1 | /* |
2 | * vmapx.c |
3 | * |
4 | * Copyright (C) 2012-2016 Aerospike, Inc. |
5 | * |
6 | * Portions may be licensed to Aerospike, Inc. under one or more contributor |
7 | * license agreements. |
8 | * |
9 | * This program is free software: you can redistribute it and/or modify it under |
10 | * the terms of the GNU Affero General Public License as published by the Free |
11 | * Software Foundation, either version 3 of the License, or (at your option) any |
12 | * later version. |
13 | * |
14 | * This program is distributed in the hope that it will be useful, but WITHOUT |
15 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
16 | * FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more |
17 | * details. |
18 | * |
19 | * You should have received a copy of the GNU Affero General Public License |
20 | * along with this program. If not, see http://www.gnu.org/licenses/ |
21 | */ |
22 | |
23 | //========================================================== |
24 | // Includes. |
25 | // |
26 | |
27 | #include "vmapx.h" |
28 | |
29 | #include <stdbool.h> |
30 | #include <stddef.h> |
31 | #include <stdint.h> |
32 | #include <string.h> |
33 | |
34 | #include "cf_mutex.h" |
35 | #include "fault.h" |
36 | |
37 | #include "citrusleaf/alloc.h" |
38 | #include "citrusleaf/cf_hash_math.h" |
39 | |
40 | |
41 | //========================================================== |
42 | // Forward declarations. |
43 | // |
44 | |
45 | bool vhash_get(const vhash* h, const char* key, size_t key_len, uint32_t* p_value); |
46 | |
47 | |
48 | //========================================================== |
49 | // Public API. |
50 | // |
51 | |
52 | // Return memory size needed - includes cf_vmapx struct plus values vector. |
53 | size_t |
54 | cf_vmapx_sizeof(uint32_t value_size, uint32_t max_count) |
55 | { |
56 | return sizeof(cf_vmapx) + ((size_t)value_size * (size_t)max_count); |
57 | } |
58 | |
59 | // Initialize an already allocated cf_vmapx object. |
60 | void |
61 | cf_vmapx_init(cf_vmapx* vmap, uint32_t value_size, uint32_t max_count, |
62 | uint32_t hash_size, uint32_t max_name_size) |
63 | { |
64 | cf_assert(vmap, CF_VMAPX, "null vmap pointer" ); |
65 | cf_assert((value_size & 3) == 0, CF_VMAPX, "bad value_size" ); |
66 | cf_assert(max_count != 0, CF_VMAPX, "bad max_count" ); |
67 | cf_assert(hash_size != 0, CF_VMAPX, "bad hash_size" ); |
68 | cf_assert(max_name_size != 0 && max_name_size <= value_size, CF_VMAPX, |
69 | "bad max_name_size" ); |
70 | |
71 | vmap->value_size = value_size; |
72 | vmap->max_count = max_count; |
73 | vmap->count = 0; |
74 | |
75 | vmap->key_size = max_name_size; |
76 | vmap->hash = vhash_create(max_name_size, hash_size); |
77 | |
78 | cf_mutex_init(&vmap->write_lock); |
79 | } |
80 | |
81 | // Don't call after failed cf_vmapx_create() or cf_vmapx_resume() call - those |
82 | // functions clean up on failure. |
83 | void |
84 | cf_vmapx_release(cf_vmapx* vmap) |
85 | { |
86 | // Helps in handling bins vmap, which doesn't exist in single-bin mode. |
87 | if (! vmap) { |
88 | return; |
89 | } |
90 | |
91 | cf_mutex_destroy(&vmap->write_lock); |
92 | |
93 | vhash_destroy(vmap->hash); |
94 | } |
95 | |
96 | // Return count. |
97 | uint32_t |
98 | cf_vmapx_count(const cf_vmapx* vmap) |
99 | { |
100 | return vmap->count; |
101 | } |
102 | |
103 | // Get value by index. |
104 | cf_vmapx_err |
105 | cf_vmapx_get_by_index(const cf_vmapx* vmap, uint32_t index, void** pp_value) |
106 | { |
107 | // This check is commented out for now to avoid the volatile access. |
108 | // TODO - ultimately, caller code can be simplified. (Especially if this |
109 | // just returned the value pointer.) And if necessary, we could make a |
110 | // "safe" version of this that does the check. |
111 | |
112 | // if (index >= vmap->count) { |
113 | // return CF_VMAPX_ERR_BAD_PARAM; |
114 | // } |
115 | |
116 | *pp_value = vmapx_value_ptr(vmap, index); |
117 | |
118 | return CF_VMAPX_OK; |
119 | } |
120 | |
121 | // Get value by null-terminated name. |
122 | cf_vmapx_err |
123 | cf_vmapx_get_by_name(const cf_vmapx* vmap, const char* name, void** pp_value) |
124 | { |
125 | size_t name_len = strlen(name); |
126 | |
127 | if (name_len >= vmap->key_size) { |
128 | return CF_VMAPX_ERR_NAME_NOT_FOUND; |
129 | } |
130 | |
131 | uint32_t index; |
132 | |
133 | if (! vhash_get(vmap->hash, name, name_len, &index)) { |
134 | return CF_VMAPX_ERR_NAME_NOT_FOUND; |
135 | } |
136 | |
137 | *pp_value = vmapx_value_ptr(vmap, index); |
138 | |
139 | return CF_VMAPX_OK; |
140 | } |
141 | |
142 | // Same as above, but non-null-terminated name. |
143 | cf_vmapx_err |
144 | cf_vmapx_get_by_name_w_len(const cf_vmapx* vmap, const char* name, |
145 | size_t name_len, void** pp_value) |
146 | { |
147 | if (name_len >= vmap->key_size) { |
148 | return CF_VMAPX_ERR_NAME_NOT_FOUND; |
149 | } |
150 | |
151 | uint32_t index; |
152 | |
153 | if (! vhash_get(vmap->hash, name, name_len, &index)) { |
154 | return CF_VMAPX_ERR_NAME_NOT_FOUND; |
155 | } |
156 | |
157 | *pp_value = vmapx_value_ptr(vmap, index); |
158 | |
159 | return CF_VMAPX_OK; |
160 | } |
161 | |
162 | // Get index by null-terminated name. May pass null p_index to check existence. |
163 | cf_vmapx_err |
164 | cf_vmapx_get_index(const cf_vmapx* vmap, const char* name, uint32_t* p_index) |
165 | { |
166 | size_t name_len = strlen(name); |
167 | |
168 | if (name_len >= vmap->key_size) { |
169 | return CF_VMAPX_ERR_NAME_NOT_FOUND; |
170 | } |
171 | |
172 | return vhash_get(vmap->hash, name, name_len, p_index) ? |
173 | CF_VMAPX_OK : CF_VMAPX_ERR_NAME_NOT_FOUND; |
174 | } |
175 | |
176 | // Same as above, but non-null-terminated name. |
177 | cf_vmapx_err |
178 | cf_vmapx_get_index_w_len(const cf_vmapx* vmap, const char* name, |
179 | size_t name_len, uint32_t* p_index) |
180 | { |
181 | if (name_len >= vmap->key_size) { |
182 | return CF_VMAPX_ERR_NAME_NOT_FOUND; |
183 | } |
184 | |
185 | return vhash_get(vmap->hash, name, name_len, p_index) ? |
186 | CF_VMAPX_OK : CF_VMAPX_ERR_NAME_NOT_FOUND; |
187 | } |
188 | |
189 | // The value must begin with a string which is its name. (The hash map is not |
190 | // stored in persistent memory, so names must be in the vector to enable us to |
191 | // rebuild the hash map on warm or cool restart.) |
192 | // |
193 | // If name is not found, add new name, clear rest of value in vector, and return |
194 | // newly assigned index (and CF_VMAPX_OK). If name is found, return index for |
195 | // existing value (with CF_VMAPX_ERR_NAME_EXISTS). May pass null p_index. |
196 | cf_vmapx_err |
197 | cf_vmapx_put_unique(cf_vmapx* vmap, const char* name, uint32_t* p_index) |
198 | { |
199 | return cf_vmapx_put_unique_w_len(vmap, name, strlen(name), p_index); |
200 | } |
201 | |
202 | // Same as above, but with known name length. |
203 | cf_vmapx_err |
204 | cf_vmapx_put_unique_w_len(cf_vmapx* vmap, const char* name, size_t name_len, |
205 | uint32_t* p_index) |
206 | { |
207 | // Make sure name fits in key's allocated size. |
208 | if (name_len >= vmap->key_size) { |
209 | return CF_VMAPX_ERR_BAD_PARAM; |
210 | } |
211 | |
212 | cf_mutex_lock(&vmap->write_lock); |
213 | |
214 | // If name is found, return existing name's index, ignore p_value. |
215 | if (vhash_get(vmap->hash, name, name_len, p_index)) { |
216 | cf_mutex_unlock(&vmap->write_lock); |
217 | return CF_VMAPX_ERR_NAME_EXISTS; |
218 | } |
219 | |
220 | // Make sure name has no illegal premature null-terminator. |
221 | for (uint32_t i = 0; i < name_len; i++) { |
222 | if (name[i] == 0) { |
223 | cf_mutex_unlock(&vmap->write_lock); |
224 | return CF_VMAPX_ERR_BAD_PARAM; |
225 | } |
226 | } |
227 | |
228 | uint32_t count = vmap->count; |
229 | |
230 | // If vmap is full, can't add more. |
231 | if (count >= vmap->max_count) { |
232 | cf_mutex_unlock(&vmap->write_lock); |
233 | return CF_VMAPX_ERR_FULL; |
234 | } |
235 | |
236 | // Add name to vector (and clear rest of value). |
237 | char* value_ptr = (char*)vmapx_value_ptr(vmap, count); |
238 | |
239 | memset((void*)value_ptr, 0, vmap->value_size); |
240 | memcpy((void*)value_ptr, name, name_len); |
241 | |
242 | // Increment count here so indexes returned by other public API calls (just |
243 | // after adding to hash below) are guaranteed to be valid. |
244 | vmap->count++; |
245 | |
246 | // Add to hash. |
247 | vhash_put(vmap->hash, value_ptr, name_len, count); |
248 | |
249 | cf_mutex_unlock(&vmap->write_lock); |
250 | |
251 | if (p_index) { |
252 | *p_index = count; |
253 | } |
254 | |
255 | return CF_VMAPX_OK; |
256 | } |
257 | |
258 | |
259 | //========================================================== |
260 | // Private API - for enterprise separation only. |
261 | // |
262 | |
263 | // Return value pointer at trusted index. |
264 | void* |
265 | vmapx_value_ptr(const cf_vmapx* vmap, uint32_t index) |
266 | { |
267 | return (void*)(vmap->values + (vmap->value_size * index)); |
268 | } |
269 | |
270 | |
271 | //========================================================== |
272 | // vhash "scoped class". |
273 | // |
274 | |
275 | // Custom hashmap for cf_vmapx usage. |
276 | // - Elements are added but never removed. |
277 | // - It's thread safe yet lockless. (Relies on cf_vmapx's write_lock.) |
278 | // - Element keys are null-terminated strings. |
279 | // - Element values are uint32_t's. |
280 | |
281 | struct vhash_s { |
282 | uint32_t key_size; |
283 | uint32_t ele_size; |
284 | uint32_t n_rows; |
285 | uint8_t* table; |
286 | bool row_usage[]; |
287 | }; |
288 | |
289 | typedef struct vhash_ele_s { |
290 | struct vhash_ele_s* next; |
291 | uint8_t data[]; // key_size bytes of key, 4 bytes of value |
292 | } vhash_ele; |
293 | |
294 | #define VHASH_ELE_KEY_PTR(_e) ((char*)_e->data) |
295 | #define VHASH_ELE_VALUE_PTR(_h, _e) ((uint32_t*)(_e->data + _h->key_size)) |
296 | |
297 | // Copy null-terminated key into hash, then pad with non-null characters. |
298 | // Padding ensures quicker compare in vhash_get() when key in hash is shorter, |
299 | // and prevents accidental match if key param has illegal null character(s). |
300 | static inline void |
301 | vhash_set_ele_key(char* ele_key, size_t key_size, const char* zkey, |
302 | size_t zkey_size) |
303 | { |
304 | memcpy((void*)ele_key, (const void*)zkey, zkey_size); |
305 | memset((void*)(ele_key + zkey_size), 'x', key_size - zkey_size); |
306 | } |
307 | |
308 | // Create vhash with specified key size (max) and number or rows. |
309 | vhash* |
310 | vhash_create(uint32_t key_size, uint32_t n_rows) |
311 | { |
312 | size_t row_usage_size = n_rows * sizeof(bool); |
313 | vhash* h = (vhash*)cf_malloc(sizeof(vhash) + row_usage_size); |
314 | |
315 | h->key_size = key_size; |
316 | h->ele_size = sizeof(vhash_ele) + key_size + sizeof(uint32_t); |
317 | h->n_rows = n_rows; |
318 | |
319 | size_t table_size = n_rows * h->ele_size; |
320 | |
321 | h->table = (uint8_t*)cf_malloc(table_size); |
322 | |
323 | memset((void*)h->row_usage, 0, row_usage_size); |
324 | memset((void*)h->table, 0, table_size); |
325 | |
326 | return h; |
327 | } |
328 | |
329 | // Destroy vhash. (Assumes it was fully created.) |
330 | void |
331 | vhash_destroy(vhash* h) |
332 | { |
333 | vhash_ele* e_table = (vhash_ele*)h->table; |
334 | |
335 | for (uint32_t i = 0; i < h->n_rows; i++) { |
336 | if (e_table->next) { |
337 | vhash_ele* e = e_table->next; |
338 | |
339 | while (e) { |
340 | vhash_ele* t = e->next; |
341 | |
342 | cf_free(e); |
343 | e = t; |
344 | } |
345 | } |
346 | |
347 | e_table = (vhash_ele*)((uint8_t*)e_table + h->ele_size); |
348 | } |
349 | |
350 | cf_free(h->table); |
351 | cf_free(h); |
352 | } |
353 | |
354 | // Add element. Key must be null-terminated, although its length is known. |
355 | void |
356 | vhash_put(vhash* h, const char* zkey, size_t key_len, uint32_t value) |
357 | { |
358 | uint64_t hashed_key = cf_hash_fnv32((const uint8_t*)zkey, key_len); |
359 | uint32_t row_i = (uint32_t)(hashed_key % h->n_rows); |
360 | |
361 | vhash_ele* e = (vhash_ele*)(h->table + (h->ele_size * row_i)); |
362 | |
363 | if (! h->row_usage[row_i]) { |
364 | vhash_set_ele_key(VHASH_ELE_KEY_PTR(e), h->key_size, zkey, key_len + 1); |
365 | *VHASH_ELE_VALUE_PTR(h, e) = value; |
366 | // TODO - need barrier? |
367 | h->row_usage[row_i] = true; |
368 | |
369 | return; |
370 | } |
371 | |
372 | vhash_ele* e_head = e; |
373 | |
374 | // This function is always called under write lock, after get, so we'll |
375 | // never encounter the key - don't bother checking it. |
376 | while (e) { |
377 | e = e->next; |
378 | } |
379 | |
380 | e = (vhash_ele*)cf_malloc(h->ele_size); |
381 | |
382 | vhash_set_ele_key(VHASH_ELE_KEY_PTR(e), h->key_size, zkey, key_len + 1); |
383 | *VHASH_ELE_VALUE_PTR(h, e) = value; |
384 | |
385 | e->next = e_head->next; |
386 | // TODO - need barrier? |
387 | e_head->next = e; |
388 | } |
389 | |
390 | // Get element value. Key may or may not be null-terminated. |
391 | bool |
392 | vhash_get(const vhash* h, const char* key, size_t key_len, uint32_t* p_value) |
393 | { |
394 | uint64_t hashed_key = cf_hash_fnv32((const uint8_t*)key, key_len); |
395 | uint32_t row_i = (uint32_t)(hashed_key % h->n_rows); |
396 | |
397 | if (! h->row_usage[row_i]) { |
398 | return false; |
399 | } |
400 | |
401 | // TODO - need barrier? |
402 | vhash_ele* e = (vhash_ele*)(h->table + (h->ele_size * row_i)); |
403 | |
404 | while (e) { |
405 | if (VHASH_ELE_KEY_PTR(e)[key_len] == 0 && |
406 | memcmp(VHASH_ELE_KEY_PTR(e), key, key_len) == 0) { |
407 | if (p_value) { |
408 | *p_value = *VHASH_ELE_VALUE_PTR(h, e); |
409 | } |
410 | |
411 | return true; |
412 | } |
413 | |
414 | e = e->next; |
415 | } |
416 | |
417 | return false; |
418 | } |
419 | |