1 | // Copyright 2005 Google Inc. All Rights Reserved. |
2 | |
3 | #include "s1interval.h" |
4 | |
5 | #include "base/logging.h" |
6 | |
7 | S1Interval S1Interval::FromPoint(double p) { |
8 | if (p == -M_PI) p = M_PI; |
9 | return S1Interval(p, p, ARGS_CHECKED); |
10 | } |
11 | |
12 | double S1Interval::GetCenter() const { |
13 | double center = 0.5 * (lo() + hi()); |
14 | if (!is_inverted()) return center; |
15 | // Return the center in the range (-Pi, Pi]. |
16 | return (center <= 0) ? (center + M_PI) : (center - M_PI); |
17 | } |
18 | |
19 | double S1Interval::GetLength() const { |
20 | double length = hi() - lo(); |
21 | if (length >= 0) return length; |
22 | length += 2 * M_PI; |
23 | // Empty intervals have a negative length. |
24 | return (length > 0) ? length : -1; |
25 | } |
26 | |
27 | S1Interval S1Interval::Complement() const { |
28 | if (lo() == hi()) return Full(); // Singleton. |
29 | return S1Interval(hi(), lo(), ARGS_CHECKED); // Handles empty and full. |
30 | } |
31 | |
32 | double S1Interval::GetComplementCenter() const { |
33 | if (lo() != hi()) { |
34 | return Complement().GetCenter(); |
35 | } else { // Singleton. |
36 | return (hi() <= 0) ? (hi() + M_PI) : (hi() - M_PI); |
37 | } |
38 | } |
39 | |
40 | bool S1Interval::FastContains(double p) const { |
41 | if (is_inverted()) { |
42 | return (p >= lo() || p <= hi()) && !is_empty(); |
43 | } else { |
44 | return p >= lo() && p <= hi(); |
45 | } |
46 | } |
47 | |
48 | bool S1Interval::Contains(double p) const { |
49 | // Works for empty, full, and singleton intervals. |
50 | DCHECK_LE(fabs(p), M_PI); |
51 | if (p == -M_PI) p = M_PI; |
52 | return FastContains(p); |
53 | } |
54 | |
55 | bool S1Interval::InteriorContains(double p) const { |
56 | // Works for empty, full, and singleton intervals. |
57 | DCHECK_LE(fabs(p), M_PI); |
58 | if (p == -M_PI) p = M_PI; |
59 | |
60 | if (is_inverted()) { |
61 | return p > lo() || p < hi(); |
62 | } else { |
63 | return (p > lo() && p < hi()) || is_full(); |
64 | } |
65 | } |
66 | |
67 | bool S1Interval::Contains(S1Interval const& y) const { |
68 | // It might be helpful to compare the structure of these tests to |
69 | // the simpler Contains(double) method above. |
70 | |
71 | if (is_inverted()) { |
72 | if (y.is_inverted()) return y.lo() >= lo() && y.hi() <= hi(); |
73 | return (y.lo() >= lo() || y.hi() <= hi()) && !is_empty(); |
74 | } else { |
75 | if (y.is_inverted()) return is_full() || y.is_empty(); |
76 | return y.lo() >= lo() && y.hi() <= hi(); |
77 | } |
78 | } |
79 | |
80 | bool S1Interval::InteriorContains(S1Interval const& y) const { |
81 | if (is_inverted()) { |
82 | if (!y.is_inverted()) return y.lo() > lo() || y.hi() < hi(); |
83 | return (y.lo() > lo() && y.hi() < hi()) || y.is_empty(); |
84 | } else { |
85 | if (y.is_inverted()) return is_full() || y.is_empty(); |
86 | return (y.lo() > lo() && y.hi() < hi()) || is_full(); |
87 | } |
88 | } |
89 | |
90 | bool S1Interval::Intersects(S1Interval const& y) const { |
91 | if (is_empty() || y.is_empty()) return false; |
92 | if (is_inverted()) { |
93 | // Every non-empty inverted interval contains Pi. |
94 | return y.is_inverted() || y.lo() <= hi() || y.hi() >= lo(); |
95 | } else { |
96 | if (y.is_inverted()) return y.lo() <= hi() || y.hi() >= lo(); |
97 | return y.lo() <= hi() && y.hi() >= lo(); |
98 | } |
99 | } |
100 | |
101 | bool S1Interval::InteriorIntersects(S1Interval const& y) const { |
102 | if (is_empty() || y.is_empty() || lo() == hi()) return false; |
103 | if (is_inverted()) { |
104 | return y.is_inverted() || y.lo() < hi() || y.hi() > lo(); |
105 | } else { |
106 | if (y.is_inverted()) return y.lo() < hi() || y.hi() > lo(); |
107 | return (y.lo() < hi() && y.hi() > lo()) || is_full(); |
108 | } |
109 | } |
110 | |
111 | inline static double PositiveDistance(double a, double b) { |
112 | // Compute the distance from "a" to "b" in the range [0, 2*Pi). |
113 | // This is equivalent to (drem(b - a - M_PI, 2 * M_PI) + M_PI), |
114 | // except that it is more numerically stable (it does not lose |
115 | // precision for very small positive distances). |
116 | double d = b - a; |
117 | if (d >= 0) return d; |
118 | // We want to ensure that if b == Pi and a == (-Pi + eps), |
119 | // the return result is approximately 2*Pi and not zero. |
120 | return (b + M_PI) - (a - M_PI); |
121 | } |
122 | |
123 | double S1Interval::GetDirectedHausdorffDistance(S1Interval const& y) const { |
124 | if (y.Contains(*this)) return 0.0; // this includes the case *this is empty |
125 | if (y.is_empty()) return M_PI; // maximum possible distance on S1 |
126 | |
127 | double y_complement_center = y.GetComplementCenter(); |
128 | if (Contains(y_complement_center)) { |
129 | return PositiveDistance(y.hi(), y_complement_center); |
130 | } else { |
131 | // The Hausdorff distance is realized by either two hi() endpoints or two |
132 | // lo() endpoints, whichever is farther apart. |
133 | double hi_hi = S1Interval(y.hi(), y_complement_center).Contains(hi()) ? |
134 | PositiveDistance(y.hi(), hi()) : 0; |
135 | double lo_lo = S1Interval(y_complement_center, y.lo()).Contains(lo()) ? |
136 | PositiveDistance(lo(), y.lo()) : 0; |
137 | DCHECK(hi_hi > 0 || lo_lo > 0); |
138 | return max(hi_hi, lo_lo); |
139 | } |
140 | } |
141 | |
142 | void S1Interval::AddPoint(double p) { |
143 | DCHECK_LE(fabs(p), M_PI); |
144 | if (p == -M_PI) p = M_PI; |
145 | |
146 | if (FastContains(p)) return; |
147 | if (is_empty()) { |
148 | set_hi(p); |
149 | set_lo(p); |
150 | } else { |
151 | // Compute distance from p to each endpoint. |
152 | double dlo = PositiveDistance(p, lo()); |
153 | double dhi = PositiveDistance(hi(), p); |
154 | if (dlo < dhi) { |
155 | set_lo(p); |
156 | } else { |
157 | set_hi(p); |
158 | } |
159 | // Adding a point can never turn a non-full interval into a full one. |
160 | } |
161 | } |
162 | |
163 | S1Interval S1Interval::FromPointPair(double p1, double p2) { |
164 | DCHECK_LE(fabs(p1), M_PI); |
165 | DCHECK_LE(fabs(p2), M_PI); |
166 | if (p1 == -M_PI) p1 = M_PI; |
167 | if (p2 == -M_PI) p2 = M_PI; |
168 | if (PositiveDistance(p1, p2) <= M_PI) { |
169 | return S1Interval(p1, p2, ARGS_CHECKED); |
170 | } else { |
171 | return S1Interval(p2, p1, ARGS_CHECKED); |
172 | } |
173 | } |
174 | |
175 | S1Interval S1Interval::Expanded(double radius) const { |
176 | DCHECK_GE(radius, 0); |
177 | if (is_empty()) return *this; |
178 | |
179 | // Check whether this interval will be full after expansion, allowing |
180 | // for a 1-bit rounding error when computing each endpoint. |
181 | if (GetLength() + 2 * radius >= 2 * M_PI - 1e-15) return Full(); |
182 | |
183 | S1Interval result(drem(lo() - radius, 2*M_PI), drem(hi() + radius, 2*M_PI)); |
184 | if (result.lo() <= -M_PI) result.set_lo(M_PI); |
185 | return result; |
186 | } |
187 | |
188 | S1Interval S1Interval::Union(S1Interval const& y) const { |
189 | // The y.is_full() case is handled correctly in all cases by the code |
190 | // below, but can follow three separate code paths depending on whether |
191 | // this interval is inverted, is non-inverted but contains Pi, or neither. |
192 | |
193 | if (y.is_empty()) return *this; |
194 | if (FastContains(y.lo())) { |
195 | if (FastContains(y.hi())) { |
196 | // Either this interval contains y, or the union of the two |
197 | // intervals is the Full() interval. |
198 | if (Contains(y)) return *this; // is_full() code path |
199 | return Full(); |
200 | } |
201 | return S1Interval(lo(), y.hi(), ARGS_CHECKED); |
202 | } |
203 | if (FastContains(y.hi())) return S1Interval(y.lo(), hi(), ARGS_CHECKED); |
204 | |
205 | // This interval contains neither endpoint of y. This means that either y |
206 | // contains all of this interval, or the two intervals are disjoint. |
207 | if (is_empty() || y.FastContains(lo())) return y; |
208 | |
209 | // Check which pair of endpoints are closer together. |
210 | double dlo = PositiveDistance(y.hi(), lo()); |
211 | double dhi = PositiveDistance(hi(), y.lo()); |
212 | if (dlo < dhi) { |
213 | return S1Interval(y.lo(), hi(), ARGS_CHECKED); |
214 | } else { |
215 | return S1Interval(lo(), y.hi(), ARGS_CHECKED); |
216 | } |
217 | } |
218 | |
219 | S1Interval S1Interval::Intersection(S1Interval const& y) const { |
220 | // The y.is_full() case is handled correctly in all cases by the code |
221 | // below, but can follow three separate code paths depending on whether |
222 | // this interval is inverted, is non-inverted but contains Pi, or neither. |
223 | |
224 | if (y.is_empty()) return Empty(); |
225 | if (FastContains(y.lo())) { |
226 | if (FastContains(y.hi())) { |
227 | // Either this interval contains y, or the region of intersection |
228 | // consists of two disjoint subintervals. In either case, we want |
229 | // to return the shorter of the two original intervals. |
230 | if (y.GetLength() < GetLength()) return y; // is_full() code path |
231 | return *this; |
232 | } |
233 | return S1Interval(y.lo(), hi(), ARGS_CHECKED); |
234 | } |
235 | if (FastContains(y.hi())) return S1Interval(lo(), y.hi(), ARGS_CHECKED); |
236 | |
237 | // This interval contains neither endpoint of y. This means that either y |
238 | // contains all of this interval, or the two intervals are disjoint. |
239 | |
240 | if (y.FastContains(lo())) return *this; // is_empty() okay here |
241 | DCHECK(!Intersects(y)); |
242 | return Empty(); |
243 | } |
244 | |
245 | bool S1Interval::ApproxEquals(S1Interval const& y, double max_error) const { |
246 | if (is_empty()) return y.GetLength() <= max_error; |
247 | if (y.is_empty()) return GetLength() <= max_error; |
248 | return (fabs(drem(y.lo() - lo(), 2 * M_PI)) + |
249 | fabs(drem(y.hi() - hi(), 2 * M_PI))) <= max_error; |
250 | } |
251 | |