| 1 | // Copyright 2005 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #include "s1interval.h" |
| 4 | |
| 5 | #include "base/logging.h" |
| 6 | |
| 7 | S1Interval S1Interval::FromPoint(double p) { |
| 8 | if (p == -M_PI) p = M_PI; |
| 9 | return S1Interval(p, p, ARGS_CHECKED); |
| 10 | } |
| 11 | |
| 12 | double S1Interval::GetCenter() const { |
| 13 | double center = 0.5 * (lo() + hi()); |
| 14 | if (!is_inverted()) return center; |
| 15 | // Return the center in the range (-Pi, Pi]. |
| 16 | return (center <= 0) ? (center + M_PI) : (center - M_PI); |
| 17 | } |
| 18 | |
| 19 | double S1Interval::GetLength() const { |
| 20 | double length = hi() - lo(); |
| 21 | if (length >= 0) return length; |
| 22 | length += 2 * M_PI; |
| 23 | // Empty intervals have a negative length. |
| 24 | return (length > 0) ? length : -1; |
| 25 | } |
| 26 | |
| 27 | S1Interval S1Interval::Complement() const { |
| 28 | if (lo() == hi()) return Full(); // Singleton. |
| 29 | return S1Interval(hi(), lo(), ARGS_CHECKED); // Handles empty and full. |
| 30 | } |
| 31 | |
| 32 | double S1Interval::GetComplementCenter() const { |
| 33 | if (lo() != hi()) { |
| 34 | return Complement().GetCenter(); |
| 35 | } else { // Singleton. |
| 36 | return (hi() <= 0) ? (hi() + M_PI) : (hi() - M_PI); |
| 37 | } |
| 38 | } |
| 39 | |
| 40 | bool S1Interval::FastContains(double p) const { |
| 41 | if (is_inverted()) { |
| 42 | return (p >= lo() || p <= hi()) && !is_empty(); |
| 43 | } else { |
| 44 | return p >= lo() && p <= hi(); |
| 45 | } |
| 46 | } |
| 47 | |
| 48 | bool S1Interval::Contains(double p) const { |
| 49 | // Works for empty, full, and singleton intervals. |
| 50 | DCHECK_LE(fabs(p), M_PI); |
| 51 | if (p == -M_PI) p = M_PI; |
| 52 | return FastContains(p); |
| 53 | } |
| 54 | |
| 55 | bool S1Interval::InteriorContains(double p) const { |
| 56 | // Works for empty, full, and singleton intervals. |
| 57 | DCHECK_LE(fabs(p), M_PI); |
| 58 | if (p == -M_PI) p = M_PI; |
| 59 | |
| 60 | if (is_inverted()) { |
| 61 | return p > lo() || p < hi(); |
| 62 | } else { |
| 63 | return (p > lo() && p < hi()) || is_full(); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | bool S1Interval::Contains(S1Interval const& y) const { |
| 68 | // It might be helpful to compare the structure of these tests to |
| 69 | // the simpler Contains(double) method above. |
| 70 | |
| 71 | if (is_inverted()) { |
| 72 | if (y.is_inverted()) return y.lo() >= lo() && y.hi() <= hi(); |
| 73 | return (y.lo() >= lo() || y.hi() <= hi()) && !is_empty(); |
| 74 | } else { |
| 75 | if (y.is_inverted()) return is_full() || y.is_empty(); |
| 76 | return y.lo() >= lo() && y.hi() <= hi(); |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | bool S1Interval::InteriorContains(S1Interval const& y) const { |
| 81 | if (is_inverted()) { |
| 82 | if (!y.is_inverted()) return y.lo() > lo() || y.hi() < hi(); |
| 83 | return (y.lo() > lo() && y.hi() < hi()) || y.is_empty(); |
| 84 | } else { |
| 85 | if (y.is_inverted()) return is_full() || y.is_empty(); |
| 86 | return (y.lo() > lo() && y.hi() < hi()) || is_full(); |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | bool S1Interval::Intersects(S1Interval const& y) const { |
| 91 | if (is_empty() || y.is_empty()) return false; |
| 92 | if (is_inverted()) { |
| 93 | // Every non-empty inverted interval contains Pi. |
| 94 | return y.is_inverted() || y.lo() <= hi() || y.hi() >= lo(); |
| 95 | } else { |
| 96 | if (y.is_inverted()) return y.lo() <= hi() || y.hi() >= lo(); |
| 97 | return y.lo() <= hi() && y.hi() >= lo(); |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | bool S1Interval::InteriorIntersects(S1Interval const& y) const { |
| 102 | if (is_empty() || y.is_empty() || lo() == hi()) return false; |
| 103 | if (is_inverted()) { |
| 104 | return y.is_inverted() || y.lo() < hi() || y.hi() > lo(); |
| 105 | } else { |
| 106 | if (y.is_inverted()) return y.lo() < hi() || y.hi() > lo(); |
| 107 | return (y.lo() < hi() && y.hi() > lo()) || is_full(); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | inline static double PositiveDistance(double a, double b) { |
| 112 | // Compute the distance from "a" to "b" in the range [0, 2*Pi). |
| 113 | // This is equivalent to (drem(b - a - M_PI, 2 * M_PI) + M_PI), |
| 114 | // except that it is more numerically stable (it does not lose |
| 115 | // precision for very small positive distances). |
| 116 | double d = b - a; |
| 117 | if (d >= 0) return d; |
| 118 | // We want to ensure that if b == Pi and a == (-Pi + eps), |
| 119 | // the return result is approximately 2*Pi and not zero. |
| 120 | return (b + M_PI) - (a - M_PI); |
| 121 | } |
| 122 | |
| 123 | double S1Interval::GetDirectedHausdorffDistance(S1Interval const& y) const { |
| 124 | if (y.Contains(*this)) return 0.0; // this includes the case *this is empty |
| 125 | if (y.is_empty()) return M_PI; // maximum possible distance on S1 |
| 126 | |
| 127 | double y_complement_center = y.GetComplementCenter(); |
| 128 | if (Contains(y_complement_center)) { |
| 129 | return PositiveDistance(y.hi(), y_complement_center); |
| 130 | } else { |
| 131 | // The Hausdorff distance is realized by either two hi() endpoints or two |
| 132 | // lo() endpoints, whichever is farther apart. |
| 133 | double hi_hi = S1Interval(y.hi(), y_complement_center).Contains(hi()) ? |
| 134 | PositiveDistance(y.hi(), hi()) : 0; |
| 135 | double lo_lo = S1Interval(y_complement_center, y.lo()).Contains(lo()) ? |
| 136 | PositiveDistance(lo(), y.lo()) : 0; |
| 137 | DCHECK(hi_hi > 0 || lo_lo > 0); |
| 138 | return max(hi_hi, lo_lo); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | void S1Interval::AddPoint(double p) { |
| 143 | DCHECK_LE(fabs(p), M_PI); |
| 144 | if (p == -M_PI) p = M_PI; |
| 145 | |
| 146 | if (FastContains(p)) return; |
| 147 | if (is_empty()) { |
| 148 | set_hi(p); |
| 149 | set_lo(p); |
| 150 | } else { |
| 151 | // Compute distance from p to each endpoint. |
| 152 | double dlo = PositiveDistance(p, lo()); |
| 153 | double dhi = PositiveDistance(hi(), p); |
| 154 | if (dlo < dhi) { |
| 155 | set_lo(p); |
| 156 | } else { |
| 157 | set_hi(p); |
| 158 | } |
| 159 | // Adding a point can never turn a non-full interval into a full one. |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | S1Interval S1Interval::FromPointPair(double p1, double p2) { |
| 164 | DCHECK_LE(fabs(p1), M_PI); |
| 165 | DCHECK_LE(fabs(p2), M_PI); |
| 166 | if (p1 == -M_PI) p1 = M_PI; |
| 167 | if (p2 == -M_PI) p2 = M_PI; |
| 168 | if (PositiveDistance(p1, p2) <= M_PI) { |
| 169 | return S1Interval(p1, p2, ARGS_CHECKED); |
| 170 | } else { |
| 171 | return S1Interval(p2, p1, ARGS_CHECKED); |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | S1Interval S1Interval::Expanded(double radius) const { |
| 176 | DCHECK_GE(radius, 0); |
| 177 | if (is_empty()) return *this; |
| 178 | |
| 179 | // Check whether this interval will be full after expansion, allowing |
| 180 | // for a 1-bit rounding error when computing each endpoint. |
| 181 | if (GetLength() + 2 * radius >= 2 * M_PI - 1e-15) return Full(); |
| 182 | |
| 183 | S1Interval result(drem(lo() - radius, 2*M_PI), drem(hi() + radius, 2*M_PI)); |
| 184 | if (result.lo() <= -M_PI) result.set_lo(M_PI); |
| 185 | return result; |
| 186 | } |
| 187 | |
| 188 | S1Interval S1Interval::Union(S1Interval const& y) const { |
| 189 | // The y.is_full() case is handled correctly in all cases by the code |
| 190 | // below, but can follow three separate code paths depending on whether |
| 191 | // this interval is inverted, is non-inverted but contains Pi, or neither. |
| 192 | |
| 193 | if (y.is_empty()) return *this; |
| 194 | if (FastContains(y.lo())) { |
| 195 | if (FastContains(y.hi())) { |
| 196 | // Either this interval contains y, or the union of the two |
| 197 | // intervals is the Full() interval. |
| 198 | if (Contains(y)) return *this; // is_full() code path |
| 199 | return Full(); |
| 200 | } |
| 201 | return S1Interval(lo(), y.hi(), ARGS_CHECKED); |
| 202 | } |
| 203 | if (FastContains(y.hi())) return S1Interval(y.lo(), hi(), ARGS_CHECKED); |
| 204 | |
| 205 | // This interval contains neither endpoint of y. This means that either y |
| 206 | // contains all of this interval, or the two intervals are disjoint. |
| 207 | if (is_empty() || y.FastContains(lo())) return y; |
| 208 | |
| 209 | // Check which pair of endpoints are closer together. |
| 210 | double dlo = PositiveDistance(y.hi(), lo()); |
| 211 | double dhi = PositiveDistance(hi(), y.lo()); |
| 212 | if (dlo < dhi) { |
| 213 | return S1Interval(y.lo(), hi(), ARGS_CHECKED); |
| 214 | } else { |
| 215 | return S1Interval(lo(), y.hi(), ARGS_CHECKED); |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | S1Interval S1Interval::Intersection(S1Interval const& y) const { |
| 220 | // The y.is_full() case is handled correctly in all cases by the code |
| 221 | // below, but can follow three separate code paths depending on whether |
| 222 | // this interval is inverted, is non-inverted but contains Pi, or neither. |
| 223 | |
| 224 | if (y.is_empty()) return Empty(); |
| 225 | if (FastContains(y.lo())) { |
| 226 | if (FastContains(y.hi())) { |
| 227 | // Either this interval contains y, or the region of intersection |
| 228 | // consists of two disjoint subintervals. In either case, we want |
| 229 | // to return the shorter of the two original intervals. |
| 230 | if (y.GetLength() < GetLength()) return y; // is_full() code path |
| 231 | return *this; |
| 232 | } |
| 233 | return S1Interval(y.lo(), hi(), ARGS_CHECKED); |
| 234 | } |
| 235 | if (FastContains(y.hi())) return S1Interval(lo(), y.hi(), ARGS_CHECKED); |
| 236 | |
| 237 | // This interval contains neither endpoint of y. This means that either y |
| 238 | // contains all of this interval, or the two intervals are disjoint. |
| 239 | |
| 240 | if (y.FastContains(lo())) return *this; // is_empty() okay here |
| 241 | DCHECK(!Intersects(y)); |
| 242 | return Empty(); |
| 243 | } |
| 244 | |
| 245 | bool S1Interval::ApproxEquals(S1Interval const& y, double max_error) const { |
| 246 | if (is_empty()) return y.GetLength() <= max_error; |
| 247 | if (y.is_empty()) return GetLength() <= max_error; |
| 248 | return (fabs(drem(y.lo() - lo(), 2 * M_PI)) + |
| 249 | fabs(drem(y.hi() - hi(), 2 * M_PI))) <= max_error; |
| 250 | } |
| 251 | |