1 | // Copyright 2007 Google Inc. |
2 | // All Rights Reserved. |
3 | // |
4 | // |
5 | #ifndef BASE_SCOPED_PTR_H__ |
6 | #define BASE_SCOPED_PTR_H__ |
7 | |
8 | // This is an implementation designed to match the anticipated future TR2 |
9 | // implementation of the scoped_ptr class, and its closely-related brethren, |
10 | // scoped_array, scoped_ptr_malloc, and make_scoped_ptr. |
11 | // |
12 | // file. |
13 | |
14 | #include <assert.h> |
15 | #include <stdlib.h> |
16 | #include <cstddef> |
17 | |
18 | #ifdef OS_EMBEDDED_QNX |
19 | // NOTE(user): |
20 | // The C++ standard says that <stdlib.h> declares both ::foo and std::foo |
21 | // But this isn't done in QNX version 6.3.2 200709062316. |
22 | using std::free; |
23 | using std::malloc; |
24 | using std::realloc; |
25 | #endif |
26 | |
27 | template <class C> class scoped_ptr; |
28 | template <class C, class Free> class scoped_ptr_malloc; |
29 | template <class C> class scoped_array; |
30 | |
31 | template <class C> |
32 | scoped_ptr<C> make_scoped_ptr(C *); |
33 | |
34 | // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> |
35 | // automatically deletes the pointer it holds (if any). |
36 | // That is, scoped_ptr<T> owns the T object that it points to. |
37 | // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. |
38 | // Also like T*, scoped_ptr<T> is thread-compatible, and once you |
39 | // dereference it, you get the threadsafety guarantees of T. |
40 | // |
41 | // The size of a scoped_ptr is small: |
42 | // sizeof(scoped_ptr<C>) == sizeof(C*) |
43 | template <class C> |
44 | class scoped_ptr { |
45 | public: |
46 | |
47 | // The element type |
48 | typedef C element_type; |
49 | |
50 | // Constructor. Defaults to intializing with NULL. |
51 | // There is no way to create an uninitialized scoped_ptr. |
52 | // The input parameter must be allocated with new. |
53 | explicit scoped_ptr(C* p = NULL) : ptr_(p) { } |
54 | |
55 | // Destructor. If there is a C object, delete it. |
56 | // We don't need to test ptr_ == NULL because C++ does that for us. |
57 | ~scoped_ptr() { |
58 | enum { type_must_be_complete = sizeof(C) }; |
59 | delete ptr_; |
60 | } |
61 | |
62 | // Reset. Deletes the current owned object, if any. |
63 | // Then takes ownership of a new object, if given. |
64 | // this->reset(this->get()) works. |
65 | void reset(C* p = NULL) { |
66 | if (p != ptr_) { |
67 | enum { type_must_be_complete = sizeof(C) }; |
68 | delete ptr_; |
69 | ptr_ = p; |
70 | } |
71 | } |
72 | |
73 | // Accessors to get the owned object. |
74 | // operator* and operator-> will assert() if there is no current object. |
75 | C& operator*() const { |
76 | assert(ptr_ != NULL); |
77 | return *ptr_; |
78 | } |
79 | C* operator->() const { |
80 | assert(ptr_ != NULL); |
81 | return ptr_; |
82 | } |
83 | C* get() const { return ptr_; } |
84 | |
85 | // Comparison operators. |
86 | // These return whether a scoped_ptr and a raw pointer refer to |
87 | // the same object, not just to two different but equal objects. |
88 | bool operator==(const C* p) const { return ptr_ == p; } |
89 | bool operator!=(const C* p) const { return ptr_ != p; } |
90 | |
91 | // Swap two scoped pointers. |
92 | void swap(scoped_ptr& p2) { |
93 | C* tmp = ptr_; |
94 | ptr_ = p2.ptr_; |
95 | p2.ptr_ = tmp; |
96 | } |
97 | |
98 | // Release a pointer. |
99 | // The return value is the current pointer held by this object. |
100 | // If this object holds a NULL pointer, the return value is NULL. |
101 | // After this operation, this object will hold a NULL pointer, |
102 | // and will not own the object any more. |
103 | C* release() { |
104 | C* retVal = ptr_; |
105 | ptr_ = NULL; |
106 | return retVal; |
107 | } |
108 | |
109 | private: |
110 | C* ptr_; |
111 | |
112 | // google3 friend class that can access copy ctor (although if it actually |
113 | // calls a copy ctor, there will be a problem) see below |
114 | friend scoped_ptr<C> make_scoped_ptr<C>(C *p); |
115 | |
116 | // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't |
117 | // make sense, and if C2 == C, it still doesn't make sense because you should |
118 | // never have the same object owned by two different scoped_ptrs. |
119 | template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; |
120 | template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; |
121 | |
122 | // Disallow evil constructors |
123 | scoped_ptr(const scoped_ptr&); |
124 | void operator=(const scoped_ptr&); |
125 | }; |
126 | |
127 | // Free functions |
128 | template <class C> |
129 | inline void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { |
130 | p1.swap(p2); |
131 | } |
132 | |
133 | template <class C> |
134 | inline bool operator==(const C* p1, const scoped_ptr<C>& p2) { |
135 | return p1 == p2.get(); |
136 | } |
137 | |
138 | template <class C> |
139 | inline bool operator==(const C* p1, const scoped_ptr<const C>& p2) { |
140 | return p1 == p2.get(); |
141 | } |
142 | |
143 | template <class C> |
144 | inline bool operator!=(const C* p1, const scoped_ptr<C>& p2) { |
145 | return p1 != p2.get(); |
146 | } |
147 | |
148 | template <class C> |
149 | inline bool operator!=(const C* p1, const scoped_ptr<const C>& p2) { |
150 | return p1 != p2.get(); |
151 | } |
152 | |
153 | template <class C> |
154 | scoped_ptr<C> make_scoped_ptr(C *p) { |
155 | // This does nothing but to return a scoped_ptr of the type that the passed |
156 | // pointer is of. (This eliminates the need to specify the name of T when |
157 | // making a scoped_ptr that is used anonymously/temporarily.) From an |
158 | // access control point of view, we construct an unnamed scoped_ptr here |
159 | // which we return and thus copy-construct. Hence, we need to have access |
160 | // to scoped_ptr::scoped_ptr(scoped_ptr const &). However, it is guaranteed |
161 | // that we never actually call the copy constructor, which is a good thing |
162 | // as we would call the temporary's object destructor (and thus delete p) |
163 | // if we actually did copy some object, here. |
164 | return scoped_ptr<C>(p); |
165 | } |
166 | |
167 | // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate |
168 | // with new [] and the destructor deletes objects with delete []. |
169 | // |
170 | // As with scoped_ptr<C>, a scoped_array<C> either points to an object |
171 | // or is NULL. A scoped_array<C> owns the object that it points to. |
172 | // scoped_array<T> is thread-compatible, and once you index into it, |
173 | // the returned objects have only the threadsafety guarantees of T. |
174 | // |
175 | // Size: sizeof(scoped_array<C>) == sizeof(C*) |
176 | template <class C> |
177 | class scoped_array { |
178 | public: |
179 | |
180 | // The element type |
181 | typedef C element_type; |
182 | |
183 | // Constructor. Defaults to intializing with NULL. |
184 | // There is no way to create an uninitialized scoped_array. |
185 | // The input parameter must be allocated with new []. |
186 | explicit scoped_array(C* p = NULL) : array_(p) { } |
187 | |
188 | // Destructor. If there is a C object, delete it. |
189 | // We don't need to test ptr_ == NULL because C++ does that for us. |
190 | ~scoped_array() { |
191 | enum { type_must_be_complete = sizeof(C) }; |
192 | delete[] array_; |
193 | } |
194 | |
195 | // Reset. Deletes the current owned object, if any. |
196 | // Then takes ownership of a new object, if given. |
197 | // this->reset(this->get()) works. |
198 | void reset(C* p = NULL) { |
199 | if (p != array_) { |
200 | enum { type_must_be_complete = sizeof(C) }; |
201 | delete[] array_; |
202 | array_ = p; |
203 | } |
204 | } |
205 | |
206 | // Get one element of the current object. |
207 | // Will assert() if there is no current object, or index i is negative. |
208 | C& operator[](std::ptrdiff_t i) const { |
209 | assert(i >= 0); |
210 | assert(array_ != NULL); |
211 | return array_[i]; |
212 | } |
213 | |
214 | // Get a pointer to the zeroth element of the current object. |
215 | // If there is no current object, return NULL. |
216 | C* get() const { |
217 | return array_; |
218 | } |
219 | |
220 | // Comparison operators. |
221 | // These return whether a scoped_array and a raw pointer refer to |
222 | // the same array, not just to two different but equal arrays. |
223 | bool operator==(const C* p) const { return array_ == p; } |
224 | bool operator!=(const C* p) const { return array_ != p; } |
225 | |
226 | // Swap two scoped arrays. |
227 | void swap(scoped_array& p2) { |
228 | C* tmp = array_; |
229 | array_ = p2.array_; |
230 | p2.array_ = tmp; |
231 | } |
232 | |
233 | // Release an array. |
234 | // The return value is the current pointer held by this object. |
235 | // If this object holds a NULL pointer, the return value is NULL. |
236 | // After this operation, this object will hold a NULL pointer, |
237 | // and will not own the object any more. |
238 | C* release() { |
239 | C* retVal = array_; |
240 | array_ = NULL; |
241 | return retVal; |
242 | } |
243 | |
244 | private: |
245 | C* array_; |
246 | |
247 | // Forbid comparison of different scoped_array types. |
248 | template <class C2> bool operator==(scoped_array<C2> const& p2) const; |
249 | template <class C2> bool operator!=(scoped_array<C2> const& p2) const; |
250 | |
251 | // Disallow evil constructors |
252 | scoped_array(const scoped_array&); |
253 | void operator=(const scoped_array&); |
254 | }; |
255 | |
256 | // Free functions |
257 | template <class C> |
258 | inline void swap(scoped_array<C>& p1, scoped_array<C>& p2) { |
259 | p1.swap(p2); |
260 | } |
261 | |
262 | template <class C> |
263 | inline bool operator==(const C* p1, const scoped_array<C>& p2) { |
264 | return p1 == p2.get(); |
265 | } |
266 | |
267 | template <class C> |
268 | inline bool operator==(const C* p1, const scoped_array<const C>& p2) { |
269 | return p1 == p2.get(); |
270 | } |
271 | |
272 | template <class C> |
273 | inline bool operator!=(const C* p1, const scoped_array<C>& p2) { |
274 | return p1 != p2.get(); |
275 | } |
276 | |
277 | template <class C> |
278 | inline bool operator!=(const C* p1, const scoped_array<const C>& p2) { |
279 | return p1 != p2.get(); |
280 | } |
281 | |
282 | // This class wraps the c library function free() in a class that can be |
283 | // passed as a template argument to scoped_ptr_malloc below. |
284 | class ScopedPtrMallocFree { |
285 | public: |
286 | inline void operator()(void* x) const { |
287 | free(x); |
288 | } |
289 | }; |
290 | |
291 | // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a |
292 | // second template argument, the functor used to free the object. |
293 | |
294 | template<class C, class FreeProc = ScopedPtrMallocFree> |
295 | class scoped_ptr_malloc { |
296 | public: |
297 | |
298 | // The element type |
299 | typedef C element_type; |
300 | |
301 | // Construction with no arguments sets ptr_ to NULL. |
302 | // There is no way to create an uninitialized scoped_ptr. |
303 | // The input parameter must be allocated with an allocator that matches the |
304 | // Free functor. For the default Free functor, this is malloc, calloc, or |
305 | // realloc. |
306 | explicit scoped_ptr_malloc(): ptr_(NULL) { } |
307 | |
308 | // Construct with a C*, and provides an error with a D*. |
309 | template<class must_be_C> |
310 | explicit scoped_ptr_malloc(must_be_C* p): ptr_(p) { } |
311 | |
312 | // Construct with a void*, such as you get from malloc. |
313 | explicit scoped_ptr_malloc(void *p): ptr_(static_cast<C*>(p)) { } |
314 | |
315 | // Destructor. If there is a C object, call the Free functor. |
316 | ~scoped_ptr_malloc() { |
317 | free_(ptr_); |
318 | } |
319 | |
320 | // Reset. Calls the Free functor on the current owned object, if any. |
321 | // Then takes ownership of a new object, if given. |
322 | // this->reset(this->get()) works. |
323 | void reset(C* p = NULL) { |
324 | if (ptr_ != p) { |
325 | free_(ptr_); |
326 | ptr_ = p; |
327 | } |
328 | } |
329 | |
330 | // Reallocates the existing pointer, and returns 'true' if |
331 | // the reallcation is succesfull. If the reallocation failed, then |
332 | // the pointer remains in its previous state. |
333 | // |
334 | // Note: this calls realloc() directly, even if an alternate 'free' |
335 | // functor is provided in the template instantiation. |
336 | bool try_realloc(size_t new_size) { |
337 | C* new_ptr = static_cast<C*>(realloc(ptr_, new_size)); |
338 | if (new_ptr == NULL) { |
339 | return false; |
340 | } |
341 | ptr_ = new_ptr; |
342 | return true; |
343 | } |
344 | |
345 | // Get the current object. |
346 | // operator* and operator-> will cause an assert() failure if there is |
347 | // no current object. |
348 | C& operator*() const { |
349 | assert(ptr_ != NULL); |
350 | return *ptr_; |
351 | } |
352 | |
353 | C* operator->() const { |
354 | assert(ptr_ != NULL); |
355 | return ptr_; |
356 | } |
357 | |
358 | C* get() const { |
359 | return ptr_; |
360 | } |
361 | |
362 | // Comparison operators. |
363 | // These return whether a scoped_ptr_malloc and a plain pointer refer |
364 | // to the same object, not just to two different but equal objects. |
365 | // For compatibility with the boost-derived implementation, these |
366 | // take non-const arguments. |
367 | bool operator==(C* p) const { |
368 | return ptr_ == p; |
369 | } |
370 | |
371 | bool operator!=(C* p) const { |
372 | return ptr_ != p; |
373 | } |
374 | |
375 | // Swap two scoped pointers. |
376 | void swap(scoped_ptr_malloc & b) { |
377 | C* tmp = b.ptr_; |
378 | b.ptr_ = ptr_; |
379 | ptr_ = tmp; |
380 | } |
381 | |
382 | // Release a pointer. |
383 | // The return value is the current pointer held by this object. |
384 | // If this object holds a NULL pointer, the return value is NULL. |
385 | // After this operation, this object will hold a NULL pointer, |
386 | // and will not own the object any more. |
387 | C* release() { |
388 | C* tmp = ptr_; |
389 | ptr_ = NULL; |
390 | return tmp; |
391 | } |
392 | |
393 | private: |
394 | C* ptr_; |
395 | |
396 | // no reason to use these: each scoped_ptr_malloc should have its own object |
397 | template <class C2, class GP> |
398 | bool operator==(scoped_ptr_malloc<C2, GP> const& p) const; |
399 | template <class C2, class GP> |
400 | bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const; |
401 | |
402 | static FreeProc const free_; |
403 | |
404 | // Disallow evil constructors |
405 | scoped_ptr_malloc(const scoped_ptr_malloc&); |
406 | void operator=(const scoped_ptr_malloc&); |
407 | }; |
408 | |
409 | template<class C, class FP> |
410 | FP const scoped_ptr_malloc<C, FP>::free_ = FP(); |
411 | |
412 | template<class C, class FP> inline |
413 | void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) { |
414 | a.swap(b); |
415 | } |
416 | |
417 | template<class C, class FP> inline |
418 | bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) { |
419 | return p == b.get(); |
420 | } |
421 | |
422 | template<class C, class FP> inline |
423 | bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) { |
424 | return p != b.get(); |
425 | } |
426 | |
427 | #endif // BASE_SCOPED_PTR_H__ |
428 | |