1 | /* |
2 | ** Memory access optimizations. |
3 | ** AA: Alias Analysis using high-level semantic disambiguation. |
4 | ** FWD: Load Forwarding (L2L) + Store Forwarding (S2L). |
5 | ** DSE: Dead-Store Elimination. |
6 | ** Copyright (C) 2005-2014 Mike Pall. See Copyright Notice in luajit.h |
7 | */ |
8 | |
9 | #define lj_opt_mem_c |
10 | #define LUA_CORE |
11 | |
12 | #include "lj_obj.h" |
13 | |
14 | #if LJ_HASJIT |
15 | |
16 | #include "lj_tab.h" |
17 | #include "lj_ir.h" |
18 | #include "lj_jit.h" |
19 | #include "lj_iropt.h" |
20 | |
21 | /* Some local macros to save typing. Undef'd at the end. */ |
22 | #define IR(ref) (&J->cur.ir[(ref)]) |
23 | #define fins (&J->fold.ins) |
24 | #define fleft (&J->fold.left) |
25 | #define fright (&J->fold.right) |
26 | |
27 | /* |
28 | ** Caveat #1: return value is not always a TRef -- only use with tref_ref(). |
29 | ** Caveat #2: FWD relies on active CSE for xREF operands -- see lj_opt_fold(). |
30 | */ |
31 | |
32 | /* Return values from alias analysis. */ |
33 | typedef enum { |
34 | ALIAS_NO, /* The two refs CANNOT alias (exact). */ |
35 | ALIAS_MAY, /* The two refs MAY alias (inexact). */ |
36 | ALIAS_MUST /* The two refs MUST alias (exact). */ |
37 | } AliasRet; |
38 | |
39 | /* -- ALOAD/HLOAD forwarding and ASTORE/HSTORE elimination ---------------- */ |
40 | |
41 | /* Simplified escape analysis: check for intervening stores. */ |
42 | static AliasRet aa_escape(jit_State *J, IRIns *ir, IRIns *stop) |
43 | { |
44 | IRRef ref = (IRRef)(ir - J->cur.ir); /* The ref that might be stored. */ |
45 | for (ir++; ir < stop; ir++) |
46 | if (ir->op2 == ref && |
47 | (ir->o == IR_ASTORE || ir->o == IR_HSTORE || |
48 | ir->o == IR_USTORE || ir->o == IR_FSTORE)) |
49 | return ALIAS_MAY; /* Reference was stored and might alias. */ |
50 | return ALIAS_NO; /* Reference was not stored. */ |
51 | } |
52 | |
53 | /* Alias analysis for two different table references. */ |
54 | static AliasRet aa_table(jit_State *J, IRRef ta, IRRef tb) |
55 | { |
56 | IRIns *taba = IR(ta), *tabb = IR(tb); |
57 | int newa, newb; |
58 | lua_assert(ta != tb); |
59 | lua_assert(irt_istab(taba->t) && irt_istab(tabb->t)); |
60 | /* Disambiguate new allocations. */ |
61 | newa = (taba->o == IR_TNEW || taba->o == IR_TDUP); |
62 | newb = (tabb->o == IR_TNEW || tabb->o == IR_TDUP); |
63 | if (newa && newb) |
64 | return ALIAS_NO; /* Two different allocations never alias. */ |
65 | if (newb) { /* At least one allocation? */ |
66 | IRIns *tmp = taba; taba = tabb; tabb = tmp; |
67 | } else if (!newa) { |
68 | return ALIAS_MAY; /* Anything else: we just don't know. */ |
69 | } |
70 | return aa_escape(J, taba, tabb); |
71 | } |
72 | |
73 | /* Alias analysis for array and hash access using key-based disambiguation. */ |
74 | static AliasRet aa_ahref(jit_State *J, IRIns *refa, IRIns *refb) |
75 | { |
76 | IRRef ka = refa->op2; |
77 | IRRef kb = refb->op2; |
78 | IRIns *keya, *keyb; |
79 | IRRef ta, tb; |
80 | if (refa == refb) |
81 | return ALIAS_MUST; /* Shortcut for same refs. */ |
82 | keya = IR(ka); |
83 | if (keya->o == IR_KSLOT) { ka = keya->op1; keya = IR(ka); } |
84 | keyb = IR(kb); |
85 | if (keyb->o == IR_KSLOT) { kb = keyb->op1; keyb = IR(kb); } |
86 | ta = (refa->o==IR_HREFK || refa->o==IR_AREF) ? IR(refa->op1)->op1 : refa->op1; |
87 | tb = (refb->o==IR_HREFK || refb->o==IR_AREF) ? IR(refb->op1)->op1 : refb->op1; |
88 | if (ka == kb) { |
89 | /* Same key. Check for same table with different ref (NEWREF vs. HREF). */ |
90 | if (ta == tb) |
91 | return ALIAS_MUST; /* Same key, same table. */ |
92 | else |
93 | return aa_table(J, ta, tb); /* Same key, possibly different table. */ |
94 | } |
95 | if (irref_isk(ka) && irref_isk(kb)) |
96 | return ALIAS_NO; /* Different constant keys. */ |
97 | if (refa->o == IR_AREF) { |
98 | /* Disambiguate array references based on index arithmetic. */ |
99 | int32_t ofsa = 0, ofsb = 0; |
100 | IRRef basea = ka, baseb = kb; |
101 | lua_assert(refb->o == IR_AREF); |
102 | /* Gather base and offset from t[base] or t[base+-ofs]. */ |
103 | if (keya->o == IR_ADD && irref_isk(keya->op2)) { |
104 | basea = keya->op1; |
105 | ofsa = IR(keya->op2)->i; |
106 | if (basea == kb && ofsa != 0) |
107 | return ALIAS_NO; /* t[base+-ofs] vs. t[base]. */ |
108 | } |
109 | if (keyb->o == IR_ADD && irref_isk(keyb->op2)) { |
110 | baseb = keyb->op1; |
111 | ofsb = IR(keyb->op2)->i; |
112 | if (ka == baseb && ofsb != 0) |
113 | return ALIAS_NO; /* t[base] vs. t[base+-ofs]. */ |
114 | } |
115 | if (basea == baseb && ofsa != ofsb) |
116 | return ALIAS_NO; /* t[base+-o1] vs. t[base+-o2] and o1 != o2. */ |
117 | } else { |
118 | /* Disambiguate hash references based on the type of their keys. */ |
119 | lua_assert((refa->o==IR_HREF || refa->o==IR_HREFK || refa->o==IR_NEWREF) && |
120 | (refb->o==IR_HREF || refb->o==IR_HREFK || refb->o==IR_NEWREF)); |
121 | if (!irt_sametype(keya->t, keyb->t)) |
122 | return ALIAS_NO; /* Different key types. */ |
123 | } |
124 | if (ta == tb) |
125 | return ALIAS_MAY; /* Same table, cannot disambiguate keys. */ |
126 | else |
127 | return aa_table(J, ta, tb); /* Try to disambiguate tables. */ |
128 | } |
129 | |
130 | /* Array and hash load forwarding. */ |
131 | static TRef fwd_ahload(jit_State *J, IRRef xref) |
132 | { |
133 | IRIns *xr = IR(xref); |
134 | IRRef lim = xref; /* Search limit. */ |
135 | IRRef ref; |
136 | |
137 | /* Search for conflicting stores. */ |
138 | ref = J->chain[fins->o+IRDELTA_L2S]; |
139 | while (ref > xref) { |
140 | IRIns *store = IR(ref); |
141 | switch (aa_ahref(J, xr, IR(store->op1))) { |
142 | case ALIAS_NO: break; /* Continue searching. */ |
143 | case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ |
144 | case ALIAS_MUST: return store->op2; /* Store forwarding. */ |
145 | } |
146 | ref = store->prev; |
147 | } |
148 | |
149 | /* No conflicting store (yet): const-fold loads from allocations. */ |
150 | { |
151 | IRIns *ir = (xr->o == IR_HREFK || xr->o == IR_AREF) ? IR(xr->op1) : xr; |
152 | IRRef tab = ir->op1; |
153 | ir = IR(tab); |
154 | if (ir->o == IR_TNEW || (ir->o == IR_TDUP && irref_isk(xr->op2))) { |
155 | /* A NEWREF with a number key may end up pointing to the array part. |
156 | ** But it's referenced from HSTORE and not found in the ASTORE chain. |
157 | ** For now simply consider this a conflict without forwarding anything. |
158 | */ |
159 | if (xr->o == IR_AREF) { |
160 | IRRef ref2 = J->chain[IR_NEWREF]; |
161 | while (ref2 > tab) { |
162 | IRIns *newref = IR(ref2); |
163 | if (irt_isnum(IR(newref->op2)->t)) |
164 | goto cselim; |
165 | ref2 = newref->prev; |
166 | } |
167 | } |
168 | /* NEWREF inhibits CSE for HREF, and dependent FLOADs from HREFK/AREF. |
169 | ** But the above search for conflicting stores was limited by xref. |
170 | ** So continue searching, limited by the TNEW/TDUP. Store forwarding |
171 | ** is ok, too. A conflict does NOT limit the search for a matching load. |
172 | */ |
173 | while (ref > tab) { |
174 | IRIns *store = IR(ref); |
175 | switch (aa_ahref(J, xr, IR(store->op1))) { |
176 | case ALIAS_NO: break; /* Continue searching. */ |
177 | case ALIAS_MAY: goto cselim; /* Conflicting store. */ |
178 | case ALIAS_MUST: return store->op2; /* Store forwarding. */ |
179 | } |
180 | ref = store->prev; |
181 | } |
182 | lua_assert(ir->o != IR_TNEW || irt_isnil(fins->t)); |
183 | if (irt_ispri(fins->t)) { |
184 | return TREF_PRI(irt_type(fins->t)); |
185 | } else if (irt_isnum(fins->t) || (LJ_DUALNUM && irt_isint(fins->t)) || |
186 | irt_isstr(fins->t)) { |
187 | TValue keyv; |
188 | cTValue *tv; |
189 | IRIns *key = IR(xr->op2); |
190 | if (key->o == IR_KSLOT) key = IR(key->op1); |
191 | lj_ir_kvalue(J->L, &keyv, key); |
192 | tv = lj_tab_get(J->L, ir_ktab(IR(ir->op1)), &keyv); |
193 | lua_assert(itype2irt(tv) == irt_type(fins->t)); |
194 | if (irt_isnum(fins->t)) |
195 | return lj_ir_knum_u64(J, tv->u64); |
196 | else if (LJ_DUALNUM && irt_isint(fins->t)) |
197 | return lj_ir_kint(J, intV(tv)); |
198 | else |
199 | return lj_ir_kstr(J, strV(tv)); |
200 | } |
201 | /* Othwerwise: don't intern as a constant. */ |
202 | } |
203 | } |
204 | |
205 | cselim: |
206 | /* Try to find a matching load. Below the conflicting store, if any. */ |
207 | ref = J->chain[fins->o]; |
208 | while (ref > lim) { |
209 | IRIns *load = IR(ref); |
210 | if (load->op1 == xref) |
211 | return ref; /* Load forwarding. */ |
212 | ref = load->prev; |
213 | } |
214 | return 0; /* Conflict or no match. */ |
215 | } |
216 | |
217 | /* Reassociate ALOAD across PHIs to handle t[i-1] forwarding case. */ |
218 | static TRef fwd_aload_reassoc(jit_State *J) |
219 | { |
220 | IRIns *irx = IR(fins->op1); |
221 | IRIns *key = IR(irx->op2); |
222 | if (key->o == IR_ADD && irref_isk(key->op2)) { |
223 | IRIns *add2 = IR(key->op1); |
224 | if (add2->o == IR_ADD && irref_isk(add2->op2) && |
225 | IR(key->op2)->i == -IR(add2->op2)->i) { |
226 | IRRef ref = J->chain[IR_AREF]; |
227 | IRRef lim = add2->op1; |
228 | if (irx->op1 > lim) lim = irx->op1; |
229 | while (ref > lim) { |
230 | IRIns *ir = IR(ref); |
231 | if (ir->op1 == irx->op1 && ir->op2 == add2->op1) |
232 | return fwd_ahload(J, ref); |
233 | ref = ir->prev; |
234 | } |
235 | } |
236 | } |
237 | return 0; |
238 | } |
239 | |
240 | /* ALOAD forwarding. */ |
241 | TRef LJ_FASTCALL lj_opt_fwd_aload(jit_State *J) |
242 | { |
243 | IRRef ref; |
244 | if ((ref = fwd_ahload(J, fins->op1)) || |
245 | (ref = fwd_aload_reassoc(J))) |
246 | return ref; |
247 | return EMITFOLD; |
248 | } |
249 | |
250 | /* HLOAD forwarding. */ |
251 | TRef LJ_FASTCALL lj_opt_fwd_hload(jit_State *J) |
252 | { |
253 | IRRef ref = fwd_ahload(J, fins->op1); |
254 | if (ref) |
255 | return ref; |
256 | return EMITFOLD; |
257 | } |
258 | |
259 | /* HREFK forwarding. */ |
260 | TRef LJ_FASTCALL lj_opt_fwd_hrefk(jit_State *J) |
261 | { |
262 | IRRef tab = fleft->op1; |
263 | IRRef ref = J->chain[IR_NEWREF]; |
264 | while (ref > tab) { |
265 | IRIns *newref = IR(ref); |
266 | if (tab == newref->op1) { |
267 | if (fright->op1 == newref->op2) |
268 | return ref; /* Forward from NEWREF. */ |
269 | else |
270 | goto docse; |
271 | } else if (aa_table(J, tab, newref->op1) != ALIAS_NO) { |
272 | goto docse; |
273 | } |
274 | ref = newref->prev; |
275 | } |
276 | /* No conflicting NEWREF: key location unchanged for HREFK of TDUP. */ |
277 | if (IR(tab)->o == IR_TDUP) |
278 | fins->t.irt &= ~IRT_GUARD; /* Drop HREFK guard. */ |
279 | docse: |
280 | return CSEFOLD; |
281 | } |
282 | |
283 | /* Check whether HREF of TNEW/TDUP can be folded to niltv. */ |
284 | int LJ_FASTCALL lj_opt_fwd_href_nokey(jit_State *J) |
285 | { |
286 | IRRef lim = fins->op1; /* Search limit. */ |
287 | IRRef ref; |
288 | |
289 | /* The key for an ASTORE may end up in the hash part after a NEWREF. */ |
290 | if (irt_isnum(fright->t) && J->chain[IR_NEWREF] > lim) { |
291 | ref = J->chain[IR_ASTORE]; |
292 | while (ref > lim) { |
293 | if (ref < J->chain[IR_NEWREF]) |
294 | return 0; /* Conflict. */ |
295 | ref = IR(ref)->prev; |
296 | } |
297 | } |
298 | |
299 | /* Search for conflicting stores. */ |
300 | ref = J->chain[IR_HSTORE]; |
301 | while (ref > lim) { |
302 | IRIns *store = IR(ref); |
303 | if (aa_ahref(J, fins, IR(store->op1)) != ALIAS_NO) |
304 | return 0; /* Conflict. */ |
305 | ref = store->prev; |
306 | } |
307 | |
308 | return 1; /* No conflict. Can fold to niltv. */ |
309 | } |
310 | |
311 | /* Check whether there's no aliasing NEWREF for the left operand. */ |
312 | int LJ_FASTCALL lj_opt_fwd_tptr(jit_State *J, IRRef lim) |
313 | { |
314 | IRRef ta = fins->op1; |
315 | IRRef ref = J->chain[IR_NEWREF]; |
316 | while (ref > lim) { |
317 | IRIns *newref = IR(ref); |
318 | if (ta == newref->op1 || aa_table(J, ta, newref->op1) != ALIAS_NO) |
319 | return 0; /* Conflict. */ |
320 | ref = newref->prev; |
321 | } |
322 | return 1; /* No conflict. Can safely FOLD/CSE. */ |
323 | } |
324 | |
325 | /* ASTORE/HSTORE elimination. */ |
326 | TRef LJ_FASTCALL lj_opt_dse_ahstore(jit_State *J) |
327 | { |
328 | IRRef xref = fins->op1; /* xREF reference. */ |
329 | IRRef val = fins->op2; /* Stored value reference. */ |
330 | IRIns *xr = IR(xref); |
331 | IRRef1 *refp = &J->chain[fins->o]; |
332 | IRRef ref = *refp; |
333 | while (ref > xref) { /* Search for redundant or conflicting stores. */ |
334 | IRIns *store = IR(ref); |
335 | switch (aa_ahref(J, xr, IR(store->op1))) { |
336 | case ALIAS_NO: |
337 | break; /* Continue searching. */ |
338 | case ALIAS_MAY: /* Store to MAYBE the same location. */ |
339 | if (store->op2 != val) /* Conflict if the value is different. */ |
340 | goto doemit; |
341 | break; /* Otherwise continue searching. */ |
342 | case ALIAS_MUST: /* Store to the same location. */ |
343 | if (store->op2 == val) /* Same value: drop the new store. */ |
344 | return DROPFOLD; |
345 | /* Different value: try to eliminate the redundant store. */ |
346 | if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ |
347 | IRIns *ir; |
348 | /* Check for any intervening guards (includes conflicting loads). */ |
349 | for (ir = IR(J->cur.nins-1); ir > store; ir--) |
350 | if (irt_isguard(ir->t) || ir->o == IR_CALLL) |
351 | goto doemit; /* No elimination possible. */ |
352 | /* Remove redundant store from chain and replace with NOP. */ |
353 | *refp = store->prev; |
354 | store->o = IR_NOP; |
355 | store->t.irt = IRT_NIL; |
356 | store->op1 = store->op2 = 0; |
357 | store->prev = 0; |
358 | /* Now emit the new store instead. */ |
359 | } |
360 | goto doemit; |
361 | } |
362 | ref = *(refp = &store->prev); |
363 | } |
364 | doemit: |
365 | return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ |
366 | } |
367 | |
368 | /* -- ULOAD forwarding ---------------------------------------------------- */ |
369 | |
370 | /* The current alias analysis for upvalues is very simplistic. It only |
371 | ** disambiguates between the unique upvalues of the same function. |
372 | ** This is good enough for now, since most upvalues are read-only. |
373 | ** |
374 | ** A more precise analysis would be feasible with the help of the parser: |
375 | ** generate a unique key for every upvalue, even across all prototypes. |
376 | ** Lacking a realistic use-case, it's unclear whether this is beneficial. |
377 | */ |
378 | static AliasRet aa_uref(IRIns *refa, IRIns *refb) |
379 | { |
380 | if (refa->o != refb->o) |
381 | return ALIAS_NO; /* Different UREFx type. */ |
382 | if (refa->op1 == refb->op1) { /* Same function. */ |
383 | if (refa->op2 == refb->op2) |
384 | return ALIAS_MUST; /* Same function, same upvalue idx. */ |
385 | else |
386 | return ALIAS_NO; /* Same function, different upvalue idx. */ |
387 | } else { /* Different functions, check disambiguation hash values. */ |
388 | if (((refa->op2 ^ refb->op2) & 0xff)) |
389 | return ALIAS_NO; /* Upvalues with different hash values cannot alias. */ |
390 | else |
391 | return ALIAS_MAY; /* No conclusion can be drawn for same hash value. */ |
392 | } |
393 | } |
394 | |
395 | /* ULOAD forwarding. */ |
396 | TRef LJ_FASTCALL lj_opt_fwd_uload(jit_State *J) |
397 | { |
398 | IRRef uref = fins->op1; |
399 | IRRef lim = REF_BASE; /* Search limit. */ |
400 | IRIns *xr = IR(uref); |
401 | IRRef ref; |
402 | |
403 | /* Search for conflicting stores. */ |
404 | ref = J->chain[IR_USTORE]; |
405 | while (ref > lim) { |
406 | IRIns *store = IR(ref); |
407 | switch (aa_uref(xr, IR(store->op1))) { |
408 | case ALIAS_NO: break; /* Continue searching. */ |
409 | case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ |
410 | case ALIAS_MUST: return store->op2; /* Store forwarding. */ |
411 | } |
412 | ref = store->prev; |
413 | } |
414 | |
415 | cselim: |
416 | /* Try to find a matching load. Below the conflicting store, if any. */ |
417 | |
418 | ref = J->chain[IR_ULOAD]; |
419 | while (ref > lim) { |
420 | IRIns *ir = IR(ref); |
421 | if (ir->op1 == uref || |
422 | (IR(ir->op1)->op12 == IR(uref)->op12 && IR(ir->op1)->o == IR(uref)->o)) |
423 | return ref; /* Match for identical or equal UREFx (non-CSEable UREFO). */ |
424 | ref = ir->prev; |
425 | } |
426 | return lj_ir_emit(J); |
427 | } |
428 | |
429 | /* USTORE elimination. */ |
430 | TRef LJ_FASTCALL lj_opt_dse_ustore(jit_State *J) |
431 | { |
432 | IRRef xref = fins->op1; /* xREF reference. */ |
433 | IRRef val = fins->op2; /* Stored value reference. */ |
434 | IRIns *xr = IR(xref); |
435 | IRRef1 *refp = &J->chain[IR_USTORE]; |
436 | IRRef ref = *refp; |
437 | while (ref > xref) { /* Search for redundant or conflicting stores. */ |
438 | IRIns *store = IR(ref); |
439 | switch (aa_uref(xr, IR(store->op1))) { |
440 | case ALIAS_NO: |
441 | break; /* Continue searching. */ |
442 | case ALIAS_MAY: /* Store to MAYBE the same location. */ |
443 | if (store->op2 != val) /* Conflict if the value is different. */ |
444 | goto doemit; |
445 | break; /* Otherwise continue searching. */ |
446 | case ALIAS_MUST: /* Store to the same location. */ |
447 | if (store->op2 == val) /* Same value: drop the new store. */ |
448 | return DROPFOLD; |
449 | /* Different value: try to eliminate the redundant store. */ |
450 | if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ |
451 | IRIns *ir; |
452 | /* Check for any intervening guards (includes conflicting loads). */ |
453 | for (ir = IR(J->cur.nins-1); ir > store; ir--) |
454 | if (irt_isguard(ir->t)) |
455 | goto doemit; /* No elimination possible. */ |
456 | /* Remove redundant store from chain and replace with NOP. */ |
457 | *refp = store->prev; |
458 | store->o = IR_NOP; |
459 | store->t.irt = IRT_NIL; |
460 | store->op1 = store->op2 = 0; |
461 | store->prev = 0; |
462 | if (ref+1 < J->cur.nins && |
463 | store[1].o == IR_OBAR && store[1].op1 == xref) { |
464 | IRRef1 *bp = &J->chain[IR_OBAR]; |
465 | IRIns *obar; |
466 | for (obar = IR(*bp); *bp > ref+1; obar = IR(*bp)) |
467 | bp = &obar->prev; |
468 | /* Remove OBAR, too. */ |
469 | *bp = obar->prev; |
470 | obar->o = IR_NOP; |
471 | obar->t.irt = IRT_NIL; |
472 | obar->op1 = obar->op2 = 0; |
473 | obar->prev = 0; |
474 | } |
475 | /* Now emit the new store instead. */ |
476 | } |
477 | goto doemit; |
478 | } |
479 | ref = *(refp = &store->prev); |
480 | } |
481 | doemit: |
482 | return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ |
483 | } |
484 | |
485 | /* -- FLOAD forwarding and FSTORE elimination ----------------------------- */ |
486 | |
487 | /* Alias analysis for field access. |
488 | ** Field loads are cheap and field stores are rare. |
489 | ** Simple disambiguation based on field types is good enough. |
490 | */ |
491 | static AliasRet aa_fref(jit_State *J, IRIns *refa, IRIns *refb) |
492 | { |
493 | if (refa->op2 != refb->op2) |
494 | return ALIAS_NO; /* Different fields. */ |
495 | if (refa->op1 == refb->op1) |
496 | return ALIAS_MUST; /* Same field, same object. */ |
497 | else if (refa->op2 >= IRFL_TAB_META && refa->op2 <= IRFL_TAB_NOMM) |
498 | return aa_table(J, refa->op1, refb->op1); /* Disambiguate tables. */ |
499 | else |
500 | return ALIAS_MAY; /* Same field, possibly different object. */ |
501 | } |
502 | |
503 | /* Only the loads for mutable fields end up here (see FOLD). */ |
504 | TRef LJ_FASTCALL lj_opt_fwd_fload(jit_State *J) |
505 | { |
506 | IRRef oref = fins->op1; /* Object reference. */ |
507 | IRRef fid = fins->op2; /* Field ID. */ |
508 | IRRef lim = oref; /* Search limit. */ |
509 | IRRef ref; |
510 | |
511 | /* Search for conflicting stores. */ |
512 | ref = J->chain[IR_FSTORE]; |
513 | while (ref > oref) { |
514 | IRIns *store = IR(ref); |
515 | switch (aa_fref(J, fins, IR(store->op1))) { |
516 | case ALIAS_NO: break; /* Continue searching. */ |
517 | case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ |
518 | case ALIAS_MUST: return store->op2; /* Store forwarding. */ |
519 | } |
520 | ref = store->prev; |
521 | } |
522 | |
523 | /* No conflicting store: const-fold field loads from allocations. */ |
524 | if (fid == IRFL_TAB_META) { |
525 | IRIns *ir = IR(oref); |
526 | if (ir->o == IR_TNEW || ir->o == IR_TDUP) |
527 | return lj_ir_knull(J, IRT_TAB); |
528 | } |
529 | |
530 | cselim: |
531 | /* Try to find a matching load. Below the conflicting store, if any. */ |
532 | return lj_opt_cselim(J, lim); |
533 | } |
534 | |
535 | /* FSTORE elimination. */ |
536 | TRef LJ_FASTCALL lj_opt_dse_fstore(jit_State *J) |
537 | { |
538 | IRRef fref = fins->op1; /* FREF reference. */ |
539 | IRRef val = fins->op2; /* Stored value reference. */ |
540 | IRIns *xr = IR(fref); |
541 | IRRef1 *refp = &J->chain[IR_FSTORE]; |
542 | IRRef ref = *refp; |
543 | while (ref > fref) { /* Search for redundant or conflicting stores. */ |
544 | IRIns *store = IR(ref); |
545 | switch (aa_fref(J, xr, IR(store->op1))) { |
546 | case ALIAS_NO: |
547 | break; /* Continue searching. */ |
548 | case ALIAS_MAY: |
549 | if (store->op2 != val) /* Conflict if the value is different. */ |
550 | goto doemit; |
551 | break; /* Otherwise continue searching. */ |
552 | case ALIAS_MUST: |
553 | if (store->op2 == val) /* Same value: drop the new store. */ |
554 | return DROPFOLD; |
555 | /* Different value: try to eliminate the redundant store. */ |
556 | if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ |
557 | IRIns *ir; |
558 | /* Check for any intervening guards or conflicting loads. */ |
559 | for (ir = IR(J->cur.nins-1); ir > store; ir--) |
560 | if (irt_isguard(ir->t) || (ir->o == IR_FLOAD && ir->op2 == xr->op2)) |
561 | goto doemit; /* No elimination possible. */ |
562 | /* Remove redundant store from chain and replace with NOP. */ |
563 | *refp = store->prev; |
564 | store->o = IR_NOP; |
565 | store->t.irt = IRT_NIL; |
566 | store->op1 = store->op2 = 0; |
567 | store->prev = 0; |
568 | /* Now emit the new store instead. */ |
569 | } |
570 | goto doemit; |
571 | } |
572 | ref = *(refp = &store->prev); |
573 | } |
574 | doemit: |
575 | return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ |
576 | } |
577 | |
578 | /* -- XLOAD forwarding and XSTORE elimination ----------------------------- */ |
579 | |
580 | /* Find cdata allocation for a reference (if any). */ |
581 | static IRIns *aa_findcnew(jit_State *J, IRIns *ir) |
582 | { |
583 | while (ir->o == IR_ADD) { |
584 | if (!irref_isk(ir->op1)) { |
585 | IRIns *ir1 = aa_findcnew(J, IR(ir->op1)); /* Left-recursion. */ |
586 | if (ir1) return ir1; |
587 | } |
588 | if (irref_isk(ir->op2)) return NULL; |
589 | ir = IR(ir->op2); /* Flatten right-recursion. */ |
590 | } |
591 | return ir->o == IR_CNEW ? ir : NULL; |
592 | } |
593 | |
594 | /* Alias analysis for two cdata allocations. */ |
595 | static AliasRet aa_cnew(jit_State *J, IRIns *refa, IRIns *refb) |
596 | { |
597 | IRIns *cnewa = aa_findcnew(J, refa); |
598 | IRIns *cnewb = aa_findcnew(J, refb); |
599 | if (cnewa == cnewb) |
600 | return ALIAS_MAY; /* Same allocation or neither is an allocation. */ |
601 | if (cnewa && cnewb) |
602 | return ALIAS_NO; /* Two different allocations never alias. */ |
603 | if (cnewb) { cnewa = cnewb; refb = refa; } |
604 | return aa_escape(J, cnewa, refb); |
605 | } |
606 | |
607 | /* Alias analysis for XLOAD/XSTORE. */ |
608 | static AliasRet aa_xref(jit_State *J, IRIns *refa, IRIns *xa, IRIns *xb) |
609 | { |
610 | ptrdiff_t ofsa = 0, ofsb = 0; |
611 | IRIns *refb = IR(xb->op1); |
612 | IRIns *basea = refa, *baseb = refb; |
613 | if (refa == refb && irt_sametype(xa->t, xb->t)) |
614 | return ALIAS_MUST; /* Shortcut for same refs with identical type. */ |
615 | /* Offset-based disambiguation. */ |
616 | if (refa->o == IR_ADD && irref_isk(refa->op2)) { |
617 | IRIns *irk = IR(refa->op2); |
618 | basea = IR(refa->op1); |
619 | ofsa = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : |
620 | (ptrdiff_t)irk->i; |
621 | } |
622 | if (refb->o == IR_ADD && irref_isk(refb->op2)) { |
623 | IRIns *irk = IR(refb->op2); |
624 | baseb = IR(refb->op1); |
625 | ofsb = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : |
626 | (ptrdiff_t)irk->i; |
627 | } |
628 | /* Treat constified pointers like base vs. base+offset. */ |
629 | if (basea->o == IR_KPTR && baseb->o == IR_KPTR) { |
630 | ofsb += (char *)ir_kptr(baseb) - (char *)ir_kptr(basea); |
631 | baseb = basea; |
632 | } |
633 | /* This implements (very) strict aliasing rules. |
634 | ** Different types do NOT alias, except for differences in signedness. |
635 | ** Type punning through unions is allowed (but forces a reload). |
636 | */ |
637 | if (basea == baseb) { |
638 | ptrdiff_t sza = irt_size(xa->t), szb = irt_size(xb->t); |
639 | if (ofsa == ofsb) { |
640 | if (sza == szb && irt_isfp(xa->t) == irt_isfp(xb->t)) |
641 | return ALIAS_MUST; /* Same-sized, same-kind. May need to convert. */ |
642 | } else if (ofsa + sza <= ofsb || ofsb + szb <= ofsa) { |
643 | return ALIAS_NO; /* Non-overlapping base+-o1 vs. base+-o2. */ |
644 | } |
645 | /* NYI: extract, extend or reinterpret bits (int <-> fp). */ |
646 | return ALIAS_MAY; /* Overlapping or type punning: force reload. */ |
647 | } |
648 | if (!irt_sametype(xa->t, xb->t) && |
649 | !(irt_typerange(xa->t, IRT_I8, IRT_U64) && |
650 | ((xa->t.irt - IRT_I8) ^ (xb->t.irt - IRT_I8)) == 1)) |
651 | return ALIAS_NO; |
652 | /* NYI: structural disambiguation. */ |
653 | return aa_cnew(J, basea, baseb); /* Try to disambiguate allocations. */ |
654 | } |
655 | |
656 | /* Return CSEd reference or 0. Caveat: swaps lower ref to the right! */ |
657 | static IRRef reassoc_trycse(jit_State *J, IROp op, IRRef op1, IRRef op2) |
658 | { |
659 | IRRef ref = J->chain[op]; |
660 | IRRef lim = op1; |
661 | if (op2 > lim) { lim = op2; op2 = op1; op1 = lim; } |
662 | while (ref > lim) { |
663 | IRIns *ir = IR(ref); |
664 | if (ir->op1 == op1 && ir->op2 == op2) |
665 | return ref; |
666 | ref = ir->prev; |
667 | } |
668 | return 0; |
669 | } |
670 | |
671 | /* Reassociate index references. */ |
672 | static IRRef reassoc_xref(jit_State *J, IRIns *ir) |
673 | { |
674 | ptrdiff_t ofs = 0; |
675 | if (ir->o == IR_ADD && irref_isk(ir->op2)) { /* Get constant offset. */ |
676 | IRIns *irk = IR(ir->op2); |
677 | ofs = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : |
678 | (ptrdiff_t)irk->i; |
679 | ir = IR(ir->op1); |
680 | } |
681 | if (ir->o == IR_ADD) { /* Add of base + index. */ |
682 | /* Index ref > base ref for loop-carried dependences. Only check op1. */ |
683 | IRIns *ir2, *ir1 = IR(ir->op1); |
684 | int32_t shift = 0; |
685 | IRRef idxref; |
686 | /* Determine index shifts. Don't bother with IR_MUL here. */ |
687 | if (ir1->o == IR_BSHL && irref_isk(ir1->op2)) |
688 | shift = IR(ir1->op2)->i; |
689 | else if (ir1->o == IR_ADD && ir1->op1 == ir1->op2) |
690 | shift = 1; |
691 | else |
692 | ir1 = ir; |
693 | ir2 = IR(ir1->op1); |
694 | /* A non-reassociated add. Must be a loop-carried dependence. */ |
695 | if (ir2->o == IR_ADD && irt_isint(ir2->t) && irref_isk(ir2->op2)) |
696 | ofs += (ptrdiff_t)IR(ir2->op2)->i << shift; |
697 | else |
698 | return 0; |
699 | idxref = ir2->op1; |
700 | /* Try to CSE the reassociated chain. Give up if not found. */ |
701 | if (ir1 != ir && |
702 | !(idxref = reassoc_trycse(J, ir1->o, idxref, |
703 | ir1->o == IR_BSHL ? ir1->op2 : idxref))) |
704 | return 0; |
705 | if (!(idxref = reassoc_trycse(J, IR_ADD, idxref, ir->op2))) |
706 | return 0; |
707 | if (ofs != 0) { |
708 | IRRef refk = tref_ref(lj_ir_kintp(J, ofs)); |
709 | if (!(idxref = reassoc_trycse(J, IR_ADD, idxref, refk))) |
710 | return 0; |
711 | } |
712 | return idxref; /* Success, found a reassociated index reference. Phew. */ |
713 | } |
714 | return 0; /* Failure. */ |
715 | } |
716 | |
717 | /* XLOAD forwarding. */ |
718 | TRef LJ_FASTCALL lj_opt_fwd_xload(jit_State *J) |
719 | { |
720 | IRRef xref = fins->op1; |
721 | IRIns *xr = IR(xref); |
722 | IRRef lim = xref; /* Search limit. */ |
723 | IRRef ref; |
724 | |
725 | if ((fins->op2 & IRXLOAD_READONLY)) |
726 | goto cselim; |
727 | if ((fins->op2 & IRXLOAD_VOLATILE)) |
728 | goto doemit; |
729 | |
730 | /* Search for conflicting stores. */ |
731 | ref = J->chain[IR_XSTORE]; |
732 | retry: |
733 | if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS]; |
734 | if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR]; |
735 | while (ref > lim) { |
736 | IRIns *store = IR(ref); |
737 | switch (aa_xref(J, xr, fins, store)) { |
738 | case ALIAS_NO: break; /* Continue searching. */ |
739 | case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ |
740 | case ALIAS_MUST: |
741 | /* Emit conversion if the loaded type doesn't match the forwarded type. */ |
742 | if (!irt_sametype(fins->t, IR(store->op2)->t)) { |
743 | IRType st = irt_type(fins->t); |
744 | if (st == IRT_I8 || st == IRT_I16) { /* Trunc + sign-extend. */ |
745 | st |= IRCONV_SEXT; |
746 | } else if (st == IRT_U8 || st == IRT_U16) { /* Trunc + zero-extend. */ |
747 | } else if (st == IRT_INT) { |
748 | st = irt_type(IR(store->op2)->t); /* Needs dummy CONV.int.*. */ |
749 | } else { /* I64/U64 are boxed, U32 is hidden behind a CONV.num.u32. */ |
750 | goto store_fwd; |
751 | } |
752 | fins->ot = IRTI(IR_CONV); |
753 | fins->op1 = store->op2; |
754 | fins->op2 = (IRT_INT<<5)|st; |
755 | return RETRYFOLD; |
756 | } |
757 | store_fwd: |
758 | return store->op2; /* Store forwarding. */ |
759 | } |
760 | ref = store->prev; |
761 | } |
762 | |
763 | cselim: |
764 | /* Try to find a matching load. Below the conflicting store, if any. */ |
765 | ref = J->chain[IR_XLOAD]; |
766 | while (ref > lim) { |
767 | /* CSE for XLOAD depends on the type, but not on the IRXLOAD_* flags. */ |
768 | if (IR(ref)->op1 == xref && irt_sametype(IR(ref)->t, fins->t)) |
769 | return ref; |
770 | ref = IR(ref)->prev; |
771 | } |
772 | |
773 | /* Reassociate XLOAD across PHIs to handle a[i-1] forwarding case. */ |
774 | if (!(fins->op2 & IRXLOAD_READONLY) && J->chain[IR_LOOP] && |
775 | xref == fins->op1 && (xref = reassoc_xref(J, xr)) != 0) { |
776 | ref = J->chain[IR_XSTORE]; |
777 | while (ref > lim) /* Skip stores that have already been checked. */ |
778 | ref = IR(ref)->prev; |
779 | lim = xref; |
780 | xr = IR(xref); |
781 | goto retry; /* Retry with the reassociated reference. */ |
782 | } |
783 | doemit: |
784 | return EMITFOLD; |
785 | } |
786 | |
787 | /* XSTORE elimination. */ |
788 | TRef LJ_FASTCALL lj_opt_dse_xstore(jit_State *J) |
789 | { |
790 | IRRef xref = fins->op1; |
791 | IRIns *xr = IR(xref); |
792 | IRRef lim = xref; /* Search limit. */ |
793 | IRRef val = fins->op2; /* Stored value reference. */ |
794 | IRRef1 *refp = &J->chain[IR_XSTORE]; |
795 | IRRef ref = *refp; |
796 | if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS]; |
797 | if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR]; |
798 | while (ref > lim) { /* Search for redundant or conflicting stores. */ |
799 | IRIns *store = IR(ref); |
800 | switch (aa_xref(J, xr, fins, store)) { |
801 | case ALIAS_NO: |
802 | break; /* Continue searching. */ |
803 | case ALIAS_MAY: |
804 | if (store->op2 != val) /* Conflict if the value is different. */ |
805 | goto doemit; |
806 | break; /* Otherwise continue searching. */ |
807 | case ALIAS_MUST: |
808 | if (store->op2 == val) /* Same value: drop the new store. */ |
809 | return DROPFOLD; |
810 | /* Different value: try to eliminate the redundant store. */ |
811 | if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ |
812 | IRIns *ir; |
813 | /* Check for any intervening guards or any XLOADs (no AA performed). */ |
814 | for (ir = IR(J->cur.nins-1); ir > store; ir--) |
815 | if (irt_isguard(ir->t) || ir->o == IR_XLOAD) |
816 | goto doemit; /* No elimination possible. */ |
817 | /* Remove redundant store from chain and replace with NOP. */ |
818 | *refp = store->prev; |
819 | store->o = IR_NOP; |
820 | store->t.irt = IRT_NIL; |
821 | store->op1 = store->op2 = 0; |
822 | store->prev = 0; |
823 | /* Now emit the new store instead. */ |
824 | } |
825 | goto doemit; |
826 | } |
827 | ref = *(refp = &store->prev); |
828 | } |
829 | doemit: |
830 | return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ |
831 | } |
832 | |
833 | /* -- Forwarding of lj_tab_len -------------------------------------------- */ |
834 | |
835 | /* This is rather simplistic right now, but better than nothing. */ |
836 | TRef LJ_FASTCALL lj_opt_fwd_tab_len(jit_State *J) |
837 | { |
838 | IRRef tab = fins->op1; /* Table reference. */ |
839 | IRRef lim = tab; /* Search limit. */ |
840 | IRRef ref; |
841 | |
842 | /* Any ASTORE is a conflict and limits the search. */ |
843 | if (J->chain[IR_ASTORE] > lim) lim = J->chain[IR_ASTORE]; |
844 | |
845 | /* Search for conflicting HSTORE with numeric key. */ |
846 | ref = J->chain[IR_HSTORE]; |
847 | while (ref > lim) { |
848 | IRIns *store = IR(ref); |
849 | IRIns *href = IR(store->op1); |
850 | IRIns *key = IR(href->op2); |
851 | if (irt_isnum(key->o == IR_KSLOT ? IR(key->op1)->t : key->t)) { |
852 | lim = ref; /* Conflicting store found, limits search for TLEN. */ |
853 | break; |
854 | } |
855 | ref = store->prev; |
856 | } |
857 | |
858 | /* Try to find a matching load. Below the conflicting store, if any. */ |
859 | return lj_opt_cselim(J, lim); |
860 | } |
861 | |
862 | /* -- ASTORE/HSTORE previous type analysis -------------------------------- */ |
863 | |
864 | /* Check whether the previous value for a table store is non-nil. |
865 | ** This can be derived either from a previous store or from a previous |
866 | ** load (because all loads from tables perform a type check). |
867 | ** |
868 | ** The result of the analysis can be used to avoid the metatable check |
869 | ** and the guard against HREF returning niltv. Both of these are cheap, |
870 | ** so let's not spend too much effort on the analysis. |
871 | ** |
872 | ** A result of 1 is exact: previous value CANNOT be nil. |
873 | ** A result of 0 is inexact: previous value MAY be nil. |
874 | */ |
875 | int lj_opt_fwd_wasnonnil(jit_State *J, IROpT loadop, IRRef xref) |
876 | { |
877 | /* First check stores. */ |
878 | IRRef ref = J->chain[loadop+IRDELTA_L2S]; |
879 | while (ref > xref) { |
880 | IRIns *store = IR(ref); |
881 | if (store->op1 == xref) { /* Same xREF. */ |
882 | /* A nil store MAY alias, but a non-nil store MUST alias. */ |
883 | return !irt_isnil(store->t); |
884 | } else if (irt_isnil(store->t)) { /* Must check any nil store. */ |
885 | IRRef skref = IR(store->op1)->op2; |
886 | IRRef xkref = IR(xref)->op2; |
887 | /* Same key type MAY alias. Need ALOAD check due to multiple int types. */ |
888 | if (loadop == IR_ALOAD || irt_sametype(IR(skref)->t, IR(xkref)->t)) { |
889 | if (skref == xkref || !irref_isk(skref) || !irref_isk(xkref)) |
890 | return 0; /* A nil store with same const key or var key MAY alias. */ |
891 | /* Different const keys CANNOT alias. */ |
892 | } /* Different key types CANNOT alias. */ |
893 | } /* Other non-nil stores MAY alias. */ |
894 | ref = store->prev; |
895 | } |
896 | |
897 | /* Check loads since nothing could be derived from stores. */ |
898 | ref = J->chain[loadop]; |
899 | while (ref > xref) { |
900 | IRIns *load = IR(ref); |
901 | if (load->op1 == xref) { /* Same xREF. */ |
902 | /* A nil load MAY alias, but a non-nil load MUST alias. */ |
903 | return !irt_isnil(load->t); |
904 | } /* Other non-nil loads MAY alias. */ |
905 | ref = load->prev; |
906 | } |
907 | return 0; /* Nothing derived at all, previous value MAY be nil. */ |
908 | } |
909 | |
910 | /* ------------------------------------------------------------------------ */ |
911 | |
912 | #undef IR |
913 | #undef fins |
914 | #undef fleft |
915 | #undef fright |
916 | |
917 | #endif |
918 | |