1 | // Aseprite Document Library |
2 | // Copyright (c) 2018-2022 Igara Studio S.A. |
3 | // Copyright (c) 2001-2018 David Capello |
4 | // |
5 | // This file is released under the terms of the MIT license. |
6 | // Read LICENSE.txt for more information. |
7 | |
8 | #ifdef HAVE_CONFIG_H |
9 | #include "config.h" |
10 | #endif |
11 | |
12 | #include "doc/algo.h" |
13 | |
14 | #include "base/debug.h" |
15 | |
16 | #include <algorithm> |
17 | #include <cmath> |
18 | #include <utility> |
19 | #include <vector> |
20 | |
21 | namespace doc { |
22 | |
23 | void algo_line_perfect(int x1, int y1, int x2, int y2, void* data, AlgoPixel proc) |
24 | { |
25 | bool yaxis; |
26 | |
27 | // If the height if the line is bigger than the width, we'll iterate |
28 | // over the y-axis. |
29 | if (ABS(y2-y1) > ABS(x2-x1)) { |
30 | std::swap(x1, y1); |
31 | std::swap(x2, y2); |
32 | yaxis = true; |
33 | } |
34 | else |
35 | yaxis = false; |
36 | |
37 | const int w = ABS(x2-x1)+1; |
38 | const int h = ABS(y2-y1)+1; |
39 | const int dx = SGN(x2-x1); |
40 | const int dy = SGN(y2-y1); |
41 | |
42 | int e = 0; |
43 | int y = y1; |
44 | |
45 | // Move x2 one extra pixel to the dx direction so we can use |
46 | // operator!=() instead of operator<(). Here I prefer operator!=() |
47 | // instead of swapping x1 with x2 so the error always start from 0 |
48 | // in the origin (x1,y1). |
49 | x2 += dx; |
50 | |
51 | for (int x=x1; x!=x2; x+=dx) { |
52 | if (yaxis) |
53 | proc(y, x, data); |
54 | else |
55 | proc(x, y, data); |
56 | |
57 | // The error advances "h/w" per each "x" step. As we're using a |
58 | // integer value for "e", we use "w" as the unit. |
59 | e += h; |
60 | if (e >= w) { |
61 | y += dy; |
62 | e -= w; |
63 | } |
64 | } |
65 | } |
66 | |
67 | // Special version of the perfect line algorithm specially done for |
68 | // kLineBrushType so the whole line looks continuous without holes. |
69 | // |
70 | // TOOD in a future we should convert lines into scanlines and render |
71 | // scanlines instead of drawing the brush on each pixel, that |
72 | // would fix all cases |
73 | void algo_line_perfect_with_fix_for_line_brush(int x1, int y1, int x2, int y2, void* data, AlgoPixel proc) |
74 | { |
75 | bool yaxis; |
76 | |
77 | if (ABS(y2-y1) > ABS(x2-x1)) { |
78 | std::swap(x1, y1); |
79 | std::swap(x2, y2); |
80 | yaxis = true; |
81 | } |
82 | else |
83 | yaxis = false; |
84 | |
85 | const int w = ABS(x2-x1)+1; |
86 | const int h = ABS(y2-y1)+1; |
87 | const int dx = SGN(x2-x1); |
88 | const int dy = SGN(y2-y1); |
89 | |
90 | int e = 0; |
91 | int y = y1; |
92 | |
93 | x2 += dx; |
94 | |
95 | for (int x=x1; x!=x2; x+=dx) { |
96 | if (yaxis) |
97 | proc(y, x, data); |
98 | else |
99 | proc(x, y, data); |
100 | |
101 | e += h; |
102 | if (e >= w) { |
103 | y += dy; |
104 | e -= w; |
105 | if (x+dx != x2) { |
106 | if (yaxis) |
107 | proc(y, x, data); |
108 | else |
109 | proc(x, y, data); |
110 | } |
111 | } |
112 | } |
113 | } |
114 | |
115 | // Line code based on Alois Zingl work released under the |
116 | // MIT license http://members.chello.at/easyfilter/bresenham.html |
117 | void algo_line_continuous(int x0, int y0, int x1, int y1, void* data, AlgoPixel proc) |
118 | { |
119 | int dx = ABS(x1-x0), sx = (x0 < x1 ? 1: -1); |
120 | int dy = -ABS(y1-y0), sy = (y0 < y1 ? 1: -1); |
121 | int err = dx+dy, e2; // error value e_xy |
122 | |
123 | for (;;) { |
124 | proc(x0, y0, data); |
125 | e2 = 2*err; |
126 | if (e2 >= dy) { // e_xy+e_x > 0 |
127 | if (x0 == x1) |
128 | break; |
129 | err += dy; |
130 | x0 += sx; |
131 | } |
132 | if (e2 <= dx) { // e_xy+e_y < 0 |
133 | if (y0 == y1) |
134 | break; |
135 | err += dx; |
136 | y0 += sy; |
137 | } |
138 | } |
139 | } |
140 | |
141 | // Special version of the continuous line algorithm specially done for |
142 | // kLineBrushType so the whole line looks continuous without holes. |
143 | void algo_line_continuous_with_fix_for_line_brush(int x0, int y0, int x1, int y1, void* data, AlgoPixel proc) |
144 | { |
145 | int dx = ABS(x1-x0), sx = (x0 < x1 ? 1: -1); |
146 | int dy = -ABS(y1-y0), sy = (y0 < y1 ? 1: -1); |
147 | int err = dx+dy, e2; // error value e_xy |
148 | bool x_changed; |
149 | |
150 | for (;;) { |
151 | x_changed = false; |
152 | |
153 | proc(x0, y0, data); |
154 | e2 = 2*err; |
155 | if (e2 >= dy) { // e_xy+e_x > 0 |
156 | if (x0 == x1) |
157 | break; |
158 | err += dy; |
159 | x0 += sx; |
160 | x_changed = true; |
161 | } |
162 | if (e2 <= dx) { // e_xy+e_y < 0 |
163 | if (y0 == y1) |
164 | break; |
165 | err += dx; |
166 | if (x_changed) |
167 | proc(x0, y0, data); |
168 | y0 += sy; |
169 | } |
170 | } |
171 | } |
172 | |
173 | static int adjust_ellipse_args(int& x0, int& y0, int& x1, int& y1, |
174 | int& hPixels, int& vPixels) |
175 | { |
176 | // hPixels : straight horizontal pixels added to mid region of the ellipse. |
177 | hPixels = std::max(hPixels, 0); |
178 | // vPixels : straight vertical pixels added to mid region of the ellipse. |
179 | vPixels = std::max(vPixels, 0); |
180 | |
181 | // Conditioning swapped points |
182 | if (x0 > x1) |
183 | std::swap(x0, x1); |
184 | if (y0 > y1) |
185 | std::swap(y0, y1); |
186 | int w = x1 - x0 + 1; |
187 | int h = y1 - y0 + 1; |
188 | |
189 | // hDiameter is the horizontal diameter of a circunference |
190 | // without the addition of straight pixels. |
191 | int hDiameter = w - hPixels; |
192 | // vDiameter is the vertical diameter of a circunference |
193 | // without the addition of straight pixels. |
194 | int vDiameter = h - vPixels; |
195 | |
196 | // Manual adjustment |
197 | if (w == 8 || w == 12 || w == 22) |
198 | hPixels++; |
199 | if (h == 8 || h == 12 || h == 22) |
200 | vPixels++; |
201 | |
202 | hPixels = (hDiameter > 5 ? hPixels : 0); |
203 | vPixels = (vDiameter > 5 ? vPixels : 0); |
204 | |
205 | if ((hDiameter % 2 == 0) && (hDiameter > 5)) |
206 | hPixels--; |
207 | if ((vDiameter % 2 == 0) && (vDiameter > 5)) |
208 | vPixels--; |
209 | |
210 | x1 -= hPixels; |
211 | y1 -= vPixels; |
212 | |
213 | return h; |
214 | } |
215 | |
216 | // Ellipse code based on Alois Zingl work released under the MIT |
217 | // license http://members.chello.at/easyfilter/bresenham.html |
218 | // |
219 | // Adapted for Aseprite by David Capello |
220 | |
221 | void algo_ellipse(int x0, int y0, int x1, int y1, |
222 | int hPixels, int vPixels, |
223 | void* data, AlgoPixel proc) |
224 | { |
225 | int h = adjust_ellipse_args(x0, y0, x1, y1, hPixels, vPixels); |
226 | |
227 | long a = abs(x1-x0); |
228 | long b = abs(y1-y0); // diameter |
229 | long b1 = b&1; |
230 | double dx = 4*(1.0-a)*b*b; // error increment |
231 | double dy = 4*(b1+1)*a*a; // error increment |
232 | double err = dx + dy + b1*a*a; // error of 1.step |
233 | double e2; |
234 | |
235 | y0 += (b+1)/2; |
236 | y1 = y0-b1; // starting pixel |
237 | a = 8*a*a; |
238 | b1 = 8*b*b; |
239 | |
240 | int initialY0 = y0; |
241 | int initialY1 = y1; |
242 | int initialX0 = x0; |
243 | int initialX1 = x1 + hPixels; |
244 | do { |
245 | proc(x1 + hPixels, y0 + vPixels, data); // I. Quadrant |
246 | proc(x0, y0 + vPixels, data); // II. Quadrant |
247 | proc(x0, y1, data); // III. Quadrant |
248 | proc(x1 + hPixels, y1, data); // IV. Quadrant |
249 | |
250 | e2 = 2*err; |
251 | if (e2 <= dy) { y0++; y1--; err += dy += a; } // y step |
252 | if (e2 >= dx || 2*err > dy) { x0++; x1--; err += dx += b1; } // x step |
253 | } while (x0 <= x1); |
254 | |
255 | while (y0 + vPixels - y1 + 1 <= h) { // too early stop of flat ellipses a=1 |
256 | proc(x0 - 1, y0 + vPixels, data); // -> finish tip of ellipse |
257 | proc(x1 + 1 + hPixels, y0++ + vPixels, data); |
258 | proc(x0 - 1, y1, data); |
259 | proc(x1 + 1 + hPixels, y1--, data); |
260 | } |
261 | |
262 | // Extra horizontal straight pixels |
263 | if (hPixels > 0) { |
264 | for (int i = x0; i < x1 + hPixels + 1; i++) { |
265 | proc(i, y1 + 1, data); |
266 | proc(i, y0 + vPixels - 1, data); |
267 | } |
268 | } |
269 | // Extra vertical straight pixels |
270 | if (vPixels > 0) { |
271 | for (int i = initialY1 + 1; i < initialY0 + vPixels; i++) { |
272 | proc(initialX0, i, data); |
273 | proc(initialX1, i, data); |
274 | } |
275 | } |
276 | } |
277 | |
278 | void algo_ellipsefill(int x0, int y0, int x1, int y1, |
279 | int hPixels, int vPixels, |
280 | void* data, AlgoHLine proc) |
281 | { |
282 | int h = adjust_ellipse_args(x0, y0, x1, y1, hPixels, vPixels); |
283 | |
284 | long a = abs(x1-x0), b = abs(y1-y0), b1 = b&1; // diameter |
285 | double dx = 4*(1.0-a)*b*b, dy = 4*(b1+1)*a*a; // error increment |
286 | double err = dx+dy+b1*a*a, e2; // error of 1.step |
287 | |
288 | y0 += (b+1)/2; y1 = y0-b1; // starting pixel |
289 | a = 8*a*a; b1 = 8*b*b; |
290 | |
291 | int initialY0 = y0; |
292 | int initialY1 = y1; |
293 | int initialX0 = x0; |
294 | int initialX1 = x1 + hPixels; |
295 | |
296 | do { |
297 | proc(x0, y0 + vPixels, x1 + hPixels, data); |
298 | proc(x0, y1, x1 + hPixels, data); |
299 | e2 = 2*err; |
300 | if (e2 <= dy) { y0++; y1--; err += dy += a; } // y step |
301 | if (e2 >= dx || 2*err > dy) { x0++; x1--; err += dx += b1; } // x step |
302 | } while (x0 <= x1); |
303 | |
304 | while (y0 + vPixels - y1 + 1 < h) { // too early stop of flat ellipses a=1 |
305 | proc(x0-1, ++y0 + vPixels, x0-1, data); // -> finish tip of ellipse |
306 | proc(x1+1 + hPixels, y0 + vPixels, x1+1 + hPixels, data); |
307 | proc(x0-1, --y1, x0-1, data); |
308 | proc(x1+1 + hPixels, y1, x1+1 + hPixels, data); |
309 | } |
310 | |
311 | if (vPixels > 0) { |
312 | for (int i = initialY1 + 1; i < initialY0 + vPixels; i++) |
313 | proc(initialX0, i, initialX1, data); |
314 | } |
315 | } |
316 | |
317 | static void draw_quad_rational_bezier_seg(int x0, int y0, |
318 | int x1, int y1, |
319 | int x2, int y2, |
320 | double w, |
321 | void* data, |
322 | AlgoPixel proc) |
323 | { // plot a limited rational Bezier segment, squared weight |
324 | int sx = x2-x1; // relative values for checks |
325 | int sy = y2-y1; |
326 | int dx = x0-x2; |
327 | int dy = y0-y2; |
328 | int xx = x0-x1; |
329 | int yy = y0-y1; |
330 | double xy = xx*sy + yy*sx; |
331 | double cur = xx*sy - yy*sx; // curvature |
332 | double err; |
333 | |
334 | ASSERT(xx*sx <= 0.0 && yy*sy <= 0.0); // sign of gradient must not change |
335 | |
336 | if (cur != 0.0 && w > 0.0) { // no straight line |
337 | if (sx*sx+sy*sy > xx*xx+yy*yy) { // begin with shorter part |
338 | // swap P0 P2 |
339 | x2 = x0; |
340 | x0 -= dx; |
341 | y2 = y0; |
342 | y0 -= dy; |
343 | cur = -cur; |
344 | } |
345 | xx = 2.0*(4.0*w*sx*xx+dx*dx); // differences 2nd degree |
346 | yy = 2.0*(4.0*w*sy*yy+dy*dy); |
347 | sx = x0 < x2 ? 1 : -1; // x step direction |
348 | sy = y0 < y2 ? 1 : -1; // y step direction |
349 | xy = -2.0*sx*sy*(2.0*w*xy+dx*dy); |
350 | |
351 | if (cur*sx*sy < 0.0) { // negated curvature? |
352 | xx = -xx; yy = -yy; xy = -xy; cur = -cur; |
353 | } |
354 | dx = 4.0*w*(x1-x0)*sy*cur+xx/2.0+xy; // differences 1st degree |
355 | dy = 4.0*w*(y0-y1)*sx*cur+yy/2.0+xy; |
356 | |
357 | if (w < 0.5 && (dy > xy || dx < xy)) { // flat ellipse, algorithm fails |
358 | cur = (w+1.0)/2.0; |
359 | w = std::sqrt(w); |
360 | xy = 1.0/(w+1.0); |
361 | |
362 | sx = std::floor((x0+2.0*w*x1+x2)*xy/2.0+0.5); // subdivide curve in half |
363 | sy = std::floor((y0+2.0*w*y1+y2)*xy/2.0+0.5); |
364 | |
365 | dx = std::floor((w*x1+x0)*xy+0.5); |
366 | dy = std::floor((y1*w+y0)*xy+0.5); |
367 | draw_quad_rational_bezier_seg(x0, y0, dx, dy, sx, sy, cur, data, proc); // plot separately |
368 | |
369 | dx = std::floor((w*x1+x2)*xy+0.5); |
370 | dy = std::floor((y1*w+y2)*xy+0.5); |
371 | draw_quad_rational_bezier_seg(sx, sy, dx, dy, x2, y2, cur, data, proc); |
372 | return; |
373 | } |
374 | err = dx+dy-xy; // error 1.step |
375 | do { |
376 | // plot curve |
377 | proc(x0, y0, data); |
378 | |
379 | if (x0 == x2 && y0 == y2) |
380 | return; // last pixel -> curve finished |
381 | |
382 | x1 = 2*err > dy; |
383 | y1 = 2*(err+yy) < -dy; // save value for test of x step |
384 | |
385 | if (2*err < dx || y1) { |
386 | // y step |
387 | y0 += sy; |
388 | dy += xy; |
389 | err += dx += xx; |
390 | } |
391 | if (2*err > dx || x1) { |
392 | // x step |
393 | x0 += sx; |
394 | dx += xy; |
395 | err += dy += yy; |
396 | } |
397 | } while (dy <= xy && dx >= xy); // gradient negates -> algorithm fails |
398 | } |
399 | algo_line_continuous(x0, y0, x2, y2, data, proc); // plot remaining needle to end |
400 | } |
401 | |
402 | static void draw_rotated_ellipse_rect(int x0, int y0, int x1, int y1, double zd, void* data, AlgoPixel proc) |
403 | { |
404 | int xd = x1-x0; |
405 | int yd = y1-y0; |
406 | double w = xd*yd; |
407 | |
408 | if (zd == 0) |
409 | return algo_ellipse(x0, y0, x1, y1, 0, 0, data, proc); |
410 | |
411 | if (w != 0.0) |
412 | w = (w-zd) / (w+w); // squared weight of P1 |
413 | |
414 | w = std::clamp(w, 0.0, 1.0); |
415 | |
416 | xd = std::floor(w*xd + 0.5); |
417 | yd = std::floor(w*yd + 0.5); |
418 | |
419 | draw_quad_rational_bezier_seg(x0, y0+yd, x0, y0, x0+xd, y0, 1.0-w, data, proc); |
420 | draw_quad_rational_bezier_seg(x0, y0+yd, x0, y1, x1-xd, y1, w, data, proc); |
421 | draw_quad_rational_bezier_seg(x1, y1-yd, x1, y1, x1-xd, y1, 1.0-w, data, proc); |
422 | draw_quad_rational_bezier_seg(x1, y1-yd, x1, y0, x0+xd, y0, w, data, proc); |
423 | } |
424 | |
425 | void draw_rotated_ellipse(int cx, int cy, int a, int b, double angle, void* data, AlgoPixel proc) |
426 | { |
427 | double xd = a*a; |
428 | double yd = b*b; |
429 | double s = std::sin(angle); |
430 | double zd = (xd-yd)*s; // ellipse rotation |
431 | xd = std::sqrt(xd-zd*s); // surrounding rectangle |
432 | yd = std::sqrt(yd+zd*s); |
433 | |
434 | a = std::floor(xd+0.5); |
435 | b = std::floor(yd+0.5); |
436 | zd = zd*a*b / (xd*yd); |
437 | zd = 4*zd*std::cos(angle); |
438 | |
439 | draw_rotated_ellipse_rect(cx-a, cy-b, cx+a, cy+b, zd, data, proc); |
440 | } |
441 | |
442 | void fill_rotated_ellipse(int cx, int cy, int a, int b, double angle, void* data, AlgoHLine proc) |
443 | { |
444 | struct Rows { |
445 | int y0; |
446 | std::vector<std::pair<int, int> > row; |
447 | Rows(int y0, int nrows) |
448 | : y0(y0), row(nrows, std::make_pair(1, -1)) { } |
449 | void update(int x, int y) { |
450 | int i = std::clamp(y-y0, 0, int(row.size()-1)); |
451 | auto& r = row[i]; |
452 | if (r.first > r.second) { |
453 | r.first = r.second = x; |
454 | } |
455 | else { |
456 | r.first = std::min(r.first, x); |
457 | r.second = std::max(r.second, x); |
458 | } |
459 | } |
460 | }; |
461 | |
462 | double xd = a*a; |
463 | double yd = b*b; |
464 | double s = std::sin(angle); |
465 | double zd = (xd-yd)*s; |
466 | xd = std::sqrt(xd-zd*s); |
467 | yd = std::sqrt(yd+zd*s); |
468 | |
469 | a = std::floor(xd+0.5); |
470 | b = std::floor(yd+0.5); |
471 | zd = zd*a*b / (xd*yd); |
472 | zd = 4*zd*std::cos(angle); |
473 | |
474 | Rows rows(cy-b, 2*b+1); |
475 | |
476 | draw_rotated_ellipse_rect( |
477 | cx-a, cy-b, cx+a, cy+b, zd, |
478 | &rows, |
479 | [](int x, int y, void* data){ |
480 | Rows* rows = (Rows*)data; |
481 | rows->update(x, y); |
482 | }); |
483 | |
484 | int y = rows.y0; |
485 | for (const auto& r : rows.row) { |
486 | if (r.first <= r.second) |
487 | proc(r.first, y, r.second, data); |
488 | ++y; |
489 | } |
490 | } |
491 | |
492 | // Algorightm from Allegro (allegro/src/spline.c) |
493 | // Adapted for Aseprite by David Capello. |
494 | void algo_spline(double x0, double y0, double x1, double y1, |
495 | double x2, double y2, double x3, double y3, |
496 | void *data, AlgoLine proc) |
497 | { |
498 | int npts; |
499 | int out_x1, out_x2; |
500 | int out_y1, out_y2; |
501 | |
502 | /* Derivatives of x(t) and y(t). */ |
503 | double x, dx, ddx, dddx; |
504 | double y, dy, ddy, dddy; |
505 | int i; |
506 | |
507 | /* Temp variables used in the setup. */ |
508 | double dt, dt2, dt3; |
509 | double xdt2_term, xdt3_term; |
510 | double ydt2_term, ydt3_term; |
511 | |
512 | #define MAX_POINTS 64 |
513 | #undef DIST |
514 | #define DIST(x, y) (sqrt((x) * (x) + (y) * (y))) |
515 | npts = (int)(sqrt(DIST(x1-x0, y1-y0) + |
516 | DIST(x2-x1, y2-y1) + |
517 | DIST(x3-x2, y3-y2)) * 1.2); |
518 | if (npts > MAX_POINTS) |
519 | npts = MAX_POINTS; |
520 | else if (npts < 4) |
521 | npts = 4; |
522 | |
523 | dt = 1.0 / (npts-1); |
524 | dt2 = (dt * dt); |
525 | dt3 = (dt2 * dt); |
526 | |
527 | xdt2_term = 3 * (x2 - 2*x1 + x0); |
528 | ydt2_term = 3 * (y2 - 2*y1 + y0); |
529 | xdt3_term = x3 + 3 * (-x2 + x1) - x0; |
530 | ydt3_term = y3 + 3 * (-y2 + y1) - y0; |
531 | |
532 | xdt2_term = dt2 * xdt2_term; |
533 | ydt2_term = dt2 * ydt2_term; |
534 | xdt3_term = dt3 * xdt3_term; |
535 | ydt3_term = dt3 * ydt3_term; |
536 | |
537 | dddx = 6*xdt3_term; |
538 | dddy = 6*ydt3_term; |
539 | ddx = -6*xdt3_term + 2*xdt2_term; |
540 | ddy = -6*ydt3_term + 2*ydt2_term; |
541 | dx = xdt3_term - xdt2_term + 3 * dt * (x1 - x0); |
542 | dy = ydt3_term - ydt2_term + dt * 3 * (y1 - y0); |
543 | x = x0; |
544 | y = y0; |
545 | |
546 | out_x1 = (int)x0; |
547 | out_y1 = (int)y0; |
548 | |
549 | x += .5; |
550 | y += .5; |
551 | for (i=1; i<npts; i++) { |
552 | ddx += dddx; |
553 | ddy += dddy; |
554 | dx += ddx; |
555 | dy += ddy; |
556 | x += dx; |
557 | y += dy; |
558 | |
559 | out_x2 = (int)x; |
560 | out_y2 = (int)y; |
561 | |
562 | proc(out_x1, out_y1, out_x2, out_y2, data); |
563 | |
564 | out_x1 = out_x2; |
565 | out_y1 = out_y2; |
566 | } |
567 | } |
568 | |
569 | double algo_spline_get_y(double x0, double y0, double x1, double y1, |
570 | double x2, double y2, double x3, double y3, |
571 | double in_x) |
572 | { |
573 | int npts; |
574 | double out_x, old_x; |
575 | double out_y, old_y; |
576 | |
577 | /* Derivatives of x(t) and y(t). */ |
578 | double x, dx, ddx, dddx; |
579 | double y, dy, ddy, dddy; |
580 | int i; |
581 | |
582 | /* Temp variables used in the setup. */ |
583 | double dt, dt2, dt3; |
584 | double xdt2_term, xdt3_term; |
585 | double ydt2_term, ydt3_term; |
586 | |
587 | #define MAX_POINTS 64 |
588 | #undef DIST |
589 | #define DIST(x, y) (sqrt ((x) * (x) + (y) * (y))) |
590 | npts = (int) (sqrt (DIST(x1-x0, y1-y0) + |
591 | DIST(x2-x1, y2-y1) + |
592 | DIST(x3-x2, y3-y2)) * 1.2); |
593 | if (npts > MAX_POINTS) |
594 | npts = MAX_POINTS; |
595 | else if (npts < 4) |
596 | npts = 4; |
597 | |
598 | dt = 1.0 / (npts-1); |
599 | dt2 = (dt * dt); |
600 | dt3 = (dt2 * dt); |
601 | |
602 | xdt2_term = 3 * (x2 - 2*x1 + x0); |
603 | ydt2_term = 3 * (y2 - 2*y1 + y0); |
604 | xdt3_term = x3 + 3 * (-x2 + x1) - x0; |
605 | ydt3_term = y3 + 3 * (-y2 + y1) - y0; |
606 | |
607 | xdt2_term = dt2 * xdt2_term; |
608 | ydt2_term = dt2 * ydt2_term; |
609 | xdt3_term = dt3 * xdt3_term; |
610 | ydt3_term = dt3 * ydt3_term; |
611 | |
612 | dddx = 6*xdt3_term; |
613 | dddy = 6*ydt3_term; |
614 | ddx = -6*xdt3_term + 2*xdt2_term; |
615 | ddy = -6*ydt3_term + 2*ydt2_term; |
616 | dx = xdt3_term - xdt2_term + 3 * dt * (x1 - x0); |
617 | dy = ydt3_term - ydt2_term + dt * 3 * (y1 - y0); |
618 | x = x0; |
619 | y = y0; |
620 | |
621 | old_x = x0; |
622 | out_y = old_y = y0; |
623 | |
624 | x += .5; |
625 | y += .5; |
626 | for (i=1; i<npts; i++) { |
627 | ddx += dddx; |
628 | ddy += dddy; |
629 | dx += ddx; |
630 | dy += ddy; |
631 | x += dx; |
632 | y += dy; |
633 | |
634 | out_x = x; |
635 | out_y = y; |
636 | if (out_x > in_x) { |
637 | out_y = old_y + (out_y-old_y) * (in_x-old_x) / (out_x-old_x); |
638 | break; |
639 | } |
640 | old_x = out_x; |
641 | old_y = out_y; |
642 | } |
643 | |
644 | return out_y; |
645 | } |
646 | |
647 | double algo_spline_get_tan(double x0, double y0, double x1, double y1, |
648 | double x2, double y2, double x3, double y3, |
649 | double in_x) |
650 | { |
651 | double out_x, old_x, old_dx, old_dy; |
652 | int npts; |
653 | |
654 | /* Derivatives of x(t) and y(t). */ |
655 | double x, dx, ddx, dddx; |
656 | double y, dy, ddy, dddy; |
657 | int i; |
658 | |
659 | /* Temp variables used in the setup. */ |
660 | double dt, dt2, dt3; |
661 | double xdt2_term, xdt3_term; |
662 | double ydt2_term, ydt3_term; |
663 | |
664 | #define MAX_POINTS 64 |
665 | #undef DIST |
666 | #define DIST(x, y) (sqrt ((x) * (x) + (y) * (y))) |
667 | npts = (int) (sqrt (DIST(x1-x0, y1-y0) + |
668 | DIST(x2-x1, y2-y1) + |
669 | DIST(x3-x2, y3-y2)) * 1.2); |
670 | if (npts > MAX_POINTS) |
671 | npts = MAX_POINTS; |
672 | else if (npts < 4) |
673 | npts = 4; |
674 | |
675 | dt = 1.0 / (npts-1); |
676 | dt2 = (dt * dt); |
677 | dt3 = (dt2 * dt); |
678 | |
679 | xdt2_term = 3 * (x2 - 2*x1 + x0); |
680 | ydt2_term = 3 * (y2 - 2*y1 + y0); |
681 | xdt3_term = x3 + 3 * (-x2 + x1) - x0; |
682 | ydt3_term = y3 + 3 * (-y2 + y1) - y0; |
683 | |
684 | xdt2_term = dt2 * xdt2_term; |
685 | ydt2_term = dt2 * ydt2_term; |
686 | xdt3_term = dt3 * xdt3_term; |
687 | ydt3_term = dt3 * ydt3_term; |
688 | |
689 | dddx = 6*xdt3_term; |
690 | dddy = 6*ydt3_term; |
691 | ddx = -6*xdt3_term + 2*xdt2_term; |
692 | ddy = -6*ydt3_term + 2*ydt2_term; |
693 | dx = xdt3_term - xdt2_term + 3 * dt * (x1 - x0); |
694 | dy = ydt3_term - ydt2_term + dt * 3 * (y1 - y0); |
695 | x = x0; |
696 | y = y0; |
697 | |
698 | old_x = x0; |
699 | old_dx = dx; |
700 | old_dy = dy; |
701 | |
702 | x += .5; |
703 | y += .5; |
704 | for (i=1; i<npts; i++) { |
705 | ddx += dddx; |
706 | ddy += dddy; |
707 | dx += ddx; |
708 | dy += ddy; |
709 | x += dx; |
710 | y += dy; |
711 | |
712 | out_x = x; |
713 | if (out_x > in_x) { |
714 | dx = old_dx + (dx-old_dx) * (in_x-old_x) / (out_x-old_x); |
715 | dy = old_dy + (dy-old_dy) * (in_x-old_x) / (out_x-old_x); |
716 | break; |
717 | } |
718 | old_x = out_x; |
719 | old_dx = dx; |
720 | old_dy = dy; |
721 | } |
722 | |
723 | return dy / dx; |
724 | } |
725 | |
726 | } // namespace doc |
727 | |