1 | /* |
2 | ** NARROW: Narrowing of numbers to integers (double to int32_t). |
3 | ** STRIPOV: Stripping of overflow checks. |
4 | ** Copyright (C) 2005-2014 Mike Pall. See Copyright Notice in luajit.h |
5 | */ |
6 | |
7 | #define lj_opt_narrow_c |
8 | #define LUA_CORE |
9 | |
10 | #include "lj_obj.h" |
11 | |
12 | #if LJ_HASJIT |
13 | |
14 | #include "lj_bc.h" |
15 | #include "lj_ir.h" |
16 | #include "lj_jit.h" |
17 | #include "lj_iropt.h" |
18 | #include "lj_trace.h" |
19 | #include "lj_vm.h" |
20 | #include "lj_strscan.h" |
21 | |
22 | /* Rationale for narrowing optimizations: |
23 | ** |
24 | ** Lua has only a single number type and this is a FP double by default. |
25 | ** Narrowing doubles to integers does not pay off for the interpreter on a |
26 | ** current-generation x86/x64 machine. Most FP operations need the same |
27 | ** amount of execution resources as their integer counterparts, except |
28 | ** with slightly longer latencies. Longer latencies are a non-issue for |
29 | ** the interpreter, since they are usually hidden by other overhead. |
30 | ** |
31 | ** The total CPU execution bandwidth is the sum of the bandwidth of the FP |
32 | ** and the integer units, because they execute in parallel. The FP units |
33 | ** have an equal or higher bandwidth than the integer units. Not using |
34 | ** them means losing execution bandwidth. Moving work away from them to |
35 | ** the already quite busy integer units is a losing proposition. |
36 | ** |
37 | ** The situation for JIT-compiled code is a bit different: the higher code |
38 | ** density makes the extra latencies much more visible. Tight loops expose |
39 | ** the latencies for updating the induction variables. Array indexing |
40 | ** requires narrowing conversions with high latencies and additional |
41 | ** guards (to check that the index is really an integer). And many common |
42 | ** optimizations only work on integers. |
43 | ** |
44 | ** One solution would be speculative, eager narrowing of all number loads. |
45 | ** This causes many problems, like losing -0 or the need to resolve type |
46 | ** mismatches between traces. It also effectively forces the integer type |
47 | ** to have overflow-checking semantics. This impedes many basic |
48 | ** optimizations and requires adding overflow checks to all integer |
49 | ** arithmetic operations (whereas FP arithmetics can do without). |
50 | ** |
51 | ** Always replacing an FP op with an integer op plus an overflow check is |
52 | ** counter-productive on a current-generation super-scalar CPU. Although |
53 | ** the overflow check branches are highly predictable, they will clog the |
54 | ** execution port for the branch unit and tie up reorder buffers. This is |
55 | ** turning a pure data-flow dependency into a different data-flow |
56 | ** dependency (with slightly lower latency) *plus* a control dependency. |
57 | ** In general, you don't want to do this since latencies due to data-flow |
58 | ** dependencies can be well hidden by out-of-order execution. |
59 | ** |
60 | ** A better solution is to keep all numbers as FP values and only narrow |
61 | ** when it's beneficial to do so. LuaJIT uses predictive narrowing for |
62 | ** induction variables and demand-driven narrowing for index expressions, |
63 | ** integer arguments and bit operations. Additionally it can eliminate or |
64 | ** hoist most of the resulting overflow checks. Regular arithmetic |
65 | ** computations are never narrowed to integers. |
66 | ** |
67 | ** The integer type in the IR has convenient wrap-around semantics and |
68 | ** ignores overflow. Extra operations have been added for |
69 | ** overflow-checking arithmetic (ADDOV/SUBOV) instead of an extra type. |
70 | ** Apart from reducing overall complexity of the compiler, this also |
71 | ** nicely solves the problem where you want to apply algebraic |
72 | ** simplifications to ADD, but not to ADDOV. And the x86/x64 assembler can |
73 | ** use lea instead of an add for integer ADD, but not for ADDOV (lea does |
74 | ** not affect the flags, but it helps to avoid register moves). |
75 | ** |
76 | ** |
77 | ** All of the above has to be reconsidered for architectures with slow FP |
78 | ** operations or without a hardware FPU. The dual-number mode of LuaJIT |
79 | ** addresses this issue. Arithmetic operations are performed on integers |
80 | ** as far as possible and overflow checks are added as needed. |
81 | ** |
82 | ** This implies that narrowing for integer arguments and bit operations |
83 | ** should also strip overflow checks, e.g. replace ADDOV with ADD. The |
84 | ** original overflow guards are weak and can be eliminated by DCE, if |
85 | ** there's no other use. |
86 | ** |
87 | ** A slight twist is that it's usually beneficial to use overflow-checked |
88 | ** integer arithmetics if all inputs are already integers. This is the only |
89 | ** change that affects the single-number mode, too. |
90 | */ |
91 | |
92 | /* Some local macros to save typing. Undef'd at the end. */ |
93 | #define IR(ref) (&J->cur.ir[(ref)]) |
94 | #define fins (&J->fold.ins) |
95 | |
96 | /* Pass IR on to next optimization in chain (FOLD). */ |
97 | #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) |
98 | |
99 | #define emitir_raw(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J)) |
100 | |
101 | /* -- Elimination of narrowing type conversions --------------------------- */ |
102 | |
103 | /* Narrowing of index expressions and bit operations is demand-driven. The |
104 | ** trace recorder emits a narrowing type conversion (CONV.int.num or TOBIT) |
105 | ** in all of these cases (e.g. array indexing or string indexing). FOLD |
106 | ** already takes care of eliminating simple redundant conversions like |
107 | ** CONV.int.num(CONV.num.int(x)) ==> x. |
108 | ** |
109 | ** But the surrounding code is FP-heavy and arithmetic operations are |
110 | ** performed on FP numbers (for the single-number mode). Consider a common |
111 | ** example such as 'x=t[i+1]', with 'i' already an integer (due to induction |
112 | ** variable narrowing). The index expression would be recorded as |
113 | ** CONV.int.num(ADD(CONV.num.int(i), 1)) |
114 | ** which is clearly suboptimal. |
115 | ** |
116 | ** One can do better by recursively backpropagating the narrowing type |
117 | ** conversion across FP arithmetic operations. This turns FP ops into |
118 | ** their corresponding integer counterparts. Depending on the semantics of |
119 | ** the conversion they also need to check for overflow. Currently only ADD |
120 | ** and SUB are supported. |
121 | ** |
122 | ** The above example can be rewritten as |
123 | ** ADDOV(CONV.int.num(CONV.num.int(i)), 1) |
124 | ** and then into ADDOV(i, 1) after folding of the conversions. The original |
125 | ** FP ops remain in the IR and are eliminated by DCE since all references to |
126 | ** them are gone. |
127 | ** |
128 | ** [In dual-number mode the trace recorder already emits ADDOV etc., but |
129 | ** this can be further reduced. See below.] |
130 | ** |
131 | ** Special care has to be taken to avoid narrowing across an operation |
132 | ** which is potentially operating on non-integral operands. One obvious |
133 | ** case is when an expression contains a non-integral constant, but ends |
134 | ** up as an integer index at runtime (like t[x+1.5] with x=0.5). |
135 | ** |
136 | ** Operations with two non-constant operands illustrate a similar problem |
137 | ** (like t[a+b] with a=1.5 and b=2.5). Backpropagation has to stop there, |
138 | ** unless it can be proven that either operand is integral (e.g. by CSEing |
139 | ** a previous conversion). As a not-so-obvious corollary this logic also |
140 | ** applies for a whole expression tree (e.g. t[(a+1)+(b+1)]). |
141 | ** |
142 | ** Correctness of the transformation is guaranteed by avoiding to expand |
143 | ** the tree by adding more conversions than the one we would need to emit |
144 | ** if not backpropagating. TOBIT employs a more optimistic rule, because |
145 | ** the conversion has special semantics, designed to make the life of the |
146 | ** compiler writer easier. ;-) |
147 | ** |
148 | ** Using on-the-fly backpropagation of an expression tree doesn't work |
149 | ** because it's unknown whether the transform is correct until the end. |
150 | ** This either requires IR rollback and cache invalidation for every |
151 | ** subtree or a two-pass algorithm. The former didn't work out too well, |
152 | ** so the code now combines a recursive collector with a stack-based |
153 | ** emitter. |
154 | ** |
155 | ** [A recursive backpropagation algorithm with backtracking, employing |
156 | ** skip-list lookup and round-robin caching, emitting stack operations |
157 | ** on-the-fly for a stack-based interpreter -- and all of that in a meager |
158 | ** kilobyte? Yep, compilers are a great treasure chest. Throw away your |
159 | ** textbooks and read the codebase of a compiler today!] |
160 | ** |
161 | ** There's another optimization opportunity for array indexing: it's |
162 | ** always accompanied by an array bounds-check. The outermost overflow |
163 | ** check may be delegated to the ABC operation. This works because ABC is |
164 | ** an unsigned comparison and wrap-around due to overflow creates negative |
165 | ** numbers. |
166 | ** |
167 | ** But this optimization is only valid for constants that cannot overflow |
168 | ** an int32_t into the range of valid array indexes [0..2^27+1). A check |
169 | ** for +-2^30 is safe since -2^31 - 2^30 wraps to 2^30 and 2^31-1 + 2^30 |
170 | ** wraps to -2^30-1. |
171 | ** |
172 | ** It's also good enough in practice, since e.g. t[i+1] or t[i-10] are |
173 | ** quite common. So the above example finally ends up as ADD(i, 1)! |
174 | ** |
175 | ** Later on, the assembler is able to fuse the whole array reference and |
176 | ** the ADD into the memory operands of loads and other instructions. This |
177 | ** is why LuaJIT is able to generate very pretty (and fast) machine code |
178 | ** for array indexing. And that, my dear, concludes another story about |
179 | ** one of the hidden secrets of LuaJIT ... |
180 | */ |
181 | |
182 | /* Maximum backpropagation depth and maximum stack size. */ |
183 | #define NARROW_MAX_BACKPROP 100 |
184 | #define NARROW_MAX_STACK 256 |
185 | |
186 | /* The stack machine has a 32 bit instruction format: [IROpT | IRRef1] |
187 | ** The lower 16 bits hold a reference (or 0). The upper 16 bits hold |
188 | ** the IR opcode + type or one of the following special opcodes: |
189 | */ |
190 | enum { |
191 | NARROW_REF, /* Push ref. */ |
192 | NARROW_CONV, /* Push conversion of ref. */ |
193 | NARROW_SEXT, /* Push sign-extension of ref. */ |
194 | NARROW_INT /* Push KINT ref. The next code holds an int32_t. */ |
195 | }; |
196 | |
197 | typedef uint32_t NarrowIns; |
198 | |
199 | #define NARROWINS(op, ref) (((op) << 16) + (ref)) |
200 | #define narrow_op(ins) ((IROpT)((ins) >> 16)) |
201 | #define narrow_ref(ins) ((IRRef1)(ins)) |
202 | |
203 | /* Context used for narrowing of type conversions. */ |
204 | typedef struct NarrowConv { |
205 | jit_State *J; /* JIT compiler state. */ |
206 | NarrowIns *sp; /* Current stack pointer. */ |
207 | NarrowIns *maxsp; /* Maximum stack pointer minus redzone. */ |
208 | int lim; /* Limit on the number of emitted conversions. */ |
209 | IRRef mode; /* Conversion mode (IRCONV_*). */ |
210 | IRType t; /* Destination type: IRT_INT or IRT_I64. */ |
211 | NarrowIns stack[NARROW_MAX_STACK]; /* Stack holding stack-machine code. */ |
212 | } NarrowConv; |
213 | |
214 | /* Lookup a reference in the backpropagation cache. */ |
215 | static BPropEntry *narrow_bpc_get(jit_State *J, IRRef1 key, IRRef mode) |
216 | { |
217 | ptrdiff_t i; |
218 | for (i = 0; i < BPROP_SLOTS; i++) { |
219 | BPropEntry *bp = &J->bpropcache[i]; |
220 | /* Stronger checks are ok, too. */ |
221 | if (bp->key == key && bp->mode >= mode && |
222 | ((bp->mode ^ mode) & IRCONV_MODEMASK) == 0) |
223 | return bp; |
224 | } |
225 | return NULL; |
226 | } |
227 | |
228 | /* Add an entry to the backpropagation cache. */ |
229 | static void narrow_bpc_set(jit_State *J, IRRef1 key, IRRef1 val, IRRef mode) |
230 | { |
231 | uint32_t slot = J->bpropslot; |
232 | BPropEntry *bp = &J->bpropcache[slot]; |
233 | J->bpropslot = (slot + 1) & (BPROP_SLOTS-1); |
234 | bp->key = key; |
235 | bp->val = val; |
236 | bp->mode = mode; |
237 | } |
238 | |
239 | /* Backpropagate overflow stripping. */ |
240 | static void narrow_stripov_backprop(NarrowConv *nc, IRRef ref, int depth) |
241 | { |
242 | jit_State *J = nc->J; |
243 | IRIns *ir = IR(ref); |
244 | if (ir->o == IR_ADDOV || ir->o == IR_SUBOV || |
245 | (ir->o == IR_MULOV && (nc->mode & IRCONV_CONVMASK) == IRCONV_ANY)) { |
246 | BPropEntry *bp = narrow_bpc_get(nc->J, ref, IRCONV_TOBIT); |
247 | if (bp) { |
248 | ref = bp->val; |
249 | } else if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) { |
250 | narrow_stripov_backprop(nc, ir->op1, depth); |
251 | narrow_stripov_backprop(nc, ir->op2, depth); |
252 | *nc->sp++ = NARROWINS(IRT(ir->o - IR_ADDOV + IR_ADD, IRT_INT), ref); |
253 | return; |
254 | } |
255 | } |
256 | *nc->sp++ = NARROWINS(NARROW_REF, ref); |
257 | } |
258 | |
259 | /* Backpropagate narrowing conversion. Return number of needed conversions. */ |
260 | static int narrow_conv_backprop(NarrowConv *nc, IRRef ref, int depth) |
261 | { |
262 | jit_State *J = nc->J; |
263 | IRIns *ir = IR(ref); |
264 | IRRef cref; |
265 | |
266 | /* Check the easy cases first. */ |
267 | if (ir->o == IR_CONV && (ir->op2 & IRCONV_SRCMASK) == IRT_INT) { |
268 | if ((nc->mode & IRCONV_CONVMASK) <= IRCONV_ANY) |
269 | narrow_stripov_backprop(nc, ir->op1, depth+1); |
270 | else |
271 | *nc->sp++ = NARROWINS(NARROW_REF, ir->op1); /* Undo conversion. */ |
272 | if (nc->t == IRT_I64) |
273 | *nc->sp++ = NARROWINS(NARROW_SEXT, 0); /* Sign-extend integer. */ |
274 | return 0; |
275 | } else if (ir->o == IR_KNUM) { /* Narrow FP constant. */ |
276 | lua_Number n = ir_knum(ir)->n; |
277 | if ((nc->mode & IRCONV_CONVMASK) == IRCONV_TOBIT) { |
278 | /* Allows a wider range of constants. */ |
279 | int64_t k64 = (int64_t)n; |
280 | if (n == (lua_Number)k64) { /* Only if const doesn't lose precision. */ |
281 | *nc->sp++ = NARROWINS(NARROW_INT, 0); |
282 | *nc->sp++ = (NarrowIns)k64; /* But always truncate to 32 bits. */ |
283 | return 0; |
284 | } |
285 | } else { |
286 | int32_t k = lj_num2int(n); |
287 | /* Only if constant is a small integer. */ |
288 | if (checki16(k) && n == (lua_Number)k) { |
289 | *nc->sp++ = NARROWINS(NARROW_INT, 0); |
290 | *nc->sp++ = (NarrowIns)k; |
291 | return 0; |
292 | } |
293 | } |
294 | return 10; /* Never narrow other FP constants (this is rare). */ |
295 | } |
296 | |
297 | /* Try to CSE the conversion. Stronger checks are ok, too. */ |
298 | cref = J->chain[fins->o]; |
299 | while (cref > ref) { |
300 | IRIns *cr = IR(cref); |
301 | if (cr->op1 == ref && |
302 | (fins->o == IR_TOBIT || |
303 | ((cr->op2 & IRCONV_MODEMASK) == (nc->mode & IRCONV_MODEMASK) && |
304 | irt_isguard(cr->t) >= irt_isguard(fins->t)))) { |
305 | *nc->sp++ = NARROWINS(NARROW_REF, cref); |
306 | return 0; /* Already there, no additional conversion needed. */ |
307 | } |
308 | cref = cr->prev; |
309 | } |
310 | |
311 | /* Backpropagate across ADD/SUB. */ |
312 | if (ir->o == IR_ADD || ir->o == IR_SUB) { |
313 | /* Try cache lookup first. */ |
314 | IRRef mode = nc->mode; |
315 | BPropEntry *bp; |
316 | /* Inner conversions need a stronger check. */ |
317 | if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX && depth > 0) |
318 | mode += IRCONV_CHECK-IRCONV_INDEX; |
319 | bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode); |
320 | if (bp) { |
321 | *nc->sp++ = NARROWINS(NARROW_REF, bp->val); |
322 | return 0; |
323 | } else if (nc->t == IRT_I64) { |
324 | /* Try sign-extending from an existing (checked) conversion to int. */ |
325 | mode = (IRT_INT<<5)|IRT_NUM|IRCONV_INDEX; |
326 | bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode); |
327 | if (bp) { |
328 | *nc->sp++ = NARROWINS(NARROW_REF, bp->val); |
329 | *nc->sp++ = NARROWINS(NARROW_SEXT, 0); |
330 | return 0; |
331 | } |
332 | } |
333 | if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) { |
334 | NarrowIns *savesp = nc->sp; |
335 | int count = narrow_conv_backprop(nc, ir->op1, depth); |
336 | count += narrow_conv_backprop(nc, ir->op2, depth); |
337 | if (count <= nc->lim) { /* Limit total number of conversions. */ |
338 | *nc->sp++ = NARROWINS(IRT(ir->o, nc->t), ref); |
339 | return count; |
340 | } |
341 | nc->sp = savesp; /* Too many conversions, need to backtrack. */ |
342 | } |
343 | } |
344 | |
345 | /* Otherwise add a conversion. */ |
346 | *nc->sp++ = NARROWINS(NARROW_CONV, ref); |
347 | return 1; |
348 | } |
349 | |
350 | /* Emit the conversions collected during backpropagation. */ |
351 | static IRRef narrow_conv_emit(jit_State *J, NarrowConv *nc) |
352 | { |
353 | /* The fins fields must be saved now -- emitir() overwrites them. */ |
354 | IROpT guardot = irt_isguard(fins->t) ? IRTG(IR_ADDOV-IR_ADD, 0) : 0; |
355 | IROpT convot = fins->ot; |
356 | IRRef1 convop2 = fins->op2; |
357 | NarrowIns *next = nc->stack; /* List of instructions from backpropagation. */ |
358 | NarrowIns *last = nc->sp; |
359 | NarrowIns *sp = nc->stack; /* Recycle the stack to store operands. */ |
360 | while (next < last) { /* Simple stack machine to process the ins. list. */ |
361 | NarrowIns ref = *next++; |
362 | IROpT op = narrow_op(ref); |
363 | if (op == NARROW_REF) { |
364 | *sp++ = ref; |
365 | } else if (op == NARROW_CONV) { |
366 | *sp++ = emitir_raw(convot, ref, convop2); /* Raw emit avoids a loop. */ |
367 | } else if (op == NARROW_SEXT) { |
368 | lua_assert(sp >= nc->stack+1); |
369 | sp[-1] = emitir(IRT(IR_CONV, IRT_I64), sp[-1], |
370 | (IRT_I64<<5)|IRT_INT|IRCONV_SEXT); |
371 | } else if (op == NARROW_INT) { |
372 | lua_assert(next < last); |
373 | *sp++ = nc->t == IRT_I64 ? |
374 | lj_ir_kint64(J, (int64_t)(int32_t)*next++) : |
375 | lj_ir_kint(J, *next++); |
376 | } else { /* Regular IROpT. Pops two operands and pushes one result. */ |
377 | IRRef mode = nc->mode; |
378 | lua_assert(sp >= nc->stack+2); |
379 | sp--; |
380 | /* Omit some overflow checks for array indexing. See comments above. */ |
381 | if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX) { |
382 | if (next == last && irref_isk(narrow_ref(sp[0])) && |
383 | (uint32_t)IR(narrow_ref(sp[0]))->i + 0x40000000u < 0x80000000u) |
384 | guardot = 0; |
385 | else /* Otherwise cache a stronger check. */ |
386 | mode += IRCONV_CHECK-IRCONV_INDEX; |
387 | } |
388 | sp[-1] = emitir(op+guardot, sp[-1], sp[0]); |
389 | /* Add to cache. */ |
390 | if (narrow_ref(ref)) |
391 | narrow_bpc_set(J, narrow_ref(ref), narrow_ref(sp[-1]), mode); |
392 | } |
393 | } |
394 | lua_assert(sp == nc->stack+1); |
395 | return nc->stack[0]; |
396 | } |
397 | |
398 | /* Narrow a type conversion of an arithmetic operation. */ |
399 | TRef LJ_FASTCALL lj_opt_narrow_convert(jit_State *J) |
400 | { |
401 | if ((J->flags & JIT_F_OPT_NARROW)) { |
402 | NarrowConv nc; |
403 | nc.J = J; |
404 | nc.sp = nc.stack; |
405 | nc.maxsp = &nc.stack[NARROW_MAX_STACK-4]; |
406 | nc.t = irt_type(fins->t); |
407 | if (fins->o == IR_TOBIT) { |
408 | nc.mode = IRCONV_TOBIT; /* Used only in the backpropagation cache. */ |
409 | nc.lim = 2; /* TOBIT can use a more optimistic rule. */ |
410 | } else { |
411 | nc.mode = fins->op2; |
412 | nc.lim = 1; |
413 | } |
414 | if (narrow_conv_backprop(&nc, fins->op1, 0) <= nc.lim) |
415 | return narrow_conv_emit(J, &nc); |
416 | } |
417 | return NEXTFOLD; |
418 | } |
419 | |
420 | /* -- Narrowing of implicit conversions ----------------------------------- */ |
421 | |
422 | /* Recursively strip overflow checks. */ |
423 | static TRef narrow_stripov(jit_State *J, TRef tr, int lastop, IRRef mode) |
424 | { |
425 | IRRef ref = tref_ref(tr); |
426 | IRIns *ir = IR(ref); |
427 | int op = ir->o; |
428 | if (op >= IR_ADDOV && op <= lastop) { |
429 | BPropEntry *bp = narrow_bpc_get(J, ref, mode); |
430 | if (bp) { |
431 | return TREF(bp->val, irt_t(IR(bp->val)->t)); |
432 | } else { |
433 | IRRef op1 = ir->op1, op2 = ir->op2; /* The IR may be reallocated. */ |
434 | op1 = narrow_stripov(J, op1, lastop, mode); |
435 | op2 = narrow_stripov(J, op2, lastop, mode); |
436 | tr = emitir(IRT(op - IR_ADDOV + IR_ADD, |
437 | ((mode & IRCONV_DSTMASK) >> IRCONV_DSH)), op1, op2); |
438 | narrow_bpc_set(J, ref, tref_ref(tr), mode); |
439 | } |
440 | } else if (LJ_64 && (mode & IRCONV_SEXT) && !irt_is64(ir->t)) { |
441 | tr = emitir(IRT(IR_CONV, IRT_INTP), tr, mode); |
442 | } |
443 | return tr; |
444 | } |
445 | |
446 | /* Narrow array index. */ |
447 | TRef LJ_FASTCALL lj_opt_narrow_index(jit_State *J, TRef tr) |
448 | { |
449 | IRIns *ir; |
450 | lua_assert(tref_isnumber(tr)); |
451 | if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */ |
452 | return emitir(IRTGI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_INDEX); |
453 | /* Omit some overflow checks for array indexing. See comments above. */ |
454 | ir = IR(tref_ref(tr)); |
455 | if ((ir->o == IR_ADDOV || ir->o == IR_SUBOV) && irref_isk(ir->op2) && |
456 | (uint32_t)IR(ir->op2)->i + 0x40000000u < 0x80000000u) |
457 | return emitir(IRTI(ir->o - IR_ADDOV + IR_ADD), ir->op1, ir->op2); |
458 | return tr; |
459 | } |
460 | |
461 | /* Narrow conversion to integer operand (overflow undefined). */ |
462 | TRef LJ_FASTCALL lj_opt_narrow_toint(jit_State *J, TRef tr) |
463 | { |
464 | if (tref_isstr(tr)) |
465 | tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); |
466 | if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */ |
467 | return emitir(IRTI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_ANY); |
468 | if (!tref_isinteger(tr)) |
469 | lj_trace_err(J, LJ_TRERR_BADTYPE); |
470 | /* |
471 | ** Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV. |
472 | ** Use IRCONV_TOBIT for the cache entries, since the semantics are the same. |
473 | */ |
474 | return narrow_stripov(J, tr, IR_MULOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT); |
475 | } |
476 | |
477 | /* Narrow conversion to bitop operand (overflow wrapped). */ |
478 | TRef LJ_FASTCALL lj_opt_narrow_tobit(jit_State *J, TRef tr) |
479 | { |
480 | if (tref_isstr(tr)) |
481 | tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); |
482 | if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */ |
483 | return emitir(IRTI(IR_TOBIT), tr, lj_ir_knum_tobit(J)); |
484 | if (!tref_isinteger(tr)) |
485 | lj_trace_err(J, LJ_TRERR_BADTYPE); |
486 | /* |
487 | ** Wrapped overflow semantics allow stripping of ADDOV and SUBOV. |
488 | ** MULOV cannot be stripped due to precision widening. |
489 | */ |
490 | return narrow_stripov(J, tr, IR_SUBOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT); |
491 | } |
492 | |
493 | #if LJ_HASFFI |
494 | /* Narrow C array index (overflow undefined). */ |
495 | TRef LJ_FASTCALL lj_opt_narrow_cindex(jit_State *J, TRef tr) |
496 | { |
497 | lua_assert(tref_isnumber(tr)); |
498 | if (tref_isnum(tr)) |
499 | return emitir(IRT(IR_CONV, IRT_INTP), tr, |
500 | (IRT_INTP<<5)|IRT_NUM|IRCONV_TRUNC|IRCONV_ANY); |
501 | /* Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV. */ |
502 | return narrow_stripov(J, tr, IR_MULOV, |
503 | LJ_64 ? ((IRT_INTP<<5)|IRT_INT|IRCONV_SEXT) : |
504 | ((IRT_INTP<<5)|IRT_INT|IRCONV_TOBIT)); |
505 | } |
506 | #endif |
507 | |
508 | /* -- Narrowing of arithmetic operators ----------------------------------- */ |
509 | |
510 | /* Check whether a number fits into an int32_t (-0 is ok, too). */ |
511 | static int numisint(lua_Number n) |
512 | { |
513 | return (n == (lua_Number)lj_num2int(n)); |
514 | } |
515 | |
516 | /* Narrowing of arithmetic operations. */ |
517 | TRef lj_opt_narrow_arith(jit_State *J, TRef rb, TRef rc, |
518 | TValue *vb, TValue *vc, IROp op) |
519 | { |
520 | if (tref_isstr(rb)) { |
521 | rb = emitir(IRTG(IR_STRTO, IRT_NUM), rb, 0); |
522 | lj_strscan_num(strV(vb), vb); |
523 | } |
524 | if (tref_isstr(rc)) { |
525 | rc = emitir(IRTG(IR_STRTO, IRT_NUM), rc, 0); |
526 | lj_strscan_num(strV(vc), vc); |
527 | } |
528 | /* Must not narrow MUL in non-DUALNUM variant, because it loses -0. */ |
529 | if ((op >= IR_ADD && op <= (LJ_DUALNUM ? IR_MUL : IR_SUB)) && |
530 | tref_isinteger(rb) && tref_isinteger(rc) && |
531 | numisint(lj_vm_foldarith(numberVnum(vb), numberVnum(vc), |
532 | (int)op - (int)IR_ADD))) |
533 | return emitir(IRTGI((int)op - (int)IR_ADD + (int)IR_ADDOV), rb, rc); |
534 | if (!tref_isnum(rb)) rb = emitir(IRTN(IR_CONV), rb, IRCONV_NUM_INT); |
535 | if (!tref_isnum(rc)) rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT); |
536 | return emitir(IRTN(op), rb, rc); |
537 | } |
538 | |
539 | /* Narrowing of unary minus operator. */ |
540 | TRef lj_opt_narrow_unm(jit_State *J, TRef rc, TValue *vc) |
541 | { |
542 | if (tref_isstr(rc)) { |
543 | rc = emitir(IRTG(IR_STRTO, IRT_NUM), rc, 0); |
544 | lj_strscan_num(strV(vc), vc); |
545 | } |
546 | if (tref_isinteger(rc)) { |
547 | if ((uint32_t)numberVint(vc) != 0x80000000u) |
548 | return emitir(IRTGI(IR_SUBOV), lj_ir_kint(J, 0), rc); |
549 | rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT); |
550 | } |
551 | return emitir(IRTN(IR_NEG), rc, lj_ir_knum_neg(J)); |
552 | } |
553 | |
554 | /* Narrowing of modulo operator. */ |
555 | TRef lj_opt_narrow_mod(jit_State *J, TRef rb, TRef rc, TValue *vc) |
556 | { |
557 | TRef tmp; |
558 | if (tvisstr(vc) && !lj_strscan_num(strV(vc), vc)) |
559 | lj_trace_err(J, LJ_TRERR_BADTYPE); |
560 | if ((LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) && |
561 | tref_isinteger(rb) && tref_isinteger(rc) && |
562 | (tvisint(vc) ? intV(vc) != 0 : !tviszero(vc))) { |
563 | emitir(IRTGI(IR_NE), rc, lj_ir_kint(J, 0)); |
564 | return emitir(IRTI(IR_MOD), rb, rc); |
565 | } |
566 | /* b % c ==> b - floor(b/c)*c */ |
567 | rb = lj_ir_tonum(J, rb); |
568 | rc = lj_ir_tonum(J, rc); |
569 | tmp = emitir(IRTN(IR_DIV), rb, rc); |
570 | tmp = emitir(IRTN(IR_FPMATH), tmp, IRFPM_FLOOR); |
571 | tmp = emitir(IRTN(IR_MUL), tmp, rc); |
572 | return emitir(IRTN(IR_SUB), rb, tmp); |
573 | } |
574 | |
575 | /* Narrowing of power operator or math.pow. */ |
576 | TRef lj_opt_narrow_pow(jit_State *J, TRef rb, TRef rc, TValue *vc) |
577 | { |
578 | if (tvisstr(vc) && !lj_strscan_num(strV(vc), vc)) |
579 | lj_trace_err(J, LJ_TRERR_BADTYPE); |
580 | /* Narrowing must be unconditional to preserve (-x)^i semantics. */ |
581 | if (tvisint(vc) || numisint(numV(vc))) { |
582 | int checkrange = 0; |
583 | /* Split pow is faster for bigger exponents. But do this only for (+k)^i. */ |
584 | if (tref_isk(rb) && (int32_t)ir_knum(IR(tref_ref(rb)))->u32.hi >= 0) { |
585 | int32_t k = numberVint(vc); |
586 | if (!(k >= -65536 && k <= 65536)) goto split_pow; |
587 | checkrange = 1; |
588 | } |
589 | if (!tref_isinteger(rc)) { |
590 | if (tref_isstr(rc)) |
591 | rc = emitir(IRTG(IR_STRTO, IRT_NUM), rc, 0); |
592 | /* Guarded conversion to integer! */ |
593 | rc = emitir(IRTGI(IR_CONV), rc, IRCONV_INT_NUM|IRCONV_CHECK); |
594 | } |
595 | if (checkrange && !tref_isk(rc)) { /* Range guard: -65536 <= i <= 65536 */ |
596 | TRef tmp = emitir(IRTI(IR_ADD), rc, lj_ir_kint(J, 65536)); |
597 | emitir(IRTGI(IR_ULE), tmp, lj_ir_kint(J, 2*65536)); |
598 | } |
599 | return emitir(IRTN(IR_POW), rb, rc); |
600 | } |
601 | split_pow: |
602 | /* FOLD covers most cases, but some are easier to do here. */ |
603 | if (tref_isk(rb) && tvispone(ir_knum(IR(tref_ref(rb))))) |
604 | return rb; /* 1 ^ x ==> 1 */ |
605 | rc = lj_ir_tonum(J, rc); |
606 | if (tref_isk(rc) && ir_knum(IR(tref_ref(rc)))->n == 0.5) |
607 | return emitir(IRTN(IR_FPMATH), rb, IRFPM_SQRT); /* x ^ 0.5 ==> sqrt(x) */ |
608 | /* Split up b^c into exp2(c*log2(b)). Assembler may rejoin later. */ |
609 | rb = emitir(IRTN(IR_FPMATH), rb, IRFPM_LOG2); |
610 | rc = emitir(IRTN(IR_MUL), rb, rc); |
611 | return emitir(IRTN(IR_FPMATH), rc, IRFPM_EXP2); |
612 | } |
613 | |
614 | /* -- Predictive narrowing of induction variables ------------------------- */ |
615 | |
616 | /* Narrow a single runtime value. */ |
617 | static int narrow_forl(jit_State *J, cTValue *o) |
618 | { |
619 | if (tvisint(o)) return 1; |
620 | if (LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) return numisint(numV(o)); |
621 | return 0; |
622 | } |
623 | |
624 | /* Narrow the FORL index type by looking at the runtime values. */ |
625 | IRType lj_opt_narrow_forl(jit_State *J, cTValue *tv) |
626 | { |
627 | lua_assert(tvisnumber(&tv[FORL_IDX]) && |
628 | tvisnumber(&tv[FORL_STOP]) && |
629 | tvisnumber(&tv[FORL_STEP])); |
630 | /* Narrow only if the runtime values of start/stop/step are all integers. */ |
631 | if (narrow_forl(J, &tv[FORL_IDX]) && |
632 | narrow_forl(J, &tv[FORL_STOP]) && |
633 | narrow_forl(J, &tv[FORL_STEP])) { |
634 | /* And if the loop index can't possibly overflow. */ |
635 | lua_Number step = numberVnum(&tv[FORL_STEP]); |
636 | lua_Number sum = numberVnum(&tv[FORL_STOP]) + step; |
637 | if (0 <= step ? (sum <= 2147483647.0) : (sum >= -2147483648.0)) |
638 | return IRT_INT; |
639 | } |
640 | return IRT_NUM; |
641 | } |
642 | |
643 | #undef IR |
644 | #undef fins |
645 | #undef emitir |
646 | #undef emitir_raw |
647 | |
648 | #endif |
649 | |