| 1 | // Copyright 2009 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Various Google-specific casting templates. |
| 4 | // |
| 5 | // This code is compiled directly on many platforms, including client |
| 6 | // platforms like Windows, Mac, and embedded systems. Before making |
| 7 | // any changes here, make sure that you're not breaking any platforms. |
| 8 | // |
| 9 | |
| 10 | #ifndef BASE_CASTS_H_ |
| 11 | #define BASE_CASTS_H_ |
| 12 | |
| 13 | #include <assert.h> // for use with down_cast<> |
| 14 | #include <string.h> // for memcpy |
| 15 | #include <limits.h> // for enumeration casts and tests |
| 16 | #include <typeinfo> // for enumeration casts and tests |
| 17 | |
| 18 | #include "base/macros.h" |
| 19 | |
| 20 | |
| 21 | // Use implicit_cast as a safe version of static_cast or const_cast |
| 22 | // for upcasting in the type hierarchy (i.e. casting a pointer to Foo |
| 23 | // to a pointer to SuperclassOfFoo or casting a pointer to Foo to |
| 24 | // a const pointer to Foo). |
| 25 | // When you use implicit_cast, the compiler checks that the cast is safe. |
| 26 | // Such explicit implicit_casts are necessary in surprisingly many |
| 27 | // situations where C++ demands an exact type match instead of an |
| 28 | // argument type convertable to a target type. |
| 29 | // |
| 30 | // The From type can be inferred, so the preferred syntax for using |
| 31 | // implicit_cast is the same as for static_cast etc.: |
| 32 | // |
| 33 | // implicit_cast<ToType>(expr) |
| 34 | // |
| 35 | // implicit_cast would have been part of the C++ standard library, |
| 36 | // but the proposal was submitted too late. It will probably make |
| 37 | // its way into the language in the future. |
| 38 | template<typename To, typename From> |
| 39 | inline To implicit_cast(From const &f) { |
| 40 | return f; |
| 41 | } |
| 42 | |
| 43 | |
| 44 | // When you upcast (that is, cast a pointer from type Foo to type |
| 45 | // SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts |
| 46 | // always succeed. When you downcast (that is, cast a pointer from |
| 47 | // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because |
| 48 | // how do you know the pointer is really of type SubclassOfFoo? It |
| 49 | // could be a bare Foo, or of type DifferentSubclassOfFoo. Thus, |
| 50 | // when you downcast, you should use this macro. In debug mode, we |
| 51 | // use dynamic_cast<> to double-check the downcast is legal (we die |
| 52 | // if it's not). In normal mode, we do the efficient static_cast<> |
| 53 | // instead. Thus, it's important to test in debug mode to make sure |
| 54 | // the cast is legal! |
| 55 | // This is the only place in the code we should use dynamic_cast<>. |
| 56 | // In particular, you SHOULDN'T be using dynamic_cast<> in order to |
| 57 | // do RTTI (eg code like this: |
| 58 | // if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo); |
| 59 | // if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo); |
| 60 | // You should design the code some other way not to need this. |
| 61 | |
| 62 | template<typename To, typename From> // use like this: down_cast<T*>(foo); |
| 63 | inline To down_cast(From* f) { // so we only accept pointers |
| 64 | // Ensures that To is a sub-type of From *. This test is here only |
| 65 | // for compile-time type checking, and has no overhead in an |
| 66 | // optimized build at run-time, as it will be optimized away |
| 67 | // completely. |
| 68 | |
| 69 | // TODO(user): This should use COMPILE_ASSERT. |
| 70 | if (false) { |
| 71 | implicit_cast<From*, To>(0); |
| 72 | } |
| 73 | |
| 74 | // uses RTTI in dbg and fastbuild. asserts are disabled in opt builds. |
| 75 | assert(f == NULL || dynamic_cast<To>(f) != NULL); |
| 76 | return static_cast<To>(f); |
| 77 | } |
| 78 | |
| 79 | // Overload of down_cast for references. Use like this: down_cast<T&>(foo). |
| 80 | // The code is slightly convoluted because we're still using the pointer |
| 81 | // form of dynamic cast. (The reference form throws an exception if it |
| 82 | // fails.) |
| 83 | // |
| 84 | // There's no need for a special const overload either for the pointer |
| 85 | // or the reference form. If you call down_cast with a const T&, the |
| 86 | // compiler will just bind From to const T. |
| 87 | template<typename To, typename From> |
| 88 | inline To down_cast(From& f) { |
| 89 | COMPILE_ASSERT(base::is_reference<To>::value, target_type_not_a_reference); |
| 90 | typedef typename base::remove_reference<To>::type* ToAsPointer; |
| 91 | if (false) { |
| 92 | // Compile-time check that To inherits from From. See above for details. |
| 93 | implicit_cast<From*, ToAsPointer>(0); |
| 94 | } |
| 95 | |
| 96 | assert(dynamic_cast<ToAsPointer>(&f) != NULL); // RTTI: debug mode only |
| 97 | return static_cast<To>(f); |
| 98 | } |
| 99 | |
| 100 | // bit_cast<Dest,Source> is a template function that implements the |
| 101 | // equivalent of "*reinterpret_cast<Dest*>(&source)". We need this in |
| 102 | // very low-level functions like the protobuf library and fast math |
| 103 | // support. |
| 104 | // |
| 105 | // float f = 3.14159265358979; |
| 106 | // int i = bit_cast<int32>(f); |
| 107 | // // i = 0x40490fdb |
| 108 | // |
| 109 | // The classical address-casting method is: |
| 110 | // |
| 111 | // // WRONG |
| 112 | // float f = 3.14159265358979; // WRONG |
| 113 | // int i = * reinterpret_cast<int*>(&f); // WRONG |
| 114 | // |
| 115 | // The address-casting method actually produces undefined behavior |
| 116 | // according to ISO C++ specification section 3.10 -15 -. Roughly, this |
| 117 | // section says: if an object in memory has one type, and a program |
| 118 | // accesses it with a different type, then the result is undefined |
| 119 | // behavior for most values of "different type". |
| 120 | // |
| 121 | // This is true for any cast syntax, either *(int*)&f or |
| 122 | // *reinterpret_cast<int*>(&f). And it is particularly true for |
| 123 | // conversions betweeen integral lvalues and floating-point lvalues. |
| 124 | // |
| 125 | // The purpose of 3.10 -15- is to allow optimizing compilers to assume |
| 126 | // that expressions with different types refer to different memory. gcc |
| 127 | // 4.0.1 has an optimizer that takes advantage of this. So a |
| 128 | // non-conforming program quietly produces wildly incorrect output. |
| 129 | // |
| 130 | // The problem is not the use of reinterpret_cast. The problem is type |
| 131 | // punning: holding an object in memory of one type and reading its bits |
| 132 | // back using a different type. |
| 133 | // |
| 134 | // The C++ standard is more subtle and complex than this, but that |
| 135 | // is the basic idea. |
| 136 | // |
| 137 | // Anyways ... |
| 138 | // |
| 139 | // bit_cast<> calls memcpy() which is blessed by the standard, |
| 140 | // especially by the example in section 3.9 . Also, of course, |
| 141 | // bit_cast<> wraps up the nasty logic in one place. |
| 142 | // |
| 143 | // Fortunately memcpy() is very fast. In optimized mode, with a |
| 144 | // constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline |
| 145 | // code with the minimal amount of data movement. On a 32-bit system, |
| 146 | // memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8) |
| 147 | // compiles to two loads and two stores. |
| 148 | // |
| 149 | // I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1. |
| 150 | // |
| 151 | // WARNING: if Dest or Source is a non-POD type, the result of the memcpy |
| 152 | // is likely to surprise you. |
| 153 | // |
| 154 | // Props to Bill Gibbons for the compile time assertion technique and |
| 155 | // Art Komninos and Igor Tandetnik for the msvc experiments. |
| 156 | // |
| 157 | // -- mec 2005-10-17 |
| 158 | |
| 159 | template <class Dest, class Source> |
| 160 | inline Dest bit_cast(const Source& source) { |
| 161 | // Compile time assertion: sizeof(Dest) == sizeof(Source) |
| 162 | // A compile error here means your Dest and Source have different sizes. |
| 163 | typedef char VerifySizesAreEqual [sizeof(Dest) == sizeof(Source) ? 1 : -1]; |
| 164 | |
| 165 | Dest dest; |
| 166 | memcpy(&dest, &source, sizeof(dest)); |
| 167 | return dest; |
| 168 | } |
| 169 | |
| 170 | |
| 171 | // **** Enumeration Casts and Tests |
| 172 | // |
| 173 | // C++ requires that the value of an integer that is converted to an |
| 174 | // enumeration be within the value bounds of the enumeration. Modern |
| 175 | // compilers can and do take advantage of this requirement to optimize |
| 176 | // programs. So, using a raw static_cast with enums can be bad. See |
| 177 | // |
| 178 | // The following templates and macros enable casting from an int to an enum |
| 179 | // with checking against the appropriate bounds. First, when defining an |
| 180 | // enumeration, identify the limits of the values of its enumerators. |
| 181 | // |
| 182 | // enum A { A_min = -18, A_max = 33 }; |
| 183 | // MAKE_ENUM_LIMITS(A, A_min, A_max) |
| 184 | // |
| 185 | // Convert an enum to an int in one of two ways. The prefered way is a |
| 186 | // tight conversion, which ensures that A_min <= value <= A_max. |
| 187 | // |
| 188 | // A var = tight_enum_cast<A>(3); |
| 189 | // |
| 190 | // However, the C++ language defines the set of possible values for an |
| 191 | // enumeration to be essentially the range of a bitfield that can represent |
| 192 | // all the enumerators, i.e. those within the nearest containing power |
| 193 | // of two. In the example above, the nearest positive power of two is 64, |
| 194 | // and so the upper bound is 63. The nearest negative power of two is |
| 195 | // -32 and so the lower bound is -32 (two's complement), which is upgraded |
| 196 | // to match the upper bound, becoming -64. The values within this range |
| 197 | // of -64 to 63 are valid, according to the C++ standard. You can cast |
| 198 | // values within this range as follows. |
| 199 | // |
| 200 | // A var = loose_enum_cast<A>(45); |
| 201 | // |
| 202 | // These casts will log a message if the value does not reside within the |
| 203 | // specified range, and will be fatal when in debug mode. |
| 204 | // |
| 205 | // For those times when an assert too strong, there are test functions. |
| 206 | // |
| 207 | // bool var = tight_enum_test<A>(3); |
| 208 | // bool var = loose_enum_test<A>(45); |
| 209 | // |
| 210 | // For code that needs to use the enumeration value if and only if |
| 211 | // it is good, there is a function that both tests and casts. |
| 212 | // |
| 213 | // int i = ....; |
| 214 | // A var; |
| 215 | // if (tight_enum_test_cast<A>(i, &var)) |
| 216 | // .... // use valid var with value as indicated by i |
| 217 | // else |
| 218 | // .... // handle invalid enum cast |
| 219 | // |
| 220 | // The enum test/cast facility is currently limited to enumerations that |
| 221 | // fit within an int. It is also limited to two's complement ints. |
| 222 | |
| 223 | // ** Implementation Description |
| 224 | // |
| 225 | // The enum_limits template class captures the minimum and maximum |
| 226 | // enumerator. All uses of this template are intended to be of |
| 227 | // specializations, so the generic has a field to identify itself as |
| 228 | // not specialized. The test/cast templates assert specialization. |
| 229 | |
| 230 | template <typename Enum> |
| 231 | class enum_limits { |
| 232 | public: |
| 233 | static const Enum min_enumerator = 0; |
| 234 | static const Enum max_enumerator = 0; |
| 235 | static const bool is_specialized = false; |
| 236 | }; |
| 237 | |
| 238 | // Now we define the macro to define the specialization for enum_limits. |
| 239 | // The specialization checks that the enumerators fit within an int. |
| 240 | // This checking relies on integral promotion. |
| 241 | |
| 242 | #define MAKE_ENUM_LIMITS(ENUM_TYPE, ENUM_MIN, ENUM_MAX) \ |
| 243 | template <> \ |
| 244 | class enum_limits<ENUM_TYPE> { \ |
| 245 | public: \ |
| 246 | static const ENUM_TYPE min_enumerator = ENUM_MIN; \ |
| 247 | static const ENUM_TYPE max_enumerator = ENUM_MAX; \ |
| 248 | static const bool is_specialized = true; \ |
| 249 | COMPILE_ASSERT(ENUM_MIN >= INT_MIN, enumerator_too_negative_for_int); \ |
| 250 | COMPILE_ASSERT(ENUM_MAX <= INT_MAX, enumerator_too_positive_for_int); \ |
| 251 | }; |
| 252 | |
| 253 | // The loose enum test/cast is actually the more complicated one, |
| 254 | // because of the problem of finding the bounds. |
| 255 | // |
| 256 | // The unary upper bound, ub, on a positive number is its positive |
| 257 | // saturation, i.e. for a value v within pow(2,k-1) <= v < pow(2,k), |
| 258 | // the upper bound is pow(2,k)-1. |
| 259 | // |
| 260 | // The unary lower bound, lb, on a negative number is its negative |
| 261 | // saturation, i.e. for a value v within -pow(2,k) <= v < -pow(2,k-1), |
| 262 | // the lower bound is -pow(2,k). |
| 263 | // |
| 264 | // The actual bounds are (1) the binary upper bound over the maximum |
| 265 | // enumerator and the one's complement of a negative minimum enumerator |
| 266 | // and (2) the binary lower bound over the minimum enumerator and the |
| 267 | // one's complement of the positive maximum enumerator, except that if no |
| 268 | // enumerators are negative, the lower bound is zero. |
| 269 | // |
| 270 | // The algorithm relies heavily on the observation that |
| 271 | // |
| 272 | // a,b>0 then ub(a,b) == ub(a) | ub(b) == ub(a|b) |
| 273 | // a,b<0 then lb(a,b) == lb(a) & lb(b) == lb(a&b) |
| 274 | // |
| 275 | // Note that the compiler will boil most of this code away |
| 276 | // because of value propagation on the constant enumerator bounds. |
| 277 | |
| 278 | template <typename Enum> |
| 279 | inline bool loose_enum_test(int e_val) { |
| 280 | COMPILE_ASSERT(enum_limits<Enum>::is_specialized, missing_MAKE_ENUM_LIMITS); |
| 281 | const Enum e_min = enum_limits<Enum>::min_enumerator; |
| 282 | const Enum e_max = enum_limits<Enum>::max_enumerator; |
| 283 | COMPILE_ASSERT(sizeof(e_val) == 4 || sizeof(e_val) == 8, unexpected_int_size); |
| 284 | |
| 285 | // Find the unary bounding negative number of e_min and e_max. |
| 286 | |
| 287 | // Find the unary bounding negative number of e_max. |
| 288 | // This would be b_min = e_max < 0 ? e_max : ~e_max, |
| 289 | // but we want to avoid branches to help the compiler. |
| 290 | int e_max_sign = e_max >> (sizeof(e_val)*8 - 1); |
| 291 | int b_min = ~e_max_sign ^ e_max; |
| 292 | |
| 293 | // Find the binary bounding negative of both e_min and e_max. |
| 294 | b_min &= e_min; |
| 295 | |
| 296 | // However, if e_min is postive, the result will be positive. |
| 297 | // Now clear all bits right of the most significant clear bit, |
| 298 | // which is a negative saturation for negative numbers. |
| 299 | // In the case of positive numbers, this is flush to zero. |
| 300 | b_min &= b_min >> 1; |
| 301 | b_min &= b_min >> 2; |
| 302 | b_min &= b_min >> 4; |
| 303 | b_min &= b_min >> 8; |
| 304 | b_min &= b_min >> 16; |
| 305 | #if INT_MAX > 2147483647 |
| 306 | b_min &= b_min >> 32; |
| 307 | #endif |
| 308 | |
| 309 | // Find the unary bounding positive number of e_max. |
| 310 | int b_max = e_max_sign ^ e_max; |
| 311 | |
| 312 | // Find the binary bounding postive number of that |
| 313 | // and the unary bounding positive number of e_min. |
| 314 | int e_min_sign = e_min >> (sizeof(e_val)*8 - 1); |
| 315 | b_max |= e_min_sign ^ e_min; |
| 316 | |
| 317 | // Now set all bits right of the most significant set bit, |
| 318 | // which is a postive saturation for positive numbers. |
| 319 | b_max |= b_max >> 1; |
| 320 | b_max |= b_max >> 2; |
| 321 | b_max |= b_max >> 4; |
| 322 | b_max |= b_max >> 8; |
| 323 | b_max |= b_max >> 16; |
| 324 | #if INT_MAX > 2147483647 |
| 325 | b_max |= b_max >> 32; |
| 326 | #endif |
| 327 | |
| 328 | // Finally test the bounds. |
| 329 | return b_min <= e_val && e_val <= b_max; |
| 330 | } |
| 331 | |
| 332 | template <typename Enum> |
| 333 | inline bool tight_enum_test(int e_val) { |
| 334 | COMPILE_ASSERT(enum_limits<Enum>::is_specialized, missing_MAKE_ENUM_LIMITS); |
| 335 | const Enum e_min = enum_limits<Enum>::min_enumerator; |
| 336 | const Enum e_max = enum_limits<Enum>::max_enumerator; |
| 337 | return e_min <= e_val && e_val <= e_max; |
| 338 | } |
| 339 | |
| 340 | template <typename Enum> |
| 341 | inline bool loose_enum_test_cast(int e_val, Enum* e_var) { |
| 342 | if (loose_enum_test<Enum>(e_val)) { |
| 343 | *e_var = static_cast<Enum>(e_val); |
| 344 | return true; |
| 345 | } else { |
| 346 | return false; |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | template <typename Enum> |
| 351 | inline bool tight_enum_test_cast(int e_val, Enum* e_var) { |
| 352 | if (tight_enum_test<Enum>(e_val)) { |
| 353 | *e_var = static_cast<Enum>(e_val); |
| 354 | return true; |
| 355 | } else { |
| 356 | return false; |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | // The plain casts require logging, and we get header recursion if |
| 361 | // it is done directly. So, we do it indirectly. |
| 362 | // The following function is defined in logging.cc. |
| 363 | |
| 364 | namespace logging { |
| 365 | |
| 366 | void WarnEnumCastError(const char* name_of_type, int value_of_int); |
| 367 | |
| 368 | } // namespace logging |
| 369 | |
| 370 | template <typename Enum> |
| 371 | inline Enum loose_enum_cast(int e_val) { |
| 372 | if (!loose_enum_test<Enum>(e_val)) { |
| 373 | #if __GNUC__ && !__GXX_RTTI |
| 374 | // Gcc and -fno-rtti; can't issue a warning with enum name. |
| 375 | assert(false); |
| 376 | #else |
| 377 | logging::WarnEnumCastError(typeid(Enum).name(), e_val); |
| 378 | #endif |
| 379 | } |
| 380 | return static_cast<Enum>(e_val); |
| 381 | } |
| 382 | |
| 383 | template <typename Enum> |
| 384 | inline Enum tight_enum_cast(int e_val) { |
| 385 | if (!tight_enum_test<Enum>(e_val)) { |
| 386 | #if __GNUC__ && !__GXX_RTTI |
| 387 | // Gcc and -fno-rtti; can't issue a warning with enum name. |
| 388 | assert(false); |
| 389 | #else |
| 390 | logging::WarnEnumCastError(typeid(Enum).name(), e_val); |
| 391 | #endif |
| 392 | } |
| 393 | return static_cast<Enum>(e_val); |
| 394 | } |
| 395 | |
| 396 | #endif // BASE_CASTS_H_ |
| 397 | |