| 1 | /* |
| 2 | ** Definitions for target CPU. |
| 3 | ** Copyright (C) 2005-2014 Mike Pall. See Copyright Notice in luajit.h |
| 4 | */ |
| 5 | |
| 6 | #ifndef _LJ_TARGET_H |
| 7 | #define _LJ_TARGET_H |
| 8 | |
| 9 | #include "lj_def.h" |
| 10 | #include "lj_arch.h" |
| 11 | |
| 12 | /* -- Registers and spill slots ------------------------------------------- */ |
| 13 | |
| 14 | /* Register type (uint8_t in ir->r). */ |
| 15 | typedef uint32_t Reg; |
| 16 | |
| 17 | /* The hi-bit is NOT set for an allocated register. This means the value |
| 18 | ** can be directly used without masking. The hi-bit is set for a register |
| 19 | ** allocation hint or for RID_INIT, RID_SINK or RID_SUNK. |
| 20 | */ |
| 21 | #define RID_NONE 0x80 |
| 22 | #define RID_MASK 0x7f |
| 23 | #define RID_INIT (RID_NONE|RID_MASK) |
| 24 | #define RID_SINK (RID_INIT-1) |
| 25 | #define RID_SUNK (RID_INIT-2) |
| 26 | |
| 27 | #define ra_noreg(r) ((r) & RID_NONE) |
| 28 | #define ra_hasreg(r) (!((r) & RID_NONE)) |
| 29 | |
| 30 | /* The ra_hashint() macro assumes a previous test for ra_noreg(). */ |
| 31 | #define ra_hashint(r) ((r) < RID_SUNK) |
| 32 | #define ra_gethint(r) ((Reg)((r) & RID_MASK)) |
| 33 | #define ra_sethint(rr, r) rr = (uint8_t)((r)|RID_NONE) |
| 34 | #define ra_samehint(r1, r2) (ra_gethint((r1)^(r2)) == 0) |
| 35 | |
| 36 | /* Spill slot 0 means no spill slot has been allocated. */ |
| 37 | #define SPS_NONE 0 |
| 38 | |
| 39 | #define ra_hasspill(s) ((s) != SPS_NONE) |
| 40 | |
| 41 | /* Combined register and spill slot (uint16_t in ir->prev). */ |
| 42 | typedef uint32_t RegSP; |
| 43 | |
| 44 | #define REGSP(r, s) ((r) + ((s) << 8)) |
| 45 | #define REGSP_HINT(r) ((r)|RID_NONE) |
| 46 | #define REGSP_INIT REGSP(RID_INIT, 0) |
| 47 | |
| 48 | #define regsp_reg(rs) ((rs) & 255) |
| 49 | #define regsp_spill(rs) ((rs) >> 8) |
| 50 | #define regsp_used(rs) \ |
| 51 | (((rs) & ~REGSP(RID_MASK, 0)) != REGSP(RID_NONE, 0)) |
| 52 | |
| 53 | /* -- Register sets ------------------------------------------------------- */ |
| 54 | |
| 55 | /* Bitset for registers. 32 registers suffice for most architectures. |
| 56 | ** Note that one set holds bits for both GPRs and FPRs. |
| 57 | */ |
| 58 | #if LJ_TARGET_PPC || LJ_TARGET_MIPS |
| 59 | typedef uint64_t RegSet; |
| 60 | #else |
| 61 | typedef uint32_t RegSet; |
| 62 | #endif |
| 63 | |
| 64 | #define RID2RSET(r) (((RegSet)1) << (r)) |
| 65 | #define RSET_EMPTY ((RegSet)0) |
| 66 | #define RSET_RANGE(lo, hi) ((RID2RSET((hi)-(lo))-1) << (lo)) |
| 67 | |
| 68 | #define rset_test(rs, r) ((int)((rs) >> (r)) & 1) |
| 69 | #define rset_set(rs, r) (rs |= RID2RSET(r)) |
| 70 | #define rset_clear(rs, r) (rs &= ~RID2RSET(r)) |
| 71 | #define rset_exclude(rs, r) (rs & ~RID2RSET(r)) |
| 72 | #if LJ_TARGET_PPC || LJ_TARGET_MIPS |
| 73 | #define rset_picktop(rs) ((Reg)(__builtin_clzll(rs)^63)) |
| 74 | #define rset_pickbot(rs) ((Reg)__builtin_ctzll(rs)) |
| 75 | #else |
| 76 | #define rset_picktop(rs) ((Reg)lj_fls(rs)) |
| 77 | #define rset_pickbot(rs) ((Reg)lj_ffs(rs)) |
| 78 | #endif |
| 79 | |
| 80 | /* -- Register allocation cost -------------------------------------------- */ |
| 81 | |
| 82 | /* The register allocation heuristic keeps track of the cost for allocating |
| 83 | ** a specific register: |
| 84 | ** |
| 85 | ** A free register (obviously) has a cost of 0 and a 1-bit in the free mask. |
| 86 | ** |
| 87 | ** An already allocated register has the (non-zero) IR reference in the lowest |
| 88 | ** bits and the result of a blended cost-model in the higher bits. |
| 89 | ** |
| 90 | ** The allocator first checks the free mask for a hit. Otherwise an (unrolled) |
| 91 | ** linear search for the minimum cost is used. The search doesn't need to |
| 92 | ** keep track of the position of the minimum, which makes it very fast. |
| 93 | ** The lowest bits of the minimum cost show the desired IR reference whose |
| 94 | ** register is the one to evict. |
| 95 | ** |
| 96 | ** Without the cost-model this degenerates to the standard heuristics for |
| 97 | ** (reverse) linear-scan register allocation. Since code generation is done |
| 98 | ** in reverse, a live interval extends from the last use to the first def. |
| 99 | ** For an SSA IR the IR reference is the first (and only) def and thus |
| 100 | ** trivially marks the end of the interval. The LSRA heuristics says to pick |
| 101 | ** the register whose live interval has the furthest extent, i.e. the lowest |
| 102 | ** IR reference in our case. |
| 103 | ** |
| 104 | ** A cost-model should take into account other factors, like spill-cost and |
| 105 | ** restore- or rematerialization-cost, which depend on the kind of instruction. |
| 106 | ** E.g. constants have zero spill costs, variant instructions have higher |
| 107 | ** costs than invariants and PHIs should preferably never be spilled. |
| 108 | ** |
| 109 | ** Here's a first cut at simple, but effective blended cost-model for R-LSRA: |
| 110 | ** - Due to careful design of the IR, constants already have lower IR |
| 111 | ** references than invariants and invariants have lower IR references |
| 112 | ** than variants. |
| 113 | ** - The cost in the upper 16 bits is the sum of the IR reference and a |
| 114 | ** weighted score. The score currently only takes into account whether |
| 115 | ** the IRT_ISPHI bit is set in the instruction type. |
| 116 | ** - The PHI weight is the minimum distance (in IR instructions) a PHI |
| 117 | ** reference has to be further apart from a non-PHI reference to be spilled. |
| 118 | ** - It should be a power of two (for speed) and must be between 2 and 32768. |
| 119 | ** Good values for the PHI weight seem to be between 40 and 150. |
| 120 | ** - Further study is required. |
| 121 | */ |
| 122 | #define REGCOST_PHI_WEIGHT 64 |
| 123 | |
| 124 | /* Cost for allocating a specific register. */ |
| 125 | typedef uint32_t RegCost; |
| 126 | |
| 127 | /* Note: assumes 16 bit IRRef1. */ |
| 128 | #define REGCOST(cost, ref) ((RegCost)(ref) + ((RegCost)(cost) << 16)) |
| 129 | #define regcost_ref(rc) ((IRRef1)(rc)) |
| 130 | |
| 131 | #define REGCOST_T(t) \ |
| 132 | ((RegCost)((t)&IRT_ISPHI) * (((RegCost)(REGCOST_PHI_WEIGHT)<<16)/IRT_ISPHI)) |
| 133 | #define REGCOST_REF_T(ref, t) (REGCOST((ref), (ref)) + REGCOST_T((t))) |
| 134 | |
| 135 | /* -- Target-specific definitions ----------------------------------------- */ |
| 136 | |
| 137 | #if LJ_TARGET_X86ORX64 |
| 138 | #include "lj_target_x86.h" |
| 139 | #elif LJ_TARGET_ARM |
| 140 | #include "lj_target_arm.h" |
| 141 | #elif LJ_TARGET_PPC |
| 142 | #include "lj_target_ppc.h" |
| 143 | #elif LJ_TARGET_MIPS |
| 144 | #include "lj_target_mips.h" |
| 145 | #else |
| 146 | #error "Missing include for target CPU" |
| 147 | #endif |
| 148 | |
| 149 | #ifdef EXITSTUBS_PER_GROUP |
| 150 | /* Return the address of an exit stub. */ |
| 151 | static LJ_AINLINE char *exitstub_addr_(char **group, uint32_t exitno) |
| 152 | { |
| 153 | lua_assert(group[exitno / EXITSTUBS_PER_GROUP] != NULL); |
| 154 | return (char *)group[exitno / EXITSTUBS_PER_GROUP] + |
| 155 | EXITSTUB_SPACING*(exitno % EXITSTUBS_PER_GROUP); |
| 156 | } |
| 157 | /* Avoid dependence on lj_jit.h if only including lj_target.h. */ |
| 158 | #define exitstub_addr(J, exitno) \ |
| 159 | ((MCode *)exitstub_addr_((char **)((J)->exitstubgroup), (exitno))) |
| 160 | #endif |
| 161 | |
| 162 | #endif |
| 163 | |