| 1 | /* |
| 2 | ** SPLIT: Split 64 bit IR instructions into 32 bit IR instructions. |
| 3 | ** Copyright (C) 2005-2014 Mike Pall. See Copyright Notice in luajit.h |
| 4 | */ |
| 5 | |
| 6 | #define lj_opt_split_c |
| 7 | #define LUA_CORE |
| 8 | |
| 9 | #include "lj_obj.h" |
| 10 | |
| 11 | #if LJ_HASJIT && (LJ_SOFTFP || (LJ_32 && LJ_HASFFI)) |
| 12 | |
| 13 | #include "lj_err.h" |
| 14 | #include "lj_str.h" |
| 15 | #include "lj_ir.h" |
| 16 | #include "lj_jit.h" |
| 17 | #include "lj_ircall.h" |
| 18 | #include "lj_iropt.h" |
| 19 | #include "lj_vm.h" |
| 20 | |
| 21 | /* SPLIT pass: |
| 22 | ** |
| 23 | ** This pass splits up 64 bit IR instructions into multiple 32 bit IR |
| 24 | ** instructions. It's only active for soft-float targets or for 32 bit CPUs |
| 25 | ** which lack native 64 bit integer operations (the FFI is currently the |
| 26 | ** only emitter for 64 bit integer instructions). |
| 27 | ** |
| 28 | ** Splitting the IR in a separate pass keeps each 32 bit IR assembler |
| 29 | ** backend simple. Only a small amount of extra functionality needs to be |
| 30 | ** implemented. This is much easier than adding support for allocating |
| 31 | ** register pairs to each backend (believe me, I tried). A few simple, but |
| 32 | ** important optimizations can be performed by the SPLIT pass, which would |
| 33 | ** be tedious to do in the backend. |
| 34 | ** |
| 35 | ** The basic idea is to replace each 64 bit IR instruction with its 32 bit |
| 36 | ** equivalent plus an extra HIOP instruction. The splitted IR is not passed |
| 37 | ** through FOLD or any other optimizations, so each HIOP is guaranteed to |
| 38 | ** immediately follow it's counterpart. The actual functionality of HIOP is |
| 39 | ** inferred from the previous instruction. |
| 40 | ** |
| 41 | ** The operands of HIOP hold the hiword input references. The output of HIOP |
| 42 | ** is the hiword output reference, which is also used to hold the hiword |
| 43 | ** register or spill slot information. The register allocator treats this |
| 44 | ** instruction independently of any other instruction, which improves code |
| 45 | ** quality compared to using fixed register pairs. |
| 46 | ** |
| 47 | ** It's easier to split up some instructions into two regular 32 bit |
| 48 | ** instructions. E.g. XLOAD is split up into two XLOADs with two different |
| 49 | ** addresses. Obviously 64 bit constants need to be split up into two 32 bit |
| 50 | ** constants, too. Some hiword instructions can be entirely omitted, e.g. |
| 51 | ** when zero-extending a 32 bit value to 64 bits. 64 bit arguments for calls |
| 52 | ** are split up into two 32 bit arguments each. |
| 53 | ** |
| 54 | ** On soft-float targets, floating-point instructions are directly converted |
| 55 | ** to soft-float calls by the SPLIT pass (except for comparisons and MIN/MAX). |
| 56 | ** HIOP for number results has the type IRT_SOFTFP ("sfp" in -jdump). |
| 57 | ** |
| 58 | ** Here's the IR and x64 machine code for 'x.b = x.a + 1' for a struct with |
| 59 | ** two int64_t fields: |
| 60 | ** |
| 61 | ** 0100 p32 ADD base +8 |
| 62 | ** 0101 i64 XLOAD 0100 |
| 63 | ** 0102 i64 ADD 0101 +1 |
| 64 | ** 0103 p32 ADD base +16 |
| 65 | ** 0104 i64 XSTORE 0103 0102 |
| 66 | ** |
| 67 | ** mov rax, [esi+0x8] |
| 68 | ** add rax, +0x01 |
| 69 | ** mov [esi+0x10], rax |
| 70 | ** |
| 71 | ** Here's the transformed IR and the x86 machine code after the SPLIT pass: |
| 72 | ** |
| 73 | ** 0100 p32 ADD base +8 |
| 74 | ** 0101 int XLOAD 0100 |
| 75 | ** 0102 p32 ADD base +12 |
| 76 | ** 0103 int XLOAD 0102 |
| 77 | ** 0104 int ADD 0101 +1 |
| 78 | ** 0105 int HIOP 0103 +0 |
| 79 | ** 0106 p32 ADD base +16 |
| 80 | ** 0107 int XSTORE 0106 0104 |
| 81 | ** 0108 int HIOP 0106 0105 |
| 82 | ** |
| 83 | ** mov eax, [esi+0x8] |
| 84 | ** mov ecx, [esi+0xc] |
| 85 | ** add eax, +0x01 |
| 86 | ** adc ecx, +0x00 |
| 87 | ** mov [esi+0x10], eax |
| 88 | ** mov [esi+0x14], ecx |
| 89 | ** |
| 90 | ** You may notice the reassociated hiword address computation, which is |
| 91 | ** later fused into the mov operands by the assembler. |
| 92 | */ |
| 93 | |
| 94 | /* Some local macros to save typing. Undef'd at the end. */ |
| 95 | #define IR(ref) (&J->cur.ir[(ref)]) |
| 96 | |
| 97 | /* Directly emit the transformed IR without updating chains etc. */ |
| 98 | static IRRef split_emit(jit_State *J, uint16_t ot, IRRef1 op1, IRRef1 op2) |
| 99 | { |
| 100 | IRRef nref = lj_ir_nextins(J); |
| 101 | IRIns *ir = IR(nref); |
| 102 | ir->ot = ot; |
| 103 | ir->op1 = op1; |
| 104 | ir->op2 = op2; |
| 105 | return nref; |
| 106 | } |
| 107 | |
| 108 | #if LJ_SOFTFP |
| 109 | /* Emit a (checked) number to integer conversion. */ |
| 110 | static IRRef split_num2int(jit_State *J, IRRef lo, IRRef hi, int check) |
| 111 | { |
| 112 | IRRef tmp, res; |
| 113 | #if LJ_LE |
| 114 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), lo, hi); |
| 115 | #else |
| 116 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hi, lo); |
| 117 | #endif |
| 118 | res = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_softfp_d2i); |
| 119 | if (check) { |
| 120 | tmp = split_emit(J, IRTI(IR_CALLN), res, IRCALL_softfp_i2d); |
| 121 | split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp); |
| 122 | split_emit(J, IRTGI(IR_EQ), tmp, lo); |
| 123 | split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP), tmp+1, hi); |
| 124 | } |
| 125 | return res; |
| 126 | } |
| 127 | |
| 128 | /* Emit a CALLN with one split 64 bit argument. */ |
| 129 | static IRRef split_call_l(jit_State *J, IRRef1 *hisubst, IRIns *oir, |
| 130 | IRIns *ir, IRCallID id) |
| 131 | { |
| 132 | IRRef tmp, op1 = ir->op1; |
| 133 | J->cur.nins--; |
| 134 | #if LJ_LE |
| 135 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]); |
| 136 | #else |
| 137 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev); |
| 138 | #endif |
| 139 | ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id); |
| 140 | return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp); |
| 141 | } |
| 142 | |
| 143 | /* Emit a CALLN with one split 64 bit argument and a 32 bit argument. */ |
| 144 | static IRRef split_call_li(jit_State *J, IRRef1 *hisubst, IRIns *oir, |
| 145 | IRIns *ir, IRCallID id) |
| 146 | { |
| 147 | IRRef tmp, op1 = ir->op1, op2 = ir->op2; |
| 148 | J->cur.nins--; |
| 149 | #if LJ_LE |
| 150 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]); |
| 151 | #else |
| 152 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev); |
| 153 | #endif |
| 154 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev); |
| 155 | ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id); |
| 156 | return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp); |
| 157 | } |
| 158 | #endif |
| 159 | |
| 160 | /* Emit a CALLN with two split 64 bit arguments. */ |
| 161 | static IRRef split_call_ll(jit_State *J, IRRef1 *hisubst, IRIns *oir, |
| 162 | IRIns *ir, IRCallID id) |
| 163 | { |
| 164 | IRRef tmp, op1 = ir->op1, op2 = ir->op2; |
| 165 | J->cur.nins--; |
| 166 | #if LJ_LE |
| 167 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]); |
| 168 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev); |
| 169 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]); |
| 170 | #else |
| 171 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev); |
| 172 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]); |
| 173 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev); |
| 174 | #endif |
| 175 | ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id); |
| 176 | return split_emit(J, |
| 177 | IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT), |
| 178 | tmp, tmp); |
| 179 | } |
| 180 | |
| 181 | /* Get a pointer to the other 32 bit word (LE: hiword, BE: loword). */ |
| 182 | static IRRef split_ptr(jit_State *J, IRIns *oir, IRRef ref) |
| 183 | { |
| 184 | IRRef nref = oir[ref].prev; |
| 185 | IRIns *ir = IR(nref); |
| 186 | int32_t ofs = 4; |
| 187 | if (ir->o == IR_KPTR) |
| 188 | return lj_ir_kptr(J, (char *)ir_kptr(ir) + ofs); |
| 189 | if (ir->o == IR_ADD && irref_isk(ir->op2) && !irt_isphi(oir[ref].t)) { |
| 190 | /* Reassociate address. */ |
| 191 | ofs += IR(ir->op2)->i; |
| 192 | nref = ir->op1; |
| 193 | if (ofs == 0) return nref; |
| 194 | } |
| 195 | return split_emit(J, IRTI(IR_ADD), nref, lj_ir_kint(J, ofs)); |
| 196 | } |
| 197 | |
| 198 | /* Substitute references of a snapshot. */ |
| 199 | static void split_subst_snap(jit_State *J, SnapShot *snap, IRIns *oir) |
| 200 | { |
| 201 | SnapEntry *map = &J->cur.snapmap[snap->mapofs]; |
| 202 | MSize n, nent = snap->nent; |
| 203 | for (n = 0; n < nent; n++) { |
| 204 | SnapEntry sn = map[n]; |
| 205 | IRIns *ir = &oir[snap_ref(sn)]; |
| 206 | if (!(LJ_SOFTFP && (sn & SNAP_SOFTFPNUM) && irref_isk(snap_ref(sn)))) |
| 207 | map[n] = ((sn & 0xffff0000) | ir->prev); |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | /* Transform the old IR to the new IR. */ |
| 212 | static void split_ir(jit_State *J) |
| 213 | { |
| 214 | IRRef nins = J->cur.nins, nk = J->cur.nk; |
| 215 | MSize irlen = nins - nk; |
| 216 | MSize need = (irlen+1)*(sizeof(IRIns) + sizeof(IRRef1)); |
| 217 | IRIns *oir = (IRIns *)lj_str_needbuf(J->L, &G(J->L)->tmpbuf, need); |
| 218 | IRRef1 *hisubst; |
| 219 | IRRef ref, snref; |
| 220 | SnapShot *snap; |
| 221 | |
| 222 | /* Copy old IR to buffer. */ |
| 223 | memcpy(oir, IR(nk), irlen*sizeof(IRIns)); |
| 224 | /* Bias hiword substitution table and old IR. Loword kept in field prev. */ |
| 225 | hisubst = (IRRef1 *)&oir[irlen] - nk; |
| 226 | oir -= nk; |
| 227 | |
| 228 | /* Remove all IR instructions, but retain IR constants. */ |
| 229 | J->cur.nins = REF_FIRST; |
| 230 | J->loopref = 0; |
| 231 | |
| 232 | /* Process constants and fixed references. */ |
| 233 | for (ref = nk; ref <= REF_BASE; ref++) { |
| 234 | IRIns *ir = &oir[ref]; |
| 235 | if ((LJ_SOFTFP && ir->o == IR_KNUM) || ir->o == IR_KINT64) { |
| 236 | /* Split up 64 bit constant. */ |
| 237 | TValue tv = *ir_k64(ir); |
| 238 | ir->prev = lj_ir_kint(J, (int32_t)tv.u32.lo); |
| 239 | hisubst[ref] = lj_ir_kint(J, (int32_t)tv.u32.hi); |
| 240 | } else { |
| 241 | ir->prev = ref; /* Identity substitution for loword. */ |
| 242 | hisubst[ref] = 0; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | /* Process old IR instructions. */ |
| 247 | snap = J->cur.snap; |
| 248 | snref = snap->ref; |
| 249 | for (ref = REF_FIRST; ref < nins; ref++) { |
| 250 | IRIns *ir = &oir[ref]; |
| 251 | IRRef nref = lj_ir_nextins(J); |
| 252 | IRIns *nir = IR(nref); |
| 253 | IRRef hi = 0; |
| 254 | |
| 255 | if (ref >= snref) { |
| 256 | snap->ref = nref; |
| 257 | split_subst_snap(J, snap++, oir); |
| 258 | snref = snap < &J->cur.snap[J->cur.nsnap] ? snap->ref : ~(IRRef)0; |
| 259 | } |
| 260 | |
| 261 | /* Copy-substitute old instruction to new instruction. */ |
| 262 | nir->op1 = ir->op1 < nk ? ir->op1 : oir[ir->op1].prev; |
| 263 | nir->op2 = ir->op2 < nk ? ir->op2 : oir[ir->op2].prev; |
| 264 | ir->prev = nref; /* Loword substitution. */ |
| 265 | nir->o = ir->o; |
| 266 | nir->t.irt = ir->t.irt & ~(IRT_MARK|IRT_ISPHI); |
| 267 | hisubst[ref] = 0; |
| 268 | |
| 269 | /* Split 64 bit instructions. */ |
| 270 | #if LJ_SOFTFP |
| 271 | if (irt_isnum(ir->t)) { |
| 272 | nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD); /* Turn into INT op. */ |
| 273 | /* Note: hi ref = lo ref + 1! Required for SNAP_SOFTFPNUM logic. */ |
| 274 | switch (ir->o) { |
| 275 | case IR_ADD: |
| 276 | hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_add); |
| 277 | break; |
| 278 | case IR_SUB: |
| 279 | hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_sub); |
| 280 | break; |
| 281 | case IR_MUL: |
| 282 | hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_mul); |
| 283 | break; |
| 284 | case IR_DIV: |
| 285 | hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_div); |
| 286 | break; |
| 287 | case IR_POW: |
| 288 | hi = split_call_li(J, hisubst, oir, ir, IRCALL_lj_vm_powi); |
| 289 | break; |
| 290 | case IR_FPMATH: |
| 291 | /* Try to rejoin pow from EXP2, MUL and LOG2. */ |
| 292 | if (nir->op2 == IRFPM_EXP2 && nir->op1 > J->loopref) { |
| 293 | IRIns *irp = IR(nir->op1); |
| 294 | if (irp->o == IR_CALLN && irp->op2 == IRCALL_softfp_mul) { |
| 295 | IRIns *irm4 = IR(irp->op1); |
| 296 | IRIns *irm3 = IR(irm4->op1); |
| 297 | IRIns *irm12 = IR(irm3->op1); |
| 298 | IRIns *irl1 = IR(irm12->op1); |
| 299 | if (irm12->op1 > J->loopref && irl1->o == IR_CALLN && |
| 300 | irl1->op2 == IRCALL_lj_vm_log2) { |
| 301 | IRRef tmp = irl1->op1; /* Recycle first two args from LOG2. */ |
| 302 | IRRef arg3 = irm3->op2, arg4 = irm4->op2; |
| 303 | J->cur.nins--; |
| 304 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, arg3); |
| 305 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, arg4); |
| 306 | ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_pow); |
| 307 | hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp); |
| 308 | break; |
| 309 | } |
| 310 | } |
| 311 | } |
| 312 | hi = split_call_l(J, hisubst, oir, ir, IRCALL_lj_vm_floor + ir->op2); |
| 313 | break; |
| 314 | case IR_ATAN2: |
| 315 | hi = split_call_ll(J, hisubst, oir, ir, IRCALL_atan2); |
| 316 | break; |
| 317 | case IR_LDEXP: |
| 318 | hi = split_call_li(J, hisubst, oir, ir, IRCALL_ldexp); |
| 319 | break; |
| 320 | case IR_NEG: case IR_ABS: |
| 321 | nir->o = IR_CONV; /* Pass through loword. */ |
| 322 | nir->op2 = (IRT_INT << 5) | IRT_INT; |
| 323 | hi = split_emit(J, IRT(ir->o == IR_NEG ? IR_BXOR : IR_BAND, IRT_SOFTFP), |
| 324 | hisubst[ir->op1], hisubst[ir->op2]); |
| 325 | break; |
| 326 | case IR_SLOAD: |
| 327 | if ((nir->op2 & IRSLOAD_CONVERT)) { /* Convert from int to number. */ |
| 328 | nir->op2 &= ~IRSLOAD_CONVERT; |
| 329 | ir->prev = nref = split_emit(J, IRTI(IR_CALLN), nref, |
| 330 | IRCALL_softfp_i2d); |
| 331 | hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref); |
| 332 | break; |
| 333 | } |
| 334 | /* fallthrough */ |
| 335 | case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: |
| 336 | case IR_STRTO: |
| 337 | hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref); |
| 338 | break; |
| 339 | case IR_XLOAD: { |
| 340 | IRIns inslo = *nir; /* Save/undo the emit of the lo XLOAD. */ |
| 341 | J->cur.nins--; |
| 342 | hi = split_ptr(J, oir, ir->op1); /* Insert the hiref ADD. */ |
| 343 | nref = lj_ir_nextins(J); |
| 344 | nir = IR(nref); |
| 345 | *nir = inslo; /* Re-emit lo XLOAD immediately before hi XLOAD. */ |
| 346 | hi = split_emit(J, IRT(IR_XLOAD, IRT_SOFTFP), hi, ir->op2); |
| 347 | #if LJ_LE |
| 348 | ir->prev = nref; |
| 349 | #else |
| 350 | ir->prev = hi; hi = nref; |
| 351 | #endif |
| 352 | break; |
| 353 | } |
| 354 | case IR_ASTORE: case IR_HSTORE: case IR_USTORE: case IR_XSTORE: |
| 355 | split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nir->op1, hisubst[ir->op2]); |
| 356 | break; |
| 357 | case IR_CONV: { /* Conversion to number. Others handled below. */ |
| 358 | IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); |
| 359 | UNUSED(st); |
| 360 | #if LJ_32 && LJ_HASFFI |
| 361 | if (st == IRT_I64 || st == IRT_U64) { |
| 362 | hi = split_call_l(J, hisubst, oir, ir, |
| 363 | st == IRT_I64 ? IRCALL_fp64_l2d : IRCALL_fp64_ul2d); |
| 364 | break; |
| 365 | } |
| 366 | #endif |
| 367 | lua_assert(st == IRT_INT || |
| 368 | (LJ_32 && LJ_HASFFI && (st == IRT_U32 || st == IRT_FLOAT))); |
| 369 | nir->o = IR_CALLN; |
| 370 | #if LJ_32 && LJ_HASFFI |
| 371 | nir->op2 = st == IRT_INT ? IRCALL_softfp_i2d : |
| 372 | st == IRT_FLOAT ? IRCALL_softfp_f2d : |
| 373 | IRCALL_softfp_ui2d; |
| 374 | #else |
| 375 | nir->op2 = IRCALL_softfp_i2d; |
| 376 | #endif |
| 377 | hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref); |
| 378 | break; |
| 379 | } |
| 380 | case IR_CALLN: |
| 381 | case IR_CALLL: |
| 382 | case IR_CALLS: |
| 383 | case IR_CALLXS: |
| 384 | goto split_call; |
| 385 | case IR_PHI: |
| 386 | if (nir->op1 == nir->op2) |
| 387 | J->cur.nins--; /* Drop useless PHIs. */ |
| 388 | if (hisubst[ir->op1] != hisubst[ir->op2]) |
| 389 | split_emit(J, IRT(IR_PHI, IRT_SOFTFP), |
| 390 | hisubst[ir->op1], hisubst[ir->op2]); |
| 391 | break; |
| 392 | case IR_HIOP: |
| 393 | J->cur.nins--; /* Drop joining HIOP. */ |
| 394 | ir->prev = nir->op1; |
| 395 | hi = nir->op2; |
| 396 | break; |
| 397 | default: |
| 398 | lua_assert(ir->o <= IR_NE || ir->o == IR_MIN || ir->o == IR_MAX); |
| 399 | hi = split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP), |
| 400 | hisubst[ir->op1], hisubst[ir->op2]); |
| 401 | break; |
| 402 | } |
| 403 | } else |
| 404 | #endif |
| 405 | #if LJ_32 && LJ_HASFFI |
| 406 | if (irt_isint64(ir->t)) { |
| 407 | IRRef hiref = hisubst[ir->op1]; |
| 408 | nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD); /* Turn into INT op. */ |
| 409 | switch (ir->o) { |
| 410 | case IR_ADD: |
| 411 | case IR_SUB: |
| 412 | /* Use plain op for hiword if loword cannot produce a carry/borrow. */ |
| 413 | if (irref_isk(nir->op2) && IR(nir->op2)->i == 0) { |
| 414 | ir->prev = nir->op1; /* Pass through loword. */ |
| 415 | nir->op1 = hiref; nir->op2 = hisubst[ir->op2]; |
| 416 | hi = nref; |
| 417 | break; |
| 418 | } |
| 419 | /* fallthrough */ |
| 420 | case IR_NEG: |
| 421 | hi = split_emit(J, IRTI(IR_HIOP), hiref, hisubst[ir->op2]); |
| 422 | break; |
| 423 | case IR_MUL: |
| 424 | hi = split_call_ll(J, hisubst, oir, ir, IRCALL_lj_carith_mul64); |
| 425 | break; |
| 426 | case IR_DIV: |
| 427 | hi = split_call_ll(J, hisubst, oir, ir, |
| 428 | irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 : |
| 429 | IRCALL_lj_carith_divu64); |
| 430 | break; |
| 431 | case IR_MOD: |
| 432 | hi = split_call_ll(J, hisubst, oir, ir, |
| 433 | irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 : |
| 434 | IRCALL_lj_carith_modu64); |
| 435 | break; |
| 436 | case IR_POW: |
| 437 | hi = split_call_ll(J, hisubst, oir, ir, |
| 438 | irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 : |
| 439 | IRCALL_lj_carith_powu64); |
| 440 | break; |
| 441 | case IR_FLOAD: |
| 442 | lua_assert(ir->op2 == IRFL_CDATA_INT64); |
| 443 | hi = split_emit(J, IRTI(IR_FLOAD), nir->op1, IRFL_CDATA_INT64_4); |
| 444 | #if LJ_BE |
| 445 | ir->prev = hi; hi = nref; |
| 446 | #endif |
| 447 | break; |
| 448 | case IR_XLOAD: |
| 449 | hi = split_emit(J, IRTI(IR_XLOAD), split_ptr(J, oir, ir->op1), ir->op2); |
| 450 | #if LJ_BE |
| 451 | ir->prev = hi; hi = nref; |
| 452 | #endif |
| 453 | break; |
| 454 | case IR_XSTORE: |
| 455 | split_emit(J, IRTI(IR_HIOP), nir->op1, hisubst[ir->op2]); |
| 456 | break; |
| 457 | case IR_CONV: { /* Conversion to 64 bit integer. Others handled below. */ |
| 458 | IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); |
| 459 | #if LJ_SOFTFP |
| 460 | if (st == IRT_NUM) { /* NUM to 64 bit int conv. */ |
| 461 | hi = split_call_l(J, hisubst, oir, ir, |
| 462 | irt_isi64(ir->t) ? IRCALL_fp64_d2l : IRCALL_fp64_d2ul); |
| 463 | } else if (st == IRT_FLOAT) { /* FLOAT to 64 bit int conv. */ |
| 464 | nir->o = IR_CALLN; |
| 465 | nir->op2 = irt_isi64(ir->t) ? IRCALL_fp64_f2l : IRCALL_fp64_f2ul; |
| 466 | hi = split_emit(J, IRTI(IR_HIOP), nref, nref); |
| 467 | } |
| 468 | #else |
| 469 | if (st == IRT_NUM || st == IRT_FLOAT) { /* FP to 64 bit int conv. */ |
| 470 | hi = split_emit(J, IRTI(IR_HIOP), nir->op1, nref); |
| 471 | } |
| 472 | #endif |
| 473 | else if (st == IRT_I64 || st == IRT_U64) { /* 64/64 bit cast. */ |
| 474 | /* Drop cast, since assembler doesn't care. */ |
| 475 | goto fwdlo; |
| 476 | } else if ((ir->op2 & IRCONV_SEXT)) { /* Sign-extend to 64 bit. */ |
| 477 | IRRef k31 = lj_ir_kint(J, 31); |
| 478 | nir = IR(nref); /* May have been reallocated. */ |
| 479 | ir->prev = nir->op1; /* Pass through loword. */ |
| 480 | nir->o = IR_BSAR; /* hi = bsar(lo, 31). */ |
| 481 | nir->op2 = k31; |
| 482 | hi = nref; |
| 483 | } else { /* Zero-extend to 64 bit. */ |
| 484 | hi = lj_ir_kint(J, 0); |
| 485 | goto fwdlo; |
| 486 | } |
| 487 | break; |
| 488 | } |
| 489 | case IR_CALLXS: |
| 490 | goto split_call; |
| 491 | case IR_PHI: { |
| 492 | IRRef hiref2; |
| 493 | if ((irref_isk(nir->op1) && irref_isk(nir->op2)) || |
| 494 | nir->op1 == nir->op2) |
| 495 | J->cur.nins--; /* Drop useless PHIs. */ |
| 496 | hiref2 = hisubst[ir->op2]; |
| 497 | if (!((irref_isk(hiref) && irref_isk(hiref2)) || hiref == hiref2)) |
| 498 | split_emit(J, IRTI(IR_PHI), hiref, hiref2); |
| 499 | break; |
| 500 | } |
| 501 | case IR_HIOP: |
| 502 | J->cur.nins--; /* Drop joining HIOP. */ |
| 503 | ir->prev = nir->op1; |
| 504 | hi = nir->op2; |
| 505 | break; |
| 506 | default: |
| 507 | lua_assert(ir->o <= IR_NE); /* Comparisons. */ |
| 508 | split_emit(J, IRTGI(IR_HIOP), hiref, hisubst[ir->op2]); |
| 509 | break; |
| 510 | } |
| 511 | } else |
| 512 | #endif |
| 513 | #if LJ_SOFTFP |
| 514 | if (ir->o == IR_SLOAD) { |
| 515 | if ((nir->op2 & IRSLOAD_CONVERT)) { /* Convert from number to int. */ |
| 516 | nir->op2 &= ~IRSLOAD_CONVERT; |
| 517 | if (!(nir->op2 & IRSLOAD_TYPECHECK)) |
| 518 | nir->t.irt = IRT_INT; /* Drop guard. */ |
| 519 | split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref); |
| 520 | ir->prev = split_num2int(J, nref, nref+1, irt_isguard(ir->t)); |
| 521 | } |
| 522 | } else if (ir->o == IR_TOBIT) { |
| 523 | IRRef tmp, op1 = ir->op1; |
| 524 | J->cur.nins--; |
| 525 | #if LJ_LE |
| 526 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]); |
| 527 | #else |
| 528 | tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev); |
| 529 | #endif |
| 530 | ir->prev = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_lj_vm_tobit); |
| 531 | } else if (ir->o == IR_TOSTR) { |
| 532 | if (hisubst[ir->op1]) { |
| 533 | if (irref_isk(ir->op1)) |
| 534 | nir->op1 = ir->op1; |
| 535 | else |
| 536 | split_emit(J, IRT(IR_HIOP, IRT_NIL), hisubst[ir->op1], nref); |
| 537 | } |
| 538 | } else if (ir->o == IR_HREF || ir->o == IR_NEWREF) { |
| 539 | if (irref_isk(ir->op2) && hisubst[ir->op2]) |
| 540 | nir->op2 = ir->op2; |
| 541 | } else |
| 542 | #endif |
| 543 | if (ir->o == IR_CONV) { /* See above, too. */ |
| 544 | IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); |
| 545 | #if LJ_32 && LJ_HASFFI |
| 546 | if (st == IRT_I64 || st == IRT_U64) { /* Conversion from 64 bit int. */ |
| 547 | #if LJ_SOFTFP |
| 548 | if (irt_isfloat(ir->t)) { |
| 549 | split_call_l(J, hisubst, oir, ir, |
| 550 | st == IRT_I64 ? IRCALL_fp64_l2f : IRCALL_fp64_ul2f); |
| 551 | J->cur.nins--; /* Drop unused HIOP. */ |
| 552 | } |
| 553 | #else |
| 554 | if (irt_isfp(ir->t)) { /* 64 bit integer to FP conversion. */ |
| 555 | ir->prev = split_emit(J, IRT(IR_HIOP, irt_type(ir->t)), |
| 556 | hisubst[ir->op1], nref); |
| 557 | } |
| 558 | #endif |
| 559 | else { /* Truncate to lower 32 bits. */ |
| 560 | fwdlo: |
| 561 | ir->prev = nir->op1; /* Forward loword. */ |
| 562 | /* Replace with NOP to avoid messing up the snapshot logic. */ |
| 563 | nir->ot = IRT(IR_NOP, IRT_NIL); |
| 564 | nir->op1 = nir->op2 = 0; |
| 565 | } |
| 566 | } |
| 567 | #endif |
| 568 | #if LJ_SOFTFP && LJ_32 && LJ_HASFFI |
| 569 | else if (irt_isfloat(ir->t)) { |
| 570 | if (st == IRT_NUM) { |
| 571 | split_call_l(J, hisubst, oir, ir, IRCALL_softfp_d2f); |
| 572 | J->cur.nins--; /* Drop unused HIOP. */ |
| 573 | } else { |
| 574 | nir->o = IR_CALLN; |
| 575 | nir->op2 = st == IRT_INT ? IRCALL_softfp_i2f : IRCALL_softfp_ui2f; |
| 576 | } |
| 577 | } else if (st == IRT_FLOAT) { |
| 578 | nir->o = IR_CALLN; |
| 579 | nir->op2 = irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui; |
| 580 | } else |
| 581 | #endif |
| 582 | #if LJ_SOFTFP |
| 583 | if (st == IRT_NUM || (LJ_32 && LJ_HASFFI && st == IRT_FLOAT)) { |
| 584 | if (irt_isguard(ir->t)) { |
| 585 | lua_assert(st == IRT_NUM && irt_isint(ir->t)); |
| 586 | J->cur.nins--; |
| 587 | ir->prev = split_num2int(J, nir->op1, hisubst[ir->op1], 1); |
| 588 | } else { |
| 589 | split_call_l(J, hisubst, oir, ir, |
| 590 | #if LJ_32 && LJ_HASFFI |
| 591 | st == IRT_NUM ? |
| 592 | (irt_isint(ir->t) ? IRCALL_softfp_d2i : IRCALL_softfp_d2ui) : |
| 593 | (irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui) |
| 594 | #else |
| 595 | IRCALL_softfp_d2i |
| 596 | #endif |
| 597 | ); |
| 598 | J->cur.nins--; /* Drop unused HIOP. */ |
| 599 | } |
| 600 | } |
| 601 | #endif |
| 602 | } else if (ir->o == IR_CALLXS) { |
| 603 | IRRef hiref; |
| 604 | split_call: |
| 605 | hiref = hisubst[ir->op1]; |
| 606 | if (hiref) { |
| 607 | IROpT ot = nir->ot; |
| 608 | IRRef op2 = nir->op2; |
| 609 | nir->ot = IRT(IR_CARG, IRT_NIL); |
| 610 | #if LJ_LE |
| 611 | nir->op2 = hiref; |
| 612 | #else |
| 613 | nir->op2 = nir->op1; nir->op1 = hiref; |
| 614 | #endif |
| 615 | ir->prev = nref = split_emit(J, ot, nref, op2); |
| 616 | } |
| 617 | if (LJ_SOFTFP ? irt_is64(ir->t) : irt_isint64(ir->t)) |
| 618 | hi = split_emit(J, |
| 619 | IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT), |
| 620 | nref, nref); |
| 621 | } else if (ir->o == IR_CARG) { |
| 622 | IRRef hiref = hisubst[ir->op1]; |
| 623 | if (hiref) { |
| 624 | IRRef op2 = nir->op2; |
| 625 | #if LJ_LE |
| 626 | nir->op2 = hiref; |
| 627 | #else |
| 628 | nir->op2 = nir->op1; nir->op1 = hiref; |
| 629 | #endif |
| 630 | ir->prev = nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2); |
| 631 | nir = IR(nref); |
| 632 | } |
| 633 | hiref = hisubst[ir->op2]; |
| 634 | if (hiref) { |
| 635 | #if !LJ_TARGET_X86 |
| 636 | int carg = 0; |
| 637 | IRIns *cir; |
| 638 | for (cir = IR(nir->op1); cir->o == IR_CARG; cir = IR(cir->op1)) |
| 639 | carg++; |
| 640 | if ((carg & 1) == 0) { /* Align 64 bit arguments. */ |
| 641 | IRRef op2 = nir->op2; |
| 642 | nir->op2 = REF_NIL; |
| 643 | nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2); |
| 644 | nir = IR(nref); |
| 645 | } |
| 646 | #endif |
| 647 | #if LJ_BE |
| 648 | { IRRef tmp = nir->op2; nir->op2 = hiref; hiref = tmp; } |
| 649 | #endif |
| 650 | ir->prev = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, hiref); |
| 651 | } |
| 652 | } else if (ir->o == IR_CNEWI) { |
| 653 | if (hisubst[ir->op2]) |
| 654 | split_emit(J, IRT(IR_HIOP, IRT_NIL), nref, hisubst[ir->op2]); |
| 655 | } else if (ir->o == IR_LOOP) { |
| 656 | J->loopref = nref; /* Needed by assembler. */ |
| 657 | } |
| 658 | hisubst[ref] = hi; /* Store hiword substitution. */ |
| 659 | } |
| 660 | if (snref == nins) { /* Substitution for last snapshot. */ |
| 661 | snap->ref = J->cur.nins; |
| 662 | split_subst_snap(J, snap, oir); |
| 663 | } |
| 664 | |
| 665 | /* Add PHI marks. */ |
| 666 | for (ref = J->cur.nins-1; ref >= REF_FIRST; ref--) { |
| 667 | IRIns *ir = IR(ref); |
| 668 | if (ir->o != IR_PHI) break; |
| 669 | if (!irref_isk(ir->op1)) irt_setphi(IR(ir->op1)->t); |
| 670 | if (ir->op2 > J->loopref) irt_setphi(IR(ir->op2)->t); |
| 671 | } |
| 672 | } |
| 673 | |
| 674 | /* Protected callback for split pass. */ |
| 675 | static TValue *cpsplit(lua_State *L, lua_CFunction dummy, void *ud) |
| 676 | { |
| 677 | jit_State *J = (jit_State *)ud; |
| 678 | split_ir(J); |
| 679 | UNUSED(L); UNUSED(dummy); |
| 680 | return NULL; |
| 681 | } |
| 682 | |
| 683 | #if defined(LUA_USE_ASSERT) || LJ_SOFTFP |
| 684 | /* Slow, but sure way to check whether a SPLIT pass is needed. */ |
| 685 | static int split_needsplit(jit_State *J) |
| 686 | { |
| 687 | IRIns *ir, *irend; |
| 688 | IRRef ref; |
| 689 | for (ir = IR(REF_FIRST), irend = IR(J->cur.nins); ir < irend; ir++) |
| 690 | if (LJ_SOFTFP ? irt_is64orfp(ir->t) : irt_isint64(ir->t)) |
| 691 | return 1; |
| 692 | if (LJ_SOFTFP) { |
| 693 | for (ref = J->chain[IR_SLOAD]; ref; ref = IR(ref)->prev) |
| 694 | if ((IR(ref)->op2 & IRSLOAD_CONVERT)) |
| 695 | return 1; |
| 696 | if (J->chain[IR_TOBIT]) |
| 697 | return 1; |
| 698 | } |
| 699 | for (ref = J->chain[IR_CONV]; ref; ref = IR(ref)->prev) { |
| 700 | IRType st = (IR(ref)->op2 & IRCONV_SRCMASK); |
| 701 | if ((LJ_SOFTFP && (st == IRT_NUM || st == IRT_FLOAT)) || |
| 702 | st == IRT_I64 || st == IRT_U64) |
| 703 | return 1; |
| 704 | } |
| 705 | return 0; /* Nope. */ |
| 706 | } |
| 707 | #endif |
| 708 | |
| 709 | /* SPLIT pass. */ |
| 710 | void lj_opt_split(jit_State *J) |
| 711 | { |
| 712 | #if LJ_SOFTFP |
| 713 | if (!J->needsplit) |
| 714 | J->needsplit = split_needsplit(J); |
| 715 | #else |
| 716 | lua_assert(J->needsplit >= split_needsplit(J)); /* Verify flag. */ |
| 717 | #endif |
| 718 | if (J->needsplit) { |
| 719 | int errcode = lj_vm_cpcall(J->L, NULL, J, cpsplit); |
| 720 | if (errcode) { |
| 721 | /* Completely reset the trace to avoid inconsistent dump on abort. */ |
| 722 | J->cur.nins = J->cur.nk = REF_BASE; |
| 723 | J->cur.nsnap = 0; |
| 724 | lj_err_throw(J->L, errcode); /* Propagate errors. */ |
| 725 | } |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | #undef IR |
| 730 | |
| 731 | #endif |
| 732 | |