg) |
| 1840 | { |
| 1841 | as_clustering_internal_event timer_event; |
| 1842 | memset(&timer_event, 0, sizeof(timer_event)); |
| 1843 | timer_event.type = AS_CLUSTERING_INTERNAL_EVENT_TIMER; |
| 1844 | |
| 1845 | while (clustering_is_running()) { |
| 1846 | // Wait for a while and retry. |
| 1847 | internal_event_dispatch(&timer_event); |
| 1848 | usleep(timer_tick_interval() * 1000); |
| 1849 | } |
| 1850 | |
| 1851 | return NULL; |
| 1852 | } |
| 1853 | |
| 1854 | /** |
| 1855 | * Start the timer. |
| 1856 | */ |
| 1857 | static void |
| 1858 | timer_start() |
| 1859 | { |
| 1860 | CLUSTERING_LOCK(); |
| 1861 | g_timer.timer_tid = cf_thread_create_joinable(timer_thr, NULL); |
| 1862 | CLUSTERING_UNLOCK(); |
| 1863 | } |
| 1864 | |
| 1865 | /** |
| 1866 | * Stop the timer. |
| 1867 | */ |
| 1868 | static void |
| 1869 | timer_stop() |
| 1870 | { |
| 1871 | CLUSTERING_LOCK(); |
| 1872 | cf_thread_join(g_timer.timer_tid); |
| 1873 | CLUSTERING_UNLOCK(); |
| 1874 | } |
| 1875 | |
| 1876 | /* |
| 1877 | * ---------------------------------------------------------------------------- |
| 1878 | * Heartbeat subsystem interfacing |
| 1879 | * ---------------------------------------------------------------------------- |
| 1880 | */ |
| 1881 | |
| 1882 | /* |
| 1883 | * The structure of data clustring subsystem pushes with in hb pulse messages |
| 1884 | * and retains as plugin data is as follows. |
| 1885 | * |
| 1886 | * Each row occupies 4 bytes. |
| 1887 | * |
| 1888 | * V5 heartbeat wire payload structure. |
| 1889 | * =============================== |
| 1890 | * |
| 1891 | * ------------|-------------|------------|------------| |
| 1892 | * | Clustering Protocol identifier | |
| 1893 | * |---------------------------------------------------| |
| 1894 | * | | |
| 1895 | * |-------- Cluster Key ------------------------------| |
| 1896 | * | | |
| 1897 | * |---------------------------------------------------| |
| 1898 | * | | |
| 1899 | * |-------- Paxos sequence number --------------------| |
| 1900 | * | | |
| 1901 | * |---------------------------------------------------| |
| 1902 | * | | |
| 1903 | * |-------- Preferred principal ----------------------| |
| 1904 | * | | |
| 1905 | * |---------------------------------------------------| |
| 1906 | * | Length of succession list | |
| 1907 | * |---------------------------------------------------| |
| 1908 | * | | |
| 1909 | * |-------- Succ. Node id 0 --------------------------| |
| 1910 | * | | |
| 1911 | * |---------------------------------------------------| |
| 1912 | * | | |
| 1913 | * |-------- Succ. Node id 1 --------------------------| |
| 1914 | * | | |
| 1915 | * |---------------------------------------------------| |
| 1916 | * | . | |
| 1917 | * | . | |
| 1918 | * |
| 1919 | * |
| 1920 | * Cluster key and succession lists helps with detecting cluster integrity, |
| 1921 | * Plain clusterkey should be good enough but matching succession lists adds to |
| 1922 | * another level of safety (may not be required but being cautious). |
| 1923 | * |
| 1924 | * For orpahned node cluster key and length of succession list are set to zero. |
| 1925 | * |
| 1926 | * The parsed hb pluging data is just the same as the wire payload structure. |
| 1927 | * The plugin code ensure invalid content will never be parsed as plugin data to |
| 1928 | * memory. The direct implication is that if plugin data is not NULL, |
| 1929 | * required fields |
| 1930 | * - Clustering protocol identifier |
| 1931 | * - Cluster key |
| 1932 | * - Succession list length will always be present when read back from the |
| 1933 | * heartbeat subsystem and the succession list will be consistent with the |
| 1934 | * succession list length. |
| 1935 | */ |
| 1936 | |
| 1937 | /** |
| 1938 | * Read plugin data from hb layer for a node, using stack allocated space. |
| 1939 | * Will attempt a max of 3 attempts before crashing. |
| 1940 | * plugin_data_p->data_size will be zero and plugin_data_p->data will be NULL if |
| 1941 | * an entry for the node does not exist. |
| 1942 | */ |
| 1943 | #define clustering_hb_plugin_data_get(nodeid, plugin_data_p, \ |
| 1944 | hb_msg_hlc_ts_p, msg_recv_ts_p) \ |
| 1945 | ({ \ |
| 1946 | (plugin_data_p)->data_capacity = 1024; \ |
| 1947 | int tries_remaining = 3; \ |
| 1948 | bool enoent = false; \ |
| 1949 | bool rv = -1; \ |
| 1950 | while (tries_remaining--) { \ |
| 1951 | (plugin_data_p)->data = alloca((plugin_data_p)->data_capacity); \ |
| 1952 | if (as_hb_plugin_data_get(nodeid, AS_HB_PLUGIN_CLUSTERING, \ |
| 1953 | plugin_data_p, hb_msg_hlc_ts_p, msg_recv_ts_p) == 0) { \ |
| 1954 | rv = 0; \ |
| 1955 | break; \ |
| 1956 | } \ |
| 1957 | if (errno == ENOENT) { \ |
| 1958 | enoent = true; \ |
| 1959 | break; \ |
| 1960 | } \ |
| 1961 | if (errno == ENOMEM) { \ |
| 1962 | (plugin_data_p)->data_capacity = (plugin_data_p)->data_size; \ |
| 1963 | } \ |
| 1964 | } \ |
| 1965 | if (rv != 0 && !enoent && tries_remaining < 0) { \ |
| 1966 | CRASH("error allocating space for paxos hb plugin data"); \ |
| 1967 | } \ |
| 1968 | if (enoent) { \ |
| 1969 | (plugin_data_p)->data_size = 0; \ |
| 1970 | (plugin_data_p)->data = NULL; \ |
| 1971 | } \ |
| 1972 | rv; \ |
| 1973 | }) |
| 1974 | |
| 1975 | /** |
| 1976 | * Get a pointer to the protocol identifier inside plugin data. Will be NULL if |
| 1977 | * plugin data is null or there are not enough bytes in the data to hold the |
| 1978 | * identifier. |
| 1979 | * @param plugin_data can be NULL. |
| 1980 | * @param plugin_data_size the size of plugin data. |
| 1981 | * @return pointer to the protocol identifier on success, NULL on failure. |
| 1982 | */ |
| 1983 | static as_cluster_proto_identifier* |
| 1984 | clustering_hb_plugin_proto_get(void* plugin_data, size_t plugin_data_size) |
| 1985 | { |
| 1986 | if (plugin_data == NULL |
| 1987 | || plugin_data_size < sizeof(as_cluster_proto_identifier)) { |
| 1988 | // The data does not hold valid data or there is no cluster key and or |
| 1989 | // succession list is missing. |
| 1990 | return NULL; |
| 1991 | } |
| 1992 | |
| 1993 | return (as_cluster_proto_identifier*)plugin_data; |
| 1994 | } |
| 1995 | |
| 1996 | /** |
| 1997 | * Retrieves the cluster key from clustering hb plugin data. |
| 1998 | * @param plugin_data can be NULL. |
| 1999 | * @param plugin_data_size the size of plugin data. |
| 2000 | * @return pointer to the cluster key on success, NULL on failure. |
| 2001 | */ |
| 2002 | static as_cluster_key* |
| 2003 | clustering_hb_plugin_cluster_key_get(void* plugin_data, size_t plugin_data_size) |
| 2004 | { |
| 2005 | uint8_t* proto = (uint8_t*)clustering_hb_plugin_proto_get(plugin_data, |
| 2006 | plugin_data_size); |
| 2007 | if (proto == NULL) { |
| 2008 | // The data does not hold valid data. |
| 2009 | return NULL; |
| 2010 | } |
| 2011 | |
| 2012 | if ((uint8_t*)plugin_data + plugin_data_size |
| 2013 | < proto + sizeof(as_cluster_proto_identifier) |
| 2014 | + sizeof(as_cluster_key)) { |
| 2015 | // Not enough bytes for cluster key. |
| 2016 | return NULL; |
| 2017 | } |
| 2018 | |
| 2019 | return (as_cluster_key*)(proto + sizeof(as_cluster_proto_identifier)); |
| 2020 | } |
| 2021 | |
| 2022 | /** |
| 2023 | * Retrieves the sequence number from clustering hb plugin data. |
| 2024 | * @param plugin_data can be NULL. |
| 2025 | * @param plugin_data_size the size of plugin data. |
| 2026 | * @return pointer to the sequence number on success, NULL on failure. |
| 2027 | */ |
| 2028 | static as_paxos_sequence_number* |
| 2029 | clustering_hb_plugin_sequence_number_get(void* plugin_data, |
| 2030 | size_t plugin_data_size) |
| 2031 | { |
| 2032 | uint8_t* cluster_key = (uint8_t*)clustering_hb_plugin_cluster_key_get( |
| 2033 | plugin_data, plugin_data_size); |
| 2034 | if (cluster_key == NULL) { |
| 2035 | // The data does not hold valid data or there is no cluster key. |
| 2036 | return NULL; |
| 2037 | } |
| 2038 | |
| 2039 | if ((uint8_t*)plugin_data + plugin_data_size |
| 2040 | < cluster_key + sizeof(as_cluster_key) |
| 2041 | + sizeof(as_paxos_sequence_number)) { |
| 2042 | // Not enough bytes for succession list length. |
| 2043 | return NULL; |
| 2044 | } |
| 2045 | |
| 2046 | return (as_paxos_sequence_number*)(cluster_key + sizeof(as_cluster_key)); |
| 2047 | } |
| 2048 | |
| 2049 | /** |
| 2050 | * Retrieves the preferred principal from clustering hb plugin data. |
| 2051 | * @param plugin_data can be NULL. |
| 2052 | * @param plugin_data_size the size of plugin data. |
| 2053 | * @return pointer to the preferred principal on success, NULL on failure. |
| 2054 | */ |
| 2055 | static cf_node* |
| 2056 | clustering_hb_plugin_preferred_principal_get(void* plugin_data, |
| 2057 | size_t plugin_data_size) |
| 2058 | { |
| 2059 | uint8_t* sequence_number_p = |
| 2060 | (uint8_t*)clustering_hb_plugin_sequence_number_get(plugin_data, |
| 2061 | plugin_data_size); |
| 2062 | if (sequence_number_p == NULL) { |
| 2063 | // The data does not hold valid data or there is no sequence number. |
| 2064 | return NULL; |
| 2065 | } |
| 2066 | |
| 2067 | if ((uint8_t*)plugin_data + plugin_data_size |
| 2068 | < sequence_number_p + sizeof(as_paxos_sequence_number) |
| 2069 | + sizeof(cf_node)) { |
| 2070 | // Not enough bytes for preferred principal. |
| 2071 | return NULL; |
| 2072 | } |
| 2073 | |
| 2074 | return (as_paxos_sequence_number*)(sequence_number_p |
| 2075 | + sizeof(as_paxos_sequence_number)); |
| 2076 | } |
| 2077 | |
| 2078 | /** |
| 2079 | * Retrieves the succession list length pointer from clustering hb plugin data. |
| 2080 | * @param plugin_data can be NULL. |
| 2081 | * @param plugin_data_size the size of plugin data. |
| 2082 | * @return pointer to succession list length on success, NULL on failure. |
| 2083 | */ |
| 2084 | static uint32_t* |
| 2085 | clustering_hb_plugin_succession_length_get(void* plugin_data, |
| 2086 | size_t plugin_data_size) |
| 2087 | { |
| 2088 | uint8_t* preferred_principal_p = |
| 2089 | (uint8_t*)clustering_hb_plugin_preferred_principal_get(plugin_data, |
| 2090 | plugin_data_size); |
| 2091 | if (preferred_principal_p == NULL) { |
| 2092 | // The data does not hold valid data or there is no preferred principal |
| 2093 | // and or succession list is missing. |
| 2094 | return NULL; |
| 2095 | } |
| 2096 | |
| 2097 | if ((uint8_t*)plugin_data + plugin_data_size |
| 2098 | < preferred_principal_p + sizeof(cf_node) + sizeof(uint32_t)) { |
| 2099 | // Not enough bytes for succession list length. |
| 2100 | return NULL; |
| 2101 | } |
| 2102 | |
| 2103 | return (uint32_t*)(preferred_principal_p + sizeof(cf_node)); |
| 2104 | } |
| 2105 | |
| 2106 | /** |
| 2107 | * Retrieves the pointer to the first node in the succession list. |
| 2108 | * @param plugin_data can be NULL. |
| 2109 | * @param plugin_data_size the size of plugin data. |
| 2110 | * @return pointer to first node in succession list on success, NULL on failure |
| 2111 | * or if the succession list is empty. |
| 2112 | */ |
| 2113 | static cf_node* |
| 2114 | clustering_hb_plugin_succession_get(void* plugin_data, size_t plugin_data_size) |
| 2115 | { |
| 2116 | uint8_t* succession_list_length_p = |
| 2117 | (uint8_t*)clustering_hb_plugin_succession_length_get(plugin_data, |
| 2118 | plugin_data_size); |
| 2119 | if (succession_list_length_p == NULL) { |
| 2120 | // The data does not hold valid data or there is no cluster key and or |
| 2121 | // succession list is missing. |
| 2122 | return NULL; |
| 2123 | } |
| 2124 | |
| 2125 | if (*(uint32_t*)succession_list_length_p == 0) { |
| 2126 | // Empty succession list. |
| 2127 | return NULL; |
| 2128 | } |
| 2129 | |
| 2130 | if ((uint8_t*)plugin_data + plugin_data_size |
| 2131 | < succession_list_length_p + sizeof(uint32_t) |
| 2132 | + (sizeof(cf_node) * (*(uint32_t*)succession_list_length_p))) { |
| 2133 | // Not enough bytes for succession list length. |
| 2134 | return NULL; |
| 2135 | } |
| 2136 | |
| 2137 | return (cf_node*)(succession_list_length_p + sizeof(uint32_t)); |
| 2138 | } |
| 2139 | |
| 2140 | /** |
| 2141 | * Validate the correctness of plugin data. By ensuring all required fields are |
| 2142 | * present and the succession list matches the provided length. |
| 2143 | * @param plugin_data can be NULL. |
| 2144 | * @param plugin_data_size the size of plugin data. |
| 2145 | * @return pointer to first node in succession list on success, NULL on failure. |
| 2146 | */ |
| 2147 | static bool |
| 2148 | clustering_hb_plugin_data_is_valid(void* plugin_data, size_t plugin_data_size) |
| 2149 | { |
| 2150 | void* proto_identifier_p = clustering_hb_plugin_proto_get(plugin_data, |
| 2151 | plugin_data_size); |
| 2152 | if (proto_identifier_p == NULL) { |
| 2153 | DEBUG("plugin data missing protocol identifier" ); |
| 2154 | return false; |
| 2155 | } |
| 2156 | |
| 2157 | as_cluster_proto_identifier current_proto_identifier = |
| 2158 | clustering_protocol_identifier_get(); |
| 2159 | if (!clustering_versions_are_compatible(current_proto_identifier, |
| 2160 | *(as_cluster_proto_identifier*)proto_identifier_p)) { |
| 2161 | DEBUG("protocol versions incompatible - expected %" PRIx32" but was: %" PRIx32, |
| 2162 | current_proto_identifier, |
| 2163 | *(as_cluster_proto_identifier*)proto_identifier_p); |
| 2164 | return false; |
| 2165 | } |
| 2166 | |
| 2167 | void* cluster_key_p = clustering_hb_plugin_cluster_key_get(plugin_data, |
| 2168 | plugin_data_size); |
| 2169 | if (cluster_key_p == NULL) { |
| 2170 | DEBUG("plugin data missing cluster key" ); |
| 2171 | return false; |
| 2172 | } |
| 2173 | |
| 2174 | void* sequence_number_p = clustering_hb_plugin_sequence_number_get( |
| 2175 | plugin_data, plugin_data_size); |
| 2176 | if (sequence_number_p == NULL) { |
| 2177 | DEBUG("plugin data missing sequence number" ); |
| 2178 | return false; |
| 2179 | } |
| 2180 | |
| 2181 | void* preferred_principal_p = clustering_hb_plugin_preferred_principal_get( |
| 2182 | plugin_data, plugin_data_size); |
| 2183 | if (preferred_principal_p == NULL) { |
| 2184 | DEBUG("plugin data missing preferred principal" ); |
| 2185 | return false; |
| 2186 | } |
| 2187 | |
| 2188 | uint32_t* succession_list_length_p = |
| 2189 | (void*)clustering_hb_plugin_succession_length_get(plugin_data, |
| 2190 | plugin_data_size); |
| 2191 | if (succession_list_length_p == NULL) { |
| 2192 | DEBUG("plugin data missing succession list length" ); |
| 2193 | return false; |
| 2194 | } |
| 2195 | |
| 2196 | void* succession_list_p = clustering_hb_plugin_succession_get(plugin_data, |
| 2197 | plugin_data_size); |
| 2198 | |
| 2199 | if (*succession_list_length_p > 0 && succession_list_p == NULL) { |
| 2200 | DEBUG("succession list length %d, but succession list is empty" , |
| 2201 | *succession_list_length_p); |
| 2202 | return false; |
| 2203 | } |
| 2204 | |
| 2205 | return true; |
| 2206 | } |
| 2207 | |
| 2208 | /** |
| 2209 | * Determines if the plugin data with hb subsystem is old to be ignored. |
| 2210 | * ALL access to plugin data should be vetted through this function. The plugin |
| 2211 | * data is obsolete if it was send before the current cluster state or has a |
| 2212 | * version mismatch. |
| 2213 | * |
| 2214 | * This is detemined by comparing the plugin data hb message hlc timestamp and |
| 2215 | * monotonic timestamps with the cluster formation hlc and monotonic times. |
| 2216 | * |
| 2217 | * @param cluster_modified_hlc_ts the hlc timestamp when current cluster change |
| 2218 | * happened. Sent to avoid locking in this function. |
| 2219 | * @param cluster_modified_time the monotonic timestamp when current cluster |
| 2220 | * change happened. Sento to avoid locking in this function. |
| 2221 | * @param plugin_data the plugin data. |
| 2222 | * @param plugin_data_size the size of plugin data. |
| 2223 | * @param msg_recv_ts the monotonic timestamp for plugin data receive. |
| 2224 | * @param hb_msg_hlc_ts the hlc timestamp for plugin data receive. |
| 2225 | * @return true if plugin data is obsolete, false otherwise. |
| 2226 | */ |
| 2227 | static bool |
| 2228 | clustering_hb_plugin_data_is_obsolete(as_hlc_timestamp cluster_modified_hlc_ts, |
| 2229 | cf_clock cluster_modified_time, void* plugin_data, |
| 2230 | size_t plugin_data_size, cf_clock msg_recv_ts, |
| 2231 | as_hlc_msg_timestamp* hb_msg_hlc_ts) |
| 2232 | { |
| 2233 | if (!clustering_hb_plugin_data_is_valid(plugin_data, plugin_data_size)) { |
| 2234 | // Plugin data is invalid. Assume it to be obsolete. |
| 2235 | // Seems like a redundant check but required in case clustering protocol |
| 2236 | // was switched to an incompatible version. |
| 2237 | return true; |
| 2238 | } |
| 2239 | |
| 2240 | if (as_hlc_send_timestamp_order(cluster_modified_hlc_ts, hb_msg_hlc_ts) |
| 2241 | != AS_HLC_HAPPENS_BEFORE) { |
| 2242 | // Cluster formation time after message send or the order is unknown, |
| 2243 | // assume cluster formation is after message send. the caller should |
| 2244 | // ignore this message. |
| 2245 | return true; |
| 2246 | } |
| 2247 | |
| 2248 | // HB data should be atleast after cluster formation time + one hb interval |
| 2249 | // to send out our cluster state + one network delay for our information to |
| 2250 | // reach the remote node + one hb interval for the other node to send out |
| 2251 | // the his updated state + one network delay for the updated state to reach |
| 2252 | // us. |
| 2253 | if (cluster_modified_time + 2 * as_hb_tx_interval_get() |
| 2254 | + 2 * g_config.fabric_latency_max_ms > msg_recv_ts) { |
| 2255 | return true; |
| 2256 | } |
| 2257 | |
| 2258 | return false; |
| 2259 | } |
| 2260 | |
| 2261 | /** |
| 2262 | * Indicates if the plugin data for a node indicates that it is an orphan node. |
| 2263 | */ |
| 2264 | static as_clustering_peer_node_state |
| 2265 | clustering_hb_plugin_data_node_status(void* plugin_data, |
| 2266 | size_t plugin_data_size) |
| 2267 | { |
| 2268 | if (!clustering_hb_plugin_data_is_valid(plugin_data, plugin_data_size)) { |
| 2269 | // Either we have not hb channel to this node or it has sen invalid |
| 2270 | // plugin data. Assuming the cluster state is unknown. |
| 2271 | return AS_NODE_UNKNOWN; |
| 2272 | } |
| 2273 | |
| 2274 | as_cluster_key* cluster_key = clustering_hb_plugin_cluster_key_get( |
| 2275 | plugin_data, plugin_data_size); |
| 2276 | |
| 2277 | if (*cluster_key == 0) { |
| 2278 | return AS_NODE_ORPHAN; |
| 2279 | } |
| 2280 | |
| 2281 | // Redundant paranoid check. |
| 2282 | uint32_t* succession_list_length_p = |
| 2283 | clustering_hb_plugin_succession_length_get(plugin_data, |
| 2284 | plugin_data_size); |
| 2285 | |
| 2286 | if (*succession_list_length_p == 0) { |
| 2287 | return AS_NODE_ORPHAN; |
| 2288 | } |
| 2289 | |
| 2290 | return AS_NODE_CLUSTER_ASSIGNED; |
| 2291 | } |
| 2292 | |
| 2293 | /** |
| 2294 | * Push clustering payload into a heartbeat pulse message. The payload format is |
| 2295 | * as described above. |
| 2296 | */ |
| 2297 | static void |
| 2298 | clustering_hb_plugin_set_fn(msg* msg) |
| 2299 | { |
| 2300 | if (!clustering_is_initialized()) { |
| 2301 | // Clustering not initialized. Send no data at all. |
| 2302 | return; |
| 2303 | } |
| 2304 | |
| 2305 | CLUSTERING_LOCK(); |
| 2306 | |
| 2307 | uint32_t cluster_size = cf_vector_size(&g_register.succession_list); |
| 2308 | |
| 2309 | size_t payload_size = |
| 2310 | // For the paxos version identifier |
| 2311 | sizeof(uint32_t) |
| 2312 | // For cluster key |
| 2313 | + sizeof(as_cluster_key) |
| 2314 | // For sequence number |
| 2315 | + sizeof(as_paxos_sequence_number) |
| 2316 | // For preferred principal |
| 2317 | + sizeof(cf_node) |
| 2318 | // For succession list length. |
| 2319 | + sizeof(uint32_t) |
| 2320 | // For succession list. |
| 2321 | + (sizeof(cf_node) * cluster_size); |
| 2322 | |
| 2323 | uint8_t* payload = alloca(payload_size); |
| 2324 | |
| 2325 | uint8_t* current_field_p = payload; |
| 2326 | |
| 2327 | // Set the paxos protocol identifier. |
| 2328 | uint32_t protocol = clustering_protocol_identifier_get(); |
| 2329 | memcpy(current_field_p, &protocol, sizeof(protocol)); |
| 2330 | current_field_p += sizeof(protocol); |
| 2331 | |
| 2332 | // Set cluster key. |
| 2333 | memcpy(current_field_p, &g_register.cluster_key, |
| 2334 | sizeof(g_register.cluster_key)); |
| 2335 | current_field_p += sizeof(g_register.cluster_key); |
| 2336 | |
| 2337 | // Set the sequence number. |
| 2338 | memcpy(current_field_p, &g_register.sequence_number, |
| 2339 | sizeof(g_register.sequence_number)); |
| 2340 | current_field_p += sizeof(g_register.sequence_number); |
| 2341 | |
| 2342 | // Set the preferred principal. |
| 2343 | memcpy(current_field_p, &g_clustering.preferred_principal, |
| 2344 | sizeof(g_clustering.preferred_principal)); |
| 2345 | current_field_p += sizeof(g_clustering.preferred_principal); |
| 2346 | |
| 2347 | // Set succession length |
| 2348 | memcpy(current_field_p, &cluster_size, sizeof(cluster_size)); |
| 2349 | current_field_p += sizeof(cluster_size); |
| 2350 | |
| 2351 | // Copy over the succession list. |
| 2352 | cf_node* succession = (cf_node*)(current_field_p); |
| 2353 | for (int i = 0; i < cluster_size; i++) { |
| 2354 | cf_vector_get(&g_register.succession_list, i, &succession[i]); |
| 2355 | } |
| 2356 | |
| 2357 | msg_set_buf(msg, AS_HB_MSG_PAXOS_DATA, payload, payload_size, MSG_SET_COPY); |
| 2358 | |
| 2359 | CLUSTERING_UNLOCK(); |
| 2360 | } |
| 2361 | |
| 2362 | /** |
| 2363 | * Plugin parse function that copies the msg payload verbatim to a plugin data. |
| 2364 | */ |
| 2365 | static void |
| 2366 | clustering_hb_plugin_parse_data_fn(msg* msg, cf_node source, |
| 2367 | as_hb_plugin_node_data* prev_plugin_data, |
| 2368 | as_hb_plugin_node_data* plugin_data) |
| 2369 | { |
| 2370 | // Lockless check to prevent deadlocks. |
| 2371 | if (g_clustering.sys_state == AS_CLUSTERING_SYS_STATE_UNINITIALIZED) { |
| 2372 | // Ignore this heartbeat. |
| 2373 | plugin_data->data_size = 0; |
| 2374 | return; |
| 2375 | } |
| 2376 | |
| 2377 | void* payload; |
| 2378 | size_t payload_size; |
| 2379 | |
| 2380 | if (msg_get_buf(msg, AS_HB_MSG_PAXOS_DATA, (uint8_t**)&payload, |
| 2381 | &payload_size, MSG_GET_DIRECT) != 0) { |
| 2382 | cf_ticker_warning(AS_CLUSTERING, |
| 2383 | "received empty clustering payload in heartbeat pulse from node %" PRIx64, |
| 2384 | source); |
| 2385 | plugin_data->data_size = 0; |
| 2386 | return; |
| 2387 | } |
| 2388 | |
| 2389 | // Validate and retain only valid plugin data. |
| 2390 | if (!clustering_hb_plugin_data_is_valid(payload, payload_size)) { |
| 2391 | cf_ticker_warning(AS_CLUSTERING, |
| 2392 | "received invalid clustering payload in heartbeat pulse from node %" PRIx64, |
| 2393 | source); |
| 2394 | plugin_data->data_size = 0; |
| 2395 | return; |
| 2396 | } |
| 2397 | |
| 2398 | if (payload_size > plugin_data->data_capacity) { |
| 2399 | // Round up to nearest multiple of block size to prevent very frequent |
| 2400 | // reallocation. |
| 2401 | size_t data_capacity = ((payload_size + HB_PLUGIN_DATA_BLOCK_SIZE - 1) |
| 2402 | / HB_PLUGIN_DATA_BLOCK_SIZE) * HB_PLUGIN_DATA_BLOCK_SIZE; |
| 2403 | |
| 2404 | // Reallocate since we have outgrown existing capacity. |
| 2405 | plugin_data->data = cf_realloc(plugin_data->data, data_capacity); |
| 2406 | plugin_data->data_capacity = data_capacity; |
| 2407 | } |
| 2408 | |
| 2409 | plugin_data->data_size = payload_size; |
| 2410 | memcpy(plugin_data->data, payload, payload_size); |
| 2411 | } |
| 2412 | |
| 2413 | /** |
| 2414 | * Check if the input succession list from hb plugin data matches, with a |
| 2415 | * succession list vector. |
| 2416 | * @param succession_list the first succession list. |
| 2417 | * @param succession_list_length the length of the succession list. |
| 2418 | * @param succession_list_vector the second succession list as a vector. Should |
| 2419 | * be protected from multithreaded access while this function is running. |
| 2420 | * @return true if the succcession lists are equal, false otherwise. |
| 2421 | */ |
| 2422 | bool |
| 2423 | clustering_hb_succession_list_matches(cf_node* succession_list, |
| 2424 | uint32_t succession_list_length, cf_vector* succession_list_vector) |
| 2425 | { |
| 2426 | if (succession_list_length != cf_vector_size(succession_list_vector)) { |
| 2427 | return false; |
| 2428 | } |
| 2429 | |
| 2430 | for (uint32_t i = 0; i < succession_list_length; i++) { |
| 2431 | cf_node* vector_element = cf_vector_getp(succession_list_vector, i); |
| 2432 | if (vector_element == NULL || *vector_element != succession_list[i]) { |
| 2433 | return false; |
| 2434 | } |
| 2435 | } |
| 2436 | return true; |
| 2437 | } |
| 2438 | |
| 2439 | /* |
| 2440 | * ---------------------------------------------------------------------------- |
| 2441 | * Quantum interval generator |
| 2442 | * ---------------------------------------------------------------------------- |
| 2443 | */ |
| 2444 | |
| 2445 | /** |
| 2446 | * Time taken for the effect of a fault to get propogated via HB. |
| 2447 | */ |
| 2448 | static uint32_t |
| 2449 | quantum_interval_hb_fault_comm_delay() |
| 2450 | { |
| 2451 | return as_hb_tx_interval_get() + network_latency_max(); |
| 2452 | } |
| 2453 | |
| 2454 | /** |
| 2455 | * Quantum wait time after node arrived event. |
| 2456 | */ |
| 2457 | static uint32_t |
| 2458 | quantum_interval_node_arrived_wait_time(as_clustering_quantum_fault* fault) |
| 2459 | { |
| 2460 | return MIN(quantum_interval(), |
| 2461 | (fault->last_event_ts - fault->event_ts) / 2 |
| 2462 | + 2 * quantum_interval_hb_fault_comm_delay() |
| 2463 | + quantum_interval() / 2); |
| 2464 | } |
| 2465 | |
| 2466 | /** |
| 2467 | * Quantum wait time after node departs. |
| 2468 | */ |
| 2469 | static uint32_t |
| 2470 | quantum_interval_node_departed_wait_time(as_clustering_quantum_fault* fault) |
| 2471 | { |
| 2472 | return MIN(quantum_interval(), |
| 2473 | as_hb_node_timeout_get() |
| 2474 | + 2 * quantum_interval_hb_fault_comm_delay() |
| 2475 | + quantum_interval() / 4); |
| 2476 | } |
| 2477 | |
| 2478 | /** |
| 2479 | * Quantum wait time after a peer nodes adjacency changed. |
| 2480 | */ |
| 2481 | static uint32_t |
| 2482 | quantum_interval_peer_adjacency_changed_wait_time( |
| 2483 | as_clustering_quantum_fault* fault) |
| 2484 | { |
| 2485 | return MIN(quantum_interval(), quantum_interval_hb_fault_comm_delay()); |
| 2486 | } |
| 2487 | |
| 2488 | /** |
| 2489 | * Quantum wait time after accepting a join request. |
| 2490 | */ |
| 2491 | static uint32_t |
| 2492 | quantum_interval_join_accepted_wait_time(as_clustering_quantum_fault* fault) |
| 2493 | { |
| 2494 | // Ensure we wait for atleast one heartbeat interval to receive the latest |
| 2495 | // heartbeat after the last join request and for other nodes to send their |
| 2496 | // join requests as well. |
| 2497 | return MIN(quantum_interval(), |
| 2498 | (fault->last_event_ts - fault->event_ts) |
| 2499 | + join_cluster_check_interval() + network_latency_max() |
| 2500 | + as_hb_tx_interval_get()); |
| 2501 | } |
| 2502 | |
| 2503 | /** |
| 2504 | * Quantum wait time after principal node departs. |
| 2505 | */ |
| 2506 | static uint32_t |
| 2507 | quantum_interval_principal_departed_wait_time( |
| 2508 | as_clustering_quantum_fault* fault) |
| 2509 | { |
| 2510 | // Anticipate an incoming join request from other orphaned cluster members. |
| 2511 | return MIN(quantum_interval(), |
| 2512 | as_hb_node_timeout_get() |
| 2513 | + 2 * quantum_interval_hb_fault_comm_delay() |
| 2514 | + MAX(quantum_interval() / 4, |
| 2515 | quantum_interval_join_accepted_wait_time(fault))); |
| 2516 | } |
| 2517 | |
| 2518 | /** |
| 2519 | * Quantum wait time after seeing a cluster that might send us a join request. |
| 2520 | */ |
| 2521 | static uint32_t |
| 2522 | quantum_interval_inbound_merge_candidate_wait_time( |
| 2523 | as_clustering_quantum_fault* fault) |
| 2524 | { |
| 2525 | return quantum_interval(); |
| 2526 | } |
| 2527 | |
| 2528 | /** |
| 2529 | * Quantum wait time after a cluster member has been orphaned. |
| 2530 | */ |
| 2531 | static uint32_t |
| 2532 | quantum_interval_member_orphaned_wait_time(as_clustering_quantum_fault* fault) |
| 2533 | { |
| 2534 | return quantum_interval(); |
| 2535 | } |
| 2536 | |
| 2537 | /** |
| 2538 | * Marks the current quantum interval as skipped. A kludge to allow quantum to |
| 2539 | * allow quantum interval generator to mark quantum intervals as postponed. |
| 2540 | */ |
| 2541 | static void |
| 2542 | quantum_interval_mark_postponed() |
| 2543 | { |
| 2544 | CLUSTERING_LOCK(); |
| 2545 | g_quantum_interval_generator.is_interval_postponed = true; |
| 2546 | CLUSTERING_UNLOCK(); |
| 2547 | } |
| 2548 | |
| 2549 | /** |
| 2550 | * Update the vtable for a fault. |
| 2551 | */ |
| 2552 | static void |
| 2553 | quantum_interval_vtable_update(as_clustering_quantum_fault_type type, |
| 2554 | char *fault_log_str, as_clustering_quantum_fault_wait_fn wait_fn) |
| 2555 | { |
| 2556 | CLUSTERING_LOCK(); |
| 2557 | g_quantum_interval_generator.vtable[type].fault_log_str = fault_log_str; |
| 2558 | g_quantum_interval_generator.vtable[type].wait_fn = wait_fn; |
| 2559 | CLUSTERING_UNLOCK(); |
| 2560 | } |
| 2561 | |
| 2562 | /** |
| 2563 | * Initialize quantum interval generator. |
| 2564 | */ |
| 2565 | static void |
| 2566 | quantum_interval_generator_init() |
| 2567 | { |
| 2568 | CLUSTERING_LOCK(); |
| 2569 | memset(&g_quantum_interval_generator, 0, |
| 2570 | sizeof(g_quantum_interval_generator)); |
| 2571 | g_quantum_interval_generator.last_quantum_start_time = cf_getms(); |
| 2572 | g_quantum_interval_generator.last_quantum_interval = quantum_interval(); |
| 2573 | |
| 2574 | // Initialize the vtable. |
| 2575 | quantum_interval_vtable_update(QUANTUM_FAULT_NODE_ARRIVED, "node arrived" , |
| 2576 | quantum_interval_node_arrived_wait_time); |
| 2577 | quantum_interval_vtable_update(QUANTUM_FAULT_NODE_DEPARTED, "node departed" , |
| 2578 | quantum_interval_node_departed_wait_time); |
| 2579 | quantum_interval_vtable_update(QUANTUM_FAULT_PRINCIPAL_DEPARTED, |
| 2580 | "principal departed" , |
| 2581 | quantum_interval_principal_departed_wait_time); |
| 2582 | quantum_interval_vtable_update(QUANTUM_FAULT_PEER_ADJACENCY_CHANGED, |
| 2583 | "peer adjacency changed" , |
| 2584 | quantum_interval_peer_adjacency_changed_wait_time); |
| 2585 | quantum_interval_vtable_update(QUANTUM_FAULT_JOIN_ACCEPTED, |
| 2586 | "join request accepted" , quantum_interval_join_accepted_wait_time); |
| 2587 | quantum_interval_vtable_update(QUANTUM_FAULT_INBOUND_MERGE_CANDIDATE_SEEN, |
| 2588 | "merge candidate seen" , |
| 2589 | quantum_interval_inbound_merge_candidate_wait_time); |
| 2590 | quantum_interval_vtable_update(QUANTUM_FAULT_CLUSTER_MEMBER_ORPHANED, |
| 2591 | "member orphaned" , quantum_interval_member_orphaned_wait_time); |
| 2592 | |
| 2593 | CLUSTERING_UNLOCK(); |
| 2594 | } |
| 2595 | |
| 2596 | /** |
| 2597 | * Get the earliest possible monotonic clock time the next quantum interval can |
| 2598 | * start. |
| 2599 | * |
| 2600 | * Start quantum interval after the last update to any one of adjacency, |
| 2601 | * pending_join_requests , neighboring_principals. The heuristic is that these |
| 2602 | * should be stable to initiate cluster merge / join or cluster formation |
| 2603 | * requests. |
| 2604 | */ |
| 2605 | static cf_clock |
| 2606 | quantum_interval_earliest_start_time() |
| 2607 | { |
| 2608 | CLUSTERING_LOCK(); |
| 2609 | cf_clock fault_event_time = 0; |
| 2610 | for (int i = 0; i < QUANTUM_FAULT_TYPE_SENTINEL; i++) { |
| 2611 | if (g_quantum_interval_generator.fault[i].event_ts) { |
| 2612 | fault_event_time = MAX(fault_event_time, |
| 2613 | g_quantum_interval_generator.fault[i].event_ts |
| 2614 | + g_quantum_interval_generator.vtable[i].wait_fn( |
| 2615 | &g_quantum_interval_generator.fault[i])); |
| 2616 | } |
| 2617 | |
| 2618 | DETAIL("Fault:%s event_ts:%" PRIu64, |
| 2619 | g_quantum_interval_generator.vtable[i].fault_log_str, |
| 2620 | g_quantum_interval_generator.fault[i].event_ts); |
| 2621 | } |
| 2622 | |
| 2623 | DETAIL("Last Quantum interval:%" PRIu64, |
| 2624 | g_quantum_interval_generator.last_quantum_start_time); |
| 2625 | |
| 2626 | cf_clock start_time = g_quantum_interval_generator.last_quantum_start_time |
| 2627 | + quantum_interval(); |
| 2628 | if (fault_event_time) { |
| 2629 | // Ensure we have at least 1/2 quantum interval of separation between |
| 2630 | // quantum intervals to give chance to multiple fault events that are |
| 2631 | // resonably close in time. |
| 2632 | start_time = MAX( |
| 2633 | g_quantum_interval_generator.last_quantum_start_time |
| 2634 | + quantum_interval() / 2, fault_event_time); |
| 2635 | } |
| 2636 | CLUSTERING_UNLOCK(); |
| 2637 | |
| 2638 | return start_time; |
| 2639 | } |
| 2640 | |
| 2641 | /** |
| 2642 | * Reset quantum interval fault. |
| 2643 | * @param fault_type the fault type. |
| 2644 | */ |
| 2645 | static void |
| 2646 | quantum_interval_fault_reset(as_clustering_quantum_fault_type fault_type) |
| 2647 | { |
| 2648 | CLUSTERING_LOCK(); |
| 2649 | memset(&g_quantum_interval_generator.fault[fault_type], 0, |
| 2650 | sizeof(g_quantum_interval_generator.fault[fault_type])); |
| 2651 | CLUSTERING_UNLOCK(); |
| 2652 | } |
| 2653 | |
| 2654 | /** |
| 2655 | * Update a fault event based on the current fault ts. |
| 2656 | * @param fault the fault to update. |
| 2657 | * @param fault_ts the new fault timestamp |
| 2658 | * @param src_nodeid the fault causing nodeid, 0 if the nodeid is not known. |
| 2659 | */ |
| 2660 | static void |
| 2661 | quantum_interval_fault_update(as_clustering_quantum_fault_type fault_type, |
| 2662 | cf_clock fault_ts, cf_node src_nodeid) |
| 2663 | { |
| 2664 | CLUSTERING_LOCK(); |
| 2665 | as_clustering_quantum_fault* fault = |
| 2666 | &g_quantum_interval_generator.fault[fault_type]; |
| 2667 | if (fault->event_ts == 0 |
| 2668 | || fault_ts - fault->event_ts > quantum_interval() / 2) { |
| 2669 | // Fault event detected first time in this quantum or we are seeing the |
| 2670 | // effect of a different event more than half quantum apart. |
| 2671 | fault->event_ts = fault_ts; |
| 2672 | DETAIL("updated '%s' fault with ts %" PRIu64" for node %" PRIx64, |
| 2673 | g_quantum_interval_generator.vtable[fault_type].fault_log_str, fault_ts, src_nodeid); |
| 2674 | } |
| 2675 | |
| 2676 | fault->last_event_ts = fault_ts; |
| 2677 | CLUSTERING_UNLOCK(); |
| 2678 | } |
| 2679 | |
| 2680 | /** |
| 2681 | * Reset the state for the next quantum interval. |
| 2682 | */ |
| 2683 | static void |
| 2684 | quantum_interval_generator_reset(cf_clock last_quantum_start_time) |
| 2685 | { |
| 2686 | CLUSTERING_LOCK(); |
| 2687 | if (!g_quantum_interval_generator.is_interval_postponed) { |
| 2688 | // Update last quantum interval. |
| 2689 | g_quantum_interval_generator.last_quantum_interval = MAX(0, |
| 2690 | last_quantum_start_time |
| 2691 | - g_quantum_interval_generator.last_quantum_start_time); |
| 2692 | |
| 2693 | g_quantum_interval_generator.last_quantum_start_time = |
| 2694 | last_quantum_start_time; |
| 2695 | for (int i = 0; i < QUANTUM_FAULT_TYPE_SENTINEL; i++) { |
| 2696 | quantum_interval_fault_reset(i); |
| 2697 | } |
| 2698 | } |
| 2699 | g_quantum_interval_generator.is_interval_postponed = false; |
| 2700 | |
| 2701 | CLUSTERING_UNLOCK(); |
| 2702 | } |
| 2703 | |
| 2704 | /** |
| 2705 | * Handle timer event and generate a quantum internal event if required. |
| 2706 | */ |
| 2707 | static void |
| 2708 | quantum_interval_generator_timer_event_handle( |
| 2709 | as_clustering_internal_event* timer_event) |
| 2710 | { |
| 2711 | CLUSTERING_LOCK(); |
| 2712 | cf_clock now = cf_getms(); |
| 2713 | |
| 2714 | cf_clock earliest_quantum_start_time = |
| 2715 | quantum_interval_earliest_start_time(); |
| 2716 | |
| 2717 | cf_clock expected_quantum_start_time = |
| 2718 | g_quantum_interval_generator.last_quantum_start_time |
| 2719 | + g_quantum_interval_generator.last_quantum_interval; |
| 2720 | |
| 2721 | // Provide a buffer for current quantum interval to finish gracefully as |
| 2722 | // long as it is less than half a quantum interval. |
| 2723 | cf_clock quantum_wait_buffer = MIN( |
| 2724 | earliest_quantum_start_time > expected_quantum_start_time ? |
| 2725 | earliest_quantum_start_time - expected_quantum_start_time : |
| 2726 | 0, g_quantum_interval_generator.last_quantum_interval / 2); |
| 2727 | |
| 2728 | // Fire quantum interval start event if it is time, or if we have skipped |
| 2729 | // quantum interval start for more that the max skip number of intervals. |
| 2730 | // Add a buffer of wait time to ensure we wait a bit more if we can cover |
| 2731 | // the waiting time. |
| 2732 | bool is_skippable = g_quantum_interval_generator.last_quantum_start_time |
| 2733 | + (quantum_interval_skip_max() + 1) |
| 2734 | * g_quantum_interval_generator.last_quantum_interval |
| 2735 | + quantum_wait_buffer > now; |
| 2736 | bool fire_quantum_event = earliest_quantum_start_time <= now |
| 2737 | || !is_skippable; |
| 2738 | CLUSTERING_UNLOCK(); |
| 2739 | |
| 2740 | if (fire_quantum_event) { |
| 2741 | as_clustering_internal_event timer_event; |
| 2742 | memset(&timer_event, 0, sizeof(timer_event)); |
| 2743 | timer_event.type = AS_CLUSTERING_INTERNAL_EVENT_QUANTUM_INTERVAL_START; |
| 2744 | timer_event.quantum_interval_is_skippable = is_skippable; |
| 2745 | internal_event_dispatch(&timer_event); |
| 2746 | |
| 2747 | // Reset for next interval generation. |
| 2748 | quantum_interval_generator_reset(now); |
| 2749 | } |
| 2750 | } |
| 2751 | |
| 2752 | /** |
| 2753 | * Check if the interval generator has seen an adjacency fault in the current |
| 2754 | * quantum interval. |
| 2755 | * @return true if the quantum interval generator has seen an adjacency fault, |
| 2756 | * false otherwise. |
| 2757 | */ |
| 2758 | static bool |
| 2759 | quantum_interval_is_adjacency_fault_seen() |
| 2760 | { |
| 2761 | CLUSTERING_LOCK(); |
| 2762 | bool is_fault_seen = |
| 2763 | g_quantum_interval_generator.fault[QUANTUM_FAULT_NODE_ARRIVED].event_ts |
| 2764 | || g_quantum_interval_generator.fault[QUANTUM_FAULT_NODE_DEPARTED].event_ts |
| 2765 | || g_quantum_interval_generator.fault[QUANTUM_FAULT_PRINCIPAL_DEPARTED].event_ts; |
| 2766 | CLUSTERING_UNLOCK(); |
| 2767 | return is_fault_seen; |
| 2768 | } |
| 2769 | |
| 2770 | /** |
| 2771 | * Check if the interval generator has seen a peer node adjacency changed fault |
| 2772 | * in current quantum interval. |
| 2773 | * @return true if the quantum interval generator has seen a peer node adjacency |
| 2774 | * changed fault, |
| 2775 | * false otherwise. |
| 2776 | */ |
| 2777 | static bool |
| 2778 | quantum_interval_is_peer_adjacency_fault_seen() |
| 2779 | { |
| 2780 | CLUSTERING_LOCK(); |
| 2781 | bool is_fault_seen = |
| 2782 | g_quantum_interval_generator.fault[QUANTUM_FAULT_PEER_ADJACENCY_CHANGED].event_ts; |
| 2783 | CLUSTERING_UNLOCK(); |
| 2784 | return is_fault_seen; |
| 2785 | } |
| 2786 | |
| 2787 | /** |
| 2788 | * Update the fault time for this quantum on self heartbeat adjacency list |
| 2789 | * change. |
| 2790 | */ |
| 2791 | static void |
| 2792 | quantum_interval_generator_hb_event_handle( |
| 2793 | as_clustering_internal_event* hb_event) |
| 2794 | { |
| 2795 | CLUSTERING_LOCK(); |
| 2796 | |
| 2797 | cf_clock min_event_time[AS_HB_NODE_EVENT_SENTINEL]; |
| 2798 | cf_clock min_event_node[AS_HB_NODE_EVENT_SENTINEL]; |
| 2799 | |
| 2800 | memset(min_event_time, 0, sizeof(min_event_time)); |
| 2801 | memset(min_event_node, 0, sizeof(min_event_node)); |
| 2802 | |
| 2803 | as_hb_event_node* events = hb_event->hb_events; |
| 2804 | for (int i = 0; i < hb_event->hb_n_events; i++) { |
| 2805 | if (min_event_time[events[i].evt] == 0 |
| 2806 | || min_event_time[events[i].evt] > events[i].event_time) { |
| 2807 | min_event_time[events[i].evt] = events[i].event_time; |
| 2808 | min_event_node[events[i].evt] = events[i].nodeid; |
| 2809 | } |
| 2810 | |
| 2811 | if (events[i].evt == AS_HB_NODE_DEPART |
| 2812 | && clustering_is_our_principal(events[i].nodeid)) { |
| 2813 | quantum_interval_fault_update(QUANTUM_FAULT_PRINCIPAL_DEPARTED, |
| 2814 | events[i].event_time, events[i].nodeid); |
| 2815 | } |
| 2816 | } |
| 2817 | |
| 2818 | for (int i = 0; i < AS_HB_NODE_EVENT_SENTINEL; i++) { |
| 2819 | if (min_event_time[i]) { |
| 2820 | switch (i) { |
| 2821 | case AS_HB_NODE_ARRIVE: |
| 2822 | quantum_interval_fault_update(QUANTUM_FAULT_NODE_ARRIVED, |
| 2823 | min_event_time[i], min_event_node[i]); |
| 2824 | break; |
| 2825 | case AS_HB_NODE_DEPART: |
| 2826 | quantum_interval_fault_update(QUANTUM_FAULT_NODE_DEPARTED, |
| 2827 | min_event_time[i], min_event_node[i]); |
| 2828 | break; |
| 2829 | case AS_HB_NODE_ADJACENCY_CHANGED: |
| 2830 | if (clustering_is_cluster_member(min_event_node[i])) { |
| 2831 | quantum_interval_fault_update( |
| 2832 | QUANTUM_FAULT_PEER_ADJACENCY_CHANGED, |
| 2833 | min_event_time[i], min_event_node[i]); |
| 2834 | } |
| 2835 | break; |
| 2836 | default: |
| 2837 | break; |
| 2838 | } |
| 2839 | |
| 2840 | } |
| 2841 | } |
| 2842 | CLUSTERING_UNLOCK(); |
| 2843 | } |
| 2844 | |
| 2845 | /** |
| 2846 | * Update the fault time for this quantum on clustering information for an |
| 2847 | * adjacent node change. Assumes the node's plugin data is not obsolete. |
| 2848 | */ |
| 2849 | static void |
| 2850 | quantum_interval_generator_hb_plugin_data_changed_handle( |
| 2851 | as_clustering_internal_event* change_event) |
| 2852 | { |
| 2853 | CLUSTERING_LOCK(); |
| 2854 | |
| 2855 | if (clustering_hb_plugin_data_is_obsolete( |
| 2856 | g_register.cluster_modified_hlc_ts, |
| 2857 | g_register.cluster_modified_time, change_event->plugin_data->data, |
| 2858 | change_event->plugin_data->data_size, |
| 2859 | change_event->plugin_data_changed_ts, |
| 2860 | &change_event->plugin_data_changed_hlc_ts)) { |
| 2861 | // The plugin data is obsolete. Can't take decisions based on it. |
| 2862 | goto Exit; |
| 2863 | } |
| 2864 | |
| 2865 | // Get the changed node's succession list, cluster key. All the fields |
| 2866 | // should be present since the obsolete check also checked for fields being |
| 2867 | // valid. |
| 2868 | cf_node* succession_list_p = clustering_hb_plugin_succession_get( |
| 2869 | change_event->plugin_data->data, |
| 2870 | change_event->plugin_data->data_size); |
| 2871 | uint32_t* succession_list_length_p = |
| 2872 | clustering_hb_plugin_succession_length_get( |
| 2873 | change_event->plugin_data->data, |
| 2874 | change_event->plugin_data->data_size); |
| 2875 | |
| 2876 | if (*succession_list_length_p > 0 |
| 2877 | && !clustering_is_our_principal(succession_list_p[0]) |
| 2878 | && clustering_is_principal()) { |
| 2879 | if (succession_list_p[0] < config_self_nodeid_get()) { |
| 2880 | // We are seeing a new principal who could potentially merge with |
| 2881 | // this cluster. |
| 2882 | if (g_quantum_interval_generator.fault[QUANTUM_FAULT_INBOUND_MERGE_CANDIDATE_SEEN].event_ts |
| 2883 | != 1) { |
| 2884 | quantum_interval_fault_update( |
| 2885 | QUANTUM_FAULT_INBOUND_MERGE_CANDIDATE_SEEN, cf_getms(), |
| 2886 | change_event->plugin_data_changed_nodeid); |
| 2887 | } |
| 2888 | } |
| 2889 | else { |
| 2890 | // We see a cluster with higher nodeid and most probably we will not |
| 2891 | // be the principal of the merged cluster. Reset the fault |
| 2892 | // timestamp, however set it to 1 to differentiate between no fault |
| 2893 | // and a fault to be ingnored in this quantum interval. A value of 1 |
| 2894 | // for practical purposes will never push the quantum interval |
| 2895 | // forward. |
| 2896 | quantum_interval_fault_update( |
| 2897 | QUANTUM_FAULT_INBOUND_MERGE_CANDIDATE_SEEN, 1, |
| 2898 | change_event->plugin_data_changed_nodeid); |
| 2899 | } |
| 2900 | } |
| 2901 | else { |
| 2902 | if (clustering_is_principal() && *succession_list_length_p == 0 |
| 2903 | && vector_find(&g_register.succession_list, |
| 2904 | &change_event->plugin_data_changed_nodeid) >= 0) { |
| 2905 | // One of our cluster members switched to orphan state. Most likely |
| 2906 | // a quick restart. |
| 2907 | quantum_interval_fault_update(QUANTUM_FAULT_CLUSTER_MEMBER_ORPHANED, |
| 2908 | cf_getms(), change_event->plugin_data_changed_nodeid); |
| 2909 | } |
| 2910 | else { |
| 2911 | // A node becoming an orphan node or seeing a succession with our |
| 2912 | // principal does not mean we have seen a new cluster. |
| 2913 | } |
| 2914 | } |
| 2915 | Exit: |
| 2916 | CLUSTERING_UNLOCK(); |
| 2917 | } |
| 2918 | |
| 2919 | /** |
| 2920 | * Update the fault time for this quantum on self heartbeat adjacency list |
| 2921 | * change. |
| 2922 | */ |
| 2923 | static void |
| 2924 | quantum_interval_generator_join_request_accepted_handle( |
| 2925 | as_clustering_internal_event* join_request_event) |
| 2926 | { |
| 2927 | quantum_interval_fault_update(QUANTUM_FAULT_JOIN_ACCEPTED, cf_getms(), |
| 2928 | join_request_event->join_request_source_nodeid); |
| 2929 | } |
| 2930 | |
| 2931 | /** |
| 2932 | * Dispatch internal clustering events for the quantum interval generator. |
| 2933 | */ |
| 2934 | static void |
| 2935 | quantum_interval_generator_event_dispatch(as_clustering_internal_event* event) |
| 2936 | { |
| 2937 | switch (event->type) { |
| 2938 | case AS_CLUSTERING_INTERNAL_EVENT_TIMER: |
| 2939 | quantum_interval_generator_timer_event_handle(event); |
| 2940 | break; |
| 2941 | case AS_CLUSTERING_INTERNAL_EVENT_HB: |
| 2942 | quantum_interval_generator_hb_event_handle(event); |
| 2943 | break; |
| 2944 | case AS_CLUSTERING_INTERNAL_EVENT_HB_PLUGIN_DATA_CHANGED: |
| 2945 | quantum_interval_generator_hb_plugin_data_changed_handle(event); |
| 2946 | break; |
| 2947 | case AS_CLUSTERING_INTERNAL_EVENT_JOIN_REQUEST_ACCEPTED: |
| 2948 | quantum_interval_generator_join_request_accepted_handle(event); |
| 2949 | break; |
| 2950 | default: |
| 2951 | break; |
| 2952 | } |
| 2953 | } |
| 2954 | |
| 2955 | /** |
| 2956 | * Start quantum interval generator. |
| 2957 | */ |
| 2958 | static void |
| 2959 | quantum_interval_generator_start() |
| 2960 | { |
| 2961 | CLUSTERING_LOCK(); |
| 2962 | g_quantum_interval_generator.last_quantum_start_time = cf_getms(); |
| 2963 | CLUSTERING_UNLOCK(); |
| 2964 | } |
| 2965 | |
| 2966 | /* |
| 2967 | * ---------------------------------------------------------------------------- |
| 2968 | * Clustering common |
| 2969 | * ---------------------------------------------------------------------------- |
| 2970 | */ |
| 2971 | |
| 2972 | /** |
| 2973 | * Generate a new random and most likely a unique cluster key. |
| 2974 | * @param current_cluster_key current cluster key to prevent collision. |
| 2975 | * @return randomly generated cluster key. |
| 2976 | */ |
| 2977 | static as_cluster_key |
| 2978 | clustering_cluster_key_generate(as_cluster_key current_cluster_key) |
| 2979 | { |
| 2980 | // Generate one uuid and use this for the cluster key |
| 2981 | as_cluster_key cluster_key = 0; |
| 2982 | |
| 2983 | // Generate a non-zero cluster key that fits in 6 bytes. |
| 2984 | while ((cluster_key = (cf_get_rand64() >> 16)) == 0 |
| 2985 | || cluster_key == current_cluster_key) { |
| 2986 | ; |
| 2987 | } |
| 2988 | |
| 2989 | return cluster_key; |
| 2990 | } |
| 2991 | |
| 2992 | /** |
| 2993 | * Indicates if this node is an orphan. A node is deemed orphan if it is not a |
| 2994 | * memeber of any cluster. |
| 2995 | */ |
| 2996 | static bool |
| 2997 | clustering_is_orphan() |
| 2998 | { |
| 2999 | CLUSTERING_LOCK(); |
| 3000 | |
| 3001 | bool is_orphan = cf_vector_size(&g_register.succession_list) <= 0 |
| 3002 | || g_register.cluster_key == 0; |
| 3003 | |
| 3004 | CLUSTERING_UNLOCK(); |
| 3005 | |
| 3006 | return is_orphan; |
| 3007 | } |
| 3008 | |
| 3009 | /** |
| 3010 | * Return the principal node for current cluster. |
| 3011 | * @param principal (output) the current principal for the cluster. |
| 3012 | * @return 0 if there is a valid principal, -1 if the node is in orphan state |
| 3013 | * and there is no valid principal. |
| 3014 | */ |
| 3015 | static int |
| 3016 | clustering_principal_get(cf_node* principal) |
| 3017 | { |
| 3018 | CLUSTERING_LOCK(); |
| 3019 | int rv = -1; |
| 3020 | |
| 3021 | if (cf_vector_get(&g_register.succession_list, 0, principal) == 0) { |
| 3022 | rv = 0; |
| 3023 | } |
| 3024 | |
| 3025 | CLUSTERING_UNLOCK(); |
| 3026 | |
| 3027 | return rv; |
| 3028 | } |
| 3029 | |
| 3030 | /** |
| 3031 | * Indicates if this node is the principal for its cluster. |
| 3032 | */ |
| 3033 | static bool |
| 3034 | clustering_is_principal() |
| 3035 | { |
| 3036 | CLUSTERING_LOCK(); |
| 3037 | cf_node current_principal; |
| 3038 | |
| 3039 | bool is_principal = clustering_principal_get(¤t_principal) == 0 |
| 3040 | && current_principal == config_self_nodeid_get(); |
| 3041 | |
| 3042 | CLUSTERING_UNLOCK(); |
| 3043 | |
| 3044 | return is_principal; |
| 3045 | } |
| 3046 | |
| 3047 | /** |
| 3048 | * Indicates if input node is this node's principal. Input node can be self node |
| 3049 | * as well. |
| 3050 | */ |
| 3051 | static bool |
| 3052 | clustering_is_our_principal(cf_node nodeid) |
| 3053 | { |
| 3054 | CLUSTERING_LOCK(); |
| 3055 | cf_node current_principal; |
| 3056 | |
| 3057 | bool is_principal = clustering_principal_get(¤t_principal) == 0 |
| 3058 | && current_principal == nodeid; |
| 3059 | |
| 3060 | CLUSTERING_UNLOCK(); |
| 3061 | |
| 3062 | return is_principal; |
| 3063 | } |
| 3064 | |
| 3065 | /** |
| 3066 | * Indicates if a node is our cluster member. |
| 3067 | */ |
| 3068 | static bool |
| 3069 | clustering_is_cluster_member(cf_node nodeid) |
| 3070 | { |
| 3071 | CLUSTERING_LOCK(); |
| 3072 | bool is_member = vector_find(&g_register.succession_list, &nodeid) >= 0; |
| 3073 | CLUSTERING_UNLOCK(); |
| 3074 | return is_member; |
| 3075 | } |
| 3076 | |
| 3077 | /** |
| 3078 | * Indicates if the input node is present in a succession list. |
| 3079 | * @param nodeid the nodeid to search. |
| 3080 | * @param succession_list the succession list. |
| 3081 | * @param succession_list_length the length of the succession list. |
| 3082 | * @return true if the node is present in the succession list, false otherwise. |
| 3083 | */ |
| 3084 | static bool |
| 3085 | clustering_is_node_in_succession(cf_node nodeid, cf_node* succession_list, |
| 3086 | int succession_list_length) |
| 3087 | { |
| 3088 | for (int i = 0; i < succession_list_length; i++) { |
| 3089 | if (succession_list[i] == nodeid) { |
| 3090 | return true; |
| 3091 | } |
| 3092 | } |
| 3093 | |
| 3094 | return false; |
| 3095 | } |
| 3096 | |
| 3097 | /** |
| 3098 | * Indicates if the input node can be accepted as this a paxos proposer. We can |
| 3099 | * accept the new node as our principal if we are in the orphan state or if the |
| 3100 | * input node is already our principal. |
| 3101 | * |
| 3102 | * Note: In case we send a join request to a node with a lower node id, input |
| 3103 | * node's nodeid can be less than our nodeid. This is still valid as the |
| 3104 | * proposer who will hand over the principalship to us once paxos round is over. |
| 3105 | * |
| 3106 | * @param nodeid the nodeid of the proposer to check. |
| 3107 | * @return true if this input node is an acceptable proposer. |
| 3108 | */ |
| 3109 | static bool |
| 3110 | clustering_can_accept_as_proposer(cf_node nodeid) |
| 3111 | { |
| 3112 | return clustering_is_orphan() || clustering_is_our_principal(nodeid); |
| 3113 | } |
| 3114 | |
| 3115 | /** |
| 3116 | * Plugin data iterate function that finds and collects neighboring principals, |
| 3117 | * excluding current principal if any . |
| 3118 | */ |
| 3119 | static void |
| 3120 | clustering_neighboring_principals_find(cf_node nodeid, void* plugin_data, |
| 3121 | size_t plugin_data_size, cf_clock recv_monotonic_ts, |
| 3122 | as_hlc_msg_timestamp* msg_hlc_ts, void* udata) |
| 3123 | { |
| 3124 | cf_vector* neighboring_principals = (cf_vector*)udata; |
| 3125 | |
| 3126 | CLUSTERING_LOCK(); |
| 3127 | |
| 3128 | // For determining neighboring principal it is alright if this data is |
| 3129 | // within two heartbeat intervals. So obsolete check has the timestamps as |
| 3130 | // zero. This way we will not reject principals that have nothing to do with |
| 3131 | // our cluster changes. |
| 3132 | if (recv_monotonic_ts + 2 * as_hb_tx_interval_get() >= cf_getms() |
| 3133 | && !clustering_hb_plugin_data_is_obsolete(0, 0, plugin_data, |
| 3134 | plugin_data_size, recv_monotonic_ts, msg_hlc_ts)) { |
| 3135 | cf_node* succession_list = clustering_hb_plugin_succession_get( |
| 3136 | plugin_data, plugin_data_size); |
| 3137 | |
| 3138 | uint32_t* succession_list_length_p = |
| 3139 | clustering_hb_plugin_succession_length_get(plugin_data, |
| 3140 | plugin_data_size); |
| 3141 | |
| 3142 | if (succession_list != NULL && succession_list_length_p != NULL |
| 3143 | && *succession_list_length_p > 0 |
| 3144 | && succession_list[0] != config_self_nodeid_get()) { |
| 3145 | cf_vector_append_unique(neighboring_principals, |
| 3146 | &succession_list[0]); |
| 3147 | } |
| 3148 | } |
| 3149 | else { |
| 3150 | DETAIL( |
| 3151 | "neighboring principal check skipped - found obsolete plugin data for node %" PRIx64, |
| 3152 | nodeid); |
| 3153 | } |
| 3154 | |
| 3155 | CLUSTERING_UNLOCK(); |
| 3156 | } |
| 3157 | |
| 3158 | /** |
| 3159 | * Get a list of adjacent principal nodes ordered by descending nodeids. |
| 3160 | */ |
| 3161 | static void |
| 3162 | clustering_neighboring_principals_get(cf_vector* neighboring_principals) |
| 3163 | { |
| 3164 | CLUSTERING_LOCK(); |
| 3165 | |
| 3166 | // Use a single iteration over the clustering data received via the |
| 3167 | // heartbeats instead of individual calls to get a consistent view and avoid |
| 3168 | // small lock and releases. |
| 3169 | as_hb_plugin_data_iterate_all(AS_HB_PLUGIN_CLUSTERING, |
| 3170 | clustering_neighboring_principals_find, neighboring_principals); |
| 3171 | |
| 3172 | vector_sort_unique(neighboring_principals, cf_node_compare_desc); |
| 3173 | |
| 3174 | CLUSTERING_UNLOCK(); |
| 3175 | } |
| 3176 | |
| 3177 | /** |
| 3178 | * Find dead nodes in current succession list. |
| 3179 | */ |
| 3180 | static void |
| 3181 | clustering_dead_nodes_find(cf_vector* dead_nodes) |
| 3182 | { |
| 3183 | CLUSTERING_LOCK(); |
| 3184 | |
| 3185 | cf_vector* succession_list_p = &g_register.succession_list; |
| 3186 | int succession_list_count = cf_vector_size(succession_list_p); |
| 3187 | for (int i = 0; i < succession_list_count; i++) { |
| 3188 | // No null check required since we are iterating under a lock and within |
| 3189 | // vector bounds. |
| 3190 | cf_node cluster_member_nodeid = *((cf_node*)cf_vector_getp( |
| 3191 | succession_list_p, i)); |
| 3192 | |
| 3193 | if (!as_hb_is_alive(cluster_member_nodeid)) { |
| 3194 | cf_vector_append(dead_nodes, &cluster_member_nodeid); |
| 3195 | } |
| 3196 | } |
| 3197 | |
| 3198 | CLUSTERING_UNLOCK(); |
| 3199 | } |
| 3200 | |
| 3201 | /** |
| 3202 | * Indicates if a node is faulty. A node in the succecssion list deemed faulty |
| 3203 | * - if the node is alive and it reports to be an orphan or is part of some |
| 3204 | * other cluster. |
| 3205 | * - if the node is alive its clustering protocol identifier does not match this |
| 3206 | * node's clustering protocol identifier. |
| 3207 | */ |
| 3208 | static bool |
| 3209 | clustering_node_is_faulty(cf_node nodeid) |
| 3210 | { |
| 3211 | if (nodeid == config_self_nodeid_get()) { |
| 3212 | // Self node is never faulty wrt clustering. |
| 3213 | return false; |
| 3214 | } |
| 3215 | |
| 3216 | CLUSTERING_LOCK(); |
| 3217 | bool is_faulty = false; |
| 3218 | as_hlc_msg_timestamp hb_msg_hlc_ts; |
| 3219 | cf_clock msg_recv_ts = 0; |
| 3220 | as_hb_plugin_node_data plugin_data = { 0 }; |
| 3221 | |
| 3222 | if (clustering_hb_plugin_data_get(nodeid, &plugin_data, &hb_msg_hlc_ts, |
| 3223 | &msg_recv_ts) != 0 |
| 3224 | || clustering_hb_plugin_data_is_obsolete( |
| 3225 | g_register.cluster_modified_hlc_ts, |
| 3226 | g_register.cluster_modified_time, plugin_data.data, |
| 3227 | plugin_data.data_size, msg_recv_ts, &hb_msg_hlc_ts)) { |
| 3228 | INFO( |
| 3229 | "faulty check skipped - found obsolete plugin data for node %" PRIx64, |
| 3230 | nodeid); |
| 3231 | is_faulty = false; |
| 3232 | goto Exit; |
| 3233 | } |
| 3234 | |
| 3235 | // We have clustering data from the node after the current cluster change. |
| 3236 | // Compare protocol identifier, clusterkey, and succession. |
| 3237 | as_cluster_proto_identifier* proto_p = clustering_hb_plugin_proto_get( |
| 3238 | plugin_data.data, plugin_data.data_size); |
| 3239 | |
| 3240 | if (proto_p == NULL |
| 3241 | || !clustering_versions_are_compatible(*proto_p, |
| 3242 | clustering_protocol_identifier_get())) { |
| 3243 | DEBUG("for node %" PRIx64" protocol version mismatch - expected: %" PRIx32" but was : %" PRIx32, |
| 3244 | nodeid, clustering_protocol_identifier_get(), |
| 3245 | proto_p != NULL ? *proto_p : 0); |
| 3246 | is_faulty = true; |
| 3247 | goto Exit; |
| 3248 | } |
| 3249 | |
| 3250 | as_cluster_key* cluster_key_p = clustering_hb_plugin_cluster_key_get( |
| 3251 | plugin_data.data, plugin_data.data_size); |
| 3252 | if (cluster_key_p == NULL || *cluster_key_p != g_register.cluster_key) { |
| 3253 | DEBUG("for node %" PRIx64" cluster key mismatch - expected: %" PRIx64" but was : %" PRIx64, |
| 3254 | nodeid, g_register.cluster_key, cluster_key_p != NULL ? *cluster_key_p : 0); |
| 3255 | is_faulty = true; |
| 3256 | goto Exit; |
| 3257 | } |
| 3258 | |
| 3259 | // Check succession list just to be sure. |
| 3260 | // We have clustering data from the node after the current cluster change. |
| 3261 | cf_node* succession_list = clustering_hb_plugin_succession_get( |
| 3262 | plugin_data.data, plugin_data.data_size); |
| 3263 | |
| 3264 | uint32_t* succession_list_length_p = |
| 3265 | clustering_hb_plugin_succession_length_get(plugin_data.data, |
| 3266 | plugin_data.data_size); |
| 3267 | |
| 3268 | if (succession_list == NULL || succession_list_length_p == NULL |
| 3269 | || !clustering_hb_succession_list_matches(succession_list, |
| 3270 | *succession_list_length_p, &g_register.succession_list)) { |
| 3271 | INFO("for node %" PRIx64" succession list mismatch" , nodeid); |
| 3272 | |
| 3273 | log_cf_node_vector("self succession list:" , &g_register.succession_list, |
| 3274 | CF_INFO); |
| 3275 | |
| 3276 | if (succession_list) { |
| 3277 | log_cf_node_array("node succession list:" , succession_list, |
| 3278 | succession_list && succession_list_length_p ? |
| 3279 | *succession_list_length_p : 0, CF_INFO); |
| 3280 | } |
| 3281 | else { |
| 3282 | INFO("node succession list: (empty)" ); |
| 3283 | } |
| 3284 | |
| 3285 | is_faulty = true; |
| 3286 | goto Exit; |
| 3287 | } |
| 3288 | |
| 3289 | Exit: |
| 3290 | CLUSTERING_UNLOCK(); |
| 3291 | return is_faulty; |
| 3292 | } |
| 3293 | |
| 3294 | /** |
| 3295 | * Find "faulty" nodes in current succession list. |
| 3296 | */ |
| 3297 | static void |
| 3298 | clustering_faulty_nodes_find(cf_vector* faulty_nodes) |
| 3299 | { |
| 3300 | CLUSTERING_LOCK(); |
| 3301 | |
| 3302 | if (clustering_is_orphan()) { |
| 3303 | goto Exit; |
| 3304 | } |
| 3305 | |
| 3306 | cf_vector* succession_list_p = &g_register.succession_list; |
| 3307 | int succession_list_count = cf_vector_size(succession_list_p); |
| 3308 | for (int i = 0; i < succession_list_count; i++) { |
| 3309 | // No null check required since we are iterating under a lock and within |
| 3310 | // vector bounds. |
| 3311 | cf_node cluster_member_nodeid = *((cf_node*)cf_vector_getp( |
| 3312 | succession_list_p, i)); |
| 3313 | if (clustering_node_is_faulty(cluster_member_nodeid)) { |
| 3314 | cf_vector_append(faulty_nodes, &cluster_member_nodeid); |
| 3315 | } |
| 3316 | } |
| 3317 | |
| 3318 | Exit: |
| 3319 | CLUSTERING_UNLOCK(); |
| 3320 | } |
| 3321 | |
| 3322 | /** |
| 3323 | * Indicates if a node is in sync with this node's cluster. A node in the |
| 3324 | * succecssion list is deemed in sync if the node is alive and it reports to be |
| 3325 | * in the same cluster via its heartbeats. |
| 3326 | */ |
| 3327 | static bool |
| 3328 | clustering_node_is_sync(cf_node nodeid) |
| 3329 | { |
| 3330 | if (nodeid == config_self_nodeid_get()) { |
| 3331 | // Self node is always in sync wrt clustering. |
| 3332 | return true; |
| 3333 | } |
| 3334 | |
| 3335 | CLUSTERING_LOCK(); |
| 3336 | bool is_sync = false; |
| 3337 | as_hlc_msg_timestamp hb_msg_hlc_ts; |
| 3338 | cf_clock msg_recv_ts = 0; |
| 3339 | as_hb_plugin_node_data plugin_data = { 0 }; |
| 3340 | bool data_exists = |
| 3341 | clustering_hb_plugin_data_get(nodeid, &plugin_data, &hb_msg_hlc_ts, |
| 3342 | &msg_recv_ts) == 0; |
| 3343 | |
| 3344 | // Latest valid plugin data is ok as long as other checks are met. Hence the |
| 3345 | // timestamps are zero. |
| 3346 | if (!data_exists || msg_recv_ts + 2 * as_hb_tx_interval_get() < cf_getms() |
| 3347 | || clustering_hb_plugin_data_is_obsolete(0, 0, plugin_data.data, |
| 3348 | plugin_data.data_size, msg_recv_ts, &hb_msg_hlc_ts)) { |
| 3349 | is_sync = false; |
| 3350 | goto Exit; |
| 3351 | } |
| 3352 | |
| 3353 | // We have clustering data from the node after the current cluster change. |
| 3354 | // Compare protocol identifier, clusterkey, and succession. |
| 3355 | as_cluster_proto_identifier* proto_p = clustering_hb_plugin_proto_get( |
| 3356 | plugin_data.data, plugin_data.data_size); |
| 3357 | |
| 3358 | if (proto_p == NULL |
| 3359 | || !clustering_versions_are_compatible(*proto_p, |
| 3360 | clustering_protocol_identifier_get())) { |
| 3361 | DEBUG( |
| 3362 | "for node %" PRIx64" protocol version mismatch - expected: %" PRIx32" but was : %" PRIx32, |
| 3363 | nodeid, clustering_protocol_identifier_get(), |
| 3364 | proto_p != NULL ? *proto_p : 0); |
| 3365 | is_sync = false; |
| 3366 | goto Exit; |
| 3367 | } |
| 3368 | |
| 3369 | as_cluster_key* cluster_key_p = clustering_hb_plugin_cluster_key_get( |
| 3370 | plugin_data.data, plugin_data.data_size); |
| 3371 | if (cluster_key_p == NULL || *cluster_key_p != g_register.cluster_key) { |
| 3372 | DEBUG( |
| 3373 | "for node %" PRIx64" cluster key mismatch - expected: %" PRIx64" but was : %" PRIx64, |
| 3374 | nodeid, g_register.cluster_key, cluster_key_p != NULL ? *cluster_key_p : 0); |
| 3375 | is_sync = false; |
| 3376 | goto Exit; |
| 3377 | } |
| 3378 | |
| 3379 | // Check succession list just to be sure. |
| 3380 | // We have clustering data from the node after the current cluster change. |
| 3381 | cf_node* succession_list = clustering_hb_plugin_succession_get( |
| 3382 | plugin_data.data, plugin_data.data_size); |
| 3383 | |
| 3384 | uint32_t* succession_list_length_p = |
| 3385 | clustering_hb_plugin_succession_length_get(plugin_data.data, |
| 3386 | plugin_data.data_size); |
| 3387 | |
| 3388 | if (succession_list == NULL || succession_list_length_p == NULL |
| 3389 | || !clustering_hb_succession_list_matches(succession_list, |
| 3390 | *succession_list_length_p, &g_register.succession_list)) { |
| 3391 | DEBUG("for node %" PRIx64" succession list mismatch" , nodeid); |
| 3392 | |
| 3393 | log_cf_node_vector("self succession list:" , &g_register.succession_list, |
| 3394 | CF_DEBUG); |
| 3395 | |
| 3396 | if (succession_list) { |
| 3397 | log_cf_node_array("node succession list:" , succession_list, |
| 3398 | succession_list && succession_list_length_p ? |
| 3399 | *succession_list_length_p : 0, CF_DEBUG); |
| 3400 | } |
| 3401 | else { |
| 3402 | DEBUG("node succession list: (empty)" ); |
| 3403 | } |
| 3404 | |
| 3405 | is_sync = false; |
| 3406 | goto Exit; |
| 3407 | } |
| 3408 | |
| 3409 | is_sync = true; |
| 3410 | |
| 3411 | Exit: |
| 3412 | CLUSTERING_UNLOCK(); |
| 3413 | return is_sync; |
| 3414 | } |
| 3415 | |
| 3416 | /** |
| 3417 | * Find orphan nodes using clustering data for each node in the heartbeat's |
| 3418 | * adjacency list. |
| 3419 | */ |
| 3420 | static void |
| 3421 | clustering_orphan_nodes_find(cf_node nodeid, void* plugin_data, |
| 3422 | size_t plugin_data_size, cf_clock recv_monotonic_ts, |
| 3423 | as_hlc_msg_timestamp* msg_hlc_ts, void* udata) |
| 3424 | { |
| 3425 | cf_vector* orphans = udata; |
| 3426 | |
| 3427 | CLUSTERING_LOCK(); |
| 3428 | |
| 3429 | // For determining orphan it is alright if this data is within two heartbeat |
| 3430 | // intervals. So obsolete check has the timestamps as zero. |
| 3431 | if (recv_monotonic_ts + 2 * as_hb_tx_interval_get() >= cf_getms() |
| 3432 | && !clustering_hb_plugin_data_is_obsolete(0, 0, plugin_data, |
| 3433 | plugin_data_size, recv_monotonic_ts, msg_hlc_ts)) { |
| 3434 | if (clustering_hb_plugin_data_node_status(plugin_data, plugin_data_size) |
| 3435 | == AS_NODE_ORPHAN) { |
| 3436 | cf_vector_append(orphans, &nodeid); |
| 3437 | } |
| 3438 | |
| 3439 | } |
| 3440 | else { |
| 3441 | DETAIL( |
| 3442 | "orphan check skipped - found obsolete plugin data for node %" PRIx64, |
| 3443 | nodeid); |
| 3444 | } |
| 3445 | |
| 3446 | CLUSTERING_UNLOCK(); |
| 3447 | } |
| 3448 | |
| 3449 | /** |
| 3450 | * Get a list of neighboring nodes that are orphans. Does not include self node. |
| 3451 | */ |
| 3452 | static void |
| 3453 | clustering_neighboring_orphans_get(cf_vector* neighboring_orphans) |
| 3454 | { |
| 3455 | CLUSTERING_LOCK(); |
| 3456 | |
| 3457 | // Use a single iteration over the clustering data received via the |
| 3458 | // heartbeats instead of individual calls to get a consistent view and avoid |
| 3459 | // small lock and release. |
| 3460 | as_hb_plugin_data_iterate_all(AS_HB_PLUGIN_CLUSTERING, |
| 3461 | clustering_orphan_nodes_find, neighboring_orphans); |
| 3462 | |
| 3463 | CLUSTERING_UNLOCK(); |
| 3464 | } |
| 3465 | |
| 3466 | /** |
| 3467 | * Find neighboring nodes using clustering data for each node in the heartbeat's |
| 3468 | * adjacency list. |
| 3469 | */ |
| 3470 | static void |
| 3471 | clustering_neighboring_nodes_find(cf_node nodeid, void* plugin_data, |
| 3472 | size_t plugin_data_size, cf_clock recv_monotonic_ts, |
| 3473 | as_hlc_msg_timestamp* msg_hlc_ts, void* udata) |
| 3474 | { |
| 3475 | cf_vector* nodes = udata; |
| 3476 | cf_vector_append(nodes, &nodeid); |
| 3477 | } |
| 3478 | |
| 3479 | /** |
| 3480 | * Get a list of all neighboring nodes. Does not include self node. |
| 3481 | */ |
| 3482 | static void |
| 3483 | clustering_neighboring_nodes_get(cf_vector* neighboring_nodes) |
| 3484 | { |
| 3485 | CLUSTERING_LOCK(); |
| 3486 | |
| 3487 | // Use a single iteration over the clustering data received via the |
| 3488 | // heartbeats instead of individual calls to get a consistent view and avoid |
| 3489 | // small lock and release. |
| 3490 | as_hb_plugin_data_iterate_all(AS_HB_PLUGIN_CLUSTERING, |
| 3491 | clustering_neighboring_nodes_find, neighboring_nodes); |
| 3492 | |
| 3493 | CLUSTERING_UNLOCK(); |
| 3494 | } |
| 3495 | |
| 3496 | /** |
| 3497 | * Evict nodes not forming a clique from the succession list. |
| 3498 | */ |
| 3499 | static uint32_t |
| 3500 | clustering_succession_list_clique_evict(cf_vector* succession_list, |
| 3501 | char* evict_msg) |
| 3502 | { |
| 3503 | uint32_t num_evicted = 0; |
| 3504 | if (g_config.clustering_config.clique_based_eviction_enabled) { |
| 3505 | // Remove nodes that do not form a clique. |
| 3506 | cf_vector* evicted_nodes = vector_stack_lockless_create(cf_node); |
| 3507 | as_hb_maximal_clique_evict(succession_list, evicted_nodes); |
| 3508 | num_evicted = cf_vector_size(evicted_nodes); |
| 3509 | log_cf_node_vector(evict_msg, evicted_nodes, |
| 3510 | num_evicted > 0 ? CF_INFO : CF_DEBUG); |
| 3511 | |
| 3512 | vector_subtract(succession_list, evicted_nodes); |
| 3513 | cf_vector_destroy(evicted_nodes); |
| 3514 | } |
| 3515 | return num_evicted; |
| 3516 | } |
| 3517 | |
| 3518 | /* |
| 3519 | * ---------------------------------------------------------------------------- |
| 3520 | * Clustering network message functions |
| 3521 | * ---------------------------------------------------------------------------- |
| 3522 | */ |
| 3523 | |
| 3524 | /** |
| 3525 | * Fill common source node specific fields for the message. |
| 3526 | * @param msg the message to fill the source fields into. |
| 3527 | */ |
| 3528 | static void |
| 3529 | msg_src_fields_fill(msg* msg) |
| 3530 | { |
| 3531 | // Set the hb protocol id / version. |
| 3532 | msg_set_uint32(msg, AS_CLUSTERING_MSG_ID, |
| 3533 | clustering_protocol_identifier_get()); |
| 3534 | |
| 3535 | // Set the send timestamp |
| 3536 | msg_set_uint64(msg, AS_CLUSTERING_MSG_HLC_TIMESTAMP, |
| 3537 | as_hlc_timestamp_now()); |
| 3538 | } |
| 3539 | |
| 3540 | /** |
| 3541 | * Read the protocol identifier for this clustering message. These functions can |
| 3542 | * get called multiple times for a single message. Hence they do not increment |
| 3543 | * error counters. |
| 3544 | * @param msg the incoming message. |
| 3545 | * @param id the output id. |
| 3546 | * @return 0 if the type could be parsed -1 on failure. |
| 3547 | */ |
| 3548 | static int |
| 3549 | msg_proto_id_get(msg* msg, uint32_t* id) |
| 3550 | { |
| 3551 | if (msg_get_uint32(msg, AS_CLUSTERING_MSG_ID, id) != 0) { |
| 3552 | return -1; |
| 3553 | } |
| 3554 | |
| 3555 | return 0; |
| 3556 | } |
| 3557 | |
| 3558 | /** |
| 3559 | * Read the message type. These functions can get called multiple times for a |
| 3560 | * single message. Hence they do not increment error counters. |
| 3561 | * @param msg the incoming message. |
| 3562 | * @param type the output message type. |
| 3563 | * @return 0 if the type could be parsed -1 on failure. |
| 3564 | */ |
| 3565 | static int |
| 3566 | msg_type_get(msg* msg, as_clustering_msg_type* type) |
| 3567 | { |
| 3568 | if (msg_get_uint32(msg, AS_CLUSTERING_MSG_TYPE, type) != 0) { |
| 3569 | return -1; |
| 3570 | } |
| 3571 | |
| 3572 | return 0; |
| 3573 | } |
| 3574 | |
| 3575 | /** |
| 3576 | * Set the type for an outgoing message. |
| 3577 | * @param msg the outgoing message. |
| 3578 | * @param msg_type the type to set. |
| 3579 | */ |
| 3580 | static void |
| 3581 | msg_type_set(msg* msg, as_clustering_msg_type msg_type) |
| 3582 | { |
| 3583 | // Set the message type. |
| 3584 | msg_set_uint32(msg, AS_CLUSTERING_MSG_TYPE, msg_type); |
| 3585 | } |
| 3586 | |
| 3587 | /** |
| 3588 | * Read the proposed principal field from the message. |
| 3589 | * @param msg the incoming message. |
| 3590 | * @param nodeid the output nodeid. |
| 3591 | * @return 0 if the type could be parsed -1 on failure. |
| 3592 | */ |
| 3593 | static int |
| 3594 | msg_proposed_principal_get(msg* msg, cf_node* nodeid) |
| 3595 | { |
| 3596 | if (msg_get_uint64(msg, AS_CLUSTERING_MSG_PROPOSED_PRINCIPAL, nodeid) |
| 3597 | != 0) { |
| 3598 | return -1; |
| 3599 | } |
| 3600 | |
| 3601 | return 0; |
| 3602 | } |
| 3603 | |
| 3604 | /** |
| 3605 | * Set the proposed principal field in the message. |
| 3606 | * @param msg the outgoing message. |
| 3607 | * @param nodeid the proposed principal nodeid. |
| 3608 | */ |
| 3609 | static void |
| 3610 | msg_proposed_principal_set(msg* msg, cf_node nodeid) |
| 3611 | { |
| 3612 | msg_set_uint64(msg, AS_CLUSTERING_MSG_PROPOSED_PRINCIPAL, nodeid); |
| 3613 | } |
| 3614 | |
| 3615 | /** |
| 3616 | * Read the HLC send timestamp for the message. These functions can get called |
| 3617 | * multiple times for a single message. Hence they do not increment error |
| 3618 | * counters. |
| 3619 | * @param msg the incoming message. |
| 3620 | * @param send_ts the output hls timestamp. |
| 3621 | * @return 0 if the type could be parsed -1 on failure. |
| 3622 | */ |
| 3623 | static int |
| 3624 | msg_send_ts_get(msg* msg, as_hlc_timestamp* send_ts) |
| 3625 | { |
| 3626 | if (msg_get_uint64(msg, AS_CLUSTERING_MSG_HLC_TIMESTAMP, send_ts) != 0) { |
| 3627 | return -1; |
| 3628 | } |
| 3629 | |
| 3630 | return 0; |
| 3631 | } |
| 3632 | |
| 3633 | /** |
| 3634 | * Set the sequence number for an outgoing message. |
| 3635 | * @param msg the outgoing message. |
| 3636 | * @param sequence_number the sequence number to set. |
| 3637 | */ |
| 3638 | static void |
| 3639 | msg_sequence_number_set(msg* msg, as_paxos_sequence_number sequence_number) |
| 3640 | { |
| 3641 | // Set the message type. |
| 3642 | msg_set_uint64(msg, AS_CLUSTERING_MSG_SEQUENCE_NUMBER, sequence_number); |
| 3643 | } |
| 3644 | |
| 3645 | /** |
| 3646 | * Read sequence number from the message. |
| 3647 | * @param msg the incoming message. |
| 3648 | * @param sequence_number the output sequence number. |
| 3649 | * @return 0 if the sequence number could be parsed -1 on failure. |
| 3650 | */ |
| 3651 | static int |
| 3652 | msg_sequence_number_get(msg* msg, as_paxos_sequence_number* sequence_number) |
| 3653 | { |
| 3654 | if (msg_get_uint64(msg, AS_CLUSTERING_MSG_SEQUENCE_NUMBER, sequence_number) |
| 3655 | != 0) { |
| 3656 | return -1; |
| 3657 | } |
| 3658 | |
| 3659 | return 0; |
| 3660 | } |
| 3661 | |
| 3662 | /** |
| 3663 | * Set the cluster key for an outgoing message field. |
| 3664 | * @param msg the outgoing message. |
| 3665 | * @param cluster_key the cluster key to set. |
| 3666 | * @param field the field to set the cluster key to. |
| 3667 | */ |
| 3668 | static void |
| 3669 | msg_cluster_key_field_set(msg* msg, as_cluster_key cluster_key, |
| 3670 | as_clustering_msg_field field) |
| 3671 | { |
| 3672 | msg_set_uint64(msg, field, cluster_key); |
| 3673 | } |
| 3674 | |
| 3675 | /** |
| 3676 | * Set the cluster key for an outgoing message. |
| 3677 | * @param msg the outgoing message. |
| 3678 | * @param cluster_key the cluster key to set. |
| 3679 | */ |
| 3680 | static void |
| 3681 | msg_cluster_key_set(msg* msg, as_cluster_key cluster_key) |
| 3682 | { |
| 3683 | msg_cluster_key_field_set(msg, cluster_key, AS_CLUSTERING_MSG_CLUSTER_KEY); |
| 3684 | } |
| 3685 | |
| 3686 | /** |
| 3687 | * Read cluster key from a message field. |
| 3688 | * @param msg the incoming message. |
| 3689 | * @param cluster_key the output cluster key. |
| 3690 | * @param field the field to set the cluster key to. |
| 3691 | * @return 0 if the cluster key could be parsed -1 on failure. |
| 3692 | */ |
| 3693 | static int |
| 3694 | msg_cluster_key_field_get(msg* msg, as_cluster_key* cluster_key, |
| 3695 | as_clustering_msg_field field) |
| 3696 | { |
| 3697 | if (msg_get_uint64(msg, field, cluster_key) != 0) { |
| 3698 | return -1; |
| 3699 | } |
| 3700 | |
| 3701 | return 0; |
| 3702 | } |
| 3703 | |
| 3704 | /** |
| 3705 | * Read cluster key from the message. |
| 3706 | * @param msg the incoming message. |
| 3707 | * @param cluster_key the output cluster key. |
| 3708 | * @return 0 if the cluster key could be parsed -1 on failure. |
| 3709 | */ |
| 3710 | static int |
| 3711 | msg_cluster_key_get(msg* msg, as_cluster_key* cluster_key) |
| 3712 | { |
| 3713 | return msg_cluster_key_field_get(msg, cluster_key, |
| 3714 | AS_CLUSTERING_MSG_CLUSTER_KEY); |
| 3715 | } |
| 3716 | |
| 3717 | /** |
| 3718 | * Set the succession list for an outgoing message in a particular field. |
| 3719 | * @param msg the outgoing message. |
| 3720 | * @param succession_list the succession list to set. |
| 3721 | * @param field the field to set for the succession list. |
| 3722 | */ |
| 3723 | static void |
| 3724 | msg_succession_list_field_set(msg* msg, cf_vector* succession_list, |
| 3725 | as_clustering_msg_field field) |
| 3726 | |
| 3727 | { |
| 3728 | int num_elements = cf_vector_size(succession_list); |
| 3729 | size_t buffer_size = num_elements * sizeof(cf_node); |
| 3730 | cf_node* succession_buffer = (cf_node*)BUFFER_ALLOC_OR_DIE(buffer_size); |
| 3731 | |
| 3732 | for (int i = 0; i < num_elements; i++) { |
| 3733 | cf_vector_get(succession_list, i, &succession_buffer[i]); |
| 3734 | } |
| 3735 | |
| 3736 | msg_set_buf(msg, field, (uint8_t*)succession_buffer, buffer_size, |
| 3737 | MSG_SET_COPY); |
| 3738 | |
| 3739 | BUFFER_FREE(succession_buffer, buffer_size); |
| 3740 | } |
| 3741 | |
| 3742 | /** |
| 3743 | * Set the succession list for an outgoing message. |
| 3744 | * @param msg the outgoing message. |
| 3745 | * @param succession_list the succession list to set. |
| 3746 | */ |
| 3747 | static void |
| 3748 | msg_succession_list_set(msg* msg, cf_vector* succession_list) |
| 3749 | { |
| 3750 | int num_elements = cf_vector_size(succession_list); |
| 3751 | if (num_elements <= 0) { |
| 3752 | // Empty succession list being sent. Definitely wrong.Something is amiss |
| 3753 | // let it through. The receiver will reject it anyways. |
| 3754 | WARNING("setting empty succession list" ); |
| 3755 | return; |
| 3756 | } |
| 3757 | |
| 3758 | msg_succession_list_field_set(msg, succession_list, |
| 3759 | AS_CLUSTERING_MSG_SUCCESSION_LIST); |
| 3760 | } |
| 3761 | |
| 3762 | /** |
| 3763 | * Read succession list from a message field. |
| 3764 | * @param msg the incoming message. |
| 3765 | * @param succession_list the output succession list. |
| 3766 | * @param field the field to read from. |
| 3767 | * @return 0 if the succession list could be parsed -1 on failure. |
| 3768 | */ |
| 3769 | static int |
| 3770 | msg_succession_list_field_get(msg* msg, cf_vector* succession_list, |
| 3771 | as_clustering_msg_field field) |
| 3772 | { |
| 3773 | vector_clear(succession_list); |
| 3774 | cf_node* succession_buffer; |
| 3775 | size_t buffer_size; |
| 3776 | if (msg_get_buf(msg, field, (uint8_t**)&succession_buffer, &buffer_size, |
| 3777 | MSG_GET_DIRECT) != 0) { |
| 3778 | // Empty succession list should not be allowed. |
| 3779 | return -1; |
| 3780 | } |
| 3781 | |
| 3782 | // Correct adjacency list length. |
| 3783 | int num_elements = buffer_size / sizeof(cf_node); |
| 3784 | |
| 3785 | for (int i = 0; i < num_elements; i++) { |
| 3786 | cf_vector_append(succession_list, &succession_buffer[i]); |
| 3787 | } |
| 3788 | |
| 3789 | vector_sort_unique(succession_list, cf_node_compare_desc); |
| 3790 | |
| 3791 | return 0; |
| 3792 | } |
| 3793 | |
| 3794 | /** |
| 3795 | * Read succession list from the message. |
| 3796 | * @param msg the incoming message. |
| 3797 | * @param succession_list the output succession list. |
| 3798 | * @return 0 if the succession list could be parsed -1 on failure. |
| 3799 | */ |
| 3800 | static int |
| 3801 | msg_succession_list_get(msg* msg, cf_vector* succession_list) |
| 3802 | { |
| 3803 | return msg_succession_list_field_get(msg, succession_list, |
| 3804 | AS_CLUSTERING_MSG_SUCCESSION_LIST); |
| 3805 | } |
| 3806 | |
| 3807 | /** |
| 3808 | * Get the paxos proposal id for message event. |
| 3809 | * @param event the message event. |
| 3810 | * @param proposal_id the paxos proposal id. |
| 3811 | * @return 0 if the type could be parsed -1 on failure. |
| 3812 | */ |
| 3813 | static int |
| 3814 | msg_event_proposal_id_get(as_clustering_internal_event* event, |
| 3815 | as_paxos_proposal_id* proposal_id) |
| 3816 | { |
| 3817 | if (msg_sequence_number_get(event->msg, &proposal_id->sequence_number) |
| 3818 | != 0) { |
| 3819 | return -1; |
| 3820 | } |
| 3821 | proposal_id->src_nodeid = event->msg_src_nodeid; |
| 3822 | return 0; |
| 3823 | } |
| 3824 | |
| 3825 | /** |
| 3826 | * Get a network message object from the message pool with all common fields for |
| 3827 | * clustering, like protocol identifier, and hlc timestamp filled in. |
| 3828 | * @param type the type of the message. |
| 3829 | */ |
| 3830 | static msg* |
| 3831 | msg_pool_get(as_clustering_msg_type type) |
| 3832 | { |
| 3833 | msg* msg = as_fabric_msg_get(M_TYPE_CLUSTERING); |
| 3834 | msg_src_fields_fill(msg); |
| 3835 | msg_type_set(msg, type); |
| 3836 | return msg; |
| 3837 | } |
| 3838 | |
| 3839 | /** |
| 3840 | * Return a message back to the message pool. |
| 3841 | */ |
| 3842 | static void |
| 3843 | msg_pool_return(msg* msg) |
| 3844 | { |
| 3845 | as_fabric_msg_put(msg); |
| 3846 | } |
| 3847 | |
| 3848 | /** |
| 3849 | * Determines if the received message is old to be ignored. |
| 3850 | * |
| 3851 | * This is detemined by comparing the message hlc timestamp and monotonic |
| 3852 | * timestamps with the cluster formation hlc and monotonic times. |
| 3853 | * |
| 3854 | * @param cluster_modified_hlc_ts the hlc timestamp when for current cluster |
| 3855 | * change happened. Sent to avoid locking in this function. |
| 3856 | * @param cluster_modified_time the monotonic timestamp when for current |
| 3857 | * cluster change happened. Sento to avoid locking in this function. |
| 3858 | * @param msg_recv_ts the monotonic timestamp for plugin data receive. |
| 3859 | * @param msg_hlc_ts the hlc timestamp for plugin data receive. |
| 3860 | * @return true if plugin data is obsolete, false otherwise. |
| 3861 | */ |
| 3862 | bool |
| 3863 | msg_is_obsolete(as_hlc_timestamp cluster_modified_hlc_ts, |
| 3864 | cf_clock cluster_modified_time, cf_clock msg_recv_ts, |
| 3865 | as_hlc_msg_timestamp* msg_hlc_ts) |
| 3866 | { |
| 3867 | if (as_hlc_send_timestamp_order(cluster_modified_hlc_ts, msg_hlc_ts) |
| 3868 | != AS_HLC_HAPPENS_BEFORE) { |
| 3869 | // Cluster formation time after message send or the order is unknown, |
| 3870 | // assume cluster formation is after message received. |
| 3871 | // The caller should ignore this message. |
| 3872 | return true; |
| 3873 | } |
| 3874 | |
| 3875 | // MSG should be atleast after cluster formation time + one hb interval to |
| 3876 | // send out our cluster state + one network delay for our information to |
| 3877 | // reach the remote node + one hb for the other node to send out the his |
| 3878 | // updated state + |
| 3879 | // one network delay for the updated state to reach us. |
| 3880 | if (cluster_modified_time + 2 * as_hb_tx_interval_get() |
| 3881 | + 2 * g_config.fabric_latency_max_ms > msg_recv_ts) { |
| 3882 | return true; |
| 3883 | } |
| 3884 | |
| 3885 | return false; |
| 3886 | } |
| 3887 | |
| 3888 | /** |
| 3889 | * Send a message to all input nodes. This is best effort some sends could fail. |
| 3890 | * The message will be returned back to the pool. |
| 3891 | * @param msg the message to send. |
| 3892 | * @param nodes the nodes to send the message to. |
| 3893 | * @return 0 on successfu queueing of message (does not imply guaranteed |
| 3894 | * delivery), -1 if the message could not be queued. |
| 3895 | */ |
| 3896 | static int |
| 3897 | msg_node_send(msg* msg, cf_node node) |
| 3898 | { |
| 3899 | int rv = as_fabric_send(node, msg, AS_FABRIC_CHANNEL_CTRL); |
| 3900 | if (rv) { |
| 3901 | // Fabric did not clean up the message, return it back to the message |
| 3902 | // pool. |
| 3903 | msg_pool_return(msg); |
| 3904 | } |
| 3905 | return rv; |
| 3906 | } |
| 3907 | |
| 3908 | /** |
| 3909 | * Send a message to all input nodes. This is best effort some sends could fail. |
| 3910 | * The message will be returned back to the pool. |
| 3911 | * @param msg the message to send. |
| 3912 | * @param nodes the nodes to send the message to. |
| 3913 | * @return the number of nodes the message was sent to. Does not imply |
| 3914 | * guaranteed receipt by these nodes however. |
| 3915 | */ |
| 3916 | static int |
| 3917 | msg_nodes_send(msg* msg, cf_vector* nodes) |
| 3918 | { |
| 3919 | int node_count = cf_vector_size(nodes); |
| 3920 | int sent_count = 0; |
| 3921 | |
| 3922 | if (node_count <= 0) { |
| 3923 | return sent_count; |
| 3924 | } |
| 3925 | |
| 3926 | int alloc_size = node_count * sizeof(cf_node); |
| 3927 | cf_node* send_list = (cf_node*)BUFFER_ALLOC_OR_DIE(alloc_size); |
| 3928 | |
| 3929 | vector_array_cpy(send_list, nodes, node_count); |
| 3930 | |
| 3931 | if (as_fabric_send_list(send_list, node_count, msg, AS_FABRIC_CHANNEL_CTRL) |
| 3932 | != 0) { |
| 3933 | // Fabric did not clean up the message, return it back to the message |
| 3934 | // pool. |
| 3935 | msg_pool_return(msg); |
| 3936 | } |
| 3937 | |
| 3938 | BUFFER_FREE(send_list, alloc_size); |
| 3939 | return sent_count; |
| 3940 | } |
| 3941 | |
| 3942 | /* |
| 3943 | * ---------------------------------------------------------------------------- |
| 3944 | * Paxos common |
| 3945 | * ---------------------------------------------------------------------------- |
| 3946 | */ |
| 3947 | |
| 3948 | /** |
| 3949 | * Compare paxos proposal ids. Compares the sequence numbers, ties in sequence |
| 3950 | * number are broken by nodeids. |
| 3951 | * |
| 3952 | * @param id1 the first identifier. |
| 3953 | * @param id2 the second identifier. |
| 3954 | * |
| 3955 | * @return 0 if id1 equals id2, 1 if id1 > id2 and -1 if id1 < id2. |
| 3956 | */ |
| 3957 | static int |
| 3958 | paxos_proposal_id_compare(as_paxos_proposal_id* id1, as_paxos_proposal_id* id2) |
| 3959 | { |
| 3960 | if (id1->sequence_number != id2->sequence_number) { |
| 3961 | return id1->sequence_number > id2->sequence_number ? 1 : -1; |
| 3962 | } |
| 3963 | |
| 3964 | // Sequence numbers match, compare nodeids. |
| 3965 | if (id1->src_nodeid != id2->src_nodeid) { |
| 3966 | return id1->src_nodeid > id2->src_nodeid ? 1 : -1; |
| 3967 | } |
| 3968 | |
| 3969 | // Node id and sequence numbers match. |
| 3970 | return 0; |
| 3971 | } |
| 3972 | |
| 3973 | /* |
| 3974 | * ---------------------------------------------------------------------------- |
| 3975 | * Paxos proposer |
| 3976 | * ---------------------------------------------------------------------------- |
| 3977 | */ |
| 3978 | |
| 3979 | /** |
| 3980 | * Dump paxos proposer state to logs. |
| 3981 | */ |
| 3982 | static void |
| 3983 | paxos_proposer_dump(bool verbose) |
| 3984 | { |
| 3985 | CLUSTERING_LOCK(); |
| 3986 | |
| 3987 | // Output paxos proposer state. |
| 3988 | switch (g_proposer.state) { |
| 3989 | case AS_PAXOS_PROPOSER_STATE_IDLE: |
| 3990 | INFO("CL: paxos proposer: idle" ); |
| 3991 | break; |
| 3992 | case AS_PAXOS_PROPOSER_STATE_PREPARE_SENT: |
| 3993 | INFO("CL: paxos proposer: prepare sent" ); |
| 3994 | break; |
| 3995 | case AS_PAXOS_PROPOSER_STATE_ACCEPT_SENT: |
| 3996 | INFO("CL: paxos proposer: accept sent" ); |
| 3997 | break; |
| 3998 | } |
| 3999 | |
| 4000 | if (verbose) { |
| 4001 | if (g_proposer.state != AS_PAXOS_PROPOSER_STATE_IDLE) { |
| 4002 | INFO("CL: paxos proposal start time: %" PRIu64" now: %" PRIu64, |
| 4003 | g_proposer.paxos_round_start_time, cf_getms()); |
| 4004 | INFO("CL: paxos proposed cluster key: %" PRIx64, |
| 4005 | g_proposer.proposed_value.cluster_key); |
| 4006 | INFO("CL: paxos proposed sequence: %" PRIu64, |
| 4007 | g_proposer.sequence_number); |
| 4008 | log_cf_node_vector("CL: paxos proposed succession:" , |
| 4009 | &g_proposer.proposed_value.succession_list, CF_INFO); |
| 4010 | log_cf_node_vector("CL: paxos promises received:" , |
| 4011 | &g_proposer.promises_received, CF_INFO); |
| 4012 | log_cf_node_vector("CL: paxos accepted received:" , |
| 4013 | &g_proposer.accepted_received, CF_INFO); |
| 4014 | } |
| 4015 | } |
| 4016 | |
| 4017 | CLUSTERING_UNLOCK(); |
| 4018 | } |
| 4019 | |
| 4020 | /** |
| 4021 | * Reset state on failure of a paxos round. |
| 4022 | */ |
| 4023 | static void |
| 4024 | paxos_proposer_reset() |
| 4025 | { |
| 4026 | CLUSTERING_LOCK(); |
| 4027 | |
| 4028 | // Flipping state to idle to indicate paxos round is over. |
| 4029 | g_proposer.state = AS_PAXOS_PROPOSER_STATE_IDLE; |
| 4030 | memset(&g_proposer.sequence_number, 0, sizeof(g_proposer.sequence_number)); |
| 4031 | |
| 4032 | g_proposer.proposed_value.cluster_key = 0; |
| 4033 | vector_clear(&g_proposer.proposed_value.succession_list); |
| 4034 | |
| 4035 | vector_clear(&g_proposer.acceptors); |
| 4036 | |
| 4037 | DETAIL("paxos round over for proposal id %" PRIx64":%" PRIu64, |
| 4038 | config_self_nodeid_get(), g_proposer.sequence_number); |
| 4039 | |
| 4040 | CLUSTERING_UNLOCK(); |
| 4041 | } |
| 4042 | |
| 4043 | /** |
| 4044 | * Invoked to fail an ongoing paxos proposal. |
| 4045 | */ |
| 4046 | static void |
| 4047 | paxos_proposer_fail() |
| 4048 | { |
| 4049 | // Cleanup state for the paxos round. |
| 4050 | paxos_proposer_reset(); |
| 4051 | |
| 4052 | as_clustering_internal_event paxos_fail_event; |
| 4053 | memset(&paxos_fail_event, 0, sizeof(paxos_fail_event)); |
| 4054 | paxos_fail_event.type = AS_CLUSTERING_INTERNAL_EVENT_PAXOS_PROPOSER_FAIL; |
| 4055 | |
| 4056 | internal_event_dispatch(&paxos_fail_event); |
| 4057 | } |
| 4058 | |
| 4059 | /** |
| 4060 | * Indicates if a paxos proposal from self node is active. |
| 4061 | */ |
| 4062 | static bool |
| 4063 | paxos_proposer_proposal_is_active() |
| 4064 | { |
| 4065 | CLUSTERING_LOCK(); |
| 4066 | bool rv = g_proposer.state != AS_PAXOS_PROPOSER_STATE_IDLE; |
| 4067 | CLUSTERING_UNLOCK(); |
| 4068 | return rv; |
| 4069 | } |
| 4070 | |
| 4071 | /** |
| 4072 | * Send paxos prepare message current list of acceptor nodes. |
| 4073 | */ |
| 4074 | static void |
| 4075 | paxos_proposer_prepare_send() |
| 4076 | { |
| 4077 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_PAXOS_PREPARE); |
| 4078 | |
| 4079 | CLUSTERING_LOCK(); |
| 4080 | |
| 4081 | // Set the sequence number |
| 4082 | msg_sequence_number_set(msg, g_proposer.sequence_number); |
| 4083 | |
| 4084 | log_cf_node_vector("paxos prepare message sent to:" , &g_proposer.acceptors, |
| 4085 | CF_DEBUG); |
| 4086 | |
| 4087 | g_proposer.prepare_send_time = cf_getms(); |
| 4088 | |
| 4089 | cf_vector* acceptors = vector_stack_lockless_create(cf_node); |
| 4090 | vector_copy(acceptors, &g_proposer.acceptors); |
| 4091 | |
| 4092 | CLUSTERING_UNLOCK(); |
| 4093 | |
| 4094 | // Sent the message to the acceptors. |
| 4095 | msg_nodes_send(msg, acceptors); |
| 4096 | cf_vector_destroy(acceptors); |
| 4097 | } |
| 4098 | |
| 4099 | /** |
| 4100 | * Send paxos accept message current list of acceptor nodes. |
| 4101 | */ |
| 4102 | static void |
| 4103 | paxos_proposer_accept_send() |
| 4104 | { |
| 4105 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_PAXOS_ACCEPT); |
| 4106 | |
| 4107 | CLUSTERING_LOCK(); |
| 4108 | |
| 4109 | // Set the sequence number |
| 4110 | msg_sequence_number_set(msg, g_proposer.sequence_number); |
| 4111 | |
| 4112 | // Skip send of the proposed value for accept, since we do not use it. Learn |
| 4113 | // message is the only way a consensus value is sent out. |
| 4114 | log_cf_node_vector("paxos accept message sent to:" , &g_proposer.acceptors, |
| 4115 | CF_DEBUG); |
| 4116 | |
| 4117 | g_proposer.accept_send_time = cf_getms(); |
| 4118 | |
| 4119 | cf_vector* acceptors = vector_stack_lockless_create(cf_node); |
| 4120 | vector_copy(acceptors, &g_proposer.acceptors); |
| 4121 | |
| 4122 | CLUSTERING_UNLOCK(); |
| 4123 | |
| 4124 | // Sent the message to the acceptors. |
| 4125 | msg_nodes_send(msg, acceptors); |
| 4126 | cf_vector_destroy(acceptors); |
| 4127 | } |
| 4128 | |
| 4129 | /** |
| 4130 | * Send paxos learn message current list of acceptor nodes. |
| 4131 | */ |
| 4132 | static void |
| 4133 | paxos_proposer_learn_send() |
| 4134 | { |
| 4135 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_PAXOS_LEARN); |
| 4136 | |
| 4137 | CLUSTERING_LOCK(); |
| 4138 | |
| 4139 | // Set the sequence number |
| 4140 | msg_sequence_number_set(msg, g_proposer.sequence_number); |
| 4141 | |
| 4142 | // Set the cluster key |
| 4143 | msg_cluster_key_set(msg, g_proposer.proposed_value.cluster_key); |
| 4144 | |
| 4145 | // Set the succession list |
| 4146 | msg_succession_list_set(msg, &g_proposer.proposed_value.succession_list); |
| 4147 | |
| 4148 | log_cf_node_vector("paxos learn message sent to:" , &g_proposer.acceptors, |
| 4149 | CF_DEBUG); |
| 4150 | |
| 4151 | g_proposer.learn_send_time = cf_getms(); |
| 4152 | |
| 4153 | cf_vector* acceptors = vector_stack_lockless_create(cf_node); |
| 4154 | vector_copy(acceptors, &g_proposer.acceptors); |
| 4155 | |
| 4156 | CLUSTERING_UNLOCK(); |
| 4157 | |
| 4158 | // Sent the message to the acceptors. |
| 4159 | msg_nodes_send(msg, acceptors); |
| 4160 | cf_vector_destroy(acceptors); |
| 4161 | } |
| 4162 | |
| 4163 | /** |
| 4164 | * Handle an incoming paxos promise message. |
| 4165 | */ |
| 4166 | static void |
| 4167 | paxos_proposer_promise_handle(as_clustering_internal_event* event) |
| 4168 | { |
| 4169 | cf_node src_nodeid = event->msg_src_nodeid; |
| 4170 | msg* msg = event->msg; |
| 4171 | |
| 4172 | DEBUG("received paxos promise from node %" PRIx64, src_nodeid); |
| 4173 | |
| 4174 | CLUSTERING_LOCK(); |
| 4175 | if (g_proposer.state != AS_PAXOS_PROPOSER_STATE_PREPARE_SENT) { |
| 4176 | // We are not in the prepare phase. Reject this message. |
| 4177 | DEBUG("ignoring paxos promise from node %" PRIx64" - we are not in prepare phase" , |
| 4178 | src_nodeid); |
| 4179 | goto Exit; |
| 4180 | } |
| 4181 | |
| 4182 | if (vector_find(&g_proposer.acceptors, &src_nodeid) < 0) { |
| 4183 | WARNING("ignoring paxos promise from node %" PRIx64" - it is not in acceptor list" , |
| 4184 | src_nodeid); |
| 4185 | goto Exit; |
| 4186 | } |
| 4187 | |
| 4188 | as_paxos_sequence_number sequence_number = 0; |
| 4189 | if (msg_sequence_number_get(msg, &sequence_number) != 0) { |
| 4190 | WARNING("ignoring paxos promise from node %" PRIx64" with invalid proposal id" , |
| 4191 | src_nodeid); |
| 4192 | goto Exit; |
| 4193 | } |
| 4194 | |
| 4195 | if (sequence_number != g_proposer.sequence_number) { |
| 4196 | // Not a matching promise message. Ignore. |
| 4197 | INFO("ignoring paxos promise from node %" PRIx64" because its proposal id %" PRIu64" does not match expected id %" PRIu64, |
| 4198 | src_nodeid, sequence_number, |
| 4199 | g_proposer.sequence_number); |
| 4200 | goto Exit; |
| 4201 | } |
| 4202 | |
| 4203 | cf_vector_append_unique(&g_proposer.promises_received, &src_nodeid); |
| 4204 | |
| 4205 | int promised_count = cf_vector_size(&g_proposer.promises_received); |
| 4206 | int acceptor_count = cf_vector_size(&g_proposer.acceptors); |
| 4207 | |
| 4208 | // Use majority quorum to move on. |
| 4209 | if (promised_count >= 1 + (acceptor_count / 2)) { |
| 4210 | // We have quorum number of promises. go ahead to the accept phase. |
| 4211 | g_proposer.state = AS_PAXOS_PROPOSER_STATE_ACCEPT_SENT; |
| 4212 | paxos_proposer_accept_send(); |
| 4213 | } |
| 4214 | |
| 4215 | Exit: |
| 4216 | CLUSTERING_UNLOCK(); |
| 4217 | } |
| 4218 | |
| 4219 | /** |
| 4220 | * Handle an incoming paxos prepare nack message. |
| 4221 | */ |
| 4222 | static void |
| 4223 | paxos_proposer_prepare_nack_handle(as_clustering_internal_event* event) |
| 4224 | { |
| 4225 | cf_node src_nodeid = event->msg_src_nodeid; |
| 4226 | msg* msg = event->msg; |
| 4227 | |
| 4228 | DEBUG("received paxos prepare nack from node %" PRIx64, src_nodeid); |
| 4229 | |
| 4230 | CLUSTERING_LOCK(); |
| 4231 | if (g_proposer.state != AS_PAXOS_PROPOSER_STATE_PREPARE_SENT) { |
| 4232 | // We are not in the prepare phase. Reject this message. |
| 4233 | INFO("ignoring paxos prepare nack from node %" PRIx64" - we are not in prepare phase" , |
| 4234 | src_nodeid); |
| 4235 | goto Exit; |
| 4236 | } |
| 4237 | |
| 4238 | if (vector_find(&g_proposer.acceptors, &src_nodeid) < 0) { |
| 4239 | WARNING("ignoring paxos prepare nack from node %" PRIx64" - it is not in acceptor list" , |
| 4240 | src_nodeid); |
| 4241 | goto Exit; |
| 4242 | } |
| 4243 | |
| 4244 | as_paxos_sequence_number sequence_number = 0; |
| 4245 | if (msg_sequence_number_get(msg, &sequence_number) != 0) { |
| 4246 | WARNING("ignoring paxos prepare nack from node %" PRIx64" with invalid proposal id" , |
| 4247 | src_nodeid); |
| 4248 | goto Exit; |
| 4249 | } |
| 4250 | |
| 4251 | if (sequence_number != g_proposer.sequence_number) { |
| 4252 | // Not a matching prepare nack message. Ignore. |
| 4253 | INFO("ignoring paxos prepare nack from node %" PRIx64" because its proposal id %" PRIu64" does not match expected id %" PRIu64, |
| 4254 | src_nodeid, sequence_number, |
| 4255 | g_proposer.sequence_number); |
| 4256 | goto Exit; |
| 4257 | } |
| 4258 | |
| 4259 | INFO( |
| 4260 | "aborting current paxos proposal because of a prepare nack from node %" PRIx64, |
| 4261 | src_nodeid); |
| 4262 | paxos_proposer_fail(); |
| 4263 | |
| 4264 | Exit: |
| 4265 | CLUSTERING_UNLOCK(); |
| 4266 | } |
| 4267 | |
| 4268 | /** |
| 4269 | * Invoked when all acceptors have accepted the proposal. |
| 4270 | */ |
| 4271 | static void |
| 4272 | paxos_proposer_success() |
| 4273 | { |
| 4274 | CLUSTERING_LOCK(); |
| 4275 | |
| 4276 | // Set the proposer to back idle state. |
| 4277 | g_proposer.state = AS_PAXOS_PROPOSER_STATE_IDLE; |
| 4278 | |
| 4279 | // Send out learn message and enable retransmits of learn message. |
| 4280 | g_proposer.learn_retransmit_needed = true; |
| 4281 | paxos_proposer_learn_send(); |
| 4282 | |
| 4283 | // Retain the sequence_number, cluster key and succession list for |
| 4284 | // retransmits of the learn message. |
| 4285 | as_clustering_internal_event paxos_success_event; |
| 4286 | memset(&paxos_success_event, 0, sizeof(paxos_success_event)); |
| 4287 | paxos_success_event.type = |
| 4288 | AS_CLUSTERING_INTERNAL_EVENT_PAXOS_PROPOSER_SUCCESS; |
| 4289 | |
| 4290 | CLUSTERING_UNLOCK(); |
| 4291 | } |
| 4292 | |
| 4293 | /** |
| 4294 | * Indicates if the proposer can accept, accepted messages. |
| 4295 | */ |
| 4296 | static bool |
| 4297 | paxos_proposer_can_accept_accepted(cf_node src_nodeid, msg* msg) |
| 4298 | { |
| 4299 | bool rv = false; |
| 4300 | |
| 4301 | CLUSTERING_LOCK(); |
| 4302 | // We also allow accepted messages in the idle state to deal with a loss of |
| 4303 | // the learn message. |
| 4304 | if (g_proposer.state != AS_PAXOS_PROPOSER_STATE_ACCEPT_SENT |
| 4305 | && g_proposer.state != AS_PAXOS_PROPOSER_STATE_IDLE) { |
| 4306 | // We are not in the accept phase. Reject this message. |
| 4307 | DEBUG("ignoring paxos accepted from node %" PRIx64" - we are not in accept phase. Actual phase %d" , |
| 4308 | src_nodeid, g_proposer.state); |
| 4309 | goto Exit; |
| 4310 | } |
| 4311 | |
| 4312 | if (vector_find(&g_proposer.acceptors, &src_nodeid) < 0) { |
| 4313 | WARNING("ignoring paxos accepted from node %" PRIx64" - it is not in acceptor list" , |
| 4314 | src_nodeid); |
| 4315 | goto Exit; |
| 4316 | } |
| 4317 | |
| 4318 | as_paxos_sequence_number sequence_number = 0; |
| 4319 | if (msg_sequence_number_get(msg, &sequence_number) != 0) { |
| 4320 | WARNING("ignoring paxos accepted from node %" PRIx64" with invalid proposal id" , |
| 4321 | src_nodeid); |
| 4322 | goto Exit; |
| 4323 | } |
| 4324 | |
| 4325 | if (sequence_number != g_proposer.sequence_number) { |
| 4326 | // Not a matching accepted message. Ignore. |
| 4327 | INFO("ignoring paxos accepted from node %" PRIx64" because its proposal id %" PRIu64" does not match expected id %" PRIu64, |
| 4328 | src_nodeid, sequence_number, |
| 4329 | g_proposer.sequence_number); |
| 4330 | goto Exit; |
| 4331 | } |
| 4332 | |
| 4333 | if (g_proposer.proposed_value.cluster_key == g_register.cluster_key |
| 4334 | && vector_equals(&g_proposer.proposed_value.succession_list, |
| 4335 | &g_register.succession_list)) { |
| 4336 | // The register is already synced for this proposal. We can ignore this |
| 4337 | // accepted message. |
| 4338 | INFO("ignoring paxos accepted from node %" PRIx64" because its proposal id %" PRIu64" is a duplicate" , |
| 4339 | src_nodeid, sequence_number |
| 4340 | ); |
| 4341 | goto Exit; |
| 4342 | } |
| 4343 | |
| 4344 | rv = true; |
| 4345 | Exit: |
| 4346 | CLUSTERING_UNLOCK(); |
| 4347 | return rv; |
| 4348 | } |
| 4349 | |
| 4350 | /** |
| 4351 | * Handle an incoming paxos accepted message. |
| 4352 | */ |
| 4353 | static void |
| 4354 | paxos_proposer_accepted_handle(as_clustering_internal_event* event) |
| 4355 | { |
| 4356 | cf_node src_nodeid = event->msg_src_nodeid; |
| 4357 | msg* msg = event->msg; |
| 4358 | |
| 4359 | DEBUG("received paxos accepted from node %" PRIx64, src_nodeid); |
| 4360 | |
| 4361 | if (!paxos_proposer_can_accept_accepted(src_nodeid, msg)) { |
| 4362 | return; |
| 4363 | } |
| 4364 | |
| 4365 | CLUSTERING_LOCK(); |
| 4366 | |
| 4367 | cf_vector_append_unique(&g_proposer.accepted_received, &src_nodeid); |
| 4368 | |
| 4369 | int accepted_count = cf_vector_size(&g_proposer.accepted_received); |
| 4370 | int acceptor_count = cf_vector_size(&g_proposer.acceptors); |
| 4371 | |
| 4372 | // Use a simple quorum, all acceptors should accept for success. |
| 4373 | if (accepted_count == acceptor_count) { |
| 4374 | // This is the point after which the succession list will not change for |
| 4375 | // this paxos round. Ensure that we meet the minimum cluster size |
| 4376 | // criterion. |
| 4377 | int cluster_size = cf_vector_size( |
| 4378 | &g_proposer.proposed_value.succession_list); |
| 4379 | if (cluster_size < g_config.clustering_config.cluster_size_min) { |
| 4380 | WARNING( |
| 4381 | "failing paxos round - the remaining number of nodes %d is less than minimum cluster size %d" , |
| 4382 | cluster_size, g_config.clustering_config.cluster_size_min); |
| 4383 | // Fail paxos. |
| 4384 | paxos_proposer_fail(); |
| 4385 | goto Exit; |
| 4386 | } |
| 4387 | |
| 4388 | // We have quorum number of accepted nodes. The proposal succeeded. |
| 4389 | paxos_proposer_success(); |
| 4390 | } |
| 4391 | |
| 4392 | Exit: |
| 4393 | CLUSTERING_UNLOCK(); |
| 4394 | } |
| 4395 | |
| 4396 | /** |
| 4397 | * Handle an incoming paxos accept nack message. |
| 4398 | */ |
| 4399 | static void |
| 4400 | paxos_proposer_accept_nack_handle(as_clustering_internal_event* event) |
| 4401 | { |
| 4402 | cf_node src_nodeid = event->msg_src_nodeid; |
| 4403 | msg* msg = event->msg; |
| 4404 | |
| 4405 | DEBUG("received paxos accept nack from node %" PRIx64, src_nodeid); |
| 4406 | |
| 4407 | CLUSTERING_LOCK(); |
| 4408 | if (g_proposer.state != AS_PAXOS_PROPOSER_STATE_ACCEPT_SENT) { |
| 4409 | // We are not in the accept phase. Reject this message. |
| 4410 | INFO("ignoring paxos accept nack from node %" PRIx64" - we are not in accept phase" , |
| 4411 | src_nodeid); |
| 4412 | goto Exit; |
| 4413 | } |
| 4414 | |
| 4415 | if (vector_find(&g_proposer.acceptors, &src_nodeid) < 0) { |
| 4416 | WARNING("ignoring paxos accept nack from node %" PRIx64" - it is not in acceptor list" , |
| 4417 | src_nodeid); |
| 4418 | goto Exit; |
| 4419 | } |
| 4420 | |
| 4421 | as_paxos_sequence_number sequence_number = 0; |
| 4422 | if (msg_sequence_number_get(msg, &sequence_number) != 0) { |
| 4423 | WARNING("ignoring paxos accept nack from node %" PRIx64" with invalid proposal id" , |
| 4424 | src_nodeid); |
| 4425 | goto Exit; |
| 4426 | } |
| 4427 | |
| 4428 | if (sequence_number != g_proposer.sequence_number) { |
| 4429 | // Not a matching accept nack message. Ignore. |
| 4430 | INFO("ignoring paxos accept nack from node %" PRIx64"because its proposal id %" PRIu64" does not match expected id %" PRIu64, |
| 4431 | src_nodeid, sequence_number, |
| 4432 | g_proposer.sequence_number); |
| 4433 | goto Exit; |
| 4434 | } |
| 4435 | |
| 4436 | INFO( |
| 4437 | "aborting current paxos proposal because of an accept nack from node %" PRIx64, |
| 4438 | src_nodeid); |
| 4439 | paxos_proposer_fail(); |
| 4440 | |
| 4441 | Exit: |
| 4442 | CLUSTERING_UNLOCK(); |
| 4443 | } |
| 4444 | |
| 4445 | /** |
| 4446 | * Handle an incoming message. |
| 4447 | */ |
| 4448 | static void |
| 4449 | paxos_proposer_msg_event_handle(as_clustering_internal_event* msg_event) |
| 4450 | { |
| 4451 | switch (msg_event->msg_type) { |
| 4452 | case AS_CLUSTERING_MSG_TYPE_PAXOS_PROMISE: |
| 4453 | paxos_proposer_promise_handle(msg_event); |
| 4454 | break; |
| 4455 | case AS_CLUSTERING_MSG_TYPE_PAXOS_PREPARE_NACK: |
| 4456 | paxos_proposer_prepare_nack_handle(msg_event); |
| 4457 | break; |
| 4458 | case AS_CLUSTERING_MSG_TYPE_PAXOS_ACCEPTED: |
| 4459 | paxos_proposer_accepted_handle(msg_event); |
| 4460 | break; |
| 4461 | case AS_CLUSTERING_MSG_TYPE_PAXOS_ACCEPT_NACK: |
| 4462 | paxos_proposer_accept_nack_handle(msg_event); |
| 4463 | break; |
| 4464 | default: // Other message types are not of interest. |
| 4465 | break; |
| 4466 | } |
| 4467 | } |
| 4468 | |
| 4469 | /** |
| 4470 | * Handle heartbeat event. |
| 4471 | */ |
| 4472 | static void |
| 4473 | paxos_proposer_hb_event_handle(as_clustering_internal_event* hb_event) |
| 4474 | { |
| 4475 | if (!paxos_proposer_proposal_is_active()) { |
| 4476 | return; |
| 4477 | } |
| 4478 | |
| 4479 | CLUSTERING_LOCK(); |
| 4480 | for (int i = 0; i < hb_event->hb_n_events; i++) { |
| 4481 | if (hb_event->hb_events[i].evt == AS_HB_NODE_DEPART) { |
| 4482 | cf_node departed_node = hb_event->hb_events[i].nodeid; |
| 4483 | if (vector_find(&g_proposer.acceptors, &departed_node)) { |
| 4484 | // One of the acceptors has departed. Abort the paxos proposal. |
| 4485 | INFO("paxos acceptor %" PRIx64" departed - aborting current paxos proposal" , departed_node); |
| 4486 | paxos_proposer_fail(); |
| 4487 | break; |
| 4488 | } |
| 4489 | } |
| 4490 | } |
| 4491 | CLUSTERING_UNLOCK(); |
| 4492 | } |
| 4493 | |
| 4494 | /** |
| 4495 | * Check and retransmit prepare message if paxos promise messages have not yet |
| 4496 | * being received. |
| 4497 | */ |
| 4498 | static void |
| 4499 | paxos_proposer_prepare_check_retransmit() |
| 4500 | { |
| 4501 | CLUSTERING_LOCK(); |
| 4502 | cf_clock now = cf_getms(); |
| 4503 | if (g_proposer.state == AS_PAXOS_PROPOSER_STATE_PREPARE_SENT |
| 4504 | && g_proposer.prepare_send_time + paxos_msg_timeout() < now) { |
| 4505 | paxos_proposer_prepare_send(); |
| 4506 | } |
| 4507 | CLUSTERING_UNLOCK(); |
| 4508 | } |
| 4509 | |
| 4510 | /** |
| 4511 | * Check and retransmit accept message if paxos accepted has yet being received. |
| 4512 | */ |
| 4513 | static void |
| 4514 | paxos_proposer_accept_check_retransmit() |
| 4515 | { |
| 4516 | CLUSTERING_LOCK(); |
| 4517 | cf_clock now = cf_getms(); |
| 4518 | if (g_proposer.state == AS_PAXOS_PROPOSER_STATE_ACCEPT_SENT |
| 4519 | && g_proposer.accept_send_time + paxos_msg_timeout() < now) { |
| 4520 | paxos_proposer_accept_send(); |
| 4521 | } |
| 4522 | CLUSTERING_UNLOCK(); |
| 4523 | } |
| 4524 | |
| 4525 | /** |
| 4526 | * Check and retransmit learn message if all acceptors have not applied the |
| 4527 | * current cluster change. |
| 4528 | */ |
| 4529 | static void |
| 4530 | paxos_proposer_learn_check_retransmit() |
| 4531 | { |
| 4532 | CLUSTERING_LOCK(); |
| 4533 | cf_clock now = cf_getms(); |
| 4534 | bool learn_timedout = g_proposer.learn_retransmit_needed |
| 4535 | && (g_proposer.state == AS_PAXOS_PROPOSER_STATE_IDLE) |
| 4536 | && (g_proposer.proposed_value.cluster_key != 0) |
| 4537 | && (g_proposer.learn_send_time + paxos_msg_timeout() < now); |
| 4538 | |
| 4539 | if (learn_timedout) { |
| 4540 | // If the register is not synced, most likely the learn message did not |
| 4541 | // make it through, retransmit the learn message to move the paxos |
| 4542 | // acceptor forward and start register sync. |
| 4543 | INFO("retransmitting paxos learn message" ); |
| 4544 | paxos_proposer_learn_send(); |
| 4545 | } |
| 4546 | CLUSTERING_UNLOCK(); |
| 4547 | } |
| 4548 | |
| 4549 | /** |
| 4550 | * Handle a timer event and retransmit messages if required. |
| 4551 | */ |
| 4552 | static void |
| 4553 | paxos_proposer_timer_event_handle() |
| 4554 | { |
| 4555 | CLUSTERING_LOCK(); |
| 4556 | switch (g_proposer.state) { |
| 4557 | case AS_PAXOS_PROPOSER_STATE_IDLE: |
| 4558 | paxos_proposer_learn_check_retransmit(); |
| 4559 | break; |
| 4560 | case AS_PAXOS_PROPOSER_STATE_PREPARE_SENT: |
| 4561 | paxos_proposer_prepare_check_retransmit(); |
| 4562 | break; |
| 4563 | case AS_PAXOS_PROPOSER_STATE_ACCEPT_SENT: |
| 4564 | paxos_proposer_accept_check_retransmit(); |
| 4565 | break; |
| 4566 | } |
| 4567 | CLUSTERING_UNLOCK(); |
| 4568 | } |
| 4569 | |
| 4570 | /** |
| 4571 | * Handle register getting synched. |
| 4572 | */ |
| 4573 | static void |
| 4574 | paxos_proposer_register_synched() |
| 4575 | { |
| 4576 | CLUSTERING_LOCK(); |
| 4577 | // Register synched we no longer need learn messages to be retransmitted. |
| 4578 | g_proposer.learn_retransmit_needed = false; |
| 4579 | CLUSTERING_UNLOCK(); |
| 4580 | } |
| 4581 | |
| 4582 | /** |
| 4583 | * Initialize paxos proposer state. |
| 4584 | */ |
| 4585 | static void |
| 4586 | paxos_proposer_init() |
| 4587 | { |
| 4588 | CLUSTERING_LOCK(); |
| 4589 | // Memset to zero which ensures that all proposer state variables have zero |
| 4590 | // which is the correct initial value for elements other that contained |
| 4591 | // vectors and status. |
| 4592 | memset(&g_proposer, 0, sizeof(g_proposer)); |
| 4593 | |
| 4594 | // Initialize the proposer state. |
| 4595 | // No paxos round running, so the state has to be idle. |
| 4596 | g_proposer.state = AS_PAXOS_PROPOSER_STATE_IDLE; |
| 4597 | |
| 4598 | // Set the current acceptor list to be empty. |
| 4599 | vector_lockless_init(&g_proposer.acceptors, cf_node); |
| 4600 | |
| 4601 | // Set the current promises received node list to empty. |
| 4602 | vector_lockless_init(&g_proposer.promises_received, cf_node); |
| 4603 | |
| 4604 | // Set the current accepted received node list to empty. |
| 4605 | vector_lockless_init(&g_proposer.accepted_received, cf_node); |
| 4606 | |
| 4607 | // Initialize the proposed value. |
| 4608 | vector_lockless_init(&g_proposer.proposed_value.succession_list, cf_node); |
| 4609 | g_proposer.proposed_value.cluster_key = 0; |
| 4610 | |
| 4611 | CLUSTERING_UNLOCK(); |
| 4612 | } |
| 4613 | |
| 4614 | /** |
| 4615 | * Log paxos results. |
| 4616 | */ |
| 4617 | static void |
| 4618 | paxos_result_log(as_paxos_start_result result, cf_vector* new_succession_list) |
| 4619 | { |
| 4620 | CLUSTERING_LOCK(); |
| 4621 | switch (result) { |
| 4622 | case AS_PAXOS_RESULT_STARTED: { |
| 4623 | // Running check required because paxos round finished for single node |
| 4624 | // cluster by this time. |
| 4625 | if (paxos_proposer_proposal_is_active()) { |
| 4626 | INFO("paxos round started - cluster key: %" PRIx64, |
| 4627 | g_proposer.proposed_value.cluster_key); |
| 4628 | log_cf_node_vector("paxos round started - succession list:" , |
| 4629 | &g_proposer.proposed_value.succession_list, CF_INFO); |
| 4630 | } |
| 4631 | break; |
| 4632 | } |
| 4633 | |
| 4634 | case AS_PAXOS_RESULT_CLUSTER_TOO_SMALL: { |
| 4635 | WARNING( |
| 4636 | "paxos round aborted - new cluster size %d less than min cluster size %d" , |
| 4637 | cf_vector_size(new_succession_list), |
| 4638 | g_config.clustering_config.cluster_size_min); |
| 4639 | break; |
| 4640 | } |
| 4641 | |
| 4642 | case AS_PAXOS_RESULT_ROUND_RUNNING: { |
| 4643 | // Should never happen in practice. Let the old round finish or timeout. |
| 4644 | WARNING( |
| 4645 | "older paxos round still running - should have finished by now" ); |
| 4646 | } |
| 4647 | } |
| 4648 | |
| 4649 | CLUSTERING_UNLOCK(); |
| 4650 | } |
| 4651 | |
| 4652 | /** |
| 4653 | * Start a new paxos round. |
| 4654 | * |
| 4655 | * @param new_succession_list the new succession list. |
| 4656 | * @param acceptor_list the list of nodes to use for paxos acceptors. |
| 4657 | * @param current_cluster_key the current cluster key |
| 4658 | * @param current_succession_list the current succession list, can be null if |
| 4659 | * this node is an orphan. |
| 4660 | */ |
| 4661 | static as_paxos_start_result |
| 4662 | paxos_proposer_proposal_start(cf_vector* new_succession_list, |
| 4663 | cf_vector* acceptor_list) |
| 4664 | { |
| 4665 | if (cf_vector_size(new_succession_list) |
| 4666 | < g_config.clustering_config.cluster_size_min) { |
| 4667 | // Fail paxos. |
| 4668 | return AS_PAXOS_RESULT_CLUSTER_TOO_SMALL; |
| 4669 | } |
| 4670 | |
| 4671 | CLUSTERING_LOCK(); |
| 4672 | |
| 4673 | as_paxos_start_result result; |
| 4674 | if (paxos_proposer_proposal_is_active()) { |
| 4675 | result = AS_PAXOS_RESULT_ROUND_RUNNING; |
| 4676 | goto Exit; |
| 4677 | } |
| 4678 | |
| 4679 | // Update state to prepare. |
| 4680 | g_proposer.state = AS_PAXOS_PROPOSER_STATE_PREPARE_SENT; |
| 4681 | |
| 4682 | g_proposer.sequence_number = as_hlc_timestamp_now(); |
| 4683 | |
| 4684 | g_proposer.paxos_round_start_time = cf_getms(); |
| 4685 | |
| 4686 | // Populate the proposed value struct with new succession list and a new |
| 4687 | // cluster key. |
| 4688 | vector_clear(&g_proposer.proposed_value.succession_list); |
| 4689 | vector_copy(&g_proposer.proposed_value.succession_list, |
| 4690 | new_succession_list); |
| 4691 | g_proposer.proposed_value.cluster_key = clustering_cluster_key_generate( |
| 4692 | g_register.cluster_key); |
| 4693 | |
| 4694 | // Remember the acceptors for this paxos round. |
| 4695 | vector_clear(&g_proposer.acceptors); |
| 4696 | vector_copy(&g_proposer.acceptors, acceptor_list); |
| 4697 | |
| 4698 | // Clear the promise received and accepted received vectors for this new |
| 4699 | // round. |
| 4700 | vector_clear(&g_proposer.promises_received); |
| 4701 | vector_clear(&g_proposer.accepted_received); |
| 4702 | |
| 4703 | paxos_proposer_prepare_send(); |
| 4704 | |
| 4705 | result = AS_PAXOS_RESULT_STARTED; |
| 4706 | |
| 4707 | Exit: |
| 4708 | CLUSTERING_UNLOCK(); |
| 4709 | |
| 4710 | return result; |
| 4711 | } |
| 4712 | |
| 4713 | /** |
| 4714 | * Paxos proposer monitor to detect and cleanup long running and most likely |
| 4715 | * failed paxos rounds. |
| 4716 | */ |
| 4717 | static void |
| 4718 | paxos_proposer_monitor() |
| 4719 | { |
| 4720 | CLUSTERING_LOCK(); |
| 4721 | if (paxos_proposer_proposal_is_active()) { |
| 4722 | if (g_proposer.paxos_round_start_time + paxos_proposal_timeout() |
| 4723 | <= cf_getms()) { |
| 4724 | // Paxos round is running and has timed out. |
| 4725 | // Consider paxos round failed. |
| 4726 | INFO("paxos round timed out for proposal id %" PRIx64":%" PRIu64, |
| 4727 | config_self_nodeid_get(), |
| 4728 | g_proposer.sequence_number); |
| 4729 | paxos_proposer_fail(); |
| 4730 | } |
| 4731 | } |
| 4732 | CLUSTERING_UNLOCK(); |
| 4733 | } |
| 4734 | |
| 4735 | /* |
| 4736 | * ---------------------------------------------------------------------------- |
| 4737 | * Paxos acceptor |
| 4738 | * ---------------------------------------------------------------------------- |
| 4739 | */ |
| 4740 | |
| 4741 | /** |
| 4742 | * Dump paxos acceptor state to logs. |
| 4743 | */ |
| 4744 | static void |
| 4745 | paxos_acceptor_dump(bool verbose) |
| 4746 | { |
| 4747 | CLUSTERING_LOCK(); |
| 4748 | |
| 4749 | // Output paxos acceptor state. |
| 4750 | switch (g_acceptor.state) { |
| 4751 | case AS_PAXOS_ACCEPTOR_STATE_IDLE: |
| 4752 | INFO("CL: paxos acceptor: idle" ); |
| 4753 | break; |
| 4754 | case AS_PAXOS_ACCEPTOR_STATE_PROMISED: |
| 4755 | INFO("CL: paxos acceptor: promised" ); |
| 4756 | break; |
| 4757 | case AS_PAXOS_ACCEPTOR_STATE_ACCEPTED: |
| 4758 | INFO("CL: paxos acceptor: accepted" ); |
| 4759 | break; |
| 4760 | } |
| 4761 | |
| 4762 | if (verbose) { |
| 4763 | if (g_acceptor.state != AS_PAXOS_ACCEPTOR_STATE_IDLE) { |
| 4764 | INFO("CL: paxos acceptor start time: %" PRIu64" now: %" PRIu64, |
| 4765 | g_acceptor.acceptor_round_start, cf_getms()); |
| 4766 | INFO("CL: paxos acceptor proposal id: (%" PRIx64":%" PRIu64")" , |
| 4767 | g_acceptor.last_proposal_received_id.src_nodeid, |
| 4768 | g_acceptor.last_proposal_received_id.sequence_number); |
| 4769 | INFO("CL: paxos acceptor promised time: %" PRIu64" now: %" PRIu64, |
| 4770 | g_acceptor.promise_send_time, cf_getms()); |
| 4771 | INFO("CL: paxos acceptor accepted time: %" PRIu64" now: %" PRIu64, |
| 4772 | g_acceptor.accepted_send_time, cf_getms()); |
| 4773 | } |
| 4774 | } |
| 4775 | |
| 4776 | CLUSTERING_UNLOCK(); |
| 4777 | } |
| 4778 | |
| 4779 | /** |
| 4780 | * Reset the acceptor for the next round. |
| 4781 | */ |
| 4782 | static void |
| 4783 | paxos_acceptor_reset() |
| 4784 | { |
| 4785 | CLUSTERING_LOCK(); |
| 4786 | g_acceptor.state = AS_PAXOS_ACCEPTOR_STATE_IDLE; |
| 4787 | g_acceptor.acceptor_round_start = 0; |
| 4788 | g_acceptor.promise_send_time = 0; |
| 4789 | g_acceptor.accepted_send_time = 0; |
| 4790 | CLUSTERING_UNLOCK(); |
| 4791 | } |
| 4792 | |
| 4793 | /** |
| 4794 | * Invoked to fail an ongoing paxos proposal. |
| 4795 | */ |
| 4796 | static void |
| 4797 | paxos_acceptor_fail() |
| 4798 | { |
| 4799 | // Cleanup state for the paxos round. |
| 4800 | paxos_acceptor_reset(); |
| 4801 | |
| 4802 | as_clustering_internal_event paxos_fail_event; |
| 4803 | memset(&paxos_fail_event, 0, sizeof(paxos_fail_event)); |
| 4804 | paxos_fail_event.type = AS_CLUSTERING_INTERNAL_EVENT_PAXOS_ACCEPTOR_FAIL; |
| 4805 | |
| 4806 | internal_event_dispatch(&paxos_fail_event); |
| 4807 | } |
| 4808 | |
| 4809 | /** |
| 4810 | * Invoked on success of an ongoing paxos proposal. |
| 4811 | */ |
| 4812 | static void |
| 4813 | paxos_acceptor_success(as_cluster_key cluster_key, cf_vector* succession_list, |
| 4814 | as_paxos_sequence_number sequence_number) |
| 4815 | { |
| 4816 | // Cleanup state for the paxos round. |
| 4817 | paxos_acceptor_reset(); |
| 4818 | |
| 4819 | as_clustering_internal_event paxos_success_event; |
| 4820 | memset(&paxos_success_event, 0, sizeof(paxos_success_event)); |
| 4821 | paxos_success_event.type = |
| 4822 | AS_CLUSTERING_INTERNAL_EVENT_PAXOS_ACCEPTOR_SUCCESS; |
| 4823 | paxos_success_event.new_succession_list = succession_list; |
| 4824 | paxos_success_event.new_cluster_key = cluster_key; |
| 4825 | paxos_success_event.new_sequence_number = sequence_number; |
| 4826 | |
| 4827 | internal_event_dispatch(&paxos_success_event); |
| 4828 | } |
| 4829 | |
| 4830 | /** |
| 4831 | * Send paxos promise message to the proposer node. |
| 4832 | * @param dest the destination node. |
| 4833 | * @param sequence_number the sequence number from the incoming message. |
| 4834 | */ |
| 4835 | static void |
| 4836 | paxos_acceptor_promise_send(cf_node dest, |
| 4837 | as_paxos_sequence_number sequence_number) |
| 4838 | { |
| 4839 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_PAXOS_PROMISE); |
| 4840 | |
| 4841 | msg_sequence_number_set(msg, sequence_number); |
| 4842 | |
| 4843 | DEBUG("paxos promise message sent to node %" PRIx64" with proposal id (%" PRIx64":%" PRIu64")" , dest, dest, sequence_number); |
| 4844 | |
| 4845 | CLUSTERING_LOCK(); |
| 4846 | g_acceptor.promise_send_time = cf_getms(); |
| 4847 | CLUSTERING_UNLOCK(); |
| 4848 | |
| 4849 | // Send the message to the proposer. |
| 4850 | msg_node_send(msg, dest); |
| 4851 | } |
| 4852 | |
| 4853 | /** |
| 4854 | * Send paxos prepare nack message to the proposer. |
| 4855 | * @param dest the destination node. |
| 4856 | * @param sequence_number the sequence number from the incoming message. |
| 4857 | */ |
| 4858 | static void |
| 4859 | paxos_acceptor_prepare_nack_send(cf_node dest, |
| 4860 | as_paxos_sequence_number sequence_number) |
| 4861 | { |
| 4862 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_PAXOS_PREPARE_NACK); |
| 4863 | |
| 4864 | msg_sequence_number_set(msg, sequence_number); |
| 4865 | |
| 4866 | DEBUG("paxos prepare nack message sent to node %" PRIx64" with proposal id (%" PRIx64":%" PRIu64")" , dest, dest, sequence_number); |
| 4867 | |
| 4868 | // Send the message to the proposer. |
| 4869 | msg_node_send(msg, dest); |
| 4870 | } |
| 4871 | |
| 4872 | /** |
| 4873 | * Send paxos accepted message to the proposer node. |
| 4874 | * @param dest the destination node. |
| 4875 | * @param sequence_number the sequence number from the incoming message. |
| 4876 | */ |
| 4877 | static void |
| 4878 | paxos_acceptor_accepted_send(cf_node dest, |
| 4879 | as_paxos_sequence_number sequence_number) |
| 4880 | { |
| 4881 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_PAXOS_ACCEPTED); |
| 4882 | |
| 4883 | msg_sequence_number_set(msg, sequence_number); |
| 4884 | |
| 4885 | DEBUG("paxos accepted message sent to node %" PRIx64" with proposal id (%" PRIx64":%" PRIu64")" , dest, dest, sequence_number); |
| 4886 | |
| 4887 | CLUSTERING_LOCK(); |
| 4888 | g_acceptor.accepted_send_time = cf_getms(); |
| 4889 | CLUSTERING_UNLOCK(); |
| 4890 | |
| 4891 | // Send the message to the proposer. |
| 4892 | msg_node_send(msg, dest); |
| 4893 | } |
| 4894 | |
| 4895 | /** |
| 4896 | * Send paxos accept nack message to the proposer. |
| 4897 | * @param dest the destination node. |
| 4898 | * @param sequence_number the sequence number from the incoming message. |
| 4899 | */ |
| 4900 | static void |
| 4901 | paxos_acceptor_accept_nack_send(cf_node dest, |
| 4902 | as_paxos_sequence_number sequence_number) |
| 4903 | { |
| 4904 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_PAXOS_ACCEPT_NACK); |
| 4905 | |
| 4906 | msg_sequence_number_set(msg, sequence_number); |
| 4907 | |
| 4908 | DEBUG("paxos accept nack message sent to node %" PRIx64" with proposal id (%" PRIx64":%" PRIu64")" , dest, dest, sequence_number); |
| 4909 | |
| 4910 | // Send the message to the proposer. |
| 4911 | msg_node_send(msg, dest); |
| 4912 | } |
| 4913 | |
| 4914 | /** |
| 4915 | * Check if the incoming prepare can be promised. |
| 4916 | */ |
| 4917 | static bool |
| 4918 | paxos_acceptor_prepare_can_promise(cf_node src_nodeid, |
| 4919 | as_paxos_proposal_id* proposal_id) |
| 4920 | { |
| 4921 | if (!clustering_can_accept_as_proposer(src_nodeid)) { |
| 4922 | INFO("ignoring paxos prepare from node %" PRIx64" because it cannot be a principal" , |
| 4923 | src_nodeid); |
| 4924 | return false; |
| 4925 | } |
| 4926 | |
| 4927 | bool can_promise = false; |
| 4928 | CLUSTERING_LOCK(); |
| 4929 | int comparison = paxos_proposal_id_compare(proposal_id, |
| 4930 | &g_acceptor.last_proposal_received_id); |
| 4931 | |
| 4932 | switch (g_acceptor.state) { |
| 4933 | case AS_PAXOS_ACCEPTOR_STATE_IDLE: |
| 4934 | case AS_PAXOS_ACCEPTOR_STATE_ACCEPTED: { |
| 4935 | // Allow only higher valued proposal to prevent replays and also to |
| 4936 | // ensure convergence in the face of competing proposals. |
| 4937 | can_promise = comparison > 0; |
| 4938 | } |
| 4939 | break; |
| 4940 | case AS_PAXOS_ACCEPTOR_STATE_PROMISED: { |
| 4941 | // We allow for replays of the prepare message as well so that the |
| 4942 | // proposer can receive a promise for this node's lost promise message. |
| 4943 | can_promise = comparison >= 0; |
| 4944 | } |
| 4945 | break; |
| 4946 | } |
| 4947 | |
| 4948 | CLUSTERING_UNLOCK(); |
| 4949 | |
| 4950 | return can_promise; |
| 4951 | } |
| 4952 | |
| 4953 | /** |
| 4954 | * Handle an incoming paxos prepare message. |
| 4955 | */ |
| 4956 | static void |
| 4957 | paxos_acceptor_prepare_handle(as_clustering_internal_event* event) |
| 4958 | { |
| 4959 | cf_node src_nodeid = event->msg_src_nodeid; |
| 4960 | DEBUG("received paxos prepare from node %" PRIx64, src_nodeid); |
| 4961 | |
| 4962 | as_paxos_proposal_id proposal_id = { 0 }; |
| 4963 | if (msg_event_proposal_id_get(event, &proposal_id) != 0) { |
| 4964 | INFO("ignoring paxos prepare from node %" PRIx64" with invalid proposal id" , |
| 4965 | src_nodeid); |
| 4966 | return; |
| 4967 | } |
| 4968 | |
| 4969 | if (!paxos_acceptor_prepare_can_promise(src_nodeid, &proposal_id)) { |
| 4970 | INFO("ignoring paxos prepare from node %" PRIx64" with obsolete proposal id (%" PRIx64":%" PRIu64")" , proposal_id.src_nodeid, proposal_id.src_nodeid, proposal_id.sequence_number); |
| 4971 | paxos_acceptor_prepare_nack_send(src_nodeid, |
| 4972 | proposal_id.sequence_number); |
| 4973 | return; |
| 4974 | } |
| 4975 | |
| 4976 | CLUSTERING_LOCK(); |
| 4977 | |
| 4978 | bool is_new_proposal = paxos_proposal_id_compare(&proposal_id, |
| 4979 | &g_acceptor.last_proposal_received_id) != 0; |
| 4980 | |
| 4981 | if (is_new_proposal) { |
| 4982 | // Remember this to be the last proposal id we received. |
| 4983 | memcpy(&g_acceptor.last_proposal_received_id, &proposal_id, |
| 4984 | sizeof(proposal_id)); |
| 4985 | |
| 4986 | // Update the round start time. |
| 4987 | g_acceptor.acceptor_round_start = cf_getms(); |
| 4988 | |
| 4989 | // Switch to promised state. |
| 4990 | g_acceptor.state = AS_PAXOS_ACCEPTOR_STATE_PROMISED; |
| 4991 | } |
| 4992 | else { |
| 4993 | // This is a retransmit or delayed message in which case we do not |
| 4994 | // update the state. |
| 4995 | // If we have already accepted this proposal, we would want to remain in |
| 4996 | // accepted state. |
| 4997 | } |
| 4998 | |
| 4999 | // The proposal is promised. Send back a paxos promise. |
| 5000 | paxos_acceptor_promise_send(src_nodeid, proposal_id.sequence_number); |
| 5001 | |
| 5002 | CLUSTERING_UNLOCK(); |
| 5003 | } |
| 5004 | |
| 5005 | /** |
| 5006 | * Check if the incoming accept can be accepted. |
| 5007 | */ |
| 5008 | static bool |
| 5009 | paxos_acceptor_accept_can_accept(cf_node src_nodeid, |
| 5010 | as_paxos_proposal_id* proposal_id) |
| 5011 | { |
| 5012 | if (!clustering_can_accept_as_proposer(src_nodeid)) { |
| 5013 | INFO("ignoring paxos accept from node %" PRIx64" because it cannot be a principal" , |
| 5014 | src_nodeid); |
| 5015 | return false; |
| 5016 | } |
| 5017 | |
| 5018 | bool can_accept = false; |
| 5019 | CLUSTERING_LOCK(); |
| 5020 | int comparison = paxos_proposal_id_compare(proposal_id, |
| 5021 | &g_acceptor.last_proposal_received_id); |
| 5022 | |
| 5023 | switch (g_acceptor.state) { |
| 5024 | case AS_PAXOS_ACCEPTOR_STATE_IDLE: |
| 5025 | case AS_PAXOS_ACCEPTOR_STATE_PROMISED: |
| 5026 | case AS_PAXOS_ACCEPTOR_STATE_ACCEPTED: { |
| 5027 | // We allow for replays of the accept message as well, so that the |
| 5028 | // proposer can receive an accepted for this node's lost accepted |
| 5029 | // message. |
| 5030 | can_accept = comparison >= 0; |
| 5031 | } |
| 5032 | break; |
| 5033 | } |
| 5034 | |
| 5035 | CLUSTERING_UNLOCK(); |
| 5036 | |
| 5037 | return can_accept; |
| 5038 | } |
| 5039 | |
| 5040 | /** |
| 5041 | * Handle an incoming paxos accept message. |
| 5042 | */ |
| 5043 | static void |
| 5044 | paxos_acceptor_accept_handle(as_clustering_internal_event* event) |
| 5045 | { |
| 5046 | cf_node src_nodeid = event->msg_src_nodeid; |
| 5047 | |
| 5048 | DEBUG("received paxos accept from node %" PRIx64, src_nodeid); |
| 5049 | |
| 5050 | // Its ok to proceed even is paxos is running, because this could be a |
| 5051 | // competing proposal and the winner will be decided by paxos sequence |
| 5052 | // number. |
| 5053 | as_paxos_proposal_id proposal_id = { 0 }; |
| 5054 | if (msg_event_proposal_id_get(event, &proposal_id) != 0) { |
| 5055 | INFO("ignoring paxos accept from node %" PRIx64" with invalid proposal id" , |
| 5056 | src_nodeid); |
| 5057 | return; |
| 5058 | } |
| 5059 | |
| 5060 | if (!paxos_acceptor_accept_can_accept(src_nodeid, &proposal_id)) { |
| 5061 | INFO("ignoring paxos accept from node %" PRIx64" with obsolete proposal id (%" PRIx64":%" PRIu64")" , proposal_id.src_nodeid, proposal_id.src_nodeid, proposal_id.sequence_number); |
| 5062 | paxos_acceptor_accept_nack_send(src_nodeid, |
| 5063 | proposal_id.sequence_number); |
| 5064 | return; |
| 5065 | } |
| 5066 | |
| 5067 | CLUSTERING_LOCK(); |
| 5068 | |
| 5069 | bool is_new_proposal = paxos_proposal_id_compare(&proposal_id, |
| 5070 | &g_acceptor.last_proposal_received_id) != 0; |
| 5071 | |
| 5072 | if (is_new_proposal) { |
| 5073 | // This node has missed the prepare message, but received the accept |
| 5074 | // message. This is alright. |
| 5075 | |
| 5076 | // Remember this to be the last proposal id we received. |
| 5077 | memcpy(&g_acceptor.last_proposal_received_id, &proposal_id, |
| 5078 | sizeof(proposal_id)); |
| 5079 | |
| 5080 | // Mark this as the start of the acceptor paxos round. |
| 5081 | g_acceptor.acceptor_round_start = cf_getms(); |
| 5082 | } |
| 5083 | |
| 5084 | g_acceptor.state = AS_PAXOS_ACCEPTOR_STATE_ACCEPTED; |
| 5085 | // The proposal is accepted. Send back a paxos accept. |
| 5086 | paxos_acceptor_accepted_send(src_nodeid, proposal_id.sequence_number); |
| 5087 | |
| 5088 | CLUSTERING_UNLOCK(); |
| 5089 | } |
| 5090 | |
| 5091 | /** |
| 5092 | * Handle an incoming paxos learn message. |
| 5093 | */ |
| 5094 | static void |
| 5095 | paxos_acceptor_learn_handle(as_clustering_internal_event* event) |
| 5096 | { |
| 5097 | cf_node src_nodeid = event->msg_src_nodeid; |
| 5098 | msg* msg = event->msg; |
| 5099 | |
| 5100 | DEBUG("received paxos learn from node %" PRIx64, src_nodeid); |
| 5101 | |
| 5102 | if (!clustering_can_accept_as_proposer(src_nodeid)) { |
| 5103 | INFO("ignoring learn message from a non-principal node %" PRIx64" because we are already in a cluster" , |
| 5104 | src_nodeid); |
| 5105 | return; |
| 5106 | } |
| 5107 | |
| 5108 | // Its ok to proceed even if paxos is running, because this could be a |
| 5109 | // competing proposal and the winner was decided by paxos sequence number. |
| 5110 | as_paxos_proposal_id proposal_id = { 0 }; |
| 5111 | if (msg_event_proposal_id_get(event, &proposal_id) != 0) { |
| 5112 | INFO("ignoring paxos learn from node %" PRIx64"with invalid proposal id" , |
| 5113 | src_nodeid); |
| 5114 | return; |
| 5115 | } |
| 5116 | |
| 5117 | CLUSTERING_LOCK(); |
| 5118 | |
| 5119 | if (g_acceptor.state != AS_PAXOS_ACCEPTOR_STATE_ACCEPTED) { |
| 5120 | INFO( |
| 5121 | "ignoring paxos learn from node %" PRIx64" - proposal id (%" PRIx64":%" PRIu64") we are already in a cluster" , |
| 5122 | src_nodeid, proposal_id.src_nodeid, |
| 5123 | proposal_id.sequence_number); |
| 5124 | goto Exit; |
| 5125 | } |
| 5126 | |
| 5127 | if (paxos_proposal_id_compare(&proposal_id, |
| 5128 | &g_acceptor.last_proposal_received_id) != 0) { |
| 5129 | // We have not promised nor accepted this proposal, |
| 5130 | // ignore the learn message. |
| 5131 | INFO( |
| 5132 | "ignoring paxos learn from node %" PRIx64" - proposal id (%" PRIx64":%" PRIu64") mismatches current proposal id (%" PRIx64":%" PRIu64")" , |
| 5133 | src_nodeid, proposal_id.src_nodeid, |
| 5134 | proposal_id.sequence_number, |
| 5135 | g_acceptor.last_proposal_received_id.src_nodeid, |
| 5136 | g_acceptor.last_proposal_received_id.sequence_number); |
| 5137 | goto Exit; |
| 5138 | } |
| 5139 | |
| 5140 | as_cluster_key new_cluster_key = 0; |
| 5141 | cf_vector* new_succession_list = vector_stack_lockless_create(cf_node); |
| 5142 | |
| 5143 | if (msg_cluster_key_get(msg, &new_cluster_key) != 0) { |
| 5144 | INFO("ignoring paxos learn from node %" PRIx64" without cluster key" , |
| 5145 | src_nodeid); |
| 5146 | goto Exit_destory_succession; |
| 5147 | } |
| 5148 | |
| 5149 | if (msg_succession_list_get(msg, new_succession_list) != 0) { |
| 5150 | INFO("ignoring paxos learn from node %" PRIx64" without succession list" , |
| 5151 | src_nodeid); |
| 5152 | goto Exit_destory_succession; |
| 5153 | } |
| 5154 | |
| 5155 | if (new_cluster_key == g_register.cluster_key) { |
| 5156 | if (!vector_equals(new_succession_list, &g_register.succession_list)) { |
| 5157 | // We have the same cluster key repeated for a new round. Should |
| 5158 | // never happen. |
| 5159 | CRASH("duplicate cluster key %" PRIx64" generated for different paxos rounds - disastrous" , new_cluster_key); |
| 5160 | } |
| 5161 | |
| 5162 | INFO("ignoring duplicate paxos learn from node %" PRIx64, src_nodeid); |
| 5163 | goto Exit_destory_succession; |
| 5164 | } |
| 5165 | |
| 5166 | // Paxos round converged, apply the new cluster configuration. |
| 5167 | paxos_acceptor_success(new_cluster_key, new_succession_list, |
| 5168 | proposal_id.sequence_number); |
| 5169 | |
| 5170 | Exit_destory_succession: |
| 5171 | cf_vector_destroy(new_succession_list); |
| 5172 | |
| 5173 | Exit: |
| 5174 | CLUSTERING_UNLOCK(); |
| 5175 | } |
| 5176 | |
| 5177 | /** |
| 5178 | * Handle an incoming message. |
| 5179 | */ |
| 5180 | static void |
| 5181 | paxos_acceptor_msg_event_handle(as_clustering_internal_event *msg_event) |
| 5182 | { |
| 5183 | switch (msg_event->msg_type) { |
| 5184 | case AS_CLUSTERING_MSG_TYPE_PAXOS_PREPARE: |
| 5185 | paxos_acceptor_prepare_handle(msg_event); |
| 5186 | break; |
| 5187 | case AS_CLUSTERING_MSG_TYPE_PAXOS_ACCEPT: |
| 5188 | paxos_acceptor_accept_handle(msg_event); |
| 5189 | break; |
| 5190 | case AS_CLUSTERING_MSG_TYPE_PAXOS_LEARN: |
| 5191 | paxos_acceptor_learn_handle(msg_event); |
| 5192 | break; |
| 5193 | default: // Other message types are not of interest. |
| 5194 | break; |
| 5195 | } |
| 5196 | } |
| 5197 | |
| 5198 | /** |
| 5199 | * Check and retransmit promise message if paxos proposer has not moved ahead |
| 5200 | * and send back an accept message. |
| 5201 | */ |
| 5202 | static void |
| 5203 | paxos_acceptor_promise_check_retransmit() |
| 5204 | { |
| 5205 | CLUSTERING_LOCK(); |
| 5206 | cf_clock now = cf_getms(); |
| 5207 | if (g_acceptor.state == AS_PAXOS_ACCEPTOR_STATE_PROMISED |
| 5208 | && g_acceptor.promise_send_time + paxos_msg_timeout() < now) { |
| 5209 | paxos_acceptor_promise_send( |
| 5210 | g_acceptor.last_proposal_received_id.src_nodeid, |
| 5211 | g_acceptor.last_proposal_received_id.sequence_number); |
| 5212 | } |
| 5213 | CLUSTERING_UNLOCK(); |
| 5214 | } |
| 5215 | |
| 5216 | /** |
| 5217 | * Check and retransmit accepted message if paxos proposer has not send back a |
| 5218 | * learn message. |
| 5219 | */ |
| 5220 | static void |
| 5221 | paxos_acceptor_accepted_check_retransmit() |
| 5222 | { |
| 5223 | CLUSTERING_LOCK(); |
| 5224 | cf_clock now = cf_getms(); |
| 5225 | if (g_acceptor.state == AS_PAXOS_ACCEPTOR_STATE_ACCEPTED |
| 5226 | && g_acceptor.accepted_send_time + paxos_msg_timeout() < now) { |
| 5227 | paxos_acceptor_accepted_send( |
| 5228 | g_acceptor.last_proposal_received_id.src_nodeid, |
| 5229 | g_acceptor.last_proposal_received_id.sequence_number); |
| 5230 | } |
| 5231 | CLUSTERING_UNLOCK(); |
| 5232 | } |
| 5233 | |
| 5234 | /** |
| 5235 | * Handle a timer event and retransmit messages if required. |
| 5236 | */ |
| 5237 | static void |
| 5238 | paxos_acceptor_timer_event_handle() |
| 5239 | { |
| 5240 | CLUSTERING_LOCK(); |
| 5241 | switch (g_acceptor.state) { |
| 5242 | case AS_PAXOS_ACCEPTOR_STATE_IDLE: { |
| 5243 | // No retransmitts required. |
| 5244 | break; |
| 5245 | } |
| 5246 | case AS_PAXOS_ACCEPTOR_STATE_PROMISED: |
| 5247 | paxos_acceptor_promise_check_retransmit(); |
| 5248 | break; |
| 5249 | case AS_PAXOS_ACCEPTOR_STATE_ACCEPTED: |
| 5250 | paxos_acceptor_accepted_check_retransmit(); |
| 5251 | break; |
| 5252 | } |
| 5253 | |
| 5254 | CLUSTERING_UNLOCK(); |
| 5255 | } |
| 5256 | |
| 5257 | /** |
| 5258 | * Initialize paxos acceptor state. |
| 5259 | */ |
| 5260 | static void |
| 5261 | paxos_acceptor_init() |
| 5262 | { |
| 5263 | CLUSTERING_LOCK(); |
| 5264 | // Memset to zero which ensures that all acceptor state variables have zero |
| 5265 | // which is the correct initial value for elements other that contained |
| 5266 | // vectors and status. |
| 5267 | memset(&g_acceptor, 0, sizeof(g_acceptor)); |
| 5268 | g_acceptor.state = AS_PAXOS_ACCEPTOR_STATE_IDLE; |
| 5269 | CLUSTERING_UNLOCK(); |
| 5270 | } |
| 5271 | |
| 5272 | /** |
| 5273 | * Paxos acceptor monitor to detect and cleanup long running and most likely |
| 5274 | * failed paxos rounds. |
| 5275 | */ |
| 5276 | static void |
| 5277 | paxos_acceptor_monitor() |
| 5278 | { |
| 5279 | CLUSTERING_LOCK(); |
| 5280 | if (g_acceptor.state != AS_PAXOS_ACCEPTOR_STATE_IDLE |
| 5281 | && g_acceptor.acceptor_round_start + paxos_proposal_timeout() |
| 5282 | <= cf_getms()) { |
| 5283 | // Paxos round is running and has timed out. |
| 5284 | // Consider paxos round failed. |
| 5285 | INFO("paxos round timed out for proposal id %" PRIx64":%" PRIu64, |
| 5286 | config_self_nodeid_get(), |
| 5287 | g_proposer.sequence_number); |
| 5288 | paxos_acceptor_fail(); |
| 5289 | } |
| 5290 | CLUSTERING_UNLOCK(); |
| 5291 | } |
| 5292 | |
| 5293 | /* |
| 5294 | * ---------------------------------------------------------------------------- |
| 5295 | * Paxos lifecycle and common event handling |
| 5296 | * ---------------------------------------------------------------------------- |
| 5297 | */ |
| 5298 | |
| 5299 | /** |
| 5300 | * Paxos monitor to detect and cleanup long running and most likely failed paxos |
| 5301 | * rounds. |
| 5302 | */ |
| 5303 | static void |
| 5304 | paxos_monitor() |
| 5305 | { |
| 5306 | paxos_proposer_monitor(); |
| 5307 | paxos_acceptor_monitor(); |
| 5308 | } |
| 5309 | |
| 5310 | /** |
| 5311 | * Handle an incoming timer event. |
| 5312 | */ |
| 5313 | static void |
| 5314 | paxos_timer_event_handle() |
| 5315 | { |
| 5316 | // Acceptor retransmits handled here. |
| 5317 | paxos_acceptor_timer_event_handle(); |
| 5318 | |
| 5319 | // Proposer retransmits handled here. |
| 5320 | paxos_proposer_timer_event_handle(); |
| 5321 | |
| 5322 | // Invoke Paxos monitor to timeout long running paxos rounds. |
| 5323 | paxos_monitor(); |
| 5324 | } |
| 5325 | |
| 5326 | /** |
| 5327 | * Handle incoming messages. |
| 5328 | */ |
| 5329 | static void |
| 5330 | paxos_msg_event_handle(as_clustering_internal_event* msg_event) |
| 5331 | { |
| 5332 | paxos_acceptor_msg_event_handle(msg_event); |
| 5333 | paxos_proposer_msg_event_handle(msg_event); |
| 5334 | } |
| 5335 | |
| 5336 | /** |
| 5337 | * Handle heartbeat event. |
| 5338 | */ |
| 5339 | static void |
| 5340 | paxos_hb_event_handle(as_clustering_internal_event* hb_event) |
| 5341 | { |
| 5342 | paxos_proposer_hb_event_handle(hb_event); |
| 5343 | } |
| 5344 | |
| 5345 | /** |
| 5346 | * Dispatch clustering events. |
| 5347 | */ |
| 5348 | static void |
| 5349 | paxos_event_dispatch(as_clustering_internal_event* event) |
| 5350 | { |
| 5351 | switch (event->type) { |
| 5352 | case AS_CLUSTERING_INTERNAL_EVENT_TIMER: |
| 5353 | paxos_timer_event_handle(); |
| 5354 | break; |
| 5355 | case AS_CLUSTERING_INTERNAL_EVENT_MSG: |
| 5356 | paxos_msg_event_handle(event); |
| 5357 | break; |
| 5358 | case AS_CLUSTERING_INTERNAL_EVENT_HB: |
| 5359 | paxos_hb_event_handle(event); |
| 5360 | break; |
| 5361 | case AS_CLUSTERING_INTERNAL_EVENT_REGISTER_CLUSTER_SYNCED: |
| 5362 | paxos_proposer_register_synched(); |
| 5363 | default: // Not of interest for paxos. |
| 5364 | break; |
| 5365 | } |
| 5366 | } |
| 5367 | |
| 5368 | /** |
| 5369 | * Initialize paxos proposer and acceptor data structures. |
| 5370 | */ |
| 5371 | static void |
| 5372 | paxos_init() |
| 5373 | { |
| 5374 | paxos_proposer_init(); |
| 5375 | paxos_acceptor_init(); |
| 5376 | } |
| 5377 | |
| 5378 | /* |
| 5379 | * ---------------------------------------------------------------------------- |
| 5380 | * Clustering external event publisher |
| 5381 | * ---------------------------------------------------------------------------- |
| 5382 | */ |
| 5383 | |
| 5384 | /** |
| 5385 | * * Check if event publisher is running. |
| 5386 | */ |
| 5387 | static bool |
| 5388 | external_event_publisher_is_running() |
| 5389 | { |
| 5390 | CLUSTERING_EVENT_PUBLISHER_LOCK(); |
| 5391 | bool running = g_external_event_publisher.sys_state |
| 5392 | == AS_CLUSTERING_SYS_STATE_RUNNING; |
| 5393 | CLUSTERING_EVENT_PUBLISHER_UNLOCK(); |
| 5394 | return running; |
| 5395 | } |
| 5396 | |
| 5397 | /** |
| 5398 | * Initialize the event publisher. |
| 5399 | */ |
| 5400 | static void |
| 5401 | external_event_publisher_init() |
| 5402 | { |
| 5403 | CLUSTERING_EVENT_PUBLISHER_LOCK(); |
| 5404 | memset(&g_external_event_publisher, 0, sizeof(g_external_event_publisher)); |
| 5405 | vector_lockless_init(&g_external_event_publisher.published_succession_list, |
| 5406 | cf_node); |
| 5407 | |
| 5408 | pthread_mutex_init(&g_external_event_publisher.is_pending_mutex, NULL); |
| 5409 | pthread_cond_init(&g_external_event_publisher.is_pending, NULL); |
| 5410 | CLUSTERING_EVENT_PUBLISHER_UNLOCK(); |
| 5411 | } |
| 5412 | |
| 5413 | /** |
| 5414 | * Wakeup the publisher thread. |
| 5415 | */ |
| 5416 | static void |
| 5417 | external_event_publisher_thr_wakeup() |
| 5418 | { |
| 5419 | pthread_mutex_lock(&g_external_event_publisher.is_pending_mutex); |
| 5420 | pthread_cond_signal(&g_external_event_publisher.is_pending); |
| 5421 | pthread_mutex_unlock(&g_external_event_publisher.is_pending_mutex); |
| 5422 | } |
| 5423 | |
| 5424 | /** |
| 5425 | * Queue up and external event to publish. |
| 5426 | */ |
| 5427 | static void |
| 5428 | external_event_queue(as_clustering_event* event) |
| 5429 | { |
| 5430 | CLUSTERING_EVENT_PUBLISHER_LOCK(); |
| 5431 | memcpy(&g_external_event_publisher.to_publish, event, |
| 5432 | sizeof(g_external_event_publisher.to_publish)); |
| 5433 | |
| 5434 | vector_clear(&g_external_event_publisher.published_succession_list); |
| 5435 | if (event->succession_list) { |
| 5436 | // Use the static list for the published event, so that the input event |
| 5437 | // object can be destroyed irrespective of when the it is published. |
| 5438 | vector_copy(&g_external_event_publisher.published_succession_list, |
| 5439 | event->succession_list); |
| 5440 | g_external_event_publisher.to_publish.succession_list = |
| 5441 | &g_external_event_publisher.published_succession_list; |
| 5442 | |
| 5443 | } |
| 5444 | |
| 5445 | g_external_event_publisher.event_queued = true; |
| 5446 | |
| 5447 | CLUSTERING_EVENT_PUBLISHER_UNLOCK(); |
| 5448 | |
| 5449 | // Wake up the publisher thread. |
| 5450 | external_event_publisher_thr_wakeup(); |
| 5451 | } |
| 5452 | |
| 5453 | /** |
| 5454 | * Publish external events if any are pending. |
| 5455 | */ |
| 5456 | static void |
| 5457 | external_events_publish() |
| 5458 | { |
| 5459 | CLUSTERING_EVENT_PUBLISHER_LOCK(); |
| 5460 | |
| 5461 | if (g_external_event_publisher.event_queued) { |
| 5462 | g_external_event_publisher.event_queued = false; |
| 5463 | exchange_clustering_event_listener( |
| 5464 | &g_external_event_publisher.to_publish); |
| 5465 | } |
| 5466 | CLUSTERING_EVENT_PUBLISHER_UNLOCK(); |
| 5467 | } |
| 5468 | |
| 5469 | /** |
| 5470 | * External event publisher thread. |
| 5471 | */ |
| 5472 | static void* |
| 5473 | external_event_publisher_thr(void* arg) |
| 5474 | { |
| 5475 | pthread_mutex_lock(&g_external_event_publisher.is_pending_mutex); |
| 5476 | |
| 5477 | while (true) { |
| 5478 | pthread_cond_wait(&g_external_event_publisher.is_pending, |
| 5479 | &g_external_event_publisher.is_pending_mutex); |
| 5480 | if (external_event_publisher_is_running()) { |
| 5481 | external_events_publish(); |
| 5482 | } |
| 5483 | else { |
| 5484 | // Publisher stopped, exit the tread. |
| 5485 | break; |
| 5486 | } |
| 5487 | } |
| 5488 | |
| 5489 | pthread_mutex_unlock(&g_external_event_publisher.is_pending_mutex); |
| 5490 | return NULL; |
| 5491 | } |
| 5492 | |
| 5493 | /** |
| 5494 | * Start the event publisher. |
| 5495 | */ |
| 5496 | static void |
| 5497 | external_event_publisher_start() |
| 5498 | { |
| 5499 | CLUSTERING_EVENT_PUBLISHER_LOCK(); |
| 5500 | g_external_event_publisher.sys_state = AS_CLUSTERING_SYS_STATE_RUNNING; |
| 5501 | g_external_event_publisher.event_publisher_tid = |
| 5502 | cf_thread_create_joinable(external_event_publisher_thr, NULL); |
| 5503 | CLUSTERING_EVENT_PUBLISHER_UNLOCK(); |
| 5504 | } |
| 5505 | |
| 5506 | /** |
| 5507 | * Stop the event publisher. |
| 5508 | */ |
| 5509 | static void |
| 5510 | external_event_publisher_stop() |
| 5511 | { |
| 5512 | CLUSTERING_EVENT_PUBLISHER_LOCK(); |
| 5513 | g_external_event_publisher.sys_state = |
| 5514 | AS_CLUSTERING_SYS_STATE_SHUTTING_DOWN; |
| 5515 | CLUSTERING_EVENT_PUBLISHER_UNLOCK(); |
| 5516 | |
| 5517 | external_event_publisher_thr_wakeup(); |
| 5518 | cf_thread_join(g_external_event_publisher.event_publisher_tid); |
| 5519 | |
| 5520 | CLUSTERING_EVENT_PUBLISHER_LOCK(); |
| 5521 | g_external_event_publisher.sys_state = AS_CLUSTERING_SYS_STATE_STOPPED; |
| 5522 | g_external_event_publisher.event_queued = false; |
| 5523 | CLUSTERING_EVENT_PUBLISHER_UNLOCK(); |
| 5524 | } |
| 5525 | |
| 5526 | /* |
| 5527 | * ---------------------------------------------------------------------------- |
| 5528 | * Clustering register |
| 5529 | * ---------------------------------------------------------------------------- |
| 5530 | */ |
| 5531 | |
| 5532 | /** |
| 5533 | * Dump register state to logs. |
| 5534 | */ |
| 5535 | static void |
| 5536 | register_dump(bool verbose) |
| 5537 | { |
| 5538 | CLUSTERING_LOCK(); |
| 5539 | |
| 5540 | // Output register state. |
| 5541 | switch (g_register.state) { |
| 5542 | case AS_CLUSTERING_REGISTER_STATE_SYNCED: |
| 5543 | INFO("CL: register: synced" ); |
| 5544 | break; |
| 5545 | case AS_CLUSTERING_REGISTER_STATE_SYNCING: |
| 5546 | INFO("CL: register: syncing" ); |
| 5547 | break; |
| 5548 | } |
| 5549 | |
| 5550 | // Cluster state details. |
| 5551 | INFO("CL: cluster changed at: %" PRIu64" now: %" PRIu64, |
| 5552 | g_register.cluster_modified_time, cf_getms()); |
| 5553 | |
| 5554 | INFO("CL: cluster key: %" PRIx64, g_register.cluster_key); |
| 5555 | INFO("CL: cluster sequence: %" PRIu64, g_register.sequence_number); |
| 5556 | INFO("CL: cluster size: %d" , cf_vector_size(&g_register.succession_list)); |
| 5557 | |
| 5558 | if (verbose) { |
| 5559 | log_cf_node_vector("CL: succession:" , &g_register.succession_list, |
| 5560 | CF_INFO); |
| 5561 | } |
| 5562 | |
| 5563 | CLUSTERING_UNLOCK(); |
| 5564 | } |
| 5565 | |
| 5566 | /** |
| 5567 | * Initialize the register. |
| 5568 | */ |
| 5569 | static void |
| 5570 | register_init() |
| 5571 | { |
| 5572 | CLUSTERING_LOCK(); |
| 5573 | memset(&g_register, 0, sizeof(g_register)); |
| 5574 | vector_lockless_init(&g_register.succession_list, cf_node); |
| 5575 | vector_lockless_init(&g_register.sync_pending, cf_node); |
| 5576 | vector_lockless_init(&g_register.ooo_change_applied_received, cf_node); |
| 5577 | vector_lockless_init(&g_register.ooo_succession_list, cf_node); |
| 5578 | |
| 5579 | // We are in the orphan state but that will be considered as sync state. |
| 5580 | g_register.state = AS_CLUSTERING_REGISTER_STATE_SYNCED; |
| 5581 | CLUSTERING_UNLOCK(); |
| 5582 | } |
| 5583 | |
| 5584 | /** |
| 5585 | * Returns true if register sync is pending. |
| 5586 | */ |
| 5587 | static bool |
| 5588 | register_is_sycn_pending() |
| 5589 | { |
| 5590 | CLUSTERING_LOCK(); |
| 5591 | bool sync_pending = cf_vector_size(&g_register.sync_pending) > 0; |
| 5592 | log_cf_node_vector("pending register sync:" , &g_register.sync_pending, |
| 5593 | CF_DETAIL); |
| 5594 | CLUSTERING_UNLOCK(); |
| 5595 | return sync_pending; |
| 5596 | } |
| 5597 | |
| 5598 | /** |
| 5599 | * Check if the register is synced across the cluster and move to sync state if |
| 5600 | * it is synced. |
| 5601 | */ |
| 5602 | static void |
| 5603 | register_check_and_switch_synced() |
| 5604 | { |
| 5605 | CLUSTERING_LOCK(); |
| 5606 | if (!register_is_sycn_pending() |
| 5607 | && g_register.state != AS_CLUSTERING_REGISTER_STATE_SYNCED) { |
| 5608 | g_register.state = AS_CLUSTERING_REGISTER_STATE_SYNCED; |
| 5609 | // Generate internal cluster changed synced. |
| 5610 | as_clustering_internal_event cluster_synced; |
| 5611 | memset(&cluster_synced, 0, sizeof(cluster_synced)); |
| 5612 | cluster_synced.type = |
| 5613 | AS_CLUSTERING_INTERNAL_EVENT_REGISTER_CLUSTER_SYNCED; |
| 5614 | internal_event_dispatch(&cluster_synced); |
| 5615 | } |
| 5616 | CLUSTERING_UNLOCK(); |
| 5617 | } |
| 5618 | |
| 5619 | /** |
| 5620 | * Update register to become an orphan node. |
| 5621 | */ |
| 5622 | static void |
| 5623 | register_become_orphan(as_clustering_event_qualifier qualifier) |
| 5624 | { |
| 5625 | CLUSTERING_LOCK(); |
| 5626 | g_register.state = AS_CLUSTERING_REGISTER_STATE_SYNCED; |
| 5627 | g_register.cluster_key = 0; |
| 5628 | g_register.sequence_number = 0; |
| 5629 | g_register.has_orphan_transitioned = true; |
| 5630 | g_clustering.has_integrity = false; |
| 5631 | vector_clear(&g_register.succession_list); |
| 5632 | vector_clear(&g_register.sync_pending); |
| 5633 | |
| 5634 | g_register.cluster_modified_time = cf_getms(); |
| 5635 | g_register.cluster_modified_hlc_ts = as_hlc_timestamp_now(); |
| 5636 | |
| 5637 | // Queue internal orphaned event. |
| 5638 | as_clustering_internal_event orphaned_event; |
| 5639 | memset(&orphaned_event, 0, sizeof(orphaned_event)); |
| 5640 | orphaned_event.type = AS_CLUSTERING_INTERNAL_EVENT_REGISTER_ORPHANED; |
| 5641 | orphaned_event.qualifier = qualifier; |
| 5642 | internal_event_dispatch(&orphaned_event); |
| 5643 | |
| 5644 | CLUSTERING_UNLOCK(); |
| 5645 | |
| 5646 | INFO("moved self node to orphan state" ); |
| 5647 | } |
| 5648 | |
| 5649 | /** |
| 5650 | * Handle timer event in the syncing state. |
| 5651 | */ |
| 5652 | static void |
| 5653 | register_syncing_timer_event_handle() |
| 5654 | { |
| 5655 | CLUSTERING_LOCK(); |
| 5656 | cf_clock now = cf_getms(); |
| 5657 | if (g_register.last_sync_check_time + register_sync_check_interval() |
| 5658 | > now) { |
| 5659 | // Give more time before checking for sync. |
| 5660 | goto Exit; |
| 5661 | } |
| 5662 | |
| 5663 | if (register_is_sycn_pending()) { |
| 5664 | // Update pending nodes based on heartbeat status. |
| 5665 | int num_pending = cf_vector_size(&g_register.sync_pending); |
| 5666 | for (int i = 0; i < num_pending; i++) { |
| 5667 | cf_node pending; |
| 5668 | cf_vector_get(&g_register.sync_pending, i, &pending); |
| 5669 | if (clustering_node_is_sync(pending)) { |
| 5670 | cf_vector_delete(&g_register.sync_pending, i); |
| 5671 | |
| 5672 | // Compensate the index for the delete. |
| 5673 | i--; |
| 5674 | |
| 5675 | // Adjust vector size. |
| 5676 | num_pending--; |
| 5677 | } |
| 5678 | } |
| 5679 | } |
| 5680 | |
| 5681 | register_check_and_switch_synced(); |
| 5682 | |
| 5683 | Exit: |
| 5684 | CLUSTERING_UNLOCK(); |
| 5685 | } |
| 5686 | |
| 5687 | /** |
| 5688 | * Send cluster change applied message to all cluster members. |
| 5689 | */ |
| 5690 | static void |
| 5691 | register_cluster_change_applied_msg_send() |
| 5692 | { |
| 5693 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_CLUSTER_CHANGE_APPLIED); |
| 5694 | |
| 5695 | CLUSTERING_LOCK(); |
| 5696 | |
| 5697 | // Set the cluster key. |
| 5698 | msg_cluster_key_set(msg, g_register.cluster_key); |
| 5699 | |
| 5700 | // Set the succession list. |
| 5701 | msg_succession_list_set(msg, &g_register.succession_list); |
| 5702 | |
| 5703 | log_cf_node_vector("cluster change applied message sent to:" , |
| 5704 | &g_register.succession_list, CF_DEBUG); |
| 5705 | |
| 5706 | cf_vector* members = vector_stack_lockless_create(cf_node); |
| 5707 | vector_copy(members, &g_register.succession_list); |
| 5708 | |
| 5709 | CLUSTERING_UNLOCK(); |
| 5710 | |
| 5711 | // Sent the message to the cluster members. |
| 5712 | msg_nodes_send(msg, members); |
| 5713 | cf_vector_destroy(members); |
| 5714 | } |
| 5715 | |
| 5716 | /** |
| 5717 | * Validate cluster state. For now ensure the cluster size is greater than the |
| 5718 | * min cluster size. |
| 5719 | */ |
| 5720 | static void |
| 5721 | register_validate_cluster() |
| 5722 | { |
| 5723 | CLUSTERING_LOCK(); |
| 5724 | int cluster_size = cf_vector_size(&g_register.succession_list); |
| 5725 | if (!clustering_is_orphan() |
| 5726 | && cluster_size < g_config.clustering_config.cluster_size_min) { |
| 5727 | WARNING( |
| 5728 | "cluster size %d less than required minimum size %d - switching to orphan state" , |
| 5729 | cluster_size, g_config.clustering_config.cluster_size_min); |
| 5730 | register_become_orphan (AS_CLUSTERING_MEMBERSHIP_LOST); |
| 5731 | } |
| 5732 | CLUSTERING_UNLOCK(); |
| 5733 | } |
| 5734 | |
| 5735 | /** |
| 5736 | * Handle a timer event for the register. |
| 5737 | */ |
| 5738 | static void |
| 5739 | register_timer_event_handle() |
| 5740 | { |
| 5741 | CLUSTERING_LOCK(); |
| 5742 | switch (g_register.state) { |
| 5743 | case AS_CLUSTERING_REGISTER_STATE_SYNCED: |
| 5744 | register_validate_cluster(); |
| 5745 | break; |
| 5746 | case AS_CLUSTERING_REGISTER_STATE_SYNCING: |
| 5747 | register_syncing_timer_event_handle(); |
| 5748 | break; |
| 5749 | } |
| 5750 | CLUSTERING_UNLOCK(); |
| 5751 | } |
| 5752 | |
| 5753 | /** |
| 5754 | * Handle paxos round succeeding. |
| 5755 | */ |
| 5756 | static void |
| 5757 | register_paxos_acceptor_success_handle( |
| 5758 | as_clustering_internal_event* paxos_success_event) |
| 5759 | { |
| 5760 | CLUSTERING_LOCK(); |
| 5761 | |
| 5762 | g_register.has_orphan_transitioned = false; |
| 5763 | |
| 5764 | g_register.cluster_key = paxos_success_event->new_cluster_key; |
| 5765 | g_register.sequence_number = paxos_success_event->new_sequence_number; |
| 5766 | |
| 5767 | vector_clear(&g_register.succession_list); |
| 5768 | vector_copy(&g_register.succession_list, |
| 5769 | paxos_success_event->new_succession_list); |
| 5770 | |
| 5771 | // Update the timestamps as the register has changed its contents. |
| 5772 | g_register.cluster_modified_time = cf_getms(); |
| 5773 | g_register.cluster_modified_hlc_ts = as_hlc_timestamp_now(); |
| 5774 | |
| 5775 | // Initialize pending list with all cluster members. |
| 5776 | g_register.state = AS_CLUSTERING_REGISTER_STATE_SYNCING; |
| 5777 | vector_clear(&g_register.sync_pending); |
| 5778 | vector_copy(&g_register.sync_pending, &g_register.succession_list); |
| 5779 | register_cluster_change_applied_msg_send(); |
| 5780 | |
| 5781 | if (g_register.cluster_key == g_register.ooo_cluster_key |
| 5782 | && vector_equals(&g_register.succession_list, |
| 5783 | &g_register.ooo_succession_list)) { |
| 5784 | // We have already received change applied message from these node |
| 5785 | // account for them. |
| 5786 | vector_subtract(&g_register.sync_pending, |
| 5787 | &g_register.ooo_change_applied_received); |
| 5788 | } |
| 5789 | vector_clear(&g_register.ooo_change_applied_received); |
| 5790 | vector_clear(&g_register.ooo_succession_list); |
| 5791 | g_register.ooo_cluster_key = 0; |
| 5792 | g_register.ooo_hlc_timestamp = 0; |
| 5793 | |
| 5794 | INFO("applied new cluster key %" PRIx64, |
| 5795 | paxos_success_event->new_cluster_key); |
| 5796 | log_cf_node_vector("applied new succession list" , |
| 5797 | &g_register.succession_list, CF_INFO); |
| 5798 | INFO("applied cluster size %d" , |
| 5799 | cf_vector_size(&g_register.succession_list)); |
| 5800 | |
| 5801 | as_clustering_internal_event cluster_changed; |
| 5802 | memset(&cluster_changed, 0, sizeof(cluster_changed)); |
| 5803 | cluster_changed.type = |
| 5804 | AS_CLUSTERING_INTERNAL_EVENT_REGISTER_CLUSTER_CHANGED; |
| 5805 | internal_event_dispatch(&cluster_changed); |
| 5806 | |
| 5807 | // Send change appied message. Its alright even if they are out of order. |
| 5808 | register_cluster_change_applied_msg_send(); |
| 5809 | |
| 5810 | CLUSTERING_UNLOCK(); |
| 5811 | } |
| 5812 | |
| 5813 | /** |
| 5814 | * Handle incoming cluster change applied message. |
| 5815 | */ |
| 5816 | static void |
| 5817 | register_cluster_change_applied_msg_handle( |
| 5818 | as_clustering_internal_event* msg_event) |
| 5819 | { |
| 5820 | CLUSTERING_LOCK(); |
| 5821 | as_cluster_key msg_cluster_key = 0; |
| 5822 | msg_cluster_key_get(msg_event->msg, &msg_cluster_key); |
| 5823 | cf_vector *msg_succession_list = vector_stack_lockless_create(cf_node); |
| 5824 | msg_succession_list_get(msg_event->msg, msg_succession_list); |
| 5825 | as_hlc_timestamp msg_hlc_timestamp = 0; |
| 5826 | msg_send_ts_get(msg_event->msg, &msg_hlc_timestamp); |
| 5827 | |
| 5828 | DEBUG("received cluster change applied message from node %" PRIx64, |
| 5829 | msg_event->msg_src_nodeid); |
| 5830 | if (g_register.cluster_key == msg_cluster_key |
| 5831 | && vector_equals(&g_register.succession_list, |
| 5832 | msg_succession_list)) { |
| 5833 | // This is a matching change applied message. |
| 5834 | int found_at = 0; |
| 5835 | if ((found_at = vector_find(&g_register.sync_pending, |
| 5836 | &msg_event->msg_src_nodeid)) >= 0) { |
| 5837 | // Remove from the pending list. |
| 5838 | cf_vector_delete(&g_register.sync_pending, found_at); |
| 5839 | } |
| 5840 | |
| 5841 | } |
| 5842 | else if (g_register.ooo_cluster_key == msg_cluster_key |
| 5843 | && vector_equals(&g_register.ooo_succession_list, |
| 5844 | msg_succession_list)) { |
| 5845 | DEBUG("received ooo cluster change applied message from node %" PRIx64" with cluster key %" PRIx64, msg_event->msg_src_nodeid, msg_cluster_key); |
| 5846 | cf_vector_append_unique(&g_register.ooo_change_applied_received, |
| 5847 | &msg_event->msg_src_nodeid); |
| 5848 | |
| 5849 | } |
| 5850 | else if (g_register.ooo_hlc_timestamp < msg_hlc_timestamp) { |
| 5851 | // Prefer a later version of OOO message. |
| 5852 | g_register.ooo_cluster_key = msg_cluster_key; |
| 5853 | g_register.ooo_hlc_timestamp = msg_hlc_timestamp; |
| 5854 | vector_clear(&g_register.ooo_succession_list); |
| 5855 | vector_copy(&g_register.ooo_succession_list, msg_succession_list); |
| 5856 | vector_clear(&g_register.ooo_change_applied_received); |
| 5857 | cf_vector_append_unique(&g_register.ooo_change_applied_received, |
| 5858 | &msg_event->msg_src_nodeid); |
| 5859 | DEBUG("received ooo cluster change applied message from node %" PRIx64" with cluster key %" PRIx64, msg_event->msg_src_nodeid, msg_cluster_key); |
| 5860 | } |
| 5861 | else { |
| 5862 | INFO( |
| 5863 | "ignoring cluster mismatching change applied message from node %" PRIx64, |
| 5864 | msg_event->msg_src_nodeid); |
| 5865 | } |
| 5866 | cf_vector_destroy(msg_succession_list); |
| 5867 | register_check_and_switch_synced(); |
| 5868 | CLUSTERING_UNLOCK(); |
| 5869 | } |
| 5870 | |
| 5871 | /** |
| 5872 | * Handle incoming message. |
| 5873 | */ |
| 5874 | static void |
| 5875 | register_msg_event_handle(as_clustering_internal_event* msg_event) |
| 5876 | { |
| 5877 | CLUSTERING_LOCK(); |
| 5878 | as_clustering_msg_type type; |
| 5879 | msg_type_get(msg_event->msg, &type); |
| 5880 | |
| 5881 | if (type == AS_CLUSTERING_MSG_TYPE_CLUSTER_CHANGE_APPLIED) { |
| 5882 | register_cluster_change_applied_msg_handle(msg_event); |
| 5883 | } |
| 5884 | CLUSTERING_UNLOCK(); |
| 5885 | } |
| 5886 | |
| 5887 | /** |
| 5888 | * Dispatch internal events to the register. |
| 5889 | */ |
| 5890 | static void |
| 5891 | register_event_dispatch(as_clustering_internal_event* event) |
| 5892 | { |
| 5893 | switch (event->type) { |
| 5894 | case AS_CLUSTERING_INTERNAL_EVENT_TIMER: |
| 5895 | register_timer_event_handle(); |
| 5896 | break; |
| 5897 | case AS_CLUSTERING_INTERNAL_EVENT_PAXOS_ACCEPTOR_SUCCESS: |
| 5898 | register_paxos_acceptor_success_handle(event); |
| 5899 | break; |
| 5900 | case AS_CLUSTERING_INTERNAL_EVENT_MSG: |
| 5901 | register_msg_event_handle(event); |
| 5902 | break; |
| 5903 | default: // Not of interest for the register. |
| 5904 | break; |
| 5905 | } |
| 5906 | } |
| 5907 | |
| 5908 | /* |
| 5909 | * ---------------------------------------------------------------------------- |
| 5910 | * Clustering core (triggers cluster changes) |
| 5911 | * ---------------------------------------------------------------------------- |
| 5912 | */ |
| 5913 | |
| 5914 | /** |
| 5915 | * Send a join reject message to destination node. |
| 5916 | */ |
| 5917 | static void |
| 5918 | clustering_join_reject_send(cf_node dest) |
| 5919 | { |
| 5920 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_JOIN_REJECT); |
| 5921 | |
| 5922 | DETAIL("sent join reject to node %" PRIx64, dest); |
| 5923 | |
| 5924 | // Sent the message to the acceptors. |
| 5925 | msg_node_send(msg, dest); |
| 5926 | } |
| 5927 | |
| 5928 | /** |
| 5929 | * Send cluster join reject message to all nodes in the vector. |
| 5930 | */ |
| 5931 | static void |
| 5932 | clustering_join_requests_reject(cf_vector* rejected_nodes) |
| 5933 | { |
| 5934 | int rejected_node_count = cf_vector_size(rejected_nodes); |
| 5935 | for (int i = 0; i < rejected_node_count; i++) { |
| 5936 | // No null check required since we are iterating under a lock and within |
| 5937 | // vector bounds. |
| 5938 | cf_node requesting_nodeid = *((cf_node*)cf_vector_getp(rejected_nodes, |
| 5939 | i)); |
| 5940 | |
| 5941 | // Send the reject message. |
| 5942 | clustering_join_reject_send(requesting_nodeid); |
| 5943 | } |
| 5944 | } |
| 5945 | |
| 5946 | /** |
| 5947 | * Send join reject message for all pending join requests. |
| 5948 | */ |
| 5949 | static void |
| 5950 | clustering_join_requests_reject_all() |
| 5951 | { |
| 5952 | CLUSTERING_LOCK(); |
| 5953 | |
| 5954 | cf_vector* rejected_nodes = vector_stack_lockless_create(cf_node); |
| 5955 | vector_copy_unique(rejected_nodes, &g_clustering.pending_join_requests); |
| 5956 | |
| 5957 | vector_clear(&g_clustering.pending_join_requests); |
| 5958 | |
| 5959 | CLUSTERING_UNLOCK(); |
| 5960 | |
| 5961 | clustering_join_requests_reject(rejected_nodes); |
| 5962 | |
| 5963 | cf_vector_destroy(rejected_nodes); |
| 5964 | } |
| 5965 | |
| 5966 | /** |
| 5967 | * Send a join request to a principal. |
| 5968 | * @param new_principal the destination principal node. |
| 5969 | * @return 0 on successful message queue, -1 on failure. |
| 5970 | */ |
| 5971 | static int |
| 5972 | clustering_join_request_send(cf_node new_principal) |
| 5973 | { |
| 5974 | int rv = -1; |
| 5975 | CLUSTERING_LOCK(); |
| 5976 | |
| 5977 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_JOIN_REQUEST); |
| 5978 | |
| 5979 | DETAIL("sending cluster join request to node %" PRIx64, new_principal); |
| 5980 | |
| 5981 | if (msg_node_send(msg, new_principal) == 0) { |
| 5982 | cf_clock now = cf_getms(); |
| 5983 | cf_shash_put(g_clustering.join_request_blackout, &new_principal, &now); |
| 5984 | |
| 5985 | g_clustering.last_join_request_principal = new_principal; |
| 5986 | g_clustering.last_join_request_sent_time = |
| 5987 | g_clustering.last_join_request_retransmit_time = cf_getms(); |
| 5988 | |
| 5989 | INFO("sent cluster join request to %" PRIx64, new_principal); |
| 5990 | rv = 0; |
| 5991 | } |
| 5992 | |
| 5993 | // Send early reject to all nodes that have send us a join request in the |
| 5994 | // orphan state, because self node is not going to become a principal node. |
| 5995 | // This allows the requesting nodes to send requests to other |
| 5996 | // (potential)principals. |
| 5997 | clustering_join_requests_reject_all(); |
| 5998 | |
| 5999 | CLUSTERING_UNLOCK(); |
| 6000 | return rv; |
| 6001 | } |
| 6002 | |
| 6003 | /** |
| 6004 | * Retransmit a join request to a previously attmepted principal. |
| 6005 | * @param last_join_request_principal the principal to retransmit to. |
| 6006 | */ |
| 6007 | static void |
| 6008 | clustering_join_request_retransmit(cf_node last_join_request_principal) |
| 6009 | { |
| 6010 | CLUSTERING_LOCK(); |
| 6011 | cf_node new_principal = g_clustering.last_join_request_principal; |
| 6012 | g_clustering.last_join_request_retransmit_time = cf_getms(); |
| 6013 | CLUSTERING_UNLOCK(); |
| 6014 | |
| 6015 | if (new_principal != last_join_request_principal) { |
| 6016 | // The last attempted principal has changed. Don't retransmit. |
| 6017 | return; |
| 6018 | } |
| 6019 | |
| 6020 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_JOIN_REQUEST); |
| 6021 | DETAIL("re-sending cluster join request to node %" PRIx64, new_principal); |
| 6022 | if (msg_node_send(msg, new_principal) == 0) { |
| 6023 | DEBUG("re-sent cluster join request to %" PRIx64, new_principal); |
| 6024 | } |
| 6025 | } |
| 6026 | |
| 6027 | /** |
| 6028 | * Remove nodes for which join requests are blocked. |
| 6029 | * |
| 6030 | * @param requestees the nodes considered for join requests. |
| 6031 | * @param target the result with requestees that are not blocked. |
| 6032 | */ |
| 6033 | static void |
| 6034 | clustering_join_request_filter_blocked(cf_vector* requestees, cf_vector* target) |
| 6035 | { |
| 6036 | CLUSTERING_LOCK(); |
| 6037 | cf_clock last_sent; |
| 6038 | int requestee_count = cf_vector_size(requestees); |
| 6039 | for (int i = 0; i < requestee_count; i++) { |
| 6040 | cf_node requestee; |
| 6041 | cf_vector_get(requestees, i, &requestee); |
| 6042 | if (cf_shash_get(g_clustering.join_request_blackout, &requestee, |
| 6043 | &last_sent) != CF_SHASH_OK) { |
| 6044 | // The requestee is not marked for blackout |
| 6045 | cf_vector_append(target, &requestee); |
| 6046 | } |
| 6047 | } |
| 6048 | CLUSTERING_UNLOCK(); |
| 6049 | } |
| 6050 | |
| 6051 | /** |
| 6052 | * Send a cluster join request to a neighboring principal. If |
| 6053 | * preferred_principal is set and it is an eligible neighboring principal, a |
| 6054 | * request is sent to that principal, else this function cycles among eligible |
| 6055 | * neighboring principals at each call. |
| 6056 | * |
| 6057 | * A request will not be sent if there is no neighboring principal. |
| 6058 | * |
| 6059 | * @param preferred_principal the preferred principal to join. User zero if |
| 6060 | * there is no preference. |
| 6061 | * @return 0 if the join request was send or there is one in progress. -1 if |
| 6062 | * there are no principals to try and send the join request. |
| 6063 | */ |
| 6064 | static as_clustering_join_request_result |
| 6065 | clustering_principal_join_request_attempt(cf_node preferred_principal) |
| 6066 | { |
| 6067 | CLUSTERING_LOCK(); |
| 6068 | |
| 6069 | as_clustering_join_request_result rv = AS_CLUSTERING_JOIN_REQUEST_SENT; |
| 6070 | cf_vector* neighboring_principals = vector_stack_lockless_create(cf_node); |
| 6071 | cf_vector* eligible_principals = vector_stack_lockless_create(cf_node); |
| 6072 | |
| 6073 | // Get list of neighboring principals. |
| 6074 | clustering_neighboring_principals_get(neighboring_principals); |
| 6075 | if (cf_vector_size(neighboring_principals) == 0) { |
| 6076 | DEBUG("no neighboring principal found - not sending join request" ); |
| 6077 | rv = AS_CLUSTERING_JOIN_REQUEST_NO_PRINCIPALS; |
| 6078 | goto Exit; |
| 6079 | } |
| 6080 | |
| 6081 | clustering_join_request_filter_blocked(neighboring_principals, |
| 6082 | eligible_principals); |
| 6083 | |
| 6084 | if (cf_vector_size(eligible_principals) == 0) { |
| 6085 | DETAIL("no eligible principals found to make a join request" ); |
| 6086 | // This principal is still in the blackout list. Do not send a request. |
| 6087 | rv = AS_CLUSTERING_JOIN_REQUEST_PENDING; |
| 6088 | goto Exit; |
| 6089 | } |
| 6090 | |
| 6091 | int next_join_request_principal_index = -1; |
| 6092 | |
| 6093 | // We have some well-formed neighboring clusters, try and join them |
| 6094 | if (preferred_principal != 0) { |
| 6095 | int preferred_principal_index = vector_find(eligible_principals, |
| 6096 | &preferred_principal); |
| 6097 | if (preferred_principal_index >= 0) { |
| 6098 | DETAIL("sending join request to preferred principal %" PRIx64, |
| 6099 | preferred_principal); |
| 6100 | |
| 6101 | // Update the index of the principal to try. |
| 6102 | next_join_request_principal_index = preferred_principal_index; |
| 6103 | } |
| 6104 | } |
| 6105 | |
| 6106 | if (next_join_request_principal_index == -1) { |
| 6107 | // Choose the first entry, since we have no valid preferred principal. |
| 6108 | next_join_request_principal_index = 0; |
| 6109 | if (g_clustering.last_join_request_principal != 0) { |
| 6110 | // Choose the node after the current principal. If the current |
| 6111 | // principal is not found we start at index 0 else the next index. |
| 6112 | next_join_request_principal_index = vector_find(eligible_principals, |
| 6113 | &g_clustering.last_join_request_principal) + 1; |
| 6114 | } |
| 6115 | } |
| 6116 | |
| 6117 | // Forget the fact that a join request is pending for a principal. |
| 6118 | g_clustering.last_join_request_principal = 0; |
| 6119 | |
| 6120 | cf_node* principal_to_try = cf_vector_getp(eligible_principals, |
| 6121 | next_join_request_principal_index |
| 6122 | % cf_vector_size(eligible_principals)); |
| 6123 | |
| 6124 | if (principal_to_try) { |
| 6125 | rv = clustering_join_request_send(*principal_to_try) == 0 ? |
| 6126 | AS_CLUSTERING_JOIN_REQUEST_SENT : |
| 6127 | AS_CLUSTERING_JOIN_REQUEST_SEND_FAILED; |
| 6128 | |
| 6129 | } |
| 6130 | else { |
| 6131 | DEBUG("no neighboring principal found - not sending join request" ); |
| 6132 | rv = AS_CLUSTERING_JOIN_REQUEST_NO_PRINCIPALS; |
| 6133 | } |
| 6134 | |
| 6135 | Exit: |
| 6136 | if (rv != AS_CLUSTERING_JOIN_REQUEST_SENT) { |
| 6137 | // Forget the last principal we sent the join request to. |
| 6138 | g_clustering.last_join_request_principal = 0; |
| 6139 | g_clustering.last_join_request_sent_time = 0; |
| 6140 | } |
| 6141 | |
| 6142 | CLUSTERING_UNLOCK(); |
| 6143 | |
| 6144 | cf_vector_destroy(neighboring_principals); |
| 6145 | cf_vector_destroy(eligible_principals); |
| 6146 | |
| 6147 | return rv; |
| 6148 | } |
| 6149 | |
| 6150 | /** |
| 6151 | * Send a cluster join request to a neighboring orphan who this node thinks will |
| 6152 | * be best suited to form a new cluster. |
| 6153 | */ |
| 6154 | static as_clustering_join_request_result |
| 6155 | clustering_orphan_join_request_attempt() |
| 6156 | { |
| 6157 | CLUSTERING_LOCK(); |
| 6158 | |
| 6159 | // Get list of neighboring orphans. |
| 6160 | cf_vector* orphans = vector_stack_lockless_create(cf_node); |
| 6161 | clustering_neighboring_orphans_get(orphans); |
| 6162 | |
| 6163 | // Get filtered list of orphans. |
| 6164 | cf_vector* new_succession_list = vector_stack_lockless_create(cf_node); |
| 6165 | clustering_join_request_filter_blocked(orphans, new_succession_list); |
| 6166 | |
| 6167 | log_cf_node_vector("neighboring orphans for join request:" , |
| 6168 | new_succession_list, CF_DEBUG); |
| 6169 | |
| 6170 | // Add self node. |
| 6171 | cf_node self_nodeid = config_self_nodeid_get(); |
| 6172 | cf_vector_append_unique(new_succession_list, &self_nodeid); |
| 6173 | |
| 6174 | clustering_succession_list_clique_evict(new_succession_list, |
| 6175 | "clique based evicted nodes for potential cluster:" ); |
| 6176 | |
| 6177 | // Sort the new succession list. |
| 6178 | vector_sort_unique(new_succession_list, cf_node_compare_desc); |
| 6179 | |
| 6180 | as_clustering_join_request_result rv = |
| 6181 | AS_CLUSTERING_JOIN_REQUEST_NO_PRINCIPALS; |
| 6182 | |
| 6183 | if (cf_vector_size(new_succession_list) > 0) { |
| 6184 | cf_node new_principal = *((cf_node*)cf_vector_getp(new_succession_list, |
| 6185 | 0)); |
| 6186 | if (new_principal == config_self_nodeid_get()) { |
| 6187 | // No need to send self a join request. |
| 6188 | goto Exit; |
| 6189 | } |
| 6190 | else { |
| 6191 | rv = clustering_join_request_send(new_principal) == 0 ? |
| 6192 | AS_CLUSTERING_JOIN_REQUEST_SENT : |
| 6193 | AS_CLUSTERING_JOIN_REQUEST_SEND_FAILED; |
| 6194 | } |
| 6195 | } |
| 6196 | |
| 6197 | Exit: |
| 6198 | cf_vector_destroy(new_succession_list); |
| 6199 | cf_vector_destroy(orphans); |
| 6200 | |
| 6201 | CLUSTERING_UNLOCK(); |
| 6202 | return rv; |
| 6203 | } |
| 6204 | |
| 6205 | /** |
| 6206 | * Remove nodes from the blackout hash once they have been in the list for |
| 6207 | * greater than the blackout period. |
| 6208 | */ |
| 6209 | int |
| 6210 | clustering_join_request_blackout_tend_reduce(const void* key, void* data, |
| 6211 | void* udata) |
| 6212 | { |
| 6213 | cf_clock* join_request_send_time = (cf_clock*)data; |
| 6214 | if (*join_request_send_time + join_request_blackout_interval() |
| 6215 | < cf_getms()) { |
| 6216 | return CF_SHASH_REDUCE_DELETE; |
| 6217 | } |
| 6218 | return CF_SHASH_OK; |
| 6219 | } |
| 6220 | |
| 6221 | /** |
| 6222 | * Tend the join request blackout data structure to remove blacked out |
| 6223 | * principals. |
| 6224 | */ |
| 6225 | static void |
| 6226 | clustering_join_request_blackout_tend() |
| 6227 | { |
| 6228 | CLUSTERING_LOCK(); |
| 6229 | cf_shash_reduce(g_clustering.join_request_blackout, |
| 6230 | clustering_join_request_blackout_tend_reduce, NULL); |
| 6231 | CLUSTERING_UNLOCK(); |
| 6232 | } |
| 6233 | |
| 6234 | /** |
| 6235 | * Send a cluster join request to a neighboring principal if one exists, else if |
| 6236 | * there are no neighboring principals, send a join request to a neighboring |
| 6237 | * orphan node if this node thinks it will win paxos and become the new |
| 6238 | * principal. |
| 6239 | */ |
| 6240 | static as_clustering_join_request_result |
| 6241 | clustering_join_request_attempt() |
| 6242 | { |
| 6243 | clustering_join_request_blackout_tend(); |
| 6244 | |
| 6245 | CLUSTERING_LOCK(); |
| 6246 | cf_node last_join_request_principal = |
| 6247 | g_clustering.last_join_request_principal; |
| 6248 | cf_clock last_join_request_sent_time = |
| 6249 | g_clustering.last_join_request_sent_time; |
| 6250 | cf_clock last_join_request_retransmit_time = |
| 6251 | g_clustering.last_join_request_retransmit_time; |
| 6252 | CLUSTERING_UNLOCK(); |
| 6253 | |
| 6254 | // Check if the outgoing join request has timed out. |
| 6255 | if (last_join_request_principal |
| 6256 | && as_hb_is_alive(last_join_request_principal)) { |
| 6257 | if (last_join_request_sent_time + join_request_timeout() > cf_getms()) { |
| 6258 | if (last_join_request_retransmit_time |
| 6259 | + join_request_retransmit_timeout() < cf_getms()) { |
| 6260 | // Re-transmit join request to the same principal, to cover the |
| 6261 | // case where the previous join request was lost. |
| 6262 | clustering_join_request_retransmit(last_join_request_principal); |
| 6263 | } |
| 6264 | // Wait for the principal to respond. do nothing |
| 6265 | DETAIL( |
| 6266 | "join request to principal %" PRIx64" pending - not attempting new join request" , |
| 6267 | last_join_request_principal); |
| 6268 | |
| 6269 | return AS_CLUSTERING_JOIN_REQUEST_PENDING; |
| 6270 | } |
| 6271 | // Timeout joining a principal. Choose a different principal. |
| 6272 | INFO("join request timed out for principal %" PRIx64, |
| 6273 | last_join_request_principal); |
| 6274 | |
| 6275 | } |
| 6276 | |
| 6277 | // Try sending a join request to a neighboring principal. |
| 6278 | as_clustering_join_request_result rv = |
| 6279 | clustering_principal_join_request_attempt(0); |
| 6280 | |
| 6281 | if (rv != AS_CLUSTERING_JOIN_REQUEST_NO_PRINCIPALS) { |
| 6282 | // There are valid principals around. Don't send a request to |
| 6283 | // neighboring orphan nodes. |
| 6284 | return rv; |
| 6285 | } |
| 6286 | |
| 6287 | // Send a join request to an orphan node, best suited to be the new |
| 6288 | // principal. |
| 6289 | return clustering_orphan_join_request_attempt(); |
| 6290 | } |
| 6291 | |
| 6292 | /** |
| 6293 | * Try to become a principal and start a new cluster. |
| 6294 | */ |
| 6295 | static void |
| 6296 | clustering_cluster_form() |
| 6297 | { |
| 6298 | ASSERT(clustering_is_orphan(), |
| 6299 | "should not attempt forming new cluster when not an orphan node" ); |
| 6300 | |
| 6301 | CLUSTERING_LOCK(); |
| 6302 | bool paxos_proposal_started = false; |
| 6303 | cf_vector* new_succession_list = vector_stack_lockless_create(cf_node); |
| 6304 | cf_vector* expected_succession_list = vector_stack_lockless_create(cf_node); |
| 6305 | cf_vector* orphans = vector_stack_lockless_create(cf_node); |
| 6306 | |
| 6307 | clustering_neighboring_orphans_get(orphans); |
| 6308 | vector_copy(new_succession_list, orphans); |
| 6309 | |
| 6310 | log_cf_node_vector("neighboring orphans for cluster formation:" , |
| 6311 | new_succession_list, |
| 6312 | cf_vector_size(new_succession_list) > 0 ? CF_INFO : CF_DEBUG); |
| 6313 | log_cf_node_vector("pending join requests:" , |
| 6314 | &g_clustering.pending_join_requests, |
| 6315 | cf_vector_size(&g_clustering.pending_join_requests) > 0 ? |
| 6316 | CF_INFO : CF_DEBUG); |
| 6317 | |
| 6318 | // Add self node. |
| 6319 | cf_node self_nodeid = config_self_nodeid_get(); |
| 6320 | cf_vector_append_unique(new_succession_list, &self_nodeid); |
| 6321 | |
| 6322 | clustering_succession_list_clique_evict(new_succession_list, |
| 6323 | "clique based evicted nodes at cluster formation:" ); |
| 6324 | |
| 6325 | // Sort the new succession list. |
| 6326 | vector_sort_unique(new_succession_list, cf_node_compare_desc); |
| 6327 | |
| 6328 | cf_vector_append(expected_succession_list, &self_nodeid); |
| 6329 | vector_copy_unique(expected_succession_list, |
| 6330 | &g_clustering.pending_join_requests); |
| 6331 | // Sort the expected succession list. |
| 6332 | vector_sort_unique(expected_succession_list, cf_node_compare_desc); |
| 6333 | // The result should match the pending join requests exactly to consider the |
| 6334 | // new succession list. |
| 6335 | if (!vector_equals(expected_succession_list, new_succession_list)) { |
| 6336 | log_cf_node_vector( |
| 6337 | "skipping forming cluster - cannot form new cluster from pending join requests" , |
| 6338 | &g_clustering.pending_join_requests, CF_INFO); |
| 6339 | goto Exit; |
| 6340 | } |
| 6341 | |
| 6342 | if (cf_vector_size(orphans) > 0 |
| 6343 | && cf_vector_size(new_succession_list) == 1) { |
| 6344 | log_cf_node_vector( |
| 6345 | "skipping forming cluster - there are neighboring orphans that cannot be clustered with" , |
| 6346 | orphans, CF_INFO); |
| 6347 | goto Exit; |
| 6348 | } |
| 6349 | |
| 6350 | if (cf_vector_size(new_succession_list) > 0) { |
| 6351 | cf_node new_principal = *((cf_node*)cf_vector_getp(new_succession_list, |
| 6352 | 0)); |
| 6353 | if (new_principal == config_self_nodeid_get()) { |
| 6354 | log_cf_node_vector( |
| 6355 | "principal node - forming new cluster with succession list:" , |
| 6356 | new_succession_list, CF_INFO); |
| 6357 | |
| 6358 | as_paxos_start_result result = paxos_proposer_proposal_start( |
| 6359 | new_succession_list, new_succession_list); |
| 6360 | |
| 6361 | // Log paxos result. |
| 6362 | paxos_result_log(result, new_succession_list); |
| 6363 | |
| 6364 | paxos_proposal_started = (result == AS_PAXOS_RESULT_STARTED); |
| 6365 | } |
| 6366 | else { |
| 6367 | INFO("skipping cluster formation - a new potential principal %" PRIx64" exists" , |
| 6368 | new_principal); |
| 6369 | } |
| 6370 | } |
| 6371 | |
| 6372 | Exit: |
| 6373 | // Compute list of rejected nodes. |
| 6374 | if (paxos_proposal_started) { |
| 6375 | // Nodes in set (pending_join - new succession list) could not be |
| 6376 | // accomodated and should receive a join reject. |
| 6377 | vector_subtract(&g_clustering.pending_join_requests, |
| 6378 | new_succession_list); |
| 6379 | } |
| 6380 | else { |
| 6381 | // Reject all pending join requests. Will happen below. |
| 6382 | } |
| 6383 | |
| 6384 | cf_vector* rejected_nodes = vector_stack_lockless_create(cf_node); |
| 6385 | vector_copy_unique(rejected_nodes, &g_clustering.pending_join_requests); |
| 6386 | |
| 6387 | // Clear the pending join requests |
| 6388 | vector_clear(&g_clustering.pending_join_requests); |
| 6389 | |
| 6390 | // Send reject messages to rejected nodes. |
| 6391 | clustering_join_requests_reject(rejected_nodes); |
| 6392 | |
| 6393 | cf_vector_destroy(rejected_nodes); |
| 6394 | |
| 6395 | cf_vector_destroy(orphans); |
| 6396 | cf_vector_destroy(expected_succession_list); |
| 6397 | cf_vector_destroy(new_succession_list); |
| 6398 | |
| 6399 | CLUSTERING_UNLOCK(); |
| 6400 | } |
| 6401 | |
| 6402 | /** |
| 6403 | * Try to join a cluster if there is a neighboring one, |
| 6404 | * else try to form one. |
| 6405 | */ |
| 6406 | static void |
| 6407 | clustering_join_or_form_cluster() |
| 6408 | { |
| 6409 | ASSERT(clustering_is_orphan(), |
| 6410 | "should not attempt forming new cluster when not an orphan node" ); |
| 6411 | |
| 6412 | if (paxos_proposer_proposal_is_active()) { |
| 6413 | // There is an active paxos round with this node as the proposed |
| 6414 | // principal. |
| 6415 | // Skip join cluster attempt and give current paxos round a chance to |
| 6416 | // form the cluster. |
| 6417 | return; |
| 6418 | } |
| 6419 | |
| 6420 | CLUSTERING_LOCK(); |
| 6421 | |
| 6422 | // TODO (Discuss this): after some timeout and exhausting all neighboring |
| 6423 | // principals, become a single node cluster / try our own cluster. This |
| 6424 | // might not be required. Nonetheless discuss and figure this out. Current |
| 6425 | // behaviour is form new cluster after a timeout. |
| 6426 | |
| 6427 | // A node is orphan for too long if it has attempted a join request which |
| 6428 | // timedout and its in orphan state for a while. |
| 6429 | bool orphan_for_too_long = (clustering_orphan_timeout() |
| 6430 | + g_clustering.orphan_state_start_time) < cf_getms() |
| 6431 | && g_clustering.last_join_request_principal |
| 6432 | && g_clustering.last_join_request_sent_time + join_request_timeout() |
| 6433 | < cf_getms(); |
| 6434 | |
| 6435 | if (orphan_for_too_long |
| 6436 | || clustering_join_request_attempt() |
| 6437 | == AS_CLUSTERING_JOIN_REQUEST_NO_PRINCIPALS) { |
| 6438 | // No neighboring principal found or we have been orphan for too long, |
| 6439 | // try and form a new cluster. |
| 6440 | clustering_cluster_form(); |
| 6441 | } |
| 6442 | else { |
| 6443 | // A join request sent successfully or pending. Wait for the new |
| 6444 | // principal to respond. |
| 6445 | |
| 6446 | // We are not going to be a principal node in this quantum, reject all |
| 6447 | // pending join requests. |
| 6448 | clustering_join_requests_reject_all(); |
| 6449 | } |
| 6450 | |
| 6451 | CLUSTERING_UNLOCK(); |
| 6452 | } |
| 6453 | |
| 6454 | /** |
| 6455 | * Get a list of nodes that need to be added to current succession list from |
| 6456 | * pending join requests. Bascially filters out node that are not orphans. |
| 6457 | */ |
| 6458 | static void |
| 6459 | clustering_nodes_to_add_get(cf_vector* nodes_to_add) |
| 6460 | { |
| 6461 | CLUSTERING_LOCK(); |
| 6462 | |
| 6463 | // Use a single iteration over the clustering data received via the |
| 6464 | // heartbeats instead of individual calls to get a consistent view and avoid |
| 6465 | // small lock and release. |
| 6466 | as_hb_plugin_data_iterate(&g_clustering.pending_join_requests, |
| 6467 | AS_HB_PLUGIN_CLUSTERING, clustering_orphan_nodes_find, |
| 6468 | nodes_to_add); |
| 6469 | |
| 6470 | CLUSTERING_UNLOCK(); |
| 6471 | } |
| 6472 | |
| 6473 | /** |
| 6474 | * Handle quantum interval start in the orphan state. Try and join / form a |
| 6475 | * cluster. |
| 6476 | */ |
| 6477 | static void |
| 6478 | clustering_orphan_quantum_interval_start_handle() |
| 6479 | { |
| 6480 | if (!as_hb_self_is_duplicate()) { |
| 6481 | // Try to join a cluster or form a new one. |
| 6482 | clustering_join_or_form_cluster(); |
| 6483 | } |
| 6484 | } |
| 6485 | |
| 6486 | /** |
| 6487 | * Send a cluster move command to all nodes in the input list. |
| 6488 | * |
| 6489 | * @param candidate_principal the principal to which the other nodes should try |
| 6490 | * and join after receiving the move command. |
| 6491 | * @param cluster_key current cluster key for receiver validation. |
| 6492 | * @param nodeids the nodes to send move command to. |
| 6493 | */ |
| 6494 | static void |
| 6495 | clustering_cluster_move_send(cf_node candidate_principal, |
| 6496 | as_cluster_key cluster_key, cf_vector* nodeids) |
| 6497 | { |
| 6498 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_MERGE_MOVE); |
| 6499 | |
| 6500 | // Set the proposed principal. |
| 6501 | msg_proposed_principal_set(msg, candidate_principal); |
| 6502 | |
| 6503 | // Set cluster key for message validation. |
| 6504 | msg_cluster_key_set(msg, cluster_key); |
| 6505 | |
| 6506 | log_cf_node_vector("cluster merge move command sent to:" , nodeids, |
| 6507 | CF_DEBUG); |
| 6508 | |
| 6509 | // Sent the message to the acceptors. |
| 6510 | msg_nodes_send(msg, nodeids); |
| 6511 | } |
| 6512 | |
| 6513 | /** |
| 6514 | * Update preferred principal votes using hb plugin data. |
| 6515 | */ |
| 6516 | static void |
| 6517 | clustering_principal_preferred_principal_votes_count(cf_node nodeid, |
| 6518 | void* plugin_data, size_t plugin_data_size, cf_clock recv_monotonic_ts, |
| 6519 | as_hlc_msg_timestamp* msg_hlc_ts, void* udata) |
| 6520 | { |
| 6521 | // A hash from each unique non null vinfo to a vector of partition ids |
| 6522 | // having the vinfo. |
| 6523 | cf_shash* preferred_principal_votes = (cf_shash*)udata; |
| 6524 | |
| 6525 | CLUSTERING_LOCK(); |
| 6526 | if (!clustering_hb_plugin_data_is_obsolete( |
| 6527 | g_register.cluster_modified_hlc_ts, |
| 6528 | g_register.cluster_modified_time, plugin_data, plugin_data_size, |
| 6529 | recv_monotonic_ts, msg_hlc_ts)) { |
| 6530 | cf_node* preferred_principal_p = |
| 6531 | clustering_hb_plugin_preferred_principal_get(plugin_data, |
| 6532 | plugin_data_size); |
| 6533 | |
| 6534 | int current_votes = 0; |
| 6535 | if (cf_shash_get(preferred_principal_votes, preferred_principal_p, |
| 6536 | ¤t_votes) == CF_SHASH_OK) { |
| 6537 | current_votes++; |
| 6538 | } |
| 6539 | else { |
| 6540 | // We are seeing this preferred principal for the first time. |
| 6541 | current_votes = 0; |
| 6542 | } |
| 6543 | |
| 6544 | cf_shash_put(preferred_principal_votes, preferred_principal_p, |
| 6545 | ¤t_votes); |
| 6546 | } |
| 6547 | else { |
| 6548 | DETAIL( |
| 6549 | "preferred principal voting skipped - found obsolete plugin data for node %" PRIx64, |
| 6550 | nodeid); |
| 6551 | } |
| 6552 | CLUSTERING_UNLOCK(); |
| 6553 | } |
| 6554 | |
| 6555 | /** |
| 6556 | * Get the preferred majority principal. |
| 6557 | */ |
| 6558 | static int |
| 6559 | clustering_principal_preferred_principal_majority_find(const void* key, |
| 6560 | void* data, void* udata) |
| 6561 | { |
| 6562 | |
| 6563 | const cf_node* current_preferred_principal = (const cf_node*)key; |
| 6564 | int current_preferred_principal_votes = *(int*)data; |
| 6565 | cf_node* majority_preferred_principal = (cf_node*)udata; |
| 6566 | |
| 6567 | CLUSTERING_LOCK(); |
| 6568 | int preferred_principal_majority = |
| 6569 | (int)ceil( |
| 6570 | cf_vector_size( |
| 6571 | &g_register.succession_list) * AS_CLUSTERING_PREFERRRED_PRINCIPAL_MAJORITY); |
| 6572 | bool is_majority = current_preferred_principal_votes |
| 6573 | >= preferred_principal_majority; |
| 6574 | CLUSTERING_UNLOCK(); |
| 6575 | |
| 6576 | if (is_majority) { |
| 6577 | *majority_preferred_principal = *current_preferred_principal; |
| 6578 | // Majority found, halt reduce. |
| 6579 | return CF_SHASH_ERR_FOUND; |
| 6580 | } |
| 6581 | |
| 6582 | return CF_SHASH_OK; |
| 6583 | } |
| 6584 | |
| 6585 | /** |
| 6586 | * Get preferred principal based on a majority of non-principal's preferred |
| 6587 | * principals. |
| 6588 | * @return the preferred principal nodeid if there is a majority, else zero. |
| 6589 | */ |
| 6590 | static cf_node |
| 6591 | clustering_principal_majority_preferred_principal_get() |
| 6592 | { |
| 6593 | // A hash from each unique non null vinfo to a vector of partition ids |
| 6594 | // having the vinfo. |
| 6595 | cf_shash* preferred_principal_votes = cf_shash_create(cf_nodeid_shash_fn, |
| 6596 | sizeof(cf_node), sizeof(int), AS_CLUSTERING_CLUSTER_MAX_SIZE_SOFT, |
| 6597 | 0); |
| 6598 | |
| 6599 | CLUSTERING_LOCK(); |
| 6600 | |
| 6601 | // Use a single iteration over the clustering data received via the |
| 6602 | // heartbeats instead of individual calls to get a consistent view and avoid |
| 6603 | // small lock and release. |
| 6604 | as_hb_plugin_data_iterate(&g_register.succession_list, |
| 6605 | AS_HB_PLUGIN_CLUSTERING, |
| 6606 | clustering_principal_preferred_principal_votes_count, |
| 6607 | preferred_principal_votes); |
| 6608 | |
| 6609 | // Find the majority preferred principal. |
| 6610 | cf_node preferred_principal = 0; |
| 6611 | cf_shash_reduce(preferred_principal_votes, |
| 6612 | clustering_principal_preferred_principal_majority_find, |
| 6613 | &preferred_principal); |
| 6614 | |
| 6615 | CLUSTERING_UNLOCK(); |
| 6616 | |
| 6617 | cf_shash_destroy(preferred_principal_votes); |
| 6618 | |
| 6619 | DETAIL("preferred principal is %" PRIx64, preferred_principal); |
| 6620 | |
| 6621 | return preferred_principal; |
| 6622 | } |
| 6623 | |
| 6624 | /** |
| 6625 | * Indicates if this node is a principal and its cluster can be merged with this |
| 6626 | * principal node's cluster. |
| 6627 | * |
| 6628 | * @param nodeid the candidate nodeid. |
| 6629 | * @param node_succession_list the candidate node's succession list. |
| 6630 | * @param node_succession_list_length the length of the node's succession list. |
| 6631 | * @return true if current node can be merged with this node's cluster. |
| 6632 | */ |
| 6633 | bool |
| 6634 | clustering_is_merge_candidate(cf_node nodeid, cf_node* node_succession_list, |
| 6635 | int node_succession_list_length) |
| 6636 | { |
| 6637 | if (node_succession_list_length <= 0 || node_succession_list[0] != nodeid) { |
| 6638 | // Not a principal node. Ignore. |
| 6639 | return false; |
| 6640 | } |
| 6641 | |
| 6642 | if (nodeid < config_self_nodeid_get()) { |
| 6643 | // Has a smaller nodeid. Ignore. This node will merge with our cluster. |
| 6644 | return false; |
| 6645 | } |
| 6646 | |
| 6647 | cf_vector* new_succession_list = vector_stack_lockless_create(cf_node); |
| 6648 | |
| 6649 | CLUSTERING_LOCK(); |
| 6650 | vector_copy_unique(new_succession_list, &g_register.succession_list); |
| 6651 | CLUSTERING_UNLOCK(); |
| 6652 | |
| 6653 | bool is_candidate = false; |
| 6654 | |
| 6655 | // Node is the principal of its cluster. Create the new succession list. |
| 6656 | for (int i = 0; i < node_succession_list_length; i++) { |
| 6657 | cf_vector_append_unique(new_succession_list, &node_succession_list[i]); |
| 6658 | } |
| 6659 | |
| 6660 | int expected_cluster_size = cf_vector_size(new_succession_list); |
| 6661 | |
| 6662 | // Find and evict the nodes that are not well connected. |
| 6663 | clustering_succession_list_clique_evict(new_succession_list, |
| 6664 | "clique based evicted nodes at cluster merge:" ); |
| 6665 | int new_cluster_size = cf_vector_size(new_succession_list); |
| 6666 | |
| 6667 | // If no nodes need to be evicted then the merge is fine. |
| 6668 | is_candidate = (expected_cluster_size == new_cluster_size); |
| 6669 | |
| 6670 | // Exit: |
| 6671 | cf_vector_destroy(new_succession_list); |
| 6672 | |
| 6673 | return is_candidate; |
| 6674 | } |
| 6675 | |
| 6676 | /** |
| 6677 | * HB plugin iterate function to find principals that this node's cluster can be |
| 6678 | * merged with. |
| 6679 | */ |
| 6680 | static void |
| 6681 | clustering_merge_candiate_find(cf_node nodeid, void* plugin_data, |
| 6682 | size_t plugin_data_size, cf_clock recv_monotonic_ts, |
| 6683 | as_hlc_msg_timestamp* msg_hlc_ts, void* udata) |
| 6684 | { |
| 6685 | cf_node* candidate_principal = (cf_node*)udata; |
| 6686 | |
| 6687 | CLUSTERING_LOCK(); |
| 6688 | |
| 6689 | if (!clustering_hb_plugin_data_is_obsolete( |
| 6690 | g_register.cluster_modified_hlc_ts, |
| 6691 | g_register.cluster_modified_time, plugin_data, plugin_data_size, |
| 6692 | recv_monotonic_ts, msg_hlc_ts)) { |
| 6693 | uint32_t* other_succession_list_length = |
| 6694 | clustering_hb_plugin_succession_length_get(plugin_data, |
| 6695 | plugin_data_size); |
| 6696 | |
| 6697 | cf_node* other_succession_list = clustering_hb_plugin_succession_get( |
| 6698 | plugin_data, plugin_data_size); |
| 6699 | |
| 6700 | if (other_succession_list != NULL |
| 6701 | && clustering_is_merge_candidate(nodeid, other_succession_list, |
| 6702 | *other_succession_list_length) |
| 6703 | && *candidate_principal < nodeid) { |
| 6704 | DETAIL("principal node %" PRIx64" potential candidate for cluster merge" , nodeid); |
| 6705 | *candidate_principal = nodeid; |
| 6706 | } |
| 6707 | |
| 6708 | } |
| 6709 | else { |
| 6710 | DETAIL( |
| 6711 | "merge check skipped - found obsolete plugin data for node %" PRIx64, |
| 6712 | nodeid); |
| 6713 | } |
| 6714 | |
| 6715 | CLUSTERING_UNLOCK(); |
| 6716 | } |
| 6717 | |
| 6718 | /** |
| 6719 | * Attempt to move to the majority preferred principal. |
| 6720 | * |
| 6721 | * @return 0 if the move to preferred principal was attempted, -1 otherwise. |
| 6722 | */ |
| 6723 | static int |
| 6724 | clustering_preferred_principal_move() |
| 6725 | { |
| 6726 | cf_node preferred_principal = |
| 6727 | clustering_principal_majority_preferred_principal_get(); |
| 6728 | |
| 6729 | if (preferred_principal == 0 |
| 6730 | || preferred_principal == config_self_nodeid_get()) { |
| 6731 | return -1; |
| 6732 | } |
| 6733 | |
| 6734 | cf_vector* succession_list = vector_stack_lockless_create(cf_node); |
| 6735 | as_cluster_key cluster_key = 0; |
| 6736 | CLUSTERING_LOCK(); |
| 6737 | vector_copy(succession_list, &g_register.succession_list); |
| 6738 | cluster_key = g_register.cluster_key; |
| 6739 | // Update the time move command was sent. |
| 6740 | g_clustering.move_cmd_issue_time = cf_getms(); |
| 6741 | CLUSTERING_UNLOCK(); |
| 6742 | |
| 6743 | INFO("majority nodes find %" PRIx64" to be a better principal - sending move command to all cluster members" , |
| 6744 | preferred_principal); |
| 6745 | clustering_cluster_move_send(preferred_principal, cluster_key, |
| 6746 | succession_list); |
| 6747 | cf_vector_destroy(succession_list); |
| 6748 | |
| 6749 | return 0; |
| 6750 | } |
| 6751 | |
| 6752 | /** |
| 6753 | * Attempt to merge with a larger adjacent cluster is the resulting cluster will |
| 6754 | * form a clique. |
| 6755 | * |
| 6756 | * @return 0 if a merge is attempted, -1 otherwise. |
| 6757 | */ |
| 6758 | static int |
| 6759 | clustering_merge_attempt() |
| 6760 | { |
| 6761 | int rv = -1; |
| 6762 | CLUSTERING_LOCK(); |
| 6763 | cf_vector* succession_list = vector_stack_lockless_create(cf_node); |
| 6764 | vector_copy(succession_list, &g_register.succession_list); |
| 6765 | as_cluster_key cluster_key = g_register.cluster_key; |
| 6766 | cf_node candidate_principal = 0; |
| 6767 | |
| 6768 | // Use a single iteration over the clustering data received via the |
| 6769 | // heartbeats instead of individual calls to get a consistent view and avoid |
| 6770 | // small lock and release. |
| 6771 | as_hb_plugin_data_iterate_all(AS_HB_PLUGIN_CLUSTERING, |
| 6772 | clustering_merge_candiate_find, &candidate_principal); |
| 6773 | |
| 6774 | CLUSTERING_UNLOCK(); |
| 6775 | |
| 6776 | if (candidate_principal == 0) { |
| 6777 | DEBUG("no cluster merge candidates found" ); |
| 6778 | rv = -1; |
| 6779 | goto Exit; |
| 6780 | } |
| 6781 | |
| 6782 | // Send a move command to all nodes in the succession list. Need not switch |
| 6783 | // to orphan state immediately, this node will receive the move command too |
| 6784 | // and will handle the move accordingly. |
| 6785 | INFO("this cluster can merge with cluster with principal %" PRIx64" - sending move command to all cluster members" , |
| 6786 | candidate_principal); |
| 6787 | clustering_cluster_move_send(candidate_principal, cluster_key, |
| 6788 | succession_list); |
| 6789 | rv = 0; |
| 6790 | Exit: |
| 6791 | cf_vector_destroy(succession_list); |
| 6792 | return rv; |
| 6793 | } |
| 6794 | |
| 6795 | /** |
| 6796 | * Handle quantum interval start when self node is the principal of its cluster. |
| 6797 | */ |
| 6798 | static void |
| 6799 | clustering_principal_quantum_interval_start_handle( |
| 6800 | as_clustering_internal_event* event) |
| 6801 | { |
| 6802 | DETAIL("principal node quantum wakeup" ); |
| 6803 | |
| 6804 | if (as_hb_self_is_duplicate()) { |
| 6805 | // Cluster is in a bad shape and self node has a duplicate node-id. |
| 6806 | register_become_orphan (AS_CLUSTERING_MEMBERSHIP_LOST); |
| 6807 | return; |
| 6808 | } |
| 6809 | |
| 6810 | CLUSTERING_LOCK(); |
| 6811 | bool paxos_proposal_started = false; |
| 6812 | |
| 6813 | cf_vector* dead_nodes = vector_stack_lockless_create(cf_node); |
| 6814 | clustering_dead_nodes_find(dead_nodes); |
| 6815 | |
| 6816 | log_cf_node_vector("dead nodes at quantum start:" , dead_nodes, |
| 6817 | cf_vector_size(dead_nodes) > 0 ? CF_INFO : CF_DEBUG); |
| 6818 | |
| 6819 | cf_vector* faulty_nodes = vector_stack_lockless_create(cf_node); |
| 6820 | clustering_faulty_nodes_find(faulty_nodes); |
| 6821 | |
| 6822 | log_cf_node_vector("faulty nodes at quantum start:" , faulty_nodes, |
| 6823 | cf_vector_size(faulty_nodes) > 0 ? CF_INFO : CF_DEBUG); |
| 6824 | |
| 6825 | // Having dead node or faulty nodes is a sign of cluster integrity breach. |
| 6826 | // New nodes should not count as integrity breach. |
| 6827 | g_clustering.has_integrity = cf_vector_size(faulty_nodes) == 0 |
| 6828 | && cf_vector_size(dead_nodes) == 0; |
| 6829 | |
| 6830 | cf_vector* new_nodes = vector_stack_lockless_create(cf_node); |
| 6831 | clustering_nodes_to_add_get(new_nodes); |
| 6832 | log_cf_node_vector("join requests at quantum start:" , new_nodes, |
| 6833 | cf_vector_size(new_nodes) > 0 ? CF_INFO : CF_DEBUG); |
| 6834 | |
| 6835 | cf_vector* new_succession_list = vector_stack_lockless_create(cf_node); |
| 6836 | vector_copy_unique(new_succession_list, &g_register.succession_list); |
| 6837 | vector_subtract(new_succession_list, dead_nodes); |
| 6838 | vector_subtract(new_succession_list, faulty_nodes); |
| 6839 | vector_copy_unique(new_succession_list, new_nodes); |
| 6840 | |
| 6841 | // Add self node. We should not miss self in the succession list, but be |
| 6842 | // doubly sure. |
| 6843 | cf_node self_nodeid = config_self_nodeid_get(); |
| 6844 | cf_vector_append_unique(new_succession_list, &self_nodeid); |
| 6845 | |
| 6846 | vector_sort_unique(new_succession_list, cf_node_compare_desc); |
| 6847 | uint32_t num_evicted = clustering_succession_list_clique_evict( |
| 6848 | new_succession_list, |
| 6849 | "clique based evicted nodes at quantum start:" ); |
| 6850 | |
| 6851 | if (event->quantum_interval_is_skippable && cf_vector_size(dead_nodes) != 0 |
| 6852 | && !quantum_interval_is_adjacency_fault_seen()) { |
| 6853 | // There is an imminent adjacency fault that has not been seen by the |
| 6854 | // quantum interval generator, lets not take any action. |
| 6855 | DEBUG("adjacency fault imminent - skipping quantum interval handling" ); |
| 6856 | quantum_interval_mark_postponed(); |
| 6857 | goto Exit; |
| 6858 | } |
| 6859 | |
| 6860 | if (event->quantum_interval_is_skippable && num_evicted != 0 |
| 6861 | && !quantum_interval_is_peer_adjacency_fault_seen()) { |
| 6862 | // There is an imminent adjacency fault that has not been seen by the |
| 6863 | // quantum interval generator, lets not take any action. |
| 6864 | DEBUG( |
| 6865 | "peer adjacency fault imminent - skipping quantum interval handling" ); |
| 6866 | quantum_interval_mark_postponed(); |
| 6867 | goto Exit; |
| 6868 | } |
| 6869 | |
| 6870 | if (cf_vector_size(faulty_nodes) == 0 && cf_vector_size(dead_nodes) == 0) { |
| 6871 | // We might have only pending join requests. Attempt a move to a |
| 6872 | // preferred principal or a merge before trying to add new nodes. |
| 6873 | if (clustering_preferred_principal_move() == 0 |
| 6874 | || clustering_merge_attempt() == 0) { |
| 6875 | goto Exit; |
| 6876 | } |
| 6877 | } |
| 6878 | |
| 6879 | if (vector_equals(new_succession_list, &g_register.succession_list) |
| 6880 | && cf_vector_size(faulty_nodes) == 0) { |
| 6881 | // There is no change in the succession list and also there are no |
| 6882 | // faulty nodes. If there are faulty nodes they have probably restarted |
| 6883 | // quickly, in which case a new cluster transition with the same |
| 6884 | // succession list is required. |
| 6885 | goto Exit; |
| 6886 | } |
| 6887 | |
| 6888 | if (cf_vector_size(faulty_nodes) != 0 |
| 6889 | && cf_vector_size(new_succession_list) == 1) { |
| 6890 | // This node most likely lost time (slept/paused) and the rest of the |
| 6891 | // cluster reformed. Its best to go to the orphan state and start from |
| 6892 | // there instead of moving to a single node cluster and again eventually |
| 6893 | // forming a larger cluster. |
| 6894 | WARNING( |
| 6895 | "all cluster members are part of different cluster - changing state to orphan" ); |
| 6896 | register_become_orphan (AS_CLUSTERING_MEMBERSHIP_LOST); |
| 6897 | goto Exit; |
| 6898 | } |
| 6899 | |
| 6900 | // Start a new paxos round. |
| 6901 | log_cf_node_vector("current succession list" , &g_register.succession_list, |
| 6902 | CF_DEBUG); |
| 6903 | |
| 6904 | log_cf_node_vector("proposed succession list" , new_succession_list, |
| 6905 | CF_DEBUG); |
| 6906 | DEBUG("proposed cluster size %d" , cf_vector_size(new_succession_list)); |
| 6907 | |
| 6908 | as_paxos_start_result result = paxos_proposer_proposal_start( |
| 6909 | new_succession_list, new_succession_list); |
| 6910 | |
| 6911 | // Log paxos result. |
| 6912 | paxos_result_log(result, new_succession_list); |
| 6913 | |
| 6914 | // TODO: Should we move to orphan state if there are not enough nodes in the |
| 6915 | // cluster. |
| 6916 | // Tentatively yes.... |
| 6917 | if (result == AS_PAXOS_RESULT_CLUSTER_TOO_SMALL) { |
| 6918 | register_become_orphan (AS_CLUSTERING_MEMBERSHIP_LOST); |
| 6919 | } |
| 6920 | |
| 6921 | paxos_proposal_started = (result == AS_PAXOS_RESULT_STARTED); |
| 6922 | Exit: |
| 6923 | // Although these are stack vectors the contents can be heap allocated on |
| 6924 | // resize. Destroy call is prudent. |
| 6925 | cf_vector_destroy(dead_nodes); |
| 6926 | cf_vector_destroy(faulty_nodes); |
| 6927 | cf_vector_destroy(new_nodes); |
| 6928 | cf_vector_destroy(new_succession_list); |
| 6929 | |
| 6930 | // Compute list of rejected nodes. |
| 6931 | if (paxos_proposal_started) { |
| 6932 | // Nodes in set (pending_join - new succession list) could not be |
| 6933 | // accomodated and should receive a join reject. |
| 6934 | vector_subtract(&g_clustering.pending_join_requests, |
| 6935 | new_succession_list); |
| 6936 | } |
| 6937 | else { |
| 6938 | // Nodes in set (pending_join - current succession list) could not be |
| 6939 | // accomodated and should receive a join reject. |
| 6940 | vector_subtract(&g_clustering.pending_join_requests, |
| 6941 | &g_register.succession_list); |
| 6942 | |
| 6943 | } |
| 6944 | |
| 6945 | cf_vector* rejected_nodes = vector_stack_lockless_create(cf_node); |
| 6946 | vector_copy_unique(rejected_nodes, &g_clustering.pending_join_requests); |
| 6947 | |
| 6948 | // Clear the pending join requests |
| 6949 | vector_clear(&g_clustering.pending_join_requests); |
| 6950 | |
| 6951 | // Send reject messages to rejected nodes. |
| 6952 | clustering_join_requests_reject(rejected_nodes); |
| 6953 | |
| 6954 | cf_vector_destroy(rejected_nodes); |
| 6955 | |
| 6956 | CLUSTERING_UNLOCK(); |
| 6957 | } |
| 6958 | |
| 6959 | /** |
| 6960 | * Check for and handle eviction by self node's principal. |
| 6961 | * |
| 6962 | * @param principal_plugin_data the pluging data for the principal. |
| 6963 | * @param plugin_data_hlc_ts the hlc timestamp when the plugin data was |
| 6964 | * received. |
| 6965 | * @param plugin_data_ts the monotonic clock timestamp when the plugin data was |
| 6966 | * recvied. |
| 6967 | */ |
| 6968 | static void |
| 6969 | clustering_non_principal_evicted_check(cf_node principal_nodeid, |
| 6970 | as_hb_plugin_node_data* principal_plugin_data, |
| 6971 | as_hlc_msg_timestamp* plugin_data_hlc_ts, cf_clock plugin_data_ts) |
| 6972 | { |
| 6973 | CLUSTERING_LOCK(); |
| 6974 | bool is_evicted = false; |
| 6975 | |
| 6976 | if (!as_hb_is_alive(principal_nodeid)) { |
| 6977 | is_evicted = true; |
| 6978 | goto Exit; |
| 6979 | } |
| 6980 | |
| 6981 | if (!clustering_is_our_principal(principal_nodeid) |
| 6982 | || clustering_hb_plugin_data_is_obsolete( |
| 6983 | g_register.cluster_modified_hlc_ts, |
| 6984 | g_register.cluster_modified_time, |
| 6985 | principal_plugin_data->data, |
| 6986 | principal_plugin_data->data_size, plugin_data_ts, |
| 6987 | plugin_data_hlc_ts)) { |
| 6988 | // The plugin data is obsolete. Can't take decisions based on it. |
| 6989 | goto Exit; |
| 6990 | } |
| 6991 | |
| 6992 | // Get the changed node's succession list, cluster key. All the fields |
| 6993 | // should be present since the obsolete check also checked for fields being |
| 6994 | // valid. |
| 6995 | cf_node* succession_list_p = clustering_hb_plugin_succession_get( |
| 6996 | principal_plugin_data->data, principal_plugin_data->data_size); |
| 6997 | uint32_t* succession_list_length_p = |
| 6998 | clustering_hb_plugin_succession_length_get( |
| 6999 | principal_plugin_data->data, |
| 7000 | principal_plugin_data->data_size); |
| 7001 | |
| 7002 | // Check if we have been evicted. |
| 7003 | if (!clustering_is_node_in_succession(config_self_nodeid_get(), |
| 7004 | succession_list_p, *succession_list_length_p)) { |
| 7005 | is_evicted = true; |
| 7006 | } |
| 7007 | |
| 7008 | Exit: |
| 7009 | if (is_evicted) { |
| 7010 | // This node has been evicted from the cluster. |
| 7011 | WARNING("evicted from cluster by principal node %" PRIx64"- changing state to orphan" , |
| 7012 | principal_nodeid); |
| 7013 | register_become_orphan (AS_CLUSTERING_MEMBERSHIP_LOST); |
| 7014 | } |
| 7015 | |
| 7016 | CLUSTERING_UNLOCK(); |
| 7017 | } |
| 7018 | |
| 7019 | /** |
| 7020 | * Monitor plugin data change events for evictions. |
| 7021 | */ |
| 7022 | static void |
| 7023 | clustering_non_principal_hb_plugin_data_changed_handle( |
| 7024 | as_clustering_internal_event* change_event) |
| 7025 | { |
| 7026 | clustering_non_principal_evicted_check( |
| 7027 | change_event->plugin_data_changed_nodeid, change_event->plugin_data, |
| 7028 | &change_event->plugin_data_changed_hlc_ts, |
| 7029 | change_event->plugin_data_changed_ts); |
| 7030 | } |
| 7031 | |
| 7032 | /** |
| 7033 | * Update the preferred principal in the non-principal mode. |
| 7034 | */ |
| 7035 | static void |
| 7036 | clustering_non_principal_preferred_principal_update() |
| 7037 | { |
| 7038 | cf_node current_principal = 0; |
| 7039 | if (clustering_principal_get(¤t_principal) != 0 |
| 7040 | || current_principal == 0) { |
| 7041 | // We are an orphan. |
| 7042 | return; |
| 7043 | } |
| 7044 | |
| 7045 | cf_vector* new_succession_list = vector_stack_lockless_create(cf_node); |
| 7046 | |
| 7047 | clustering_neighboring_nodes_get(new_succession_list); |
| 7048 | cf_node self_nodeid = config_self_nodeid_get(); |
| 7049 | cf_vector_append(new_succession_list, &self_nodeid); |
| 7050 | |
| 7051 | clustering_succession_list_clique_evict(new_succession_list, |
| 7052 | "clique based evicted nodes while updating preferred principal:" ); |
| 7053 | |
| 7054 | // Sort the new succession list. |
| 7055 | vector_sort_unique(new_succession_list, cf_node_compare_desc); |
| 7056 | |
| 7057 | cf_node preferred_principal = 0; |
| 7058 | int new_cluster_size = cf_vector_size(new_succession_list); |
| 7059 | if (new_cluster_size > 0) { |
| 7060 | if (vector_find(new_succession_list, ¤t_principal) < 0) { |
| 7061 | cf_vector_get(new_succession_list, 0, &preferred_principal); |
| 7062 | } |
| 7063 | } |
| 7064 | |
| 7065 | CLUSTERING_LOCK(); |
| 7066 | if (preferred_principal != 0 |
| 7067 | && g_clustering.preferred_principal != preferred_principal) { |
| 7068 | INFO("preferred principal updated to %" PRIx64, |
| 7069 | g_clustering.preferred_principal); |
| 7070 | } |
| 7071 | g_clustering.preferred_principal = preferred_principal; |
| 7072 | |
| 7073 | cf_vector_destroy(new_succession_list); |
| 7074 | CLUSTERING_UNLOCK(); |
| 7075 | } |
| 7076 | |
| 7077 | /** |
| 7078 | * Handle quantum interval start in the non principal state. |
| 7079 | */ |
| 7080 | static void |
| 7081 | clustering_non_principal_quantum_interval_start_handle() |
| 7082 | { |
| 7083 | // Reject all accumulated join requests since we are no longer a principal. |
| 7084 | clustering_join_requests_reject_all(); |
| 7085 | |
| 7086 | if (as_hb_self_is_duplicate()) { |
| 7087 | // Cluster is in a bad shape and self node has a duplicate node-id. |
| 7088 | register_become_orphan (AS_CLUSTERING_MEMBERSHIP_LOST); |
| 7089 | return; |
| 7090 | } |
| 7091 | |
| 7092 | // Update the preferred principal. |
| 7093 | clustering_non_principal_preferred_principal_update(); |
| 7094 | |
| 7095 | // Check if we have been evicted. |
| 7096 | cf_node principal = 0; |
| 7097 | |
| 7098 | if (clustering_principal_get(&principal) != 0) { |
| 7099 | WARNING("could not get principal for self node" ); |
| 7100 | return; |
| 7101 | } |
| 7102 | |
| 7103 | as_hlc_msg_timestamp plugin_data_hlc_ts; |
| 7104 | cf_clock plugin_data_ts = 0; |
| 7105 | as_hb_plugin_node_data plugin_data = { 0 }; |
| 7106 | |
| 7107 | if (clustering_hb_plugin_data_get(principal, &plugin_data, |
| 7108 | &plugin_data_hlc_ts, &plugin_data_ts) != 0) { |
| 7109 | plugin_data_ts = 0; |
| 7110 | memset(&plugin_data, 0, sizeof(plugin_data)); |
| 7111 | } |
| 7112 | |
| 7113 | clustering_non_principal_evicted_check(principal, &plugin_data, |
| 7114 | &plugin_data_hlc_ts, plugin_data_ts); |
| 7115 | } |
| 7116 | |
| 7117 | /** |
| 7118 | * Handle quantum interval start. |
| 7119 | */ |
| 7120 | static void |
| 7121 | clustering_quantum_interval_start_handle(as_clustering_internal_event* event) |
| 7122 | { |
| 7123 | CLUSTERING_LOCK(); |
| 7124 | |
| 7125 | // Dispatch based on state. |
| 7126 | switch (g_clustering.state) { |
| 7127 | case AS_CLUSTERING_STATE_ORPHAN: |
| 7128 | clustering_orphan_quantum_interval_start_handle(); |
| 7129 | break; |
| 7130 | case AS_CLUSTERING_STATE_PRINCIPAL: |
| 7131 | clustering_principal_quantum_interval_start_handle(event); |
| 7132 | break; |
| 7133 | case AS_CLUSTERING_STATE_NON_PRINCIPAL: |
| 7134 | clustering_non_principal_quantum_interval_start_handle(); |
| 7135 | default: |
| 7136 | break; |
| 7137 | } |
| 7138 | |
| 7139 | CLUSTERING_UNLOCK(); |
| 7140 | } |
| 7141 | |
| 7142 | /** |
| 7143 | * Handle a timer event in the orphan state. |
| 7144 | */ |
| 7145 | static void |
| 7146 | clustering_orphan_timer_event_handle() |
| 7147 | { |
| 7148 | // Attempt a join request. |
| 7149 | DETAIL("attempting join request from orphan state" ); |
| 7150 | clustering_join_request_attempt(); |
| 7151 | } |
| 7152 | |
| 7153 | /** |
| 7154 | * Handle a timer event for the clustering module. |
| 7155 | */ |
| 7156 | static void |
| 7157 | clustering_timer_event_handle() |
| 7158 | { |
| 7159 | CLUSTERING_LOCK(); |
| 7160 | |
| 7161 | // Dispatch based on state. |
| 7162 | switch (g_clustering.state) { |
| 7163 | case AS_CLUSTERING_STATE_ORPHAN: |
| 7164 | clustering_orphan_timer_event_handle(); |
| 7165 | break; |
| 7166 | default: |
| 7167 | break; |
| 7168 | } |
| 7169 | |
| 7170 | CLUSTERING_UNLOCK(); |
| 7171 | } |
| 7172 | |
| 7173 | /** |
| 7174 | * Check if the incoming message is sane to be proccessed further. |
| 7175 | */ |
| 7176 | static bool |
| 7177 | clustering_message_sanity_check(cf_node src_nodeid, msg* msg) |
| 7178 | { |
| 7179 | as_cluster_proto_identifier proto; |
| 7180 | if (msg_proto_id_get(msg, &proto) != 0) { |
| 7181 | WARNING( |
| 7182 | "received message with no clustering protocol identifier from node %" PRIx64, |
| 7183 | src_nodeid); |
| 7184 | return false; |
| 7185 | } |
| 7186 | |
| 7187 | return clustering_versions_are_compatible(proto, |
| 7188 | clustering_protocol_identifier_get()); |
| 7189 | } |
| 7190 | |
| 7191 | /** |
| 7192 | * Handle an incoming join request. We do not bother with older replay's for |
| 7193 | * join requests because the pending request are cleanup during new cluster |
| 7194 | * formation. |
| 7195 | */ |
| 7196 | static void |
| 7197 | clustering_join_request_handle(as_clustering_internal_event* msg_event) |
| 7198 | { |
| 7199 | cf_node src_nodeid = msg_event->msg_src_nodeid; |
| 7200 | DEBUG("received cluster join request from node %" PRIx64, src_nodeid); |
| 7201 | bool fire_quantum_event = false; |
| 7202 | |
| 7203 | CLUSTERING_LOCK(); |
| 7204 | |
| 7205 | cf_clock now = cf_getms(); |
| 7206 | |
| 7207 | if (g_clustering.move_cmd_issue_time + join_request_move_reject_interval() |
| 7208 | > now) { |
| 7209 | // We have just send out a move request. Reject this join request. |
| 7210 | INFO("ignoring join request from node %" PRIx64" since we have just issued a move command" , |
| 7211 | src_nodeid); |
| 7212 | clustering_join_reject_send(src_nodeid); |
| 7213 | goto Exit; |
| 7214 | } |
| 7215 | |
| 7216 | if ((!clustering_is_principal() && !clustering_is_orphan()) |
| 7217 | || g_clustering.last_join_request_sent_time + join_request_timeout() |
| 7218 | >= cf_getms()) { |
| 7219 | // Can't handle a join request this node is not the principal right now |
| 7220 | // or this node is trying to join another cluster. |
| 7221 | msg* msg = msg_pool_get(AS_CLUSTERING_MSG_TYPE_JOIN_REJECT); |
| 7222 | |
| 7223 | DETAIL("sent join reject to node %" PRIx64, msg_event->msg_src_nodeid); |
| 7224 | |
| 7225 | // Sent the message to the acceptors. |
| 7226 | msg_node_send(msg, msg_event->msg_src_nodeid); |
| 7227 | |
| 7228 | goto Exit; |
| 7229 | } |
| 7230 | |
| 7231 | if (vector_find(&g_clustering.pending_join_requests, &src_nodeid) >= 0) { |
| 7232 | DEBUG("ignoring join request from node %" PRIx64" since a request is already pending" , |
| 7233 | src_nodeid); |
| 7234 | goto Exit; |
| 7235 | } |
| 7236 | |
| 7237 | // Check if we are receiving a stale or very delayed join request. |
| 7238 | int64_t message_delay_estimate = as_hlc_timestamp_diff_ms( |
| 7239 | as_hlc_timestamp_now(), msg_event->msg_hlc_ts.send_ts); |
| 7240 | if (message_delay_estimate < 0 |
| 7241 | || message_delay_estimate > join_request_accept_delay_max()) { |
| 7242 | INFO("ignoring stale join request from node %" PRIx64" - delay estimate %lu(ms) " , |
| 7243 | src_nodeid, message_delay_estimate); |
| 7244 | goto Exit; |
| 7245 | } |
| 7246 | |
| 7247 | // Add this request to the pending queue. |
| 7248 | cf_vector_append_unique(&g_clustering.pending_join_requests, &src_nodeid); |
| 7249 | |
| 7250 | // Generate a join request accepted event for the quantum interval |
| 7251 | // generator. |
| 7252 | as_clustering_internal_event join_request_event; |
| 7253 | memset(&join_request_event, 0, sizeof(join_request_event)); |
| 7254 | join_request_event.type = |
| 7255 | AS_CLUSTERING_INTERNAL_EVENT_JOIN_REQUEST_ACCEPTED; |
| 7256 | join_request_event.join_request_source_nodeid = src_nodeid; |
| 7257 | internal_event_dispatch(&join_request_event); |
| 7258 | fire_quantum_event = true; |
| 7259 | |
| 7260 | INFO("accepted join request from node %" PRIx64, src_nodeid); |
| 7261 | |
| 7262 | Exit: |
| 7263 | CLUSTERING_UNLOCK(); |
| 7264 | |
| 7265 | if (fire_quantum_event) { |
| 7266 | internal_event_dispatch(&join_request_event); |
| 7267 | } |
| 7268 | } |
| 7269 | |
| 7270 | /** |
| 7271 | * Handle an incoming join reject. |
| 7272 | */ |
| 7273 | static void |
| 7274 | clustering_join_reject_handle(as_clustering_internal_event* event) |
| 7275 | { |
| 7276 | cf_node src_nodeid = event->msg_src_nodeid; |
| 7277 | |
| 7278 | DEBUG("received cluster join reject from node %" PRIx64, src_nodeid); |
| 7279 | |
| 7280 | CLUSTERING_LOCK(); |
| 7281 | |
| 7282 | if (!clustering_is_orphan()) { |
| 7283 | // Already part of a cluster. Ignore the reject. |
| 7284 | INFO( |
| 7285 | "already part of a cluster - ignoring join reject from node %" PRIx64, |
| 7286 | src_nodeid); |
| 7287 | goto Exit; |
| 7288 | } |
| 7289 | |
| 7290 | if (paxos_proposer_proposal_is_active()) { |
| 7291 | // This node is attempting to form a new cluster. |
| 7292 | INFO( |
| 7293 | "already trying to form a cluster - ignoring join reject from node %" PRIx64, |
| 7294 | src_nodeid); |
| 7295 | goto Exit; |
| 7296 | } |
| 7297 | |
| 7298 | if (g_clustering.last_join_request_principal == src_nodeid) { |
| 7299 | // This node had requested the source principal for cluster membership |
| 7300 | // which was rejected. Try and join a different cluster. |
| 7301 | |
| 7302 | // This join request should not be considered as pending, so reset the |
| 7303 | // join request sent time. |
| 7304 | g_clustering.last_join_request_sent_time = 0; |
| 7305 | g_clustering.last_join_request_principal = 0; |
| 7306 | clustering_join_request_attempt(); |
| 7307 | } |
| 7308 | |
| 7309 | Exit: |
| 7310 | CLUSTERING_UNLOCK(); |
| 7311 | } |
| 7312 | |
| 7313 | /** |
| 7314 | * Handle an incoming merge move command. Basically this node switched to orphan |
| 7315 | * state and sends a join request to the principal listed in the merge move. |
| 7316 | */ |
| 7317 | static void |
| 7318 | clustering_merge_move_handle(as_clustering_internal_event* event) |
| 7319 | { |
| 7320 | cf_node src_nodeid = event->msg_src_nodeid; |
| 7321 | |
| 7322 | DEBUG("received cluster merge move from node %" PRIx64, src_nodeid); |
| 7323 | |
| 7324 | CLUSTERING_LOCK(); |
| 7325 | |
| 7326 | as_cluster_key msg_cluster_key = 0; |
| 7327 | msg_cluster_key_get(event->msg, &msg_cluster_key); |
| 7328 | |
| 7329 | if (clustering_is_orphan()) { |
| 7330 | // Already part of a cluster. Ignore the reject. |
| 7331 | INFO( |
| 7332 | "already orphan node - ignoring merge move command from node %" PRIx64, |
| 7333 | src_nodeid); |
| 7334 | goto Exit; |
| 7335 | } |
| 7336 | |
| 7337 | if (msg_is_obsolete(g_register.cluster_modified_hlc_ts, |
| 7338 | g_register.cluster_modified_time, event->msg_recvd_ts, |
| 7339 | &event->msg_hlc_ts) || !clustering_is_our_principal(src_nodeid) |
| 7340 | || paxos_proposer_proposal_is_active() |
| 7341 | || msg_cluster_key != g_register.cluster_key) { |
| 7342 | INFO("ignoring cluster merge move from node %" PRIx64, src_nodeid); |
| 7343 | goto Exit; |
| 7344 | } |
| 7345 | |
| 7346 | // Madril simulation black lists current principal so that we do not end up |
| 7347 | // joining him again immediately. However the check for obsolete data should |
| 7348 | // make that check from madril redundant. |
| 7349 | cf_node new_principal = 0; |
| 7350 | |
| 7351 | if (msg_proposed_principal_get(event->msg, &new_principal) != 0) { |
| 7352 | // Move command does not have the proposed principal |
| 7353 | WARNING( |
| 7354 | "received merge move command without a proposed principal. Will join the first available principal" ); |
| 7355 | new_principal = 0; |
| 7356 | } |
| 7357 | |
| 7358 | // Switch to orphan cluster state so that we move to the new principal. |
| 7359 | register_become_orphan (AS_CLUSTERING_ATTEMPTING_MERGE); |
| 7360 | |
| 7361 | // Send a join request to a the new principal |
| 7362 | clustering_principal_join_request_attempt(new_principal); |
| 7363 | Exit: |
| 7364 | CLUSTERING_UNLOCK(); |
| 7365 | } |
| 7366 | |
| 7367 | /** |
| 7368 | * Handle an incoming message. |
| 7369 | */ |
| 7370 | static void |
| 7371 | clustering_msg_event_handle(as_clustering_internal_event* msg_event) |
| 7372 | { |
| 7373 | // Delegate handling based on message type. |
| 7374 | switch (msg_event->msg_type) { |
| 7375 | case AS_CLUSTERING_MSG_TYPE_JOIN_REQUEST: |
| 7376 | clustering_join_request_handle(msg_event); |
| 7377 | break; |
| 7378 | case AS_CLUSTERING_MSG_TYPE_JOIN_REJECT: |
| 7379 | clustering_join_reject_handle(msg_event); |
| 7380 | break; |
| 7381 | case AS_CLUSTERING_MSG_TYPE_MERGE_MOVE: |
| 7382 | clustering_merge_move_handle(msg_event); |
| 7383 | break; |
| 7384 | default: // Non cluster management messages. |
| 7385 | break; |
| 7386 | } |
| 7387 | } |
| 7388 | |
| 7389 | /** |
| 7390 | * Fabric msg listener that generates an internal message event and dispatches |
| 7391 | * it to the sub system. |
| 7392 | */ |
| 7393 | static int |
| 7394 | clustering_fabric_msg_listener(cf_node msg_src_nodeid, msg* msg, void* udata) |
| 7395 | { |
| 7396 | if (!clustering_is_running()) { |
| 7397 | // Ignore fabric messages when clustering is not running. |
| 7398 | WARNING("clustering stopped - ignoring message from node %" PRIx64, |
| 7399 | msg_src_nodeid); |
| 7400 | goto Exit; |
| 7401 | } |
| 7402 | |
| 7403 | // Sanity check. |
| 7404 | if (!clustering_message_sanity_check(msg_src_nodeid, msg)) { |
| 7405 | WARNING("invalid mesage received from node %" PRIx64, msg_src_nodeid); |
| 7406 | goto Exit; |
| 7407 | } |
| 7408 | |
| 7409 | as_clustering_internal_event msg_event; |
| 7410 | memset(&msg_event, 0, sizeof(msg_event)); |
| 7411 | msg_event.type = AS_CLUSTERING_INTERNAL_EVENT_MSG; |
| 7412 | |
| 7413 | msg_event.msg_src_nodeid = msg_src_nodeid; |
| 7414 | |
| 7415 | // Update hlc and store update message timestamp for the event. |
| 7416 | as_hlc_timestamp send_ts = 0; |
| 7417 | msg_send_ts_get(msg, &send_ts); |
| 7418 | as_hlc_timestamp_update(msg_event.msg_src_nodeid, send_ts, |
| 7419 | &msg_event.msg_hlc_ts); |
| 7420 | |
| 7421 | msg_event.msg = msg; |
| 7422 | msg_event.msg_recvd_ts = cf_getms(); |
| 7423 | msg_type_get(msg, &msg_event.msg_type); |
| 7424 | |
| 7425 | internal_event_dispatch(&msg_event); |
| 7426 | |
| 7427 | Exit: |
| 7428 | as_fabric_msg_put(msg); |
| 7429 | return 0; |
| 7430 | } |
| 7431 | |
| 7432 | /** |
| 7433 | * Handle register cluster changed. |
| 7434 | */ |
| 7435 | static void |
| 7436 | clustering_register_cluster_changed_handle() |
| 7437 | { |
| 7438 | CLUSTERING_LOCK(); |
| 7439 | |
| 7440 | if (paxos_proposer_proposal_is_active()) { |
| 7441 | paxos_proposer_fail(); |
| 7442 | } |
| 7443 | |
| 7444 | if (clustering_is_principal()) { |
| 7445 | g_clustering.state = AS_CLUSTERING_STATE_PRINCIPAL; |
| 7446 | } |
| 7447 | else { |
| 7448 | g_clustering.state = AS_CLUSTERING_STATE_NON_PRINCIPAL; |
| 7449 | // We are a non-principal. Reject all pending join requests. |
| 7450 | clustering_join_requests_reject_all(); |
| 7451 | } |
| 7452 | |
| 7453 | g_clustering.preferred_principal = 0; |
| 7454 | g_clustering.last_join_request_principal = 0; |
| 7455 | g_clustering.move_cmd_issue_time = 0; |
| 7456 | |
| 7457 | CLUSTERING_UNLOCK(); |
| 7458 | } |
| 7459 | |
| 7460 | /** |
| 7461 | * Handle register synced events. Basically this means it is safe to publish the |
| 7462 | * cluster changed event to external sub systems. |
| 7463 | */ |
| 7464 | static void |
| 7465 | clustering_register_cluster_synced_handle(as_clustering_internal_event* event) |
| 7466 | { |
| 7467 | CLUSTERING_LOCK(); |
| 7468 | |
| 7469 | // Queue the cluster change event for publishing. |
| 7470 | as_clustering_event cluster_change_event; |
| 7471 | cluster_change_event.type = AS_CLUSTERING_CLUSTER_CHANGED; |
| 7472 | cluster_change_event.qualifier = event->qualifier; |
| 7473 | cluster_change_event.cluster_key = g_register.cluster_key; |
| 7474 | cluster_change_event.succession_list = &g_register.succession_list; |
| 7475 | external_event_queue(&cluster_change_event); |
| 7476 | |
| 7477 | g_clustering.has_integrity = true; |
| 7478 | |
| 7479 | CLUSTERING_UNLOCK(); |
| 7480 | } |
| 7481 | |
| 7482 | /** |
| 7483 | * Handle the register going to orphaned state. |
| 7484 | */ |
| 7485 | static void |
| 7486 | clustering_register_orphaned_handle(as_clustering_internal_event* event) |
| 7487 | { |
| 7488 | CLUSTERING_LOCK(); |
| 7489 | g_clustering.state = AS_CLUSTERING_STATE_ORPHAN; |
| 7490 | g_clustering.orphan_state_start_time = cf_getms(); |
| 7491 | g_clustering.preferred_principal = 0; |
| 7492 | |
| 7493 | // Queue the cluster change event for publishing. |
| 7494 | as_clustering_event orphaned_event; |
| 7495 | orphaned_event.type = AS_CLUSTERING_ORPHANED; |
| 7496 | orphaned_event.qualifier = event->qualifier; |
| 7497 | orphaned_event.cluster_key = 0; |
| 7498 | orphaned_event.succession_list = NULL; |
| 7499 | external_event_queue(&orphaned_event); |
| 7500 | CLUSTERING_UNLOCK(); |
| 7501 | } |
| 7502 | |
| 7503 | /** |
| 7504 | * Handle hb plugin data change by dispatching it based on clustering change. |
| 7505 | */ |
| 7506 | static void |
| 7507 | clustering_hb_plugin_data_changed_event_handle( |
| 7508 | as_clustering_internal_event* change_event) |
| 7509 | { |
| 7510 | CLUSTERING_LOCK(); |
| 7511 | switch (g_clustering.state) { |
| 7512 | case AS_CLUSTERING_STATE_NON_PRINCIPAL: |
| 7513 | clustering_non_principal_hb_plugin_data_changed_handle(change_event); |
| 7514 | break; |
| 7515 | default: |
| 7516 | break; |
| 7517 | } |
| 7518 | CLUSTERING_UNLOCK(); |
| 7519 | } |
| 7520 | |
| 7521 | /** |
| 7522 | * Handle heartbeat event. |
| 7523 | */ |
| 7524 | static void |
| 7525 | clustering_hb_event_handle(as_clustering_internal_event* hb_event) |
| 7526 | { |
| 7527 | for (int i = 0; i < hb_event->hb_n_events; i++) { |
| 7528 | if (hb_event->hb_events[i].evt == AS_HB_NODE_DEPART |
| 7529 | && clustering_is_our_principal(hb_event->hb_events[i].nodeid)) { |
| 7530 | // Our principal is no longer visible. |
| 7531 | INFO("principal node %" PRIx64" departed - switching to orphan state" , |
| 7532 | hb_event->hb_events[i].nodeid); |
| 7533 | register_become_orphan (AS_CLUSTERING_MEMBERSHIP_LOST); |
| 7534 | } |
| 7535 | } |
| 7536 | } |
| 7537 | |
| 7538 | /** |
| 7539 | * Handle the fail of a paxos proposal started by the self node. |
| 7540 | */ |
| 7541 | static void |
| 7542 | clustering_paxos_proposer_fail_handle() |
| 7543 | { |
| 7544 | // Send reject to all pending join requesters. |
| 7545 | clustering_join_requests_reject_all(); |
| 7546 | } |
| 7547 | |
| 7548 | /** |
| 7549 | * Clustering module event handler. |
| 7550 | */ |
| 7551 | static void |
| 7552 | clustering_event_handle(as_clustering_internal_event* event) |
| 7553 | { |
| 7554 | // Lock to enusure the entire event handling is atomic and parallel events |
| 7555 | // events (hb/fabric) do not interfere. |
| 7556 | CLUSTERING_LOCK(); |
| 7557 | |
| 7558 | switch (event->type) { |
| 7559 | case AS_CLUSTERING_INTERNAL_EVENT_TIMER: |
| 7560 | clustering_timer_event_handle(); |
| 7561 | break; |
| 7562 | case AS_CLUSTERING_INTERNAL_EVENT_QUANTUM_INTERVAL_START: |
| 7563 | clustering_quantum_interval_start_handle(event); |
| 7564 | break; |
| 7565 | case AS_CLUSTERING_INTERNAL_EVENT_HB: |
| 7566 | clustering_hb_event_handle(event); |
| 7567 | break; |
| 7568 | case AS_CLUSTERING_INTERNAL_EVENT_HB_PLUGIN_DATA_CHANGED: |
| 7569 | clustering_hb_plugin_data_changed_event_handle(event); |
| 7570 | break; |
| 7571 | case AS_CLUSTERING_INTERNAL_EVENT_MSG: |
| 7572 | clustering_msg_event_handle(event); |
| 7573 | break; |
| 7574 | case AS_CLUSTERING_INTERNAL_EVENT_REGISTER_ORPHANED: |
| 7575 | clustering_register_orphaned_handle(event); |
| 7576 | break; |
| 7577 | case AS_CLUSTERING_INTERNAL_EVENT_REGISTER_CLUSTER_CHANGED: |
| 7578 | clustering_register_cluster_changed_handle(); |
| 7579 | break; |
| 7580 | case AS_CLUSTERING_INTERNAL_EVENT_REGISTER_CLUSTER_SYNCED: |
| 7581 | clustering_register_cluster_synced_handle(event); |
| 7582 | break; |
| 7583 | case AS_CLUSTERING_INTERNAL_EVENT_PAXOS_PROPOSER_FAIL: // Send reject message to all |
| 7584 | clustering_paxos_proposer_fail_handle(); |
| 7585 | break; |
| 7586 | default: // Not of interest for main clustering module. |
| 7587 | break; |
| 7588 | } |
| 7589 | |
| 7590 | CLUSTERING_UNLOCK(); |
| 7591 | } |
| 7592 | |
| 7593 | /** |
| 7594 | * Initialize the template to be used for clustering messages. |
| 7595 | */ |
| 7596 | static void |
| 7597 | clustering_msg_init() |
| 7598 | { |
| 7599 | // Register fabric clustering msg type with no processing function: |
| 7600 | // This permits getting / putting clustering msgs to be moderated via an |
| 7601 | // idle msg queue. |
| 7602 | as_fabric_register_msg_fn(M_TYPE_CLUSTERING, g_clustering_msg_template, |
| 7603 | sizeof(g_clustering_msg_template), AS_CLUSTERING_MSG_SCRATCH_SIZE, |
| 7604 | clustering_fabric_msg_listener, NULL); |
| 7605 | } |
| 7606 | |
| 7607 | /** |
| 7608 | * Change listener that updates the first time in current quantum. |
| 7609 | */ |
| 7610 | static void |
| 7611 | clustering_hb_plugin_data_change_listener(cf_node changed_node_id) |
| 7612 | { |
| 7613 | if (!clustering_is_running()) { |
| 7614 | return; |
| 7615 | } |
| 7616 | |
| 7617 | DETAIL("cluster information change detected for node %" PRIx64, |
| 7618 | changed_node_id); |
| 7619 | |
| 7620 | as_hb_plugin_node_data plugin_data; |
| 7621 | as_clustering_internal_event change_event; |
| 7622 | memset(&change_event, 0, sizeof(change_event)); |
| 7623 | change_event.type = AS_CLUSTERING_INTERNAL_EVENT_HB_PLUGIN_DATA_CHANGED; |
| 7624 | change_event.plugin_data_changed_nodeid = changed_node_id; |
| 7625 | change_event.plugin_data = &plugin_data; |
| 7626 | |
| 7627 | if (clustering_hb_plugin_data_get(changed_node_id, &plugin_data, |
| 7628 | &change_event.plugin_data_changed_hlc_ts, |
| 7629 | &change_event.plugin_data_changed_ts) != 0) { |
| 7630 | // Not possible. We should be able to read the plugin data that changed. |
| 7631 | return; |
| 7632 | } |
| 7633 | internal_event_dispatch(&change_event); |
| 7634 | } |
| 7635 | |
| 7636 | /** |
| 7637 | * Listen to external heartbeat event and dispatch an internal heartbeat event. |
| 7638 | */ |
| 7639 | static void |
| 7640 | clustering_hb_event_listener(int n_events, as_hb_event_node* hb_node_events, |
| 7641 | void* udata) |
| 7642 | { |
| 7643 | if (!clustering_is_running()) { |
| 7644 | return; |
| 7645 | } |
| 7646 | |
| 7647 | // Wrap the events in an internal event and dispatch. |
| 7648 | as_clustering_internal_event hb_event; |
| 7649 | memset(&hb_event, 0, sizeof(hb_event)); |
| 7650 | hb_event.type = AS_CLUSTERING_INTERNAL_EVENT_HB; |
| 7651 | hb_event.hb_n_events = n_events; |
| 7652 | hb_event.hb_events = hb_node_events; |
| 7653 | |
| 7654 | internal_event_dispatch(&hb_event); |
| 7655 | } |
| 7656 | |
| 7657 | /** |
| 7658 | * Reform the cluster with the same succession list.This would trigger the |
| 7659 | * generation of new partition info and the cluster would get a new cluster key. |
| 7660 | * |
| 7661 | * @return 0 if new clustering round started, 1 if not principal, -1 otherwise. |
| 7662 | */ |
| 7663 | static int |
| 7664 | clustering_cluster_reform() |
| 7665 | { |
| 7666 | int rv = -1; |
| 7667 | CLUSTERING_LOCK(); |
| 7668 | |
| 7669 | cf_vector* dead_nodes = vector_stack_lockless_create(cf_node); |
| 7670 | clustering_dead_nodes_find(dead_nodes); |
| 7671 | |
| 7672 | log_cf_node_vector("recluster: dead nodes - " , dead_nodes, |
| 7673 | cf_vector_size(dead_nodes) > 0 ? CF_INFO : CF_DEBUG); |
| 7674 | |
| 7675 | cf_vector* faulty_nodes = vector_stack_lockless_create(cf_node); |
| 7676 | clustering_faulty_nodes_find(faulty_nodes); |
| 7677 | |
| 7678 | log_cf_node_vector("recluster: faulty nodes - " , faulty_nodes, |
| 7679 | cf_vector_size(faulty_nodes) > 0 ? CF_INFO : CF_DEBUG); |
| 7680 | |
| 7681 | cf_vector* new_nodes = vector_stack_lockless_create(cf_node); |
| 7682 | clustering_nodes_to_add_get(new_nodes); |
| 7683 | log_cf_node_vector("recluster: pending join requests - " , new_nodes, |
| 7684 | cf_vector_size(new_nodes) > 0 ? CF_INFO : CF_DEBUG); |
| 7685 | |
| 7686 | if (!clustering_is_running() || !clustering_is_principal() |
| 7687 | || cf_vector_size(dead_nodes) > 0 |
| 7688 | || cf_vector_size(faulty_nodes) > 0 |
| 7689 | || cf_vector_size(new_nodes) > 0) { |
| 7690 | INFO( |
| 7691 | "recluster: skipped - principal %s dead_nodes %d faulty_nodes %d new_nodes %d" , |
| 7692 | clustering_is_principal() ? "true" : "false" , |
| 7693 | cf_vector_size(dead_nodes), cf_vector_size(faulty_nodes), |
| 7694 | cf_vector_size(new_nodes)); |
| 7695 | |
| 7696 | if (!clustering_is_principal()) { |
| 7697 | // Common case - command will likely be sent to all nodes. |
| 7698 | rv = 1; |
| 7699 | } |
| 7700 | |
| 7701 | goto Exit; |
| 7702 | } |
| 7703 | |
| 7704 | cf_vector* succession_list = vector_stack_lockless_create(cf_node); |
| 7705 | vector_copy(succession_list, &g_register.succession_list); |
| 7706 | |
| 7707 | log_cf_node_vector( |
| 7708 | "recluster: principal node - reforming new cluster with succession list:" , |
| 7709 | succession_list, CF_INFO); |
| 7710 | |
| 7711 | as_paxos_start_result result = paxos_proposer_proposal_start( |
| 7712 | succession_list, succession_list); |
| 7713 | |
| 7714 | // Log paxos result. |
| 7715 | paxos_result_log(result, succession_list); |
| 7716 | |
| 7717 | rv = (result == AS_PAXOS_RESULT_STARTED) ? 0 : -1; |
| 7718 | |
| 7719 | if (rv == -1) { |
| 7720 | INFO("recluster: skipped" ); |
| 7721 | } |
| 7722 | else { |
| 7723 | INFO("recluster: triggered..." ); |
| 7724 | } |
| 7725 | |
| 7726 | cf_vector_destroy(succession_list); |
| 7727 | |
| 7728 | Exit: |
| 7729 | cf_vector_destroy(dead_nodes); |
| 7730 | cf_vector_destroy(faulty_nodes); |
| 7731 | cf_vector_destroy(new_nodes); |
| 7732 | CLUSTERING_UNLOCK(); |
| 7733 | return rv; |
| 7734 | } |
| 7735 | |
| 7736 | /** |
| 7737 | * Initialize clustering subsystem. |
| 7738 | */ |
| 7739 | static void |
| 7740 | clustering_init() |
| 7741 | { |
| 7742 | if (clustering_is_initialized()) { |
| 7743 | return; |
| 7744 | } |
| 7745 | |
| 7746 | CLUSTERING_LOCK(); |
| 7747 | memset(&g_clustering, 0, sizeof(g_clustering)); |
| 7748 | |
| 7749 | // Start out as an orphan cluster. |
| 7750 | g_clustering.state = AS_CLUSTERING_STATE_ORPHAN; |
| 7751 | g_clustering.orphan_state_start_time = cf_getms(); |
| 7752 | |
| 7753 | g_clustering.join_request_blackout = cf_shash_create(cf_nodeid_shash_fn, |
| 7754 | sizeof(cf_node), sizeof(cf_clock), |
| 7755 | AS_CLUSTERING_CLUSTER_MAX_SIZE_SOFT, 0); |
| 7756 | |
| 7757 | vector_lockless_init(&g_clustering.pending_join_requests, cf_node); |
| 7758 | |
| 7759 | // Register as a plugin with the heartbeat subsystem. |
| 7760 | as_hb_plugin clustering_plugin; |
| 7761 | memset(&clustering_plugin, 0, sizeof(clustering_plugin)); |
| 7762 | |
| 7763 | clustering_plugin.id = AS_HB_PLUGIN_CLUSTERING; |
| 7764 | // Includes the size for the protocol version, the cluster key, the paxos |
| 7765 | // sequence number for current cluster and the preferred principal. |
| 7766 | clustering_plugin.wire_size_fixed = sizeof(uint32_t) |
| 7767 | + sizeof(as_cluster_key) + sizeof(as_paxos_sequence_number) |
| 7768 | + sizeof(cf_node); |
| 7769 | // Size of the node in succession list. |
| 7770 | clustering_plugin.wire_size_per_node = sizeof(cf_node); |
| 7771 | clustering_plugin.set_fn = clustering_hb_plugin_set_fn; |
| 7772 | clustering_plugin.parse_fn = clustering_hb_plugin_parse_data_fn; |
| 7773 | clustering_plugin.change_listener = |
| 7774 | clustering_hb_plugin_data_change_listener; |
| 7775 | |
| 7776 | as_hb_plugin_register(&clustering_plugin); |
| 7777 | |
| 7778 | // Register as hb event listener |
| 7779 | as_hb_register_listener(clustering_hb_event_listener, NULL); |
| 7780 | |
| 7781 | // Initialize fabric message pool. |
| 7782 | clustering_msg_init(); |
| 7783 | |
| 7784 | // Initialize external event publisher. |
| 7785 | external_event_publisher_init(); |
| 7786 | |
| 7787 | // Initialize the register. |
| 7788 | register_init(); |
| 7789 | |
| 7790 | // Initialize timer. |
| 7791 | timer_init(); |
| 7792 | |
| 7793 | // Initialize the quantum interval generator |
| 7794 | quantum_interval_generator_init(); |
| 7795 | |
| 7796 | // Initialize paxos. |
| 7797 | paxos_init(); |
| 7798 | |
| 7799 | g_clustering.sys_state = AS_CLUSTERING_SYS_STATE_STOPPED; |
| 7800 | |
| 7801 | DETAIL("clustering module initialized" ); |
| 7802 | |
| 7803 | CLUSTERING_UNLOCK(); |
| 7804 | } |
| 7805 | |
| 7806 | /** |
| 7807 | * Start the clustering sub-system. |
| 7808 | */ |
| 7809 | static void |
| 7810 | clustering_start() |
| 7811 | { |
| 7812 | if (clustering_is_running()) { |
| 7813 | return; |
| 7814 | } |
| 7815 | |
| 7816 | CLUSTERING_LOCK(); |
| 7817 | g_clustering.sys_state = AS_CLUSTERING_SYS_STATE_RUNNING; |
| 7818 | CLUSTERING_UNLOCK(); |
| 7819 | |
| 7820 | // Start quantum interval generator. |
| 7821 | quantum_interval_generator_start(); |
| 7822 | |
| 7823 | // Start the timer. |
| 7824 | timer_start(); |
| 7825 | |
| 7826 | // Start the external event publisher. |
| 7827 | external_event_publisher_start(); |
| 7828 | } |
| 7829 | |
| 7830 | /** |
| 7831 | * Stop the clustering sub-system. |
| 7832 | */ |
| 7833 | static void |
| 7834 | clustering_stop() |
| 7835 | { |
| 7836 | if (!clustering_is_running()) { |
| 7837 | return; |
| 7838 | } |
| 7839 | |
| 7840 | CLUSTERING_LOCK(); |
| 7841 | g_clustering.sys_state = AS_CLUSTERING_SYS_STATE_SHUTTING_DOWN; |
| 7842 | CLUSTERING_UNLOCK(); |
| 7843 | |
| 7844 | // Stop the timer. |
| 7845 | timer_stop(); |
| 7846 | |
| 7847 | // Stop the external event publisher. |
| 7848 | external_event_publisher_stop(); |
| 7849 | |
| 7850 | CLUSTERING_LOCK(); |
| 7851 | g_clustering.sys_state = AS_CLUSTERING_SYS_STATE_STOPPED; |
| 7852 | CLUSTERING_UNLOCK(); |
| 7853 | } |
| 7854 | |
| 7855 | /** |
| 7856 | * Dump clustering state to logs. |
| 7857 | */ |
| 7858 | static void |
| 7859 | clustering_dump(bool verbose) |
| 7860 | { |
| 7861 | if (!clustering_is_running()) { |
| 7862 | INFO("CL: stopped" ); |
| 7863 | return; |
| 7864 | } |
| 7865 | |
| 7866 | paxos_proposer_dump(verbose); |
| 7867 | paxos_acceptor_dump(verbose); |
| 7868 | register_dump(verbose); |
| 7869 | |
| 7870 | CLUSTERING_LOCK(); |
| 7871 | |
| 7872 | switch (g_clustering.state) { |
| 7873 | case AS_CLUSTERING_STATE_ORPHAN: |
| 7874 | INFO("CL: state: orphan" ); |
| 7875 | break; |
| 7876 | case AS_CLUSTERING_STATE_PRINCIPAL: |
| 7877 | INFO("CL: state: principal" ); |
| 7878 | break; |
| 7879 | case AS_CLUSTERING_STATE_NON_PRINCIPAL: |
| 7880 | INFO("CL: state: non-principal" ); |
| 7881 | break; |
| 7882 | } |
| 7883 | |
| 7884 | INFO("CL: %s" , |
| 7885 | g_clustering.has_integrity ? "has integrity" : "integrity fault" ); |
| 7886 | cf_node current_principal; |
| 7887 | if (clustering_principal_get(¤t_principal) != 0) { |
| 7888 | if (g_clustering.preferred_principal != current_principal) { |
| 7889 | INFO("CL: preferred principal %" PRIx64, |
| 7890 | g_clustering.preferred_principal); |
| 7891 | } |
| 7892 | } |
| 7893 | |
| 7894 | if (g_clustering.state == AS_CLUSTERING_STATE_ORPHAN) { |
| 7895 | INFO("CL: join request sent to principal %" PRIx64, |
| 7896 | g_clustering.last_join_request_principal); |
| 7897 | INFO("CL: join request sent time: %" PRIu64" now: %" PRIu64 , |
| 7898 | g_clustering.last_join_request_sent_time, cf_getms()); |
| 7899 | } |
| 7900 | |
| 7901 | if (verbose) { |
| 7902 | log_cf_node_vector("CL: pending join requests:" , |
| 7903 | &g_clustering.pending_join_requests, CF_INFO); |
| 7904 | } |
| 7905 | |
| 7906 | CLUSTERING_UNLOCK(); |
| 7907 | } |
| 7908 | |
| 7909 | /* |
| 7910 | * ---------------------------------------------------------------------------- |
| 7911 | * Internal event dispatcher |
| 7912 | * ---------------------------------------------------------------------------- |
| 7913 | */ |
| 7914 | |
| 7915 | /** |
| 7916 | * Simple dispatcher for events. The order of dispatch is from lower (less |
| 7917 | * dependent) to higher (more dependent) sub-modules. |
| 7918 | */ |
| 7919 | static void |
| 7920 | internal_event_dispatch(as_clustering_internal_event* event) |
| 7921 | { |
| 7922 | // Sub-module dispatch. |
| 7923 | quantum_interval_generator_event_dispatch(event); |
| 7924 | paxos_event_dispatch(event); |
| 7925 | register_event_dispatch(event); |
| 7926 | |
| 7927 | // Dispatch to the main clustering module. |
| 7928 | clustering_event_handle(event); |
| 7929 | } |
| 7930 | |
| 7931 | /* |
| 7932 | * ---------------------------------------------------------------------------- |
| 7933 | * Public API. |
| 7934 | * ---------------------------------------------------------------------------- |
| 7935 | */ |
| 7936 | |
| 7937 | /** |
| 7938 | * |
| 7939 | * Initialize clustering subsystem. |
| 7940 | */ |
| 7941 | void |
| 7942 | as_clustering_init() |
| 7943 | { |
| 7944 | clustering_init(); |
| 7945 | } |
| 7946 | |
| 7947 | /** |
| 7948 | * Start clustering subsystem. |
| 7949 | */ |
| 7950 | void |
| 7951 | as_clustering_start() |
| 7952 | { |
| 7953 | clustering_start(); |
| 7954 | } |
| 7955 | |
| 7956 | /** |
| 7957 | * Stop clustering subsystem. |
| 7958 | */ |
| 7959 | void |
| 7960 | as_clustering_stop() |
| 7961 | { |
| 7962 | clustering_stop(); |
| 7963 | } |
| 7964 | |
| 7965 | /** |
| 7966 | * Reform the cluster with the same succession list.This would trigger the |
| 7967 | * generation of new partition info and the cluster would get a new cluster key. |
| 7968 | * |
| 7969 | * @return 0 if new clustering round started, -1 otherwise. |
| 7970 | */ |
| 7971 | int |
| 7972 | as_clustering_cluster_reform() |
| 7973 | { |
| 7974 | return clustering_cluster_reform(); |
| 7975 | } |
| 7976 | |
| 7977 | /** |
| 7978 | * Return the quantum interval, i.e., the interval at which cluster change |
| 7979 | * decisions are taken. The unit is milliseconds. |
| 7980 | */ |
| 7981 | uint64_t |
| 7982 | as_clustering_quantum_interval() |
| 7983 | { |
| 7984 | return quantum_interval(); |
| 7985 | } |
| 7986 | |
| 7987 | /** |
| 7988 | * TEMPORARY - used by paxos only. |
| 7989 | */ |
| 7990 | void |
| 7991 | as_clustering_set_integrity(bool has_integrity) |
| 7992 | { |
| 7993 | g_clustering.has_integrity = has_integrity; |
| 7994 | } |
| 7995 | |
| 7996 | /* |
| 7997 | * ---------------------------------------------------------------------------- |
| 7998 | * Clustering info command functions. |
| 7999 | * ---------------------------------------------------------------------------- |
| 8000 | */ |
| 8001 | |
| 8002 | /** |
| 8003 | * If false means than either this node is orphaned, or is undergoing a cluster |
| 8004 | * change. |
| 8005 | */ |
| 8006 | bool |
| 8007 | as_clustering_has_integrity() |
| 8008 | { |
| 8009 | return g_clustering.has_integrity; |
| 8010 | } |
| 8011 | |
| 8012 | /** |
| 8013 | * Indicates if self node is orphaned. |
| 8014 | */ |
| 8015 | bool |
| 8016 | as_clustering_is_orphan() |
| 8017 | { |
| 8018 | return clustering_is_orphan(); |
| 8019 | } |
| 8020 | |
| 8021 | /** |
| 8022 | * Dump clustering state to the log. |
| 8023 | */ |
| 8024 | void |
| 8025 | as_clustering_dump(bool verbose) |
| 8026 | { |
| 8027 | clustering_dump(verbose); |
| 8028 | } |
| 8029 | |
| 8030 | /** |
| 8031 | * Set the min cluster size. |
| 8032 | */ |
| 8033 | int |
| 8034 | as_clustering_cluster_size_min_set(uint32_t new_cluster_size_min) |
| 8035 | { |
| 8036 | CLUSTERING_LOCK(); |
| 8037 | int rv = 0; |
| 8038 | uint32_t cluster_size = cf_vector_size(&g_register.succession_list); |
| 8039 | if (clustering_is_orphan() || cluster_size >= new_cluster_size_min) { |
| 8040 | INFO("changing value of min-cluster-size from %u to %u" , |
| 8041 | g_config.clustering_config.cluster_size_min, |
| 8042 | new_cluster_size_min); |
| 8043 | g_config.clustering_config.cluster_size_min = new_cluster_size_min; |
| 8044 | } |
| 8045 | else { |
| 8046 | WARNING( |
| 8047 | "min-cluster-size %d should be <= current cluster size %d - ignoring" , |
| 8048 | new_cluster_size_min, cluster_size); |
| 8049 | rv = -1; |
| 8050 | } |
| 8051 | CLUSTERING_UNLOCK(); |
| 8052 | return rv; |
| 8053 | } |
| 8054 | |
| 8055 | /** |
| 8056 | * Log a vector of node-ids at input severity spliting long vectors over |
| 8057 | * multiple lines. The call might not work if the vector is not protected |
| 8058 | * against multi-threaded access. |
| 8059 | * |
| 8060 | * @param context the logging context. |
| 8061 | * @param severity the log severity. |
| 8062 | * @param file_name the source file name for the log line. |
| 8063 | * @param line the source file line number for the log line. |
| 8064 | * @param message the message prefix for each log line. Message and node list |
| 8065 | * will be separated with a space. Can be NULL for no prefix. |
| 8066 | * @param nodes the vector of nodes. |
| 8067 | */ |
| 8068 | void |
| 8069 | as_clustering_cf_node_vector_event(cf_fault_severity severity, |
| 8070 | cf_fault_context context, char* file_name, int line, char* message, |
| 8071 | cf_vector* nodes) |
| 8072 | { |
| 8073 | as_clustering_cf_node_array_event(severity, context, file_name, line, |
| 8074 | message, vector_to_array(nodes), cf_vector_size(nodes)); |
| 8075 | } |
| 8076 | |
| 8077 | /** |
| 8078 | * Log an array of node-ids at input severity spliting long vectors over |
| 8079 | * multiple lines. The call might not work if the array is not protected against |
| 8080 | * multi-threaded access. |
| 8081 | * |
| 8082 | * @param context the logging context. |
| 8083 | * @param severity the log severity. |
| 8084 | * @param file_name the source file name for the log line. |
| 8085 | * @param line the source file line number for the log line. |
| 8086 | * @param message the message prefix for each log line. Message and node list |
| 8087 | * will be separated with a space. Can be NULL for no prefix. |
| 8088 | * @param nodes the array of nodes. |
| 8089 | * @param node_count the count of nodes in the array. |
| 8090 | */ |
| 8091 | void |
| 8092 | as_clustering_cf_node_array_event(cf_fault_severity severity, |
| 8093 | cf_fault_context context, char* file_name, int line, char* message, |
| 8094 | cf_node* nodes, int node_count) |
| 8095 | { |
| 8096 | if (!cf_context_at_severity(context, severity) && severity != CF_DETAIL) { |
| 8097 | return; |
| 8098 | } |
| 8099 | |
| 8100 | // Also account the space following the nodeid. |
| 8101 | int node_str_len = 2 * (sizeof(cf_node)) + 1; |
| 8102 | |
| 8103 | int message_length = 0; |
| 8104 | char copied_message[LOG_LENGTH_MAX()]; |
| 8105 | |
| 8106 | if (message) { |
| 8107 | // Limit the message length to allow at least one node to fit in the log |
| 8108 | // line. Accounting for the separator between message and node list. |
| 8109 | message_length = MIN(strnlen(message, LOG_LENGTH_MAX() - 1), |
| 8110 | LOG_LENGTH_MAX() - 1 - node_str_len) + 1; |
| 8111 | |
| 8112 | // Truncate the message. |
| 8113 | strncpy(copied_message, message, message_length); |
| 8114 | message = copied_message; |
| 8115 | } |
| 8116 | |
| 8117 | // Allow for the NULL terminator. |
| 8118 | int nodes_per_line = (LOG_LENGTH_MAX() - message_length - 1) / node_str_len; |
| 8119 | nodes_per_line = MAX(1, nodes_per_line); |
| 8120 | |
| 8121 | // Have a buffer large enough to accomodate the message and nodes per line. |
| 8122 | char log_buffer[message_length + (nodes_per_line * node_str_len) + 1]; // For the NULL terminator. |
| 8123 | int output_node_count = 0; |
| 8124 | |
| 8125 | // Marks the start of the nodeid list in the log line buffer. |
| 8126 | char* node_buffer_start = log_buffer; |
| 8127 | if (message) { |
| 8128 | node_buffer_start += sprintf(log_buffer, "%s " , message); |
| 8129 | } |
| 8130 | |
| 8131 | for (int i = 0; i < node_count;) { |
| 8132 | char* buffer = node_buffer_start; |
| 8133 | |
| 8134 | for (int j = 0; j < nodes_per_line && i < node_count; j++) { |
| 8135 | buffer += sprintf(buffer, "%" PRIx64" " , nodes[i]); |
| 8136 | output_node_count++; |
| 8137 | i++; |
| 8138 | } |
| 8139 | |
| 8140 | // Overwrite the space from the last node on the log line only if there |
| 8141 | // is atleast one node output |
| 8142 | if (buffer != node_buffer_start) { |
| 8143 | *(buffer - 1) = 0; |
| 8144 | cf_fault_event(context, severity, file_name, line, "%s" , |
| 8145 | log_buffer); |
| 8146 | } |
| 8147 | } |
| 8148 | |
| 8149 | // Handle the empty vector case. |
| 8150 | if (output_node_count == 0) { |
| 8151 | sprintf(node_buffer_start, "(empty)" ); |
| 8152 | cf_fault_event(context, severity, file_name, line, "%s" , log_buffer); |
| 8153 | } |
| 8154 | } |
| 8155 | |