| 1 | // Most code come from original Allegro rotation code: |
| 2 | // By Shawn Hargreaves. |
| 3 | // Flipping routines by Andrew Geers. |
| 4 | // Optimized by Sven Sandberg. |
| 5 | // To C++ templates by David Capello |
| 6 | // |
| 7 | // This file is released under the terms of the MIT license. |
| 8 | // Read LICENSE.txt for more information. |
| 9 | |
| 10 | #ifdef HAVE_CONFIG_H |
| 11 | #include "config.h" |
| 12 | #endif |
| 13 | |
| 14 | #include "base/pi.h" |
| 15 | #include "doc/blend_funcs.h" |
| 16 | #include "doc/image_impl.h" |
| 17 | #include "doc/mask.h" |
| 18 | #include "doc/primitives.h" |
| 19 | #include "doc/primitives_fast.h" |
| 20 | #include "fixmath/fixmath.h" |
| 21 | |
| 22 | #include <cmath> |
| 23 | |
| 24 | namespace doc { |
| 25 | namespace algorithm { |
| 26 | |
| 27 | using namespace fixmath; |
| 28 | |
| 29 | static void ase_parallelogram_map_standard( |
| 30 | Image* bmp, const Image* sprite, const Image* mask, |
| 31 | fixed xs[4], fixed ys[4]); |
| 32 | |
| 33 | static void ase_rotate_scale_flip_coordinates( |
| 34 | fixed w, fixed h, |
| 35 | fixed x, fixed y, |
| 36 | fixed cx, fixed cy, |
| 37 | fixed angle, |
| 38 | fixed scale_x, fixed scale_y, |
| 39 | int h_flip, int v_flip, |
| 40 | fixed xs[4], fixed ys[4]); |
| 41 | |
| 42 | template<typename ImageTraits, typename BlendFunc> |
| 43 | static void image_scale_tpl( |
| 44 | Image* dst, const Image* src, |
| 45 | int dst_x, int dst_y, int dst_w, int dst_h, |
| 46 | int src_x, int src_y, int src_w, int src_h, BlendFunc blend) |
| 47 | { |
| 48 | LockImageBits<ImageTraits> dst_bits(dst, gfx::Rect(dst_x, dst_y, dst_w, dst_h)); |
| 49 | typename LockImageBits<ImageTraits>::iterator dst_it = dst_bits.begin(); |
| 50 | fixed x, first_x = itofix(src_x); |
| 51 | fixed y = itofix(src_y); |
| 52 | fixed dx = fixdiv(itofix(src_w-1), itofix(dst_w-1)); |
| 53 | fixed dy = fixdiv(itofix(src_h-1), itofix(dst_h-1)); |
| 54 | int old_x, new_x; |
| 55 | |
| 56 | for (int v=0; v<dst_h; ++v) { |
| 57 | old_x = fixtoi(x = first_x); |
| 58 | |
| 59 | const LockImageBits<ImageTraits> src_bits(src, gfx::Rect(src_x, fixtoi(y), src_w, 1)); |
| 60 | auto src_it = src_bits.begin(); |
| 61 | |
| 62 | for (int u=0; u<dst_w; ++u) { |
| 63 | ASSERT(dst_it != dst_bits.end()); |
| 64 | |
| 65 | *dst_it = blend(*dst_it, *src_it); |
| 66 | ++dst_it; |
| 67 | |
| 68 | x = fixadd(x, dx); |
| 69 | new_x = fixtoi(x); |
| 70 | if (old_x != new_x) { |
| 71 | // We don't want to move the "src_it" iterator outside the src |
| 72 | // image bounds. |
| 73 | if (new_x < src_w) { |
| 74 | src_it += (new_x - old_x); |
| 75 | old_x = new_x; |
| 76 | } |
| 77 | else |
| 78 | break; |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | y = fixadd(y, dy); |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | static color_t rgba_blender(color_t back, color_t front) { |
| 87 | return rgba_blender_normal(back, front); |
| 88 | } |
| 89 | |
| 90 | static color_t grayscale_blender(color_t back, color_t front) { |
| 91 | return graya_blender_normal(back, front); |
| 92 | } |
| 93 | |
| 94 | class if_blender { |
| 95 | public: |
| 96 | if_blender(color_t mask) : m_mask(mask) { |
| 97 | } |
| 98 | color_t operator()(color_t back, color_t front) { |
| 99 | if (front != m_mask) |
| 100 | return front; |
| 101 | else |
| 102 | return back; |
| 103 | } |
| 104 | private: |
| 105 | color_t m_mask; |
| 106 | }; |
| 107 | |
| 108 | void scale_image(Image* dst, const Image* src, |
| 109 | int dst_x, int dst_y, int dst_w, int dst_h, |
| 110 | int src_x, int src_y, int src_w, int src_h) |
| 111 | { |
| 112 | gfx::Clip clip(dst_x, dst_y, src_x, src_y, dst_w, dst_h); |
| 113 | if (src_w == dst_w && src_h == dst_h) { |
| 114 | dst->copy(src, clip); |
| 115 | return; |
| 116 | } |
| 117 | |
| 118 | if (!clip.clip(dst->width(), dst->height(), src->width(), src->height())) |
| 119 | return; |
| 120 | |
| 121 | switch (dst->pixelFormat()) { |
| 122 | |
| 123 | case IMAGE_RGB: |
| 124 | image_scale_tpl<RgbTraits>( |
| 125 | dst, src, |
| 126 | dst_x, dst_y, dst_w, dst_h, |
| 127 | src_x, src_y, src_w, src_h, rgba_blender); |
| 128 | break; |
| 129 | |
| 130 | case IMAGE_GRAYSCALE: |
| 131 | image_scale_tpl<GrayscaleTraits>( |
| 132 | dst, src, |
| 133 | dst_x, dst_y, dst_w, dst_h, |
| 134 | src_x, src_y, src_w, src_h, grayscale_blender); |
| 135 | break; |
| 136 | |
| 137 | case IMAGE_INDEXED: |
| 138 | image_scale_tpl<IndexedTraits>( |
| 139 | dst, src, |
| 140 | dst_x, dst_y, dst_w, dst_h, |
| 141 | src_x, src_y, src_w, src_h, if_blender(src->maskColor())); |
| 142 | break; |
| 143 | |
| 144 | case IMAGE_BITMAP: |
| 145 | image_scale_tpl<BitmapTraits>( |
| 146 | dst, src, |
| 147 | dst_x, dst_y, dst_w, dst_h, |
| 148 | src_x, src_y, src_w, src_h, if_blender(0)); |
| 149 | break; |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | void rotate_image(Image* dst, const Image* src, int x, int y, int w, int h, |
| 154 | int cx, int cy, double angle) |
| 155 | { |
| 156 | fixed xs[4], ys[4]; |
| 157 | |
| 158 | ase_rotate_scale_flip_coordinates(itofix(src->width()), itofix (src->height()), |
| 159 | itofix(x), itofix(y), |
| 160 | itofix(cx), itofix(cy), |
| 161 | ftofix(256 * angle / PI), |
| 162 | fixdiv(itofix(w), itofix(src->width())), |
| 163 | fixdiv(itofix(h), itofix(src->height())), |
| 164 | false, false, xs, ys); |
| 165 | |
| 166 | ase_parallelogram_map_standard(dst, src, nullptr, xs, ys); |
| 167 | } |
| 168 | |
| 169 | /* 1-----2 |
| 170 | | | |
| 171 | 4-----3 |
| 172 | */ |
| 173 | void parallelogram(Image* bmp, const Image* sprite, const Image* mask, |
| 174 | int x1, int y1, int x2, int y2, |
| 175 | int x3, int y3, int x4, int y4) |
| 176 | { |
| 177 | fixed xs[4], ys[4]; |
| 178 | |
| 179 | xs[0] = itofix(x1); |
| 180 | ys[0] = itofix(y1); |
| 181 | xs[1] = itofix(x2); |
| 182 | ys[1] = itofix(y2); |
| 183 | xs[2] = itofix(x3); |
| 184 | ys[2] = itofix(y3); |
| 185 | xs[3] = itofix(x4); |
| 186 | ys[3] = itofix(y4); |
| 187 | |
| 188 | ase_parallelogram_map_standard(bmp, sprite, mask, xs, ys); |
| 189 | } |
| 190 | |
| 191 | // Scanline drawers. |
| 192 | |
| 193 | template<class Traits, class Delegate> |
| 194 | static void draw_scanline( |
| 195 | Image* bmp, |
| 196 | const Image* spr, |
| 197 | const Image* mask, |
| 198 | fixed l_bmp_x, int bmp_y_i, |
| 199 | fixed r_bmp_x, |
| 200 | fixed l_spr_x, fixed l_spr_y, |
| 201 | fixed spr_dx, fixed spr_dy, |
| 202 | Delegate& delegate) |
| 203 | { |
| 204 | r_bmp_x >>= 16; |
| 205 | l_bmp_x >>= 16; |
| 206 | |
| 207 | delegate.lockBits(bmp, gfx::Rect(l_bmp_x, bmp_y_i, r_bmp_x - l_bmp_x + 1, 1)); |
| 208 | |
| 209 | gfx::Rect maskBounds = (mask ? mask->bounds(): spr->bounds()); |
| 210 | |
| 211 | for (int x=(int)l_bmp_x; x<=(int)r_bmp_x; ++x) { |
| 212 | int u = l_spr_x>>16; |
| 213 | int v = l_spr_y>>16; |
| 214 | |
| 215 | if (!mask || |
| 216 | (maskBounds.contains(u, v) && get_pixel_fast<BitmapTraits>(mask, u, v))) |
| 217 | delegate.putPixel(spr, u, v); |
| 218 | delegate.nextPixel(); |
| 219 | |
| 220 | l_spr_x += spr_dx; |
| 221 | l_spr_y += spr_dy; |
| 222 | } |
| 223 | |
| 224 | delegate.unlockBits(); |
| 225 | } |
| 226 | |
| 227 | template<class Traits> |
| 228 | class GenericDelegate { |
| 229 | public: |
| 230 | void lockBits(Image* bmp, const gfx::Rect& bounds) { |
| 231 | m_bits = bmp->lockBits<Traits>(Image::ReadWriteLock, bounds); |
| 232 | m_it = m_bits.begin(); |
| 233 | m_end = m_bits.end(); |
| 234 | } |
| 235 | |
| 236 | void unlockBits() { |
| 237 | m_bits.unlock(); |
| 238 | } |
| 239 | |
| 240 | void nextPixel() { |
| 241 | ASSERT(m_it != m_end); |
| 242 | ++m_it; |
| 243 | } |
| 244 | |
| 245 | private: |
| 246 | ImageBits<Traits> m_bits; |
| 247 | |
| 248 | protected: |
| 249 | typename LockImageBits<Traits>::iterator m_it, m_end; |
| 250 | }; |
| 251 | |
| 252 | class RgbDelegate : public GenericDelegate<RgbTraits> { |
| 253 | public: |
| 254 | RgbDelegate(color_t mask_color) { |
| 255 | m_mask_color = mask_color; |
| 256 | } |
| 257 | |
| 258 | void putPixel(const Image* spr, int spr_x, int spr_y) { |
| 259 | ASSERT(m_it != m_end); |
| 260 | |
| 261 | int c = get_pixel_fast<RgbTraits>(spr, spr_x, spr_y); |
| 262 | if ((rgba_geta(m_mask_color) == 0) || ((c & rgba_rgb_mask) != (m_mask_color & rgba_rgb_mask))) |
| 263 | *m_it = rgba_blender_normal(*m_it, c); |
| 264 | } |
| 265 | |
| 266 | private: |
| 267 | color_t m_mask_color; |
| 268 | }; |
| 269 | |
| 270 | class GrayscaleDelegate : public GenericDelegate<GrayscaleTraits> { |
| 271 | public: |
| 272 | GrayscaleDelegate(color_t mask_color) { |
| 273 | m_mask_color = mask_color; |
| 274 | } |
| 275 | |
| 276 | void putPixel(const Image* spr, int spr_x, int spr_y) { |
| 277 | ASSERT(m_it != m_end); |
| 278 | |
| 279 | int c = get_pixel_fast<GrayscaleTraits>(spr, spr_x, spr_y); |
| 280 | if ((graya_geta(m_mask_color) == 0) || ((c & graya_v_mask) != (m_mask_color & graya_v_mask))) |
| 281 | *m_it = graya_blender_normal(*m_it, c, 255); |
| 282 | } |
| 283 | |
| 284 | private: |
| 285 | color_t m_mask_color; |
| 286 | }; |
| 287 | |
| 288 | class IndexedDelegate : public GenericDelegate<IndexedTraits> { |
| 289 | public: |
| 290 | IndexedDelegate(color_t mask_color) : |
| 291 | m_mask_color(mask_color) { |
| 292 | } |
| 293 | |
| 294 | void putPixel(const Image* spr, int spr_x, int spr_y) { |
| 295 | ASSERT(m_it != m_end); |
| 296 | |
| 297 | color_t c = get_pixel_fast<IndexedTraits>(spr, spr_x, spr_y); |
| 298 | if (c != m_mask_color) |
| 299 | *m_it = c; |
| 300 | } |
| 301 | |
| 302 | private: |
| 303 | color_t m_mask_color; |
| 304 | }; |
| 305 | |
| 306 | class BitmapDelegate : public GenericDelegate<BitmapTraits> { |
| 307 | public: |
| 308 | void putPixel(const Image* spr, int spr_x, int spr_y) { |
| 309 | ASSERT(m_it != m_end); |
| 310 | |
| 311 | int c = get_pixel_fast<BitmapTraits>(spr, spr_x, spr_y); |
| 312 | if (c != 0) // TODO |
| 313 | *m_it = c; |
| 314 | } |
| 315 | }; |
| 316 | |
| 317 | /* _parallelogram_map: |
| 318 | * Worker routine for drawing rotated and/or scaled and/or flipped sprites: |
| 319 | * It actually maps the sprite to any parallelogram-shaped area of the |
| 320 | * bitmap. The top left corner is mapped to (xs[0], ys[0]), the top right to |
| 321 | * (xs[1], ys[1]), the bottom right to x (xs[2], ys[2]), and the bottom left |
| 322 | * to (xs[3], ys[3]). The corners are assumed to form a perfect |
| 323 | * parallelogram, i.e. xs[0]+xs[2] = xs[1]+xs[3]. The corners are given in |
| 324 | * fixed point format, so xs[] and ys[] are coordinates of the outer corners |
| 325 | * of corner pixels in clockwise order beginning with top left. |
| 326 | * All coordinates begin with 0 in top left corner of pixel (0, 0). So a |
| 327 | * rotation by 0 degrees of a sprite to the top left of a bitmap can be |
| 328 | * specified with coordinates (0, 0) for the top left pixel in source |
| 329 | * bitmap. With the default scanline drawer, a pixel in the destination |
| 330 | * bitmap is drawn if and only if its center is covered by any pixel in the |
| 331 | * sprite. The color of this covering sprite pixel is used to draw. |
| 332 | * If sub_pixel_accuracy=false, then the scanline drawer will be called with |
| 333 | * *_bmp_x being a fixed point representation of the integers representing |
| 334 | * the x coordinate of the first and last point in bmp whose centre is |
| 335 | * covered by the sprite. If sub_pixel_accuracy=true, then the scanline |
| 336 | * drawer will be called with the exact fixed point position of the first |
| 337 | * and last point in which the horizontal line passing through the centre is |
| 338 | * at least partly covered by the sprite. This is useful for doing |
| 339 | * anti-aliased blending. |
| 340 | */ |
| 341 | template<class Traits, class Delegate> |
| 342 | static void ase_parallelogram_map( |
| 343 | Image* bmp, const Image* spr, const Image* mask, |
| 344 | fixed xs[4], fixed ys[4], |
| 345 | int sub_pixel_accuracy, Delegate delegate) |
| 346 | { |
| 347 | /* Index in xs[] and ys[] to topmost point. */ |
| 348 | int top_index; |
| 349 | /* Rightmost point has index (top_index+right_index) int xs[] and ys[]. */ |
| 350 | int right_index; |
| 351 | /* Loop variables. */ |
| 352 | int index, i; |
| 353 | /* Coordinates in bmp ordered as top-right-bottom-left. */ |
| 354 | fixed corner_bmp_x[4], corner_bmp_y[4]; |
| 355 | /* Coordinates in spr ordered as top-right-bottom-left. */ |
| 356 | fixed corner_spr_x[4], corner_spr_y[4]; |
| 357 | /* y coordinate of bottom point, left point and right point. */ |
| 358 | int clip_bottom_i, l_bmp_y_bottom_i, r_bmp_y_bottom_i; |
| 359 | /* Left and right clipping. */ |
| 360 | fixed clip_left, clip_right; |
| 361 | /* Temporary variable. */ |
| 362 | fixed ; |
| 363 | |
| 364 | /* |
| 365 | * Variables used in the loop |
| 366 | */ |
| 367 | /* Coordinates of sprite and bmp points in beginning of scanline. */ |
| 368 | fixed l_spr_x, l_spr_y, l_bmp_x, l_bmp_dx; |
| 369 | /* Increment of left sprite point as we move a scanline down. */ |
| 370 | fixed l_spr_dx, l_spr_dy; |
| 371 | /* Coordinates of sprite and bmp points in end of scanline. */ |
| 372 | fixed r_bmp_x, r_bmp_dx; |
| 373 | #ifdef KEEP_TRACK_OF_RIGHT_SPRITE_SCANLINE |
| 374 | fixed r_spr_x, r_spr_y; |
| 375 | /* Increment of right sprite point as we move a scanline down. */ |
| 376 | fixed r_spr_dx, r_spr_dy; |
| 377 | #endif |
| 378 | /* Increment of sprite point as we move right inside a scanline. */ |
| 379 | fixed spr_dx, spr_dy; |
| 380 | /* Positions of beginning of scanline after rounding to integer coordinate |
| 381 | in bmp. */ |
| 382 | fixed l_spr_x_rounded, l_spr_y_rounded, l_bmp_x_rounded; |
| 383 | fixed r_bmp_x_rounded; |
| 384 | /* Current scanline. */ |
| 385 | int bmp_y_i; |
| 386 | /* Right edge of scanline. */ |
| 387 | int right_edge_test; |
| 388 | |
| 389 | /* Get index of topmost point. */ |
| 390 | top_index = 0; |
| 391 | if (ys[1] < ys[0]) |
| 392 | top_index = 1; |
| 393 | if (ys[2] < ys[top_index]) |
| 394 | top_index = 2; |
| 395 | if (ys[3] < ys[top_index]) |
| 396 | top_index = 3; |
| 397 | |
| 398 | /* Get direction of points: clockwise or anti-clockwise. */ |
| 399 | if (fixmul(xs[(top_index+1) & 3] - xs[top_index], |
| 400 | ys[(top_index-1) & 3] - ys[top_index]) > |
| 401 | fixmul(xs[(top_index-1) & 3] - xs[top_index], |
| 402 | ys[(top_index+1) & 3] - ys[top_index])) |
| 403 | right_index = 1; |
| 404 | else |
| 405 | right_index = -1; |
| 406 | |
| 407 | /* |
| 408 | * Get coordinates of the corners. |
| 409 | */ |
| 410 | |
| 411 | /* corner_*[0] is top, [1] is right, [2] is bottom, [3] is left. */ |
| 412 | index = top_index; |
| 413 | for (i = 0; i < 4; i++) { |
| 414 | corner_bmp_x[i] = xs[index]; |
| 415 | corner_bmp_y[i] = ys[index]; |
| 416 | if (index < 2) |
| 417 | corner_spr_y[i] = 0; |
| 418 | else |
| 419 | /* Need `- 1' since otherwise it would be outside sprite. */ |
| 420 | corner_spr_y[i] = (spr->height() << 16) - 1; |
| 421 | if ((index == 0) || (index == 3)) |
| 422 | corner_spr_x[i] = 0; |
| 423 | else |
| 424 | corner_spr_x[i] = (spr->width() << 16) - 1; |
| 425 | index = (index + right_index) & 3; |
| 426 | } |
| 427 | |
| 428 | /* |
| 429 | * Get scanline starts, ends and deltas, and clipping coordinates. |
| 430 | */ |
| 431 | #define top_bmp_y corner_bmp_y[0] |
| 432 | #define right_bmp_y corner_bmp_y[1] |
| 433 | #define bottom_bmp_y corner_bmp_y[2] |
| 434 | #define left_bmp_y corner_bmp_y[3] |
| 435 | #define top_bmp_x corner_bmp_x[0] |
| 436 | #define right_bmp_x corner_bmp_x[1] |
| 437 | #define bottom_bmp_x corner_bmp_x[2] |
| 438 | #define left_bmp_x corner_bmp_x[3] |
| 439 | #define top_spr_y corner_spr_y[0] |
| 440 | #define right_spr_y corner_spr_y[1] |
| 441 | #define bottom_spr_y corner_spr_y[2] |
| 442 | #define left_spr_y corner_spr_y[3] |
| 443 | #define top_spr_x corner_spr_x[0] |
| 444 | #define right_spr_x corner_spr_x[1] |
| 445 | #define bottom_spr_x corner_spr_x[2] |
| 446 | #define left_spr_x corner_spr_x[3] |
| 447 | |
| 448 | /* Calculate left and right clipping. */ |
| 449 | clip_left = 0; |
| 450 | clip_right = (bmp->width() << 16) - 1; |
| 451 | |
| 452 | /* Quit if we're totally outside. */ |
| 453 | if ((left_bmp_x > clip_right) && |
| 454 | (top_bmp_x > clip_right) && |
| 455 | (bottom_bmp_x > clip_right)) |
| 456 | return; |
| 457 | if ((right_bmp_x < clip_left) && |
| 458 | (top_bmp_x < clip_left) && |
| 459 | (bottom_bmp_x < clip_left)) |
| 460 | return; |
| 461 | |
| 462 | /* Bottom clipping. */ |
| 463 | if (sub_pixel_accuracy) |
| 464 | clip_bottom_i = (bottom_bmp_y + 0xffff) >> 16; |
| 465 | else |
| 466 | clip_bottom_i = (bottom_bmp_y + 0x8000) >> 16; |
| 467 | |
| 468 | if (clip_bottom_i > bmp->height()) |
| 469 | clip_bottom_i = bmp->height(); |
| 470 | |
| 471 | /* Calculate y coordinate of first scanline. */ |
| 472 | if (sub_pixel_accuracy) |
| 473 | bmp_y_i = top_bmp_y >> 16; |
| 474 | else |
| 475 | bmp_y_i = (top_bmp_y + 0x8000) >> 16; |
| 476 | |
| 477 | if (bmp_y_i < 0) |
| 478 | bmp_y_i = 0; |
| 479 | |
| 480 | /* Sprite is above or below bottom clipping area. */ |
| 481 | if (bmp_y_i >= clip_bottom_i) |
| 482 | return; |
| 483 | |
| 484 | /* Vertical gap between top corner and centre of topmost scanline. */ |
| 485 | extra_scanline_fraction = (bmp_y_i << 16) + 0x8000 - top_bmp_y; |
| 486 | /* Calculate x coordinate of beginning of scanline in bmp. */ |
| 487 | l_bmp_dx = fixdiv(left_bmp_x - top_bmp_x, |
| 488 | left_bmp_y - top_bmp_y); |
| 489 | l_bmp_x = top_bmp_x + fixmul(extra_scanline_fraction, l_bmp_dx); |
| 490 | /* Calculate x coordinate of beginning of scanline in spr. */ |
| 491 | /* note: all these are rounded down which is probably a Good Thing (tm) */ |
| 492 | l_spr_dx = fixdiv(left_spr_x - top_spr_x, |
| 493 | left_bmp_y - top_bmp_y); |
| 494 | l_spr_x = top_spr_x + fixmul(extra_scanline_fraction, l_spr_dx); |
| 495 | /* Calculate y coordinate of beginning of scanline in spr. */ |
| 496 | l_spr_dy = fixdiv(left_spr_y - top_spr_y, |
| 497 | left_bmp_y - top_bmp_y); |
| 498 | l_spr_y = top_spr_y + fixmul(extra_scanline_fraction, l_spr_dy); |
| 499 | |
| 500 | /* Calculate left loop bound. */ |
| 501 | l_bmp_y_bottom_i = (left_bmp_y + 0x8000) >> 16; |
| 502 | if (l_bmp_y_bottom_i > clip_bottom_i) |
| 503 | l_bmp_y_bottom_i = clip_bottom_i; |
| 504 | |
| 505 | /* Calculate x coordinate of end of scanline in bmp. */ |
| 506 | r_bmp_dx = fixdiv(right_bmp_x - top_bmp_x, |
| 507 | right_bmp_y - top_bmp_y); |
| 508 | r_bmp_x = top_bmp_x + fixmul(extra_scanline_fraction, r_bmp_dx); |
| 509 | #ifdef KEEP_TRACK_OF_RIGHT_SPRITE_SCANLINE |
| 510 | /* Calculate x coordinate of end of scanline in spr. */ |
| 511 | r_spr_dx = fixdiv(right_spr_x - top_spr_x, |
| 512 | right_bmp_y - top_bmp_y); |
| 513 | r_spr_x = top_spr_x + fixmul(extra_scanline_fraction, r_spr_dx); |
| 514 | /* Calculate y coordinate of end of scanline in spr. */ |
| 515 | r_spr_dy = fixdiv(right_spr_y - top_spr_y, |
| 516 | right_bmp_y - top_bmp_y); |
| 517 | r_spr_y = top_spr_y + fixmul(extra_scanline_fraction, r_spr_dy); |
| 518 | #endif |
| 519 | |
| 520 | /* Calculate right loop bound. */ |
| 521 | r_bmp_y_bottom_i = (right_bmp_y + 0x8000) >> 16; |
| 522 | |
| 523 | /* Get dx and dy, the offsets to add to the source coordinates as we move |
| 524 | one pixel rightwards along a scanline. This formula can be derived by |
| 525 | considering the 2x2 matrix that transforms the sprite to the |
| 526 | parallelogram. |
| 527 | We'd better use double to get this as exact as possible, since any |
| 528 | errors will be accumulated along the scanline. |
| 529 | */ |
| 530 | spr_dx = (fixed)((ys[3] - ys[0]) * 65536.0 * (65536.0 * spr->width()) / |
| 531 | ((xs[1] - xs[0]) * (double)(ys[3] - ys[0]) - |
| 532 | (xs[3] - xs[0]) * (double)(ys[1] - ys[0]))); |
| 533 | spr_dy = (fixed)((ys[1] - ys[0]) * 65536.0 * (65536.0 * spr->height()) / |
| 534 | ((xs[3] - xs[0]) * (double)(ys[1] - ys[0]) - |
| 535 | (xs[1] - xs[0]) * (double)(ys[3] - ys[0]))); |
| 536 | |
| 537 | /* |
| 538 | * Loop through scanlines. |
| 539 | */ |
| 540 | |
| 541 | while (1) { |
| 542 | /* Has beginning of scanline passed a corner? */ |
| 543 | if (bmp_y_i >= l_bmp_y_bottom_i) { |
| 544 | /* Are we done? */ |
| 545 | if (bmp_y_i >= clip_bottom_i) |
| 546 | break; |
| 547 | |
| 548 | /* Vertical gap between left corner and centre of scanline. */ |
| 549 | extra_scanline_fraction = (bmp_y_i << 16) + 0x8000 - left_bmp_y; |
| 550 | /* Update x coordinate of beginning of scanline in bmp. */ |
| 551 | l_bmp_dx = fixdiv(bottom_bmp_x - left_bmp_x, |
| 552 | bottom_bmp_y - left_bmp_y); |
| 553 | l_bmp_x = left_bmp_x + fixmul(extra_scanline_fraction, l_bmp_dx); |
| 554 | /* Update x coordinate of beginning of scanline in spr. */ |
| 555 | l_spr_dx = fixdiv(bottom_spr_x - left_spr_x, |
| 556 | bottom_bmp_y - left_bmp_y); |
| 557 | l_spr_x = left_spr_x + fixmul(extra_scanline_fraction, l_spr_dx); |
| 558 | /* Update y coordinate of beginning of scanline in spr. */ |
| 559 | l_spr_dy = fixdiv(bottom_spr_y - left_spr_y, |
| 560 | bottom_bmp_y - left_bmp_y); |
| 561 | l_spr_y = left_spr_y + fixmul(extra_scanline_fraction, l_spr_dy); |
| 562 | |
| 563 | /* Update loop bound. */ |
| 564 | if (sub_pixel_accuracy) |
| 565 | l_bmp_y_bottom_i = (bottom_bmp_y + 0xffff) >> 16; |
| 566 | else |
| 567 | l_bmp_y_bottom_i = (bottom_bmp_y + 0x8000) >> 16; |
| 568 | if (l_bmp_y_bottom_i > clip_bottom_i) |
| 569 | l_bmp_y_bottom_i = clip_bottom_i; |
| 570 | } |
| 571 | |
| 572 | /* Has end of scanline passed a corner? */ |
| 573 | if (bmp_y_i >= r_bmp_y_bottom_i) { |
| 574 | /* Vertical gap between right corner and centre of scanline. */ |
| 575 | extra_scanline_fraction = (bmp_y_i << 16) + 0x8000 - right_bmp_y; |
| 576 | /* Update x coordinate of end of scanline in bmp. */ |
| 577 | r_bmp_dx = fixdiv(bottom_bmp_x - right_bmp_x, |
| 578 | bottom_bmp_y - right_bmp_y); |
| 579 | r_bmp_x = right_bmp_x + fixmul(extra_scanline_fraction, r_bmp_dx); |
| 580 | #ifdef KEEP_TRACK_OF_RIGHT_SPRITE_SCANLINE |
| 581 | /* Update x coordinate of beginning of scanline in spr. */ |
| 582 | r_spr_dx = fixdiv(bottom_spr_x - right_spr_x, |
| 583 | bottom_bmp_y - right_bmp_y); |
| 584 | r_spr_x = right_spr_x + fixmul(extra_scanline_fraction, r_spr_dx); |
| 585 | /* Update y coordinate of beginning of scanline in spr. */ |
| 586 | r_spr_dy = fixdiv(bottom_spr_y - right_spr_y, |
| 587 | bottom_bmp_y - right_bmp_y); |
| 588 | r_spr_y = right_spr_y + fixmul(extra_scanline_fraction, r_spr_dy); |
| 589 | #endif |
| 590 | |
| 591 | /* Update loop bound: We aren't supposed to use this any more, so |
| 592 | just set it to some big enough value. */ |
| 593 | r_bmp_y_bottom_i = clip_bottom_i; |
| 594 | } |
| 595 | |
| 596 | /* Make left bmp coordinate be an integer and clip it. */ |
| 597 | if (sub_pixel_accuracy) |
| 598 | l_bmp_x_rounded = l_bmp_x; |
| 599 | else |
| 600 | l_bmp_x_rounded = (l_bmp_x + 0x8000) & ~0xffff; |
| 601 | if (l_bmp_x_rounded < clip_left) |
| 602 | l_bmp_x_rounded = clip_left; |
| 603 | |
| 604 | /* ... and move starting point in sprite accordingly. */ |
| 605 | if (sub_pixel_accuracy) { |
| 606 | l_spr_x_rounded = l_spr_x + |
| 607 | fixmul((l_bmp_x_rounded - l_bmp_x), spr_dx); |
| 608 | l_spr_y_rounded = l_spr_y + |
| 609 | fixmul((l_bmp_x_rounded - l_bmp_x), spr_dy); |
| 610 | } |
| 611 | else { |
| 612 | l_spr_x_rounded = l_spr_x + |
| 613 | fixmul(l_bmp_x_rounded + 0x7fff - l_bmp_x, spr_dx); |
| 614 | l_spr_y_rounded = l_spr_y + |
| 615 | fixmul(l_bmp_x_rounded + 0x7fff - l_bmp_x, spr_dy); |
| 616 | } |
| 617 | |
| 618 | /* Make right bmp coordinate be an integer and clip it. */ |
| 619 | if (sub_pixel_accuracy) |
| 620 | r_bmp_x_rounded = r_bmp_x; |
| 621 | else |
| 622 | r_bmp_x_rounded = (r_bmp_x - 0x8000) & ~0xffff; |
| 623 | if (r_bmp_x_rounded > clip_right) |
| 624 | r_bmp_x_rounded = clip_right; |
| 625 | |
| 626 | /* Draw! */ |
| 627 | if (l_bmp_x_rounded <= r_bmp_x_rounded) { |
| 628 | if (!sub_pixel_accuracy) { |
| 629 | /* The bodies of these ifs are only reached extremely seldom, |
| 630 | it's an ugly hack to avoid reading outside the sprite when |
| 631 | the rounding errors are accumulated the wrong way. It would |
| 632 | be nicer if we could ensure that this never happens by making |
| 633 | all multiplications and divisions be rounded up or down at |
| 634 | the correct places. |
| 635 | I did try another approach: recalculate the edges of the |
| 636 | scanline from scratch each scanline rather than incrementally. |
| 637 | Drawing a sprite with that routine took about 25% longer time |
| 638 | though. |
| 639 | */ |
| 640 | if ((unsigned)(l_spr_x_rounded >> 16) >= (unsigned)spr->width()) { |
| 641 | if (((l_spr_x_rounded < 0) && (spr_dx <= 0)) || |
| 642 | ((l_spr_x_rounded > 0) && (spr_dx >= 0))) { |
| 643 | /* This can happen. */ |
| 644 | goto skip_draw; |
| 645 | } |
| 646 | else { |
| 647 | /* I don't think this can happen, but I can't prove it. */ |
| 648 | do { |
| 649 | l_spr_x_rounded += spr_dx; |
| 650 | l_bmp_x_rounded += 65536; |
| 651 | if (l_bmp_x_rounded > r_bmp_x_rounded) |
| 652 | goto skip_draw; |
| 653 | } while ((unsigned)(l_spr_x_rounded >> 16) >= |
| 654 | (unsigned)spr->width()); |
| 655 | |
| 656 | } |
| 657 | } |
| 658 | right_edge_test = l_spr_x_rounded + |
| 659 | ((r_bmp_x_rounded - l_bmp_x_rounded) >> 16) * |
| 660 | spr_dx; |
| 661 | if ((unsigned)(right_edge_test >> 16) >= (unsigned)spr->width()) { |
| 662 | if (((right_edge_test < 0) && (spr_dx <= 0)) || |
| 663 | ((right_edge_test > 0) && (spr_dx >= 0))) { |
| 664 | /* This can happen. */ |
| 665 | do { |
| 666 | r_bmp_x_rounded -= 65536; |
| 667 | right_edge_test -= spr_dx; |
| 668 | if (l_bmp_x_rounded > r_bmp_x_rounded) |
| 669 | goto skip_draw; |
| 670 | } while ((unsigned)(right_edge_test >> 16) >= |
| 671 | (unsigned)spr->width()); |
| 672 | } |
| 673 | else { |
| 674 | /* I don't think this can happen, but I can't prove it. */ |
| 675 | goto skip_draw; |
| 676 | } |
| 677 | } |
| 678 | if ((unsigned)(l_spr_y_rounded >> 16) >= (unsigned)spr->height()) { |
| 679 | if (((l_spr_y_rounded < 0) && (spr_dy <= 0)) || |
| 680 | ((l_spr_y_rounded > 0) && (spr_dy >= 0))) { |
| 681 | /* This can happen. */ |
| 682 | goto skip_draw; |
| 683 | } |
| 684 | else { |
| 685 | /* I don't think this can happen, but I can't prove it. */ |
| 686 | do { |
| 687 | l_spr_y_rounded += spr_dy; |
| 688 | l_bmp_x_rounded += 65536; |
| 689 | if (l_bmp_x_rounded > r_bmp_x_rounded) |
| 690 | goto skip_draw; |
| 691 | } while (((unsigned)l_spr_y_rounded >> 16) >= |
| 692 | (unsigned)spr->height()); |
| 693 | } |
| 694 | } |
| 695 | right_edge_test = l_spr_y_rounded + |
| 696 | ((r_bmp_x_rounded - l_bmp_x_rounded) >> 16) * |
| 697 | spr_dy; |
| 698 | if ((unsigned)(right_edge_test >> 16) >= (unsigned)spr->height()) { |
| 699 | if (((right_edge_test < 0) && (spr_dy <= 0)) || |
| 700 | ((right_edge_test > 0) && (spr_dy >= 0))) { |
| 701 | /* This can happen. */ |
| 702 | do { |
| 703 | r_bmp_x_rounded -= 65536; |
| 704 | right_edge_test -= spr_dy; |
| 705 | if (l_bmp_x_rounded > r_bmp_x_rounded) |
| 706 | goto skip_draw; |
| 707 | } while ((unsigned)(right_edge_test >> 16) >= |
| 708 | (unsigned)spr->height()); |
| 709 | } |
| 710 | else { |
| 711 | /* I don't think this can happen, but I can't prove it. */ |
| 712 | goto skip_draw; |
| 713 | } |
| 714 | } |
| 715 | } |
| 716 | draw_scanline<Traits, Delegate>(bmp, spr, mask, |
| 717 | l_bmp_x_rounded, bmp_y_i, r_bmp_x_rounded, |
| 718 | l_spr_x_rounded, l_spr_y_rounded, |
| 719 | spr_dx, spr_dy, delegate); |
| 720 | |
| 721 | } |
| 722 | /* I'm not going to apoligize for this label and its gotos: to get |
| 723 | rid of it would just make the code look worse. */ |
| 724 | skip_draw: |
| 725 | |
| 726 | /* Jump to next scanline. */ |
| 727 | bmp_y_i++; |
| 728 | /* Update beginning of scanline. */ |
| 729 | l_bmp_x += l_bmp_dx; |
| 730 | l_spr_x += l_spr_dx; |
| 731 | l_spr_y += l_spr_dy; |
| 732 | /* Update end of scanline. */ |
| 733 | r_bmp_x += r_bmp_dx; |
| 734 | #ifdef KEEP_TRACK_OF_RIGHT_SPRITE_SCANLINE |
| 735 | r_spr_x += r_spr_dx; |
| 736 | r_spr_y += r_spr_dy; |
| 737 | #endif |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | /* _parallelogram_map_standard: |
| 742 | * Helper function for calling _parallelogram_map() with the appropriate |
| 743 | * scanline drawer. I didn't want to include this in the |
| 744 | * _parallelogram_map() function since then you can bypass it and define |
| 745 | * your own scanline drawer, eg. for anti-aliased rotations. |
| 746 | */ |
| 747 | static void ase_parallelogram_map_standard( |
| 748 | Image* bmp, const Image* sprite, const Image* mask, |
| 749 | fixed xs[4], fixed ys[4]) |
| 750 | { |
| 751 | switch (bmp->pixelFormat()) { |
| 752 | |
| 753 | case IMAGE_RGB: { |
| 754 | RgbDelegate delegate(sprite->maskColor()); |
| 755 | ase_parallelogram_map<RgbTraits, RgbDelegate>(bmp, sprite, mask, xs, ys, false, delegate); |
| 756 | break; |
| 757 | } |
| 758 | |
| 759 | case IMAGE_GRAYSCALE: { |
| 760 | GrayscaleDelegate delegate(sprite->maskColor()); |
| 761 | ase_parallelogram_map<GrayscaleTraits, GrayscaleDelegate>(bmp, sprite, mask, xs, ys, false, delegate); |
| 762 | break; |
| 763 | } |
| 764 | |
| 765 | case IMAGE_INDEXED: { |
| 766 | IndexedDelegate delegate(sprite->maskColor()); |
| 767 | ase_parallelogram_map<IndexedTraits, IndexedDelegate>(bmp, sprite, mask, xs, ys, false, delegate); |
| 768 | break; |
| 769 | } |
| 770 | |
| 771 | case IMAGE_BITMAP: { |
| 772 | BitmapDelegate delegate; |
| 773 | ase_parallelogram_map<BitmapTraits, BitmapDelegate>(bmp, sprite, mask, xs, ys, false, delegate); |
| 774 | break; |
| 775 | } |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | /* _rotate_scale_flip_coordinates: |
| 780 | * Calculates the coordinates for the rotated, scaled and flipped sprite, |
| 781 | * and passes them on to the given function. |
| 782 | */ |
| 783 | static void ase_rotate_scale_flip_coordinates(fixed w, fixed h, |
| 784 | fixed x, fixed y, |
| 785 | fixed cx, fixed cy, |
| 786 | fixed angle, |
| 787 | fixed scale_x, fixed scale_y, |
| 788 | int h_flip, int v_flip, |
| 789 | fixed xs[4], fixed ys[4]) |
| 790 | { |
| 791 | fixed fix_cos, fix_sin; |
| 792 | int tl = 0, tr = 1, bl = 3, br = 2; |
| 793 | int tmp; |
| 794 | double cos_angle, sin_angle; |
| 795 | fixed xofs, yofs; |
| 796 | |
| 797 | /* Setting angle to the range -180...180 degrees makes sin & cos |
| 798 | more numerically stable. (Yes, this does have an effect for big |
| 799 | angles!) Note that using "real" sin() and cos() gives much better |
| 800 | precision than fixsin() and fixcos(). */ |
| 801 | angle = angle & 0xffffff; |
| 802 | if (angle >= 0x800000) |
| 803 | angle -= 0x1000000; |
| 804 | |
| 805 | cos_angle = cos(angle * (PI / (double)0x800000)); |
| 806 | sin_angle = sin(angle * (PI / (double)0x800000)); |
| 807 | |
| 808 | if (cos_angle >= 0) |
| 809 | fix_cos = (int)(cos_angle * 0x10000 + 0.5); |
| 810 | else |
| 811 | fix_cos = (int)(cos_angle * 0x10000 - 0.5); |
| 812 | if (sin_angle >= 0) |
| 813 | fix_sin = (int)(sin_angle * 0x10000 + 0.5); |
| 814 | else |
| 815 | fix_sin = (int)(sin_angle * 0x10000 - 0.5); |
| 816 | |
| 817 | /* Decide what order to take corners in. */ |
| 818 | if (v_flip) { |
| 819 | tl = 3; |
| 820 | tr = 2; |
| 821 | bl = 0; |
| 822 | br = 1; |
| 823 | } |
| 824 | else { |
| 825 | tl = 0; |
| 826 | tr = 1; |
| 827 | bl = 3; |
| 828 | br = 2; |
| 829 | } |
| 830 | if (h_flip) { |
| 831 | tmp = tl; |
| 832 | tl = tr; |
| 833 | tr = tmp; |
| 834 | tmp = bl; |
| 835 | bl = br; |
| 836 | br = tmp; |
| 837 | } |
| 838 | |
| 839 | /* Calculate new coordinates of all corners. */ |
| 840 | w = fixmul(w, scale_x); |
| 841 | h = fixmul(h, scale_y); |
| 842 | cx = fixmul(cx, scale_x); |
| 843 | cy = fixmul(cy, scale_y); |
| 844 | |
| 845 | xofs = x - fixmul(cx, fix_cos) + fixmul(cy, fix_sin); |
| 846 | |
| 847 | yofs = y - fixmul(cx, fix_sin) - fixmul(cy, fix_cos); |
| 848 | |
| 849 | xs[tl] = xofs; |
| 850 | ys[tl] = yofs; |
| 851 | xs[tr] = xofs + fixmul(w, fix_cos); |
| 852 | ys[tr] = yofs + fixmul(w, fix_sin); |
| 853 | xs[bl] = xofs - fixmul(h, fix_sin); |
| 854 | ys[bl] = yofs + fixmul(h, fix_cos); |
| 855 | |
| 856 | xs[br] = xs[tr] + xs[bl] - xs[tl]; |
| 857 | ys[br] = ys[tr] + ys[bl] - ys[tl]; |
| 858 | } |
| 859 | |
| 860 | } // namespace algorithm |
| 861 | } // namespace doc |
| 862 | |