1 | /* |
2 | * fault.c |
3 | * |
4 | * Copyright (C) 2008-2014 Aerospike, Inc. |
5 | * |
6 | * Portions may be licensed to Aerospike, Inc. under one or more contributor |
7 | * license agreements. |
8 | * |
9 | * This program is free software: you can redistribute it and/or modify it under |
10 | * the terms of the GNU Affero General Public License as published by the Free |
11 | * Software Foundation, either version 3 of the License, or (at your option) any |
12 | * later version. |
13 | * |
14 | * This program is distributed in the hope that it will be useful, but WITHOUT |
15 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
16 | * FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more |
17 | * details. |
18 | * |
19 | * You should have received a copy of the GNU Affero General Public License |
20 | * along with this program. If not, see http://www.gnu.org/licenses/ |
21 | */ |
22 | |
23 | #include "fault.h" |
24 | |
25 | #include <errno.h> |
26 | #include <fcntl.h> |
27 | #include <link.h> |
28 | #include <signal.h> |
29 | #include <stdarg.h> |
30 | #include <stdbool.h> |
31 | #include <stddef.h> |
32 | #include <stdint.h> |
33 | #include <stdio.h> |
34 | #include <stdlib.h> |
35 | #include <string.h> |
36 | #include <time.h> |
37 | #include <unistd.h> |
38 | #include <sys/time.h> |
39 | |
40 | #include "aerospike/as_log.h" |
41 | #include "citrusleaf/alloc.h" |
42 | #include "citrusleaf/cf_b64.h" |
43 | |
44 | #include "cf_mutex.h" |
45 | #include "shash.h" |
46 | |
47 | |
48 | /* |
49 | * Maximum length for logging binary (i.e., hexadecimal or bit string) data. |
50 | */ |
51 | #define MAX_BINARY_BUF_SZ (64 * 1024) |
52 | |
53 | // TODO - do we really need O_NONBLOCK for log sinks? |
54 | #define SINK_OPEN_FLAGS (O_WRONLY | O_CREAT | O_NONBLOCK | O_APPEND) |
55 | #define SINK_OPEN_MODE (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH) |
56 | |
57 | #define SINK_REOPEN_FLAGS (O_WRONLY | O_CREAT | O_NONBLOCK | O_TRUNC) |
58 | |
59 | /* cf_fault_context_strings, cf_fault_severity_strings, cf_fault_scope_strings |
60 | * Strings describing fault states */ |
61 | |
62 | /* MUST BE KEPT IN SYNC WITH FAULT.H */ |
63 | |
64 | char *cf_fault_context_strings[] = { |
65 | "misc" , |
66 | |
67 | "alloc" , |
68 | "arenax" , |
69 | "hardware" , |
70 | "msg" , |
71 | "rbuffer" , |
72 | "socket" , |
73 | "tls" , |
74 | "vmapx" , |
75 | "xmem" , |
76 | |
77 | "aggr" , |
78 | "appeal" , |
79 | "as" , |
80 | "batch" , |
81 | "bin" , |
82 | "config" , |
83 | "clustering" , |
84 | "drv_ssd" , |
85 | "exchange" , |
86 | "fabric" , |
87 | "flat" , |
88 | "geo" , |
89 | "hb" , |
90 | "health" , |
91 | "hlc" , |
92 | "index" , |
93 | "info" , |
94 | "info-port" , |
95 | "job" , |
96 | "migrate" , |
97 | "mon" , |
98 | "namespace" , |
99 | "nsup" , |
100 | "particle" , |
101 | "partition" , |
102 | "paxos" , |
103 | "predexp" , |
104 | "proto" , |
105 | "proxy" , |
106 | "proxy-divert" , |
107 | "query" , |
108 | "record" , |
109 | "roster" , |
110 | "rw" , |
111 | "rw-client" , |
112 | "scan" , |
113 | "security" , |
114 | "service" , |
115 | "service-list" , |
116 | "sindex" , |
117 | "skew" , |
118 | "smd" , |
119 | "storage" , |
120 | "truncate" , |
121 | "tsvc" , |
122 | "udf" , |
123 | "xdr" , |
124 | "xdr-client" , |
125 | "xdr-http" |
126 | }; |
127 | |
128 | COMPILER_ASSERT(sizeof(cf_fault_context_strings) / sizeof(char*) == CF_FAULT_CONTEXT_UNDEF); |
129 | |
130 | static const char *cf_fault_severity_strings[] = { |
131 | "CRITICAL" , |
132 | "WARNING" , |
133 | "INFO" , |
134 | "DEBUG" , |
135 | "DETAIL" |
136 | }; |
137 | |
138 | COMPILER_ASSERT(sizeof(cf_fault_severity_strings) / sizeof(const char*) == CF_FAULT_SEVERITY_UNDEF); |
139 | |
140 | cf_fault_sink cf_fault_sinks[CF_FAULT_SINKS_MAX]; |
141 | cf_fault_severity cf_fault_filter[CF_FAULT_CONTEXT_UNDEF]; |
142 | int cf_fault_sinks_inuse = 0; |
143 | int num_held_fault_sinks = 0; |
144 | |
145 | cf_shash *g_ticker_hash = NULL; |
146 | #define CACHE_MSG_MAX_SIZE 128 |
147 | |
148 | typedef struct cf_fault_cache_hkey_s { |
149 | // Members most likely to be unique come first: |
150 | int line; |
151 | cf_fault_context context; |
152 | const char *file_name; |
153 | cf_fault_severity severity; |
154 | char msg[CACHE_MSG_MAX_SIZE]; |
155 | } __attribute__((__packed__)) cf_fault_cache_hkey; |
156 | |
157 | bool g_use_local_time = false; |
158 | |
159 | static bool g_log_millis = false; |
160 | |
161 | #define MAX_BACKTRACE_DEPTH 50 |
162 | |
163 | extern char __executable_start; |
164 | extern char __etext; |
165 | |
166 | // Filter stderr logging at this level when there are no sinks: |
167 | #define NO_SINKS_LIMIT CF_WARNING |
168 | |
169 | static inline const char* |
170 | severity_tag(cf_fault_severity severity) |
171 | { |
172 | return severity == CF_CRITICAL ? |
173 | "FAILED ASSERTION" : cf_fault_severity_strings[severity]; |
174 | } |
175 | |
176 | /* cf_context_at_severity |
177 | * Return whether the given context is set to this severity level or higher. */ |
178 | bool |
179 | cf_context_at_severity(const cf_fault_context context, const cf_fault_severity severity) |
180 | { |
181 | return (severity <= cf_fault_filter[context]); |
182 | } |
183 | |
184 | static inline void |
185 | cf_fault_set_severity(const cf_fault_context context, const cf_fault_severity severity) |
186 | { |
187 | cf_fault_filter[context] = severity; |
188 | |
189 | // UDF logging relies on the common as_log facility. |
190 | // Set as_log_level whenever AS_UDF severity changes. |
191 | if (context == AS_UDF && severity < CF_FAULT_SEVERITY_UNDEF) { |
192 | as_log_set_level((as_log_level)severity); |
193 | } |
194 | } |
195 | |
196 | static inline uint32_t |
197 | cache_hash_fn(const void *key) |
198 | { |
199 | return (uint32_t)((const cf_fault_cache_hkey*)key)->line + |
200 | *(uint32_t*)((const cf_fault_cache_hkey*)key)->msg; |
201 | } |
202 | |
203 | /* cf_fault_init |
204 | * This code MUST be the first thing executed by main(). */ |
205 | void |
206 | cf_fault_init() |
207 | { |
208 | // Initialize the fault filter. |
209 | for (int j = 0; j < CF_FAULT_CONTEXT_UNDEF; j++) { |
210 | // We start with no sinks, so let's be in-sync with that. |
211 | cf_fault_set_severity(j, NO_SINKS_LIMIT); |
212 | } |
213 | |
214 | // Create the ticker hash. |
215 | g_ticker_hash = cf_shash_create(cache_hash_fn, sizeof(cf_fault_cache_hkey), |
216 | sizeof(uint32_t), 256, CF_SHASH_MANY_LOCK); |
217 | } |
218 | |
219 | |
220 | /* cf_fault_sink_add |
221 | * Register an sink for faults */ |
222 | cf_fault_sink * |
223 | cf_fault_sink_add(char *path) |
224 | { |
225 | cf_fault_sink *s; |
226 | |
227 | if ((CF_FAULT_SINKS_MAX - 1) == cf_fault_sinks_inuse) |
228 | return(NULL); |
229 | |
230 | s = &cf_fault_sinks[cf_fault_sinks_inuse++]; |
231 | s->path = cf_strdup(path); |
232 | if (0 == strncmp(path, "stderr" , 6)) |
233 | s->fd = 2; |
234 | else { |
235 | if (-1 == (s->fd = open(path, SINK_OPEN_FLAGS, SINK_OPEN_MODE))) { |
236 | cf_fault_sinks_inuse--; |
237 | return(NULL); |
238 | } |
239 | } |
240 | |
241 | for (int i = 0; i < CF_FAULT_CONTEXT_UNDEF; i++) |
242 | s->limit[i] = CF_INFO; |
243 | |
244 | return(s); |
245 | } |
246 | |
247 | |
248 | /* cf_fault_sink_hold |
249 | * Register but don't activate a sink for faults - return sink object pointer on |
250 | * success, NULL on failure. Only use at startup when parsing config file. After |
251 | * all sinks are registered, activate via cf_fault_sink_activate_all_held(). */ |
252 | cf_fault_sink * |
253 | cf_fault_sink_hold(char *path) |
254 | { |
255 | if (num_held_fault_sinks >= CF_FAULT_SINKS_MAX) { |
256 | cf_warning(CF_MISC, "too many fault sinks" ); |
257 | return NULL; |
258 | } |
259 | |
260 | cf_fault_sink *s = &cf_fault_sinks[num_held_fault_sinks]; |
261 | |
262 | s->path = cf_strdup(path); |
263 | |
264 | // If a context is not added, its runtime default will be CF_INFO. |
265 | for (int i = 0; i < CF_FAULT_CONTEXT_UNDEF; i++) { |
266 | s->limit[i] = CF_INFO; |
267 | } |
268 | |
269 | num_held_fault_sinks++; |
270 | |
271 | return s; |
272 | } |
273 | |
274 | |
275 | /* cf_fault_console_is_held |
276 | * Return whether the console is held. |
277 | */ |
278 | bool |
279 | cf_fault_console_is_held() |
280 | { |
281 | for (int i = 0; i < num_held_fault_sinks; i++) { |
282 | cf_fault_sink *s = &cf_fault_sinks[i]; |
283 | if (!strcmp(s->path, "stderr" )) { |
284 | return true; |
285 | } |
286 | } |
287 | |
288 | return false; |
289 | } |
290 | |
291 | |
292 | static void |
293 | fault_filter_adjust(cf_fault_sink *s, cf_fault_context ctx) |
294 | { |
295 | // Don't adjust filter while adding contexts during config file parsing. |
296 | if (cf_fault_sinks_inuse == 0) { |
297 | return; |
298 | } |
299 | |
300 | // Fault filter must allow logs at a less critical severity. |
301 | if (s->limit[ctx] > cf_fault_filter[ctx]) { |
302 | cf_fault_set_severity(ctx, s->limit[ctx]); |
303 | } |
304 | // Fault filter might be able to become stricter - check all sinks. |
305 | else if (s->limit[ctx] < cf_fault_filter[ctx]) { |
306 | cf_fault_severity severity = CF_CRITICAL; |
307 | |
308 | for (int i = 0; i < cf_fault_sinks_inuse; i++) { |
309 | cf_fault_sink *t = &cf_fault_sinks[i]; |
310 | |
311 | if (t->limit[ctx] > severity) { |
312 | severity = t->limit[ctx]; |
313 | } |
314 | } |
315 | |
316 | cf_fault_set_severity(ctx, severity); |
317 | } |
318 | } |
319 | |
320 | |
321 | /* cf_fault_sink_activate_all_held |
322 | * Activate all sinks on hold - return 0 on success, -1 on failure. Only use |
323 | * once at startup, after parsing config file. On failure there's no cleanup, |
324 | * assumes caller will stop the process. */ |
325 | int |
326 | cf_fault_sink_activate_all_held() |
327 | { |
328 | for (int i = 0; i < num_held_fault_sinks; i++) { |
329 | if (cf_fault_sinks_inuse >= CF_FAULT_SINKS_MAX) { |
330 | // In case this isn't first sink, force logging as if no sinks: |
331 | cf_fault_sinks_inuse = 0; |
332 | cf_warning(CF_MISC, "too many fault sinks" ); |
333 | return -1; |
334 | } |
335 | |
336 | cf_fault_sink *s = &cf_fault_sinks[i]; |
337 | |
338 | // "Activate" the sink. |
339 | if (0 == strncmp(s->path, "stderr" , 6)) { |
340 | s->fd = 2; |
341 | } |
342 | else if (-1 == (s->fd = open(s->path, SINK_OPEN_FLAGS, SINK_OPEN_MODE))) { |
343 | // In case this isn't first sink, force logging as if no sinks: |
344 | cf_fault_sinks_inuse = 0; |
345 | cf_warning(CF_MISC, "can't open %s: %s" , s->path, cf_strerror(errno)); |
346 | return -1; |
347 | } |
348 | |
349 | cf_fault_sinks_inuse++; |
350 | |
351 | // Adjust the fault filter to the runtime levels. |
352 | for (int j = 0; j < CF_FAULT_CONTEXT_UNDEF; j++) { |
353 | fault_filter_adjust(s, (cf_fault_context)j); |
354 | } |
355 | } |
356 | |
357 | return 0; |
358 | } |
359 | |
360 | |
361 | /* cf_fault_sink_get_fd_list |
362 | * Fill list with all active sink fds, excluding stderr - return list count. */ |
363 | int |
364 | cf_fault_sink_get_fd_list(int *fds) |
365 | { |
366 | int num_open_fds = 0; |
367 | |
368 | for (int i = 0; i < cf_fault_sinks_inuse; i++) { |
369 | cf_fault_sink *s = &cf_fault_sinks[i]; |
370 | |
371 | // Exclude stderr. |
372 | if (s->fd > 2 && 0 != strncmp(s->path, "stderr" , 6)) { |
373 | fds[num_open_fds++] = s->fd; |
374 | } |
375 | } |
376 | |
377 | return num_open_fds; |
378 | } |
379 | |
380 | |
381 | static int |
382 | cf_fault_sink_addcontext_all(char *context, char *severity) |
383 | { |
384 | for (int i = 0; i < cf_fault_sinks_inuse; i++) { |
385 | cf_fault_sink *s = &cf_fault_sinks[i]; |
386 | int rv = cf_fault_sink_addcontext(s, context, severity); |
387 | if (rv != 0) return(rv); |
388 | } |
389 | return(0); |
390 | } |
391 | |
392 | |
393 | int |
394 | cf_fault_sink_addcontext(cf_fault_sink *s, char *context, char *severity) |
395 | { |
396 | if (s == 0) return(cf_fault_sink_addcontext_all(context, severity)); |
397 | |
398 | cf_fault_context ctx = CF_FAULT_CONTEXT_UNDEF; |
399 | cf_fault_severity sev = CF_FAULT_SEVERITY_UNDEF; |
400 | |
401 | for (int i = 0; i < CF_FAULT_SEVERITY_UNDEF; i++) { |
402 | if (0 == strncasecmp(cf_fault_severity_strings[i], severity, strlen(severity))) |
403 | sev = (cf_fault_severity)i; |
404 | } |
405 | if (CF_FAULT_SEVERITY_UNDEF == sev) |
406 | return(-1); |
407 | |
408 | if (0 == strncasecmp(context, "any" , 3)) { |
409 | for (int i = 0; i < CF_FAULT_CONTEXT_UNDEF; i++) { |
410 | s->limit[i] = sev; |
411 | fault_filter_adjust(s, (cf_fault_context)i); |
412 | } |
413 | } else { |
414 | for (int i = 0; i < CF_FAULT_CONTEXT_UNDEF; i++) { |
415 | //strncasecmp only compared the length of context passed in the 3rd argument and as cf_fault_context_strings has info and info port, |
416 | //So when you try to set info to debug it will set info-port to debug . Just forcing it to check the length from cf_fault_context_strings |
417 | if (0 == strncasecmp(cf_fault_context_strings[i], context, strlen(cf_fault_context_strings[i]))) |
418 | ctx = (cf_fault_context)i; |
419 | } |
420 | if (CF_FAULT_CONTEXT_UNDEF == ctx) |
421 | return(-1); |
422 | |
423 | s->limit[ctx] = sev; |
424 | fault_filter_adjust(s, ctx); |
425 | } |
426 | |
427 | return(0); |
428 | } |
429 | |
430 | |
431 | void |
432 | cf_fault_use_local_time(bool val) |
433 | { |
434 | g_use_local_time = val; |
435 | } |
436 | |
437 | bool |
438 | cf_fault_is_using_local_time() |
439 | { |
440 | return g_use_local_time; |
441 | } |
442 | |
443 | void |
444 | cf_fault_log_millis(bool log_millis) |
445 | { |
446 | g_log_millis = log_millis; |
447 | } |
448 | |
449 | bool |
450 | cf_fault_is_logging_millis() |
451 | { |
452 | return g_log_millis; |
453 | } |
454 | |
455 | int |
456 | cf_sprintf_now(char* mbuf, size_t limit) |
457 | { |
458 | struct tm nowtm; |
459 | |
460 | if (cf_fault_is_logging_millis()) { |
461 | // Logging milli seconds as well. |
462 | struct timeval curTime; |
463 | gettimeofday(&curTime, NULL); |
464 | int millis = curTime.tv_usec / 1000; |
465 | int pos = 0; |
466 | if (g_use_local_time) { |
467 | localtime_r(&curTime.tv_sec, &nowtm); |
468 | pos = strftime(mbuf, limit, "%b %d %Y %T." , &nowtm); |
469 | pos += |
470 | snprintf(mbuf + pos, limit - pos, "%03d" , millis); |
471 | pos += |
472 | strftime(mbuf + pos, limit - pos, " GMT%z: " , &nowtm); |
473 | return pos; |
474 | } else { |
475 | gmtime_r(&curTime.tv_sec, &nowtm); |
476 | pos = strftime(mbuf, limit, "%b %d %Y %T." , &nowtm); |
477 | pos += |
478 | snprintf(mbuf + pos, limit - pos, "%03d" , millis); |
479 | pos += |
480 | strftime(mbuf + pos, limit - pos, " %Z: " , &nowtm); |
481 | return pos; |
482 | } |
483 | } |
484 | |
485 | // Logging only seconds. |
486 | time_t now = time(NULL); |
487 | |
488 | if (g_use_local_time) { |
489 | localtime_r(&now, &nowtm); |
490 | return strftime(mbuf, limit, "%b %d %Y %T GMT%z: " , &nowtm); |
491 | } else { |
492 | gmtime_r(&now, &nowtm); |
493 | return strftime(mbuf, limit, "%b %d %Y %T %Z: " , &nowtm); |
494 | } |
495 | } |
496 | |
497 | /* cf_fault_event |
498 | * Respond to a fault */ |
499 | void |
500 | cf_fault_event(const cf_fault_context context, const cf_fault_severity severity, |
501 | const char *file_name, const int line, const char *msg, ...) |
502 | { |
503 | va_list argp; |
504 | char mbuf[1024]; |
505 | size_t pos; |
506 | |
507 | |
508 | /* Make sure there's always enough space for the \n\0. */ |
509 | size_t limit = sizeof(mbuf) - 2; |
510 | |
511 | /* Set the timestamp */ |
512 | pos = cf_sprintf_now(mbuf, limit); |
513 | |
514 | /* Set the context/scope/severity tag */ |
515 | pos += snprintf(mbuf + pos, limit - pos, "%s (%s): " , severity_tag(severity), cf_fault_context_strings[context]); |
516 | |
517 | /* |
518 | * snprintf() and vsnprintf() will not write more than the size specified, |
519 | * but they return the size that would have been written without truncation. |
520 | * These checks make sure there's enough space for the final \n\0. |
521 | */ |
522 | if (pos > limit) { |
523 | pos = limit; |
524 | } |
525 | |
526 | /* Set the location: filename and line number */ |
527 | if (file_name) { |
528 | pos += snprintf(mbuf + pos, limit - pos, "(%s:%d) " , file_name, line); |
529 | } |
530 | |
531 | if (pos > limit) { |
532 | pos = limit; |
533 | } |
534 | |
535 | /* Append the message */ |
536 | va_start(argp, msg); |
537 | pos += vsnprintf(mbuf + pos, limit - pos, msg, argp); |
538 | va_end(argp); |
539 | |
540 | if (pos > limit) { |
541 | pos = limit; |
542 | } |
543 | |
544 | pos += snprintf(mbuf + pos, 2, "\n" ); |
545 | |
546 | /* Route the message to the correct destinations */ |
547 | if (0 == cf_fault_sinks_inuse) { |
548 | /* If no fault sinks are defined, use stderr for important messages */ |
549 | if (severity <= NO_SINKS_LIMIT) |
550 | fprintf(stderr, "%s" , mbuf); |
551 | } else { |
552 | for (int i = 0; i < cf_fault_sinks_inuse; i++) { |
553 | if ((severity <= cf_fault_sinks[i].limit[context]) || (CF_CRITICAL == severity)) { |
554 | if (0 >= write(cf_fault_sinks[i].fd, mbuf, pos)) { |
555 | // this is OK for a bit in case of a HUP. It's even better to queue the buffers and apply them |
556 | // after the hup. TODO. |
557 | fprintf(stderr, "internal failure in fault message write: %s\n" , cf_strerror(errno)); |
558 | } |
559 | } |
560 | } |
561 | } |
562 | |
563 | /* Critical errors */ |
564 | if (CF_CRITICAL == severity) { |
565 | fflush(NULL); |
566 | |
567 | // Our signal handler will log a stack trace. |
568 | raise(SIGUSR1); |
569 | } |
570 | } // end cf_fault_event() |
571 | |
572 | |
573 | /** |
574 | * Generate a Packed Hex String Representation of the binary string. |
575 | * e.g. 0xfc86e83a6d6d3024659e6fe48c351aaaf6e964a5 |
576 | * The value is preceeded by a "0x" to denote Hex (which allows it to be |
577 | * used in other contexts as a hex number). |
578 | */ |
579 | int |
580 | generate_packed_hex_string(const void *mem_ptr, uint32_t len, char* output) |
581 | { |
582 | uint8_t *d = (uint8_t *) mem_ptr; |
583 | char* p = output; |
584 | char* startp = p; // Remember where we started. |
585 | |
586 | *p++ = '0'; |
587 | *p++ = 'x'; |
588 | |
589 | for (uint32_t i = 0; i < len; i++) { |
590 | sprintf(p, "%02x" , d[i]); |
591 | p += 2; |
592 | } |
593 | *p++ = 0; // Null terminate the output buffer. |
594 | return (int) (p - startp); // show how much space we used. |
595 | } // end generate_packed_hex_string() |
596 | |
597 | |
598 | /** |
599 | * Generate a Spaced Hex String Representation of the binary string. |
600 | * e.g. fc 86 e8 3a 6d 6d 30 24 65 9e 6f e4 8c 35 1a aa f6 e9 64 a5 |
601 | */ |
602 | int |
603 | generate_spaced_hex_string(const void *mem_ptr, uint32_t len, char* output) |
604 | { |
605 | uint8_t *d = (uint8_t *) mem_ptr; |
606 | char* p = output; |
607 | char* startp = p; // Remember where we started. |
608 | |
609 | for (uint32_t i = 0; i < len; i++) { |
610 | sprintf(p, "%02x " , d[i]); // Notice the space after the 02x. |
611 | p += 3; |
612 | } |
613 | *p++ = 0; // Null terminate the output buffer. |
614 | return (int) (p - startp); // show how much space we used. |
615 | } // end generate_spaced_hex_string() |
616 | |
617 | |
618 | /** |
619 | * Generate a Column Hex String Representation of the binary string. |
620 | * The Columns will be four two-byte values, with spaces between the bytes: |
621 | * fc86 e83a 6d6d 3024 |
622 | * 659e 6fe4 8c35 1aaa |
623 | * f6e9 64a5 |
624 | */ |
625 | int |
626 | generate_column_hex_string(const void *mem_ptr, uint32_t len, char* output) |
627 | { |
628 | uint8_t *d = (uint8_t *) mem_ptr; |
629 | char* p = output; |
630 | uint32_t i; |
631 | char* startp = p; // Remember where we started. |
632 | |
633 | *p++ = '\n'; // Start out on a new line |
634 | |
635 | for (i = 0; i < len; i++) { |
636 | sprintf(p, "%02x " , d[i]); // Two chars and a space |
637 | p += 3; |
638 | if ((i+1) % 8 == 0 && i != 0) { |
639 | *p++ = '\n'; // add a line return |
640 | } |
641 | } |
642 | *p++ = '\n'; // Finish with a new line |
643 | *p++ = 0; // Null terminate the output buffer. |
644 | return (int) (p - startp); // show how much space we used. |
645 | } // end generate_column_hex_string() |
646 | |
647 | |
648 | /** |
649 | * Generate a Base64 String Representation of the binary string. |
650 | * Base64 encoding converts three octets into four 6-bit encoded characters. |
651 | * So, the string 8-bit bytes are broken down into 6 bit values, each of which |
652 | * is then converted into a base64 value. |
653 | * So, for example, the string "Man" :: M[77: 0x4d)] a[97(0x61)] n[110(0x6e)] |
654 | * Bits: (4)0100 (d)1101 (6)0110 (1)0001 (6)0110 (e)1110 |
655 | * Base 64 bits: 010011 010110 000101 101110 |
656 | * Base 64 Rep: 010011(19) 010110(22) 000101(5) 101110(46) |
657 | * Base 64 Chars: T(19) W(22) F(5) u(46) |
658 | * and so this string is converted into the Base 64 string: "TWFu" |
659 | */ |
660 | int generate_base64_string(const void *mem_ptr, uint32_t len, char output_buf[]) |
661 | { |
662 | uint32_t encoded_len = cf_b64_encoded_len(len); |
663 | // TODO - check that output_buf is big enough, and/or truncate. |
664 | |
665 | cf_b64_encode((const uint8_t*)mem_ptr, len, output_buf); |
666 | |
667 | output_buf[encoded_len] = 0; // null-terminate |
668 | |
669 | return (int)(encoded_len + 1); // bytes we used, including null-terminator |
670 | } // end generate_base64_hex_string() |
671 | |
672 | |
673 | /** |
674 | * Generate a BIT representation with spaces between the four bit groups. |
675 | * Print the bits left to right (big to small). |
676 | * This is assuming BIG ENDIAN representation (most significant bit is left). |
677 | */ |
678 | int generate_4spaced_bits_string(const void *mem_ptr, uint32_t len, char* output) |
679 | { |
680 | uint8_t *d = (uint8_t *) mem_ptr; |
681 | char* p = output; |
682 | uint8_t uint_val; |
683 | uint8_t mask = 0x80; // largest single bit value in a byte |
684 | char* startp = p; // Remember where we started. |
685 | |
686 | // For each byte in the string |
687 | for (uint32_t i = 0; i < len; i++) { |
688 | uint_val = d[i]; |
689 | for (int j = 0; j < 8; j++) { |
690 | sprintf(p, "%1d" , ((uint_val << j) & mask)); |
691 | p++; |
692 | // Add a space after every 4th bit |
693 | if ( (j+1) % 4 == 0 ) *p++ = ' '; |
694 | } |
695 | } |
696 | *p++ = 0; // Null terminate the output buffer. |
697 | return (int) (p - startp); // show how much space we used. |
698 | } // end generate_4spaced_bits_string() |
699 | |
700 | /** |
701 | * Generate a BIT representation of columns with spaces between the |
702 | * four bit groups. Columns will be 8 columns of 4 bits. |
703 | * (1 32 bit word per row) |
704 | */ |
705 | int generate_column_bits_string(const void *mem_ptr, uint32_t len, char* output) |
706 | { |
707 | uint8_t *d = (uint8_t *) mem_ptr; |
708 | char* p = output; |
709 | uint8_t uint_val; |
710 | uint8_t mask = 0x80; // largest single bit value in a byte |
711 | char* startp = p; // Remember where we started. |
712 | |
713 | // Start on a new line |
714 | *p++ = '\n'; |
715 | |
716 | // For each byte in the string |
717 | for (uint32_t i = 0; i < len; i++) { |
718 | uint_val = d[i]; |
719 | for (int j = 0; j < 8; j++) { |
720 | sprintf(p, "%1d" , ((uint_val << j) & mask)); |
721 | p++; |
722 | // Add a space after every 4th bit |
723 | if ((j + 1) % 4 == 0) *p++ = ' '; |
724 | } |
725 | // Add a line return after every 4th byte |
726 | if ((i + 1) % 4 == 0) *p++ = '\n'; |
727 | } |
728 | *p++ = 0; // Null terminate the output buffer. |
729 | return (int) (p - startp); // show how much space we used. |
730 | } // end generate_column_bits_string() |
731 | |
732 | |
733 | /* cf_fault_event -- TWO: Expand on the LOG ability by being able to |
734 | * print the contents of a BINARY array if we're passed a valid ptr (not NULL). |
735 | * We will print the array according to "format". |
736 | * Parms: |
737 | * (*) scope: The module family (e.g. AS_RW, AS_UDF...) |
738 | * (*) severify: The scope severity (e.g. INFO, DEBUG, DETAIL) |
739 | * (*) file_name: Ptr to the FILE generating the call |
740 | * (*) line: The function (really, the FILE) line number of the source call |
741 | * (*) mem_ptr: Ptr to memory location of binary array (or NULL) |
742 | * (*) len: Length of the binary string |
743 | * (*) format: The single char showing the format (e.g. 'D', 'B', etc) |
744 | * (*) msg: The format msg string |
745 | * (*) ... : The variable set of parameters the correspond to the msg string. |
746 | * |
747 | * NOTE: We will eventually merge this function with the original cf_fault_event() |
748 | **/ |
749 | void |
750 | cf_fault_event2(const cf_fault_context context, |
751 | const cf_fault_severity severity, const char *file_name, const int line, |
752 | const void *mem_ptr, size_t len, cf_display_type dt, const char *msg, ...) |
753 | { |
754 | va_list argp; |
755 | char mbuf[MAX_BINARY_BUF_SZ]; |
756 | size_t pos; |
757 | |
758 | char binary_buf[MAX_BINARY_BUF_SZ]; |
759 | |
760 | // Arbitrarily limit output to a fixed maximum length. |
761 | if (len > MAX_BINARY_BUF_SZ) { |
762 | len = MAX_BINARY_BUF_SZ; |
763 | } |
764 | char * labelp = NULL; // initialize to quiet build warning |
765 | |
766 | /* Make sure there's always enough space for the \n\0. */ |
767 | size_t limit = sizeof(mbuf) - 2; |
768 | |
769 | /* Set the timestamp */ |
770 | pos = cf_sprintf_now(mbuf, limit); |
771 | |
772 | // If we're given a valid MEMORY POINTER for a binary value, then |
773 | // compute the string that corresponds to the bytes. |
774 | if (mem_ptr) { |
775 | switch (dt) { |
776 | case CF_DISPLAY_HEX_DIGEST: |
777 | labelp = "Digest" ; |
778 | generate_packed_hex_string(mem_ptr, len, binary_buf); |
779 | break; |
780 | case CF_DISPLAY_HEX_SPACED: |
781 | labelp = "HexSpaced" ; |
782 | generate_spaced_hex_string(mem_ptr, len, binary_buf); |
783 | break; |
784 | case CF_DISPLAY_HEX_PACKED: |
785 | labelp = "HexPacked" ; |
786 | generate_packed_hex_string(mem_ptr, len, binary_buf); |
787 | break; |
788 | case CF_DISPLAY_HEX_COLUMNS: |
789 | labelp = "HexColumns" ; |
790 | generate_column_hex_string(mem_ptr, len, binary_buf); |
791 | break; |
792 | case CF_DISPLAY_BASE64: |
793 | labelp = "Base64" ; |
794 | generate_base64_string(mem_ptr, len, binary_buf); |
795 | break; |
796 | case CF_DISPLAY_BITS_SPACED: |
797 | labelp = "BitsSpaced" ; |
798 | generate_4spaced_bits_string(mem_ptr, len, binary_buf); |
799 | break; |
800 | case CF_DISPLAY_BITS_COLUMNS: |
801 | labelp = "BitsColumns" ; |
802 | generate_column_bits_string(mem_ptr, len, binary_buf); |
803 | break; |
804 | default: |
805 | labelp = "Unknown Format" ; |
806 | binary_buf[0] = 0; // make sure it's null terminated. |
807 | break; |
808 | |
809 | } // end switch |
810 | } // if binary data is present |
811 | |
812 | /* Set the context/scope/severity tag */ |
813 | pos += snprintf(mbuf + pos, limit - pos, "%s (%s): " , |
814 | severity_tag(severity), |
815 | cf_fault_context_strings[context]); |
816 | |
817 | /* |
818 | * snprintf() and vsnprintf() will not write more than the size specified, |
819 | * but they return the size that would have been written without truncation. |
820 | * These checks make sure there's enough space for the final \n\0. |
821 | */ |
822 | if (pos > limit) { |
823 | pos = limit; |
824 | } |
825 | |
826 | /* Set the location: filename and line number */ |
827 | if (file_name) { |
828 | pos += snprintf(mbuf + pos, limit - pos, "(%s:%d) " , file_name, line); |
829 | } |
830 | |
831 | // Check for overflow (see above). |
832 | if (pos > limit) { |
833 | pos = limit; |
834 | } |
835 | |
836 | /* Append the message */ |
837 | va_start(argp, msg); |
838 | pos += vsnprintf(mbuf + pos, limit - pos, msg, argp); |
839 | va_end(argp); |
840 | |
841 | // Check for overflow (see above). |
842 | if (pos > limit) { |
843 | pos = limit; |
844 | } |
845 | |
846 | // Append our final BINARY string, if present (some might pass in NULL). |
847 | if ( mem_ptr ) { |
848 | pos += snprintf(mbuf + pos, limit - pos, "<%s>:%s" , labelp, binary_buf); |
849 | } |
850 | |
851 | // Check for overflow (see above). |
852 | if (pos > limit) { |
853 | pos = limit; |
854 | } |
855 | |
856 | pos += snprintf(mbuf + pos, 2, "\n" ); |
857 | |
858 | /* Route the message to the correct destinations */ |
859 | if (0 == cf_fault_sinks_inuse) { |
860 | /* If no fault sinks are defined, use stderr for critical messages */ |
861 | if (CF_CRITICAL == severity) |
862 | fprintf(stderr, "%s" , mbuf); |
863 | } else { |
864 | for (int i = 0; i < cf_fault_sinks_inuse; i++) { |
865 | if ((severity <= cf_fault_sinks[i].limit[context]) || (CF_CRITICAL == severity)) { |
866 | if (0 >= write(cf_fault_sinks[i].fd, mbuf, pos)) { |
867 | // this is OK for a bit in case of a HUP. It's even better to queue the buffers and apply them |
868 | // after the hup. TODO. |
869 | fprintf(stderr, "internal failure in fault message write: %s\n" , cf_strerror(errno)); |
870 | } |
871 | } |
872 | } |
873 | } |
874 | |
875 | /* Critical errors */ |
876 | if (CF_CRITICAL == severity) { |
877 | fflush(NULL); |
878 | |
879 | // Our signal handler will log a stack trace. |
880 | raise(SIGUSR1); |
881 | } |
882 | } |
883 | |
884 | |
885 | void |
886 | cf_fault_event_nostack(const cf_fault_context context, |
887 | const cf_fault_severity severity, const char *fn, const int line, |
888 | const char *msg, ...) |
889 | { |
890 | va_list argp; |
891 | char mbuf[1024]; |
892 | time_t now; |
893 | struct tm nowtm; |
894 | size_t pos; |
895 | |
896 | /* Make sure there's always enough space for the \n\0. */ |
897 | size_t limit = sizeof(mbuf) - 2; |
898 | |
899 | /* Set the timestamp */ |
900 | now = time(NULL); |
901 | |
902 | if (g_use_local_time) { |
903 | localtime_r(&now, &nowtm); |
904 | pos = strftime(mbuf, limit, "%b %d %Y %T GMT%z: " , &nowtm); |
905 | } |
906 | else { |
907 | gmtime_r(&now, &nowtm); |
908 | pos = strftime(mbuf, limit, "%b %d %Y %T %Z: " , &nowtm); |
909 | } |
910 | |
911 | /* Set the context/scope/severity tag */ |
912 | pos += snprintf(mbuf + pos, limit - pos, "%s (%s): " , severity_tag(severity), cf_fault_context_strings[context]); |
913 | |
914 | /* |
915 | * snprintf() and vsnprintf() will not write more than the size specified, |
916 | * but they return the size that would have been written without truncation. |
917 | * These checks make sure there's enough space for the final \n\0. |
918 | */ |
919 | if (pos > limit) { |
920 | pos = limit; |
921 | } |
922 | |
923 | /* Set the location */ |
924 | if (fn) |
925 | pos += snprintf(mbuf + pos, limit - pos, "(%s:%d) " , fn, line); |
926 | |
927 | if (pos > limit) { |
928 | pos = limit; |
929 | } |
930 | |
931 | /* Append the message */ |
932 | va_start(argp, msg); |
933 | pos += vsnprintf(mbuf + pos, limit - pos, msg, argp); |
934 | va_end(argp); |
935 | |
936 | if (pos > limit) { |
937 | pos = limit; |
938 | } |
939 | |
940 | pos += snprintf(mbuf + pos, 2, "\n" ); |
941 | |
942 | /* Route the message to the correct destinations */ |
943 | if (0 == cf_fault_sinks_inuse) { |
944 | /* If no fault sinks are defined, use stderr for important messages */ |
945 | if (severity <= NO_SINKS_LIMIT) |
946 | fprintf(stderr, "%s" , mbuf); |
947 | } else { |
948 | for (int i = 0; i < cf_fault_sinks_inuse; i++) { |
949 | if ((severity <= cf_fault_sinks[i].limit[context]) || (CF_CRITICAL == severity)) { |
950 | if (0 >= write(cf_fault_sinks[i].fd, mbuf, pos)) { |
951 | // this is OK for a bit in case of a HUP. It's even better to queue the buffers and apply them |
952 | // after the hup. TODO. |
953 | fprintf(stderr, "internal failure in fault message write: %s\n" , cf_strerror(errno)); |
954 | } |
955 | } |
956 | } |
957 | } |
958 | |
959 | /* Critical errors */ |
960 | if (CF_CRITICAL == severity) { |
961 | fflush(NULL); |
962 | |
963 | // these signals don't throw stack traces in our system |
964 | raise(SIGINT); |
965 | } |
966 | } |
967 | |
968 | |
969 | int |
970 | cf_fault_sink_strlist(cf_dyn_buf *db) |
971 | { |
972 | for (int i = 0; i < cf_fault_sinks_inuse; i++) { |
973 | cf_dyn_buf_append_int(db, i); |
974 | cf_dyn_buf_append_char(db, ':'); |
975 | cf_dyn_buf_append_string(db,cf_fault_sinks[i].path); |
976 | cf_dyn_buf_append_char(db, ';'); |
977 | } |
978 | cf_dyn_buf_chomp(db); |
979 | return(0); |
980 | } |
981 | |
982 | |
983 | extern void |
984 | cf_fault_sink_logroll(void) |
985 | { |
986 | fprintf(stderr, "cf_fault: rolling log files\n" ); |
987 | for (int i = 0; i < cf_fault_sinks_inuse; i++) { |
988 | cf_fault_sink *s = &cf_fault_sinks[i]; |
989 | if ((0 != strncmp(s->path, "stderr" , 6)) && (s->fd > 2)) { |
990 | static cf_mutex lock = CF_MUTEX_INIT; |
991 | |
992 | cf_mutex_lock(&lock); // so concurrent SIGHUPs can't double-close |
993 | |
994 | int old_fd = s->fd; |
995 | |
996 | // Note - we use O_TRUNC, so we assume the file has been |
997 | // moved/copied elsewhere, or we're ok losing it. |
998 | s->fd = open(s->path, SINK_REOPEN_FLAGS, SINK_OPEN_MODE); |
999 | |
1000 | usleep(1000); // threads may be interrupted while writing to old fd |
1001 | close(old_fd); |
1002 | |
1003 | cf_mutex_unlock(&lock); |
1004 | } |
1005 | } |
1006 | } |
1007 | |
1008 | |
1009 | cf_fault_sink *cf_fault_sink_get_id(int id) |
1010 | { |
1011 | if (id > cf_fault_sinks_inuse) return(0); |
1012 | return ( &cf_fault_sinks[id] ); |
1013 | } |
1014 | |
1015 | int |
1016 | cf_fault_sink_context_all_strlist(int sink_id, cf_dyn_buf *db) |
1017 | { |
1018 | // get the sink |
1019 | if (sink_id > cf_fault_sinks_inuse) return(-1); |
1020 | cf_fault_sink *s = &cf_fault_sinks[sink_id]; |
1021 | |
1022 | for (int i = 0; i < CF_FAULT_CONTEXT_UNDEF; i++) { |
1023 | cf_dyn_buf_append_string(db, cf_fault_context_strings[i]); |
1024 | cf_dyn_buf_append_char(db, ':'); |
1025 | cf_dyn_buf_append_string(db, cf_fault_severity_strings[s->limit[i]]); |
1026 | cf_dyn_buf_append_char(db, ';'); |
1027 | } |
1028 | cf_dyn_buf_chomp(db); |
1029 | return(0); |
1030 | } |
1031 | |
1032 | int |
1033 | cf_fault_sink_context_strlist(int sink_id, char *context, cf_dyn_buf *db) |
1034 | { |
1035 | // get the sink |
1036 | if (sink_id > cf_fault_sinks_inuse) return(-1); |
1037 | cf_fault_sink *s = &cf_fault_sinks[sink_id]; |
1038 | |
1039 | // get the severity |
1040 | int i; |
1041 | for (i = 0; i < CF_FAULT_CONTEXT_UNDEF; i++) { |
1042 | if (0 == strcmp(cf_fault_context_strings[i],context)) |
1043 | break; |
1044 | } |
1045 | if (i == CF_FAULT_CONTEXT_UNDEF) { |
1046 | cf_dyn_buf_append_string(db, context); |
1047 | cf_dyn_buf_append_string(db, ":unknown" ); |
1048 | return(0); |
1049 | } |
1050 | |
1051 | // get the string |
1052 | cf_dyn_buf_append_string(db, context); |
1053 | cf_dyn_buf_append_char(db, ':'); |
1054 | cf_dyn_buf_append_string(db, cf_fault_severity_strings[s->limit[i]]); |
1055 | return(0); |
1056 | } |
1057 | |
1058 | |
1059 | static int |
1060 | cf_fault_cache_reduce_fn(const void *key, void *data, void *udata) |
1061 | { |
1062 | uint32_t *count = (uint32_t*)data; |
1063 | |
1064 | if (*count == 0) { |
1065 | return CF_SHASH_REDUCE_DELETE; |
1066 | } |
1067 | |
1068 | const cf_fault_cache_hkey *hkey = (const cf_fault_cache_hkey*)key; |
1069 | |
1070 | cf_fault_event(hkey->context, hkey->severity, hkey->file_name, hkey->line, |
1071 | "(repeated:%u) %s" , *count, hkey->msg); |
1072 | |
1073 | *count = 0; |
1074 | |
1075 | return CF_SHASH_OK; |
1076 | } |
1077 | |
1078 | |
1079 | // For now there's only one cache, dumped by the ticker. |
1080 | void |
1081 | cf_fault_dump_cache() |
1082 | { |
1083 | cf_shash_reduce(g_ticker_hash, cf_fault_cache_reduce_fn, NULL); |
1084 | } |
1085 | |
1086 | |
1087 | // For now there's only one cache, dumped by the ticker. |
1088 | void |
1089 | cf_fault_cache_event(cf_fault_context context, cf_fault_severity severity, |
1090 | const char *file_name, int line, char *msg, ...) |
1091 | { |
1092 | cf_fault_cache_hkey key = { |
1093 | .line = line, |
1094 | .context = context, |
1095 | .file_name = file_name, |
1096 | .severity = severity, |
1097 | .msg = { 0 } // must pad hash keys |
1098 | }; |
1099 | |
1100 | size_t limit = sizeof(key.msg) - 1; // truncate leaving null-terminator |
1101 | |
1102 | va_list argp; |
1103 | |
1104 | va_start(argp, msg); |
1105 | vsnprintf(key.msg, limit, msg, argp); |
1106 | va_end(argp); |
1107 | |
1108 | while (true) { |
1109 | uint32_t *valp = NULL; |
1110 | cf_mutex *lockp = NULL; |
1111 | |
1112 | if (cf_shash_get_vlock(g_ticker_hash, &key, (void**)&valp, &lockp) == |
1113 | CF_SHASH_OK) { |
1114 | // Already in hash - increment count and don't log it. |
1115 | (*valp)++; |
1116 | cf_mutex_unlock(lockp); |
1117 | break; |
1118 | } |
1119 | // else - not found, add it to hash and log it. |
1120 | |
1121 | uint32_t initv = 1; |
1122 | |
1123 | if (cf_shash_put_unique(g_ticker_hash, &key, &initv) == |
1124 | CF_SHASH_ERR_FOUND) { |
1125 | continue; // other thread beat us to it - loop around and get it |
1126 | } |
1127 | |
1128 | cf_fault_event(context, severity, file_name, line, "%s" , key.msg); |
1129 | break; |
1130 | } |
1131 | } |
1132 | |
1133 | void |
1134 | cf_fault_hex_dump(const char *title, const void *data, size_t len) |
1135 | { |
1136 | const uint8_t *data8 = data; |
1137 | char line[8 + 3 * 16 + 17]; |
1138 | size_t k; |
1139 | |
1140 | cf_info(CF_MISC, "hex dump - %s" , title); |
1141 | |
1142 | for (size_t i = 0; i < len; i += k) { |
1143 | sprintf(line, "%06zx: " , i); |
1144 | |
1145 | for (k = 0; i + k < len && k < 16; ++k) { |
1146 | char num[3]; |
1147 | uint8_t d = data8[i + k]; |
1148 | sprintf(num, "%02x" , d); |
1149 | line[8 + 3 * k + 0] = num[0]; |
1150 | line[8 + 3 * k + 1] = num[1]; |
1151 | line[8 + 3 * 16 + k] = d >= 32 && d <= 126 ? d : '.'; |
1152 | } |
1153 | |
1154 | cf_info(CF_MISC, "%s" , line); |
1155 | } |
1156 | } |
1157 | |
1158 | void |
1159 | cf_fault_print_signal_context(void *_ctx) |
1160 | { |
1161 | ucontext_t *uc = _ctx; |
1162 | mcontext_t *mc = &uc->uc_mcontext; |
1163 | uint64_t *gregs = (uint64_t *)&mc->gregs[0]; |
1164 | |
1165 | char regs[1000]; |
1166 | |
1167 | snprintf(regs, sizeof(regs), |
1168 | "rax %016lx rbx %016lx rcx %016lx rdx %016lx rsi %016lx rdi %016lx " |
1169 | "rbp %016lx rsp %016lx r8 %016lx r9 %016lx r10 %016lx r11 %016lx " |
1170 | "r12 %016lx r13 %016lx r14 %016lx r15 %016lx rip %016lx" , |
1171 | gregs[REG_RAX], gregs[REG_RBX], gregs[REG_RCX], gregs[REG_RDX], |
1172 | gregs[REG_RSI], gregs[REG_RDI], gregs[REG_RBP], gregs[REG_RSP], |
1173 | gregs[REG_R8], gregs[REG_R9], gregs[REG_R10], gregs[REG_R11], |
1174 | gregs[REG_R12], gregs[REG_R13], gregs[REG_R14], gregs[REG_R15], |
1175 | gregs[REG_RIP]); |
1176 | |
1177 | cf_fault_event(AS_AS, CF_WARNING, __FILENAME__, __LINE__, |
1178 | "stacktrace: registers: %s" , regs); |
1179 | |
1180 | void *bt[MAX_BACKTRACE_DEPTH]; |
1181 | char trace[MAX_BACKTRACE_DEPTH * 20]; |
1182 | |
1183 | int sz = backtrace(bt, MAX_BACKTRACE_DEPTH); |
1184 | int off = 0; |
1185 | |
1186 | for (int i = 0; i < sz; i++) { |
1187 | off += snprintf(trace + off, sizeof(trace) - off, " 0x%lx" , |
1188 | cf_fault_strip_aslr(bt[i])); |
1189 | } |
1190 | |
1191 | cf_fault_event(AS_AS, CF_WARNING, __FILENAME__, __LINE__, |
1192 | "stacktrace: found %d frames:%s offset 0x%lx" , sz, trace, |
1193 | _r_debug.r_map->l_addr); |
1194 | |
1195 | char **syms = backtrace_symbols(bt, sz); |
1196 | |
1197 | if (syms) { |
1198 | for (int i = 0; i < sz; i++) { |
1199 | cf_fault_event(AS_AS, CF_WARNING, __FILENAME__, __LINE__, |
1200 | "stacktrace: frame %d: %s" , i, syms[i]); |
1201 | } |
1202 | } |
1203 | else { |
1204 | cf_fault_event(AS_AS, CF_WARNING, __FILENAME__, __LINE__, |
1205 | "stacktrace: found no symbols" ); |
1206 | } |
1207 | } |
1208 | |
1209 | uint64_t |
1210 | cf_fault_strip_aslr(void *addr) |
1211 | { |
1212 | void *start = &__executable_start; |
1213 | void *end = &__etext; |
1214 | uint64_t aslr_offset = _r_debug.r_map->l_addr; |
1215 | |
1216 | return addr >= start && addr < end ? |
1217 | (uint64_t)addr - aslr_offset : (uint64_t)addr; |
1218 | } |
1219 | |
1220 | |