| 1 | // Tencent is pleased to support the open source community by making RapidJSON available. |
| 2 | // |
| 3 | // Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved. |
| 4 | // |
| 5 | // Licensed under the MIT License (the "License"); you may not use this file except |
| 6 | // in compliance with the License. You may obtain a copy of the License at |
| 7 | // |
| 8 | // http://opensource.org/licenses/MIT |
| 9 | // |
| 10 | // Unless required by applicable law or agreed to in writing, software distributed |
| 11 | // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR |
| 12 | // CONDITIONS OF ANY KIND, either express or implied. See the License for the |
| 13 | // specific language governing permissions and limitations under the License. |
| 14 | |
| 15 | #ifndef RAPIDJSON_STRTOD_ |
| 16 | #define RAPIDJSON_STRTOD_ |
| 17 | |
| 18 | #include "ieee754.h" |
| 19 | #include "biginteger.h" |
| 20 | #include "diyfp.h" |
| 21 | #include "pow10.h" |
| 22 | |
| 23 | RAPIDJSON_NAMESPACE_BEGIN |
| 24 | namespace internal { |
| 25 | |
| 26 | inline double FastPath(double significand, int exp) { |
| 27 | if (exp < -308) |
| 28 | return 0.0; |
| 29 | else if (exp >= 0) |
| 30 | return significand * internal::Pow10(exp); |
| 31 | else |
| 32 | return significand / internal::Pow10(-exp); |
| 33 | } |
| 34 | |
| 35 | inline double StrtodNormalPrecision(double d, int p) { |
| 36 | if (p < -308) { |
| 37 | // Prevent expSum < -308, making Pow10(p) = 0 |
| 38 | d = FastPath(d, -308); |
| 39 | d = FastPath(d, p + 308); |
| 40 | } |
| 41 | else |
| 42 | d = FastPath(d, p); |
| 43 | return d; |
| 44 | } |
| 45 | |
| 46 | template <typename T> |
| 47 | inline T Min3(T a, T b, T c) { |
| 48 | T m = a; |
| 49 | if (m > b) m = b; |
| 50 | if (m > c) m = c; |
| 51 | return m; |
| 52 | } |
| 53 | |
| 54 | inline int CheckWithinHalfULP(double b, const BigInteger& d, int dExp) { |
| 55 | const Double db(b); |
| 56 | const uint64_t bInt = db.IntegerSignificand(); |
| 57 | const int bExp = db.IntegerExponent(); |
| 58 | const int hExp = bExp - 1; |
| 59 | |
| 60 | int dS_Exp2 = 0, dS_Exp5 = 0, bS_Exp2 = 0, bS_Exp5 = 0, hS_Exp2 = 0, hS_Exp5 = 0; |
| 61 | |
| 62 | // Adjust for decimal exponent |
| 63 | if (dExp >= 0) { |
| 64 | dS_Exp2 += dExp; |
| 65 | dS_Exp5 += dExp; |
| 66 | } |
| 67 | else { |
| 68 | bS_Exp2 -= dExp; |
| 69 | bS_Exp5 -= dExp; |
| 70 | hS_Exp2 -= dExp; |
| 71 | hS_Exp5 -= dExp; |
| 72 | } |
| 73 | |
| 74 | // Adjust for binary exponent |
| 75 | if (bExp >= 0) |
| 76 | bS_Exp2 += bExp; |
| 77 | else { |
| 78 | dS_Exp2 -= bExp; |
| 79 | hS_Exp2 -= bExp; |
| 80 | } |
| 81 | |
| 82 | // Adjust for half ulp exponent |
| 83 | if (hExp >= 0) |
| 84 | hS_Exp2 += hExp; |
| 85 | else { |
| 86 | dS_Exp2 -= hExp; |
| 87 | bS_Exp2 -= hExp; |
| 88 | } |
| 89 | |
| 90 | // Remove common power of two factor from all three scaled values |
| 91 | int common_Exp2 = Min3(dS_Exp2, bS_Exp2, hS_Exp2); |
| 92 | dS_Exp2 -= common_Exp2; |
| 93 | bS_Exp2 -= common_Exp2; |
| 94 | hS_Exp2 -= common_Exp2; |
| 95 | |
| 96 | BigInteger dS = d; |
| 97 | dS.MultiplyPow5(static_cast<unsigned>(dS_Exp5)) <<= static_cast<unsigned>(dS_Exp2); |
| 98 | |
| 99 | BigInteger bS(bInt); |
| 100 | bS.MultiplyPow5(static_cast<unsigned>(bS_Exp5)) <<= static_cast<unsigned>(bS_Exp2); |
| 101 | |
| 102 | BigInteger hS(1); |
| 103 | hS.MultiplyPow5(static_cast<unsigned>(hS_Exp5)) <<= static_cast<unsigned>(hS_Exp2); |
| 104 | |
| 105 | BigInteger delta(0); |
| 106 | dS.Difference(bS, &delta); |
| 107 | |
| 108 | return delta.Compare(hS); |
| 109 | } |
| 110 | |
| 111 | inline bool StrtodFast(double d, int p, double* result) { |
| 112 | // Use fast path for string-to-double conversion if possible |
| 113 | // see http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/ |
| 114 | if (p > 22 && p < 22 + 16) { |
| 115 | // Fast Path Cases In Disguise |
| 116 | d *= internal::Pow10(p - 22); |
| 117 | p = 22; |
| 118 | } |
| 119 | |
| 120 | if (p >= -22 && p <= 22 && d <= 9007199254740991.0) { // 2^53 - 1 |
| 121 | *result = FastPath(d, p); |
| 122 | return true; |
| 123 | } |
| 124 | else |
| 125 | return false; |
| 126 | } |
| 127 | |
| 128 | // Compute an approximation and see if it is within 1/2 ULP |
| 129 | inline bool StrtodDiyFp(const char* decimals, size_t length, size_t decimalPosition, int exp, double* result) { |
| 130 | uint64_t significand = 0; |
| 131 | size_t i = 0; // 2^64 - 1 = 18446744073709551615, 1844674407370955161 = 0x1999999999999999 |
| 132 | for (; i < length; i++) { |
| 133 | if (significand > RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) || |
| 134 | (significand == RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) && decimals[i] > '5')) |
| 135 | break; |
| 136 | significand = significand * 10u + static_cast<unsigned>(decimals[i] - '0'); |
| 137 | } |
| 138 | |
| 139 | if (i < length && decimals[i] >= '5') // Rounding |
| 140 | significand++; |
| 141 | |
| 142 | size_t remaining = length - i; |
| 143 | const unsigned kUlpShift = 3; |
| 144 | const unsigned kUlp = 1 << kUlpShift; |
| 145 | int64_t error = (remaining == 0) ? 0 : kUlp / 2; |
| 146 | |
| 147 | DiyFp v(significand, 0); |
| 148 | v = v.Normalize(); |
| 149 | error <<= -v.e; |
| 150 | |
| 151 | const int dExp = static_cast<int>(decimalPosition) - static_cast<int>(i) + exp; |
| 152 | |
| 153 | int actualExp; |
| 154 | DiyFp cachedPower = GetCachedPower10(dExp, &actualExp); |
| 155 | if (actualExp != dExp) { |
| 156 | static const DiyFp kPow10[] = { |
| 157 | DiyFp(RAPIDJSON_UINT64_C2(0xa0000000, 00000000), -60), // 10^1 |
| 158 | DiyFp(RAPIDJSON_UINT64_C2(0xc8000000, 00000000), -57), // 10^2 |
| 159 | DiyFp(RAPIDJSON_UINT64_C2(0xfa000000, 00000000), -54), // 10^3 |
| 160 | DiyFp(RAPIDJSON_UINT64_C2(0x9c400000, 00000000), -50), // 10^4 |
| 161 | DiyFp(RAPIDJSON_UINT64_C2(0xc3500000, 00000000), -47), // 10^5 |
| 162 | DiyFp(RAPIDJSON_UINT64_C2(0xf4240000, 00000000), -44), // 10^6 |
| 163 | DiyFp(RAPIDJSON_UINT64_C2(0x98968000, 00000000), -40) // 10^7 |
| 164 | }; |
| 165 | int adjustment = dExp - actualExp - 1; |
| 166 | RAPIDJSON_ASSERT(adjustment >= 0 && adjustment < 7); |
| 167 | v = v * kPow10[adjustment]; |
| 168 | if (length + static_cast<unsigned>(adjustment)> 19u) // has more digits than decimal digits in 64-bit |
| 169 | error += kUlp / 2; |
| 170 | } |
| 171 | |
| 172 | v = v * cachedPower; |
| 173 | |
| 174 | error += kUlp + (error == 0 ? 0 : 1); |
| 175 | |
| 176 | const int oldExp = v.e; |
| 177 | v = v.Normalize(); |
| 178 | error <<= oldExp - v.e; |
| 179 | |
| 180 | const unsigned effectiveSignificandSize = Double::EffectiveSignificandSize(64 + v.e); |
| 181 | unsigned precisionSize = 64 - effectiveSignificandSize; |
| 182 | if (precisionSize + kUlpShift >= 64) { |
| 183 | unsigned scaleExp = (precisionSize + kUlpShift) - 63; |
| 184 | v.f >>= scaleExp; |
| 185 | v.e += scaleExp; |
| 186 | error = (error >> scaleExp) + 1 + static_cast<int>(kUlp); |
| 187 | precisionSize -= scaleExp; |
| 188 | } |
| 189 | |
| 190 | DiyFp rounded(v.f >> precisionSize, v.e + static_cast<int>(precisionSize)); |
| 191 | const uint64_t precisionBits = (v.f & ((uint64_t(1) << precisionSize) - 1)) * kUlp; |
| 192 | const uint64_t halfWay = (uint64_t(1) << (precisionSize - 1)) * kUlp; |
| 193 | if (precisionBits >= halfWay + static_cast<unsigned>(error)) { |
| 194 | rounded.f++; |
| 195 | if (rounded.f & (DiyFp::kDpHiddenBit << 1)) { // rounding overflows mantissa (issue #340) |
| 196 | rounded.f >>= 1; |
| 197 | rounded.e++; |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | *result = rounded.ToDouble(); |
| 202 | |
| 203 | return halfWay - static_cast<unsigned>(error) >= precisionBits || precisionBits >= halfWay + static_cast<unsigned>(error); |
| 204 | } |
| 205 | |
| 206 | inline double StrtodBigInteger(double approx, const char* decimals, size_t length, size_t decimalPosition, int exp) { |
| 207 | const BigInteger dInt(decimals, length); |
| 208 | const int dExp = static_cast<int>(decimalPosition) - static_cast<int>(length) + exp; |
| 209 | Double a(approx); |
| 210 | int cmp = CheckWithinHalfULP(a.Value(), dInt, dExp); |
| 211 | if (cmp < 0) |
| 212 | return a.Value(); // within half ULP |
| 213 | else if (cmp == 0) { |
| 214 | // Round towards even |
| 215 | if (a.Significand() & 1) |
| 216 | return a.NextPositiveDouble(); |
| 217 | else |
| 218 | return a.Value(); |
| 219 | } |
| 220 | else // adjustment |
| 221 | return a.NextPositiveDouble(); |
| 222 | } |
| 223 | |
| 224 | inline double StrtodFullPrecision(double d, int p, const char* decimals, size_t length, size_t decimalPosition, int exp) { |
| 225 | RAPIDJSON_ASSERT(d >= 0.0); |
| 226 | RAPIDJSON_ASSERT(length >= 1); |
| 227 | |
| 228 | double result; |
| 229 | if (StrtodFast(d, p, &result)) |
| 230 | return result; |
| 231 | |
| 232 | // Trim leading zeros |
| 233 | while (*decimals == '0' && length > 1) { |
| 234 | length--; |
| 235 | decimals++; |
| 236 | decimalPosition--; |
| 237 | } |
| 238 | |
| 239 | // Trim trailing zeros |
| 240 | while (decimals[length - 1] == '0' && length > 1) { |
| 241 | length--; |
| 242 | decimalPosition--; |
| 243 | exp++; |
| 244 | } |
| 245 | |
| 246 | // Trim right-most digits |
| 247 | const int kMaxDecimalDigit = 780; |
| 248 | if (static_cast<int>(length) > kMaxDecimalDigit) { |
| 249 | int delta = (static_cast<int>(length) - kMaxDecimalDigit); |
| 250 | exp += delta; |
| 251 | decimalPosition -= static_cast<unsigned>(delta); |
| 252 | length = kMaxDecimalDigit; |
| 253 | } |
| 254 | |
| 255 | // If too small, underflow to zero |
| 256 | if (int(length) + exp < -324) |
| 257 | return 0.0; |
| 258 | |
| 259 | if (StrtodDiyFp(decimals, length, decimalPosition, exp, &result)) |
| 260 | return result; |
| 261 | |
| 262 | // Use approximation from StrtodDiyFp and make adjustment with BigInteger comparison |
| 263 | return StrtodBigInteger(result, decimals, length, decimalPosition, exp); |
| 264 | } |
| 265 | |
| 266 | } // namespace internal |
| 267 | RAPIDJSON_NAMESPACE_END |
| 268 | |
| 269 | #endif // RAPIDJSON_STRTOD_ |
| 270 | |