| 1 | /* |
| 2 | ** FOLD: Constant Folding, Algebraic Simplifications and Reassociation. |
| 3 | ** ABCelim: Array Bounds Check Elimination. |
| 4 | ** CSE: Common-Subexpression Elimination. |
| 5 | ** Copyright (C) 2005-2014 Mike Pall. See Copyright Notice in luajit.h |
| 6 | */ |
| 7 | |
| 8 | #define lj_opt_fold_c |
| 9 | #define LUA_CORE |
| 10 | |
| 11 | #include <math.h> |
| 12 | |
| 13 | #include "lj_obj.h" |
| 14 | |
| 15 | #if LJ_HASJIT |
| 16 | |
| 17 | #include "lj_str.h" |
| 18 | #include "lj_tab.h" |
| 19 | #include "lj_ir.h" |
| 20 | #include "lj_jit.h" |
| 21 | #include "lj_iropt.h" |
| 22 | #include "lj_trace.h" |
| 23 | #if LJ_HASFFI |
| 24 | #include "lj_ctype.h" |
| 25 | #endif |
| 26 | #include "lj_carith.h" |
| 27 | #include "lj_vm.h" |
| 28 | #include "lj_strscan.h" |
| 29 | |
| 30 | /* Here's a short description how the FOLD engine processes instructions: |
| 31 | ** |
| 32 | ** The FOLD engine receives a single instruction stored in fins (J->fold.ins). |
| 33 | ** The instruction and its operands are used to select matching fold rules. |
| 34 | ** These are applied iteratively until a fixed point is reached. |
| 35 | ** |
| 36 | ** The 8 bit opcode of the instruction itself plus the opcodes of the |
| 37 | ** two instructions referenced by its operands form a 24 bit key |
| 38 | ** 'ins left right' (unused operands -> 0, literals -> lowest 8 bits). |
| 39 | ** |
| 40 | ** This key is used for partial matching against the fold rules. The |
| 41 | ** left/right operand fields of the key are successively masked with |
| 42 | ** the 'any' wildcard, from most specific to least specific: |
| 43 | ** |
| 44 | ** ins left right |
| 45 | ** ins any right |
| 46 | ** ins left any |
| 47 | ** ins any any |
| 48 | ** |
| 49 | ** The masked key is used to lookup a matching fold rule in a semi-perfect |
| 50 | ** hash table. If a matching rule is found, the related fold function is run. |
| 51 | ** Multiple rules can share the same fold function. A fold rule may return |
| 52 | ** one of several special values: |
| 53 | ** |
| 54 | ** - NEXTFOLD means no folding was applied, because an additional test |
| 55 | ** inside the fold function failed. Matching continues against less |
| 56 | ** specific fold rules. Finally the instruction is passed on to CSE. |
| 57 | ** |
| 58 | ** - RETRYFOLD means the instruction was modified in-place. Folding is |
| 59 | ** retried as if this instruction had just been received. |
| 60 | ** |
| 61 | ** All other return values are terminal actions -- no further folding is |
| 62 | ** applied: |
| 63 | ** |
| 64 | ** - INTFOLD(i) returns a reference to the integer constant i. |
| 65 | ** |
| 66 | ** - LEFTFOLD and RIGHTFOLD return the left/right operand reference |
| 67 | ** without emitting an instruction. |
| 68 | ** |
| 69 | ** - CSEFOLD and EMITFOLD pass the instruction directly to CSE or emit |
| 70 | ** it without passing through any further optimizations. |
| 71 | ** |
| 72 | ** - FAILFOLD, DROPFOLD and CONDFOLD only apply to instructions which have |
| 73 | ** no result (e.g. guarded assertions): FAILFOLD means the guard would |
| 74 | ** always fail, i.e. the current trace is pointless. DROPFOLD means |
| 75 | ** the guard is always true and has been eliminated. CONDFOLD is a |
| 76 | ** shortcut for FAILFOLD + cond (i.e. drop if true, otherwise fail). |
| 77 | ** |
| 78 | ** - Any other return value is interpreted as an IRRef or TRef. This |
| 79 | ** can be a reference to an existing or a newly created instruction. |
| 80 | ** Only the least-significant 16 bits (IRRef1) are used to form a TRef |
| 81 | ** which is finally returned to the caller. |
| 82 | ** |
| 83 | ** The FOLD engine receives instructions both from the trace recorder and |
| 84 | ** substituted instructions from LOOP unrolling. This means all types |
| 85 | ** of instructions may end up here, even though the recorder bypasses |
| 86 | ** FOLD in some cases. Thus all loads, stores and allocations must have |
| 87 | ** an any/any rule to avoid being passed on to CSE. |
| 88 | ** |
| 89 | ** Carefully read the following requirements before adding or modifying |
| 90 | ** any fold rules: |
| 91 | ** |
| 92 | ** Requirement #1: All fold rules must preserve their destination type. |
| 93 | ** |
| 94 | ** Consistently use INTFOLD() (KINT result) or lj_ir_knum() (KNUM result). |
| 95 | ** Never use lj_ir_knumint() which can have either a KINT or KNUM result. |
| 96 | ** |
| 97 | ** Requirement #2: Fold rules should not create *new* instructions which |
| 98 | ** reference operands *across* PHIs. |
| 99 | ** |
| 100 | ** E.g. a RETRYFOLD with 'fins->op1 = fleft->op1' is invalid if the |
| 101 | ** left operand is a PHI. Then fleft->op1 would point across the PHI |
| 102 | ** frontier to an invariant instruction. Adding a PHI for this instruction |
| 103 | ** would be counterproductive. The solution is to add a barrier which |
| 104 | ** prevents folding across PHIs, i.e. 'PHIBARRIER(fleft)' in this case. |
| 105 | ** The only exception is for recurrences with high latencies like |
| 106 | ** repeated int->num->int conversions. |
| 107 | ** |
| 108 | ** One could relax this condition a bit if the referenced instruction is |
| 109 | ** a PHI, too. But this often leads to worse code due to excessive |
| 110 | ** register shuffling. |
| 111 | ** |
| 112 | ** Note: returning *existing* instructions (e.g. LEFTFOLD) is ok, though. |
| 113 | ** Even returning fleft->op1 would be ok, because a new PHI will added, |
| 114 | ** if needed. But again, this leads to excessive register shuffling and |
| 115 | ** should be avoided. |
| 116 | ** |
| 117 | ** Requirement #3: The set of all fold rules must be monotonic to guarantee |
| 118 | ** termination. |
| 119 | ** |
| 120 | ** The goal is optimization, so one primarily wants to add strength-reducing |
| 121 | ** rules. This means eliminating an instruction or replacing an instruction |
| 122 | ** with one or more simpler instructions. Don't add fold rules which point |
| 123 | ** into the other direction. |
| 124 | ** |
| 125 | ** Some rules (like commutativity) do not directly reduce the strength of |
| 126 | ** an instruction, but enable other fold rules (e.g. by moving constants |
| 127 | ** to the right operand). These rules must be made unidirectional to avoid |
| 128 | ** cycles. |
| 129 | ** |
| 130 | ** Rule of thumb: the trace recorder expands the IR and FOLD shrinks it. |
| 131 | */ |
| 132 | |
| 133 | /* Some local macros to save typing. Undef'd at the end. */ |
| 134 | #define IR(ref) (&J->cur.ir[(ref)]) |
| 135 | #define fins (&J->fold.ins) |
| 136 | #define fleft (&J->fold.left) |
| 137 | #define fright (&J->fold.right) |
| 138 | #define knumleft (ir_knum(fleft)->n) |
| 139 | #define knumright (ir_knum(fright)->n) |
| 140 | |
| 141 | /* Pass IR on to next optimization in chain (FOLD). */ |
| 142 | #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) |
| 143 | |
| 144 | /* Fold function type. Fastcall on x86 significantly reduces their size. */ |
| 145 | typedef IRRef (LJ_FASTCALL *FoldFunc)(jit_State *J); |
| 146 | |
| 147 | /* Macros for the fold specs, so buildvm can recognize them. */ |
| 148 | #define LJFOLD(x) |
| 149 | #define LJFOLDX(x) |
| 150 | #define LJFOLDF(name) static TRef LJ_FASTCALL fold_##name(jit_State *J) |
| 151 | /* Note: They must be at the start of a line or buildvm ignores them! */ |
| 152 | |
| 153 | /* Barrier to prevent using operands across PHIs. */ |
| 154 | #define PHIBARRIER(ir) if (irt_isphi((ir)->t)) return NEXTFOLD |
| 155 | |
| 156 | /* Barrier to prevent folding across a GC step. |
| 157 | ** GC steps can only happen at the head of a trace and at LOOP. |
| 158 | ** And the GC is only driven forward if there is at least one allocation. |
| 159 | */ |
| 160 | #define gcstep_barrier(J, ref) \ |
| 161 | ((ref) < J->chain[IR_LOOP] && \ |
| 162 | (J->chain[IR_SNEW] || J->chain[IR_XSNEW] || \ |
| 163 | J->chain[IR_TNEW] || J->chain[IR_TDUP] || \ |
| 164 | J->chain[IR_CNEW] || J->chain[IR_CNEWI] || J->chain[IR_TOSTR])) |
| 165 | |
| 166 | /* -- Constant folding for FP numbers ------------------------------------- */ |
| 167 | |
| 168 | LJFOLD(ADD KNUM KNUM) |
| 169 | LJFOLD(SUB KNUM KNUM) |
| 170 | LJFOLD(MUL KNUM KNUM) |
| 171 | LJFOLD(DIV KNUM KNUM) |
| 172 | LJFOLD(NEG KNUM KNUM) |
| 173 | LJFOLD(ABS KNUM KNUM) |
| 174 | LJFOLD(ATAN2 KNUM KNUM) |
| 175 | LJFOLD(LDEXP KNUM KNUM) |
| 176 | LJFOLD(MIN KNUM KNUM) |
| 177 | LJFOLD(MAX KNUM KNUM) |
| 178 | LJFOLDF(kfold_numarith) |
| 179 | { |
| 180 | lua_Number a = knumleft; |
| 181 | lua_Number b = knumright; |
| 182 | lua_Number y = lj_vm_foldarith(a, b, fins->o - IR_ADD); |
| 183 | return lj_ir_knum(J, y); |
| 184 | } |
| 185 | |
| 186 | LJFOLD(LDEXP KNUM KINT) |
| 187 | LJFOLDF(kfold_ldexp) |
| 188 | { |
| 189 | #if LJ_TARGET_X86ORX64 |
| 190 | UNUSED(J); |
| 191 | return NEXTFOLD; |
| 192 | #else |
| 193 | return lj_ir_knum(J, ldexp(knumleft, fright->i)); |
| 194 | #endif |
| 195 | } |
| 196 | |
| 197 | LJFOLD(FPMATH KNUM any) |
| 198 | LJFOLDF(kfold_fpmath) |
| 199 | { |
| 200 | lua_Number a = knumleft; |
| 201 | lua_Number y = lj_vm_foldfpm(a, fins->op2); |
| 202 | return lj_ir_knum(J, y); |
| 203 | } |
| 204 | |
| 205 | LJFOLD(POW KNUM KINT) |
| 206 | LJFOLDF(kfold_numpow) |
| 207 | { |
| 208 | lua_Number a = knumleft; |
| 209 | lua_Number b = (lua_Number)fright->i; |
| 210 | lua_Number y = lj_vm_foldarith(a, b, IR_POW - IR_ADD); |
| 211 | return lj_ir_knum(J, y); |
| 212 | } |
| 213 | |
| 214 | /* Must not use kfold_kref for numbers (could be NaN). */ |
| 215 | LJFOLD(EQ KNUM KNUM) |
| 216 | LJFOLD(NE KNUM KNUM) |
| 217 | LJFOLD(LT KNUM KNUM) |
| 218 | LJFOLD(GE KNUM KNUM) |
| 219 | LJFOLD(LE KNUM KNUM) |
| 220 | LJFOLD(GT KNUM KNUM) |
| 221 | LJFOLD(ULT KNUM KNUM) |
| 222 | LJFOLD(UGE KNUM KNUM) |
| 223 | LJFOLD(ULE KNUM KNUM) |
| 224 | LJFOLD(UGT KNUM KNUM) |
| 225 | LJFOLDF(kfold_numcomp) |
| 226 | { |
| 227 | return CONDFOLD(lj_ir_numcmp(knumleft, knumright, (IROp)fins->o)); |
| 228 | } |
| 229 | |
| 230 | /* -- Constant folding for 32 bit integers -------------------------------- */ |
| 231 | |
| 232 | static int32_t kfold_intop(int32_t k1, int32_t k2, IROp op) |
| 233 | { |
| 234 | switch (op) { |
| 235 | case IR_ADD: k1 += k2; break; |
| 236 | case IR_SUB: k1 -= k2; break; |
| 237 | case IR_MUL: k1 *= k2; break; |
| 238 | case IR_MOD: k1 = lj_vm_modi(k1, k2); break; |
| 239 | case IR_NEG: k1 = -k1; break; |
| 240 | case IR_BAND: k1 &= k2; break; |
| 241 | case IR_BOR: k1 |= k2; break; |
| 242 | case IR_BXOR: k1 ^= k2; break; |
| 243 | case IR_BSHL: k1 <<= (k2 & 31); break; |
| 244 | case IR_BSHR: k1 = (int32_t)((uint32_t)k1 >> (k2 & 31)); break; |
| 245 | case IR_BSAR: k1 >>= (k2 & 31); break; |
| 246 | case IR_BROL: k1 = (int32_t)lj_rol((uint32_t)k1, (k2 & 31)); break; |
| 247 | case IR_BROR: k1 = (int32_t)lj_ror((uint32_t)k1, (k2 & 31)); break; |
| 248 | case IR_MIN: k1 = k1 < k2 ? k1 : k2; break; |
| 249 | case IR_MAX: k1 = k1 > k2 ? k1 : k2; break; |
| 250 | default: lua_assert(0); break; |
| 251 | } |
| 252 | return k1; |
| 253 | } |
| 254 | |
| 255 | LJFOLD(ADD KINT KINT) |
| 256 | LJFOLD(SUB KINT KINT) |
| 257 | LJFOLD(MUL KINT KINT) |
| 258 | LJFOLD(MOD KINT KINT) |
| 259 | LJFOLD(NEG KINT KINT) |
| 260 | LJFOLD(BAND KINT KINT) |
| 261 | LJFOLD(BOR KINT KINT) |
| 262 | LJFOLD(BXOR KINT KINT) |
| 263 | LJFOLD(BSHL KINT KINT) |
| 264 | LJFOLD(BSHR KINT KINT) |
| 265 | LJFOLD(BSAR KINT KINT) |
| 266 | LJFOLD(BROL KINT KINT) |
| 267 | LJFOLD(BROR KINT KINT) |
| 268 | LJFOLD(MIN KINT KINT) |
| 269 | LJFOLD(MAX KINT KINT) |
| 270 | LJFOLDF(kfold_intarith) |
| 271 | { |
| 272 | return INTFOLD(kfold_intop(fleft->i, fright->i, (IROp)fins->o)); |
| 273 | } |
| 274 | |
| 275 | LJFOLD(ADDOV KINT KINT) |
| 276 | LJFOLD(SUBOV KINT KINT) |
| 277 | LJFOLD(MULOV KINT KINT) |
| 278 | LJFOLDF(kfold_intovarith) |
| 279 | { |
| 280 | lua_Number n = lj_vm_foldarith((lua_Number)fleft->i, (lua_Number)fright->i, |
| 281 | fins->o - IR_ADDOV); |
| 282 | int32_t k = lj_num2int(n); |
| 283 | if (n != (lua_Number)k) |
| 284 | return FAILFOLD; |
| 285 | return INTFOLD(k); |
| 286 | } |
| 287 | |
| 288 | LJFOLD(BNOT KINT) |
| 289 | LJFOLDF(kfold_bnot) |
| 290 | { |
| 291 | return INTFOLD(~fleft->i); |
| 292 | } |
| 293 | |
| 294 | LJFOLD(BSWAP KINT) |
| 295 | LJFOLDF(kfold_bswap) |
| 296 | { |
| 297 | return INTFOLD((int32_t)lj_bswap((uint32_t)fleft->i)); |
| 298 | } |
| 299 | |
| 300 | LJFOLD(LT KINT KINT) |
| 301 | LJFOLD(GE KINT KINT) |
| 302 | LJFOLD(LE KINT KINT) |
| 303 | LJFOLD(GT KINT KINT) |
| 304 | LJFOLD(ULT KINT KINT) |
| 305 | LJFOLD(UGE KINT KINT) |
| 306 | LJFOLD(ULE KINT KINT) |
| 307 | LJFOLD(UGT KINT KINT) |
| 308 | LJFOLD(ABC KINT KINT) |
| 309 | LJFOLDF(kfold_intcomp) |
| 310 | { |
| 311 | int32_t a = fleft->i, b = fright->i; |
| 312 | switch ((IROp)fins->o) { |
| 313 | case IR_LT: return CONDFOLD(a < b); |
| 314 | case IR_GE: return CONDFOLD(a >= b); |
| 315 | case IR_LE: return CONDFOLD(a <= b); |
| 316 | case IR_GT: return CONDFOLD(a > b); |
| 317 | case IR_ULT: return CONDFOLD((uint32_t)a < (uint32_t)b); |
| 318 | case IR_UGE: return CONDFOLD((uint32_t)a >= (uint32_t)b); |
| 319 | case IR_ULE: return CONDFOLD((uint32_t)a <= (uint32_t)b); |
| 320 | case IR_ABC: |
| 321 | case IR_UGT: return CONDFOLD((uint32_t)a > (uint32_t)b); |
| 322 | default: lua_assert(0); return FAILFOLD; |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | LJFOLD(UGE any KINT) |
| 327 | LJFOLDF(kfold_intcomp0) |
| 328 | { |
| 329 | if (fright->i == 0) |
| 330 | return DROPFOLD; |
| 331 | return NEXTFOLD; |
| 332 | } |
| 333 | |
| 334 | /* -- Constant folding for 64 bit integers -------------------------------- */ |
| 335 | |
| 336 | static uint64_t kfold_int64arith(uint64_t k1, uint64_t k2, IROp op) |
| 337 | { |
| 338 | switch (op) { |
| 339 | #if LJ_64 || LJ_HASFFI |
| 340 | case IR_ADD: k1 += k2; break; |
| 341 | case IR_SUB: k1 -= k2; break; |
| 342 | #endif |
| 343 | #if LJ_HASFFI |
| 344 | case IR_MUL: k1 *= k2; break; |
| 345 | case IR_BAND: k1 &= k2; break; |
| 346 | case IR_BOR: k1 |= k2; break; |
| 347 | case IR_BXOR: k1 ^= k2; break; |
| 348 | #endif |
| 349 | default: UNUSED(k2); lua_assert(0); break; |
| 350 | } |
| 351 | return k1; |
| 352 | } |
| 353 | |
| 354 | LJFOLD(ADD KINT64 KINT64) |
| 355 | LJFOLD(SUB KINT64 KINT64) |
| 356 | LJFOLD(MUL KINT64 KINT64) |
| 357 | LJFOLD(BAND KINT64 KINT64) |
| 358 | LJFOLD(BOR KINT64 KINT64) |
| 359 | LJFOLD(BXOR KINT64 KINT64) |
| 360 | LJFOLDF(kfold_int64arith) |
| 361 | { |
| 362 | return INT64FOLD(kfold_int64arith(ir_k64(fleft)->u64, |
| 363 | ir_k64(fright)->u64, (IROp)fins->o)); |
| 364 | } |
| 365 | |
| 366 | LJFOLD(DIV KINT64 KINT64) |
| 367 | LJFOLD(MOD KINT64 KINT64) |
| 368 | LJFOLD(POW KINT64 KINT64) |
| 369 | LJFOLDF(kfold_int64arith2) |
| 370 | { |
| 371 | #if LJ_HASFFI |
| 372 | uint64_t k1 = ir_k64(fleft)->u64, k2 = ir_k64(fright)->u64; |
| 373 | if (irt_isi64(fins->t)) { |
| 374 | k1 = fins->o == IR_DIV ? lj_carith_divi64((int64_t)k1, (int64_t)k2) : |
| 375 | fins->o == IR_MOD ? lj_carith_modi64((int64_t)k1, (int64_t)k2) : |
| 376 | lj_carith_powi64((int64_t)k1, (int64_t)k2); |
| 377 | } else { |
| 378 | k1 = fins->o == IR_DIV ? lj_carith_divu64(k1, k2) : |
| 379 | fins->o == IR_MOD ? lj_carith_modu64(k1, k2) : |
| 380 | lj_carith_powu64(k1, k2); |
| 381 | } |
| 382 | return INT64FOLD(k1); |
| 383 | #else |
| 384 | UNUSED(J); lua_assert(0); return FAILFOLD; |
| 385 | #endif |
| 386 | } |
| 387 | |
| 388 | LJFOLD(BSHL KINT64 KINT) |
| 389 | LJFOLD(BSHR KINT64 KINT) |
| 390 | LJFOLD(BSAR KINT64 KINT) |
| 391 | LJFOLD(BROL KINT64 KINT) |
| 392 | LJFOLD(BROR KINT64 KINT) |
| 393 | LJFOLDF(kfold_int64shift) |
| 394 | { |
| 395 | #if LJ_HASFFI || LJ_64 |
| 396 | uint64_t k = ir_k64(fleft)->u64; |
| 397 | int32_t sh = (fright->i & 63); |
| 398 | switch ((IROp)fins->o) { |
| 399 | case IR_BSHL: k <<= sh; break; |
| 400 | #if LJ_HASFFI |
| 401 | case IR_BSHR: k >>= sh; break; |
| 402 | case IR_BSAR: k = (uint64_t)((int64_t)k >> sh); break; |
| 403 | case IR_BROL: k = lj_rol(k, sh); break; |
| 404 | case IR_BROR: k = lj_ror(k, sh); break; |
| 405 | #endif |
| 406 | default: lua_assert(0); break; |
| 407 | } |
| 408 | return INT64FOLD(k); |
| 409 | #else |
| 410 | UNUSED(J); lua_assert(0); return FAILFOLD; |
| 411 | #endif |
| 412 | } |
| 413 | |
| 414 | LJFOLD(BNOT KINT64) |
| 415 | LJFOLDF(kfold_bnot64) |
| 416 | { |
| 417 | #if LJ_HASFFI |
| 418 | return INT64FOLD(~ir_k64(fleft)->u64); |
| 419 | #else |
| 420 | UNUSED(J); lua_assert(0); return FAILFOLD; |
| 421 | #endif |
| 422 | } |
| 423 | |
| 424 | LJFOLD(BSWAP KINT64) |
| 425 | LJFOLDF(kfold_bswap64) |
| 426 | { |
| 427 | #if LJ_HASFFI |
| 428 | return INT64FOLD(lj_bswap64(ir_k64(fleft)->u64)); |
| 429 | #else |
| 430 | UNUSED(J); lua_assert(0); return FAILFOLD; |
| 431 | #endif |
| 432 | } |
| 433 | |
| 434 | LJFOLD(LT KINT64 KINT64) |
| 435 | LJFOLD(GE KINT64 KINT64) |
| 436 | LJFOLD(LE KINT64 KINT64) |
| 437 | LJFOLD(GT KINT64 KINT64) |
| 438 | LJFOLD(ULT KINT64 KINT64) |
| 439 | LJFOLD(UGE KINT64 KINT64) |
| 440 | LJFOLD(ULE KINT64 KINT64) |
| 441 | LJFOLD(UGT KINT64 KINT64) |
| 442 | LJFOLDF(kfold_int64comp) |
| 443 | { |
| 444 | #if LJ_HASFFI |
| 445 | uint64_t a = ir_k64(fleft)->u64, b = ir_k64(fright)->u64; |
| 446 | switch ((IROp)fins->o) { |
| 447 | case IR_LT: return CONDFOLD(a < b); |
| 448 | case IR_GE: return CONDFOLD(a >= b); |
| 449 | case IR_LE: return CONDFOLD(a <= b); |
| 450 | case IR_GT: return CONDFOLD(a > b); |
| 451 | case IR_ULT: return CONDFOLD((uint64_t)a < (uint64_t)b); |
| 452 | case IR_UGE: return CONDFOLD((uint64_t)a >= (uint64_t)b); |
| 453 | case IR_ULE: return CONDFOLD((uint64_t)a <= (uint64_t)b); |
| 454 | case IR_UGT: return CONDFOLD((uint64_t)a > (uint64_t)b); |
| 455 | default: lua_assert(0); return FAILFOLD; |
| 456 | } |
| 457 | #else |
| 458 | UNUSED(J); lua_assert(0); return FAILFOLD; |
| 459 | #endif |
| 460 | } |
| 461 | |
| 462 | LJFOLD(UGE any KINT64) |
| 463 | LJFOLDF(kfold_int64comp0) |
| 464 | { |
| 465 | #if LJ_HASFFI |
| 466 | if (ir_k64(fright)->u64 == 0) |
| 467 | return DROPFOLD; |
| 468 | return NEXTFOLD; |
| 469 | #else |
| 470 | UNUSED(J); lua_assert(0); return FAILFOLD; |
| 471 | #endif |
| 472 | } |
| 473 | |
| 474 | /* -- Constant folding for strings ---------------------------------------- */ |
| 475 | |
| 476 | LJFOLD(SNEW KKPTR KINT) |
| 477 | LJFOLDF(kfold_snew_kptr) |
| 478 | { |
| 479 | GCstr *s = lj_str_new(J->L, (const char *)ir_kptr(fleft), (size_t)fright->i); |
| 480 | return lj_ir_kstr(J, s); |
| 481 | } |
| 482 | |
| 483 | LJFOLD(SNEW any KINT) |
| 484 | LJFOLDF(kfold_snew_empty) |
| 485 | { |
| 486 | if (fright->i == 0) |
| 487 | return lj_ir_kstr(J, &J2G(J)->strempty); |
| 488 | return NEXTFOLD; |
| 489 | } |
| 490 | |
| 491 | LJFOLD(STRREF KGC KINT) |
| 492 | LJFOLDF(kfold_strref) |
| 493 | { |
| 494 | GCstr *str = ir_kstr(fleft); |
| 495 | lua_assert((MSize)fright->i <= str->len); |
| 496 | return lj_ir_kkptr(J, (char *)strdata(str) + fright->i); |
| 497 | } |
| 498 | |
| 499 | LJFOLD(STRREF SNEW any) |
| 500 | LJFOLDF(kfold_strref_snew) |
| 501 | { |
| 502 | PHIBARRIER(fleft); |
| 503 | if (irref_isk(fins->op2) && fright->i == 0) { |
| 504 | return fleft->op1; /* strref(snew(ptr, len), 0) ==> ptr */ |
| 505 | } else { |
| 506 | /* Reassociate: strref(snew(strref(str, a), len), b) ==> strref(str, a+b) */ |
| 507 | IRIns *ir = IR(fleft->op1); |
| 508 | IRRef1 str = ir->op1; /* IRIns * is not valid across emitir. */ |
| 509 | lua_assert(ir->o == IR_STRREF); |
| 510 | PHIBARRIER(ir); |
| 511 | fins->op2 = emitir(IRTI(IR_ADD), ir->op2, fins->op2); /* Clobbers fins! */ |
| 512 | fins->op1 = str; |
| 513 | fins->ot = IRT(IR_STRREF, IRT_P32); |
| 514 | return RETRYFOLD; |
| 515 | } |
| 516 | return NEXTFOLD; |
| 517 | } |
| 518 | |
| 519 | LJFOLD(CALLN CARG IRCALL_lj_str_cmp) |
| 520 | LJFOLDF(kfold_strcmp) |
| 521 | { |
| 522 | if (irref_isk(fleft->op1) && irref_isk(fleft->op2)) { |
| 523 | GCstr *a = ir_kstr(IR(fleft->op1)); |
| 524 | GCstr *b = ir_kstr(IR(fleft->op2)); |
| 525 | return INTFOLD(lj_str_cmp(a, b)); |
| 526 | } |
| 527 | return NEXTFOLD; |
| 528 | } |
| 529 | |
| 530 | /* -- Constant folding of pointer arithmetic ------------------------------ */ |
| 531 | |
| 532 | LJFOLD(ADD KGC KINT) |
| 533 | LJFOLD(ADD KGC KINT64) |
| 534 | LJFOLDF(kfold_add_kgc) |
| 535 | { |
| 536 | GCobj *o = ir_kgc(fleft); |
| 537 | #if LJ_64 |
| 538 | ptrdiff_t ofs = (ptrdiff_t)ir_kint64(fright)->u64; |
| 539 | #else |
| 540 | ptrdiff_t ofs = fright->i; |
| 541 | #endif |
| 542 | #if LJ_HASFFI |
| 543 | if (irt_iscdata(fleft->t)) { |
| 544 | CType *ct = ctype_raw(ctype_ctsG(J2G(J)), gco2cd(o)->ctypeid); |
| 545 | if (ctype_isnum(ct->info) || ctype_isenum(ct->info) || |
| 546 | ctype_isptr(ct->info) || ctype_isfunc(ct->info) || |
| 547 | ctype_iscomplex(ct->info) || ctype_isvector(ct->info)) |
| 548 | return lj_ir_kkptr(J, (char *)o + ofs); |
| 549 | } |
| 550 | #endif |
| 551 | return lj_ir_kptr(J, (char *)o + ofs); |
| 552 | } |
| 553 | |
| 554 | LJFOLD(ADD KPTR KINT) |
| 555 | LJFOLD(ADD KPTR KINT64) |
| 556 | LJFOLD(ADD KKPTR KINT) |
| 557 | LJFOLD(ADD KKPTR KINT64) |
| 558 | LJFOLDF(kfold_add_kptr) |
| 559 | { |
| 560 | void *p = ir_kptr(fleft); |
| 561 | #if LJ_64 |
| 562 | ptrdiff_t ofs = (ptrdiff_t)ir_kint64(fright)->u64; |
| 563 | #else |
| 564 | ptrdiff_t ofs = fright->i; |
| 565 | #endif |
| 566 | return lj_ir_kptr_(J, fleft->o, (char *)p + ofs); |
| 567 | } |
| 568 | |
| 569 | LJFOLD(ADD any KGC) |
| 570 | LJFOLD(ADD any KPTR) |
| 571 | LJFOLD(ADD any KKPTR) |
| 572 | LJFOLDF(kfold_add_kright) |
| 573 | { |
| 574 | if (fleft->o == IR_KINT || fleft->o == IR_KINT64) { |
| 575 | IRRef1 tmp = fins->op1; fins->op1 = fins->op2; fins->op2 = tmp; |
| 576 | return RETRYFOLD; |
| 577 | } |
| 578 | return NEXTFOLD; |
| 579 | } |
| 580 | |
| 581 | /* -- Constant folding of conversions ------------------------------------- */ |
| 582 | |
| 583 | LJFOLD(TOBIT KNUM KNUM) |
| 584 | LJFOLDF(kfold_tobit) |
| 585 | { |
| 586 | return INTFOLD(lj_num2bit(knumleft)); |
| 587 | } |
| 588 | |
| 589 | LJFOLD(CONV KINT IRCONV_NUM_INT) |
| 590 | LJFOLDF(kfold_conv_kint_num) |
| 591 | { |
| 592 | return lj_ir_knum(J, (lua_Number)fleft->i); |
| 593 | } |
| 594 | |
| 595 | LJFOLD(CONV KINT IRCONV_NUM_U32) |
| 596 | LJFOLDF(kfold_conv_kintu32_num) |
| 597 | { |
| 598 | return lj_ir_knum(J, (lua_Number)(uint32_t)fleft->i); |
| 599 | } |
| 600 | |
| 601 | LJFOLD(CONV KINT IRCONV_INT_I8) |
| 602 | LJFOLD(CONV KINT IRCONV_INT_U8) |
| 603 | LJFOLD(CONV KINT IRCONV_INT_I16) |
| 604 | LJFOLD(CONV KINT IRCONV_INT_U16) |
| 605 | LJFOLDF(kfold_conv_kint_ext) |
| 606 | { |
| 607 | int32_t k = fleft->i; |
| 608 | if ((fins->op2 & IRCONV_SRCMASK) == IRT_I8) k = (int8_t)k; |
| 609 | else if ((fins->op2 & IRCONV_SRCMASK) == IRT_U8) k = (uint8_t)k; |
| 610 | else if ((fins->op2 & IRCONV_SRCMASK) == IRT_I16) k = (int16_t)k; |
| 611 | else k = (uint16_t)k; |
| 612 | return INTFOLD(k); |
| 613 | } |
| 614 | |
| 615 | LJFOLD(CONV KINT IRCONV_I64_INT) |
| 616 | LJFOLD(CONV KINT IRCONV_U64_INT) |
| 617 | LJFOLD(CONV KINT IRCONV_I64_U32) |
| 618 | LJFOLD(CONV KINT IRCONV_U64_U32) |
| 619 | LJFOLDF(kfold_conv_kint_i64) |
| 620 | { |
| 621 | if ((fins->op2 & IRCONV_SEXT)) |
| 622 | return INT64FOLD((uint64_t)(int64_t)fleft->i); |
| 623 | else |
| 624 | return INT64FOLD((uint64_t)(int64_t)(uint32_t)fleft->i); |
| 625 | } |
| 626 | |
| 627 | LJFOLD(CONV KINT64 IRCONV_NUM_I64) |
| 628 | LJFOLDF(kfold_conv_kint64_num_i64) |
| 629 | { |
| 630 | return lj_ir_knum(J, (lua_Number)(int64_t)ir_kint64(fleft)->u64); |
| 631 | } |
| 632 | |
| 633 | LJFOLD(CONV KINT64 IRCONV_NUM_U64) |
| 634 | LJFOLDF(kfold_conv_kint64_num_u64) |
| 635 | { |
| 636 | return lj_ir_knum(J, (lua_Number)ir_kint64(fleft)->u64); |
| 637 | } |
| 638 | |
| 639 | LJFOLD(CONV KINT64 IRCONV_INT_I64) |
| 640 | LJFOLD(CONV KINT64 IRCONV_U32_I64) |
| 641 | LJFOLDF(kfold_conv_kint64_int_i64) |
| 642 | { |
| 643 | return INTFOLD((int32_t)ir_kint64(fleft)->u64); |
| 644 | } |
| 645 | |
| 646 | LJFOLD(CONV KNUM IRCONV_INT_NUM) |
| 647 | LJFOLDF(kfold_conv_knum_int_num) |
| 648 | { |
| 649 | lua_Number n = knumleft; |
| 650 | if (!(fins->op2 & IRCONV_TRUNC)) { |
| 651 | int32_t k = lj_num2int(n); |
| 652 | if (irt_isguard(fins->t) && n != (lua_Number)k) { |
| 653 | /* We're about to create a guard which always fails, like CONV +1.5. |
| 654 | ** Some pathological loops cause this during LICM, e.g.: |
| 655 | ** local x,k,t = 0,1.5,{1,[1.5]=2} |
| 656 | ** for i=1,200 do x = x+ t[k]; k = k == 1 and 1.5 or 1 end |
| 657 | ** assert(x == 300) |
| 658 | */ |
| 659 | return FAILFOLD; |
| 660 | } |
| 661 | return INTFOLD(k); |
| 662 | } else { |
| 663 | return INTFOLD((int32_t)n); |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | LJFOLD(CONV KNUM IRCONV_U32_NUM) |
| 668 | LJFOLDF(kfold_conv_knum_u32_num) |
| 669 | { |
| 670 | lua_assert((fins->op2 & IRCONV_TRUNC)); |
| 671 | #ifdef _MSC_VER |
| 672 | { /* Workaround for MSVC bug. */ |
| 673 | volatile uint32_t u = (uint32_t)knumleft; |
| 674 | return INTFOLD((int32_t)u); |
| 675 | } |
| 676 | #else |
| 677 | return INTFOLD((int32_t)(uint32_t)knumleft); |
| 678 | #endif |
| 679 | } |
| 680 | |
| 681 | LJFOLD(CONV KNUM IRCONV_I64_NUM) |
| 682 | LJFOLDF(kfold_conv_knum_i64_num) |
| 683 | { |
| 684 | lua_assert((fins->op2 & IRCONV_TRUNC)); |
| 685 | return INT64FOLD((uint64_t)(int64_t)knumleft); |
| 686 | } |
| 687 | |
| 688 | LJFOLD(CONV KNUM IRCONV_U64_NUM) |
| 689 | LJFOLDF(kfold_conv_knum_u64_num) |
| 690 | { |
| 691 | lua_assert((fins->op2 & IRCONV_TRUNC)); |
| 692 | return INT64FOLD(lj_num2u64(knumleft)); |
| 693 | } |
| 694 | |
| 695 | LJFOLD(TOSTR KNUM) |
| 696 | LJFOLDF(kfold_tostr_knum) |
| 697 | { |
| 698 | return lj_ir_kstr(J, lj_str_fromnum(J->L, &knumleft)); |
| 699 | } |
| 700 | |
| 701 | LJFOLD(TOSTR KINT) |
| 702 | LJFOLDF(kfold_tostr_kint) |
| 703 | { |
| 704 | return lj_ir_kstr(J, lj_str_fromint(J->L, fleft->i)); |
| 705 | } |
| 706 | |
| 707 | LJFOLD(STRTO KGC) |
| 708 | LJFOLDF(kfold_strto) |
| 709 | { |
| 710 | TValue n; |
| 711 | if (lj_strscan_num(ir_kstr(fleft), &n)) |
| 712 | return lj_ir_knum(J, numV(&n)); |
| 713 | return FAILFOLD; |
| 714 | } |
| 715 | |
| 716 | /* -- Constant folding of equality checks --------------------------------- */ |
| 717 | |
| 718 | /* Don't constant-fold away FLOAD checks against KNULL. */ |
| 719 | LJFOLD(EQ FLOAD KNULL) |
| 720 | LJFOLD(NE FLOAD KNULL) |
| 721 | LJFOLDX(lj_opt_cse) |
| 722 | |
| 723 | /* But fold all other KNULL compares, since only KNULL is equal to KNULL. */ |
| 724 | LJFOLD(EQ any KNULL) |
| 725 | LJFOLD(NE any KNULL) |
| 726 | LJFOLD(EQ KNULL any) |
| 727 | LJFOLD(NE KNULL any) |
| 728 | LJFOLD(EQ KINT KINT) /* Constants are unique, so same refs <==> same value. */ |
| 729 | LJFOLD(NE KINT KINT) |
| 730 | LJFOLD(EQ KINT64 KINT64) |
| 731 | LJFOLD(NE KINT64 KINT64) |
| 732 | LJFOLD(EQ KGC KGC) |
| 733 | LJFOLD(NE KGC KGC) |
| 734 | LJFOLDF(kfold_kref) |
| 735 | { |
| 736 | return CONDFOLD((fins->op1 == fins->op2) ^ (fins->o == IR_NE)); |
| 737 | } |
| 738 | |
| 739 | /* -- Algebraic shortcuts ------------------------------------------------- */ |
| 740 | |
| 741 | LJFOLD(FPMATH FPMATH IRFPM_FLOOR) |
| 742 | LJFOLD(FPMATH FPMATH IRFPM_CEIL) |
| 743 | LJFOLD(FPMATH FPMATH IRFPM_TRUNC) |
| 744 | LJFOLDF(shortcut_round) |
| 745 | { |
| 746 | IRFPMathOp op = (IRFPMathOp)fleft->op2; |
| 747 | if (op == IRFPM_FLOOR || op == IRFPM_CEIL || op == IRFPM_TRUNC) |
| 748 | return LEFTFOLD; /* round(round_left(x)) = round_left(x) */ |
| 749 | return NEXTFOLD; |
| 750 | } |
| 751 | |
| 752 | LJFOLD(ABS ABS KNUM) |
| 753 | LJFOLDF(shortcut_left) |
| 754 | { |
| 755 | return LEFTFOLD; /* f(g(x)) ==> g(x) */ |
| 756 | } |
| 757 | |
| 758 | LJFOLD(ABS NEG KNUM) |
| 759 | LJFOLDF(shortcut_dropleft) |
| 760 | { |
| 761 | PHIBARRIER(fleft); |
| 762 | fins->op1 = fleft->op1; /* abs(neg(x)) ==> abs(x) */ |
| 763 | return RETRYFOLD; |
| 764 | } |
| 765 | |
| 766 | /* Note: no safe shortcuts with STRTO and TOSTR ("1e2" ==> +100 ==> "100"). */ |
| 767 | LJFOLD(NEG NEG any) |
| 768 | LJFOLD(BNOT BNOT) |
| 769 | LJFOLD(BSWAP BSWAP) |
| 770 | LJFOLDF(shortcut_leftleft) |
| 771 | { |
| 772 | PHIBARRIER(fleft); /* See above. Fold would be ok, but not beneficial. */ |
| 773 | return fleft->op1; /* f(g(x)) ==> x */ |
| 774 | } |
| 775 | |
| 776 | /* -- FP algebraic simplifications ---------------------------------------- */ |
| 777 | |
| 778 | /* FP arithmetic is tricky -- there's not much to simplify. |
| 779 | ** Please note the following common pitfalls before sending "improvements": |
| 780 | ** x+0 ==> x is INVALID for x=-0 |
| 781 | ** 0-x ==> -x is INVALID for x=+0 |
| 782 | ** x*0 ==> 0 is INVALID for x=-0, x=+-Inf or x=NaN |
| 783 | */ |
| 784 | |
| 785 | LJFOLD(ADD NEG any) |
| 786 | LJFOLDF(simplify_numadd_negx) |
| 787 | { |
| 788 | PHIBARRIER(fleft); |
| 789 | fins->o = IR_SUB; /* (-a) + b ==> b - a */ |
| 790 | fins->op1 = fins->op2; |
| 791 | fins->op2 = fleft->op1; |
| 792 | return RETRYFOLD; |
| 793 | } |
| 794 | |
| 795 | LJFOLD(ADD any NEG) |
| 796 | LJFOLDF(simplify_numadd_xneg) |
| 797 | { |
| 798 | PHIBARRIER(fright); |
| 799 | fins->o = IR_SUB; /* a + (-b) ==> a - b */ |
| 800 | fins->op2 = fright->op1; |
| 801 | return RETRYFOLD; |
| 802 | } |
| 803 | |
| 804 | LJFOLD(SUB any KNUM) |
| 805 | LJFOLDF(simplify_numsub_k) |
| 806 | { |
| 807 | lua_Number n = knumright; |
| 808 | if (n == 0.0) /* x - (+-0) ==> x */ |
| 809 | return LEFTFOLD; |
| 810 | return NEXTFOLD; |
| 811 | } |
| 812 | |
| 813 | LJFOLD(SUB NEG KNUM) |
| 814 | LJFOLDF(simplify_numsub_negk) |
| 815 | { |
| 816 | PHIBARRIER(fleft); |
| 817 | fins->op2 = fleft->op1; /* (-x) - k ==> (-k) - x */ |
| 818 | fins->op1 = (IRRef1)lj_ir_knum(J, -knumright); |
| 819 | return RETRYFOLD; |
| 820 | } |
| 821 | |
| 822 | LJFOLD(SUB any NEG) |
| 823 | LJFOLDF(simplify_numsub_xneg) |
| 824 | { |
| 825 | PHIBARRIER(fright); |
| 826 | fins->o = IR_ADD; /* a - (-b) ==> a + b */ |
| 827 | fins->op2 = fright->op1; |
| 828 | return RETRYFOLD; |
| 829 | } |
| 830 | |
| 831 | LJFOLD(MUL any KNUM) |
| 832 | LJFOLD(DIV any KNUM) |
| 833 | LJFOLDF(simplify_nummuldiv_k) |
| 834 | { |
| 835 | lua_Number n = knumright; |
| 836 | if (n == 1.0) { /* x o 1 ==> x */ |
| 837 | return LEFTFOLD; |
| 838 | } else if (n == -1.0) { /* x o -1 ==> -x */ |
| 839 | fins->o = IR_NEG; |
| 840 | fins->op2 = (IRRef1)lj_ir_knum_neg(J); |
| 841 | return RETRYFOLD; |
| 842 | } else if (fins->o == IR_MUL && n == 2.0) { /* x * 2 ==> x + x */ |
| 843 | fins->o = IR_ADD; |
| 844 | fins->op2 = fins->op1; |
| 845 | return RETRYFOLD; |
| 846 | } else if (fins->o == IR_DIV) { /* x / 2^k ==> x * 2^-k */ |
| 847 | uint64_t u = ir_knum(fright)->u64; |
| 848 | uint32_t ex = ((uint32_t)(u >> 52) & 0x7ff); |
| 849 | if ((u & U64x(000fffff,ffffffff)) == 0 && ex - 1 < 0x7fd) { |
| 850 | u = (u & ((uint64_t)1 << 63)) | ((uint64_t)(0x7fe - ex) << 52); |
| 851 | fins->o = IR_MUL; /* Multiply by exact reciprocal. */ |
| 852 | fins->op2 = lj_ir_knum_u64(J, u); |
| 853 | return RETRYFOLD; |
| 854 | } |
| 855 | } |
| 856 | return NEXTFOLD; |
| 857 | } |
| 858 | |
| 859 | LJFOLD(MUL NEG KNUM) |
| 860 | LJFOLD(DIV NEG KNUM) |
| 861 | LJFOLDF(simplify_nummuldiv_negk) |
| 862 | { |
| 863 | PHIBARRIER(fleft); |
| 864 | fins->op1 = fleft->op1; /* (-a) o k ==> a o (-k) */ |
| 865 | fins->op2 = (IRRef1)lj_ir_knum(J, -knumright); |
| 866 | return RETRYFOLD; |
| 867 | } |
| 868 | |
| 869 | LJFOLD(MUL NEG NEG) |
| 870 | LJFOLD(DIV NEG NEG) |
| 871 | LJFOLDF(simplify_nummuldiv_negneg) |
| 872 | { |
| 873 | PHIBARRIER(fleft); |
| 874 | PHIBARRIER(fright); |
| 875 | fins->op1 = fleft->op1; /* (-a) o (-b) ==> a o b */ |
| 876 | fins->op2 = fright->op1; |
| 877 | return RETRYFOLD; |
| 878 | } |
| 879 | |
| 880 | LJFOLD(POW any KINT) |
| 881 | LJFOLDF(simplify_numpow_xk) |
| 882 | { |
| 883 | int32_t k = fright->i; |
| 884 | TRef ref = fins->op1; |
| 885 | if (k == 0) /* x ^ 0 ==> 1 */ |
| 886 | return lj_ir_knum_one(J); /* Result must be a number, not an int. */ |
| 887 | if (k == 1) /* x ^ 1 ==> x */ |
| 888 | return LEFTFOLD; |
| 889 | if ((uint32_t)(k+65536) > 2*65536u) /* Limit code explosion. */ |
| 890 | return NEXTFOLD; |
| 891 | if (k < 0) { /* x ^ (-k) ==> (1/x) ^ k. */ |
| 892 | ref = emitir(IRTN(IR_DIV), lj_ir_knum_one(J), ref); |
| 893 | k = -k; |
| 894 | } |
| 895 | /* Unroll x^k for 1 <= k <= 65536. */ |
| 896 | for (; (k & 1) == 0; k >>= 1) /* Handle leading zeros. */ |
| 897 | ref = emitir(IRTN(IR_MUL), ref, ref); |
| 898 | if ((k >>= 1) != 0) { /* Handle trailing bits. */ |
| 899 | TRef tmp = emitir(IRTN(IR_MUL), ref, ref); |
| 900 | for (; k != 1; k >>= 1) { |
| 901 | if (k & 1) |
| 902 | ref = emitir(IRTN(IR_MUL), ref, tmp); |
| 903 | tmp = emitir(IRTN(IR_MUL), tmp, tmp); |
| 904 | } |
| 905 | ref = emitir(IRTN(IR_MUL), ref, tmp); |
| 906 | } |
| 907 | return ref; |
| 908 | } |
| 909 | |
| 910 | LJFOLD(POW KNUM any) |
| 911 | LJFOLDF(simplify_numpow_kx) |
| 912 | { |
| 913 | lua_Number n = knumleft; |
| 914 | if (n == 2.0) { /* 2.0 ^ i ==> ldexp(1.0, tonum(i)) */ |
| 915 | fins->o = IR_CONV; |
| 916 | #if LJ_TARGET_X86ORX64 |
| 917 | fins->op1 = fins->op2; |
| 918 | fins->op2 = IRCONV_NUM_INT; |
| 919 | fins->op2 = (IRRef1)lj_opt_fold(J); |
| 920 | #endif |
| 921 | fins->op1 = (IRRef1)lj_ir_knum_one(J); |
| 922 | fins->o = IR_LDEXP; |
| 923 | return RETRYFOLD; |
| 924 | } |
| 925 | return NEXTFOLD; |
| 926 | } |
| 927 | |
| 928 | /* -- Simplify conversions ------------------------------------------------ */ |
| 929 | |
| 930 | LJFOLD(CONV CONV IRCONV_NUM_INT) /* _NUM */ |
| 931 | LJFOLDF(shortcut_conv_num_int) |
| 932 | { |
| 933 | PHIBARRIER(fleft); |
| 934 | /* Only safe with a guarded conversion to int. */ |
| 935 | if ((fleft->op2 & IRCONV_SRCMASK) == IRT_NUM && irt_isguard(fleft->t)) |
| 936 | return fleft->op1; /* f(g(x)) ==> x */ |
| 937 | return NEXTFOLD; |
| 938 | } |
| 939 | |
| 940 | LJFOLD(CONV CONV IRCONV_INT_NUM) /* _INT */ |
| 941 | LJFOLD(CONV CONV IRCONV_U32_NUM) /* _U32*/ |
| 942 | LJFOLDF(simplify_conv_int_num) |
| 943 | { |
| 944 | /* Fold even across PHI to avoid expensive num->int conversions in loop. */ |
| 945 | if ((fleft->op2 & IRCONV_SRCMASK) == |
| 946 | ((fins->op2 & IRCONV_DSTMASK) >> IRCONV_DSH)) |
| 947 | return fleft->op1; |
| 948 | return NEXTFOLD; |
| 949 | } |
| 950 | |
| 951 | LJFOLD(CONV CONV IRCONV_I64_NUM) /* _INT or _U32 */ |
| 952 | LJFOLD(CONV CONV IRCONV_U64_NUM) /* _INT or _U32 */ |
| 953 | LJFOLDF(simplify_conv_i64_num) |
| 954 | { |
| 955 | PHIBARRIER(fleft); |
| 956 | if ((fleft->op2 & IRCONV_SRCMASK) == IRT_INT) { |
| 957 | /* Reduce to a sign-extension. */ |
| 958 | fins->op1 = fleft->op1; |
| 959 | fins->op2 = ((IRT_I64<<5)|IRT_INT|IRCONV_SEXT); |
| 960 | return RETRYFOLD; |
| 961 | } else if ((fleft->op2 & IRCONV_SRCMASK) == IRT_U32) { |
| 962 | #if LJ_TARGET_X64 |
| 963 | return fleft->op1; |
| 964 | #else |
| 965 | /* Reduce to a zero-extension. */ |
| 966 | fins->op1 = fleft->op1; |
| 967 | fins->op2 = (IRT_I64<<5)|IRT_U32; |
| 968 | return RETRYFOLD; |
| 969 | #endif |
| 970 | } |
| 971 | return NEXTFOLD; |
| 972 | } |
| 973 | |
| 974 | LJFOLD(CONV CONV IRCONV_INT_I64) /* _INT or _U32 */ |
| 975 | LJFOLD(CONV CONV IRCONV_INT_U64) /* _INT or _U32 */ |
| 976 | LJFOLD(CONV CONV IRCONV_U32_I64) /* _INT or _U32 */ |
| 977 | LJFOLD(CONV CONV IRCONV_U32_U64) /* _INT or _U32 */ |
| 978 | LJFOLDF(simplify_conv_int_i64) |
| 979 | { |
| 980 | int src; |
| 981 | PHIBARRIER(fleft); |
| 982 | src = (fleft->op2 & IRCONV_SRCMASK); |
| 983 | if (src == IRT_INT || src == IRT_U32) { |
| 984 | if (src == ((fins->op2 & IRCONV_DSTMASK) >> IRCONV_DSH)) { |
| 985 | return fleft->op1; |
| 986 | } else { |
| 987 | fins->op2 = ((fins->op2 & IRCONV_DSTMASK) | src); |
| 988 | fins->op1 = fleft->op1; |
| 989 | return RETRYFOLD; |
| 990 | } |
| 991 | } |
| 992 | return NEXTFOLD; |
| 993 | } |
| 994 | |
| 995 | LJFOLD(CONV CONV IRCONV_FLOAT_NUM) /* _FLOAT */ |
| 996 | LJFOLDF(simplify_conv_flt_num) |
| 997 | { |
| 998 | PHIBARRIER(fleft); |
| 999 | if ((fleft->op2 & IRCONV_SRCMASK) == IRT_FLOAT) |
| 1000 | return fleft->op1; |
| 1001 | return NEXTFOLD; |
| 1002 | } |
| 1003 | |
| 1004 | /* Shortcut TOBIT + IRT_NUM <- IRT_INT/IRT_U32 conversion. */ |
| 1005 | LJFOLD(TOBIT CONV KNUM) |
| 1006 | LJFOLDF(simplify_tobit_conv) |
| 1007 | { |
| 1008 | if ((fleft->op2 & IRCONV_SRCMASK) == IRT_INT || |
| 1009 | (fleft->op2 & IRCONV_SRCMASK) == IRT_U32) { |
| 1010 | /* Fold even across PHI to avoid expensive num->int conversions in loop. */ |
| 1011 | lua_assert(irt_isnum(fleft->t)); |
| 1012 | return fleft->op1; |
| 1013 | } |
| 1014 | return NEXTFOLD; |
| 1015 | } |
| 1016 | |
| 1017 | /* Shortcut floor/ceil/round + IRT_NUM <- IRT_INT/IRT_U32 conversion. */ |
| 1018 | LJFOLD(FPMATH CONV IRFPM_FLOOR) |
| 1019 | LJFOLD(FPMATH CONV IRFPM_CEIL) |
| 1020 | LJFOLD(FPMATH CONV IRFPM_TRUNC) |
| 1021 | LJFOLDF(simplify_floor_conv) |
| 1022 | { |
| 1023 | if ((fleft->op2 & IRCONV_SRCMASK) == IRT_INT || |
| 1024 | (fleft->op2 & IRCONV_SRCMASK) == IRT_U32) |
| 1025 | return LEFTFOLD; |
| 1026 | return NEXTFOLD; |
| 1027 | } |
| 1028 | |
| 1029 | /* Strength reduction of widening. */ |
| 1030 | LJFOLD(CONV any IRCONV_I64_INT) |
| 1031 | LJFOLD(CONV any IRCONV_U64_INT) |
| 1032 | LJFOLDF(simplify_conv_sext) |
| 1033 | { |
| 1034 | IRRef ref = fins->op1; |
| 1035 | int64_t ofs = 0; |
| 1036 | if (!(fins->op2 & IRCONV_SEXT)) |
| 1037 | return NEXTFOLD; |
| 1038 | PHIBARRIER(fleft); |
| 1039 | if (fleft->o == IR_XLOAD && (irt_isu8(fleft->t) || irt_isu16(fleft->t))) |
| 1040 | goto ok_reduce; |
| 1041 | if (fleft->o == IR_ADD && irref_isk(fleft->op2)) { |
| 1042 | ofs = (int64_t)IR(fleft->op2)->i; |
| 1043 | ref = fleft->op1; |
| 1044 | } |
| 1045 | /* Use scalar evolution analysis results to strength-reduce sign-extension. */ |
| 1046 | if (ref == J->scev.idx) { |
| 1047 | IRRef lo = J->scev.dir ? J->scev.start : J->scev.stop; |
| 1048 | lua_assert(irt_isint(J->scev.t)); |
| 1049 | if (lo && IR(lo)->i + ofs >= 0) { |
| 1050 | ok_reduce: |
| 1051 | #if LJ_TARGET_X64 |
| 1052 | /* Eliminate widening. All 32 bit ops do an implicit zero-extension. */ |
| 1053 | return LEFTFOLD; |
| 1054 | #else |
| 1055 | /* Reduce to a (cheaper) zero-extension. */ |
| 1056 | fins->op2 &= ~IRCONV_SEXT; |
| 1057 | return RETRYFOLD; |
| 1058 | #endif |
| 1059 | } |
| 1060 | } |
| 1061 | return NEXTFOLD; |
| 1062 | } |
| 1063 | |
| 1064 | /* Strength reduction of narrowing. */ |
| 1065 | LJFOLD(CONV ADD IRCONV_INT_I64) |
| 1066 | LJFOLD(CONV SUB IRCONV_INT_I64) |
| 1067 | LJFOLD(CONV MUL IRCONV_INT_I64) |
| 1068 | LJFOLD(CONV ADD IRCONV_INT_U64) |
| 1069 | LJFOLD(CONV SUB IRCONV_INT_U64) |
| 1070 | LJFOLD(CONV MUL IRCONV_INT_U64) |
| 1071 | LJFOLD(CONV ADD IRCONV_U32_I64) |
| 1072 | LJFOLD(CONV SUB IRCONV_U32_I64) |
| 1073 | LJFOLD(CONV MUL IRCONV_U32_I64) |
| 1074 | LJFOLD(CONV ADD IRCONV_U32_U64) |
| 1075 | LJFOLD(CONV SUB IRCONV_U32_U64) |
| 1076 | LJFOLD(CONV MUL IRCONV_U32_U64) |
| 1077 | LJFOLDF(simplify_conv_narrow) |
| 1078 | { |
| 1079 | IROp op = (IROp)fleft->o; |
| 1080 | IRType t = irt_type(fins->t); |
| 1081 | IRRef op1 = fleft->op1, op2 = fleft->op2, mode = fins->op2; |
| 1082 | PHIBARRIER(fleft); |
| 1083 | op1 = emitir(IRTI(IR_CONV), op1, mode); |
| 1084 | op2 = emitir(IRTI(IR_CONV), op2, mode); |
| 1085 | fins->ot = IRT(op, t); |
| 1086 | fins->op1 = op1; |
| 1087 | fins->op2 = op2; |
| 1088 | return RETRYFOLD; |
| 1089 | } |
| 1090 | |
| 1091 | /* Special CSE rule for CONV. */ |
| 1092 | LJFOLD(CONV any any) |
| 1093 | LJFOLDF(cse_conv) |
| 1094 | { |
| 1095 | if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) { |
| 1096 | IRRef op1 = fins->op1, op2 = (fins->op2 & IRCONV_MODEMASK); |
| 1097 | uint8_t guard = irt_isguard(fins->t); |
| 1098 | IRRef ref = J->chain[IR_CONV]; |
| 1099 | while (ref > op1) { |
| 1100 | IRIns *ir = IR(ref); |
| 1101 | /* Commoning with stronger checks is ok. */ |
| 1102 | if (ir->op1 == op1 && (ir->op2 & IRCONV_MODEMASK) == op2 && |
| 1103 | irt_isguard(ir->t) >= guard) |
| 1104 | return ref; |
| 1105 | ref = ir->prev; |
| 1106 | } |
| 1107 | } |
| 1108 | return EMITFOLD; /* No fallthrough to regular CSE. */ |
| 1109 | } |
| 1110 | |
| 1111 | /* FP conversion narrowing. */ |
| 1112 | LJFOLD(TOBIT ADD KNUM) |
| 1113 | LJFOLD(TOBIT SUB KNUM) |
| 1114 | LJFOLD(CONV ADD IRCONV_INT_NUM) |
| 1115 | LJFOLD(CONV SUB IRCONV_INT_NUM) |
| 1116 | LJFOLD(CONV ADD IRCONV_I64_NUM) |
| 1117 | LJFOLD(CONV SUB IRCONV_I64_NUM) |
| 1118 | LJFOLDF(narrow_convert) |
| 1119 | { |
| 1120 | PHIBARRIER(fleft); |
| 1121 | /* Narrowing ignores PHIs and repeating it inside the loop is not useful. */ |
| 1122 | if (J->chain[IR_LOOP]) |
| 1123 | return NEXTFOLD; |
| 1124 | lua_assert(fins->o != IR_CONV || (fins->op2&IRCONV_CONVMASK) != IRCONV_TOBIT); |
| 1125 | return lj_opt_narrow_convert(J); |
| 1126 | } |
| 1127 | |
| 1128 | /* -- Integer algebraic simplifications ----------------------------------- */ |
| 1129 | |
| 1130 | LJFOLD(ADD any KINT) |
| 1131 | LJFOLD(ADDOV any KINT) |
| 1132 | LJFOLD(SUBOV any KINT) |
| 1133 | LJFOLDF(simplify_intadd_k) |
| 1134 | { |
| 1135 | if (fright->i == 0) /* i o 0 ==> i */ |
| 1136 | return LEFTFOLD; |
| 1137 | return NEXTFOLD; |
| 1138 | } |
| 1139 | |
| 1140 | LJFOLD(MULOV any KINT) |
| 1141 | LJFOLDF(simplify_intmul_k) |
| 1142 | { |
| 1143 | if (fright->i == 0) /* i * 0 ==> 0 */ |
| 1144 | return RIGHTFOLD; |
| 1145 | if (fright->i == 1) /* i * 1 ==> i */ |
| 1146 | return LEFTFOLD; |
| 1147 | if (fright->i == 2) { /* i * 2 ==> i + i */ |
| 1148 | fins->o = IR_ADDOV; |
| 1149 | fins->op2 = fins->op1; |
| 1150 | return RETRYFOLD; |
| 1151 | } |
| 1152 | return NEXTFOLD; |
| 1153 | } |
| 1154 | |
| 1155 | LJFOLD(SUB any KINT) |
| 1156 | LJFOLDF(simplify_intsub_k) |
| 1157 | { |
| 1158 | if (fright->i == 0) /* i - 0 ==> i */ |
| 1159 | return LEFTFOLD; |
| 1160 | fins->o = IR_ADD; /* i - k ==> i + (-k) */ |
| 1161 | fins->op2 = (IRRef1)lj_ir_kint(J, -fright->i); /* Overflow for -2^31 ok. */ |
| 1162 | return RETRYFOLD; |
| 1163 | } |
| 1164 | |
| 1165 | LJFOLD(SUB KINT any) |
| 1166 | LJFOLD(SUB KINT64 any) |
| 1167 | LJFOLDF(simplify_intsub_kleft) |
| 1168 | { |
| 1169 | if (fleft->o == IR_KINT ? (fleft->i == 0) : (ir_kint64(fleft)->u64 == 0)) { |
| 1170 | fins->o = IR_NEG; /* 0 - i ==> -i */ |
| 1171 | fins->op1 = fins->op2; |
| 1172 | return RETRYFOLD; |
| 1173 | } |
| 1174 | return NEXTFOLD; |
| 1175 | } |
| 1176 | |
| 1177 | LJFOLD(ADD any KINT64) |
| 1178 | LJFOLDF(simplify_intadd_k64) |
| 1179 | { |
| 1180 | if (ir_kint64(fright)->u64 == 0) /* i + 0 ==> i */ |
| 1181 | return LEFTFOLD; |
| 1182 | return NEXTFOLD; |
| 1183 | } |
| 1184 | |
| 1185 | LJFOLD(SUB any KINT64) |
| 1186 | LJFOLDF(simplify_intsub_k64) |
| 1187 | { |
| 1188 | uint64_t k = ir_kint64(fright)->u64; |
| 1189 | if (k == 0) /* i - 0 ==> i */ |
| 1190 | return LEFTFOLD; |
| 1191 | fins->o = IR_ADD; /* i - k ==> i + (-k) */ |
| 1192 | fins->op2 = (IRRef1)lj_ir_kint64(J, (uint64_t)-(int64_t)k); |
| 1193 | return RETRYFOLD; |
| 1194 | } |
| 1195 | |
| 1196 | static TRef simplify_intmul_k(jit_State *J, int32_t k) |
| 1197 | { |
| 1198 | /* Note: many more simplifications are possible, e.g. 2^k1 +- 2^k2. |
| 1199 | ** But this is mainly intended for simple address arithmetic. |
| 1200 | ** Also it's easier for the backend to optimize the original multiplies. |
| 1201 | */ |
| 1202 | if (k == 1) { /* i * 1 ==> i */ |
| 1203 | return LEFTFOLD; |
| 1204 | } else if ((k & (k-1)) == 0) { /* i * 2^k ==> i << k */ |
| 1205 | fins->o = IR_BSHL; |
| 1206 | fins->op2 = lj_ir_kint(J, lj_fls((uint32_t)k)); |
| 1207 | return RETRYFOLD; |
| 1208 | } |
| 1209 | return NEXTFOLD; |
| 1210 | } |
| 1211 | |
| 1212 | LJFOLD(MUL any KINT) |
| 1213 | LJFOLDF(simplify_intmul_k32) |
| 1214 | { |
| 1215 | if (fright->i == 0) /* i * 0 ==> 0 */ |
| 1216 | return INTFOLD(0); |
| 1217 | else if (fright->i > 0) |
| 1218 | return simplify_intmul_k(J, fright->i); |
| 1219 | return NEXTFOLD; |
| 1220 | } |
| 1221 | |
| 1222 | LJFOLD(MUL any KINT64) |
| 1223 | LJFOLDF(simplify_intmul_k64) |
| 1224 | { |
| 1225 | if (ir_kint64(fright)->u64 == 0) /* i * 0 ==> 0 */ |
| 1226 | return INT64FOLD(0); |
| 1227 | #if LJ_64 |
| 1228 | /* NYI: SPLIT for BSHL and 32 bit backend support. */ |
| 1229 | else if (ir_kint64(fright)->u64 < 0x80000000u) |
| 1230 | return simplify_intmul_k(J, (int32_t)ir_kint64(fright)->u64); |
| 1231 | #endif |
| 1232 | return NEXTFOLD; |
| 1233 | } |
| 1234 | |
| 1235 | LJFOLD(MOD any KINT) |
| 1236 | LJFOLDF(simplify_intmod_k) |
| 1237 | { |
| 1238 | int32_t k = fright->i; |
| 1239 | lua_assert(k != 0); |
| 1240 | if (k > 0 && (k & (k-1)) == 0) { /* i % (2^k) ==> i & (2^k-1) */ |
| 1241 | fins->o = IR_BAND; |
| 1242 | fins->op2 = lj_ir_kint(J, k-1); |
| 1243 | return RETRYFOLD; |
| 1244 | } |
| 1245 | return NEXTFOLD; |
| 1246 | } |
| 1247 | |
| 1248 | LJFOLD(MOD KINT any) |
| 1249 | LJFOLDF(simplify_intmod_kleft) |
| 1250 | { |
| 1251 | if (fleft->i == 0) |
| 1252 | return INTFOLD(0); |
| 1253 | return NEXTFOLD; |
| 1254 | } |
| 1255 | |
| 1256 | LJFOLD(SUB any any) |
| 1257 | LJFOLD(SUBOV any any) |
| 1258 | LJFOLDF(simplify_intsub) |
| 1259 | { |
| 1260 | if (fins->op1 == fins->op2 && !irt_isnum(fins->t)) /* i - i ==> 0 */ |
| 1261 | return irt_is64(fins->t) ? INT64FOLD(0) : INTFOLD(0); |
| 1262 | return NEXTFOLD; |
| 1263 | } |
| 1264 | |
| 1265 | LJFOLD(SUB ADD any) |
| 1266 | LJFOLDF(simplify_intsubadd_leftcancel) |
| 1267 | { |
| 1268 | if (!irt_isnum(fins->t)) { |
| 1269 | PHIBARRIER(fleft); |
| 1270 | if (fins->op2 == fleft->op1) /* (i + j) - i ==> j */ |
| 1271 | return fleft->op2; |
| 1272 | if (fins->op2 == fleft->op2) /* (i + j) - j ==> i */ |
| 1273 | return fleft->op1; |
| 1274 | } |
| 1275 | return NEXTFOLD; |
| 1276 | } |
| 1277 | |
| 1278 | LJFOLD(SUB SUB any) |
| 1279 | LJFOLDF(simplify_intsubsub_leftcancel) |
| 1280 | { |
| 1281 | if (!irt_isnum(fins->t)) { |
| 1282 | PHIBARRIER(fleft); |
| 1283 | if (fins->op2 == fleft->op1) { /* (i - j) - i ==> 0 - j */ |
| 1284 | fins->op1 = (IRRef1)lj_ir_kint(J, 0); |
| 1285 | fins->op2 = fleft->op2; |
| 1286 | return RETRYFOLD; |
| 1287 | } |
| 1288 | } |
| 1289 | return NEXTFOLD; |
| 1290 | } |
| 1291 | |
| 1292 | LJFOLD(SUB any SUB) |
| 1293 | LJFOLDF(simplify_intsubsub_rightcancel) |
| 1294 | { |
| 1295 | if (!irt_isnum(fins->t)) { |
| 1296 | PHIBARRIER(fright); |
| 1297 | if (fins->op1 == fright->op1) /* i - (i - j) ==> j */ |
| 1298 | return fright->op2; |
| 1299 | } |
| 1300 | return NEXTFOLD; |
| 1301 | } |
| 1302 | |
| 1303 | LJFOLD(SUB any ADD) |
| 1304 | LJFOLDF(simplify_intsubadd_rightcancel) |
| 1305 | { |
| 1306 | if (!irt_isnum(fins->t)) { |
| 1307 | PHIBARRIER(fright); |
| 1308 | if (fins->op1 == fright->op1) { /* i - (i + j) ==> 0 - j */ |
| 1309 | fins->op2 = fright->op2; |
| 1310 | fins->op1 = (IRRef1)lj_ir_kint(J, 0); |
| 1311 | return RETRYFOLD; |
| 1312 | } |
| 1313 | if (fins->op1 == fright->op2) { /* i - (j + i) ==> 0 - j */ |
| 1314 | fins->op2 = fright->op1; |
| 1315 | fins->op1 = (IRRef1)lj_ir_kint(J, 0); |
| 1316 | return RETRYFOLD; |
| 1317 | } |
| 1318 | } |
| 1319 | return NEXTFOLD; |
| 1320 | } |
| 1321 | |
| 1322 | LJFOLD(SUB ADD ADD) |
| 1323 | LJFOLDF(simplify_intsubaddadd_cancel) |
| 1324 | { |
| 1325 | if (!irt_isnum(fins->t)) { |
| 1326 | PHIBARRIER(fleft); |
| 1327 | PHIBARRIER(fright); |
| 1328 | if (fleft->op1 == fright->op1) { /* (i + j1) - (i + j2) ==> j1 - j2 */ |
| 1329 | fins->op1 = fleft->op2; |
| 1330 | fins->op2 = fright->op2; |
| 1331 | return RETRYFOLD; |
| 1332 | } |
| 1333 | if (fleft->op1 == fright->op2) { /* (i + j1) - (j2 + i) ==> j1 - j2 */ |
| 1334 | fins->op1 = fleft->op2; |
| 1335 | fins->op2 = fright->op1; |
| 1336 | return RETRYFOLD; |
| 1337 | } |
| 1338 | if (fleft->op2 == fright->op1) { /* (j1 + i) - (i + j2) ==> j1 - j2 */ |
| 1339 | fins->op1 = fleft->op1; |
| 1340 | fins->op2 = fright->op2; |
| 1341 | return RETRYFOLD; |
| 1342 | } |
| 1343 | if (fleft->op2 == fright->op2) { /* (j1 + i) - (j2 + i) ==> j1 - j2 */ |
| 1344 | fins->op1 = fleft->op1; |
| 1345 | fins->op2 = fright->op1; |
| 1346 | return RETRYFOLD; |
| 1347 | } |
| 1348 | } |
| 1349 | return NEXTFOLD; |
| 1350 | } |
| 1351 | |
| 1352 | LJFOLD(BAND any KINT) |
| 1353 | LJFOLD(BAND any KINT64) |
| 1354 | LJFOLDF(simplify_band_k) |
| 1355 | { |
| 1356 | int64_t k = fright->o == IR_KINT ? (int64_t)fright->i : |
| 1357 | (int64_t)ir_k64(fright)->u64; |
| 1358 | if (k == 0) /* i & 0 ==> 0 */ |
| 1359 | return RIGHTFOLD; |
| 1360 | if (k == -1) /* i & -1 ==> i */ |
| 1361 | return LEFTFOLD; |
| 1362 | return NEXTFOLD; |
| 1363 | } |
| 1364 | |
| 1365 | LJFOLD(BOR any KINT) |
| 1366 | LJFOLD(BOR any KINT64) |
| 1367 | LJFOLDF(simplify_bor_k) |
| 1368 | { |
| 1369 | int64_t k = fright->o == IR_KINT ? (int64_t)fright->i : |
| 1370 | (int64_t)ir_k64(fright)->u64; |
| 1371 | if (k == 0) /* i | 0 ==> i */ |
| 1372 | return LEFTFOLD; |
| 1373 | if (k == -1) /* i | -1 ==> -1 */ |
| 1374 | return RIGHTFOLD; |
| 1375 | return NEXTFOLD; |
| 1376 | } |
| 1377 | |
| 1378 | LJFOLD(BXOR any KINT) |
| 1379 | LJFOLD(BXOR any KINT64) |
| 1380 | LJFOLDF(simplify_bxor_k) |
| 1381 | { |
| 1382 | int64_t k = fright->o == IR_KINT ? (int64_t)fright->i : |
| 1383 | (int64_t)ir_k64(fright)->u64; |
| 1384 | if (k == 0) /* i xor 0 ==> i */ |
| 1385 | return LEFTFOLD; |
| 1386 | if (k == -1) { /* i xor -1 ==> ~i */ |
| 1387 | fins->o = IR_BNOT; |
| 1388 | fins->op2 = 0; |
| 1389 | return RETRYFOLD; |
| 1390 | } |
| 1391 | return NEXTFOLD; |
| 1392 | } |
| 1393 | |
| 1394 | LJFOLD(BSHL any KINT) |
| 1395 | LJFOLD(BSHR any KINT) |
| 1396 | LJFOLD(BSAR any KINT) |
| 1397 | LJFOLD(BROL any KINT) |
| 1398 | LJFOLD(BROR any KINT) |
| 1399 | LJFOLDF(simplify_shift_ik) |
| 1400 | { |
| 1401 | int32_t mask = irt_is64(fins->t) ? 63 : 31; |
| 1402 | int32_t k = (fright->i & mask); |
| 1403 | if (k == 0) /* i o 0 ==> i */ |
| 1404 | return LEFTFOLD; |
| 1405 | if (k == 1 && fins->o == IR_BSHL) { /* i << 1 ==> i + i */ |
| 1406 | fins->o = IR_ADD; |
| 1407 | fins->op2 = fins->op1; |
| 1408 | return RETRYFOLD; |
| 1409 | } |
| 1410 | if (k != fright->i) { /* i o k ==> i o (k & mask) */ |
| 1411 | fins->op2 = (IRRef1)lj_ir_kint(J, k); |
| 1412 | return RETRYFOLD; |
| 1413 | } |
| 1414 | #ifndef LJ_TARGET_UNIFYROT |
| 1415 | if (fins->o == IR_BROR) { /* bror(i, k) ==> brol(i, (-k)&mask) */ |
| 1416 | fins->o = IR_BROL; |
| 1417 | fins->op2 = (IRRef1)lj_ir_kint(J, (-k)&mask); |
| 1418 | return RETRYFOLD; |
| 1419 | } |
| 1420 | #endif |
| 1421 | return NEXTFOLD; |
| 1422 | } |
| 1423 | |
| 1424 | LJFOLD(BSHL any BAND) |
| 1425 | LJFOLD(BSHR any BAND) |
| 1426 | LJFOLD(BSAR any BAND) |
| 1427 | LJFOLD(BROL any BAND) |
| 1428 | LJFOLD(BROR any BAND) |
| 1429 | LJFOLDF(simplify_shift_andk) |
| 1430 | { |
| 1431 | IRIns *irk = IR(fright->op2); |
| 1432 | PHIBARRIER(fright); |
| 1433 | if ((fins->o < IR_BROL ? LJ_TARGET_MASKSHIFT : LJ_TARGET_MASKROT) && |
| 1434 | irk->o == IR_KINT) { /* i o (j & mask) ==> i o j */ |
| 1435 | int32_t mask = irt_is64(fins->t) ? 63 : 31; |
| 1436 | int32_t k = irk->i & mask; |
| 1437 | if (k == mask) { |
| 1438 | fins->op2 = fright->op1; |
| 1439 | return RETRYFOLD; |
| 1440 | } |
| 1441 | } |
| 1442 | return NEXTFOLD; |
| 1443 | } |
| 1444 | |
| 1445 | LJFOLD(BSHL KINT any) |
| 1446 | LJFOLD(BSHR KINT any) |
| 1447 | LJFOLD(BSHL KINT64 any) |
| 1448 | LJFOLD(BSHR KINT64 any) |
| 1449 | LJFOLDF(simplify_shift1_ki) |
| 1450 | { |
| 1451 | int64_t k = fleft->o == IR_KINT ? (int64_t)fleft->i : |
| 1452 | (int64_t)ir_k64(fleft)->u64; |
| 1453 | if (k == 0) /* 0 o i ==> 0 */ |
| 1454 | return LEFTFOLD; |
| 1455 | return NEXTFOLD; |
| 1456 | } |
| 1457 | |
| 1458 | LJFOLD(BSAR KINT any) |
| 1459 | LJFOLD(BROL KINT any) |
| 1460 | LJFOLD(BROR KINT any) |
| 1461 | LJFOLD(BSAR KINT64 any) |
| 1462 | LJFOLD(BROL KINT64 any) |
| 1463 | LJFOLD(BROR KINT64 any) |
| 1464 | LJFOLDF(simplify_shift2_ki) |
| 1465 | { |
| 1466 | int64_t k = fleft->o == IR_KINT ? (int64_t)fleft->i : |
| 1467 | (int64_t)ir_k64(fleft)->u64; |
| 1468 | if (k == 0 || k == -1) /* 0 o i ==> 0; -1 o i ==> -1 */ |
| 1469 | return LEFTFOLD; |
| 1470 | return NEXTFOLD; |
| 1471 | } |
| 1472 | |
| 1473 | LJFOLD(BSHL BAND KINT) |
| 1474 | LJFOLD(BSHR BAND KINT) |
| 1475 | LJFOLD(BROL BAND KINT) |
| 1476 | LJFOLD(BROR BAND KINT) |
| 1477 | LJFOLDF(simplify_shiftk_andk) |
| 1478 | { |
| 1479 | IRIns *irk = IR(fleft->op2); |
| 1480 | PHIBARRIER(fleft); |
| 1481 | if (irk->o == IR_KINT) { /* (i & k1) o k2 ==> (i o k2) & (k1 o k2) */ |
| 1482 | int32_t k = kfold_intop(irk->i, fright->i, (IROp)fins->o); |
| 1483 | fins->op1 = fleft->op1; |
| 1484 | fins->op1 = (IRRef1)lj_opt_fold(J); |
| 1485 | fins->op2 = (IRRef1)lj_ir_kint(J, k); |
| 1486 | fins->ot = IRTI(IR_BAND); |
| 1487 | return RETRYFOLD; |
| 1488 | } |
| 1489 | return NEXTFOLD; |
| 1490 | } |
| 1491 | |
| 1492 | LJFOLD(BAND BSHL KINT) |
| 1493 | LJFOLD(BAND BSHR KINT) |
| 1494 | LJFOLDF(simplify_andk_shiftk) |
| 1495 | { |
| 1496 | IRIns *irk = IR(fleft->op2); |
| 1497 | if (irk->o == IR_KINT && |
| 1498 | kfold_intop(-1, irk->i, (IROp)fleft->o) == fright->i) |
| 1499 | return LEFTFOLD; /* (i o k1) & k2 ==> i, if (-1 o k1) == k2 */ |
| 1500 | return NEXTFOLD; |
| 1501 | } |
| 1502 | |
| 1503 | /* -- Reassociation ------------------------------------------------------- */ |
| 1504 | |
| 1505 | LJFOLD(ADD ADD KINT) |
| 1506 | LJFOLD(MUL MUL KINT) |
| 1507 | LJFOLD(BAND BAND KINT) |
| 1508 | LJFOLD(BOR BOR KINT) |
| 1509 | LJFOLD(BXOR BXOR KINT) |
| 1510 | LJFOLDF(reassoc_intarith_k) |
| 1511 | { |
| 1512 | IRIns *irk = IR(fleft->op2); |
| 1513 | if (irk->o == IR_KINT) { |
| 1514 | int32_t k = kfold_intop(irk->i, fright->i, (IROp)fins->o); |
| 1515 | if (k == irk->i) /* (i o k1) o k2 ==> i o k1, if (k1 o k2) == k1. */ |
| 1516 | return LEFTFOLD; |
| 1517 | PHIBARRIER(fleft); |
| 1518 | fins->op1 = fleft->op1; |
| 1519 | fins->op2 = (IRRef1)lj_ir_kint(J, k); |
| 1520 | return RETRYFOLD; /* (i o k1) o k2 ==> i o (k1 o k2) */ |
| 1521 | } |
| 1522 | return NEXTFOLD; |
| 1523 | } |
| 1524 | |
| 1525 | LJFOLD(ADD ADD KINT64) |
| 1526 | LJFOLD(MUL MUL KINT64) |
| 1527 | LJFOLD(BAND BAND KINT64) |
| 1528 | LJFOLD(BOR BOR KINT64) |
| 1529 | LJFOLD(BXOR BXOR KINT64) |
| 1530 | LJFOLDF(reassoc_intarith_k64) |
| 1531 | { |
| 1532 | #if LJ_HASFFI || LJ_64 |
| 1533 | IRIns *irk = IR(fleft->op2); |
| 1534 | if (irk->o == IR_KINT64) { |
| 1535 | uint64_t k = kfold_int64arith(ir_k64(irk)->u64, |
| 1536 | ir_k64(fright)->u64, (IROp)fins->o); |
| 1537 | PHIBARRIER(fleft); |
| 1538 | fins->op1 = fleft->op1; |
| 1539 | fins->op2 = (IRRef1)lj_ir_kint64(J, k); |
| 1540 | return RETRYFOLD; /* (i o k1) o k2 ==> i o (k1 o k2) */ |
| 1541 | } |
| 1542 | return NEXTFOLD; |
| 1543 | #else |
| 1544 | UNUSED(J); lua_assert(0); return FAILFOLD; |
| 1545 | #endif |
| 1546 | } |
| 1547 | |
| 1548 | LJFOLD(MIN MIN any) |
| 1549 | LJFOLD(MAX MAX any) |
| 1550 | LJFOLD(BAND BAND any) |
| 1551 | LJFOLD(BOR BOR any) |
| 1552 | LJFOLDF(reassoc_dup) |
| 1553 | { |
| 1554 | if (fins->op2 == fleft->op1 || fins->op2 == fleft->op2) |
| 1555 | return LEFTFOLD; /* (a o b) o a ==> a o b; (a o b) o b ==> a o b */ |
| 1556 | return NEXTFOLD; |
| 1557 | } |
| 1558 | |
| 1559 | LJFOLD(BXOR BXOR any) |
| 1560 | LJFOLDF(reassoc_bxor) |
| 1561 | { |
| 1562 | PHIBARRIER(fleft); |
| 1563 | if (fins->op2 == fleft->op1) /* (a xor b) xor a ==> b */ |
| 1564 | return fleft->op2; |
| 1565 | if (fins->op2 == fleft->op2) /* (a xor b) xor b ==> a */ |
| 1566 | return fleft->op1; |
| 1567 | return NEXTFOLD; |
| 1568 | } |
| 1569 | |
| 1570 | LJFOLD(BSHL BSHL KINT) |
| 1571 | LJFOLD(BSHR BSHR KINT) |
| 1572 | LJFOLD(BSAR BSAR KINT) |
| 1573 | LJFOLD(BROL BROL KINT) |
| 1574 | LJFOLD(BROR BROR KINT) |
| 1575 | LJFOLDF(reassoc_shift) |
| 1576 | { |
| 1577 | IRIns *irk = IR(fleft->op2); |
| 1578 | PHIBARRIER(fleft); /* The (shift any KINT) rule covers k2 == 0 and more. */ |
| 1579 | if (irk->o == IR_KINT) { /* (i o k1) o k2 ==> i o (k1 + k2) */ |
| 1580 | int32_t mask = irt_is64(fins->t) ? 63 : 31; |
| 1581 | int32_t k = (irk->i & mask) + (fright->i & mask); |
| 1582 | if (k > mask) { /* Combined shift too wide? */ |
| 1583 | if (fins->o == IR_BSHL || fins->o == IR_BSHR) |
| 1584 | return mask == 31 ? INTFOLD(0) : INT64FOLD(0); |
| 1585 | else if (fins->o == IR_BSAR) |
| 1586 | k = mask; |
| 1587 | else |
| 1588 | k &= mask; |
| 1589 | } |
| 1590 | fins->op1 = fleft->op1; |
| 1591 | fins->op2 = (IRRef1)lj_ir_kint(J, k); |
| 1592 | return RETRYFOLD; |
| 1593 | } |
| 1594 | return NEXTFOLD; |
| 1595 | } |
| 1596 | |
| 1597 | LJFOLD(MIN MIN KNUM) |
| 1598 | LJFOLD(MAX MAX KNUM) |
| 1599 | LJFOLD(MIN MIN KINT) |
| 1600 | LJFOLD(MAX MAX KINT) |
| 1601 | LJFOLDF(reassoc_minmax_k) |
| 1602 | { |
| 1603 | IRIns *irk = IR(fleft->op2); |
| 1604 | if (irk->o == IR_KNUM) { |
| 1605 | lua_Number a = ir_knum(irk)->n; |
| 1606 | lua_Number y = lj_vm_foldarith(a, knumright, fins->o - IR_ADD); |
| 1607 | if (a == y) /* (x o k1) o k2 ==> x o k1, if (k1 o k2) == k1. */ |
| 1608 | return LEFTFOLD; |
| 1609 | PHIBARRIER(fleft); |
| 1610 | fins->op1 = fleft->op1; |
| 1611 | fins->op2 = (IRRef1)lj_ir_knum(J, y); |
| 1612 | return RETRYFOLD; /* (x o k1) o k2 ==> x o (k1 o k2) */ |
| 1613 | } else if (irk->o == IR_KINT) { |
| 1614 | int32_t a = irk->i; |
| 1615 | int32_t y = kfold_intop(a, fright->i, fins->o); |
| 1616 | if (a == y) /* (x o k1) o k2 ==> x o k1, if (k1 o k2) == k1. */ |
| 1617 | return LEFTFOLD; |
| 1618 | PHIBARRIER(fleft); |
| 1619 | fins->op1 = fleft->op1; |
| 1620 | fins->op2 = (IRRef1)lj_ir_kint(J, y); |
| 1621 | return RETRYFOLD; /* (x o k1) o k2 ==> x o (k1 o k2) */ |
| 1622 | } |
| 1623 | return NEXTFOLD; |
| 1624 | } |
| 1625 | |
| 1626 | LJFOLD(MIN MAX any) |
| 1627 | LJFOLD(MAX MIN any) |
| 1628 | LJFOLDF(reassoc_minmax_left) |
| 1629 | { |
| 1630 | if (fins->op2 == fleft->op1 || fins->op2 == fleft->op2) |
| 1631 | return RIGHTFOLD; /* (b o1 a) o2 b ==> b; (a o1 b) o2 b ==> b */ |
| 1632 | return NEXTFOLD; |
| 1633 | } |
| 1634 | |
| 1635 | LJFOLD(MIN any MAX) |
| 1636 | LJFOLD(MAX any MIN) |
| 1637 | LJFOLDF(reassoc_minmax_right) |
| 1638 | { |
| 1639 | if (fins->op1 == fright->op1 || fins->op1 == fright->op2) |
| 1640 | return LEFTFOLD; /* a o2 (a o1 b) ==> a; a o2 (b o1 a) ==> a */ |
| 1641 | return NEXTFOLD; |
| 1642 | } |
| 1643 | |
| 1644 | /* -- Array bounds check elimination -------------------------------------- */ |
| 1645 | |
| 1646 | /* Eliminate ABC across PHIs to handle t[i-1] forwarding case. |
| 1647 | ** ABC(asize, (i+k)+(-k)) ==> ABC(asize, i), but only if it already exists. |
| 1648 | ** Could be generalized to (i+k1)+k2 ==> i+(k1+k2), but needs better disambig. |
| 1649 | */ |
| 1650 | LJFOLD(ABC any ADD) |
| 1651 | LJFOLDF(abc_fwd) |
| 1652 | { |
| 1653 | if (LJ_LIKELY(J->flags & JIT_F_OPT_ABC)) { |
| 1654 | if (irref_isk(fright->op2)) { |
| 1655 | IRIns *add2 = IR(fright->op1); |
| 1656 | if (add2->o == IR_ADD && irref_isk(add2->op2) && |
| 1657 | IR(fright->op2)->i == -IR(add2->op2)->i) { |
| 1658 | IRRef ref = J->chain[IR_ABC]; |
| 1659 | IRRef lim = add2->op1; |
| 1660 | if (fins->op1 > lim) lim = fins->op1; |
| 1661 | while (ref > lim) { |
| 1662 | IRIns *ir = IR(ref); |
| 1663 | if (ir->op1 == fins->op1 && ir->op2 == add2->op1) |
| 1664 | return DROPFOLD; |
| 1665 | ref = ir->prev; |
| 1666 | } |
| 1667 | } |
| 1668 | } |
| 1669 | } |
| 1670 | return NEXTFOLD; |
| 1671 | } |
| 1672 | |
| 1673 | /* Eliminate ABC for constants. |
| 1674 | ** ABC(asize, k1), ABC(asize k2) ==> ABC(asize, max(k1, k2)) |
| 1675 | ** Drop second ABC if k2 is lower. Otherwise patch first ABC with k2. |
| 1676 | */ |
| 1677 | LJFOLD(ABC any KINT) |
| 1678 | LJFOLDF(abc_k) |
| 1679 | { |
| 1680 | if (LJ_LIKELY(J->flags & JIT_F_OPT_ABC)) { |
| 1681 | IRRef ref = J->chain[IR_ABC]; |
| 1682 | IRRef asize = fins->op1; |
| 1683 | while (ref > asize) { |
| 1684 | IRIns *ir = IR(ref); |
| 1685 | if (ir->op1 == asize && irref_isk(ir->op2)) { |
| 1686 | int32_t k = IR(ir->op2)->i; |
| 1687 | if (fright->i > k) |
| 1688 | ir->op2 = fins->op2; |
| 1689 | return DROPFOLD; |
| 1690 | } |
| 1691 | ref = ir->prev; |
| 1692 | } |
| 1693 | return EMITFOLD; /* Already performed CSE. */ |
| 1694 | } |
| 1695 | return NEXTFOLD; |
| 1696 | } |
| 1697 | |
| 1698 | /* Eliminate invariant ABC inside loop. */ |
| 1699 | LJFOLD(ABC any any) |
| 1700 | LJFOLDF(abc_invar) |
| 1701 | { |
| 1702 | /* Invariant ABC marked as PTR. Drop if op1 is invariant, too. */ |
| 1703 | if (!irt_isint(fins->t) && fins->op1 < J->chain[IR_LOOP] && |
| 1704 | !irt_isphi(IR(fins->op1)->t)) |
| 1705 | return DROPFOLD; |
| 1706 | return NEXTFOLD; |
| 1707 | } |
| 1708 | |
| 1709 | /* -- Commutativity ------------------------------------------------------- */ |
| 1710 | |
| 1711 | /* The refs of commutative ops are canonicalized. Lower refs go to the right. |
| 1712 | ** Rationale behind this: |
| 1713 | ** - It (also) moves constants to the right. |
| 1714 | ** - It reduces the number of FOLD rules (e.g. (BOR any KINT) suffices). |
| 1715 | ** - It helps CSE to find more matches. |
| 1716 | ** - The assembler generates better code with constants at the right. |
| 1717 | */ |
| 1718 | |
| 1719 | LJFOLD(ADD any any) |
| 1720 | LJFOLD(MUL any any) |
| 1721 | LJFOLD(ADDOV any any) |
| 1722 | LJFOLD(MULOV any any) |
| 1723 | LJFOLDF(comm_swap) |
| 1724 | { |
| 1725 | if (fins->op1 < fins->op2) { /* Move lower ref to the right. */ |
| 1726 | IRRef1 tmp = fins->op1; |
| 1727 | fins->op1 = fins->op2; |
| 1728 | fins->op2 = tmp; |
| 1729 | return RETRYFOLD; |
| 1730 | } |
| 1731 | return NEXTFOLD; |
| 1732 | } |
| 1733 | |
| 1734 | LJFOLD(EQ any any) |
| 1735 | LJFOLD(NE any any) |
| 1736 | LJFOLDF(comm_equal) |
| 1737 | { |
| 1738 | /* For non-numbers only: x == x ==> drop; x ~= x ==> fail */ |
| 1739 | if (fins->op1 == fins->op2 && !irt_isnum(fins->t)) |
| 1740 | return CONDFOLD(fins->o == IR_EQ); |
| 1741 | return fold_comm_swap(J); |
| 1742 | } |
| 1743 | |
| 1744 | LJFOLD(LT any any) |
| 1745 | LJFOLD(GE any any) |
| 1746 | LJFOLD(LE any any) |
| 1747 | LJFOLD(GT any any) |
| 1748 | LJFOLD(ULT any any) |
| 1749 | LJFOLD(UGE any any) |
| 1750 | LJFOLD(ULE any any) |
| 1751 | LJFOLD(UGT any any) |
| 1752 | LJFOLDF(comm_comp) |
| 1753 | { |
| 1754 | /* For non-numbers only: x <=> x ==> drop; x <> x ==> fail */ |
| 1755 | if (fins->op1 == fins->op2 && !irt_isnum(fins->t)) |
| 1756 | return CONDFOLD((fins->o ^ (fins->o >> 1)) & 1); |
| 1757 | if (fins->op1 < fins->op2) { /* Move lower ref to the right. */ |
| 1758 | IRRef1 tmp = fins->op1; |
| 1759 | fins->op1 = fins->op2; |
| 1760 | fins->op2 = tmp; |
| 1761 | fins->o ^= 3; /* GT <-> LT, GE <-> LE, does not affect U */ |
| 1762 | return RETRYFOLD; |
| 1763 | } |
| 1764 | return NEXTFOLD; |
| 1765 | } |
| 1766 | |
| 1767 | LJFOLD(BAND any any) |
| 1768 | LJFOLD(BOR any any) |
| 1769 | LJFOLD(MIN any any) |
| 1770 | LJFOLD(MAX any any) |
| 1771 | LJFOLDF(comm_dup) |
| 1772 | { |
| 1773 | if (fins->op1 == fins->op2) /* x o x ==> x */ |
| 1774 | return LEFTFOLD; |
| 1775 | return fold_comm_swap(J); |
| 1776 | } |
| 1777 | |
| 1778 | LJFOLD(BXOR any any) |
| 1779 | LJFOLDF(comm_bxor) |
| 1780 | { |
| 1781 | if (fins->op1 == fins->op2) /* i xor i ==> 0 */ |
| 1782 | return irt_is64(fins->t) ? INT64FOLD(0) : INTFOLD(0); |
| 1783 | return fold_comm_swap(J); |
| 1784 | } |
| 1785 | |
| 1786 | /* -- Simplification of compound expressions ------------------------------ */ |
| 1787 | |
| 1788 | static TRef kfold_xload(jit_State *J, IRIns *ir, const void *p) |
| 1789 | { |
| 1790 | int32_t k; |
| 1791 | switch (irt_type(ir->t)) { |
| 1792 | case IRT_NUM: return lj_ir_knum_u64(J, *(uint64_t *)p); |
| 1793 | case IRT_I8: k = (int32_t)*(int8_t *)p; break; |
| 1794 | case IRT_U8: k = (int32_t)*(uint8_t *)p; break; |
| 1795 | case IRT_I16: k = (int32_t)(int16_t)lj_getu16(p); break; |
| 1796 | case IRT_U16: k = (int32_t)(uint16_t)lj_getu16(p); break; |
| 1797 | case IRT_INT: case IRT_U32: k = (int32_t)lj_getu32(p); break; |
| 1798 | case IRT_I64: case IRT_U64: return lj_ir_kint64(J, *(uint64_t *)p); |
| 1799 | default: return 0; |
| 1800 | } |
| 1801 | return lj_ir_kint(J, k); |
| 1802 | } |
| 1803 | |
| 1804 | /* Turn: string.sub(str, a, b) == kstr |
| 1805 | ** into: string.byte(str, a) == string.byte(kstr, 1) etc. |
| 1806 | ** Note: this creates unaligned XLOADs on x86/x64. |
| 1807 | */ |
| 1808 | LJFOLD(EQ SNEW KGC) |
| 1809 | LJFOLD(NE SNEW KGC) |
| 1810 | LJFOLDF(merge_eqne_snew_kgc) |
| 1811 | { |
| 1812 | GCstr *kstr = ir_kstr(fright); |
| 1813 | int32_t len = (int32_t)kstr->len; |
| 1814 | lua_assert(irt_isstr(fins->t)); |
| 1815 | |
| 1816 | #if LJ_TARGET_UNALIGNED |
| 1817 | #define FOLD_SNEW_MAX_LEN 4 /* Handle string lengths 0, 1, 2, 3, 4. */ |
| 1818 | #define FOLD_SNEW_TYPE8 IRT_I8 /* Creates shorter immediates. */ |
| 1819 | #else |
| 1820 | #define FOLD_SNEW_MAX_LEN 1 /* Handle string lengths 0 or 1. */ |
| 1821 | #define FOLD_SNEW_TYPE8 IRT_U8 /* Prefer unsigned loads. */ |
| 1822 | #endif |
| 1823 | |
| 1824 | PHIBARRIER(fleft); |
| 1825 | if (len <= FOLD_SNEW_MAX_LEN) { |
| 1826 | IROp op = (IROp)fins->o; |
| 1827 | IRRef strref = fleft->op1; |
| 1828 | lua_assert(IR(strref)->o == IR_STRREF); |
| 1829 | if (op == IR_EQ) { |
| 1830 | emitir(IRTGI(IR_EQ), fleft->op2, lj_ir_kint(J, len)); |
| 1831 | /* Caveat: fins/fleft/fright is no longer valid after emitir. */ |
| 1832 | } else { |
| 1833 | /* NE is not expanded since this would need an OR of two conds. */ |
| 1834 | if (!irref_isk(fleft->op2)) /* Only handle the constant length case. */ |
| 1835 | return NEXTFOLD; |
| 1836 | if (IR(fleft->op2)->i != len) |
| 1837 | return DROPFOLD; |
| 1838 | } |
| 1839 | if (len > 0) { |
| 1840 | /* A 4 byte load for length 3 is ok -- all strings have an extra NUL. */ |
| 1841 | uint16_t ot = (uint16_t)(len == 1 ? IRT(IR_XLOAD, FOLD_SNEW_TYPE8) : |
| 1842 | len == 2 ? IRT(IR_XLOAD, IRT_U16) : |
| 1843 | IRTI(IR_XLOAD)); |
| 1844 | TRef tmp = emitir(ot, strref, |
| 1845 | IRXLOAD_READONLY | (len > 1 ? IRXLOAD_UNALIGNED : 0)); |
| 1846 | TRef val = kfold_xload(J, IR(tref_ref(tmp)), strdata(kstr)); |
| 1847 | if (len == 3) |
| 1848 | tmp = emitir(IRTI(IR_BAND), tmp, |
| 1849 | lj_ir_kint(J, LJ_ENDIAN_SELECT(0x00ffffff, 0xffffff00))); |
| 1850 | fins->op1 = (IRRef1)tmp; |
| 1851 | fins->op2 = (IRRef1)val; |
| 1852 | fins->ot = (IROpT)IRTGI(op); |
| 1853 | return RETRYFOLD; |
| 1854 | } else { |
| 1855 | return DROPFOLD; |
| 1856 | } |
| 1857 | } |
| 1858 | return NEXTFOLD; |
| 1859 | } |
| 1860 | |
| 1861 | /* -- Loads --------------------------------------------------------------- */ |
| 1862 | |
| 1863 | /* Loads cannot be folded or passed on to CSE in general. |
| 1864 | ** Alias analysis is needed to check for forwarding opportunities. |
| 1865 | ** |
| 1866 | ** Caveat: *all* loads must be listed here or they end up at CSE! |
| 1867 | */ |
| 1868 | |
| 1869 | LJFOLD(ALOAD any) |
| 1870 | LJFOLDX(lj_opt_fwd_aload) |
| 1871 | |
| 1872 | /* From HREF fwd (see below). Must eliminate, not supported by fwd/backend. */ |
| 1873 | LJFOLD(HLOAD KKPTR) |
| 1874 | LJFOLDF(kfold_hload_kkptr) |
| 1875 | { |
| 1876 | UNUSED(J); |
| 1877 | lua_assert(ir_kptr(fleft) == niltvg(J2G(J))); |
| 1878 | return TREF_NIL; |
| 1879 | } |
| 1880 | |
| 1881 | LJFOLD(HLOAD any) |
| 1882 | LJFOLDX(lj_opt_fwd_hload) |
| 1883 | |
| 1884 | LJFOLD(ULOAD any) |
| 1885 | LJFOLDX(lj_opt_fwd_uload) |
| 1886 | |
| 1887 | LJFOLD(CALLL any IRCALL_lj_tab_len) |
| 1888 | LJFOLDX(lj_opt_fwd_tab_len) |
| 1889 | |
| 1890 | /* Upvalue refs are really loads, but there are no corresponding stores. |
| 1891 | ** So CSE is ok for them, except for UREFO across a GC step (see below). |
| 1892 | ** If the referenced function is const, its upvalue addresses are const, too. |
| 1893 | ** This can be used to improve CSE by looking for the same address, |
| 1894 | ** even if the upvalues originate from a different function. |
| 1895 | */ |
| 1896 | LJFOLD(UREFO KGC any) |
| 1897 | LJFOLD(UREFC KGC any) |
| 1898 | LJFOLDF(cse_uref) |
| 1899 | { |
| 1900 | if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) { |
| 1901 | IRRef ref = J->chain[fins->o]; |
| 1902 | GCfunc *fn = ir_kfunc(fleft); |
| 1903 | GCupval *uv = gco2uv(gcref(fn->l.uvptr[(fins->op2 >> 8)])); |
| 1904 | while (ref > 0) { |
| 1905 | IRIns *ir = IR(ref); |
| 1906 | if (irref_isk(ir->op1)) { |
| 1907 | GCfunc *fn2 = ir_kfunc(IR(ir->op1)); |
| 1908 | if (gco2uv(gcref(fn2->l.uvptr[(ir->op2 >> 8)])) == uv) { |
| 1909 | if (fins->o == IR_UREFO && gcstep_barrier(J, ref)) |
| 1910 | break; |
| 1911 | return ref; |
| 1912 | } |
| 1913 | } |
| 1914 | ref = ir->prev; |
| 1915 | } |
| 1916 | } |
| 1917 | return EMITFOLD; |
| 1918 | } |
| 1919 | |
| 1920 | LJFOLD(HREFK any any) |
| 1921 | LJFOLDX(lj_opt_fwd_hrefk) |
| 1922 | |
| 1923 | LJFOLD(HREF TNEW any) |
| 1924 | LJFOLDF(fwd_href_tnew) |
| 1925 | { |
| 1926 | if (lj_opt_fwd_href_nokey(J)) |
| 1927 | return lj_ir_kkptr(J, niltvg(J2G(J))); |
| 1928 | return NEXTFOLD; |
| 1929 | } |
| 1930 | |
| 1931 | LJFOLD(HREF TDUP KPRI) |
| 1932 | LJFOLD(HREF TDUP KGC) |
| 1933 | LJFOLD(HREF TDUP KNUM) |
| 1934 | LJFOLDF(fwd_href_tdup) |
| 1935 | { |
| 1936 | TValue keyv; |
| 1937 | lj_ir_kvalue(J->L, &keyv, fright); |
| 1938 | if (lj_tab_get(J->L, ir_ktab(IR(fleft->op1)), &keyv) == niltvg(J2G(J)) && |
| 1939 | lj_opt_fwd_href_nokey(J)) |
| 1940 | return lj_ir_kkptr(J, niltvg(J2G(J))); |
| 1941 | return NEXTFOLD; |
| 1942 | } |
| 1943 | |
| 1944 | /* We can safely FOLD/CSE array/hash refs and field loads, since there |
| 1945 | ** are no corresponding stores. But we need to check for any NEWREF with |
| 1946 | ** an aliased table, as it may invalidate all of the pointers and fields. |
| 1947 | ** Only HREF needs the NEWREF check -- AREF and HREFK already depend on |
| 1948 | ** FLOADs. And NEWREF itself is treated like a store (see below). |
| 1949 | */ |
| 1950 | LJFOLD(FLOAD TNEW IRFL_TAB_ASIZE) |
| 1951 | LJFOLDF(fload_tab_tnew_asize) |
| 1952 | { |
| 1953 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && lj_opt_fwd_tptr(J, fins->op1)) |
| 1954 | return INTFOLD(fleft->op1); |
| 1955 | return NEXTFOLD; |
| 1956 | } |
| 1957 | |
| 1958 | LJFOLD(FLOAD TNEW IRFL_TAB_HMASK) |
| 1959 | LJFOLDF(fload_tab_tnew_hmask) |
| 1960 | { |
| 1961 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && lj_opt_fwd_tptr(J, fins->op1)) |
| 1962 | return INTFOLD((1 << fleft->op2)-1); |
| 1963 | return NEXTFOLD; |
| 1964 | } |
| 1965 | |
| 1966 | LJFOLD(FLOAD TDUP IRFL_TAB_ASIZE) |
| 1967 | LJFOLDF(fload_tab_tdup_asize) |
| 1968 | { |
| 1969 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && lj_opt_fwd_tptr(J, fins->op1)) |
| 1970 | return INTFOLD((int32_t)ir_ktab(IR(fleft->op1))->asize); |
| 1971 | return NEXTFOLD; |
| 1972 | } |
| 1973 | |
| 1974 | LJFOLD(FLOAD TDUP IRFL_TAB_HMASK) |
| 1975 | LJFOLDF(fload_tab_tdup_hmask) |
| 1976 | { |
| 1977 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && lj_opt_fwd_tptr(J, fins->op1)) |
| 1978 | return INTFOLD((int32_t)ir_ktab(IR(fleft->op1))->hmask); |
| 1979 | return NEXTFOLD; |
| 1980 | } |
| 1981 | |
| 1982 | LJFOLD(HREF any any) |
| 1983 | LJFOLD(FLOAD any IRFL_TAB_ARRAY) |
| 1984 | LJFOLD(FLOAD any IRFL_TAB_NODE) |
| 1985 | LJFOLD(FLOAD any IRFL_TAB_ASIZE) |
| 1986 | LJFOLD(FLOAD any IRFL_TAB_HMASK) |
| 1987 | LJFOLDF(fload_tab_ah) |
| 1988 | { |
| 1989 | TRef tr = lj_opt_cse(J); |
| 1990 | return lj_opt_fwd_tptr(J, tref_ref(tr)) ? tr : EMITFOLD; |
| 1991 | } |
| 1992 | |
| 1993 | /* Strings are immutable, so we can safely FOLD/CSE the related FLOAD. */ |
| 1994 | LJFOLD(FLOAD KGC IRFL_STR_LEN) |
| 1995 | LJFOLDF(fload_str_len_kgc) |
| 1996 | { |
| 1997 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) |
| 1998 | return INTFOLD((int32_t)ir_kstr(fleft)->len); |
| 1999 | return NEXTFOLD; |
| 2000 | } |
| 2001 | |
| 2002 | LJFOLD(FLOAD SNEW IRFL_STR_LEN) |
| 2003 | LJFOLDF(fload_str_len_snew) |
| 2004 | { |
| 2005 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) { |
| 2006 | PHIBARRIER(fleft); |
| 2007 | return fleft->op2; |
| 2008 | } |
| 2009 | return NEXTFOLD; |
| 2010 | } |
| 2011 | |
| 2012 | /* The C type ID of cdata objects is immutable. */ |
| 2013 | LJFOLD(FLOAD KGC IRFL_CDATA_CTYPEID) |
| 2014 | LJFOLDF(fload_cdata_typeid_kgc) |
| 2015 | { |
| 2016 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) |
| 2017 | return INTFOLD((int32_t)ir_kcdata(fleft)->ctypeid); |
| 2018 | return NEXTFOLD; |
| 2019 | } |
| 2020 | |
| 2021 | /* Get the contents of immutable cdata objects. */ |
| 2022 | LJFOLD(FLOAD KGC IRFL_CDATA_PTR) |
| 2023 | LJFOLD(FLOAD KGC IRFL_CDATA_INT) |
| 2024 | LJFOLD(FLOAD KGC IRFL_CDATA_INT64) |
| 2025 | LJFOLDF(fload_cdata_int64_kgc) |
| 2026 | { |
| 2027 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) { |
| 2028 | void *p = cdataptr(ir_kcdata(fleft)); |
| 2029 | if (irt_is64(fins->t)) |
| 2030 | return INT64FOLD(*(uint64_t *)p); |
| 2031 | else |
| 2032 | return INTFOLD(*(int32_t *)p); |
| 2033 | } |
| 2034 | return NEXTFOLD; |
| 2035 | } |
| 2036 | |
| 2037 | LJFOLD(FLOAD CNEW IRFL_CDATA_CTYPEID) |
| 2038 | LJFOLD(FLOAD CNEWI IRFL_CDATA_CTYPEID) |
| 2039 | LJFOLDF(fload_cdata_typeid_cnew) |
| 2040 | { |
| 2041 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) |
| 2042 | return fleft->op1; /* No PHI barrier needed. CNEW/CNEWI op1 is const. */ |
| 2043 | return NEXTFOLD; |
| 2044 | } |
| 2045 | |
| 2046 | /* Pointer, int and int64 cdata objects are immutable. */ |
| 2047 | LJFOLD(FLOAD CNEWI IRFL_CDATA_PTR) |
| 2048 | LJFOLD(FLOAD CNEWI IRFL_CDATA_INT) |
| 2049 | LJFOLD(FLOAD CNEWI IRFL_CDATA_INT64) |
| 2050 | LJFOLDF(fload_cdata_ptr_int64_cnew) |
| 2051 | { |
| 2052 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) |
| 2053 | return fleft->op2; /* Fold even across PHI to avoid allocations. */ |
| 2054 | return NEXTFOLD; |
| 2055 | } |
| 2056 | |
| 2057 | LJFOLD(FLOAD any IRFL_STR_LEN) |
| 2058 | LJFOLD(FLOAD any IRFL_CDATA_CTYPEID) |
| 2059 | LJFOLD(FLOAD any IRFL_CDATA_PTR) |
| 2060 | LJFOLD(FLOAD any IRFL_CDATA_INT) |
| 2061 | LJFOLD(FLOAD any IRFL_CDATA_INT64) |
| 2062 | LJFOLD(VLOAD any any) /* Vararg loads have no corresponding stores. */ |
| 2063 | LJFOLDX(lj_opt_cse) |
| 2064 | |
| 2065 | /* All other field loads need alias analysis. */ |
| 2066 | LJFOLD(FLOAD any any) |
| 2067 | LJFOLDX(lj_opt_fwd_fload) |
| 2068 | |
| 2069 | /* This is for LOOP only. Recording handles SLOADs internally. */ |
| 2070 | LJFOLD(SLOAD any any) |
| 2071 | LJFOLDF(fwd_sload) |
| 2072 | { |
| 2073 | if ((fins->op2 & IRSLOAD_FRAME)) { |
| 2074 | TRef tr = lj_opt_cse(J); |
| 2075 | return tref_ref(tr) < J->chain[IR_RETF] ? EMITFOLD : tr; |
| 2076 | } else { |
| 2077 | lua_assert(J->slot[fins->op1] != 0); |
| 2078 | return J->slot[fins->op1]; |
| 2079 | } |
| 2080 | } |
| 2081 | |
| 2082 | /* Only fold for KKPTR. The pointer _and_ the contents must be const. */ |
| 2083 | LJFOLD(XLOAD KKPTR any) |
| 2084 | LJFOLDF(xload_kptr) |
| 2085 | { |
| 2086 | TRef tr = kfold_xload(J, fins, ir_kptr(fleft)); |
| 2087 | return tr ? tr : NEXTFOLD; |
| 2088 | } |
| 2089 | |
| 2090 | LJFOLD(XLOAD any any) |
| 2091 | LJFOLDX(lj_opt_fwd_xload) |
| 2092 | |
| 2093 | /* -- Write barriers ------------------------------------------------------ */ |
| 2094 | |
| 2095 | /* Write barriers are amenable to CSE, but not across any incremental |
| 2096 | ** GC steps. |
| 2097 | ** |
| 2098 | ** The same logic applies to open upvalue references, because a stack |
| 2099 | ** may be resized during a GC step (not the current stack, but maybe that |
| 2100 | ** of a coroutine). |
| 2101 | */ |
| 2102 | LJFOLD(TBAR any) |
| 2103 | LJFOLD(OBAR any any) |
| 2104 | LJFOLD(UREFO any any) |
| 2105 | LJFOLDF(barrier_tab) |
| 2106 | { |
| 2107 | TRef tr = lj_opt_cse(J); |
| 2108 | if (gcstep_barrier(J, tref_ref(tr))) /* CSE across GC step? */ |
| 2109 | return EMITFOLD; /* Raw emit. Assumes fins is left intact by CSE. */ |
| 2110 | return tr; |
| 2111 | } |
| 2112 | |
| 2113 | LJFOLD(TBAR TNEW) |
| 2114 | LJFOLD(TBAR TDUP) |
| 2115 | LJFOLDF(barrier_tnew_tdup) |
| 2116 | { |
| 2117 | /* New tables are always white and never need a barrier. */ |
| 2118 | if (fins->op1 < J->chain[IR_LOOP]) /* Except across a GC step. */ |
| 2119 | return NEXTFOLD; |
| 2120 | return DROPFOLD; |
| 2121 | } |
| 2122 | |
| 2123 | /* -- Stores and allocations ---------------------------------------------- */ |
| 2124 | |
| 2125 | /* Stores and allocations cannot be folded or passed on to CSE in general. |
| 2126 | ** But some stores can be eliminated with dead-store elimination (DSE). |
| 2127 | ** |
| 2128 | ** Caveat: *all* stores and allocs must be listed here or they end up at CSE! |
| 2129 | */ |
| 2130 | |
| 2131 | LJFOLD(ASTORE any any) |
| 2132 | LJFOLD(HSTORE any any) |
| 2133 | LJFOLDX(lj_opt_dse_ahstore) |
| 2134 | |
| 2135 | LJFOLD(USTORE any any) |
| 2136 | LJFOLDX(lj_opt_dse_ustore) |
| 2137 | |
| 2138 | LJFOLD(FSTORE any any) |
| 2139 | LJFOLDX(lj_opt_dse_fstore) |
| 2140 | |
| 2141 | LJFOLD(XSTORE any any) |
| 2142 | LJFOLDX(lj_opt_dse_xstore) |
| 2143 | |
| 2144 | LJFOLD(NEWREF any any) /* Treated like a store. */ |
| 2145 | LJFOLD(CALLS any any) |
| 2146 | LJFOLD(CALLL any any) /* Safeguard fallback. */ |
| 2147 | LJFOLD(CALLXS any any) |
| 2148 | LJFOLD(XBAR) |
| 2149 | LJFOLD(RETF any any) /* Modifies BASE. */ |
| 2150 | LJFOLD(TNEW any any) |
| 2151 | LJFOLD(TDUP any) |
| 2152 | LJFOLD(CNEW any any) |
| 2153 | LJFOLD(XSNEW any any) |
| 2154 | LJFOLDX(lj_ir_emit) |
| 2155 | |
| 2156 | /* ------------------------------------------------------------------------ */ |
| 2157 | |
| 2158 | /* Every entry in the generated hash table is a 32 bit pattern: |
| 2159 | ** |
| 2160 | ** xxxxxxxx iiiiiii lllllll rrrrrrrrrr |
| 2161 | ** |
| 2162 | ** xxxxxxxx = 8 bit index into fold function table |
| 2163 | ** iiiiiii = 7 bit folded instruction opcode |
| 2164 | ** lllllll = 7 bit left instruction opcode |
| 2165 | ** rrrrrrrrrr = 8 bit right instruction opcode or 10 bits from literal field |
| 2166 | */ |
| 2167 | |
| 2168 | #include "lj_folddef.h" |
| 2169 | |
| 2170 | /* ------------------------------------------------------------------------ */ |
| 2171 | |
| 2172 | /* Fold IR instruction. */ |
| 2173 | TRef LJ_FASTCALL lj_opt_fold(jit_State *J) |
| 2174 | { |
| 2175 | uint32_t key, any; |
| 2176 | IRRef ref; |
| 2177 | |
| 2178 | if (LJ_UNLIKELY((J->flags & JIT_F_OPT_MASK) != JIT_F_OPT_DEFAULT)) { |
| 2179 | lua_assert(((JIT_F_OPT_FOLD|JIT_F_OPT_FWD|JIT_F_OPT_CSE|JIT_F_OPT_DSE) | |
| 2180 | JIT_F_OPT_DEFAULT) == JIT_F_OPT_DEFAULT); |
| 2181 | /* Folding disabled? Chain to CSE, but not for loads/stores/allocs. */ |
| 2182 | if (!(J->flags & JIT_F_OPT_FOLD) && irm_kind(lj_ir_mode[fins->o]) == IRM_N) |
| 2183 | return lj_opt_cse(J); |
| 2184 | |
| 2185 | /* No FOLD, forwarding or CSE? Emit raw IR for loads, except for SLOAD. */ |
| 2186 | if ((J->flags & (JIT_F_OPT_FOLD|JIT_F_OPT_FWD|JIT_F_OPT_CSE)) != |
| 2187 | (JIT_F_OPT_FOLD|JIT_F_OPT_FWD|JIT_F_OPT_CSE) && |
| 2188 | irm_kind(lj_ir_mode[fins->o]) == IRM_L && fins->o != IR_SLOAD) |
| 2189 | return lj_ir_emit(J); |
| 2190 | |
| 2191 | /* No FOLD or DSE? Emit raw IR for stores. */ |
| 2192 | if ((J->flags & (JIT_F_OPT_FOLD|JIT_F_OPT_DSE)) != |
| 2193 | (JIT_F_OPT_FOLD|JIT_F_OPT_DSE) && |
| 2194 | irm_kind(lj_ir_mode[fins->o]) == IRM_S) |
| 2195 | return lj_ir_emit(J); |
| 2196 | } |
| 2197 | |
| 2198 | /* Fold engine start/retry point. */ |
| 2199 | retry: |
| 2200 | /* Construct key from opcode and operand opcodes (unless literal/none). */ |
| 2201 | key = ((uint32_t)fins->o << 17); |
| 2202 | if (fins->op1 >= J->cur.nk) { |
| 2203 | key += (uint32_t)IR(fins->op1)->o << 10; |
| 2204 | *fleft = *IR(fins->op1); |
| 2205 | } |
| 2206 | if (fins->op2 >= J->cur.nk) { |
| 2207 | key += (uint32_t)IR(fins->op2)->o; |
| 2208 | *fright = *IR(fins->op2); |
| 2209 | } else { |
| 2210 | key += (fins->op2 & 0x3ffu); /* Literal mask. Must include IRCONV_*MASK. */ |
| 2211 | } |
| 2212 | |
| 2213 | /* Check for a match in order from most specific to least specific. */ |
| 2214 | any = 0; |
| 2215 | for (;;) { |
| 2216 | uint32_t k = key | (any & 0x1ffff); |
| 2217 | uint32_t h = fold_hashkey(k); |
| 2218 | uint32_t fh = fold_hash[h]; /* Lookup key in semi-perfect hash table. */ |
| 2219 | if ((fh & 0xffffff) == k || (fh = fold_hash[h+1], (fh & 0xffffff) == k)) { |
| 2220 | ref = (IRRef)tref_ref(fold_func[fh >> 24](J)); |
| 2221 | if (ref != NEXTFOLD) |
| 2222 | break; |
| 2223 | } |
| 2224 | if (any == 0xfffff) /* Exhausted folding. Pass on to CSE. */ |
| 2225 | return lj_opt_cse(J); |
| 2226 | any = (any | (any >> 10)) ^ 0xffc00; |
| 2227 | } |
| 2228 | |
| 2229 | /* Return value processing, ordered by frequency. */ |
| 2230 | if (LJ_LIKELY(ref >= MAX_FOLD)) |
| 2231 | return TREF(ref, irt_t(IR(ref)->t)); |
| 2232 | if (ref == RETRYFOLD) |
| 2233 | goto retry; |
| 2234 | if (ref == KINTFOLD) |
| 2235 | return lj_ir_kint(J, fins->i); |
| 2236 | if (ref == FAILFOLD) |
| 2237 | lj_trace_err(J, LJ_TRERR_GFAIL); |
| 2238 | lua_assert(ref == DROPFOLD); |
| 2239 | return REF_DROP; |
| 2240 | } |
| 2241 | |
| 2242 | /* -- Common-Subexpression Elimination ------------------------------------ */ |
| 2243 | |
| 2244 | /* CSE an IR instruction. This is very fast due to the skip-list chains. */ |
| 2245 | TRef LJ_FASTCALL lj_opt_cse(jit_State *J) |
| 2246 | { |
| 2247 | /* Avoid narrow to wide store-to-load forwarding stall */ |
| 2248 | IRRef2 op12 = (IRRef2)fins->op1 + ((IRRef2)fins->op2 << 16); |
| 2249 | IROp op = fins->o; |
| 2250 | if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) { |
| 2251 | /* Limited search for same operands in per-opcode chain. */ |
| 2252 | IRRef ref = J->chain[op]; |
| 2253 | IRRef lim = fins->op1; |
| 2254 | if (fins->op2 > lim) lim = fins->op2; /* Relies on lit < REF_BIAS. */ |
| 2255 | while (ref > lim) { |
| 2256 | if (IR(ref)->op12 == op12) |
| 2257 | return TREF(ref, irt_t(IR(ref)->t)); /* Common subexpression found. */ |
| 2258 | ref = IR(ref)->prev; |
| 2259 | } |
| 2260 | } |
| 2261 | /* Otherwise emit IR (inlined for speed). */ |
| 2262 | { |
| 2263 | IRRef ref = lj_ir_nextins(J); |
| 2264 | IRIns *ir = IR(ref); |
| 2265 | ir->prev = J->chain[op]; |
| 2266 | ir->op12 = op12; |
| 2267 | J->chain[op] = (IRRef1)ref; |
| 2268 | ir->o = fins->o; |
| 2269 | J->guardemit.irt |= fins->t.irt; |
| 2270 | return TREF(ref, irt_t((ir->t = fins->t))); |
| 2271 | } |
| 2272 | } |
| 2273 | |
| 2274 | /* CSE with explicit search limit. */ |
| 2275 | TRef LJ_FASTCALL lj_opt_cselim(jit_State *J, IRRef lim) |
| 2276 | { |
| 2277 | IRRef ref = J->chain[fins->o]; |
| 2278 | IRRef2 op12 = (IRRef2)fins->op1 + ((IRRef2)fins->op2 << 16); |
| 2279 | while (ref > lim) { |
| 2280 | if (IR(ref)->op12 == op12) |
| 2281 | return ref; |
| 2282 | ref = IR(ref)->prev; |
| 2283 | } |
| 2284 | return lj_ir_emit(J); |
| 2285 | } |
| 2286 | |
| 2287 | /* ------------------------------------------------------------------------ */ |
| 2288 | |
| 2289 | #undef IR |
| 2290 | #undef fins |
| 2291 | #undef fleft |
| 2292 | #undef fright |
| 2293 | #undef knumleft |
| 2294 | #undef knumright |
| 2295 | #undef emitir |
| 2296 | |
| 2297 | #endif |
| 2298 | |