| 1 | // Copyright 2005 Google Inc. All Rights Reserved. | 
|---|
| 2 |  | 
|---|
| 3 | #include "s1interval.h" | 
|---|
| 4 |  | 
|---|
| 5 | #include "base/logging.h" | 
|---|
| 6 |  | 
|---|
| 7 | S1Interval S1Interval::FromPoint(double p) { | 
|---|
| 8 | if (p == -M_PI) p = M_PI; | 
|---|
| 9 | return S1Interval(p, p, ARGS_CHECKED); | 
|---|
| 10 | } | 
|---|
| 11 |  | 
|---|
| 12 | double S1Interval::GetCenter() const { | 
|---|
| 13 | double center = 0.5 * (lo() + hi()); | 
|---|
| 14 | if (!is_inverted()) return center; | 
|---|
| 15 | // Return the center in the range (-Pi, Pi]. | 
|---|
| 16 | return (center <= 0) ? (center + M_PI) : (center - M_PI); | 
|---|
| 17 | } | 
|---|
| 18 |  | 
|---|
| 19 | double S1Interval::GetLength() const { | 
|---|
| 20 | double length = hi() - lo(); | 
|---|
| 21 | if (length >= 0) return length; | 
|---|
| 22 | length += 2 * M_PI; | 
|---|
| 23 | // Empty intervals have a negative length. | 
|---|
| 24 | return (length > 0) ? length : -1; | 
|---|
| 25 | } | 
|---|
| 26 |  | 
|---|
| 27 | S1Interval S1Interval::Complement() const { | 
|---|
| 28 | if (lo() == hi()) return Full();   // Singleton. | 
|---|
| 29 | return S1Interval(hi(), lo(), ARGS_CHECKED);  // Handles empty and full. | 
|---|
| 30 | } | 
|---|
| 31 |  | 
|---|
| 32 | double S1Interval::GetComplementCenter() const { | 
|---|
| 33 | if (lo() != hi()) { | 
|---|
| 34 | return Complement().GetCenter(); | 
|---|
| 35 | } else {  // Singleton. | 
|---|
| 36 | return (hi() <= 0) ? (hi() + M_PI) : (hi() - M_PI); | 
|---|
| 37 | } | 
|---|
| 38 | } | 
|---|
| 39 |  | 
|---|
| 40 | bool S1Interval::FastContains(double p) const { | 
|---|
| 41 | if (is_inverted()) { | 
|---|
| 42 | return (p >= lo() || p <= hi()) && !is_empty(); | 
|---|
| 43 | } else { | 
|---|
| 44 | return p >= lo() && p <= hi(); | 
|---|
| 45 | } | 
|---|
| 46 | } | 
|---|
| 47 |  | 
|---|
| 48 | bool S1Interval::Contains(double p) const { | 
|---|
| 49 | // Works for empty, full, and singleton intervals. | 
|---|
| 50 | DCHECK_LE(fabs(p), M_PI); | 
|---|
| 51 | if (p == -M_PI) p = M_PI; | 
|---|
| 52 | return FastContains(p); | 
|---|
| 53 | } | 
|---|
| 54 |  | 
|---|
| 55 | bool S1Interval::InteriorContains(double p) const { | 
|---|
| 56 | // Works for empty, full, and singleton intervals. | 
|---|
| 57 | DCHECK_LE(fabs(p), M_PI); | 
|---|
| 58 | if (p == -M_PI) p = M_PI; | 
|---|
| 59 |  | 
|---|
| 60 | if (is_inverted()) { | 
|---|
| 61 | return p > lo() || p < hi(); | 
|---|
| 62 | } else { | 
|---|
| 63 | return (p > lo() && p < hi()) || is_full(); | 
|---|
| 64 | } | 
|---|
| 65 | } | 
|---|
| 66 |  | 
|---|
| 67 | bool S1Interval::Contains(S1Interval const& y) const { | 
|---|
| 68 | // It might be helpful to compare the structure of these tests to | 
|---|
| 69 | // the simpler Contains(double) method above. | 
|---|
| 70 |  | 
|---|
| 71 | if (is_inverted()) { | 
|---|
| 72 | if (y.is_inverted()) return y.lo() >= lo() && y.hi() <= hi(); | 
|---|
| 73 | return (y.lo() >= lo() || y.hi() <= hi()) && !is_empty(); | 
|---|
| 74 | } else { | 
|---|
| 75 | if (y.is_inverted()) return is_full() || y.is_empty(); | 
|---|
| 76 | return y.lo() >= lo() && y.hi() <= hi(); | 
|---|
| 77 | } | 
|---|
| 78 | } | 
|---|
| 79 |  | 
|---|
| 80 | bool S1Interval::InteriorContains(S1Interval const& y) const { | 
|---|
| 81 | if (is_inverted()) { | 
|---|
| 82 | if (!y.is_inverted()) return y.lo() > lo() || y.hi() < hi(); | 
|---|
| 83 | return (y.lo() > lo() && y.hi() < hi()) || y.is_empty(); | 
|---|
| 84 | } else { | 
|---|
| 85 | if (y.is_inverted()) return is_full() || y.is_empty(); | 
|---|
| 86 | return (y.lo() > lo() && y.hi() < hi()) || is_full(); | 
|---|
| 87 | } | 
|---|
| 88 | } | 
|---|
| 89 |  | 
|---|
| 90 | bool S1Interval::Intersects(S1Interval const& y) const { | 
|---|
| 91 | if (is_empty() || y.is_empty()) return false; | 
|---|
| 92 | if (is_inverted()) { | 
|---|
| 93 | // Every non-empty inverted interval contains Pi. | 
|---|
| 94 | return y.is_inverted() || y.lo() <= hi() || y.hi() >= lo(); | 
|---|
| 95 | } else { | 
|---|
| 96 | if (y.is_inverted()) return y.lo() <= hi() || y.hi() >= lo(); | 
|---|
| 97 | return y.lo() <= hi() && y.hi() >= lo(); | 
|---|
| 98 | } | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | bool S1Interval::InteriorIntersects(S1Interval const& y) const { | 
|---|
| 102 | if (is_empty() || y.is_empty() || lo() == hi()) return false; | 
|---|
| 103 | if (is_inverted()) { | 
|---|
| 104 | return y.is_inverted() || y.lo() < hi() || y.hi() > lo(); | 
|---|
| 105 | } else { | 
|---|
| 106 | if (y.is_inverted()) return y.lo() < hi() || y.hi() > lo(); | 
|---|
| 107 | return (y.lo() < hi() && y.hi() > lo()) || is_full(); | 
|---|
| 108 | } | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | inline static double PositiveDistance(double a, double b) { | 
|---|
| 112 | // Compute the distance from "a" to "b" in the range [0, 2*Pi). | 
|---|
| 113 | // This is equivalent to (drem(b - a - M_PI, 2 * M_PI) + M_PI), | 
|---|
| 114 | // except that it is more numerically stable (it does not lose | 
|---|
| 115 | // precision for very small positive distances). | 
|---|
| 116 | double d = b - a; | 
|---|
| 117 | if (d >= 0) return d; | 
|---|
| 118 | // We want to ensure that if b == Pi and a == (-Pi + eps), | 
|---|
| 119 | // the return result is approximately 2*Pi and not zero. | 
|---|
| 120 | return (b + M_PI) - (a - M_PI); | 
|---|
| 121 | } | 
|---|
| 122 |  | 
|---|
| 123 | double S1Interval::GetDirectedHausdorffDistance(S1Interval const& y) const { | 
|---|
| 124 | if (y.Contains(*this)) return 0.0;  // this includes the case *this is empty | 
|---|
| 125 | if (y.is_empty()) return M_PI;  // maximum possible distance on S1 | 
|---|
| 126 |  | 
|---|
| 127 | double y_complement_center = y.GetComplementCenter(); | 
|---|
| 128 | if (Contains(y_complement_center)) { | 
|---|
| 129 | return PositiveDistance(y.hi(), y_complement_center); | 
|---|
| 130 | } else { | 
|---|
| 131 | // The Hausdorff distance is realized by either two hi() endpoints or two | 
|---|
| 132 | // lo() endpoints, whichever is farther apart. | 
|---|
| 133 | double hi_hi = S1Interval(y.hi(), y_complement_center).Contains(hi()) ? | 
|---|
| 134 | PositiveDistance(y.hi(), hi()) : 0; | 
|---|
| 135 | double lo_lo = S1Interval(y_complement_center, y.lo()).Contains(lo()) ? | 
|---|
| 136 | PositiveDistance(lo(), y.lo()) : 0; | 
|---|
| 137 | DCHECK(hi_hi > 0 || lo_lo > 0); | 
|---|
| 138 | return max(hi_hi, lo_lo); | 
|---|
| 139 | } | 
|---|
| 140 | } | 
|---|
| 141 |  | 
|---|
| 142 | void S1Interval::AddPoint(double p) { | 
|---|
| 143 | DCHECK_LE(fabs(p), M_PI); | 
|---|
| 144 | if (p == -M_PI) p = M_PI; | 
|---|
| 145 |  | 
|---|
| 146 | if (FastContains(p)) return; | 
|---|
| 147 | if (is_empty()) { | 
|---|
| 148 | set_hi(p); | 
|---|
| 149 | set_lo(p); | 
|---|
| 150 | } else { | 
|---|
| 151 | // Compute distance from p to each endpoint. | 
|---|
| 152 | double dlo = PositiveDistance(p, lo()); | 
|---|
| 153 | double dhi = PositiveDistance(hi(), p); | 
|---|
| 154 | if (dlo < dhi) { | 
|---|
| 155 | set_lo(p); | 
|---|
| 156 | } else { | 
|---|
| 157 | set_hi(p); | 
|---|
| 158 | } | 
|---|
| 159 | // Adding a point can never turn a non-full interval into a full one. | 
|---|
| 160 | } | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | S1Interval S1Interval::FromPointPair(double p1, double p2) { | 
|---|
| 164 | DCHECK_LE(fabs(p1), M_PI); | 
|---|
| 165 | DCHECK_LE(fabs(p2), M_PI); | 
|---|
| 166 | if (p1 == -M_PI) p1 = M_PI; | 
|---|
| 167 | if (p2 == -M_PI) p2 = M_PI; | 
|---|
| 168 | if (PositiveDistance(p1, p2) <= M_PI) { | 
|---|
| 169 | return S1Interval(p1, p2, ARGS_CHECKED); | 
|---|
| 170 | } else { | 
|---|
| 171 | return S1Interval(p2, p1, ARGS_CHECKED); | 
|---|
| 172 | } | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 | S1Interval S1Interval::Expanded(double radius) const { | 
|---|
| 176 | DCHECK_GE(radius, 0); | 
|---|
| 177 | if (is_empty()) return *this; | 
|---|
| 178 |  | 
|---|
| 179 | // Check whether this interval will be full after expansion, allowing | 
|---|
| 180 | // for a 1-bit rounding error when computing each endpoint. | 
|---|
| 181 | if (GetLength() + 2 * radius >= 2 * M_PI - 1e-15) return Full(); | 
|---|
| 182 |  | 
|---|
| 183 | S1Interval result(drem(lo() - radius, 2*M_PI), drem(hi() + radius, 2*M_PI)); | 
|---|
| 184 | if (result.lo() <= -M_PI) result.set_lo(M_PI); | 
|---|
| 185 | return result; | 
|---|
| 186 | } | 
|---|
| 187 |  | 
|---|
| 188 | S1Interval S1Interval::Union(S1Interval const& y) const { | 
|---|
| 189 | // The y.is_full() case is handled correctly in all cases by the code | 
|---|
| 190 | // below, but can follow three separate code paths depending on whether | 
|---|
| 191 | // this interval is inverted, is non-inverted but contains Pi, or neither. | 
|---|
| 192 |  | 
|---|
| 193 | if (y.is_empty()) return *this; | 
|---|
| 194 | if (FastContains(y.lo())) { | 
|---|
| 195 | if (FastContains(y.hi())) { | 
|---|
| 196 | // Either this interval contains y, or the union of the two | 
|---|
| 197 | // intervals is the Full() interval. | 
|---|
| 198 | if (Contains(y)) return *this;  // is_full() code path | 
|---|
| 199 | return Full(); | 
|---|
| 200 | } | 
|---|
| 201 | return S1Interval(lo(), y.hi(), ARGS_CHECKED); | 
|---|
| 202 | } | 
|---|
| 203 | if (FastContains(y.hi())) return S1Interval(y.lo(), hi(), ARGS_CHECKED); | 
|---|
| 204 |  | 
|---|
| 205 | // This interval contains neither endpoint of y.  This means that either y | 
|---|
| 206 | // contains all of this interval, or the two intervals are disjoint. | 
|---|
| 207 | if (is_empty() || y.FastContains(lo())) return y; | 
|---|
| 208 |  | 
|---|
| 209 | // Check which pair of endpoints are closer together. | 
|---|
| 210 | double dlo = PositiveDistance(y.hi(), lo()); | 
|---|
| 211 | double dhi = PositiveDistance(hi(), y.lo()); | 
|---|
| 212 | if (dlo < dhi) { | 
|---|
| 213 | return S1Interval(y.lo(), hi(), ARGS_CHECKED); | 
|---|
| 214 | } else { | 
|---|
| 215 | return S1Interval(lo(), y.hi(), ARGS_CHECKED); | 
|---|
| 216 | } | 
|---|
| 217 | } | 
|---|
| 218 |  | 
|---|
| 219 | S1Interval S1Interval::Intersection(S1Interval const& y) const { | 
|---|
| 220 | // The y.is_full() case is handled correctly in all cases by the code | 
|---|
| 221 | // below, but can follow three separate code paths depending on whether | 
|---|
| 222 | // this interval is inverted, is non-inverted but contains Pi, or neither. | 
|---|
| 223 |  | 
|---|
| 224 | if (y.is_empty()) return Empty(); | 
|---|
| 225 | if (FastContains(y.lo())) { | 
|---|
| 226 | if (FastContains(y.hi())) { | 
|---|
| 227 | // Either this interval contains y, or the region of intersection | 
|---|
| 228 | // consists of two disjoint subintervals.  In either case, we want | 
|---|
| 229 | // to return the shorter of the two original intervals. | 
|---|
| 230 | if (y.GetLength() < GetLength()) return y;  // is_full() code path | 
|---|
| 231 | return *this; | 
|---|
| 232 | } | 
|---|
| 233 | return S1Interval(y.lo(), hi(), ARGS_CHECKED); | 
|---|
| 234 | } | 
|---|
| 235 | if (FastContains(y.hi())) return S1Interval(lo(), y.hi(), ARGS_CHECKED); | 
|---|
| 236 |  | 
|---|
| 237 | // This interval contains neither endpoint of y.  This means that either y | 
|---|
| 238 | // contains all of this interval, or the two intervals are disjoint. | 
|---|
| 239 |  | 
|---|
| 240 | if (y.FastContains(lo())) return *this;  // is_empty() okay here | 
|---|
| 241 | DCHECK(!Intersects(y)); | 
|---|
| 242 | return Empty(); | 
|---|
| 243 | } | 
|---|
| 244 |  | 
|---|
| 245 | bool S1Interval::ApproxEquals(S1Interval const& y, double max_error) const { | 
|---|
| 246 | if (is_empty()) return y.GetLength() <= max_error; | 
|---|
| 247 | if (y.is_empty()) return GetLength() <= max_error; | 
|---|
| 248 | return (fabs(drem(y.lo() - lo(), 2 * M_PI)) + | 
|---|
| 249 | fabs(drem(y.hi() - hi(), 2 * M_PI))) <= max_error; | 
|---|
| 250 | } | 
|---|
| 251 |  | 
|---|