| 1 | /* |
| 2 | ** Bytecode writer. |
| 3 | ** Copyright (C) 2005-2014 Mike Pall. See Copyright Notice in luajit.h |
| 4 | */ |
| 5 | |
| 6 | #define lj_bcwrite_c |
| 7 | #define LUA_CORE |
| 8 | |
| 9 | #include "lj_obj.h" |
| 10 | #include "lj_gc.h" |
| 11 | #include "lj_str.h" |
| 12 | #include "lj_bc.h" |
| 13 | #if LJ_HASFFI |
| 14 | #include "lj_ctype.h" |
| 15 | #endif |
| 16 | #if LJ_HASJIT |
| 17 | #include "lj_dispatch.h" |
| 18 | #include "lj_jit.h" |
| 19 | #endif |
| 20 | #include "lj_bcdump.h" |
| 21 | #include "lj_vm.h" |
| 22 | |
| 23 | /* Context for bytecode writer. */ |
| 24 | typedef struct BCWriteCtx { |
| 25 | SBuf sb; /* Output buffer. */ |
| 26 | lua_State *L; /* Lua state. */ |
| 27 | GCproto *pt; /* Root prototype. */ |
| 28 | lua_Writer wfunc; /* Writer callback. */ |
| 29 | void *wdata; /* Writer callback data. */ |
| 30 | int strip; /* Strip debug info. */ |
| 31 | int status; /* Status from writer callback. */ |
| 32 | } BCWriteCtx; |
| 33 | |
| 34 | /* -- Output buffer handling ---------------------------------------------- */ |
| 35 | |
| 36 | /* Resize buffer if needed. */ |
| 37 | static LJ_NOINLINE void bcwrite_resize(BCWriteCtx *ctx, MSize len) |
| 38 | { |
| 39 | MSize sz = ctx->sb.sz * 2; |
| 40 | while (ctx->sb.n + len > sz) sz = sz * 2; |
| 41 | lj_str_resizebuf(ctx->L, &ctx->sb, sz); |
| 42 | } |
| 43 | |
| 44 | /* Need a certain amount of buffer space. */ |
| 45 | static LJ_AINLINE void bcwrite_need(BCWriteCtx *ctx, MSize len) |
| 46 | { |
| 47 | if (LJ_UNLIKELY(ctx->sb.n + len > ctx->sb.sz)) |
| 48 | bcwrite_resize(ctx, len); |
| 49 | } |
| 50 | |
| 51 | /* Add memory block to buffer. */ |
| 52 | static void bcwrite_block(BCWriteCtx *ctx, const void *p, MSize len) |
| 53 | { |
| 54 | uint8_t *q = (uint8_t *)(ctx->sb.buf + ctx->sb.n); |
| 55 | MSize i; |
| 56 | ctx->sb.n += len; |
| 57 | for (i = 0; i < len; i++) q[i] = ((uint8_t *)p)[i]; |
| 58 | } |
| 59 | |
| 60 | /* Add byte to buffer. */ |
| 61 | static LJ_AINLINE void bcwrite_byte(BCWriteCtx *ctx, uint8_t b) |
| 62 | { |
| 63 | ctx->sb.buf[ctx->sb.n++] = b; |
| 64 | } |
| 65 | |
| 66 | /* Add ULEB128 value to buffer. */ |
| 67 | static void bcwrite_uleb128(BCWriteCtx *ctx, uint32_t v) |
| 68 | { |
| 69 | MSize n = ctx->sb.n; |
| 70 | uint8_t *p = (uint8_t *)ctx->sb.buf; |
| 71 | for (; v >= 0x80; v >>= 7) |
| 72 | p[n++] = (uint8_t)((v & 0x7f) | 0x80); |
| 73 | p[n++] = (uint8_t)v; |
| 74 | ctx->sb.n = n; |
| 75 | } |
| 76 | |
| 77 | /* -- Bytecode writer ----------------------------------------------------- */ |
| 78 | |
| 79 | /* Write a single constant key/value of a template table. */ |
| 80 | static void bcwrite_ktabk(BCWriteCtx *ctx, cTValue *o, int narrow) |
| 81 | { |
| 82 | bcwrite_need(ctx, 1+10); |
| 83 | if (tvisstr(o)) { |
| 84 | const GCstr *str = strV(o); |
| 85 | MSize len = str->len; |
| 86 | bcwrite_need(ctx, 5+len); |
| 87 | bcwrite_uleb128(ctx, BCDUMP_KTAB_STR+len); |
| 88 | bcwrite_block(ctx, strdata(str), len); |
| 89 | } else if (tvisint(o)) { |
| 90 | bcwrite_byte(ctx, BCDUMP_KTAB_INT); |
| 91 | bcwrite_uleb128(ctx, intV(o)); |
| 92 | } else if (tvisnum(o)) { |
| 93 | if (!LJ_DUALNUM && narrow) { /* Narrow number constants to integers. */ |
| 94 | lua_Number num = numV(o); |
| 95 | int32_t k = lj_num2int(num); |
| 96 | if (num == (lua_Number)k) { /* -0 is never a constant. */ |
| 97 | bcwrite_byte(ctx, BCDUMP_KTAB_INT); |
| 98 | bcwrite_uleb128(ctx, k); |
| 99 | return; |
| 100 | } |
| 101 | } |
| 102 | bcwrite_byte(ctx, BCDUMP_KTAB_NUM); |
| 103 | bcwrite_uleb128(ctx, o->u32.lo); |
| 104 | bcwrite_uleb128(ctx, o->u32.hi); |
| 105 | } else { |
| 106 | lua_assert(tvispri(o)); |
| 107 | bcwrite_byte(ctx, BCDUMP_KTAB_NIL+~itype(o)); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | /* Write a template table. */ |
| 112 | static void bcwrite_ktab(BCWriteCtx *ctx, const GCtab *t) |
| 113 | { |
| 114 | MSize narray = 0, nhash = 0; |
| 115 | if (t->asize > 0) { /* Determine max. length of array part. */ |
| 116 | ptrdiff_t i; |
| 117 | TValue *array = tvref(t->array); |
| 118 | for (i = (ptrdiff_t)t->asize-1; i >= 0; i--) |
| 119 | if (!tvisnil(&array[i])) |
| 120 | break; |
| 121 | narray = (MSize)(i+1); |
| 122 | } |
| 123 | if (t->hmask > 0) { /* Count number of used hash slots. */ |
| 124 | MSize i, hmask = t->hmask; |
| 125 | Node *node = noderef(t->node); |
| 126 | for (i = 0; i <= hmask; i++) |
| 127 | nhash += !tvisnil(&node[i].val); |
| 128 | } |
| 129 | /* Write number of array slots and hash slots. */ |
| 130 | bcwrite_uleb128(ctx, narray); |
| 131 | bcwrite_uleb128(ctx, nhash); |
| 132 | if (narray) { /* Write array entries (may contain nil). */ |
| 133 | MSize i; |
| 134 | TValue *o = tvref(t->array); |
| 135 | for (i = 0; i < narray; i++, o++) |
| 136 | bcwrite_ktabk(ctx, o, 1); |
| 137 | } |
| 138 | if (nhash) { /* Write hash entries. */ |
| 139 | MSize i = nhash; |
| 140 | Node *node = noderef(t->node) + t->hmask; |
| 141 | for (;; node--) |
| 142 | if (!tvisnil(&node->val)) { |
| 143 | bcwrite_ktabk(ctx, &node->key, 0); |
| 144 | bcwrite_ktabk(ctx, &node->val, 1); |
| 145 | if (--i == 0) break; |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | /* Write GC constants of a prototype. */ |
| 151 | static void bcwrite_kgc(BCWriteCtx *ctx, GCproto *pt) |
| 152 | { |
| 153 | MSize i, sizekgc = pt->sizekgc; |
| 154 | GCRef *kr = mref(pt->k, GCRef) - (ptrdiff_t)sizekgc; |
| 155 | for (i = 0; i < sizekgc; i++, kr++) { |
| 156 | GCobj *o = gcref(*kr); |
| 157 | MSize tp, need = 1; |
| 158 | /* Determine constant type and needed size. */ |
| 159 | if (o->gch.gct == ~LJ_TSTR) { |
| 160 | tp = BCDUMP_KGC_STR + gco2str(o)->len; |
| 161 | need = 5+gco2str(o)->len; |
| 162 | } else if (o->gch.gct == ~LJ_TPROTO) { |
| 163 | lua_assert((pt->flags & PROTO_CHILD)); |
| 164 | tp = BCDUMP_KGC_CHILD; |
| 165 | #if LJ_HASFFI |
| 166 | } else if (o->gch.gct == ~LJ_TCDATA) { |
| 167 | CTypeID id = gco2cd(o)->ctypeid; |
| 168 | need = 1+4*5; |
| 169 | if (id == CTID_INT64) { |
| 170 | tp = BCDUMP_KGC_I64; |
| 171 | } else if (id == CTID_UINT64) { |
| 172 | tp = BCDUMP_KGC_U64; |
| 173 | } else { |
| 174 | lua_assert(id == CTID_COMPLEX_DOUBLE); |
| 175 | tp = BCDUMP_KGC_COMPLEX; |
| 176 | } |
| 177 | #endif |
| 178 | } else { |
| 179 | lua_assert(o->gch.gct == ~LJ_TTAB); |
| 180 | tp = BCDUMP_KGC_TAB; |
| 181 | need = 1+2*5; |
| 182 | } |
| 183 | /* Write constant type. */ |
| 184 | bcwrite_need(ctx, need); |
| 185 | bcwrite_uleb128(ctx, tp); |
| 186 | /* Write constant data (if any). */ |
| 187 | if (tp >= BCDUMP_KGC_STR) { |
| 188 | bcwrite_block(ctx, strdata(gco2str(o)), gco2str(o)->len); |
| 189 | } else if (tp == BCDUMP_KGC_TAB) { |
| 190 | bcwrite_ktab(ctx, gco2tab(o)); |
| 191 | #if LJ_HASFFI |
| 192 | } else if (tp != BCDUMP_KGC_CHILD) { |
| 193 | cTValue *p = (TValue *)cdataptr(gco2cd(o)); |
| 194 | bcwrite_uleb128(ctx, p[0].u32.lo); |
| 195 | bcwrite_uleb128(ctx, p[0].u32.hi); |
| 196 | if (tp == BCDUMP_KGC_COMPLEX) { |
| 197 | bcwrite_uleb128(ctx, p[1].u32.lo); |
| 198 | bcwrite_uleb128(ctx, p[1].u32.hi); |
| 199 | } |
| 200 | #endif |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | /* Write number constants of a prototype. */ |
| 206 | static void bcwrite_knum(BCWriteCtx *ctx, GCproto *pt) |
| 207 | { |
| 208 | MSize i, sizekn = pt->sizekn; |
| 209 | cTValue *o = mref(pt->k, TValue); |
| 210 | bcwrite_need(ctx, 10*sizekn); |
| 211 | for (i = 0; i < sizekn; i++, o++) { |
| 212 | int32_t k; |
| 213 | if (tvisint(o)) { |
| 214 | k = intV(o); |
| 215 | goto save_int; |
| 216 | } else { |
| 217 | /* Write a 33 bit ULEB128 for the int (lsb=0) or loword (lsb=1). */ |
| 218 | if (!LJ_DUALNUM) { /* Narrow number constants to integers. */ |
| 219 | lua_Number num = numV(o); |
| 220 | k = lj_num2int(num); |
| 221 | if (num == (lua_Number)k) { /* -0 is never a constant. */ |
| 222 | save_int: |
| 223 | bcwrite_uleb128(ctx, 2*(uint32_t)k | ((uint32_t)k & 0x80000000u)); |
| 224 | if (k < 0) { |
| 225 | char *p = &ctx->sb.buf[ctx->sb.n-1]; |
| 226 | *p = (*p & 7) | ((k>>27) & 0x18); |
| 227 | } |
| 228 | continue; |
| 229 | } |
| 230 | } |
| 231 | bcwrite_uleb128(ctx, 1+(2*o->u32.lo | (o->u32.lo & 0x80000000u))); |
| 232 | if (o->u32.lo >= 0x80000000u) { |
| 233 | char *p = &ctx->sb.buf[ctx->sb.n-1]; |
| 234 | *p = (*p & 7) | ((o->u32.lo>>27) & 0x18); |
| 235 | } |
| 236 | bcwrite_uleb128(ctx, o->u32.hi); |
| 237 | } |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | /* Write bytecode instructions. */ |
| 242 | static void bcwrite_bytecode(BCWriteCtx *ctx, GCproto *pt) |
| 243 | { |
| 244 | MSize nbc = pt->sizebc-1; /* Omit the [JI]FUNC* header. */ |
| 245 | #if LJ_HASJIT |
| 246 | uint8_t *p = (uint8_t *)&ctx->sb.buf[ctx->sb.n]; |
| 247 | #endif |
| 248 | bcwrite_block(ctx, proto_bc(pt)+1, nbc*(MSize)sizeof(BCIns)); |
| 249 | #if LJ_HASJIT |
| 250 | /* Unpatch modified bytecode containing ILOOP/JLOOP etc. */ |
| 251 | if ((pt->flags & PROTO_ILOOP) || pt->trace) { |
| 252 | jit_State *J = L2J(ctx->L); |
| 253 | MSize i; |
| 254 | for (i = 0; i < nbc; i++, p += sizeof(BCIns)) { |
| 255 | BCOp op = (BCOp)p[LJ_ENDIAN_SELECT(0, 3)]; |
| 256 | if (op == BC_IFORL || op == BC_IITERL || op == BC_ILOOP || |
| 257 | op == BC_JFORI) { |
| 258 | p[LJ_ENDIAN_SELECT(0, 3)] = (uint8_t)(op-BC_IFORL+BC_FORL); |
| 259 | } else if (op == BC_JFORL || op == BC_JITERL || op == BC_JLOOP) { |
| 260 | BCReg rd = p[LJ_ENDIAN_SELECT(2, 1)] + (p[LJ_ENDIAN_SELECT(3, 0)] << 8); |
| 261 | BCIns ins = traceref(J, rd)->startins; |
| 262 | p[LJ_ENDIAN_SELECT(0, 3)] = (uint8_t)(op-BC_JFORL+BC_FORL); |
| 263 | p[LJ_ENDIAN_SELECT(2, 1)] = bc_c(ins); |
| 264 | p[LJ_ENDIAN_SELECT(3, 0)] = bc_b(ins); |
| 265 | } |
| 266 | } |
| 267 | } |
| 268 | #endif |
| 269 | } |
| 270 | |
| 271 | /* Write prototype. */ |
| 272 | static void bcwrite_proto(BCWriteCtx *ctx, GCproto *pt) |
| 273 | { |
| 274 | MSize sizedbg = 0; |
| 275 | |
| 276 | /* Recursively write children of prototype. */ |
| 277 | if ((pt->flags & PROTO_CHILD)) { |
| 278 | ptrdiff_t i, n = pt->sizekgc; |
| 279 | GCRef *kr = mref(pt->k, GCRef) - 1; |
| 280 | for (i = 0; i < n; i++, kr--) { |
| 281 | GCobj *o = gcref(*kr); |
| 282 | if (o->gch.gct == ~LJ_TPROTO) |
| 283 | bcwrite_proto(ctx, gco2pt(o)); |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | /* Start writing the prototype info to a buffer. */ |
| 288 | lj_str_resetbuf(&ctx->sb); |
| 289 | ctx->sb.n = 5; /* Leave room for final size. */ |
| 290 | bcwrite_need(ctx, 4+6*5+(pt->sizebc-1)*(MSize)sizeof(BCIns)+pt->sizeuv*2); |
| 291 | |
| 292 | /* Write prototype header. */ |
| 293 | bcwrite_byte(ctx, (pt->flags & (PROTO_CHILD|PROTO_VARARG|PROTO_FFI))); |
| 294 | bcwrite_byte(ctx, pt->numparams); |
| 295 | bcwrite_byte(ctx, pt->framesize); |
| 296 | bcwrite_byte(ctx, pt->sizeuv); |
| 297 | bcwrite_uleb128(ctx, pt->sizekgc); |
| 298 | bcwrite_uleb128(ctx, pt->sizekn); |
| 299 | bcwrite_uleb128(ctx, pt->sizebc-1); |
| 300 | if (!ctx->strip) { |
| 301 | if (proto_lineinfo(pt)) |
| 302 | sizedbg = pt->sizept - (MSize)((char *)proto_lineinfo(pt) - (char *)pt); |
| 303 | bcwrite_uleb128(ctx, sizedbg); |
| 304 | if (sizedbg) { |
| 305 | bcwrite_uleb128(ctx, pt->firstline); |
| 306 | bcwrite_uleb128(ctx, pt->numline); |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | /* Write bytecode instructions and upvalue refs. */ |
| 311 | bcwrite_bytecode(ctx, pt); |
| 312 | bcwrite_block(ctx, proto_uv(pt), pt->sizeuv*2); |
| 313 | |
| 314 | /* Write constants. */ |
| 315 | bcwrite_kgc(ctx, pt); |
| 316 | bcwrite_knum(ctx, pt); |
| 317 | |
| 318 | /* Write debug info, if not stripped. */ |
| 319 | if (sizedbg) { |
| 320 | bcwrite_need(ctx, sizedbg); |
| 321 | bcwrite_block(ctx, proto_lineinfo(pt), sizedbg); |
| 322 | } |
| 323 | |
| 324 | /* Pass buffer to writer function. */ |
| 325 | if (ctx->status == 0) { |
| 326 | MSize n = ctx->sb.n - 5; |
| 327 | MSize nn = (lj_fls(n)+8)*9 >> 6; |
| 328 | ctx->sb.n = 5 - nn; |
| 329 | bcwrite_uleb128(ctx, n); /* Fill in final size. */ |
| 330 | lua_assert(ctx->sb.n == 5); |
| 331 | ctx->status = ctx->wfunc(ctx->L, ctx->sb.buf+5-nn, nn+n, ctx->wdata); |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | /* Write header of bytecode dump. */ |
| 336 | static void (BCWriteCtx *ctx) |
| 337 | { |
| 338 | GCstr *chunkname = proto_chunkname(ctx->pt); |
| 339 | const char *name = strdata(chunkname); |
| 340 | MSize len = chunkname->len; |
| 341 | lj_str_resetbuf(&ctx->sb); |
| 342 | bcwrite_need(ctx, 5+5+len); |
| 343 | bcwrite_byte(ctx, BCDUMP_HEAD1); |
| 344 | bcwrite_byte(ctx, BCDUMP_HEAD2); |
| 345 | bcwrite_byte(ctx, BCDUMP_HEAD3); |
| 346 | bcwrite_byte(ctx, BCDUMP_VERSION); |
| 347 | bcwrite_byte(ctx, (ctx->strip ? BCDUMP_F_STRIP : 0) + |
| 348 | (LJ_BE ? BCDUMP_F_BE : 0) + |
| 349 | ((ctx->pt->flags & PROTO_FFI) ? BCDUMP_F_FFI : 0)); |
| 350 | if (!ctx->strip) { |
| 351 | bcwrite_uleb128(ctx, len); |
| 352 | bcwrite_block(ctx, name, len); |
| 353 | } |
| 354 | ctx->status = ctx->wfunc(ctx->L, ctx->sb.buf, ctx->sb.n, ctx->wdata); |
| 355 | } |
| 356 | |
| 357 | /* Write footer of bytecode dump. */ |
| 358 | static void (BCWriteCtx *ctx) |
| 359 | { |
| 360 | if (ctx->status == 0) { |
| 361 | uint8_t zero = 0; |
| 362 | ctx->status = ctx->wfunc(ctx->L, &zero, 1, ctx->wdata); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | /* Protected callback for bytecode writer. */ |
| 367 | static TValue *cpwriter(lua_State *L, lua_CFunction dummy, void *ud) |
| 368 | { |
| 369 | BCWriteCtx *ctx = (BCWriteCtx *)ud; |
| 370 | UNUSED(dummy); |
| 371 | lj_str_resizebuf(L, &ctx->sb, 1024); /* Avoids resize for most prototypes. */ |
| 372 | bcwrite_header(ctx); |
| 373 | bcwrite_proto(ctx, ctx->pt); |
| 374 | bcwrite_footer(ctx); |
| 375 | return NULL; |
| 376 | } |
| 377 | |
| 378 | /* Write bytecode for a prototype. */ |
| 379 | int lj_bcwrite(lua_State *L, GCproto *pt, lua_Writer writer, void *data, |
| 380 | int strip) |
| 381 | { |
| 382 | BCWriteCtx ctx; |
| 383 | int status; |
| 384 | ctx.L = L; |
| 385 | ctx.pt = pt; |
| 386 | ctx.wfunc = writer; |
| 387 | ctx.wdata = data; |
| 388 | ctx.strip = strip; |
| 389 | ctx.status = 0; |
| 390 | lj_str_initbuf(&ctx.sb); |
| 391 | status = lj_vm_cpcall(L, NULL, &ctx, cpwriter); |
| 392 | if (status == 0) status = ctx.status; |
| 393 | lj_str_freebuf(G(ctx.L), &ctx.sb); |
| 394 | return status; |
| 395 | } |
| 396 | |
| 397 | |