| 1 | /* |
| 2 | * skew_monitor.c |
| 3 | * |
| 4 | * Copyright (C) 2012-2017 Aerospike, Inc. |
| 5 | * |
| 6 | * Portions may be licensed to Aerospike, Inc. under one or more contributor |
| 7 | * license agreements. |
| 8 | * |
| 9 | * This program is free software: you can redistribute it and/or modify it under |
| 10 | * the terms of the GNU Affero General Public License as published by the Free |
| 11 | * Software Foundation, either version 3 of the License, or (at your option) any |
| 12 | * later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 15 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 16 | * FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more |
| 17 | * details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU Affero General Public License |
| 20 | * along with this program. If not, see http://www.gnu.org/licenses/ |
| 21 | */ |
| 22 | |
| 23 | #include "fabric/skew_monitor.h" |
| 24 | |
| 25 | #include <math.h> |
| 26 | #include <stdbool.h> |
| 27 | #include <stdint.h> |
| 28 | #include <stdlib.h> |
| 29 | #include <sys/param.h> |
| 30 | |
| 31 | #include "citrusleaf/alloc.h" |
| 32 | |
| 33 | #include "msg.h" |
| 34 | |
| 35 | #include "base/cfg.h" |
| 36 | #include "base/datamodel.h" |
| 37 | #include "base/nsup.h" |
| 38 | #include "fabric/clustering.h" |
| 39 | #include "fabric/exchange.h" |
| 40 | #include "fabric/hb.h" |
| 41 | |
| 42 | /* |
| 43 | * Overview |
| 44 | * ======== |
| 45 | * Monitors skew across nodes in a cluster to allow other modules to handle skew |
| 46 | * beyond tolerances. For example CP namespaces block transctions on skew beyond |
| 47 | * tolerable limits. |
| 48 | * |
| 49 | * Principle of skew monitoring |
| 50 | * ============================ |
| 51 | * The hlc clock forms a pretty close upper bound on the physical clocks for |
| 52 | * adjacent nodes within the bounds of network trip time. |
| 53 | * |
| 54 | * Lets call the difference between a node's physical component of hlc time and |
| 55 | * physical time at the same instant as its hlc_delta. |
| 56 | * The premise is that the difference between the min hlc_delta and max |
| 57 | * hlc_delta observed for adjacent nodes closely follows the maximum clock skew |
| 58 | * in the cluster. |
| 59 | * |
| 60 | * The clock skew monitor adds a physical timestamp field to each heartbeat |
| 61 | * pulse message. |
| 62 | * For a peer node on receipt of a heartbeat pulse, hlc_delta is computed as |
| 63 | * hlc_delta = physical-component(pulse-hlc) - pulse-timestamp |
| 64 | * |
| 65 | * We maintain a exponential moving average of the hlc_delta to buffer against |
| 66 | * small fluctuations |
| 67 | * avg_hlc_delta = (ALPHA)(hlc_delta) + (1-ALPHA)(avg_hlc_delta) |
| 68 | * |
| 69 | * where ALPHA is set to weigh current values more over older values. |
| 70 | * |
| 71 | * Design |
| 72 | * ======= |
| 73 | * The monitor is ticks on heartbeat message sends without requiring an |
| 74 | * additional thread. This is alright as heartbeat pulse messages are the |
| 75 | * vehicle used for skew detection. The amount of computation amortized across |
| 76 | * sent heartbeat pulse messages is minimal and should be maintained so. |
| 77 | */ |
| 78 | |
| 79 | /* |
| 80 | * ---------------------------------------------------------------------------- |
| 81 | * Constants |
| 82 | * ---------------------------------------------------------------------------- |
| 83 | */ |
| 84 | |
| 85 | /** |
| 86 | * Maximum allowed deviation in HLC clocks. A peer node's HLC clock will be |
| 87 | * considered bad if the difference between self HLC and peer's HLC exceeds this |
| 88 | * value. |
| 89 | * |
| 90 | * This value allows a node that barely synchronizes HLC once per node timeout. |
| 91 | */ |
| 92 | #define HLC_DEVIATION_MAX_MS (as_hb_node_timeout_get()) |
| 93 | |
| 94 | /** |
| 95 | * Max allowed streak of bad HLC clock readings for a peer node. During the |
| 96 | * allowed streak, |
| 97 | * the peer node will be assumed to have hlc delta same as self node. Limited |
| 98 | * between 3 and 5. |
| 99 | */ |
| 100 | #define BAD_HLC_STREAK_MAX (MIN(5, MAX(3, as_hb_max_intervals_missed_get() / 2))) |
| 101 | |
| 102 | /** |
| 103 | * Ring buffer maximum capacity. The actual capacity is a function of the |
| 104 | * heartbeat node timeout. |
| 105 | */ |
| 106 | #define RING_BUFFER_CAPACITY_MAX (100) |
| 107 | |
| 108 | /** |
| 109 | * Threshold for (absolute deviation/median absolute deviation) beyond which |
| 110 | * nodes are labelled outliers. |
| 111 | */ |
| 112 | #define MAD_RATIO_OUTLIER_THRESHOLD 2 |
| 113 | |
| 114 | /* |
| 115 | * ---------------------------------------------------------------------------- |
| 116 | * Logging |
| 117 | * ---------------------------------------------------------------------------- |
| 118 | */ |
| 119 | #define CRASH(format, ...) cf_crash(AS_SKEW, format, ##__VA_ARGS__) |
| 120 | #define TICKER_WARNING(format, ...) \ |
| 121 | cf_ticker_warning(AS_SKEW, format, ##__VA_ARGS__) |
| 122 | #define WARNING(format, ...) cf_warning(AS_SKEW, format, ##__VA_ARGS__) |
| 123 | #define INFO(format, ...) cf_info(AS_SKEW, format, ##__VA_ARGS__) |
| 124 | #define DEBUG(format, ...) cf_debug(AS_SKEW, format, ##__VA_ARGS__) |
| 125 | #define DETAIL(format, ...) cf_detail(AS_SKEW, format, ##__VA_ARGS__) |
| 126 | #define ring_buffer_log(buffer, message, severity) ring_buffer_log_event(buffer, message, severity, AS_SKEW, \ |
| 127 | __FILENAME__, __LINE__); |
| 128 | |
| 129 | /* |
| 130 | * ---------------------------------------------------------------------------- |
| 131 | * Skew monitor data structures |
| 132 | * ---------------------------------------------------------------------------- |
| 133 | */ |
| 134 | |
| 135 | /** |
| 136 | * Ring buffer holding a window of skew delta for a node. |
| 137 | */ |
| 138 | typedef struct as_skew_ring_buffer_s |
| 139 | { |
| 140 | int64_t data[RING_BUFFER_CAPACITY_MAX]; |
| 141 | int start; |
| 142 | int size; |
| 143 | int capacity; |
| 144 | } as_skew_ring_buffer; |
| 145 | |
| 146 | /** |
| 147 | * Skew plugin data stored for all adjacent nodes. |
| 148 | */ |
| 149 | typedef struct as_skew_plugin_data_s |
| 150 | { |
| 151 | as_skew_ring_buffer ring_buffer; |
| 152 | uint8_t bad_hlc_streak; |
| 153 | } as_skew_plugin_data; |
| 154 | |
| 155 | /** |
| 156 | * Skew summary for a node for the current skew update interval. |
| 157 | */ |
| 158 | typedef struct as_skew_node_summary_s |
| 159 | { |
| 160 | cf_node nodeid; |
| 161 | int64_t delta; |
| 162 | } as_skew_node_summary; |
| 163 | |
| 164 | /** |
| 165 | * HB plugin data iterate struct to get node hlc deltas. |
| 166 | */ |
| 167 | typedef struct as_skew_monitor_hlc_delta_udata_s |
| 168 | { |
| 169 | int num_nodes; |
| 170 | as_skew_node_summary skew_summary[AS_CLUSTER_SZ]; |
| 171 | } as_skew_monitor_hlc_delta_udata; |
| 172 | |
| 173 | /* |
| 174 | * ---------------------------------------------------------------------------- |
| 175 | * External protected API for skew monitor |
| 176 | * ---------------------------------------------------------------------------- |
| 177 | */ |
| 178 | extern int |
| 179 | as_hb_msg_send_hlc_ts_get(msg* msg, as_hlc_timestamp* send_ts); |
| 180 | |
| 181 | /* |
| 182 | * ---------------------------------------------------------------------------- |
| 183 | * Globals |
| 184 | * ---------------------------------------------------------------------------- |
| 185 | */ |
| 186 | |
| 187 | /** |
| 188 | * Last time skew was checked. |
| 189 | */ |
| 190 | static cf_atomic64 g_last_skew_check_time = 0; |
| 191 | |
| 192 | /** |
| 193 | * Current value of clock skew. |
| 194 | */ |
| 195 | static cf_atomic64 g_skew = 0; |
| 196 | |
| 197 | /** |
| 198 | * Self HLC delta over the last skew window. Access should under the self skew |
| 199 | * data lock. |
| 200 | */ |
| 201 | static as_skew_ring_buffer g_self_skew_ring_buffer = { { 0 } }; |
| 202 | |
| 203 | /** |
| 204 | * Lock for self skew ring buffer. |
| 205 | */ |
| 206 | static pthread_mutex_t g_self_skew_lock = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; |
| 207 | |
| 208 | /* |
| 209 | * ---------------------------------------------------------------------------- |
| 210 | * Skew intervals and limits |
| 211 | * ---------------------------------------------------------------------------- |
| 212 | */ |
| 213 | |
| 214 | /** |
| 215 | * Interval at which skew checks should be made. |
| 216 | */ |
| 217 | static uint64_t |
| 218 | skew_check_interval() |
| 219 | { |
| 220 | return MIN(2000, as_clustering_quantum_interval() / 2); |
| 221 | } |
| 222 | |
| 223 | /** |
| 224 | * Threshold for outlier detection. Skew values less than this threshold will |
| 225 | * not invoke outlier detection. |
| 226 | */ |
| 227 | static uint64_t |
| 228 | skew_monitor_outlier_detection_threshold() |
| 229 | { |
| 230 | return as_clustering_quantum_interval(); |
| 231 | } |
| 232 | |
| 233 | /* |
| 234 | * ---------------------------------------------------------------------------- |
| 235 | * Ring buffer related |
| 236 | * ---------------------------------------------------------------------------- |
| 237 | */ |
| 238 | |
| 239 | /** |
| 240 | * Log contents of the ring buffer. |
| 241 | */ |
| 242 | static void |
| 243 | ring_buffer_log_event(as_skew_ring_buffer* ring_buffer, char* prefix, |
| 244 | cf_fault_severity severity, cf_fault_context context, char* file_name, |
| 245 | int line) |
| 246 | { |
| 247 | int max_per_line = 25; |
| 248 | int max_bytes_per_value = 21; // Include the space as well |
| 249 | char log_buffer[(max_per_line * max_bytes_per_value) + 1]; // For the NULL terminator. |
| 250 | char* value_buffer_start = log_buffer; |
| 251 | |
| 252 | if (prefix) { |
| 253 | value_buffer_start += sprintf(log_buffer, "%s" , prefix); |
| 254 | } |
| 255 | |
| 256 | for (int i = 0; i < ring_buffer->size; i++) { |
| 257 | char* buffer = value_buffer_start; |
| 258 | for (int j = 0; j < max_per_line && i < ring_buffer->size; j++) { |
| 259 | buffer += sprintf(buffer, "%ld " , |
| 260 | ring_buffer->data[(ring_buffer->start + i) |
| 261 | % ring_buffer->capacity]); |
| 262 | i++; |
| 263 | } |
| 264 | |
| 265 | // Overwrite the space from the last node on the log line only if there |
| 266 | // is atleast one node output |
| 267 | if (buffer != value_buffer_start) { |
| 268 | *(buffer - 1) = 0; |
| 269 | cf_fault_event(context, severity, file_name, line, "%s" , |
| 270 | log_buffer); |
| 271 | } |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | /** |
| 276 | * Get the representative hlc delta value for current ring buffer contents. |
| 277 | */ |
| 278 | static int64_t |
| 279 | ring_buffer_hlc_delta(as_skew_ring_buffer* buffer) |
| 280 | { |
| 281 | int64_t max_delta = 0; |
| 282 | |
| 283 | for (int i = 0; i < buffer->size; i++) { |
| 284 | int64_t delta = buffer->data[(buffer->start + i) % buffer->capacity]; |
| 285 | if (delta > max_delta) { |
| 286 | max_delta = delta; |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | return max_delta; |
| 291 | } |
| 292 | |
| 293 | /** |
| 294 | * The current capacity of the ring buffer based on heartbeat node timeout, |
| 295 | * which determines how much skew history is maintained. |
| 296 | */ |
| 297 | static int |
| 298 | ring_buffer_current_capacity() |
| 299 | { |
| 300 | // Maintain a history for one node timeout interval |
| 301 | return MIN(RING_BUFFER_CAPACITY_MAX, as_hb_max_intervals_missed_get()); |
| 302 | } |
| 303 | |
| 304 | /** |
| 305 | * Adjust the contents of the ring buffer to new capacity. |
| 306 | */ |
| 307 | static void |
| 308 | ring_buffer_adjust_to_capacity(as_skew_ring_buffer* buffer, |
| 309 | const int new_capacity) |
| 310 | { |
| 311 | if (buffer->capacity == new_capacity) { |
| 312 | // No adjustments to data needed. |
| 313 | return; |
| 314 | } |
| 315 | |
| 316 | // Will only happen if the heartbeat node timeout is changed of if this is |
| 317 | // the first insert. |
| 318 | int new_size = buffer->size; |
| 319 | if (buffer->size > new_capacity) { |
| 320 | int shrink_by = buffer->size - new_capacity; |
| 321 | // Drop the oldest values and copy over the rest. |
| 322 | buffer->start = (buffer->start + shrink_by) % buffer->capacity; |
| 323 | new_size = new_capacity; |
| 324 | } |
| 325 | |
| 326 | // Shift values to be retained to start of the data array. Since this is not |
| 327 | // a frequent operations use the simple technique of making a copy. |
| 328 | int64_t adjusted_data[RING_BUFFER_CAPACITY_MAX]; |
| 329 | for (int i = 0; i < new_size; i++) { |
| 330 | int buffer_index = (buffer->start + i) % buffer->capacity; |
| 331 | adjusted_data[i] = buffer->data[buffer_index]; |
| 332 | } |
| 333 | |
| 334 | // Reset the buffer to start at index 0 and have new capacity. |
| 335 | memcpy(buffer->data, adjusted_data, new_size); |
| 336 | buffer->capacity = new_capacity; |
| 337 | buffer->start = 0; |
| 338 | buffer->size = new_size; |
| 339 | } |
| 340 | |
| 341 | /** |
| 342 | * Insert a new delta into the ring_buffer. |
| 343 | */ |
| 344 | static void |
| 345 | ring_buffer_insert(as_skew_ring_buffer* buffer, const int64_t delta) |
| 346 | { |
| 347 | ring_buffer_adjust_to_capacity(buffer, ring_buffer_current_capacity()); |
| 348 | |
| 349 | int insert_index = 0; |
| 350 | if (buffer->size == buffer->capacity) { |
| 351 | insert_index = buffer->start; |
| 352 | buffer->start = (buffer->start + 1) % buffer->capacity; |
| 353 | } |
| 354 | else { |
| 355 | insert_index = buffer->size; |
| 356 | buffer->size++; |
| 357 | } |
| 358 | |
| 359 | buffer->data[insert_index] = delta; |
| 360 | } |
| 361 | |
| 362 | /* |
| 363 | * ---------------------------------------------------------------------------- |
| 364 | * HLC delta related |
| 365 | * ---------------------------------------------------------------------------- |
| 366 | */ |
| 367 | |
| 368 | /** |
| 369 | * Find min and max skew using difference between physical clock and hlc. |
| 370 | */ |
| 371 | static void |
| 372 | skew_monitor_delta_collect_iterate(cf_node nodeid, void* plugin_data, |
| 373 | size_t plugin_data_size, cf_clock recv_monotonic_ts, |
| 374 | as_hlc_msg_timestamp* msg_hlc_ts, void* udata) |
| 375 | { |
| 376 | int64_t delta = 0; |
| 377 | as_skew_monitor_hlc_delta_udata* deltas = |
| 378 | (as_skew_monitor_hlc_delta_udata*)udata; |
| 379 | |
| 380 | if (!plugin_data || plugin_data_size < sizeof(as_skew_plugin_data)) { |
| 381 | // Assume missing nodes share the same delta as self. |
| 382 | // Note: self node will not be in adjacency list and hence will also |
| 383 | // follow same code path. |
| 384 | pthread_mutex_lock(&g_self_skew_lock); |
| 385 | delta = ring_buffer_hlc_delta(&g_self_skew_ring_buffer); |
| 386 | pthread_mutex_unlock(&g_self_skew_lock); |
| 387 | } |
| 388 | else { |
| 389 | as_skew_plugin_data* skew_plugin_data = |
| 390 | (as_skew_plugin_data*)plugin_data; |
| 391 | delta = ring_buffer_hlc_delta(&skew_plugin_data->ring_buffer); |
| 392 | } |
| 393 | |
| 394 | int index = deltas->num_nodes; |
| 395 | deltas->skew_summary[index].delta = delta; |
| 396 | deltas->skew_summary[index].nodeid = nodeid; |
| 397 | deltas->num_nodes++; |
| 398 | } |
| 399 | |
| 400 | /** |
| 401 | * Compute the skew across the cluster. |
| 402 | */ |
| 403 | static uint64_t |
| 404 | skew_monitor_compute_skew() |
| 405 | { |
| 406 | uint64_t skew = 0; |
| 407 | uint8_t buffer[AS_CLUSTER_SZ * sizeof(cf_node)]; |
| 408 | cf_vector succession = { 0 }; |
| 409 | |
| 410 | cf_vector_init_smalloc(&succession, sizeof(cf_node), buffer, sizeof(buffer), |
| 411 | VECTOR_FLAG_INITZERO); |
| 412 | as_exchange_succession(&succession); |
| 413 | |
| 414 | if (cf_vector_size(&succession) <= 1) { |
| 415 | // Self node is an orphan or single node cluster. No cluster wide skew. |
| 416 | skew = 0; |
| 417 | goto Cleanup; |
| 418 | } |
| 419 | |
| 420 | as_skew_monitor_hlc_delta_udata udata = { 0 }; |
| 421 | as_hb_plugin_data_iterate(&succession, AS_HB_PLUGIN_SKEW_MONITOR, |
| 422 | skew_monitor_delta_collect_iterate, &udata); |
| 423 | |
| 424 | int64_t min = INT64_MAX; |
| 425 | int64_t max = INT64_MIN; |
| 426 | |
| 427 | for (int i = 0; i < udata.num_nodes; i++) { |
| 428 | int64_t delta = udata.skew_summary[i].delta; |
| 429 | if (delta < min) { |
| 430 | min = delta; |
| 431 | } |
| 432 | |
| 433 | if (delta > max) { |
| 434 | max = delta; |
| 435 | } |
| 436 | } |
| 437 | skew = max - min; |
| 438 | |
| 439 | Cleanup: |
| 440 | cf_vector_destroy(&succession); |
| 441 | return skew; |
| 442 | } |
| 443 | |
| 444 | /** |
| 445 | * Update clock skew and fire skew events. |
| 446 | */ |
| 447 | static void |
| 448 | skew_monitor_update() |
| 449 | { |
| 450 | cf_clock now = cf_getms(); |
| 451 | cf_atomic64_set(&g_last_skew_check_time, now); |
| 452 | |
| 453 | uint64_t skew = skew_monitor_compute_skew(); |
| 454 | cf_atomic64_set(&g_skew, skew); |
| 455 | |
| 456 | for (int i = 0; i < g_config.n_namespaces; i++) { |
| 457 | as_namespace* ns = g_config.namespaces[i]; |
| 458 | |
| 459 | // Store return values so all handlers warn independently. |
| 460 | bool record_stop_writes = as_record_handle_clock_skew(ns, skew); |
| 461 | bool nsup_stop_writes = as_nsup_handle_clock_skew(ns, skew); |
| 462 | |
| 463 | ns->clock_skew_stop_writes = record_stop_writes || nsup_stop_writes; |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | /* |
| 468 | * ---------------------------------------------------------------------------- |
| 469 | * Outlier detection |
| 470 | * ---------------------------------------------------------------------------- |
| 471 | */ |
| 472 | |
| 473 | /** |
| 474 | * Comparator for deltas. |
| 475 | */ |
| 476 | static int |
| 477 | skew_monitor_hlc_float_compare(const void* o1, const void* o2) |
| 478 | { |
| 479 | float v1 = *(float*)o1; |
| 480 | float v2 = *(float*)o2; |
| 481 | return v1 > v2 ? 1 : (v1 == v2 ? 0 : -1); |
| 482 | } |
| 483 | |
| 484 | /** |
| 485 | * Compute the median of the data. |
| 486 | * |
| 487 | * @param values the values sorted. |
| 488 | * @param from the start index (inclusive) |
| 489 | * @param to the end index (inclusive) |
| 490 | * @return the index of the median element |
| 491 | */ |
| 492 | static float |
| 493 | skew_monitor_median(float* values, int num_elements) |
| 494 | { |
| 495 | if (num_elements % 2 == 0) { |
| 496 | int median_left = (num_elements - 1) / 2; |
| 497 | int median_right = median_left + 1; |
| 498 | return (values[median_left] + values[median_right]) / 2.0f; |
| 499 | } |
| 500 | |
| 501 | int median_index = (num_elements / 2); |
| 502 | return (float)values[median_index]; |
| 503 | } |
| 504 | |
| 505 | /** |
| 506 | * Return the currently estimated outliers from our cluster. |
| 507 | * Outliers should have space to hold at least AS_CLUSTER_SZ nodes. |
| 508 | */ |
| 509 | static uint32_t |
| 510 | skew_monitor_outliers_from_skew_summary(cf_vector* outliers, |
| 511 | as_skew_monitor_hlc_delta_udata* udata) |
| 512 | { |
| 513 | // Use Median Absolute Deviation(MAD) to detect outliers, in general the |
| 514 | // delta distribution would be symmetric and very close to the median. |
| 515 | int num_nodes = udata->num_nodes; |
| 516 | float deltas[num_nodes]; |
| 517 | for (int i = 0; i < num_nodes; i++) { |
| 518 | deltas[i] = udata->skew_summary[i].delta; |
| 519 | } |
| 520 | |
| 521 | // Compute median. |
| 522 | qsort(deltas, num_nodes, sizeof(float), skew_monitor_hlc_float_compare); |
| 523 | float median = skew_monitor_median(deltas, num_nodes); |
| 524 | |
| 525 | // Compute absolute deviation from median. |
| 526 | float abs_dev[num_nodes]; |
| 527 | for (int i = 0; i < num_nodes; i++) { |
| 528 | abs_dev[i] = fabsf(deltas[i] - median); |
| 529 | } |
| 530 | |
| 531 | // Compute MAD. |
| 532 | qsort(abs_dev, num_nodes, sizeof(float), skew_monitor_hlc_float_compare); |
| 533 | float mad = skew_monitor_median(abs_dev, num_nodes); |
| 534 | |
| 535 | uint32_t num_outliers = 0; |
| 536 | |
| 537 | if (mad < 0.001f) { |
| 538 | // Most deltas are very close to the median. Call values significantly |
| 539 | // away as outliers. |
| 540 | for (int i = 0; i < udata->num_nodes; i++) { |
| 541 | if (fabsf(udata->skew_summary[i].delta - median) |
| 542 | > skew_monitor_outlier_detection_threshold()) { |
| 543 | if (outliers) { |
| 544 | cf_vector_append(outliers, &udata->skew_summary[i].nodeid); |
| 545 | } |
| 546 | |
| 547 | num_outliers++; |
| 548 | } |
| 549 | } |
| 550 | } |
| 551 | else { |
| 552 | // Any node with delta deviating significantly compared to MAD is an |
| 553 | // outlier. |
| 554 | for (int i = 0; i < udata->num_nodes; i++) { |
| 555 | if ((fabsf(udata->skew_summary[i].delta - median) / mad) |
| 556 | > MAD_RATIO_OUTLIER_THRESHOLD) { |
| 557 | if (outliers) { |
| 558 | cf_vector_append(outliers, &udata->skew_summary[i].nodeid); |
| 559 | } |
| 560 | |
| 561 | num_outliers++; |
| 562 | } |
| 563 | } |
| 564 | } |
| 565 | |
| 566 | return num_outliers; |
| 567 | } |
| 568 | |
| 569 | /** |
| 570 | * Return the currently estimated outliers from our cluster. |
| 571 | * Outliers should have space to hold at least AS_CLUSTER_SZ nodes. |
| 572 | */ |
| 573 | static uint32_t |
| 574 | skew_monitor_outliers(cf_vector* outliers) |
| 575 | { |
| 576 | if (as_skew_monitor_skew() < skew_monitor_outlier_detection_threshold()) { |
| 577 | // Skew is not significant. Skip printing outliers. |
| 578 | return 0; |
| 579 | } |
| 580 | |
| 581 | uint8_t buffer[AS_CLUSTER_SZ * sizeof(cf_node)]; |
| 582 | cf_vector succession; |
| 583 | cf_vector_init_smalloc(&succession, sizeof(cf_node), buffer, sizeof(buffer), |
| 584 | VECTOR_FLAG_INITZERO); |
| 585 | as_exchange_succession(&succession); |
| 586 | |
| 587 | uint32_t num_outliers = 0; |
| 588 | |
| 589 | uint32_t cluster_size = cf_vector_size(&succession); |
| 590 | if (cluster_size <= 1) { |
| 591 | // Self node is an orphan or single node cluster. No cluster wide skew. |
| 592 | goto Cleanup; |
| 593 | } |
| 594 | |
| 595 | as_skew_monitor_hlc_delta_udata udata = { 0 }; |
| 596 | as_hb_plugin_data_iterate(&succession, AS_HB_PLUGIN_SKEW_MONITOR, |
| 597 | skew_monitor_delta_collect_iterate, &udata); |
| 598 | |
| 599 | num_outliers = skew_monitor_outliers_from_skew_summary(outliers, &udata); |
| 600 | |
| 601 | Cleanup: |
| 602 | cf_vector_destroy(&succession); |
| 603 | |
| 604 | return num_outliers; |
| 605 | } |
| 606 | |
| 607 | /* |
| 608 | * ---------------------------------------------------------------------------- |
| 609 | * HB plugin functions |
| 610 | * ---------------------------------------------------------------------------- |
| 611 | */ |
| 612 | |
| 613 | /** |
| 614 | * Push current timestamp for self node into the heartbeat pulse message. |
| 615 | */ |
| 616 | static void |
| 617 | skew_monitor_hb_plugin_set_fn(msg* msg) |
| 618 | { |
| 619 | cf_clock send_ts = cf_clock_getabsolute(); |
| 620 | msg_set_uint64(msg, AS_HB_MSG_SKEW_MONITOR_DATA, send_ts); |
| 621 | |
| 622 | // Update self skew. |
| 623 | as_hlc_timestamp send_hlc_ts = as_hlc_timestamp_now(); |
| 624 | int64_t clock_delta = as_hlc_physical_ts_get(send_hlc_ts) - send_ts; |
| 625 | |
| 626 | // Update the clock delta for self. |
| 627 | pthread_mutex_lock(&g_self_skew_lock); |
| 628 | ring_buffer_insert(&g_self_skew_ring_buffer, clock_delta); |
| 629 | pthread_mutex_unlock(&g_self_skew_lock); |
| 630 | |
| 631 | cf_clock now = cf_getms(); |
| 632 | if (cf_atomic64_get(g_last_skew_check_time) + skew_check_interval() < now) { |
| 633 | skew_monitor_update(); |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | /** |
| 638 | * Compare the HLC timestamp and the physical clock and store the difference as |
| 639 | * plugin data for the source node to enable skew detection. |
| 640 | */ |
| 641 | static void |
| 642 | skew_monitor_hb_plugin_parse_data_fn(msg* msg, cf_node source, |
| 643 | as_hb_plugin_node_data* prev_plugin_data, |
| 644 | as_hb_plugin_node_data* plugin_data) |
| 645 | { |
| 646 | cf_clock send_ts = 0; |
| 647 | as_hlc_timestamp send_hlc_ts = 0; |
| 648 | as_hlc_timestamp hlc_now = as_hlc_timestamp_now(); |
| 649 | |
| 650 | if (msg_get_uint64(msg, AS_HB_MSG_SKEW_MONITOR_DATA, &send_ts) != 0 |
| 651 | || as_hb_msg_send_hlc_ts_get(msg, &send_hlc_ts) != 0) { |
| 652 | // Pre SC mode node. For now assumes it shares the same delta with hlc |
| 653 | // as us. |
| 654 | send_hlc_ts = hlc_now; |
| 655 | send_ts = cf_clock_getabsolute(); |
| 656 | } |
| 657 | |
| 658 | size_t required_capacity = sizeof(as_skew_plugin_data); |
| 659 | if (required_capacity > plugin_data->data_capacity) { |
| 660 | plugin_data->data = cf_realloc(plugin_data->data, required_capacity); |
| 661 | |
| 662 | if (plugin_data->data == NULL) { |
| 663 | CRASH("error allocating skew data for node %lx" , source); |
| 664 | } |
| 665 | plugin_data->data_capacity = required_capacity; |
| 666 | } |
| 667 | |
| 668 | if (plugin_data->data_size == 0) { |
| 669 | // First data point. |
| 670 | memset(plugin_data->data, 0, required_capacity); |
| 671 | } |
| 672 | |
| 673 | if (prev_plugin_data->data_size != 0) { |
| 674 | // Copy over older values to carry forward. |
| 675 | memcpy(plugin_data->data, prev_plugin_data->data, required_capacity); |
| 676 | } |
| 677 | |
| 678 | as_skew_plugin_data* skew_plugin_data = |
| 679 | (as_skew_plugin_data*)plugin_data->data; |
| 680 | |
| 681 | int64_t hlc_diff_ms = abs(as_hlc_timestamp_diff_ms(send_hlc_ts, hlc_now)); |
| 682 | |
| 683 | if (hlc_diff_ms > HLC_DEVIATION_MAX_MS) { |
| 684 | if (skew_plugin_data->bad_hlc_streak < BAD_HLC_STREAK_MAX) { |
| 685 | skew_plugin_data->bad_hlc_streak++; |
| 686 | INFO("node %lx HLC not in sync - hlc %lu self-hlc %lu diff %ld" , |
| 687 | source, send_hlc_ts, hlc_now, hlc_diff_ms); |
| 688 | } |
| 689 | else { |
| 690 | // Long running streak. |
| 691 | TICKER_WARNING("node %lx HLC not in sync" , source); |
| 692 | } |
| 693 | } |
| 694 | else { |
| 695 | // End the bad streak if the source is in one. |
| 696 | skew_plugin_data->bad_hlc_streak = 0; |
| 697 | } |
| 698 | |
| 699 | int64_t delta = 0; |
| 700 | if ((skew_plugin_data->bad_hlc_streak > 0) |
| 701 | && skew_plugin_data->bad_hlc_streak <= BAD_HLC_STREAK_MAX) { |
| 702 | // The peer is in a tolerable bad hlc streak. Assume it has nominal hlc |
| 703 | // delta. This is most likely a restarted or a new node that hasn't |
| 704 | // caught up with the cluster HLC yet. |
| 705 | pthread_mutex_lock(&g_self_skew_lock); |
| 706 | delta = ring_buffer_hlc_delta(&g_self_skew_ring_buffer); |
| 707 | pthread_mutex_unlock(&g_self_skew_lock); |
| 708 | } |
| 709 | else { |
| 710 | // This measurement is safe to use. |
| 711 | delta = as_hlc_physical_ts_get(send_hlc_ts) - send_ts; |
| 712 | } |
| 713 | |
| 714 | // Update the ring buffer with the new delta. |
| 715 | ring_buffer_insert(&skew_plugin_data->ring_buffer, delta); |
| 716 | |
| 717 | if (cf_context_at_severity(AS_SKEW, CF_DETAIL)) { |
| 718 | // Temporary debugging. |
| 719 | char message[100]; |
| 720 | sprintf(message, "Insert for node: %lx - " , source); |
| 721 | ring_buffer_log(&skew_plugin_data->ring_buffer, message, CF_DETAIL); |
| 722 | } |
| 723 | |
| 724 | // Ensure the data size is set correctly. |
| 725 | plugin_data->data_size = required_capacity; |
| 726 | |
| 727 | DETAIL("node %lx - hlc:%lu clock:%lu delta:%ld" , source, send_hlc_ts, |
| 728 | send_ts, delta); |
| 729 | } |
| 730 | |
| 731 | /* |
| 732 | * ---------------------------------------------------------------------------- |
| 733 | * Protceted API only meant for clustering. |
| 734 | * ---------------------------------------------------------------------------- |
| 735 | */ |
| 736 | |
| 737 | /** |
| 738 | * Update clock skew and fire skew events. |
| 739 | */ |
| 740 | void |
| 741 | as_skew_monitor_update() |
| 742 | { |
| 743 | skew_monitor_update(); |
| 744 | } |
| 745 | |
| 746 | /* |
| 747 | * ---------------------------------------------------------------------------- |
| 748 | * Public API |
| 749 | * ---------------------------------------------------------------------------- |
| 750 | */ |
| 751 | |
| 752 | /** |
| 753 | * Initialize skew monitor. |
| 754 | */ |
| 755 | void |
| 756 | as_skew_monitor_init() |
| 757 | { |
| 758 | as_hb_plugin skew_monitor_plugin = { 0 }; |
| 759 | |
| 760 | skew_monitor_plugin.id = AS_HB_PLUGIN_SKEW_MONITOR; |
| 761 | skew_monitor_plugin.wire_size_fixed = sizeof(int64_t); |
| 762 | // Size of the node in succession list. |
| 763 | skew_monitor_plugin.wire_size_per_node = 0; |
| 764 | skew_monitor_plugin.set_fn = skew_monitor_hb_plugin_set_fn; |
| 765 | skew_monitor_plugin.parse_fn = skew_monitor_hb_plugin_parse_data_fn; |
| 766 | as_hb_plugin_register(&skew_monitor_plugin); |
| 767 | |
| 768 | DETAIL("skew monitor initialized" ); |
| 769 | } |
| 770 | |
| 771 | /** |
| 772 | * Return the current estimate of the clock skew in the cluster. |
| 773 | */ |
| 774 | uint64_t |
| 775 | as_skew_monitor_skew() |
| 776 | { |
| 777 | return cf_atomic64_get(g_skew); |
| 778 | } |
| 779 | |
| 780 | /** |
| 781 | * Return the currently estimated outliers from our cluster. |
| 782 | * Outliers should have space to hold at least AS_CLUSTER_SZ nodes. |
| 783 | */ |
| 784 | uint32_t |
| 785 | as_skew_monitor_outliers(cf_vector* outliers) |
| 786 | { |
| 787 | return skew_monitor_outliers(outliers); |
| 788 | } |
| 789 | |
| 790 | /** |
| 791 | * Print skew outliers to a dynamic buffer. |
| 792 | */ |
| 793 | uint32_t |
| 794 | as_skew_monitor_outliers_append(cf_dyn_buf* db) |
| 795 | { |
| 796 | uint8_t buffer[AS_CLUSTER_SZ * sizeof(cf_node)]; |
| 797 | cf_vector outliers; |
| 798 | cf_vector_init_smalloc(&outliers, sizeof(cf_node), buffer, sizeof(buffer), |
| 799 | VECTOR_FLAG_INITZERO); |
| 800 | uint32_t num_outliers = skew_monitor_outliers(&outliers); |
| 801 | |
| 802 | for (uint32_t i = 0; i < num_outliers; i++) { |
| 803 | cf_node outlier_id; |
| 804 | cf_vector_get(&outliers, i, &outlier_id); |
| 805 | cf_dyn_buf_append_uint64_x(db, outlier_id); |
| 806 | cf_dyn_buf_append_char(db, ','); |
| 807 | } |
| 808 | |
| 809 | if (num_outliers) { |
| 810 | cf_dyn_buf_chomp(db); |
| 811 | } |
| 812 | |
| 813 | cf_vector_destroy(&outliers); |
| 814 | |
| 815 | return num_outliers; |
| 816 | } |
| 817 | |
| 818 | /** |
| 819 | * Print skew monitor info to a dynamic buffer. |
| 820 | */ |
| 821 | void |
| 822 | as_skew_monitor_info(cf_dyn_buf* db) |
| 823 | { |
| 824 | cf_dyn_buf_append_string(db, "cluster_clock_skew_outliers=" ); |
| 825 | uint32_t num_outliers = as_skew_monitor_outliers_append(db); |
| 826 | if (num_outliers == 0) { |
| 827 | cf_dyn_buf_append_string(db, "null" ); |
| 828 | } |
| 829 | cf_dyn_buf_append_char(db, ';'); |
| 830 | } |
| 831 | |
| 832 | /** |
| 833 | * Dump some debugging information to the logs. |
| 834 | */ |
| 835 | void |
| 836 | as_skew_monitor_dump() |
| 837 | { |
| 838 | uint8_t buffer[AS_CLUSTER_SZ * sizeof(cf_node)]; |
| 839 | cf_vector node_vector; |
| 840 | cf_vector_init_smalloc(&node_vector, sizeof(cf_node), buffer, |
| 841 | sizeof(buffer), VECTOR_FLAG_INITZERO); |
| 842 | as_exchange_succession(&node_vector); |
| 843 | |
| 844 | INFO("CSM: cluster-clock-skew:%ld" , as_skew_monitor_skew()); |
| 845 | if (cf_vector_size(&node_vector) <= 1) { |
| 846 | // Self node is an orphan or single node cluster. No cluster wide skew. |
| 847 | goto Cleanup; |
| 848 | } |
| 849 | |
| 850 | as_skew_monitor_hlc_delta_udata udata = { 0 }; |
| 851 | as_hb_plugin_data_iterate(&node_vector, AS_HB_PLUGIN_SKEW_MONITOR, |
| 852 | skew_monitor_delta_collect_iterate, &udata); |
| 853 | |
| 854 | for (int i = 0; i < udata.num_nodes; i++) { |
| 855 | INFO("CSM: node:%lx hlc-delta:%ld" , udata.skew_summary[i].nodeid, |
| 856 | udata.skew_summary[i].delta); |
| 857 | } |
| 858 | |
| 859 | // Log the outliers. |
| 860 | cf_vector_clear(&node_vector); |
| 861 | skew_monitor_outliers(&node_vector); |
| 862 | if (cf_vector_size(&node_vector)) { |
| 863 | as_clustering_log_cf_node_vector(CF_INFO, AS_SKEW, |
| 864 | "CSM: Estimated clock outliers" , &node_vector); |
| 865 | } |
| 866 | |
| 867 | Cleanup: |
| 868 | cf_vector_destroy(&node_vector); |
| 869 | } |
| 870 | |