| 1 | // Copyright 2008 Google Inc. All Rights Reserved. | 
|---|
| 2 |  | 
|---|
| 3 | #include "util/math/mathutil.h" | 
|---|
| 4 | #include <vector> | 
|---|
| 5 | using std::vector; | 
|---|
| 6 |  | 
|---|
| 7 | #include "base/integral_types.h" | 
|---|
| 8 | #include "base/logging.h" | 
|---|
| 9 |  | 
|---|
| 10 | MathUtil::QuadraticRootType MathUtil::DegenerateQuadraticRoots( | 
|---|
| 11 | long double b, | 
|---|
| 12 | long double c, | 
|---|
| 13 | long double *r1, | 
|---|
| 14 | long double *r2) { | 
|---|
| 15 | // This degenerate quadratic is really a linear equation b * x = -c. | 
|---|
| 16 | if (b == 0.0) { | 
|---|
| 17 | // The equation is constant, c == 0. | 
|---|
| 18 | if (c == 0.0) { | 
|---|
| 19 | // Quadratic equation is 0==0; treat as ambiguous, as if a==epsilon. | 
|---|
| 20 | *r1 = *r2 = 0.0; | 
|---|
| 21 | return kAmbiguous; | 
|---|
| 22 | } | 
|---|
| 23 | return kNoRealRoots; | 
|---|
| 24 | } | 
|---|
| 25 | // The linear equation has a single root at x = -c / b, not a double | 
|---|
| 26 | // one.  Respond as if a==epsilon: The other root is at "infinity", | 
|---|
| 27 | // which we signal with HUGE_VAL so that the behavior stays consistent | 
|---|
| 28 | // as a->0. | 
|---|
| 29 | *r1 = -c / b; | 
|---|
| 30 | *r2 = HUGE_VAL; | 
|---|
| 31 | return kTwoRealRoots; | 
|---|
| 32 | } | 
|---|
| 33 |  | 
|---|
| 34 | bool MathUtil::RealRootsForCubic(long double const a, | 
|---|
| 35 | long double const b, | 
|---|
| 36 | long double const c, | 
|---|
| 37 | long double *const r1, | 
|---|
| 38 | long double *const r2, | 
|---|
| 39 | long double *const r3) { | 
|---|
| 40 | // According to Numerical Recipes (pp. 184-5), what | 
|---|
| 41 | // follows is an arrangement of computations to | 
|---|
| 42 | // compute the roots of a cubic that minimizes | 
|---|
| 43 | // roundoff error (as pointed out by A.J. Glassman). | 
|---|
| 44 |  | 
|---|
| 45 | long double const a_squared = a*a, a_third = a/3.0, b_tripled = 3.0*b; | 
|---|
| 46 | long double const Q = (a_squared - b_tripled) / 9.0; | 
|---|
| 47 | long double const R = (2.0*a_squared*a - 3.0*a*b_tripled + 27.0*c) / 54.0; | 
|---|
| 48 |  | 
|---|
| 49 | long double const R_squared = R*R; | 
|---|
| 50 | long double const Q_cubed = Q*Q*Q; | 
|---|
| 51 | long double const root_Q = sqrt(Q); | 
|---|
| 52 |  | 
|---|
| 53 | if (R_squared < Q_cubed) { | 
|---|
| 54 | long double const two_pi_third = 2.0 * M_PI / 3.0; | 
|---|
| 55 | long double const theta_third = acos(R / sqrt(Q_cubed)) / 3.0; | 
|---|
| 56 | long double const minus_two_root_Q = -2.0 * root_Q; | 
|---|
| 57 |  | 
|---|
| 58 | *r1 = minus_two_root_Q * cos(theta_third) - a_third; | 
|---|
| 59 | *r2 = minus_two_root_Q * cos(theta_third + two_pi_third) - a_third; | 
|---|
| 60 | *r3 = minus_two_root_Q * cos(theta_third - two_pi_third) - a_third; | 
|---|
| 61 |  | 
|---|
| 62 | return true; | 
|---|
| 63 | } | 
|---|
| 64 |  | 
|---|
| 65 | long double const A = | 
|---|
| 66 | -sgn(R) * pow(fabs(R) + sqrt(R_squared - Q_cubed), 1.0/3.0L); | 
|---|
| 67 |  | 
|---|
| 68 | if (A != 0.0) {  // in which case, B from NR is zero | 
|---|
| 69 | *r1 = A + Q / A - a_third; | 
|---|
| 70 | return false; | 
|---|
| 71 | } | 
|---|
| 72 |  | 
|---|
| 73 | *r1 = *r2 = *r3 = -a_third; | 
|---|
| 74 | return true; | 
|---|
| 75 | } | 
|---|
| 76 |  | 
|---|
| 77 | // Returns the greatest common divisor of two unsigned integers x and y, | 
|---|
| 78 | // and assigns a, and b such that a*x + b*y = gcd(x, y). | 
|---|
| 79 | unsigned int MathUtil::ExtendedGCD(unsigned int x, unsigned int y, | 
|---|
| 80 | int* a, int* b) { | 
|---|
| 81 | *a = 1; | 
|---|
| 82 | *b = 0; | 
|---|
| 83 | int c = 0; | 
|---|
| 84 | int d = 1; | 
|---|
| 85 | // before and after each loop: | 
|---|
| 86 | // current_x == a * original_x + b * original_y | 
|---|
| 87 | // current_y == c * original_x + d * original_y | 
|---|
| 88 | while (y != 0) { | 
|---|
| 89 | // div() takes int parameters; there is no version that takes unsigned int | 
|---|
| 90 | div_t r = div(static_cast<int>(x), static_cast<int>(y)); | 
|---|
| 91 | x = y; | 
|---|
| 92 | y = r.rem; | 
|---|
| 93 |  | 
|---|
| 94 | int tmp = c; | 
|---|
| 95 | c = *a - r.quot * c; | 
|---|
| 96 | *a = tmp; | 
|---|
| 97 |  | 
|---|
| 98 | tmp = d; | 
|---|
| 99 | d = *b - r.quot * d; | 
|---|
| 100 | *b = tmp; | 
|---|
| 101 | } | 
|---|
| 102 | return x; | 
|---|
| 103 | } | 
|---|
| 104 |  | 
|---|
| 105 |  | 
|---|
| 106 | void MathUtil::ShardsToRead(const vector<bool>& shards_to_write, | 
|---|
| 107 | vector<bool>* shards_to_read) { | 
|---|
| 108 | const int N = shards_to_read->size(); | 
|---|
| 109 | const int M = shards_to_write.size(); | 
|---|
| 110 | CHECK(N > 0 || M == 0) << ": have shards to write but not to read"; | 
|---|
| 111 |  | 
|---|
| 112 | // Input shard n of N can contribute to output shard m of M if there | 
|---|
| 113 | // exists a record with sharding hash x s.t. n = x % N and m = x % M. | 
|---|
| 114 | // Equivalently, there must exist s and t s.t. x = tN + n = sM + m, | 
|---|
| 115 | // i.e., tN - sM = m - n.  Since G = gcd(N, M) evenly divides tN - sM, | 
|---|
| 116 | // G must also evenly divide m - n.  Proof in the other direction is | 
|---|
| 117 | // left as an exercise. | 
|---|
| 118 | // Given output shard m, we should, therefore, read input shards n | 
|---|
| 119 | // that satisfy (n - m) = kG, i.e., n = m + kG.  Let 0 <= n < N. | 
|---|
| 120 | // Then, 0 <= m + kG < N and, finally, -m / G <= k < (N - m) / G. | 
|---|
| 121 |  | 
|---|
| 122 | const int G = GCD(N, M); | 
|---|
| 123 | shards_to_read->assign(N, false); | 
|---|
| 124 | for (int m = 0; m < M; m++) { | 
|---|
| 125 | if (!shards_to_write[m]) continue; | 
|---|
| 126 | const int k_min = -m / G; | 
|---|
| 127 | const int k_max = k_min + N / G; | 
|---|
| 128 | for (int k = k_min; k < k_max; k++) { | 
|---|
| 129 | (*shards_to_read)[m + k * G] = true; | 
|---|
| 130 | } | 
|---|
| 131 | } | 
|---|
| 132 | } | 
|---|
| 133 |  | 
|---|
| 134 | double MathUtil::Harmonic(int64 const n, double *const e) { | 
|---|
| 135 | CHECK_GT(n, 0); | 
|---|
| 136 |  | 
|---|
| 137 | //   Hn ~ ln(n) + 0.5772156649 + | 
|---|
| 138 | //        + 1/(2n) - 1/(12n^2) + 1/(120n^4) - error, | 
|---|
| 139 | //   with 0 < error < 1/(256*n^4). | 
|---|
| 140 |  | 
|---|
| 141 | double const | 
|---|
| 142 | d = static_cast<double>(n), | 
|---|
| 143 | d2 = d * d, | 
|---|
| 144 | d4 = d2 * d2; | 
|---|
| 145 |  | 
|---|
| 146 | return (log(d) + 0.5772156649)  // ln + Gamma constant | 
|---|
| 147 | + 1 / (2 * d) - 1 / (12 * d2) + 1 / (120 * d4) | 
|---|
| 148 | - (*e = 1 / (256 * d4)); | 
|---|
| 149 | } | 
|---|
| 150 |  | 
|---|
| 151 | // The formula is extracted from the following page | 
|---|
| 152 | // http://en.wikipedia.org/w/index.php?title=Stirling%27s_approximation | 
|---|
| 153 | double MathUtil::Stirling(double n) { | 
|---|
| 154 | static const double kLog2Pi = log(2 * M_PI); | 
|---|
| 155 | const double logN = log(n); | 
|---|
| 156 | return (n * logN | 
|---|
| 157 | - n | 
|---|
| 158 | + 0.5 * (kLog2Pi + logN)      // 0.5 * log(2 * M_PI * n) | 
|---|
| 159 | + 1 / (12 * n) | 
|---|
| 160 | - 1 / (360 * n * n * n)); | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | double MathUtil::LogCombinations(int n, int k) { | 
|---|
| 164 | CHECK_GE(n, k); | 
|---|
| 165 | CHECK_GT(n, 0); | 
|---|
| 166 | CHECK_GE(k, 0); | 
|---|
| 167 |  | 
|---|
| 168 | // use symmetry to pick the shorter calculation | 
|---|
| 169 | if (k > n / 2) { | 
|---|
| 170 | k = n - k; | 
|---|
| 171 | } | 
|---|
| 172 |  | 
|---|
| 173 | // If we have more than 30 logarithms to calculate, we'll use | 
|---|
| 174 | // Stirling's approximation for log(n!). | 
|---|
| 175 | if (k > 15) { | 
|---|
| 176 | return Stirling(n) - Stirling(k) - Stirling(n - k); | 
|---|
| 177 | } else { | 
|---|
| 178 | double result = 0; | 
|---|
| 179 | for (int i = 1; i <= k; i++) { | 
|---|
| 180 | result += log(n - k + i) - log(i); | 
|---|
| 181 | } | 
|---|
| 182 | return result; | 
|---|
| 183 | } | 
|---|
| 184 | } | 
|---|
| 185 |  | 
|---|