1 | /* |
2 | * Copyright 2014 Google Inc. All rights reserved. |
3 | * |
4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
5 | * you may not use this file except in compliance with the License. |
6 | * You may obtain a copy of the License at |
7 | * |
8 | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | * |
10 | * Unless required by applicable law or agreed to in writing, software |
11 | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | * See the License for the specific language governing permissions and |
14 | * limitations under the License. |
15 | */ |
16 | |
17 | #ifndef FLATBUFFERS_H_ |
18 | #define FLATBUFFERS_H_ |
19 | |
20 | #include "flatbuffers/base.h" |
21 | |
22 | namespace flatbuffers { |
23 | // Wrapper for uoffset_t to allow safe template specialization. |
24 | // Value is allowed to be 0 to indicate a null object (see e.g. AddOffset). |
25 | template<typename T> struct Offset { |
26 | uoffset_t o; |
27 | Offset() : o(0) {} |
28 | Offset(uoffset_t _o) : o(_o) {} |
29 | Offset<void> Union() const { return Offset<void>(o); } |
30 | bool IsNull() const { return !o; } |
31 | }; |
32 | |
33 | inline void EndianCheck() { |
34 | int endiantest = 1; |
35 | // If this fails, see FLATBUFFERS_LITTLEENDIAN above. |
36 | FLATBUFFERS_ASSERT(*reinterpret_cast<char *>(&endiantest) == |
37 | FLATBUFFERS_LITTLEENDIAN); |
38 | (void)endiantest; |
39 | } |
40 | |
41 | template<typename T> FLATBUFFERS_CONSTEXPR size_t AlignOf() { |
42 | // clang-format off |
43 | #ifdef _MSC_VER |
44 | return __alignof(T); |
45 | #else |
46 | #ifndef alignof |
47 | return __alignof__(T); |
48 | #else |
49 | return alignof(T); |
50 | #endif |
51 | #endif |
52 | // clang-format on |
53 | } |
54 | |
55 | // When we read serialized data from memory, in the case of most scalars, |
56 | // we want to just read T, but in the case of Offset, we want to actually |
57 | // perform the indirection and return a pointer. |
58 | // The template specialization below does just that. |
59 | // It is wrapped in a struct since function templates can't overload on the |
60 | // return type like this. |
61 | // The typedef is for the convenience of callers of this function |
62 | // (avoiding the need for a trailing return decltype) |
63 | template<typename T> struct IndirectHelper { |
64 | typedef T return_type; |
65 | typedef T mutable_return_type; |
66 | static const size_t element_stride = sizeof(T); |
67 | static return_type Read(const uint8_t *p, uoffset_t i) { |
68 | return EndianScalar((reinterpret_cast<const T *>(p))[i]); |
69 | } |
70 | }; |
71 | template<typename T> struct IndirectHelper<Offset<T>> { |
72 | typedef const T *return_type; |
73 | typedef T *mutable_return_type; |
74 | static const size_t element_stride = sizeof(uoffset_t); |
75 | static return_type Read(const uint8_t *p, uoffset_t i) { |
76 | p += i * sizeof(uoffset_t); |
77 | return reinterpret_cast<return_type>(p + ReadScalar<uoffset_t>(p)); |
78 | } |
79 | }; |
80 | template<typename T> struct IndirectHelper<const T *> { |
81 | typedef const T *return_type; |
82 | typedef T *mutable_return_type; |
83 | static const size_t element_stride = sizeof(T); |
84 | static return_type Read(const uint8_t *p, uoffset_t i) { |
85 | return reinterpret_cast<const T *>(p + i * sizeof(T)); |
86 | } |
87 | }; |
88 | |
89 | // An STL compatible iterator implementation for Vector below, effectively |
90 | // calling Get() for every element. |
91 | template<typename T, typename IT> struct VectorIterator { |
92 | typedef std::random_access_iterator_tag iterator_category; |
93 | typedef IT value_type; |
94 | typedef ptrdiff_t difference_type; |
95 | typedef IT *pointer; |
96 | typedef IT &reference; |
97 | |
98 | VectorIterator(const uint8_t *data, uoffset_t i) |
99 | : data_(data + IndirectHelper<T>::element_stride * i) {} |
100 | VectorIterator(const VectorIterator &other) : data_(other.data_) {} |
101 | |
102 | VectorIterator &operator=(const VectorIterator &other) { |
103 | data_ = other.data_; |
104 | return *this; |
105 | } |
106 | |
107 | VectorIterator &operator=(VectorIterator &&other) { |
108 | data_ = other.data_; |
109 | return *this; |
110 | } |
111 | |
112 | bool operator==(const VectorIterator &other) const { |
113 | return data_ == other.data_; |
114 | } |
115 | |
116 | bool operator<(const VectorIterator &other) const { |
117 | return data_ < other.data_; |
118 | } |
119 | |
120 | bool operator!=(const VectorIterator &other) const { |
121 | return data_ != other.data_; |
122 | } |
123 | |
124 | difference_type operator-(const VectorIterator &other) const { |
125 | return (data_ - other.data_) / IndirectHelper<T>::element_stride; |
126 | } |
127 | |
128 | IT operator*() const { return IndirectHelper<T>::Read(data_, 0); } |
129 | |
130 | IT operator->() const { return IndirectHelper<T>::Read(data_, 0); } |
131 | |
132 | VectorIterator &operator++() { |
133 | data_ += IndirectHelper<T>::element_stride; |
134 | return *this; |
135 | } |
136 | |
137 | VectorIterator operator++(int) { |
138 | VectorIterator temp(data_, 0); |
139 | data_ += IndirectHelper<T>::element_stride; |
140 | return temp; |
141 | } |
142 | |
143 | VectorIterator operator+(const uoffset_t &offset) const { |
144 | return VectorIterator(data_ + offset * IndirectHelper<T>::element_stride, |
145 | 0); |
146 | } |
147 | |
148 | VectorIterator &operator+=(const uoffset_t &offset) { |
149 | data_ += offset * IndirectHelper<T>::element_stride; |
150 | return *this; |
151 | } |
152 | |
153 | VectorIterator &operator--() { |
154 | data_ -= IndirectHelper<T>::element_stride; |
155 | return *this; |
156 | } |
157 | |
158 | VectorIterator operator--(int) { |
159 | VectorIterator temp(data_, 0); |
160 | data_ -= IndirectHelper<T>::element_stride; |
161 | return temp; |
162 | } |
163 | |
164 | VectorIterator operator-(const uoffset_t &offset) { |
165 | return VectorIterator(data_ - offset * IndirectHelper<T>::element_stride, |
166 | 0); |
167 | } |
168 | |
169 | VectorIterator &operator-=(const uoffset_t &offset) { |
170 | data_ -= offset * IndirectHelper<T>::element_stride; |
171 | return *this; |
172 | } |
173 | |
174 | private: |
175 | const uint8_t *data_; |
176 | }; |
177 | |
178 | struct String; |
179 | |
180 | // This is used as a helper type for accessing vectors. |
181 | // Vector::data() assumes the vector elements start after the length field. |
182 | template<typename T> class Vector { |
183 | public: |
184 | typedef VectorIterator<T, typename IndirectHelper<T>::mutable_return_type> |
185 | iterator; |
186 | typedef VectorIterator<T, typename IndirectHelper<T>::return_type> |
187 | const_iterator; |
188 | |
189 | uoffset_t size() const { return EndianScalar(length_); } |
190 | |
191 | // Deprecated: use size(). Here for backwards compatibility. |
192 | uoffset_t Length() const { return size(); } |
193 | |
194 | typedef typename IndirectHelper<T>::return_type return_type; |
195 | typedef typename IndirectHelper<T>::mutable_return_type mutable_return_type; |
196 | |
197 | return_type Get(uoffset_t i) const { |
198 | FLATBUFFERS_ASSERT(i < size()); |
199 | return IndirectHelper<T>::Read(Data(), i); |
200 | } |
201 | |
202 | return_type operator[](uoffset_t i) const { return Get(i); } |
203 | |
204 | // If this is a Vector of enums, T will be its storage type, not the enum |
205 | // type. This function makes it convenient to retrieve value with enum |
206 | // type E. |
207 | template<typename E> E GetEnum(uoffset_t i) const { |
208 | return static_cast<E>(Get(i)); |
209 | } |
210 | |
211 | // If this a vector of unions, this does the cast for you. There's no check |
212 | // to make sure this is the right type! |
213 | template<typename U> const U *GetAs(uoffset_t i) const { |
214 | return reinterpret_cast<const U *>(Get(i)); |
215 | } |
216 | |
217 | // If this a vector of unions, this does the cast for you. There's no check |
218 | // to make sure this is actually a string! |
219 | const String *GetAsString(uoffset_t i) const { |
220 | return reinterpret_cast<const String *>(Get(i)); |
221 | } |
222 | |
223 | const void *GetStructFromOffset(size_t o) const { |
224 | return reinterpret_cast<const void *>(Data() + o); |
225 | } |
226 | |
227 | iterator begin() { return iterator(Data(), 0); } |
228 | const_iterator begin() const { return const_iterator(Data(), 0); } |
229 | |
230 | iterator end() { return iterator(Data(), size()); } |
231 | const_iterator end() const { return const_iterator(Data(), size()); } |
232 | |
233 | // Change elements if you have a non-const pointer to this object. |
234 | // Scalars only. See reflection.h, and the documentation. |
235 | void Mutate(uoffset_t i, const T &val) { |
236 | FLATBUFFERS_ASSERT(i < size()); |
237 | WriteScalar(data() + i, val); |
238 | } |
239 | |
240 | // Change an element of a vector of tables (or strings). |
241 | // "val" points to the new table/string, as you can obtain from |
242 | // e.g. reflection::AddFlatBuffer(). |
243 | void MutateOffset(uoffset_t i, const uint8_t *val) { |
244 | FLATBUFFERS_ASSERT(i < size()); |
245 | static_assert(sizeof(T) == sizeof(uoffset_t), "Unrelated types" ); |
246 | WriteScalar(data() + i, |
247 | static_cast<uoffset_t>(val - (Data() + i * sizeof(uoffset_t)))); |
248 | } |
249 | |
250 | // Get a mutable pointer to tables/strings inside this vector. |
251 | mutable_return_type GetMutableObject(uoffset_t i) const { |
252 | FLATBUFFERS_ASSERT(i < size()); |
253 | return const_cast<mutable_return_type>(IndirectHelper<T>::Read(Data(), i)); |
254 | } |
255 | |
256 | // The raw data in little endian format. Use with care. |
257 | const uint8_t *Data() const { |
258 | return reinterpret_cast<const uint8_t *>(&length_ + 1); |
259 | } |
260 | |
261 | uint8_t *Data() { return reinterpret_cast<uint8_t *>(&length_ + 1); } |
262 | |
263 | // Similarly, but typed, much like std::vector::data |
264 | const T *data() const { return reinterpret_cast<const T *>(Data()); } |
265 | T *data() { return reinterpret_cast<T *>(Data()); } |
266 | |
267 | template<typename K> return_type LookupByKey(K key) const { |
268 | void *search_result = std::bsearch( |
269 | &key, Data(), size(), IndirectHelper<T>::element_stride, KeyCompare<K>); |
270 | |
271 | if (!search_result) { |
272 | return nullptr; // Key not found. |
273 | } |
274 | |
275 | const uint8_t *element = reinterpret_cast<const uint8_t *>(search_result); |
276 | |
277 | return IndirectHelper<T>::Read(element, 0); |
278 | } |
279 | |
280 | protected: |
281 | // This class is only used to access pre-existing data. Don't ever |
282 | // try to construct these manually. |
283 | Vector(); |
284 | |
285 | uoffset_t length_; |
286 | |
287 | private: |
288 | // This class is a pointer. Copying will therefore create an invalid object. |
289 | // Private and unimplemented copy constructor. |
290 | Vector(const Vector &); |
291 | |
292 | template<typename K> static int KeyCompare(const void *ap, const void *bp) { |
293 | const K *key = reinterpret_cast<const K *>(ap); |
294 | const uint8_t *data = reinterpret_cast<const uint8_t *>(bp); |
295 | auto table = IndirectHelper<T>::Read(data, 0); |
296 | |
297 | // std::bsearch compares with the operands transposed, so we negate the |
298 | // result here. |
299 | return -table->KeyCompareWithValue(*key); |
300 | } |
301 | }; |
302 | |
303 | // Represent a vector much like the template above, but in this case we |
304 | // don't know what the element types are (used with reflection.h). |
305 | class VectorOfAny { |
306 | public: |
307 | uoffset_t size() const { return EndianScalar(length_); } |
308 | |
309 | const uint8_t *Data() const { |
310 | return reinterpret_cast<const uint8_t *>(&length_ + 1); |
311 | } |
312 | uint8_t *Data() { return reinterpret_cast<uint8_t *>(&length_ + 1); } |
313 | |
314 | protected: |
315 | VectorOfAny(); |
316 | |
317 | uoffset_t length_; |
318 | |
319 | private: |
320 | VectorOfAny(const VectorOfAny &); |
321 | }; |
322 | |
323 | #ifndef FLATBUFFERS_CPP98_STL |
324 | template<typename T, typename U> |
325 | Vector<Offset<T>> *VectorCast(Vector<Offset<U>> *ptr) { |
326 | static_assert(std::is_base_of<T, U>::value, "Unrelated types" ); |
327 | return reinterpret_cast<Vector<Offset<T>> *>(ptr); |
328 | } |
329 | |
330 | template<typename T, typename U> |
331 | const Vector<Offset<T>> *VectorCast(const Vector<Offset<U>> *ptr) { |
332 | static_assert(std::is_base_of<T, U>::value, "Unrelated types" ); |
333 | return reinterpret_cast<const Vector<Offset<T>> *>(ptr); |
334 | } |
335 | #endif |
336 | |
337 | // Convenient helper function to get the length of any vector, regardless |
338 | // of whether it is null or not (the field is not set). |
339 | template<typename T> static inline size_t VectorLength(const Vector<T> *v) { |
340 | return v ? v->Length() : 0; |
341 | } |
342 | |
343 | struct String : public Vector<char> { |
344 | const char *c_str() const { return reinterpret_cast<const char *>(Data()); } |
345 | std::string str() const { return std::string(c_str(), Length()); } |
346 | |
347 | // clang-format off |
348 | #ifdef FLATBUFFERS_HAS_STRING_VIEW |
349 | flatbuffers::string_view string_view() const { |
350 | return flatbuffers::string_view(c_str(), Length()); |
351 | } |
352 | #endif // FLATBUFFERS_HAS_STRING_VIEW |
353 | // clang-format on |
354 | |
355 | bool operator<(const String &o) const { |
356 | return strcmp(c_str(), o.c_str()) < 0; |
357 | } |
358 | }; |
359 | |
360 | // Convenience function to get std::string from a String returning an empty |
361 | // string on null pointer. |
362 | static inline std::string GetString(const String * str) { |
363 | return str ? str->str() : "" ; |
364 | } |
365 | |
366 | // Convenience function to get char* from a String returning an empty string on |
367 | // null pointer. |
368 | static inline const char * GetCstring(const String * str) { |
369 | return str ? str->c_str() : "" ; |
370 | } |
371 | |
372 | // Allocator interface. This is flatbuffers-specific and meant only for |
373 | // `vector_downward` usage. |
374 | class Allocator { |
375 | public: |
376 | virtual ~Allocator() {} |
377 | |
378 | // Allocate `size` bytes of memory. |
379 | virtual uint8_t *allocate(size_t size) = 0; |
380 | |
381 | // Deallocate `size` bytes of memory at `p` allocated by this allocator. |
382 | virtual void deallocate(uint8_t *p, size_t size) = 0; |
383 | |
384 | // Reallocate `new_size` bytes of memory, replacing the old region of size |
385 | // `old_size` at `p`. In contrast to a normal realloc, this grows downwards, |
386 | // and is intended specifcally for `vector_downward` use. |
387 | // `in_use_back` and `in_use_front` indicate how much of `old_size` is |
388 | // actually in use at each end, and needs to be copied. |
389 | virtual uint8_t *reallocate_downward(uint8_t *old_p, size_t old_size, |
390 | size_t new_size, size_t in_use_back, |
391 | size_t in_use_front) { |
392 | FLATBUFFERS_ASSERT(new_size > old_size); // vector_downward only grows |
393 | uint8_t *new_p = allocate(new_size); |
394 | memcpy_downward(old_p, old_size, new_p, new_size, in_use_back, |
395 | in_use_front); |
396 | deallocate(old_p, old_size); |
397 | return new_p; |
398 | } |
399 | |
400 | protected: |
401 | // Called by `reallocate_downward` to copy memory from `old_p` of `old_size` |
402 | // to `new_p` of `new_size`. Only memory of size `in_use_front` and |
403 | // `in_use_back` will be copied from the front and back of the old memory |
404 | // allocation. |
405 | void memcpy_downward(uint8_t *old_p, size_t old_size, |
406 | uint8_t *new_p, size_t new_size, |
407 | size_t in_use_back, size_t in_use_front) { |
408 | memcpy(new_p + new_size - in_use_back, old_p + old_size - in_use_back, |
409 | in_use_back); |
410 | memcpy(new_p, old_p, in_use_front); |
411 | } |
412 | }; |
413 | |
414 | // DefaultAllocator uses new/delete to allocate memory regions |
415 | class DefaultAllocator : public Allocator { |
416 | public: |
417 | uint8_t *allocate(size_t size) FLATBUFFERS_OVERRIDE { |
418 | return new uint8_t[size]; |
419 | } |
420 | |
421 | void deallocate(uint8_t *p, size_t) FLATBUFFERS_OVERRIDE { |
422 | delete[] p; |
423 | } |
424 | }; |
425 | |
426 | // These functions allow for a null allocator to mean use the default allocator, |
427 | // as used by DetachedBuffer and vector_downward below. |
428 | // This is to avoid having a statically or dynamically allocated default |
429 | // allocator, or having to move it between the classes that may own it. |
430 | inline uint8_t *Allocate(Allocator *allocator, size_t size) { |
431 | return allocator ? allocator->allocate(size) |
432 | : DefaultAllocator().allocate(size); |
433 | } |
434 | |
435 | inline void Deallocate(Allocator *allocator, uint8_t *p, size_t size) { |
436 | if (allocator) allocator->deallocate(p, size); |
437 | else DefaultAllocator().deallocate(p, size); |
438 | } |
439 | |
440 | inline uint8_t *ReallocateDownward(Allocator *allocator, uint8_t *old_p, |
441 | size_t old_size, size_t new_size, |
442 | size_t in_use_back, size_t in_use_front) { |
443 | return allocator |
444 | ? allocator->reallocate_downward(old_p, old_size, new_size, |
445 | in_use_back, in_use_front) |
446 | : DefaultAllocator().reallocate_downward(old_p, old_size, new_size, |
447 | in_use_back, in_use_front); |
448 | } |
449 | |
450 | // DetachedBuffer is a finished flatbuffer memory region, detached from its |
451 | // builder. The original memory region and allocator are also stored so that |
452 | // the DetachedBuffer can manage the memory lifetime. |
453 | class DetachedBuffer { |
454 | public: |
455 | DetachedBuffer() |
456 | : allocator_(nullptr), |
457 | own_allocator_(false), |
458 | buf_(nullptr), |
459 | reserved_(0), |
460 | cur_(nullptr), |
461 | size_(0) {} |
462 | |
463 | DetachedBuffer(Allocator *allocator, bool own_allocator, uint8_t *buf, |
464 | size_t reserved, uint8_t *cur, size_t sz) |
465 | : allocator_(allocator), |
466 | own_allocator_(own_allocator), |
467 | buf_(buf), |
468 | reserved_(reserved), |
469 | cur_(cur), |
470 | size_(sz) {} |
471 | |
472 | DetachedBuffer(DetachedBuffer &&other) |
473 | : allocator_(other.allocator_), |
474 | own_allocator_(other.own_allocator_), |
475 | buf_(other.buf_), |
476 | reserved_(other.reserved_), |
477 | cur_(other.cur_), |
478 | size_(other.size_) { |
479 | other.reset(); |
480 | } |
481 | |
482 | DetachedBuffer &operator=(DetachedBuffer &&other) { |
483 | destroy(); |
484 | |
485 | allocator_ = other.allocator_; |
486 | own_allocator_ = other.own_allocator_; |
487 | buf_ = other.buf_; |
488 | reserved_ = other.reserved_; |
489 | cur_ = other.cur_; |
490 | size_ = other.size_; |
491 | |
492 | other.reset(); |
493 | |
494 | return *this; |
495 | } |
496 | |
497 | ~DetachedBuffer() { destroy(); } |
498 | |
499 | const uint8_t *data() const { return cur_; } |
500 | |
501 | uint8_t *data() { return cur_; } |
502 | |
503 | size_t size() const { return size_; } |
504 | |
505 | // clang-format off |
506 | #if 0 // disabled for now due to the ordering of classes in this header |
507 | template <class T> |
508 | bool Verify() const { |
509 | Verifier verifier(data(), size()); |
510 | return verifier.Verify<T>(nullptr); |
511 | } |
512 | |
513 | template <class T> |
514 | const T* GetRoot() const { |
515 | return flatbuffers::GetRoot<T>(data()); |
516 | } |
517 | |
518 | template <class T> |
519 | T* GetRoot() { |
520 | return flatbuffers::GetRoot<T>(data()); |
521 | } |
522 | #endif |
523 | // clang-format on |
524 | |
525 | // These may change access mode, leave these at end of public section |
526 | FLATBUFFERS_DELETE_FUNC(DetachedBuffer(const DetachedBuffer &other)) |
527 | FLATBUFFERS_DELETE_FUNC( |
528 | DetachedBuffer &operator=(const DetachedBuffer &other)) |
529 | |
530 | protected: |
531 | Allocator *allocator_; |
532 | bool own_allocator_; |
533 | uint8_t *buf_; |
534 | size_t reserved_; |
535 | uint8_t *cur_; |
536 | size_t size_; |
537 | |
538 | inline void destroy() { |
539 | if (buf_) Deallocate(allocator_, buf_, reserved_); |
540 | if (own_allocator_ && allocator_) { delete allocator_; } |
541 | reset(); |
542 | } |
543 | |
544 | inline void reset() { |
545 | allocator_ = nullptr; |
546 | own_allocator_ = false; |
547 | buf_ = nullptr; |
548 | reserved_ = 0; |
549 | cur_ = nullptr; |
550 | size_ = 0; |
551 | } |
552 | }; |
553 | |
554 | // This is a minimal replication of std::vector<uint8_t> functionality, |
555 | // except growing from higher to lower addresses. i.e push_back() inserts data |
556 | // in the lowest address in the vector. |
557 | // Since this vector leaves the lower part unused, we support a "scratch-pad" |
558 | // that can be stored there for temporary data, to share the allocated space. |
559 | // Essentially, this supports 2 std::vectors in a single buffer. |
560 | class vector_downward { |
561 | public: |
562 | explicit vector_downward(size_t initial_size, |
563 | Allocator *allocator, |
564 | bool own_allocator, |
565 | size_t buffer_minalign) |
566 | : allocator_(allocator), |
567 | own_allocator_(own_allocator), |
568 | initial_size_(initial_size), |
569 | buffer_minalign_(buffer_minalign), |
570 | reserved_(0), |
571 | buf_(nullptr), |
572 | cur_(nullptr), |
573 | scratch_(nullptr) {} |
574 | |
575 | vector_downward(vector_downward &&other) |
576 | : allocator_(other.allocator_), |
577 | own_allocator_(other.own_allocator_), |
578 | initial_size_(other.initial_size_), |
579 | buffer_minalign_(other.buffer_minalign_), |
580 | reserved_(other.reserved_), |
581 | buf_(other.buf_), |
582 | cur_(other.cur_), |
583 | scratch_(other.scratch_) { |
584 | other.allocator_ = nullptr; |
585 | other.own_allocator_ = false; |
586 | // No change in other.initial_size_ |
587 | // No change in other.buffer_minalign_ |
588 | other.reserved_ = 0; |
589 | other.buf_ = nullptr; |
590 | other.cur_ = nullptr; |
591 | other.scratch_ = nullptr; |
592 | } |
593 | |
594 | vector_downward &operator=(vector_downward &&other) { |
595 | // Move construct a temporary and swap idiom |
596 | vector_downward temp(std::move(other)); |
597 | swap(temp); |
598 | return *this; |
599 | } |
600 | |
601 | ~vector_downward() { |
602 | clear_buffer(); |
603 | clear_allocator(); |
604 | } |
605 | |
606 | void reset() { |
607 | clear_buffer(); |
608 | clear(); |
609 | } |
610 | |
611 | void clear() { |
612 | if (buf_) { |
613 | cur_ = buf_ + reserved_; |
614 | } else { |
615 | reserved_ = 0; |
616 | cur_ = nullptr; |
617 | } |
618 | clear_scratch(); |
619 | } |
620 | |
621 | void clear_scratch() { |
622 | scratch_ = buf_; |
623 | } |
624 | |
625 | void clear_allocator() { |
626 | if (own_allocator_ && allocator_) { delete allocator_; } |
627 | allocator_ = nullptr; |
628 | own_allocator_ = false; |
629 | } |
630 | |
631 | void clear_buffer() { |
632 | if (buf_) Deallocate(allocator_, buf_, reserved_); |
633 | buf_ = nullptr; |
634 | } |
635 | |
636 | // Relinquish the pointer to the caller. |
637 | uint8_t *release_raw(size_t &allocated_bytes, size_t &offset) { |
638 | auto *buf = buf_; |
639 | allocated_bytes = reserved_; |
640 | offset = static_cast<size_t>(cur_ - buf_); |
641 | |
642 | buf_ = nullptr; |
643 | clear_allocator(); |
644 | clear(); |
645 | return buf; |
646 | } |
647 | |
648 | // Relinquish the pointer to the caller. |
649 | DetachedBuffer release() { |
650 | DetachedBuffer fb(allocator_, own_allocator_, buf_, reserved_, cur_, |
651 | size()); |
652 | allocator_ = nullptr; |
653 | own_allocator_ = false; |
654 | buf_ = nullptr; |
655 | clear(); |
656 | return fb; |
657 | } |
658 | |
659 | size_t ensure_space(size_t len) { |
660 | FLATBUFFERS_ASSERT(cur_ >= scratch_ && scratch_ >= buf_); |
661 | if (len > static_cast<size_t>(cur_ - scratch_)) { reallocate(len); } |
662 | // Beyond this, signed offsets may not have enough range: |
663 | // (FlatBuffers > 2GB not supported). |
664 | FLATBUFFERS_ASSERT(size() < FLATBUFFERS_MAX_BUFFER_SIZE); |
665 | return len; |
666 | } |
667 | |
668 | inline uint8_t *make_space(size_t len) { |
669 | size_t space = ensure_space(len); |
670 | cur_ -= space; |
671 | return cur_; |
672 | } |
673 | |
674 | // Returns nullptr if using the DefaultAllocator. |
675 | Allocator *get_custom_allocator() { return allocator_; } |
676 | |
677 | uoffset_t size() const { |
678 | return static_cast<uoffset_t>(reserved_ - (cur_ - buf_)); |
679 | } |
680 | |
681 | uoffset_t scratch_size() const { |
682 | return static_cast<uoffset_t>(scratch_ - buf_); |
683 | } |
684 | |
685 | size_t capacity() const { return reserved_; } |
686 | |
687 | uint8_t *data() const { |
688 | FLATBUFFERS_ASSERT(cur_); |
689 | return cur_; |
690 | } |
691 | |
692 | uint8_t *scratch_data() const { |
693 | FLATBUFFERS_ASSERT(buf_); |
694 | return buf_; |
695 | } |
696 | |
697 | uint8_t *scratch_end() const { |
698 | FLATBUFFERS_ASSERT(scratch_); |
699 | return scratch_; |
700 | } |
701 | |
702 | uint8_t *data_at(size_t offset) const { return buf_ + reserved_ - offset; } |
703 | |
704 | void push(const uint8_t *bytes, size_t num) { |
705 | memcpy(make_space(num), bytes, num); |
706 | } |
707 | |
708 | // Specialized version of push() that avoids memcpy call for small data. |
709 | template<typename T> void push_small(const T &little_endian_t) { |
710 | make_space(sizeof(T)); |
711 | *reinterpret_cast<T *>(cur_) = little_endian_t; |
712 | } |
713 | |
714 | template<typename T> void scratch_push_small(const T &t) { |
715 | ensure_space(sizeof(T)); |
716 | *reinterpret_cast<T *>(scratch_) = t; |
717 | scratch_ += sizeof(T); |
718 | } |
719 | |
720 | // fill() is most frequently called with small byte counts (<= 4), |
721 | // which is why we're using loops rather than calling memset. |
722 | void fill(size_t zero_pad_bytes) { |
723 | make_space(zero_pad_bytes); |
724 | for (size_t i = 0; i < zero_pad_bytes; i++) cur_[i] = 0; |
725 | } |
726 | |
727 | // Version for when we know the size is larger. |
728 | void fill_big(size_t zero_pad_bytes) { |
729 | memset(make_space(zero_pad_bytes), 0, zero_pad_bytes); |
730 | } |
731 | |
732 | void pop(size_t bytes_to_remove) { cur_ += bytes_to_remove; } |
733 | void scratch_pop(size_t bytes_to_remove) { scratch_ -= bytes_to_remove; } |
734 | |
735 | void swap(vector_downward &other) { |
736 | using std::swap; |
737 | swap(allocator_, other.allocator_); |
738 | swap(own_allocator_, other.own_allocator_); |
739 | swap(initial_size_, other.initial_size_); |
740 | swap(buffer_minalign_, other.buffer_minalign_); |
741 | swap(reserved_, other.reserved_); |
742 | swap(buf_, other.buf_); |
743 | swap(cur_, other.cur_); |
744 | swap(scratch_, other.scratch_); |
745 | } |
746 | |
747 | void swap_allocator(vector_downward &other) { |
748 | using std::swap; |
749 | swap(allocator_, other.allocator_); |
750 | swap(own_allocator_, other.own_allocator_); |
751 | } |
752 | |
753 | private: |
754 | // You shouldn't really be copying instances of this class. |
755 | FLATBUFFERS_DELETE_FUNC(vector_downward(const vector_downward &)) |
756 | FLATBUFFERS_DELETE_FUNC(vector_downward &operator=(const vector_downward &)) |
757 | |
758 | Allocator *allocator_; |
759 | bool own_allocator_; |
760 | size_t initial_size_; |
761 | size_t buffer_minalign_; |
762 | size_t reserved_; |
763 | uint8_t *buf_; |
764 | uint8_t *cur_; // Points at location between empty (below) and used (above). |
765 | uint8_t *scratch_; // Points to the end of the scratchpad in use. |
766 | |
767 | void reallocate(size_t len) { |
768 | auto old_reserved = reserved_; |
769 | auto old_size = size(); |
770 | auto old_scratch_size = scratch_size(); |
771 | reserved_ += (std::max)(len, |
772 | old_reserved ? old_reserved / 2 : initial_size_); |
773 | reserved_ = (reserved_ + buffer_minalign_ - 1) & ~(buffer_minalign_ - 1); |
774 | if (buf_) { |
775 | buf_ = ReallocateDownward(allocator_, buf_, old_reserved, reserved_, |
776 | old_size, old_scratch_size); |
777 | } else { |
778 | buf_ = Allocate(allocator_, reserved_); |
779 | } |
780 | cur_ = buf_ + reserved_ - old_size; |
781 | scratch_ = buf_ + old_scratch_size; |
782 | } |
783 | }; |
784 | |
785 | // Converts a Field ID to a virtual table offset. |
786 | inline voffset_t FieldIndexToOffset(voffset_t field_id) { |
787 | // Should correspond to what EndTable() below builds up. |
788 | const int fixed_fields = 2; // Vtable size and Object Size. |
789 | return static_cast<voffset_t>((field_id + fixed_fields) * sizeof(voffset_t)); |
790 | } |
791 | |
792 | template<typename T, typename Alloc> |
793 | const T *data(const std::vector<T, Alloc> &v) { |
794 | return v.empty() ? nullptr : &v.front(); |
795 | } |
796 | template<typename T, typename Alloc> T *data(std::vector<T, Alloc> &v) { |
797 | return v.empty() ? nullptr : &v.front(); |
798 | } |
799 | |
800 | /// @endcond |
801 | |
802 | /// @addtogroup flatbuffers_cpp_api |
803 | /// @{ |
804 | /// @class FlatBufferBuilder |
805 | /// @brief Helper class to hold data needed in creation of a FlatBuffer. |
806 | /// To serialize data, you typically call one of the `Create*()` functions in |
807 | /// the generated code, which in turn call a sequence of `StartTable`/ |
808 | /// `PushElement`/`AddElement`/`EndTable`, or the builtin `CreateString`/ |
809 | /// `CreateVector` functions. Do this is depth-first order to build up a tree to |
810 | /// the root. `Finish()` wraps up the buffer ready for transport. |
811 | class FlatBufferBuilder { |
812 | public: |
813 | /// @brief Default constructor for FlatBufferBuilder. |
814 | /// @param[in] initial_size The initial size of the buffer, in bytes. Defaults |
815 | /// to `1024`. |
816 | /// @param[in] allocator An `Allocator` to use. If null will use |
817 | /// `DefaultAllocator`. |
818 | /// @param[in] own_allocator Whether the builder/vector should own the |
819 | /// allocator. Defaults to / `false`. |
820 | /// @param[in] buffer_minalign Force the buffer to be aligned to the given |
821 | /// minimum alignment upon reallocation. Only needed if you intend to store |
822 | /// types with custom alignment AND you wish to read the buffer in-place |
823 | /// directly after creation. |
824 | explicit FlatBufferBuilder(size_t initial_size = 1024, |
825 | Allocator *allocator = nullptr, |
826 | bool own_allocator = false, |
827 | size_t buffer_minalign = |
828 | AlignOf<largest_scalar_t>()) |
829 | : buf_(initial_size, allocator, own_allocator, buffer_minalign), |
830 | num_field_loc(0), |
831 | max_voffset_(0), |
832 | nested(false), |
833 | finished(false), |
834 | minalign_(1), |
835 | force_defaults_(false), |
836 | dedup_vtables_(true), |
837 | string_pool(nullptr) { |
838 | EndianCheck(); |
839 | } |
840 | |
841 | /// @brief Move constructor for FlatBufferBuilder. |
842 | FlatBufferBuilder(FlatBufferBuilder &&other) |
843 | : buf_(1024, nullptr, false, AlignOf<largest_scalar_t>()), |
844 | num_field_loc(0), |
845 | max_voffset_(0), |
846 | nested(false), |
847 | finished(false), |
848 | minalign_(1), |
849 | force_defaults_(false), |
850 | dedup_vtables_(true), |
851 | string_pool(nullptr) { |
852 | EndianCheck(); |
853 | // Default construct and swap idiom. |
854 | // Lack of delegating constructors in vs2010 makes it more verbose than needed. |
855 | Swap(other); |
856 | } |
857 | |
858 | /// @brief Move assignment operator for FlatBufferBuilder. |
859 | FlatBufferBuilder &operator=(FlatBufferBuilder &&other) { |
860 | // Move construct a temporary and swap idiom |
861 | FlatBufferBuilder temp(std::move(other)); |
862 | Swap(temp); |
863 | return *this; |
864 | } |
865 | |
866 | void Swap(FlatBufferBuilder &other) { |
867 | using std::swap; |
868 | buf_.swap(other.buf_); |
869 | swap(num_field_loc, other.num_field_loc); |
870 | swap(max_voffset_, other.max_voffset_); |
871 | swap(nested, other.nested); |
872 | swap(finished, other.finished); |
873 | swap(minalign_, other.minalign_); |
874 | swap(force_defaults_, other.force_defaults_); |
875 | swap(dedup_vtables_, other.dedup_vtables_); |
876 | swap(string_pool, other.string_pool); |
877 | } |
878 | |
879 | ~FlatBufferBuilder() { |
880 | if (string_pool) delete string_pool; |
881 | } |
882 | |
883 | void Reset() { |
884 | Clear(); // clear builder state |
885 | buf_.reset(); // deallocate buffer |
886 | } |
887 | |
888 | /// @brief Reset all the state in this FlatBufferBuilder so it can be reused |
889 | /// to construct another buffer. |
890 | void Clear() { |
891 | ClearOffsets(); |
892 | buf_.clear(); |
893 | nested = false; |
894 | finished = false; |
895 | minalign_ = 1; |
896 | if (string_pool) string_pool->clear(); |
897 | } |
898 | |
899 | /// @brief The current size of the serialized buffer, counting from the end. |
900 | /// @return Returns an `uoffset_t` with the current size of the buffer. |
901 | uoffset_t GetSize() const { return buf_.size(); } |
902 | |
903 | /// @brief Get the serialized buffer (after you call `Finish()`). |
904 | /// @return Returns an `uint8_t` pointer to the FlatBuffer data inside the |
905 | /// buffer. |
906 | uint8_t *GetBufferPointer() const { |
907 | Finished(); |
908 | return buf_.data(); |
909 | } |
910 | |
911 | /// @brief Get a pointer to an unfinished buffer. |
912 | /// @return Returns a `uint8_t` pointer to the unfinished buffer. |
913 | uint8_t *GetCurrentBufferPointer() const { return buf_.data(); } |
914 | |
915 | /// @brief Get the released pointer to the serialized buffer. |
916 | /// @warning Do NOT attempt to use this FlatBufferBuilder afterwards! |
917 | /// @return A `FlatBuffer` that owns the buffer and its allocator and |
918 | /// behaves similar to a `unique_ptr` with a deleter. |
919 | /// Deprecated: use Release() instead |
920 | DetachedBuffer ReleaseBufferPointer() { |
921 | Finished(); |
922 | return buf_.release(); |
923 | } |
924 | |
925 | /// @brief Get the released DetachedBuffer. |
926 | /// @return A `DetachedBuffer` that owns the buffer and its allocator. |
927 | DetachedBuffer Release() { |
928 | Finished(); |
929 | return buf_.release(); |
930 | } |
931 | |
932 | /// @brief Get the released pointer to the serialized buffer. |
933 | /// @param The size of the memory block containing |
934 | /// the serialized `FlatBuffer`. |
935 | /// @param The offset from the released pointer where the finished |
936 | /// `FlatBuffer` starts. |
937 | /// @return A raw pointer to the start of the memory block containing |
938 | /// the serialized `FlatBuffer`. |
939 | /// @remark If the allocator is owned, it gets deleted during this call. |
940 | uint8_t *ReleaseRaw(size_t &size, size_t &offset) { |
941 | Finished(); |
942 | return buf_.release_raw(size, offset); |
943 | } |
944 | |
945 | /// @brief get the minimum alignment this buffer needs to be accessed |
946 | /// properly. This is only known once all elements have been written (after |
947 | /// you call Finish()). You can use this information if you need to embed |
948 | /// a FlatBuffer in some other buffer, such that you can later read it |
949 | /// without first having to copy it into its own buffer. |
950 | size_t GetBufferMinAlignment() { |
951 | Finished(); |
952 | return minalign_; |
953 | } |
954 | |
955 | /// @cond FLATBUFFERS_INTERNAL |
956 | void Finished() const { |
957 | // If you get this assert, you're attempting to get access a buffer |
958 | // which hasn't been finished yet. Be sure to call |
959 | // FlatBufferBuilder::Finish with your root table. |
960 | // If you really need to access an unfinished buffer, call |
961 | // GetCurrentBufferPointer instead. |
962 | FLATBUFFERS_ASSERT(finished); |
963 | } |
964 | /// @endcond |
965 | |
966 | /// @brief In order to save space, fields that are set to their default value |
967 | /// don't get serialized into the buffer. |
968 | /// @param[in] bool fd When set to `true`, always serializes default values that are set. |
969 | /// Optional fields which are not set explicitly, will still not be serialized. |
970 | void ForceDefaults(bool fd) { force_defaults_ = fd; } |
971 | |
972 | /// @brief By default vtables are deduped in order to save space. |
973 | /// @param[in] bool dedup When set to `true`, dedup vtables. |
974 | void DedupVtables(bool dedup) { dedup_vtables_ = dedup; } |
975 | |
976 | /// @cond FLATBUFFERS_INTERNAL |
977 | void Pad(size_t num_bytes) { buf_.fill(num_bytes); } |
978 | |
979 | void TrackMinAlign(size_t elem_size) { |
980 | if (elem_size > minalign_) minalign_ = elem_size; |
981 | } |
982 | |
983 | void Align(size_t elem_size) { |
984 | TrackMinAlign(elem_size); |
985 | buf_.fill(PaddingBytes(buf_.size(), elem_size)); |
986 | } |
987 | |
988 | void PushFlatBuffer(const uint8_t *bytes, size_t size) { |
989 | PushBytes(bytes, size); |
990 | finished = true; |
991 | } |
992 | |
993 | void PushBytes(const uint8_t *bytes, size_t size) { buf_.push(bytes, size); } |
994 | |
995 | void PopBytes(size_t amount) { buf_.pop(amount); } |
996 | |
997 | template<typename T> void AssertScalarT() { |
998 | // The code assumes power of 2 sizes and endian-swap-ability. |
999 | static_assert(flatbuffers::is_scalar<T>::value, "T must be a scalar type" ); |
1000 | } |
1001 | |
1002 | // Write a single aligned scalar to the buffer |
1003 | template<typename T> uoffset_t PushElement(T element) { |
1004 | AssertScalarT<T>(); |
1005 | T litle_endian_element = EndianScalar(element); |
1006 | Align(sizeof(T)); |
1007 | buf_.push_small(litle_endian_element); |
1008 | return GetSize(); |
1009 | } |
1010 | |
1011 | template<typename T> uoffset_t PushElement(Offset<T> off) { |
1012 | // Special case for offsets: see ReferTo below. |
1013 | return PushElement(ReferTo(off.o)); |
1014 | } |
1015 | |
1016 | // When writing fields, we track where they are, so we can create correct |
1017 | // vtables later. |
1018 | void TrackField(voffset_t field, uoffset_t off) { |
1019 | FieldLoc fl = { off, field }; |
1020 | buf_.scratch_push_small(fl); |
1021 | num_field_loc++; |
1022 | max_voffset_ = (std::max)(max_voffset_, field); |
1023 | } |
1024 | |
1025 | // Like PushElement, but additionally tracks the field this represents. |
1026 | template<typename T> void AddElement(voffset_t field, T e, T def) { |
1027 | // We don't serialize values equal to the default. |
1028 | if (e == def && !force_defaults_) return; |
1029 | auto off = PushElement(e); |
1030 | TrackField(field, off); |
1031 | } |
1032 | |
1033 | template<typename T> void AddOffset(voffset_t field, Offset<T> off) { |
1034 | if (off.IsNull()) return; // Don't store. |
1035 | AddElement(field, ReferTo(off.o), static_cast<uoffset_t>(0)); |
1036 | } |
1037 | |
1038 | template<typename T> void AddStruct(voffset_t field, const T *structptr) { |
1039 | if (!structptr) return; // Default, don't store. |
1040 | Align(AlignOf<T>()); |
1041 | buf_.push_small(*structptr); |
1042 | TrackField(field, GetSize()); |
1043 | } |
1044 | |
1045 | void AddStructOffset(voffset_t field, uoffset_t off) { |
1046 | TrackField(field, off); |
1047 | } |
1048 | |
1049 | // Offsets initially are relative to the end of the buffer (downwards). |
1050 | // This function converts them to be relative to the current location |
1051 | // in the buffer (when stored here), pointing upwards. |
1052 | uoffset_t ReferTo(uoffset_t off) { |
1053 | // Align to ensure GetSize() below is correct. |
1054 | Align(sizeof(uoffset_t)); |
1055 | // Offset must refer to something already in buffer. |
1056 | FLATBUFFERS_ASSERT(off && off <= GetSize()); |
1057 | return GetSize() - off + static_cast<uoffset_t>(sizeof(uoffset_t)); |
1058 | } |
1059 | |
1060 | void NotNested() { |
1061 | // If you hit this, you're trying to construct a Table/Vector/String |
1062 | // during the construction of its parent table (between the MyTableBuilder |
1063 | // and table.Finish(). |
1064 | // Move the creation of these sub-objects to above the MyTableBuilder to |
1065 | // not get this assert. |
1066 | // Ignoring this assert may appear to work in simple cases, but the reason |
1067 | // it is here is that storing objects in-line may cause vtable offsets |
1068 | // to not fit anymore. It also leads to vtable duplication. |
1069 | FLATBUFFERS_ASSERT(!nested); |
1070 | // If you hit this, fields were added outside the scope of a table. |
1071 | FLATBUFFERS_ASSERT(!num_field_loc); |
1072 | } |
1073 | |
1074 | // From generated code (or from the parser), we call StartTable/EndTable |
1075 | // with a sequence of AddElement calls in between. |
1076 | uoffset_t StartTable() { |
1077 | NotNested(); |
1078 | nested = true; |
1079 | return GetSize(); |
1080 | } |
1081 | |
1082 | // This finishes one serialized object by generating the vtable if it's a |
1083 | // table, comparing it against existing vtables, and writing the |
1084 | // resulting vtable offset. |
1085 | uoffset_t EndTable(uoffset_t start) { |
1086 | // If you get this assert, a corresponding StartTable wasn't called. |
1087 | FLATBUFFERS_ASSERT(nested); |
1088 | // Write the vtable offset, which is the start of any Table. |
1089 | // We fill it's value later. |
1090 | auto vtableoffsetloc = PushElement<soffset_t>(0); |
1091 | // Write a vtable, which consists entirely of voffset_t elements. |
1092 | // It starts with the number of offsets, followed by a type id, followed |
1093 | // by the offsets themselves. In reverse: |
1094 | // Include space for the last offset and ensure empty tables have a |
1095 | // minimum size. |
1096 | max_voffset_ = |
1097 | (std::max)(static_cast<voffset_t>(max_voffset_ + sizeof(voffset_t)), |
1098 | FieldIndexToOffset(0)); |
1099 | buf_.fill_big(max_voffset_); |
1100 | auto table_object_size = vtableoffsetloc - start; |
1101 | // Vtable use 16bit offsets. |
1102 | FLATBUFFERS_ASSERT(table_object_size < 0x10000); |
1103 | WriteScalar<voffset_t>(buf_.data() + sizeof(voffset_t), |
1104 | static_cast<voffset_t>(table_object_size)); |
1105 | WriteScalar<voffset_t>(buf_.data(), max_voffset_); |
1106 | // Write the offsets into the table |
1107 | for (auto it = buf_.scratch_end() - num_field_loc * sizeof(FieldLoc); |
1108 | it < buf_.scratch_end(); it += sizeof(FieldLoc)) { |
1109 | auto field_location = reinterpret_cast<FieldLoc *>(it); |
1110 | auto pos = static_cast<voffset_t>(vtableoffsetloc - field_location->off); |
1111 | // If this asserts, it means you've set a field twice. |
1112 | FLATBUFFERS_ASSERT( |
1113 | !ReadScalar<voffset_t>(buf_.data() + field_location->id)); |
1114 | WriteScalar<voffset_t>(buf_.data() + field_location->id, pos); |
1115 | } |
1116 | ClearOffsets(); |
1117 | auto vt1 = reinterpret_cast<voffset_t *>(buf_.data()); |
1118 | auto vt1_size = ReadScalar<voffset_t>(vt1); |
1119 | auto vt_use = GetSize(); |
1120 | // See if we already have generated a vtable with this exact same |
1121 | // layout before. If so, make it point to the old one, remove this one. |
1122 | if (dedup_vtables_) { |
1123 | for (auto it = buf_.scratch_data(); it < buf_.scratch_end(); |
1124 | it += sizeof(uoffset_t)) { |
1125 | auto vt_offset_ptr = reinterpret_cast<uoffset_t *>(it); |
1126 | auto vt2 = reinterpret_cast<voffset_t *>(buf_.data_at(*vt_offset_ptr)); |
1127 | auto vt2_size = *vt2; |
1128 | if (vt1_size != vt2_size || memcmp(vt2, vt1, vt1_size)) continue; |
1129 | vt_use = *vt_offset_ptr; |
1130 | buf_.pop(GetSize() - vtableoffsetloc); |
1131 | break; |
1132 | } |
1133 | } |
1134 | // If this is a new vtable, remember it. |
1135 | if (vt_use == GetSize()) { buf_.scratch_push_small(vt_use); } |
1136 | // Fill the vtable offset we created above. |
1137 | // The offset points from the beginning of the object to where the |
1138 | // vtable is stored. |
1139 | // Offsets default direction is downward in memory for future format |
1140 | // flexibility (storing all vtables at the start of the file). |
1141 | WriteScalar(buf_.data_at(vtableoffsetloc), |
1142 | static_cast<soffset_t>(vt_use) - |
1143 | static_cast<soffset_t>(vtableoffsetloc)); |
1144 | |
1145 | nested = false; |
1146 | return vtableoffsetloc; |
1147 | } |
1148 | |
1149 | // DEPRECATED: call the version above instead. |
1150 | uoffset_t EndTable(uoffset_t start, voffset_t /*numfields*/) { |
1151 | return EndTable(start); |
1152 | } |
1153 | |
1154 | // This checks a required field has been set in a given table that has |
1155 | // just been constructed. |
1156 | template<typename T> void Required(Offset<T> table, voffset_t field); |
1157 | |
1158 | uoffset_t StartStruct(size_t alignment) { |
1159 | Align(alignment); |
1160 | return GetSize(); |
1161 | } |
1162 | |
1163 | uoffset_t EndStruct() { return GetSize(); } |
1164 | |
1165 | void ClearOffsets() { |
1166 | buf_.scratch_pop(num_field_loc * sizeof(FieldLoc)); |
1167 | num_field_loc = 0; |
1168 | max_voffset_ = 0; |
1169 | } |
1170 | |
1171 | // Aligns such that when "len" bytes are written, an object can be written |
1172 | // after it with "alignment" without padding. |
1173 | void PreAlign(size_t len, size_t alignment) { |
1174 | TrackMinAlign(alignment); |
1175 | buf_.fill(PaddingBytes(GetSize() + len, alignment)); |
1176 | } |
1177 | template<typename T> void PreAlign(size_t len) { |
1178 | AssertScalarT<T>(); |
1179 | PreAlign(len, sizeof(T)); |
1180 | } |
1181 | /// @endcond |
1182 | |
1183 | /// @brief Store a string in the buffer, which can contain any binary data. |
1184 | /// @param[in] str A const char pointer to the data to be stored as a string. |
1185 | /// @param[in] len The number of bytes that should be stored from `str`. |
1186 | /// @return Returns the offset in the buffer where the string starts. |
1187 | Offset<String> CreateString(const char *str, size_t len) { |
1188 | NotNested(); |
1189 | PreAlign<uoffset_t>(len + 1); // Always 0-terminated. |
1190 | buf_.fill(1); |
1191 | PushBytes(reinterpret_cast<const uint8_t *>(str), len); |
1192 | PushElement(static_cast<uoffset_t>(len)); |
1193 | return Offset<String>(GetSize()); |
1194 | } |
1195 | |
1196 | /// @brief Store a string in the buffer, which is null-terminated. |
1197 | /// @param[in] str A const char pointer to a C-string to add to the buffer. |
1198 | /// @return Returns the offset in the buffer where the string starts. |
1199 | Offset<String> CreateString(const char *str) { |
1200 | return CreateString(str, strlen(str)); |
1201 | } |
1202 | |
1203 | /// @brief Store a string in the buffer, which is null-terminated. |
1204 | /// @param[in] str A char pointer to a C-string to add to the buffer. |
1205 | /// @return Returns the offset in the buffer where the string starts. |
1206 | Offset<String> CreateString(char *str) { |
1207 | return CreateString(str, strlen(str)); |
1208 | } |
1209 | |
1210 | /// @brief Store a string in the buffer, which can contain any binary data. |
1211 | /// @param[in] str A const reference to a std::string to store in the buffer. |
1212 | /// @return Returns the offset in the buffer where the string starts. |
1213 | Offset<String> CreateString(const std::string &str) { |
1214 | return CreateString(str.c_str(), str.length()); |
1215 | } |
1216 | |
1217 | // clang-format off |
1218 | #ifdef FLATBUFFERS_HAS_STRING_VIEW |
1219 | /// @brief Store a string in the buffer, which can contain any binary data. |
1220 | /// @param[in] str A const string_view to copy in to the buffer. |
1221 | /// @return Returns the offset in the buffer where the string starts. |
1222 | Offset<String> CreateString(flatbuffers::string_view str) { |
1223 | return CreateString(str.data(), str.size()); |
1224 | } |
1225 | #endif // FLATBUFFERS_HAS_STRING_VIEW |
1226 | // clang-format on |
1227 | |
1228 | /// @brief Store a string in the buffer, which can contain any binary data. |
1229 | /// @param[in] str A const pointer to a `String` struct to add to the buffer. |
1230 | /// @return Returns the offset in the buffer where the string starts |
1231 | Offset<String> CreateString(const String *str) { |
1232 | return str ? CreateString(str->c_str(), str->Length()) : 0; |
1233 | } |
1234 | |
1235 | /// @brief Store a string in the buffer, which can contain any binary data. |
1236 | /// @param[in] str A const reference to a std::string like type with support |
1237 | /// of T::c_str() and T::length() to store in the buffer. |
1238 | /// @return Returns the offset in the buffer where the string starts. |
1239 | template<typename T> Offset<String> CreateString(const T &str) { |
1240 | return CreateString(str.c_str(), str.length()); |
1241 | } |
1242 | |
1243 | /// @brief Store a string in the buffer, which can contain any binary data. |
1244 | /// If a string with this exact contents has already been serialized before, |
1245 | /// instead simply returns the offset of the existing string. |
1246 | /// @param[in] str A const char pointer to the data to be stored as a string. |
1247 | /// @param[in] len The number of bytes that should be stored from `str`. |
1248 | /// @return Returns the offset in the buffer where the string starts. |
1249 | Offset<String> CreateSharedString(const char *str, size_t len) { |
1250 | if (!string_pool) |
1251 | string_pool = new StringOffsetMap(StringOffsetCompare(buf_)); |
1252 | auto size_before_string = buf_.size(); |
1253 | // Must first serialize the string, since the set is all offsets into |
1254 | // buffer. |
1255 | auto off = CreateString(str, len); |
1256 | auto it = string_pool->find(off); |
1257 | // If it exists we reuse existing serialized data! |
1258 | if (it != string_pool->end()) { |
1259 | // We can remove the string we serialized. |
1260 | buf_.pop(buf_.size() - size_before_string); |
1261 | return *it; |
1262 | } |
1263 | // Record this string for future use. |
1264 | string_pool->insert(off); |
1265 | return off; |
1266 | } |
1267 | |
1268 | /// @brief Store a string in the buffer, which null-terminated. |
1269 | /// If a string with this exact contents has already been serialized before, |
1270 | /// instead simply returns the offset of the existing string. |
1271 | /// @param[in] str A const char pointer to a C-string to add to the buffer. |
1272 | /// @return Returns the offset in the buffer where the string starts. |
1273 | Offset<String> CreateSharedString(const char *str) { |
1274 | return CreateSharedString(str, strlen(str)); |
1275 | } |
1276 | |
1277 | /// @brief Store a string in the buffer, which can contain any binary data. |
1278 | /// If a string with this exact contents has already been serialized before, |
1279 | /// instead simply returns the offset of the existing string. |
1280 | /// @param[in] str A const reference to a std::string to store in the buffer. |
1281 | /// @return Returns the offset in the buffer where the string starts. |
1282 | Offset<String> CreateSharedString(const std::string &str) { |
1283 | return CreateSharedString(str.c_str(), str.length()); |
1284 | } |
1285 | |
1286 | /// @brief Store a string in the buffer, which can contain any binary data. |
1287 | /// If a string with this exact contents has already been serialized before, |
1288 | /// instead simply returns the offset of the existing string. |
1289 | /// @param[in] str A const pointer to a `String` struct to add to the buffer. |
1290 | /// @return Returns the offset in the buffer where the string starts |
1291 | Offset<String> CreateSharedString(const String *str) { |
1292 | return CreateSharedString(str->c_str(), str->Length()); |
1293 | } |
1294 | |
1295 | /// @cond FLATBUFFERS_INTERNAL |
1296 | uoffset_t EndVector(size_t len) { |
1297 | FLATBUFFERS_ASSERT(nested); // Hit if no corresponding StartVector. |
1298 | nested = false; |
1299 | return PushElement(static_cast<uoffset_t>(len)); |
1300 | } |
1301 | |
1302 | void StartVector(size_t len, size_t elemsize) { |
1303 | NotNested(); |
1304 | nested = true; |
1305 | PreAlign<uoffset_t>(len * elemsize); |
1306 | PreAlign(len * elemsize, elemsize); // Just in case elemsize > uoffset_t. |
1307 | } |
1308 | |
1309 | // Call this right before StartVector/CreateVector if you want to force the |
1310 | // alignment to be something different than what the element size would |
1311 | // normally dictate. |
1312 | // This is useful when storing a nested_flatbuffer in a vector of bytes, |
1313 | // or when storing SIMD floats, etc. |
1314 | void ForceVectorAlignment(size_t len, size_t elemsize, size_t alignment) { |
1315 | PreAlign(len * elemsize, alignment); |
1316 | } |
1317 | |
1318 | // Similar to ForceVectorAlignment but for String fields. |
1319 | void ForceStringAlignment(size_t len, size_t alignment) { |
1320 | PreAlign((len + 1) * sizeof(char), alignment); |
1321 | } |
1322 | |
1323 | /// @endcond |
1324 | |
1325 | /// @brief Serialize an array into a FlatBuffer `vector`. |
1326 | /// @tparam T The data type of the array elements. |
1327 | /// @param[in] v A pointer to the array of type `T` to serialize into the |
1328 | /// buffer as a `vector`. |
1329 | /// @param[in] len The number of elements to serialize. |
1330 | /// @return Returns a typed `Offset` into the serialized data indicating |
1331 | /// where the vector is stored. |
1332 | template<typename T> Offset<Vector<T>> CreateVector(const T *v, size_t len) { |
1333 | // If this assert hits, you're specifying a template argument that is |
1334 | // causing the wrong overload to be selected, remove it. |
1335 | AssertScalarT<T>(); |
1336 | StartVector(len, sizeof(T)); |
1337 | // clang-format off |
1338 | #if FLATBUFFERS_LITTLEENDIAN |
1339 | PushBytes(reinterpret_cast<const uint8_t *>(v), len * sizeof(T)); |
1340 | #else |
1341 | if (sizeof(T) == 1) { |
1342 | PushBytes(reinterpret_cast<const uint8_t *>(v), len); |
1343 | } else { |
1344 | for (auto i = len; i > 0; ) { |
1345 | PushElement(v[--i]); |
1346 | } |
1347 | } |
1348 | #endif |
1349 | // clang-format on |
1350 | return Offset<Vector<T>>(EndVector(len)); |
1351 | } |
1352 | |
1353 | template<typename T> |
1354 | Offset<Vector<Offset<T>>> CreateVector(const Offset<T> *v, size_t len) { |
1355 | StartVector(len, sizeof(Offset<T>)); |
1356 | for (auto i = len; i > 0;) { PushElement(v[--i]); } |
1357 | return Offset<Vector<Offset<T>>>(EndVector(len)); |
1358 | } |
1359 | |
1360 | /// @brief Serialize a `std::vector` into a FlatBuffer `vector`. |
1361 | /// @tparam T The data type of the `std::vector` elements. |
1362 | /// @param v A const reference to the `std::vector` to serialize into the |
1363 | /// buffer as a `vector`. |
1364 | /// @return Returns a typed `Offset` into the serialized data indicating |
1365 | /// where the vector is stored. |
1366 | template<typename T> Offset<Vector<T>> CreateVector(const std::vector<T> &v) { |
1367 | return CreateVector(data(v), v.size()); |
1368 | } |
1369 | |
1370 | // vector<bool> may be implemented using a bit-set, so we can't access it as |
1371 | // an array. Instead, read elements manually. |
1372 | // Background: https://isocpp.org/blog/2012/11/on-vectorbool |
1373 | Offset<Vector<uint8_t>> CreateVector(const std::vector<bool> &v) { |
1374 | StartVector(v.size(), sizeof(uint8_t)); |
1375 | for (auto i = v.size(); i > 0;) { |
1376 | PushElement(static_cast<uint8_t>(v[--i])); |
1377 | } |
1378 | return Offset<Vector<uint8_t>>(EndVector(v.size())); |
1379 | } |
1380 | |
1381 | // clang-format off |
1382 | #ifndef FLATBUFFERS_CPP98_STL |
1383 | /// @brief Serialize values returned by a function into a FlatBuffer `vector`. |
1384 | /// This is a convenience function that takes care of iteration for you. |
1385 | /// @tparam T The data type of the `std::vector` elements. |
1386 | /// @param f A function that takes the current iteration 0..vector_size-1 and |
1387 | /// returns any type that you can construct a FlatBuffers vector out of. |
1388 | /// @return Returns a typed `Offset` into the serialized data indicating |
1389 | /// where the vector is stored. |
1390 | template<typename T> Offset<Vector<T>> CreateVector(size_t vector_size, |
1391 | const std::function<T (size_t i)> &f) { |
1392 | std::vector<T> elems(vector_size); |
1393 | for (size_t i = 0; i < vector_size; i++) elems[i] = f(i); |
1394 | return CreateVector(elems); |
1395 | } |
1396 | #endif |
1397 | // clang-format on |
1398 | |
1399 | /// @brief Serialize values returned by a function into a FlatBuffer `vector`. |
1400 | /// This is a convenience function that takes care of iteration for you. |
1401 | /// @tparam T The data type of the `std::vector` elements. |
1402 | /// @param f A function that takes the current iteration 0..vector_size-1, |
1403 | /// and the state parameter returning any type that you can construct a |
1404 | /// FlatBuffers vector out of. |
1405 | /// @param state State passed to f. |
1406 | /// @return Returns a typed `Offset` into the serialized data indicating |
1407 | /// where the vector is stored. |
1408 | template<typename T, typename F, typename S> |
1409 | Offset<Vector<T>> CreateVector(size_t vector_size, F f, S *state) { |
1410 | std::vector<T> elems(vector_size); |
1411 | for (size_t i = 0; i < vector_size; i++) elems[i] = f(i, state); |
1412 | return CreateVector(elems); |
1413 | } |
1414 | |
1415 | /// @brief Serialize a `std::vector<std::string>` into a FlatBuffer `vector`. |
1416 | /// This is a convenience function for a common case. |
1417 | /// @param v A const reference to the `std::vector` to serialize into the |
1418 | /// buffer as a `vector`. |
1419 | /// @return Returns a typed `Offset` into the serialized data indicating |
1420 | /// where the vector is stored. |
1421 | Offset<Vector<Offset<String>>> CreateVectorOfStrings( |
1422 | const std::vector<std::string> &v) { |
1423 | std::vector<Offset<String>> offsets(v.size()); |
1424 | for (size_t i = 0; i < v.size(); i++) offsets[i] = CreateString(v[i]); |
1425 | return CreateVector(offsets); |
1426 | } |
1427 | |
1428 | /// @brief Serialize an array of structs into a FlatBuffer `vector`. |
1429 | /// @tparam T The data type of the struct array elements. |
1430 | /// @param[in] v A pointer to the array of type `T` to serialize into the |
1431 | /// buffer as a `vector`. |
1432 | /// @param[in] len The number of elements to serialize. |
1433 | /// @return Returns a typed `Offset` into the serialized data indicating |
1434 | /// where the vector is stored. |
1435 | template<typename T> |
1436 | Offset<Vector<const T *>> CreateVectorOfStructs(const T *v, size_t len) { |
1437 | StartVector(len * sizeof(T) / AlignOf<T>(), AlignOf<T>()); |
1438 | PushBytes(reinterpret_cast<const uint8_t *>(v), sizeof(T) * len); |
1439 | return Offset<Vector<const T *>>(EndVector(len)); |
1440 | } |
1441 | |
1442 | /// @brief Serialize an array of native structs into a FlatBuffer `vector`. |
1443 | /// @tparam T The data type of the struct array elements. |
1444 | /// @tparam S The data type of the native struct array elements. |
1445 | /// @param[in] v A pointer to the array of type `S` to serialize into the |
1446 | /// buffer as a `vector`. |
1447 | /// @param[in] len The number of elements to serialize. |
1448 | /// @return Returns a typed `Offset` into the serialized data indicating |
1449 | /// where the vector is stored. |
1450 | template<typename T, typename S> |
1451 | Offset<Vector<const T *>> CreateVectorOfNativeStructs(const S *v, |
1452 | size_t len) { |
1453 | extern T Pack(const S &); |
1454 | typedef T (*Pack_t)(const S &); |
1455 | std::vector<T> vv(len); |
1456 | std::transform(v, v + len, vv.begin(), *(Pack_t)&Pack); |
1457 | return CreateVectorOfStructs<T>(vv.data(), vv.size()); |
1458 | } |
1459 | |
1460 | // clang-format off |
1461 | #ifndef FLATBUFFERS_CPP98_STL |
1462 | /// @brief Serialize an array of structs into a FlatBuffer `vector`. |
1463 | /// @tparam T The data type of the struct array elements. |
1464 | /// @param[in] f A function that takes the current iteration 0..vector_size-1 |
1465 | /// and a pointer to the struct that must be filled. |
1466 | /// @return Returns a typed `Offset` into the serialized data indicating |
1467 | /// where the vector is stored. |
1468 | /// This is mostly useful when flatbuffers are generated with mutation |
1469 | /// accessors. |
1470 | template<typename T> Offset<Vector<const T *>> CreateVectorOfStructs( |
1471 | size_t vector_size, const std::function<void(size_t i, T *)> &filler) { |
1472 | T* structs = StartVectorOfStructs<T>(vector_size); |
1473 | for (size_t i = 0; i < vector_size; i++) { |
1474 | filler(i, structs); |
1475 | structs++; |
1476 | } |
1477 | return EndVectorOfStructs<T>(vector_size); |
1478 | } |
1479 | #endif |
1480 | // clang-format on |
1481 | |
1482 | /// @brief Serialize an array of structs into a FlatBuffer `vector`. |
1483 | /// @tparam T The data type of the struct array elements. |
1484 | /// @param[in] f A function that takes the current iteration 0..vector_size-1, |
1485 | /// a pointer to the struct that must be filled and the state argument. |
1486 | /// @param[in] state Arbitrary state to pass to f. |
1487 | /// @return Returns a typed `Offset` into the serialized data indicating |
1488 | /// where the vector is stored. |
1489 | /// This is mostly useful when flatbuffers are generated with mutation |
1490 | /// accessors. |
1491 | template<typename T, typename F, typename S> |
1492 | Offset<Vector<const T *>> CreateVectorOfStructs(size_t vector_size, F f, |
1493 | S *state) { |
1494 | T *structs = StartVectorOfStructs<T>(vector_size); |
1495 | for (size_t i = 0; i < vector_size; i++) { |
1496 | f(i, structs, state); |
1497 | structs++; |
1498 | } |
1499 | return EndVectorOfStructs<T>(vector_size); |
1500 | } |
1501 | |
1502 | /// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`. |
1503 | /// @tparam T The data type of the `std::vector` struct elements. |
1504 | /// @param[in]] v A const reference to the `std::vector` of structs to |
1505 | /// serialize into the buffer as a `vector`. |
1506 | /// @return Returns a typed `Offset` into the serialized data indicating |
1507 | /// where the vector is stored. |
1508 | template<typename T, typename Alloc> |
1509 | Offset<Vector<const T *>> CreateVectorOfStructs( |
1510 | const std::vector<T, Alloc> &v) { |
1511 | return CreateVectorOfStructs(data(v), v.size()); |
1512 | } |
1513 | |
1514 | /// @brief Serialize a `std::vector` of native structs into a FlatBuffer |
1515 | /// `vector`. |
1516 | /// @tparam T The data type of the `std::vector` struct elements. |
1517 | /// @tparam S The data type of the `std::vector` native struct elements. |
1518 | /// @param[in]] v A const reference to the `std::vector` of structs to |
1519 | /// serialize into the buffer as a `vector`. |
1520 | /// @return Returns a typed `Offset` into the serialized data indicating |
1521 | /// where the vector is stored. |
1522 | template<typename T, typename S> |
1523 | Offset<Vector<const T *>> CreateVectorOfNativeStructs( |
1524 | const std::vector<S> &v) { |
1525 | return CreateVectorOfNativeStructs<T, S>(data(v), v.size()); |
1526 | } |
1527 | |
1528 | /// @cond FLATBUFFERS_INTERNAL |
1529 | template<typename T> struct StructKeyComparator { |
1530 | bool operator()(const T &a, const T &b) const { |
1531 | return a.KeyCompareLessThan(&b); |
1532 | } |
1533 | |
1534 | private: |
1535 | StructKeyComparator &operator=(const StructKeyComparator &); |
1536 | }; |
1537 | /// @endcond |
1538 | |
1539 | /// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector` |
1540 | /// in sorted order. |
1541 | /// @tparam T The data type of the `std::vector` struct elements. |
1542 | /// @param[in]] v A const reference to the `std::vector` of structs to |
1543 | /// serialize into the buffer as a `vector`. |
1544 | /// @return Returns a typed `Offset` into the serialized data indicating |
1545 | /// where the vector is stored. |
1546 | template<typename T> |
1547 | Offset<Vector<const T *>> CreateVectorOfSortedStructs(std::vector<T> *v) { |
1548 | return CreateVectorOfSortedStructs(data(*v), v->size()); |
1549 | } |
1550 | |
1551 | /// @brief Serialize a `std::vector` of native structs into a FlatBuffer |
1552 | /// `vector` in sorted order. |
1553 | /// @tparam T The data type of the `std::vector` struct elements. |
1554 | /// @tparam S The data type of the `std::vector` native struct elements. |
1555 | /// @param[in]] v A const reference to the `std::vector` of structs to |
1556 | /// serialize into the buffer as a `vector`. |
1557 | /// @return Returns a typed `Offset` into the serialized data indicating |
1558 | /// where the vector is stored. |
1559 | template<typename T, typename S> |
1560 | Offset<Vector<const T *>> CreateVectorOfSortedNativeStructs( |
1561 | std::vector<S> *v) { |
1562 | return CreateVectorOfSortedNativeStructs<T, S>(data(*v), v->size()); |
1563 | } |
1564 | |
1565 | /// @brief Serialize an array of structs into a FlatBuffer `vector` in sorted |
1566 | /// order. |
1567 | /// @tparam T The data type of the struct array elements. |
1568 | /// @param[in] v A pointer to the array of type `T` to serialize into the |
1569 | /// buffer as a `vector`. |
1570 | /// @param[in] len The number of elements to serialize. |
1571 | /// @return Returns a typed `Offset` into the serialized data indicating |
1572 | /// where the vector is stored. |
1573 | template<typename T> |
1574 | Offset<Vector<const T *>> CreateVectorOfSortedStructs(T *v, size_t len) { |
1575 | std::sort(v, v + len, StructKeyComparator<T>()); |
1576 | return CreateVectorOfStructs(v, len); |
1577 | } |
1578 | |
1579 | /// @brief Serialize an array of native structs into a FlatBuffer `vector` in |
1580 | /// sorted order. |
1581 | /// @tparam T The data type of the struct array elements. |
1582 | /// @tparam S The data type of the native struct array elements. |
1583 | /// @param[in] v A pointer to the array of type `S` to serialize into the |
1584 | /// buffer as a `vector`. |
1585 | /// @param[in] len The number of elements to serialize. |
1586 | /// @return Returns a typed `Offset` into the serialized data indicating |
1587 | /// where the vector is stored. |
1588 | template<typename T, typename S> |
1589 | Offset<Vector<const T *>> CreateVectorOfSortedNativeStructs(S *v, |
1590 | size_t len) { |
1591 | extern T Pack(const S &); |
1592 | typedef T (*Pack_t)(const S &); |
1593 | std::vector<T> vv(len); |
1594 | std::transform(v, v + len, vv.begin(), *(Pack_t)&Pack); |
1595 | return CreateVectorOfSortedStructs<T>(vv, len); |
1596 | } |
1597 | |
1598 | /// @cond FLATBUFFERS_INTERNAL |
1599 | template<typename T> struct TableKeyComparator { |
1600 | TableKeyComparator(vector_downward &buf) : buf_(buf) {} |
1601 | bool operator()(const Offset<T> &a, const Offset<T> &b) const { |
1602 | auto table_a = reinterpret_cast<T *>(buf_.data_at(a.o)); |
1603 | auto table_b = reinterpret_cast<T *>(buf_.data_at(b.o)); |
1604 | return table_a->KeyCompareLessThan(table_b); |
1605 | } |
1606 | vector_downward &buf_; |
1607 | |
1608 | private: |
1609 | TableKeyComparator &operator=(const TableKeyComparator &); |
1610 | }; |
1611 | /// @endcond |
1612 | |
1613 | /// @brief Serialize an array of `table` offsets as a `vector` in the buffer |
1614 | /// in sorted order. |
1615 | /// @tparam T The data type that the offset refers to. |
1616 | /// @param[in] v An array of type `Offset<T>` that contains the `table` |
1617 | /// offsets to store in the buffer in sorted order. |
1618 | /// @param[in] len The number of elements to store in the `vector`. |
1619 | /// @return Returns a typed `Offset` into the serialized data indicating |
1620 | /// where the vector is stored. |
1621 | template<typename T> |
1622 | Offset<Vector<Offset<T>>> CreateVectorOfSortedTables(Offset<T> *v, |
1623 | size_t len) { |
1624 | std::sort(v, v + len, TableKeyComparator<T>(buf_)); |
1625 | return CreateVector(v, len); |
1626 | } |
1627 | |
1628 | /// @brief Serialize an array of `table` offsets as a `vector` in the buffer |
1629 | /// in sorted order. |
1630 | /// @tparam T The data type that the offset refers to. |
1631 | /// @param[in] v An array of type `Offset<T>` that contains the `table` |
1632 | /// offsets to store in the buffer in sorted order. |
1633 | /// @return Returns a typed `Offset` into the serialized data indicating |
1634 | /// where the vector is stored. |
1635 | template<typename T> |
1636 | Offset<Vector<Offset<T>>> CreateVectorOfSortedTables( |
1637 | std::vector<Offset<T>> *v) { |
1638 | return CreateVectorOfSortedTables(data(*v), v->size()); |
1639 | } |
1640 | |
1641 | /// @brief Specialized version of `CreateVector` for non-copying use cases. |
1642 | /// Write the data any time later to the returned buffer pointer `buf`. |
1643 | /// @param[in] len The number of elements to store in the `vector`. |
1644 | /// @param[in] elemsize The size of each element in the `vector`. |
1645 | /// @param[out] buf A pointer to a `uint8_t` pointer that can be |
1646 | /// written to at a later time to serialize the data into a `vector` |
1647 | /// in the buffer. |
1648 | uoffset_t CreateUninitializedVector(size_t len, size_t elemsize, |
1649 | uint8_t **buf) { |
1650 | NotNested(); |
1651 | StartVector(len, elemsize); |
1652 | buf_.make_space(len * elemsize); |
1653 | auto vec_start = GetSize(); |
1654 | auto vec_end = EndVector(len); |
1655 | *buf = buf_.data_at(vec_start); |
1656 | return vec_end; |
1657 | } |
1658 | |
1659 | /// @brief Specialized version of `CreateVector` for non-copying use cases. |
1660 | /// Write the data any time later to the returned buffer pointer `buf`. |
1661 | /// @tparam T The data type of the data that will be stored in the buffer |
1662 | /// as a `vector`. |
1663 | /// @param[in] len The number of elements to store in the `vector`. |
1664 | /// @param[out] buf A pointer to a pointer of type `T` that can be |
1665 | /// written to at a later time to serialize the data into a `vector` |
1666 | /// in the buffer. |
1667 | template<typename T> |
1668 | Offset<Vector<T>> CreateUninitializedVector(size_t len, T **buf) { |
1669 | AssertScalarT<T>(); |
1670 | return CreateUninitializedVector(len, sizeof(T), |
1671 | reinterpret_cast<uint8_t **>(buf)); |
1672 | } |
1673 | |
1674 | template<typename T> |
1675 | Offset<Vector<const T*>> CreateUninitializedVectorOfStructs(size_t len, T **buf) { |
1676 | return CreateUninitializedVector(len, sizeof(T), |
1677 | reinterpret_cast<uint8_t **>(buf)); |
1678 | } |
1679 | |
1680 | /// @brief Write a struct by itself, typically to be part of a union. |
1681 | template<typename T> Offset<const T *> CreateStruct(const T &structobj) { |
1682 | NotNested(); |
1683 | Align(AlignOf<T>()); |
1684 | buf_.push_small(structobj); |
1685 | return Offset<const T *>(GetSize()); |
1686 | } |
1687 | |
1688 | /// @brief The length of a FlatBuffer file header. |
1689 | static const size_t kFileIdentifierLength = 4; |
1690 | |
1691 | /// @brief Finish serializing a buffer by writing the root offset. |
1692 | /// @param[in] file_identifier If a `file_identifier` is given, the buffer |
1693 | /// will be prefixed with a standard FlatBuffers file header. |
1694 | template<typename T> |
1695 | void Finish(Offset<T> root, const char *file_identifier = nullptr) { |
1696 | Finish(root.o, file_identifier, false); |
1697 | } |
1698 | |
1699 | /// @brief Finish a buffer with a 32 bit size field pre-fixed (size of the |
1700 | /// buffer following the size field). These buffers are NOT compatible |
1701 | /// with standard buffers created by Finish, i.e. you can't call GetRoot |
1702 | /// on them, you have to use GetSizePrefixedRoot instead. |
1703 | /// All >32 bit quantities in this buffer will be aligned when the whole |
1704 | /// size pre-fixed buffer is aligned. |
1705 | /// These kinds of buffers are useful for creating a stream of FlatBuffers. |
1706 | template<typename T> |
1707 | void FinishSizePrefixed(Offset<T> root, |
1708 | const char *file_identifier = nullptr) { |
1709 | Finish(root.o, file_identifier, true); |
1710 | } |
1711 | |
1712 | protected: |
1713 | // You shouldn't really be copying instances of this class. |
1714 | FlatBufferBuilder(const FlatBufferBuilder &); |
1715 | FlatBufferBuilder &operator=(const FlatBufferBuilder &); |
1716 | |
1717 | void Finish(uoffset_t root, const char *file_identifier, bool size_prefix) { |
1718 | NotNested(); |
1719 | buf_.clear_scratch(); |
1720 | // This will cause the whole buffer to be aligned. |
1721 | PreAlign((size_prefix ? sizeof(uoffset_t) : 0) + sizeof(uoffset_t) + |
1722 | (file_identifier ? kFileIdentifierLength : 0), |
1723 | minalign_); |
1724 | if (file_identifier) { |
1725 | FLATBUFFERS_ASSERT(strlen(file_identifier) == kFileIdentifierLength); |
1726 | PushBytes(reinterpret_cast<const uint8_t *>(file_identifier), |
1727 | kFileIdentifierLength); |
1728 | } |
1729 | PushElement(ReferTo(root)); // Location of root. |
1730 | if (size_prefix) { PushElement(GetSize()); } |
1731 | finished = true; |
1732 | } |
1733 | |
1734 | struct FieldLoc { |
1735 | uoffset_t off; |
1736 | voffset_t id; |
1737 | }; |
1738 | |
1739 | vector_downward buf_; |
1740 | |
1741 | // Accumulating offsets of table members while it is being built. |
1742 | // We store these in the scratch pad of buf_, after the vtable offsets. |
1743 | uoffset_t num_field_loc; |
1744 | // Track how much of the vtable is in use, so we can output the most compact |
1745 | // possible vtable. |
1746 | voffset_t max_voffset_; |
1747 | |
1748 | // Ensure objects are not nested. |
1749 | bool nested; |
1750 | |
1751 | // Ensure the buffer is finished before it is being accessed. |
1752 | bool finished; |
1753 | |
1754 | size_t minalign_; |
1755 | |
1756 | bool force_defaults_; // Serialize values equal to their defaults anyway. |
1757 | |
1758 | bool dedup_vtables_; |
1759 | |
1760 | struct StringOffsetCompare { |
1761 | StringOffsetCompare(const vector_downward &buf) : buf_(&buf) {} |
1762 | bool operator()(const Offset<String> &a, const Offset<String> &b) const { |
1763 | auto stra = reinterpret_cast<const String *>(buf_->data_at(a.o)); |
1764 | auto strb = reinterpret_cast<const String *>(buf_->data_at(b.o)); |
1765 | return strncmp(stra->c_str(), strb->c_str(), |
1766 | (std::min)(stra->size(), strb->size()) + 1) < 0; |
1767 | } |
1768 | const vector_downward *buf_; |
1769 | }; |
1770 | |
1771 | // For use with CreateSharedString. Instantiated on first use only. |
1772 | typedef std::set<Offset<String>, StringOffsetCompare> StringOffsetMap; |
1773 | StringOffsetMap *string_pool; |
1774 | |
1775 | private: |
1776 | // Allocates space for a vector of structures. |
1777 | // Must be completed with EndVectorOfStructs(). |
1778 | template<typename T> T *StartVectorOfStructs(size_t vector_size) { |
1779 | StartVector(vector_size * sizeof(T) / AlignOf<T>(), AlignOf<T>()); |
1780 | return reinterpret_cast<T *>(buf_.make_space(vector_size * sizeof(T))); |
1781 | } |
1782 | |
1783 | // End the vector of structues in the flatbuffers. |
1784 | // Vector should have previously be started with StartVectorOfStructs(). |
1785 | template<typename T> |
1786 | Offset<Vector<const T *>> EndVectorOfStructs(size_t vector_size) { |
1787 | return Offset<Vector<const T *>>(EndVector(vector_size)); |
1788 | } |
1789 | }; |
1790 | /// @} |
1791 | |
1792 | /// @cond FLATBUFFERS_INTERNAL |
1793 | // Helpers to get a typed pointer to the root object contained in the buffer. |
1794 | template<typename T> T *GetMutableRoot(void *buf) { |
1795 | EndianCheck(); |
1796 | return reinterpret_cast<T *>( |
1797 | reinterpret_cast<uint8_t *>(buf) + |
1798 | EndianScalar(*reinterpret_cast<uoffset_t *>(buf))); |
1799 | } |
1800 | |
1801 | template<typename T> const T *GetRoot(const void *buf) { |
1802 | return GetMutableRoot<T>(const_cast<void *>(buf)); |
1803 | } |
1804 | |
1805 | template<typename T> const T *GetSizePrefixedRoot(const void *buf) { |
1806 | return GetRoot<T>(reinterpret_cast<const uint8_t *>(buf) + sizeof(uoffset_t)); |
1807 | } |
1808 | |
1809 | /// Helpers to get a typed pointer to objects that are currently being built. |
1810 | /// @warning Creating new objects will lead to reallocations and invalidates |
1811 | /// the pointer! |
1812 | template<typename T> |
1813 | T *GetMutableTemporaryPointer(FlatBufferBuilder &fbb, Offset<T> offset) { |
1814 | return reinterpret_cast<T *>(fbb.GetCurrentBufferPointer() + fbb.GetSize() - |
1815 | offset.o); |
1816 | } |
1817 | |
1818 | template<typename T> |
1819 | const T *GetTemporaryPointer(FlatBufferBuilder &fbb, Offset<T> offset) { |
1820 | return GetMutableTemporaryPointer<T>(fbb, offset); |
1821 | } |
1822 | |
1823 | /// @brief Get a pointer to the the file_identifier section of the buffer. |
1824 | /// @return Returns a const char pointer to the start of the file_identifier |
1825 | /// characters in the buffer. The returned char * has length |
1826 | /// 'flatbuffers::FlatBufferBuilder::kFileIdentifierLength'. |
1827 | /// This function is UNDEFINED for FlatBuffers whose schema does not include |
1828 | /// a file_identifier (likely points at padding or the start of a the root |
1829 | /// vtable). |
1830 | inline const char *GetBufferIdentifier(const void *buf, bool size_prefixed = false) { |
1831 | return reinterpret_cast<const char *>(buf) + |
1832 | ((size_prefixed) ? 2 * sizeof(uoffset_t) : sizeof(uoffset_t)); |
1833 | } |
1834 | |
1835 | // Helper to see if the identifier in a buffer has the expected value. |
1836 | inline bool BufferHasIdentifier(const void *buf, const char *identifier, bool size_prefixed = false) { |
1837 | return strncmp(GetBufferIdentifier(buf, size_prefixed), identifier, |
1838 | FlatBufferBuilder::kFileIdentifierLength) == 0; |
1839 | } |
1840 | |
1841 | // Helper class to verify the integrity of a FlatBuffer |
1842 | class Verifier FLATBUFFERS_FINAL_CLASS { |
1843 | public: |
1844 | Verifier(const uint8_t *buf, size_t buf_len, uoffset_t _max_depth = 64, |
1845 | uoffset_t _max_tables = 1000000) |
1846 | : buf_(buf), |
1847 | size_(buf_len), |
1848 | depth_(0), |
1849 | max_depth_(_max_depth), |
1850 | num_tables_(0), |
1851 | max_tables_(_max_tables) |
1852 | // clang-format off |
1853 | #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE |
1854 | , upper_bound_(0) |
1855 | #endif |
1856 | // clang-format on |
1857 | { |
1858 | assert(size_ < FLATBUFFERS_MAX_BUFFER_SIZE); |
1859 | } |
1860 | |
1861 | // Central location where any verification failures register. |
1862 | bool Check(bool ok) const { |
1863 | // clang-format off |
1864 | #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE |
1865 | FLATBUFFERS_ASSERT(ok); |
1866 | #endif |
1867 | #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE |
1868 | if (!ok) |
1869 | upper_bound_ = 0; |
1870 | #endif |
1871 | // clang-format on |
1872 | return ok; |
1873 | } |
1874 | |
1875 | // Verify any range within the buffer. |
1876 | bool Verify(size_t elem, size_t elem_len) const { |
1877 | // clang-format off |
1878 | #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE |
1879 | auto upper_bound = elem + elem_len; |
1880 | if (upper_bound_ < upper_bound) |
1881 | upper_bound_ = upper_bound; |
1882 | #endif |
1883 | // clang-format on |
1884 | return Check(elem_len < size_ && elem <= size_ - elem_len); |
1885 | } |
1886 | |
1887 | template<typename T> bool VerifyAlignment(size_t elem) const { |
1888 | return (elem & (sizeof(T) - 1)) == 0; |
1889 | } |
1890 | |
1891 | // Verify a range indicated by sizeof(T). |
1892 | template<typename T> bool Verify(size_t elem) const { |
1893 | return VerifyAlignment<T>(elem) && Verify(elem, sizeof(T)); |
1894 | } |
1895 | |
1896 | // Verify relative to a known-good base pointer. |
1897 | bool Verify(const uint8_t *base, voffset_t elem_off, size_t elem_len) const { |
1898 | return Verify(static_cast<size_t>(base - buf_) + elem_off, elem_len); |
1899 | } |
1900 | |
1901 | template<typename T> bool Verify(const uint8_t *base, voffset_t elem_off) |
1902 | const { |
1903 | return Verify(static_cast<size_t>(base - buf_) + elem_off, sizeof(T)); |
1904 | } |
1905 | |
1906 | // Verify a pointer (may be NULL) of a table type. |
1907 | template<typename T> bool VerifyTable(const T *table) { |
1908 | return !table || table->Verify(*this); |
1909 | } |
1910 | |
1911 | // Verify a pointer (may be NULL) of any vector type. |
1912 | template<typename T> bool VerifyVector(const Vector<T> *vec) const { |
1913 | return !vec || VerifyVectorOrString(reinterpret_cast<const uint8_t *>(vec), |
1914 | sizeof(T)); |
1915 | } |
1916 | |
1917 | // Verify a pointer (may be NULL) of a vector to struct. |
1918 | template<typename T> bool VerifyVector(const Vector<const T *> *vec) const { |
1919 | return VerifyVector(reinterpret_cast<const Vector<T> *>(vec)); |
1920 | } |
1921 | |
1922 | // Verify a pointer (may be NULL) to string. |
1923 | bool VerifyString(const String *str) const { |
1924 | size_t end; |
1925 | return !str || |
1926 | (VerifyVectorOrString(reinterpret_cast<const uint8_t *>(str), |
1927 | 1, &end) && |
1928 | Verify(end, 1) && // Must have terminator |
1929 | Check(buf_[end] == '\0')); // Terminating byte must be 0. |
1930 | } |
1931 | |
1932 | // Common code between vectors and strings. |
1933 | bool VerifyVectorOrString(const uint8_t *vec, size_t elem_size, |
1934 | size_t *end = nullptr) const { |
1935 | auto veco = static_cast<size_t>(vec - buf_); |
1936 | // Check we can read the size field. |
1937 | if (!Verify<uoffset_t>(veco)) return false; |
1938 | // Check the whole array. If this is a string, the byte past the array |
1939 | // must be 0. |
1940 | auto size = ReadScalar<uoffset_t>(vec); |
1941 | auto max_elems = FLATBUFFERS_MAX_BUFFER_SIZE / elem_size; |
1942 | if (!Check(size < max_elems)) |
1943 | return false; // Protect against byte_size overflowing. |
1944 | auto byte_size = sizeof(size) + elem_size * size; |
1945 | if (end) *end = veco + byte_size; |
1946 | return Verify(veco, byte_size); |
1947 | } |
1948 | |
1949 | // Special case for string contents, after the above has been called. |
1950 | bool VerifyVectorOfStrings(const Vector<Offset<String>> *vec) const { |
1951 | if (vec) { |
1952 | for (uoffset_t i = 0; i < vec->size(); i++) { |
1953 | if (!VerifyString(vec->Get(i))) return false; |
1954 | } |
1955 | } |
1956 | return true; |
1957 | } |
1958 | |
1959 | // Special case for table contents, after the above has been called. |
1960 | template<typename T> bool VerifyVectorOfTables(const Vector<Offset<T>> *vec) { |
1961 | if (vec) { |
1962 | for (uoffset_t i = 0; i < vec->size(); i++) { |
1963 | if (!vec->Get(i)->Verify(*this)) return false; |
1964 | } |
1965 | } |
1966 | return true; |
1967 | } |
1968 | |
1969 | bool VerifyTableStart(const uint8_t *table) { |
1970 | // Check the vtable offset. |
1971 | auto tableo = static_cast<size_t>(table - buf_); |
1972 | if (!Verify<soffset_t>(tableo)) return false; |
1973 | // This offset may be signed, but doing the substraction unsigned always |
1974 | // gives the result we want. |
1975 | auto vtableo = tableo - static_cast<size_t>(ReadScalar<soffset_t>(table)); |
1976 | // Check the vtable size field, then check vtable fits in its entirety. |
1977 | return VerifyComplexity() && Verify<voffset_t>(vtableo) && |
1978 | VerifyAlignment<voffset_t>(ReadScalar<voffset_t>(buf_ + vtableo)) && |
1979 | Verify(vtableo, ReadScalar<voffset_t>(buf_ + vtableo)); |
1980 | } |
1981 | |
1982 | template<typename T> |
1983 | bool VerifyBufferFromStart(const char *identifier, size_t start) { |
1984 | if (identifier && |
1985 | (size_ < 2 * sizeof(flatbuffers::uoffset_t) || |
1986 | !BufferHasIdentifier(buf_ + start, identifier))) { |
1987 | return false; |
1988 | } |
1989 | |
1990 | // Call T::Verify, which must be in the generated code for this type. |
1991 | auto o = VerifyOffset(start); |
1992 | return o && reinterpret_cast<const T *>(buf_ + start + o)->Verify(*this) |
1993 | // clang-format off |
1994 | #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE |
1995 | && GetComputedSize() |
1996 | #endif |
1997 | ; |
1998 | // clang-format on |
1999 | } |
2000 | |
2001 | // Verify this whole buffer, starting with root type T. |
2002 | template<typename T> bool VerifyBuffer() { return VerifyBuffer<T>(nullptr); } |
2003 | |
2004 | template<typename T> bool VerifyBuffer(const char *identifier) { |
2005 | return VerifyBufferFromStart<T>(identifier, 0); |
2006 | } |
2007 | |
2008 | template<typename T> bool VerifySizePrefixedBuffer(const char *identifier) { |
2009 | return Verify<uoffset_t>(0U) && |
2010 | ReadScalar<uoffset_t>(buf_) == size_ - sizeof(uoffset_t) && |
2011 | VerifyBufferFromStart<T>(identifier, sizeof(uoffset_t)); |
2012 | } |
2013 | |
2014 | uoffset_t VerifyOffset(size_t start) const { |
2015 | if (!Verify<uoffset_t>(start)) return 0; |
2016 | auto o = ReadScalar<uoffset_t>(buf_ + start); |
2017 | // May not point to itself. |
2018 | Check(o != 0); |
2019 | // Can't wrap around / buffers are max 2GB. |
2020 | if (!Check(static_cast<soffset_t>(o) >= 0)) return 0; |
2021 | // Must be inside the buffer to create a pointer from it (pointer outside |
2022 | // buffer is UB). |
2023 | if (!Verify(start + o, 1)) return 0; |
2024 | return o; |
2025 | } |
2026 | |
2027 | uoffset_t VerifyOffset(const uint8_t *base, voffset_t start) const { |
2028 | return VerifyOffset(static_cast<size_t>(base - buf_) + start); |
2029 | } |
2030 | |
2031 | // Called at the start of a table to increase counters measuring data |
2032 | // structure depth and amount, and possibly bails out with false if |
2033 | // limits set by the constructor have been hit. Needs to be balanced |
2034 | // with EndTable(). |
2035 | bool VerifyComplexity() { |
2036 | depth_++; |
2037 | num_tables_++; |
2038 | return Check(depth_ <= max_depth_ && num_tables_ <= max_tables_); |
2039 | } |
2040 | |
2041 | // Called at the end of a table to pop the depth count. |
2042 | bool EndTable() { |
2043 | depth_--; |
2044 | return true; |
2045 | } |
2046 | |
2047 | // clang-format off |
2048 | #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE |
2049 | // Returns the message size in bytes |
2050 | size_t GetComputedSize() const { |
2051 | uintptr_t size = upper_bound_; |
2052 | // Align the size to uoffset_t |
2053 | size = (size - 1 + sizeof(uoffset_t)) & ~(sizeof(uoffset_t) - 1); |
2054 | return (size > size_) ? 0 : size; |
2055 | } |
2056 | #endif |
2057 | // clang-format on |
2058 | |
2059 | private: |
2060 | const uint8_t *buf_; |
2061 | size_t size_; |
2062 | uoffset_t depth_; |
2063 | uoffset_t max_depth_; |
2064 | uoffset_t num_tables_; |
2065 | uoffset_t max_tables_; |
2066 | // clang-format off |
2067 | #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE |
2068 | mutable size_t upper_bound_; |
2069 | #endif |
2070 | // clang-format on |
2071 | }; |
2072 | |
2073 | // Convenient way to bundle a buffer and its length, to pass it around |
2074 | // typed by its root. |
2075 | // A BufferRef does not own its buffer. |
2076 | struct BufferRefBase {}; // for std::is_base_of |
2077 | template<typename T> struct BufferRef : BufferRefBase { |
2078 | BufferRef() : buf(nullptr), len(0), must_free(false) {} |
2079 | BufferRef(uint8_t *_buf, uoffset_t _len) |
2080 | : buf(_buf), len(_len), must_free(false) {} |
2081 | |
2082 | ~BufferRef() { |
2083 | if (must_free) free(buf); |
2084 | } |
2085 | |
2086 | const T *GetRoot() const { return flatbuffers::GetRoot<T>(buf); } |
2087 | |
2088 | bool Verify() { |
2089 | Verifier verifier(buf, len); |
2090 | return verifier.VerifyBuffer<T>(nullptr); |
2091 | } |
2092 | |
2093 | uint8_t *buf; |
2094 | uoffset_t len; |
2095 | bool must_free; |
2096 | }; |
2097 | |
2098 | // "structs" are flat structures that do not have an offset table, thus |
2099 | // always have all members present and do not support forwards/backwards |
2100 | // compatible extensions. |
2101 | |
2102 | class Struct FLATBUFFERS_FINAL_CLASS { |
2103 | public: |
2104 | template<typename T> T GetField(uoffset_t o) const { |
2105 | return ReadScalar<T>(&data_[o]); |
2106 | } |
2107 | |
2108 | template<typename T> T GetStruct(uoffset_t o) const { |
2109 | return reinterpret_cast<T>(&data_[o]); |
2110 | } |
2111 | |
2112 | const uint8_t *GetAddressOf(uoffset_t o) const { return &data_[o]; } |
2113 | uint8_t *GetAddressOf(uoffset_t o) { return &data_[o]; } |
2114 | |
2115 | private: |
2116 | uint8_t data_[1]; |
2117 | }; |
2118 | |
2119 | // "tables" use an offset table (possibly shared) that allows fields to be |
2120 | // omitted and added at will, but uses an extra indirection to read. |
2121 | class Table { |
2122 | public: |
2123 | const uint8_t *GetVTable() const { |
2124 | return data_ - ReadScalar<soffset_t>(data_); |
2125 | } |
2126 | |
2127 | // This gets the field offset for any of the functions below it, or 0 |
2128 | // if the field was not present. |
2129 | voffset_t GetOptionalFieldOffset(voffset_t field) const { |
2130 | // The vtable offset is always at the start. |
2131 | auto vtable = GetVTable(); |
2132 | // The first element is the size of the vtable (fields + type id + itself). |
2133 | auto vtsize = ReadScalar<voffset_t>(vtable); |
2134 | // If the field we're accessing is outside the vtable, we're reading older |
2135 | // data, so it's the same as if the offset was 0 (not present). |
2136 | return field < vtsize ? ReadScalar<voffset_t>(vtable + field) : 0; |
2137 | } |
2138 | |
2139 | template<typename T> T GetField(voffset_t field, T defaultval) const { |
2140 | auto field_offset = GetOptionalFieldOffset(field); |
2141 | return field_offset ? ReadScalar<T>(data_ + field_offset) : defaultval; |
2142 | } |
2143 | |
2144 | template<typename P> P GetPointer(voffset_t field) { |
2145 | auto field_offset = GetOptionalFieldOffset(field); |
2146 | auto p = data_ + field_offset; |
2147 | return field_offset ? reinterpret_cast<P>(p + ReadScalar<uoffset_t>(p)) |
2148 | : nullptr; |
2149 | } |
2150 | template<typename P> P GetPointer(voffset_t field) const { |
2151 | return const_cast<Table *>(this)->GetPointer<P>(field); |
2152 | } |
2153 | |
2154 | template<typename P> P GetStruct(voffset_t field) const { |
2155 | auto field_offset = GetOptionalFieldOffset(field); |
2156 | auto p = const_cast<uint8_t *>(data_ + field_offset); |
2157 | return field_offset ? reinterpret_cast<P>(p) : nullptr; |
2158 | } |
2159 | |
2160 | template<typename T> bool SetField(voffset_t field, T val, T def) { |
2161 | auto field_offset = GetOptionalFieldOffset(field); |
2162 | if (!field_offset) return val == def; |
2163 | WriteScalar(data_ + field_offset, val); |
2164 | return true; |
2165 | } |
2166 | |
2167 | bool SetPointer(voffset_t field, const uint8_t *val) { |
2168 | auto field_offset = GetOptionalFieldOffset(field); |
2169 | if (!field_offset) return false; |
2170 | WriteScalar(data_ + field_offset, |
2171 | static_cast<uoffset_t>(val - (data_ + field_offset))); |
2172 | return true; |
2173 | } |
2174 | |
2175 | uint8_t *GetAddressOf(voffset_t field) { |
2176 | auto field_offset = GetOptionalFieldOffset(field); |
2177 | return field_offset ? data_ + field_offset : nullptr; |
2178 | } |
2179 | const uint8_t *GetAddressOf(voffset_t field) const { |
2180 | return const_cast<Table *>(this)->GetAddressOf(field); |
2181 | } |
2182 | |
2183 | bool CheckField(voffset_t field) const { |
2184 | return GetOptionalFieldOffset(field) != 0; |
2185 | } |
2186 | |
2187 | // Verify the vtable of this table. |
2188 | // Call this once per table, followed by VerifyField once per field. |
2189 | bool VerifyTableStart(Verifier &verifier) const { |
2190 | return verifier.VerifyTableStart(data_); |
2191 | } |
2192 | |
2193 | // Verify a particular field. |
2194 | template<typename T> |
2195 | bool VerifyField(const Verifier &verifier, voffset_t field) const { |
2196 | // Calling GetOptionalFieldOffset should be safe now thanks to |
2197 | // VerifyTable(). |
2198 | auto field_offset = GetOptionalFieldOffset(field); |
2199 | // Check the actual field. |
2200 | return !field_offset || verifier.Verify<T>(data_, field_offset); |
2201 | } |
2202 | |
2203 | // VerifyField for required fields. |
2204 | template<typename T> |
2205 | bool VerifyFieldRequired(const Verifier &verifier, voffset_t field) const { |
2206 | auto field_offset = GetOptionalFieldOffset(field); |
2207 | return verifier.Check(field_offset != 0) && |
2208 | verifier.Verify<T>(data_, field_offset); |
2209 | } |
2210 | |
2211 | // Versions for offsets. |
2212 | bool VerifyOffset(const Verifier &verifier, voffset_t field) const { |
2213 | auto field_offset = GetOptionalFieldOffset(field); |
2214 | return !field_offset || verifier.VerifyOffset(data_, field_offset); |
2215 | } |
2216 | |
2217 | bool VerifyOffsetRequired(const Verifier &verifier, voffset_t field) const { |
2218 | auto field_offset = GetOptionalFieldOffset(field); |
2219 | return verifier.Check(field_offset != 0) && |
2220 | verifier.VerifyOffset(data_, field_offset); |
2221 | } |
2222 | |
2223 | private: |
2224 | // private constructor & copy constructor: you obtain instances of this |
2225 | // class by pointing to existing data only |
2226 | Table(); |
2227 | Table(const Table &other); |
2228 | |
2229 | uint8_t data_[1]; |
2230 | }; |
2231 | |
2232 | template<typename T> void FlatBufferBuilder::Required(Offset<T> table, |
2233 | voffset_t field) { |
2234 | auto table_ptr = reinterpret_cast<const Table *>(buf_.data_at(table.o)); |
2235 | bool ok = table_ptr->GetOptionalFieldOffset(field) != 0; |
2236 | // If this fails, the caller will show what field needs to be set. |
2237 | FLATBUFFERS_ASSERT(ok); |
2238 | (void)ok; |
2239 | } |
2240 | |
2241 | /// @brief This can compute the start of a FlatBuffer from a root pointer, i.e. |
2242 | /// it is the opposite transformation of GetRoot(). |
2243 | /// This may be useful if you want to pass on a root and have the recipient |
2244 | /// delete the buffer afterwards. |
2245 | inline const uint8_t *GetBufferStartFromRootPointer(const void *root) { |
2246 | auto table = reinterpret_cast<const Table *>(root); |
2247 | auto vtable = table->GetVTable(); |
2248 | // Either the vtable is before the root or after the root. |
2249 | auto start = (std::min)(vtable, reinterpret_cast<const uint8_t *>(root)); |
2250 | // Align to at least sizeof(uoffset_t). |
2251 | start = reinterpret_cast<const uint8_t *>(reinterpret_cast<uintptr_t>(start) & |
2252 | ~(sizeof(uoffset_t) - 1)); |
2253 | // Additionally, there may be a file_identifier in the buffer, and the root |
2254 | // offset. The buffer may have been aligned to any size between |
2255 | // sizeof(uoffset_t) and FLATBUFFERS_MAX_ALIGNMENT (see "force_align"). |
2256 | // Sadly, the exact alignment is only known when constructing the buffer, |
2257 | // since it depends on the presence of values with said alignment properties. |
2258 | // So instead, we simply look at the next uoffset_t values (root, |
2259 | // file_identifier, and alignment padding) to see which points to the root. |
2260 | // None of the other values can "impersonate" the root since they will either |
2261 | // be 0 or four ASCII characters. |
2262 | static_assert(FlatBufferBuilder::kFileIdentifierLength == sizeof(uoffset_t), |
2263 | "file_identifier is assumed to be the same size as uoffset_t" ); |
2264 | for (auto possible_roots = FLATBUFFERS_MAX_ALIGNMENT / sizeof(uoffset_t) + 1; |
2265 | possible_roots; possible_roots--) { |
2266 | start -= sizeof(uoffset_t); |
2267 | if (ReadScalar<uoffset_t>(start) + start == |
2268 | reinterpret_cast<const uint8_t *>(root)) |
2269 | return start; |
2270 | } |
2271 | // We didn't find the root, either the "root" passed isn't really a root, |
2272 | // or the buffer is corrupt. |
2273 | // Assert, because calling this function with bad data may cause reads |
2274 | // outside of buffer boundaries. |
2275 | FLATBUFFERS_ASSERT(false); |
2276 | return nullptr; |
2277 | } |
2278 | |
2279 | /// @brief This return the prefixed size of a FlatBuffer. |
2280 | inline uoffset_t GetPrefixedSize(const uint8_t* buf){ return ReadScalar<uoffset_t>(buf); } |
2281 | |
2282 | // Base class for native objects (FlatBuffer data de-serialized into native |
2283 | // C++ data structures). |
2284 | // Contains no functionality, purely documentative. |
2285 | struct NativeTable {}; |
2286 | |
2287 | /// @brief Function types to be used with resolving hashes into objects and |
2288 | /// back again. The resolver gets a pointer to a field inside an object API |
2289 | /// object that is of the type specified in the schema using the attribute |
2290 | /// `cpp_type` (it is thus important whatever you write to this address |
2291 | /// matches that type). The value of this field is initially null, so you |
2292 | /// may choose to implement a delayed binding lookup using this function |
2293 | /// if you wish. The resolver does the opposite lookup, for when the object |
2294 | /// is being serialized again. |
2295 | typedef uint64_t hash_value_t; |
2296 | // clang-format off |
2297 | #ifdef FLATBUFFERS_CPP98_STL |
2298 | typedef void (*resolver_function_t)(void **pointer_adr, hash_value_t hash); |
2299 | typedef hash_value_t (*rehasher_function_t)(void *pointer); |
2300 | #else |
2301 | typedef std::function<void (void **pointer_adr, hash_value_t hash)> |
2302 | resolver_function_t; |
2303 | typedef std::function<hash_value_t (void *pointer)> rehasher_function_t; |
2304 | #endif |
2305 | // clang-format on |
2306 | |
2307 | // Helper function to test if a field is present, using any of the field |
2308 | // enums in the generated code. |
2309 | // `table` must be a generated table type. Since this is a template parameter, |
2310 | // this is not typechecked to be a subclass of Table, so beware! |
2311 | // Note: this function will return false for fields equal to the default |
2312 | // value, since they're not stored in the buffer (unless force_defaults was |
2313 | // used). |
2314 | template<typename T> bool IsFieldPresent(const T *table, voffset_t field) { |
2315 | // Cast, since Table is a private baseclass of any table types. |
2316 | return reinterpret_cast<const Table *>(table)->CheckField(field); |
2317 | } |
2318 | |
2319 | // Utility function for reverse lookups on the EnumNames*() functions |
2320 | // (in the generated C++ code) |
2321 | // names must be NULL terminated. |
2322 | inline int LookupEnum(const char **names, const char *name) { |
2323 | for (const char **p = names; *p; p++) |
2324 | if (!strcmp(*p, name)) return static_cast<int>(p - names); |
2325 | return -1; |
2326 | } |
2327 | |
2328 | // These macros allow us to layout a struct with a guarantee that they'll end |
2329 | // up looking the same on different compilers and platforms. |
2330 | // It does this by disallowing the compiler to do any padding, and then |
2331 | // does padding itself by inserting extra padding fields that make every |
2332 | // element aligned to its own size. |
2333 | // Additionally, it manually sets the alignment of the struct as a whole, |
2334 | // which is typically its largest element, or a custom size set in the schema |
2335 | // by the force_align attribute. |
2336 | // These are used in the generated code only. |
2337 | |
2338 | // clang-format off |
2339 | #if defined(_MSC_VER) |
2340 | #define FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(alignment) \ |
2341 | __pragma(pack(1)); \ |
2342 | struct __declspec(align(alignment)) |
2343 | #define FLATBUFFERS_STRUCT_END(name, size) \ |
2344 | __pragma(pack()); \ |
2345 | static_assert(sizeof(name) == size, "compiler breaks packing rules") |
2346 | #elif defined(__GNUC__) || defined(__clang__) |
2347 | #define FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(alignment) \ |
2348 | _Pragma("pack(1)") \ |
2349 | struct __attribute__((aligned(alignment))) |
2350 | #define FLATBUFFERS_STRUCT_END(name, size) \ |
2351 | _Pragma("pack()") \ |
2352 | static_assert(sizeof(name) == size, "compiler breaks packing rules") |
2353 | #else |
2354 | #error Unknown compiler, please define structure alignment macros |
2355 | #endif |
2356 | // clang-format on |
2357 | |
2358 | // Minimal reflection via code generation. |
2359 | // Besides full-fat reflection (see reflection.h) and parsing/printing by |
2360 | // loading schemas (see idl.h), we can also have code generation for mimimal |
2361 | // reflection data which allows pretty-printing and other uses without needing |
2362 | // a schema or a parser. |
2363 | // Generate code with --reflect-types (types only) or --reflect-names (names |
2364 | // also) to enable. |
2365 | // See minireflect.h for utilities using this functionality. |
2366 | |
2367 | // These types are organized slightly differently as the ones in idl.h. |
2368 | enum SequenceType { ST_TABLE, ST_STRUCT, ST_UNION, ST_ENUM }; |
2369 | |
2370 | // Scalars have the same order as in idl.h |
2371 | // clang-format off |
2372 | #define FLATBUFFERS_GEN_ELEMENTARY_TYPES(ET) \ |
2373 | ET(ET_UTYPE) \ |
2374 | ET(ET_BOOL) \ |
2375 | ET(ET_CHAR) \ |
2376 | ET(ET_UCHAR) \ |
2377 | ET(ET_SHORT) \ |
2378 | ET(ET_USHORT) \ |
2379 | ET(ET_INT) \ |
2380 | ET(ET_UINT) \ |
2381 | ET(ET_LONG) \ |
2382 | ET(ET_ULONG) \ |
2383 | ET(ET_FLOAT) \ |
2384 | ET(ET_DOUBLE) \ |
2385 | ET(ET_STRING) \ |
2386 | ET(ET_SEQUENCE) // See SequenceType. |
2387 | |
2388 | enum ElementaryType { |
2389 | #define FLATBUFFERS_ET(E) E, |
2390 | FLATBUFFERS_GEN_ELEMENTARY_TYPES(FLATBUFFERS_ET) |
2391 | #undef FLATBUFFERS_ET |
2392 | }; |
2393 | |
2394 | inline const char * const *ElementaryTypeNames() { |
2395 | static const char * const names[] = { |
2396 | #define FLATBUFFERS_ET(E) #E, |
2397 | FLATBUFFERS_GEN_ELEMENTARY_TYPES(FLATBUFFERS_ET) |
2398 | #undef FLATBUFFERS_ET |
2399 | }; |
2400 | return names; |
2401 | } |
2402 | // clang-format on |
2403 | |
2404 | // Basic type info cost just 16bits per field! |
2405 | struct TypeCode { |
2406 | uint16_t base_type : 4; // ElementaryType |
2407 | uint16_t is_vector : 1; |
2408 | int16_t sequence_ref : 11; // Index into type_refs below, or -1 for none. |
2409 | }; |
2410 | |
2411 | static_assert(sizeof(TypeCode) == 2, "TypeCode" ); |
2412 | |
2413 | struct TypeTable; |
2414 | |
2415 | // Signature of the static method present in each type. |
2416 | typedef const TypeTable *(*TypeFunction)(); |
2417 | |
2418 | struct TypeTable { |
2419 | SequenceType st; |
2420 | size_t num_elems; // of type_codes, values, names (but not type_refs). |
2421 | const TypeCode *type_codes; // num_elems count |
2422 | const TypeFunction *type_refs; // less than num_elems entries (see TypeCode). |
2423 | const int32_t *values; // Only set for non-consecutive enum/union or structs. |
2424 | const char * const *names; // Only set if compiled with --reflect-names. |
2425 | }; |
2426 | |
2427 | // String which identifies the current version of FlatBuffers. |
2428 | // flatbuffer_version_string is used by Google developers to identify which |
2429 | // applications uploaded to Google Play are using this library. This allows |
2430 | // the development team at Google to determine the popularity of the library. |
2431 | // How it works: Applications that are uploaded to the Google Play Store are |
2432 | // scanned for this version string. We track which applications are using it |
2433 | // to measure popularity. You are free to remove it (of course) but we would |
2434 | // appreciate if you left it in. |
2435 | |
2436 | // Weak linkage is culled by VS & doesn't work on cygwin. |
2437 | // clang-format off |
2438 | #if !defined(_WIN32) && !defined(__CYGWIN__) |
2439 | |
2440 | extern volatile __attribute__((weak)) const char *flatbuffer_version_string; |
2441 | volatile __attribute__((weak)) const char *flatbuffer_version_string = |
2442 | "FlatBuffers " |
2443 | FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MAJOR) "." |
2444 | FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MINOR) "." |
2445 | FLATBUFFERS_STRING(FLATBUFFERS_VERSION_REVISION); |
2446 | |
2447 | #endif // !defined(_WIN32) && !defined(__CYGWIN__) |
2448 | |
2449 | #define FLATBUFFERS_DEFINE_BITMASK_OPERATORS(E, T)\ |
2450 | inline E operator | (E lhs, E rhs){\ |
2451 | return E(T(lhs) | T(rhs));\ |
2452 | }\ |
2453 | inline E operator & (E lhs, E rhs){\ |
2454 | return E(T(lhs) & T(rhs));\ |
2455 | }\ |
2456 | inline E operator ^ (E lhs, E rhs){\ |
2457 | return E(T(lhs) ^ T(rhs));\ |
2458 | }\ |
2459 | inline E operator ~ (E lhs){\ |
2460 | return E(~T(lhs));\ |
2461 | }\ |
2462 | inline E operator |= (E &lhs, E rhs){\ |
2463 | lhs = lhs | rhs;\ |
2464 | return lhs;\ |
2465 | }\ |
2466 | inline E operator &= (E &lhs, E rhs){\ |
2467 | lhs = lhs & rhs;\ |
2468 | return lhs;\ |
2469 | }\ |
2470 | inline E operator ^= (E &lhs, E rhs){\ |
2471 | lhs = lhs ^ rhs;\ |
2472 | return lhs;\ |
2473 | }\ |
2474 | inline bool operator !(E rhs) \ |
2475 | {\ |
2476 | return !bool(T(rhs)); \ |
2477 | } |
2478 | /// @endcond |
2479 | } // namespace flatbuffers |
2480 | |
2481 | #if defined(_MSC_VER) |
2482 | #pragma warning(pop) |
2483 | #endif |
2484 | // clang-format on |
2485 | |
2486 | #endif // FLATBUFFERS_H_ |
2487 | |