| 1 | // Copyright 2008 and onwards Google Inc. All rights reserved. |
| 2 | |
| 3 | #include <limits> |
| 4 | using std::numeric_limits; |
| 5 | |
| 6 | |
| 7 | // #include "base/commandlineflags.h" |
| 8 | #include "base/integral_types.h" |
| 9 | #include "base/logging.h" |
| 10 | #include "base/macros.h" |
| 11 | #include "base/strtoint.h" |
| 12 | #include "split.h" |
| 13 | #include "strutil.h" |
| 14 | #include "util/hash/hash_jenkins_lookup2.h" |
| 15 | |
| 16 | static const uint32 MIX32 = 0x12b9b0a1UL; // pi; an arbitrary number |
| 17 | static const uint64 MIX64 = GG_ULONGLONG(0x2b992ddfa23249d6); // more of pi |
| 18 | |
| 19 | // ---------------------------------------------------------------------- |
| 20 | // Hash32StringWithSeed() |
| 21 | // Hash64StringWithSeed() |
| 22 | // Hash32NumWithSeed() |
| 23 | // Hash64NumWithSeed() |
| 24 | // These are Bob Jenkins' hash functions, one for 32 bit numbers |
| 25 | // and one for 64 bit numbers. Each takes a string as input and |
| 26 | // a start seed. Hashing the same string with two different seeds |
| 27 | // should give two independent hash values. |
| 28 | // The *Num*() functions just do a single mix, in order to |
| 29 | // convert the given number into something *random*. |
| 30 | // |
| 31 | // Note that these methods may return any value for the given size, while |
| 32 | // the corresponding HashToXX() methods avoids certain reserved values. |
| 33 | // ---------------------------------------------------------------------- |
| 34 | |
| 35 | // Once again, not included, but copied from: |
| 36 | // http://szl.googlecode.com/svn-history/r40/trunk/src/utilities/hashutils.cc |
| 37 | // This is an Apache license...make sure this is ok |
| 38 | const uint32 kPrimes32[16] ={ |
| 39 | 65537, 65539, 65543, 65551, 65557, 65563, 65579, 65581, |
| 40 | 65587, 65599, 65609, 65617, 65629, 65633, 65647, 65651, |
| 41 | }; |
| 42 | uint32 Hash32StringWithSeed(const char *s, uint32 len, uint32 seed) { |
| 43 | uint32 n = seed; |
| 44 | size_t prime1 = 0, prime2 = 8; // Indices into kPrimes32 |
| 45 | union { |
| 46 | uint16 n; |
| 47 | char bytes[sizeof(uint16)]; |
| 48 | } chunk; |
| 49 | for (const char *i = s, *const end = s + len; i != end; ) { |
| 50 | chunk.bytes[0] = *i++; |
| 51 | chunk.bytes[1] = i == end ? 0 : *i++; |
| 52 | n = n * kPrimes32[prime1++] ^ chunk.n * kPrimes32[prime2++]; |
| 53 | prime1 &= 0x0F; |
| 54 | prime2 &= 0x0F; |
| 55 | } |
| 56 | return n; |
| 57 | } |
| 58 | extern uint64 Hash64StringWithSeed(const char *s, uint32 len, uint64 c); |
| 59 | extern uint32 Hash32StringWithSeedReferenceImplementation(const char *s, |
| 60 | uint32 len, uint32 c); |
| 61 | // ---------------------------------------------------------------------- |
| 62 | // HashTo32() |
| 63 | // HashTo16() |
| 64 | // HashTo8() |
| 65 | // These functions take various types of input (through operator |
| 66 | // overloading) and return 32, 16, and 8 bit quantities, respectively. |
| 67 | // The basic rule of our hashing is: always mix(). Thus, even for |
| 68 | // char outputs we cast to a uint32 and mix with two arbitrary numbers. |
| 69 | // As indicated in basictypes.h, there are a few illegal hash |
| 70 | // values to watch out for. |
| 71 | // |
| 72 | // Note that these methods avoid returning certain reserved values, while |
| 73 | // the corresponding HashXXStringWithSeed() methdos may return any value. |
| 74 | // ---------------------------------------------------------------------- |
| 75 | |
| 76 | // This macro defines the HashTo32, To16, and To8 versions all in one go. |
| 77 | // It takes the argument list and a command that hashes your number. |
| 78 | // (For 16 and 8, we just mod retval before returning it.) Example: |
| 79 | // HASH_TO((char c), Hash32NumWithSeed(c, MIX32_1)) |
| 80 | // evaluates to |
| 81 | // uint32 retval; |
| 82 | // retval = Hash32NumWithSeed(c, MIX32_1); |
| 83 | // return retval == kIllegalHash32 ? retval-1 : retval; |
| 84 | // |
| 85 | |
| 86 | inline uint32 Hash32NumWithSeed(uint32 num, uint32 c) { |
| 87 | uint32 b = 0x9e3779b9UL; // the golden ratio; an arbitrary value |
| 88 | mix(num, b, c); |
| 89 | return c; |
| 90 | } |
| 91 | |
| 92 | inline uint64 Hash64NumWithSeed(uint64 num, uint64 c) { |
| 93 | uint64 b = GG_ULONGLONG(0xe08c1d668b756f82); // more of the golden ratio |
| 94 | mix(num, b, c); |
| 95 | return c; |
| 96 | } |
| 97 | |
| 98 | #define HASH_TO(arglist, command) \ |
| 99 | inline uint32 HashTo32 arglist { \ |
| 100 | uint32 retval = command; \ |
| 101 | return retval == kIllegalHash32 ? retval-1 : retval; \ |
| 102 | } \ |
| 103 | inline uint16 HashTo16 arglist { \ |
| 104 | uint16 retval16 = command >> 16; /* take upper 16 bits */ \ |
| 105 | return retval16 == kIllegalHash16 ? retval16-1 : retval16; \ |
| 106 | } \ |
| 107 | inline unsigned char HashTo8 arglist { \ |
| 108 | unsigned char retval8 = command >> 24; /* take upper 8 bits */ \ |
| 109 | return retval8 == kIllegalHash8 ? retval8-1 : retval8; \ |
| 110 | } |
| 111 | |
| 112 | // This defines: |
| 113 | // HashToXX(char *s, int slen); |
| 114 | // HashToXX(char c); |
| 115 | // etc |
| 116 | |
| 117 | HASH_TO((const char *s, uint32 slen), Hash32StringWithSeed(s, slen, MIX32)) |
| 118 | HASH_TO((const wchar_t *s, uint32 slen), |
| 119 | Hash32StringWithSeed(reinterpret_cast<const char*>(s), |
| 120 | sizeof(wchar_t) * slen, |
| 121 | MIX32)) |
| 122 | HASH_TO((char c), Hash32NumWithSeed(static_cast<uint32>(c), MIX32)) |
| 123 | HASH_TO((schar c), Hash32NumWithSeed(static_cast<uint32>(c), MIX32)) |
| 124 | HASH_TO((uint16 c), Hash32NumWithSeed(static_cast<uint32>(c), MIX32)) |
| 125 | HASH_TO((int16 c), Hash32NumWithSeed(static_cast<uint32>(c), MIX32)) |
| 126 | HASH_TO((uint32 c), Hash32NumWithSeed(static_cast<uint32>(c), MIX32)) |
| 127 | HASH_TO((int32 c), Hash32NumWithSeed(static_cast<uint32>(c), MIX32)) |
| 128 | HASH_TO((uint64 c), static_cast<uint32>(Hash64NumWithSeed(c, MIX64) >> 32)) |
| 129 | HASH_TO((int64 c), static_cast<uint32>(Hash64NumWithSeed(c, MIX64) >> 32)) |
| 130 | |
| 131 | #undef HASH_TO // clean up the macro space |
| 132 | |
| 133 | |
| 134 | // HASH_NAMESPACE_DECLARATION_START |
| 135 | namespace __gnu_cxx { |
| 136 | |
| 137 | #if defined(__GNUC__) |
| 138 | // Use our nice hash function for strings |
| 139 | template<class _CharT, class _Traits, class _Alloc> |
| 140 | struct hash<basic_string<_CharT, _Traits, _Alloc> > { |
| 141 | size_t operator()(const basic_string<_CharT, _Traits, _Alloc>& k) const { |
| 142 | return HashTo32(k.data(), static_cast<uint32>(k.length())); |
| 143 | } |
| 144 | }; |
| 145 | |
| 146 | // they don't define a hash for const string at all |
| 147 | template<> struct hash<const string> { |
| 148 | size_t operator()(const string& k) const { |
| 149 | return HashTo32(k.data(), static_cast<uint32>(k.length())); |
| 150 | } |
| 151 | }; |
| 152 | #endif // __GNUC__ |
| 153 | |
| 154 | // MSVC's STL requires an ever-so slightly different decl |
| 155 | #if defined STL_MSVC |
| 156 | template<> struct hash<char const*> : PortableHashBase { |
| 157 | size_t operator()(char const* const k) const { |
| 158 | return HashTo32(k, strlen(k)); |
| 159 | } |
| 160 | // Less than operator: |
| 161 | bool operator()(char const* const a, char const* const b) const { |
| 162 | return strcmp(a, b) < 0; |
| 163 | } |
| 164 | }; |
| 165 | |
| 166 | template<> struct hash<string> : PortableHashBase { |
| 167 | size_t operator()(const string& k) const { |
| 168 | return HashTo32(k.data(), k.length()); |
| 169 | } |
| 170 | // Less than operator: |
| 171 | bool operator()(const string& a, const string& b) const { |
| 172 | return a < b; |
| 173 | } |
| 174 | }; |
| 175 | |
| 176 | #endif |
| 177 | |
| 178 | } // hash namespace |
| 179 | |
| 180 | |
| 181 | namespace { |
| 182 | // NOTE(user): we have to implement our own interator because |
| 183 | // insert_iterator<set<string> > does not instantiate without |
| 184 | // errors, perhaps since string != std::string. |
| 185 | // This is not a fully functional iterator, but is |
| 186 | // sufficient for SplitStringToIteratorUsing(). |
| 187 | template <typename T> |
| 188 | struct simple_insert_iterator { |
| 189 | T* t_; |
| 190 | simple_insert_iterator(T* t) : t_(t) { } |
| 191 | |
| 192 | simple_insert_iterator<T>& operator=(const typename T::value_type& value) { |
| 193 | t_->insert(value); |
| 194 | return *this; |
| 195 | } |
| 196 | |
| 197 | simple_insert_iterator<T>& operator*() { return *this; } |
| 198 | simple_insert_iterator<T>& operator++() { return *this; } |
| 199 | simple_insert_iterator<T>& operator++(int) { return *this; } |
| 200 | }; |
| 201 | |
| 202 | // Used to populate a hash_map out of pairs of consecutive strings in |
| 203 | // SplitStringToIterator{Using|AllowEmpty}(). |
| 204 | template <typename T> |
| 205 | struct simple_hash_map_iterator { |
| 206 | typedef hash_map<T, T> hashmap; |
| 207 | hashmap* t; |
| 208 | bool even; |
| 209 | typename hashmap::iterator curr; |
| 210 | |
| 211 | simple_hash_map_iterator(hashmap* t_init) : t(t_init), even(true) { |
| 212 | curr = t->begin(); |
| 213 | } |
| 214 | |
| 215 | simple_hash_map_iterator<T>& operator=(const T& value) { |
| 216 | if (even) { |
| 217 | curr = t->insert(make_pair(value, T())).first; |
| 218 | } else { |
| 219 | curr->second = value; |
| 220 | } |
| 221 | even = !even; |
| 222 | return *this; |
| 223 | } |
| 224 | |
| 225 | simple_hash_map_iterator<T>& operator*() { return *this; } |
| 226 | simple_hash_map_iterator<T>& operator++() { return *this; } |
| 227 | simple_hash_map_iterator<T>& operator++(int i) { return *this; } |
| 228 | }; |
| 229 | |
| 230 | } // anonymous namespace |
| 231 | |
| 232 | // ---------------------------------------------------------------------- |
| 233 | // SplitStringIntoNPiecesAllowEmpty() |
| 234 | // SplitStringToIteratorAllowEmpty() |
| 235 | // Split a string using a character delimiter. Append the components |
| 236 | // to 'result'. If there are consecutive delimiters, this function |
| 237 | // will return corresponding empty strings. The string is split into |
| 238 | // at most the specified number of pieces greedily. This means that the |
| 239 | // last piece may possibly be split further. To split into as many pieces |
| 240 | // as possible, specify 0 as the number of pieces. |
| 241 | // |
| 242 | // If "full" is the empty string, yields an empty string as the only value. |
| 243 | // |
| 244 | // If "pieces" is negative for some reason, it returns the whole string |
| 245 | // ---------------------------------------------------------------------- |
| 246 | template <typename StringType, typename ITR> |
| 247 | static inline |
| 248 | void SplitStringToIteratorAllowEmpty(const StringType& full, |
| 249 | const char* delim, |
| 250 | int pieces, |
| 251 | ITR& result) { |
| 252 | string::size_type begin_index, end_index; |
| 253 | begin_index = 0; |
| 254 | |
| 255 | for (int i=0; (i < pieces-1) || (pieces == 0); i++) { |
| 256 | end_index = full.find_first_of(delim, begin_index); |
| 257 | if (end_index == string::npos) { |
| 258 | *result++ = full.substr(begin_index); |
| 259 | return; |
| 260 | } |
| 261 | *result++ = full.substr(begin_index, (end_index - begin_index)); |
| 262 | begin_index = end_index + 1; |
| 263 | } |
| 264 | *result++ = full.substr(begin_index); |
| 265 | } |
| 266 | |
| 267 | void SplitStringIntoNPiecesAllowEmpty(const string& full, |
| 268 | const char* delim, |
| 269 | int pieces, |
| 270 | vector<string>* result) { |
| 271 | back_insert_iterator<vector<string> > it(*result); |
| 272 | SplitStringToIteratorAllowEmpty(full, delim, pieces, it); |
| 273 | } |
| 274 | |
| 275 | // ---------------------------------------------------------------------- |
| 276 | // SplitStringAllowEmpty |
| 277 | // SplitStringToHashsetAllowEmpty |
| 278 | // SplitStringToSetAllowEmpty |
| 279 | // SplitStringToHashmapAllowEmpty |
| 280 | // Split a string using a character delimiter. Append the components |
| 281 | // to 'result'. If there are consecutive delimiters, this function |
| 282 | // will return corresponding empty strings. |
| 283 | // ---------------------------------------------------------------------- |
| 284 | void SplitStringAllowEmpty(const string& full, const char* delim, |
| 285 | vector<string>* result) { |
| 286 | back_insert_iterator<vector<string> > it(*result); |
| 287 | SplitStringToIteratorAllowEmpty(full, delim, 0, it); |
| 288 | } |
| 289 | |
| 290 | void SplitStringToHashsetAllowEmpty(const string& full, const char* delim, |
| 291 | hash_set<string>* result) { |
| 292 | simple_insert_iterator<hash_set<string> > it(result); |
| 293 | SplitStringToIteratorAllowEmpty(full, delim, 0, it); |
| 294 | } |
| 295 | |
| 296 | void SplitStringToSetAllowEmpty(const string& full, const char* delim, |
| 297 | set<string>* result) { |
| 298 | simple_insert_iterator<set<string> > it(result); |
| 299 | SplitStringToIteratorAllowEmpty(full, delim, 0, it); |
| 300 | } |
| 301 | |
| 302 | void SplitStringToHashmapAllowEmpty(const string& full, const char* delim, |
| 303 | hash_map<string, string>* result) { |
| 304 | simple_hash_map_iterator<string> it(result); |
| 305 | SplitStringToIteratorAllowEmpty(full, delim, 0, it); |
| 306 | } |
| 307 | |
| 308 | // If we know how much to allocate for a vector of strings, we can |
| 309 | // allocate the vector<string> only once and directly to the right size. |
| 310 | // This saves in between 33-66 % of memory space needed for the result, |
| 311 | // and runs faster in the microbenchmarks. |
| 312 | // |
| 313 | // The reserve is only implemented for the single character delim. |
| 314 | // |
| 315 | // The implementation for counting is cut-and-pasted from |
| 316 | // SplitStringToIteratorUsing. I could have written my own counting iterator, |
| 317 | // and use the existing template function, but probably this is more clear |
| 318 | // and more sure to get optimized to reasonable code. |
| 319 | static int CalculateReserveForVector(const string& full, const char* delim) { |
| 320 | int count = 0; |
| 321 | if (delim[0] != '\0' && delim[1] == '\0') { |
| 322 | // Optimize the common case where delim is a single character. |
| 323 | char c = delim[0]; |
| 324 | const char* p = full.data(); |
| 325 | const char* end = p + full.size(); |
| 326 | while (p != end) { |
| 327 | if (*p == c) { // This could be optimized with hasless(v,1) trick. |
| 328 | ++p; |
| 329 | } else { |
| 330 | while (++p != end && *p != c) { |
| 331 | // Skip to the next occurence of the delimiter. |
| 332 | } |
| 333 | ++count; |
| 334 | } |
| 335 | } |
| 336 | } |
| 337 | return count; |
| 338 | } |
| 339 | |
| 340 | // ---------------------------------------------------------------------- |
| 341 | // SplitStringUsing() |
| 342 | // SplitStringToHashsetUsing() |
| 343 | // SplitStringToSetUsing() |
| 344 | // SplitStringToHashmapUsing() |
| 345 | // Split a string using a character delimiter. Append the components |
| 346 | // to 'result'. |
| 347 | // |
| 348 | // Note: For multi-character delimiters, this routine will split on *ANY* of |
| 349 | // the characters in the string, not the entire string as a single delimiter. |
| 350 | // ---------------------------------------------------------------------- |
| 351 | template <typename StringType, typename ITR> |
| 352 | static inline |
| 353 | void SplitStringToIteratorUsing(const StringType& full, |
| 354 | const char* delim, |
| 355 | ITR& result) { |
| 356 | // Optimize the common case where delim is a single character. |
| 357 | if (delim[0] != '\0' && delim[1] == '\0') { |
| 358 | char c = delim[0]; |
| 359 | const char* p = full.data(); |
| 360 | const char* end = p + full.size(); |
| 361 | while (p != end) { |
| 362 | if (*p == c) { |
| 363 | ++p; |
| 364 | } else { |
| 365 | const char* start = p; |
| 366 | while (++p != end && *p != c) { |
| 367 | // Skip to the next occurence of the delimiter. |
| 368 | } |
| 369 | *result++ = StringType(start, p - start); |
| 370 | } |
| 371 | } |
| 372 | return; |
| 373 | } |
| 374 | |
| 375 | string::size_type begin_index, end_index; |
| 376 | begin_index = full.find_first_not_of(delim); |
| 377 | while (begin_index != string::npos) { |
| 378 | end_index = full.find_first_of(delim, begin_index); |
| 379 | if (end_index == string::npos) { |
| 380 | *result++ = full.substr(begin_index); |
| 381 | return; |
| 382 | } |
| 383 | *result++ = full.substr(begin_index, (end_index - begin_index)); |
| 384 | begin_index = full.find_first_not_of(delim, end_index); |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | void SplitStringUsing(const string& full, |
| 389 | const char* delim, |
| 390 | vector<string>* result) { |
| 391 | result->reserve(result->size() + CalculateReserveForVector(full, delim)); |
| 392 | back_insert_iterator< vector<string> > it(*result); |
| 393 | SplitStringToIteratorUsing(full, delim, it); |
| 394 | } |
| 395 | |
| 396 | void SplitStringToHashsetUsing(const string& full, const char* delim, |
| 397 | hash_set<string>* result) { |
| 398 | simple_insert_iterator<hash_set<string> > it(result); |
| 399 | SplitStringToIteratorUsing(full, delim, it); |
| 400 | } |
| 401 | |
| 402 | void SplitStringToSetUsing(const string& full, const char* delim, |
| 403 | set<string>* result) { |
| 404 | simple_insert_iterator<set<string> > it(result); |
| 405 | SplitStringToIteratorUsing(full, delim, it); |
| 406 | } |
| 407 | |
| 408 | void SplitStringToHashmapUsing(const string& full, const char* delim, |
| 409 | hash_map<string, string>* result) { |
| 410 | simple_hash_map_iterator<string> it(result); |
| 411 | SplitStringToIteratorUsing(full, delim, it); |
| 412 | } |
| 413 | |
| 414 | // ---------------------------------------------------------------------- |
| 415 | // SplitOneIntToken() |
| 416 | // SplitOneInt32Token() |
| 417 | // SplitOneUint32Token() |
| 418 | // SplitOneInt64Token() |
| 419 | // SplitOneUint64Token() |
| 420 | // SplitOneDoubleToken() |
| 421 | // SplitOneFloatToken() |
| 422 | // SplitOneDecimalIntToken() |
| 423 | // SplitOneDecimalInt32Token() |
| 424 | // SplitOneDecimalUint32Token() |
| 425 | // SplitOneDecimalInt64Token() |
| 426 | // SplitOneDecimalUint64Token() |
| 427 | // SplitOneHexUint32Token() |
| 428 | // SplitOneHexUint64Token() |
| 429 | // Mainly a stringified wrapper around strtol/strtoul/strtod |
| 430 | // ---------------------------------------------------------------------- |
| 431 | // Curried functions for the macro below |
| 432 | static inline long strto32_0(const char * source, char ** end) { |
| 433 | return strto32(source, end, 0); } |
| 434 | static inline unsigned long strtou32_0(const char * source, char ** end) { |
| 435 | return strtou32(source, end, 0); } |
| 436 | static inline int64 strto64_0(const char * source, char ** end) { |
| 437 | return strto64(source, end, 0); } |
| 438 | static inline uint64 strtou64_0(const char * source, char ** end) { |
| 439 | return strtou64(source, end, 0); } |
| 440 | static inline long strto32_10(const char * source, char ** end) { |
| 441 | return strto32(source, end, 10); } |
| 442 | static inline unsigned long strtou32_10(const char * source, char ** end) { |
| 443 | return strtou32(source, end, 10); } |
| 444 | static inline int64 strto64_10(const char * source, char ** end) { |
| 445 | return strto64(source, end, 10); } |
| 446 | static inline uint64 strtou64_10(const char * source, char ** end) { |
| 447 | return strtou64(source, end, 10); } |
| 448 | static inline uint32 strtou32_16(const char * source, char ** end) { |
| 449 | return strtou32(source, end, 16); } |
| 450 | static inline uint64 strtou64_16(const char * source, char ** end) { |
| 451 | return strtou64(source, end, 16); } |
| 452 | |
| 453 | #define DEFINE_SPLIT_ONE_NUMBER_TOKEN(name, type, function) \ |
| 454 | bool SplitOne##name##Token(const char ** source, const char * delim, \ |
| 455 | type * value) { \ |
| 456 | assert(source); \ |
| 457 | assert(delim); \ |
| 458 | assert(value); \ |
| 459 | if (!*source) \ |
| 460 | return false; \ |
| 461 | /* Parse int */ \ |
| 462 | char * end; \ |
| 463 | *value = function(*source, &end); \ |
| 464 | if (end == *source) \ |
| 465 | return false; /* number not present at start of string */ \ |
| 466 | if (end[0] && !strchr(delim, end[0])) \ |
| 467 | return false; /* Garbage characters after int */ \ |
| 468 | /* Advance past token */ \ |
| 469 | if (*end != '\0') \ |
| 470 | *source = const_cast<const char *>(end+1); \ |
| 471 | else \ |
| 472 | *source = NULL; \ |
| 473 | return true; \ |
| 474 | } |
| 475 | |
| 476 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(Int, int, strto32_0) |
| 477 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(Int32, int32, strto32_0) |
| 478 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(Uint32, uint32, strtou32_0) |
| 479 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(Int64, int64, strto64_0) |
| 480 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(Uint64, uint64, strtou64_0) |
| 481 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(Double, double, strtod) |
| 482 | #ifdef COMPILER_MSVC // has no strtof() |
| 483 | // Note: does an implicit cast to float. |
| 484 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(Float, float, strtod) |
| 485 | #else |
| 486 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(Float, float, strtof) |
| 487 | #endif |
| 488 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(DecimalInt, int, strto32_10) |
| 489 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(DecimalInt32, int32, strto32_10) |
| 490 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(DecimalUint32, uint32, strtou32_10) |
| 491 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(DecimalInt64, int64, strto64_10) |
| 492 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(DecimalUint64, uint64, strtou64_10) |
| 493 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(HexUint32, uint32, strtou32_16) |
| 494 | DEFINE_SPLIT_ONE_NUMBER_TOKEN(HexUint64, uint64, strtou64_16) |
| 495 | |