1 | // Aseprite |
2 | // Copyright (c) 2020-2022 Igara Studio S.A. |
3 | // |
4 | // This file is released under the terms of the MIT license. |
5 | // Read LICENSE.txt for more information. |
6 | |
7 | #ifdef HAVE_CONFIG_H |
8 | #include "config.h" |
9 | #endif |
10 | |
11 | #include "doc/octree_map.h" |
12 | |
13 | #include "doc/palette.h" |
14 | |
15 | #define MIN_LEVEL_OCTREE_DEEP 3 |
16 | #define MIN_ALPHA_THRESHOLD 16 |
17 | |
18 | namespace doc { |
19 | |
20 | ////////////////////////////////////////////////////////////////////// |
21 | // OctreeNode |
22 | |
23 | void OctreeNode::addColor(color_t c, int level, OctreeNode* parent, |
24 | int paletteIndex, int levelDeep) |
25 | { |
26 | m_parent = parent; |
27 | if (level >= levelDeep) { |
28 | m_leafColor.add(c); |
29 | m_paletteIndex = paletteIndex; |
30 | return; |
31 | } |
32 | int index = getHextet(c, level); |
33 | if (!m_children) { |
34 | m_children.reset(new std::array<OctreeNode, 16>()); |
35 | } |
36 | (*m_children)[index].addColor(c, level + 1, this, paletteIndex, levelDeep); |
37 | } |
38 | |
39 | int OctreeNode::mapColor(int r, int g, int b, int a, int mask_index, const Palette* palette, int level) const |
40 | { |
41 | // New behavior: if mapColor do not have an exact rgba match, it must calculate which |
42 | // color of the current palette is the bestfit and memorize the index in a octree leaf. |
43 | if (level >= 8) { |
44 | if (m_paletteIndex == -1) |
45 | m_paletteIndex = palette->findBestfit(r, g, b, a, mask_index); |
46 | return m_paletteIndex; |
47 | } |
48 | int index = getHextet(r, g, b, a, level); |
49 | if (!m_children) |
50 | m_children.reset(new std::array<OctreeNode, 16>()); |
51 | return (*m_children)[index].mapColor(r, g, b, a, mask_index, palette, level + 1); |
52 | } |
53 | |
54 | void OctreeNode::collectLeafNodes(OctreeNodes& leavesVector, int& paletteIndex) |
55 | { |
56 | for (int i=0; i<16; i++) { |
57 | OctreeNode& child = (*m_children)[i]; |
58 | |
59 | if (child.isLeaf()) { |
60 | child.paletteIndex(paletteIndex); |
61 | leavesVector.push_back(&child); |
62 | paletteIndex++; |
63 | } |
64 | else if (child.hasChildren()) { |
65 | child.collectLeafNodes(leavesVector, paletteIndex); |
66 | } |
67 | } |
68 | } |
69 | |
70 | // removeLeaves(): remove leaves from a common parent |
71 | // auxParentVector: i/o addreess of an auxiliary parent leaf Vector from outside this function. |
72 | // rootLeavesVector: i/o address of the m_root->m_leavesVector |
73 | int OctreeNode::removeLeaves(OctreeNodes& auxParentVector, |
74 | OctreeNodes& rootLeavesVector) |
75 | { |
76 | // Apply to OctreeNode which has children which are leaf nodes |
77 | int result = 0; |
78 | for (int i=15; i>=0; i--) { |
79 | OctreeNode& child = (*m_children)[i]; |
80 | |
81 | if (child.isLeaf()) { |
82 | m_leafColor.add(child.leafColor()); |
83 | result++; |
84 | if (rootLeavesVector[rootLeavesVector.size()-1] == &child) |
85 | rootLeavesVector.pop_back(); |
86 | } |
87 | } |
88 | auxParentVector.push_back(this); |
89 | return result - 1; |
90 | } |
91 | |
92 | // static |
93 | int OctreeNode::getHextet(color_t c, int level) |
94 | { |
95 | return ((c & (0x00000080 >> level)) ? 1 : 0) | |
96 | ((c & (0x00008000 >> level)) ? 2 : 0) | |
97 | ((c & (0x00800000 >> level)) ? 4 : 0) | |
98 | ((c & (0x80000000 >> level)) ? 8 : 0); |
99 | } |
100 | |
101 | int OctreeNode::getHextet(int r, int g, int b, int a, int level) |
102 | { |
103 | return ((r & (0x80 >> level)) ? 1 : 0) | |
104 | ((g & (0x80 >> level)) ? 2 : 0) | |
105 | ((b & (0x80 >> level)) ? 4 : 0) | |
106 | ((a & (0x80 >> level)) ? 8 : 0); |
107 | } |
108 | |
109 | // static |
110 | color_t OctreeNode::hextetToBranchColor(int hextet, int level) |
111 | { |
112 | return ((hextet & 1) ? 0x00000080 >> level : 0) | |
113 | ((hextet & 2) ? 0x00008000 >> level : 0) | |
114 | ((hextet & 4) ? 0x00800000 >> level : 0) | |
115 | ((hextet & 8) ? 0x80000000 >> level : 0); |
116 | } |
117 | |
118 | ////////////////////////////////////////////////////////////////////// |
119 | // OctreeMap |
120 | |
121 | bool OctreeMap::makePalette(Palette* palette, |
122 | int colorCount, |
123 | const int levelDeep) |
124 | { |
125 | if (m_root.hasChildren()) { |
126 | // We create paletteIndex to get a "global like" variable, in collectLeafNodes |
127 | // function, the purpose is having a incremental variable in the stack memory |
128 | // sharend between all recursive calls of collectLeafNodes. |
129 | int paletteIndex = 0; |
130 | m_root.collectLeafNodes(m_leavesVector, paletteIndex); |
131 | } |
132 | |
133 | if (m_maskColor != DOC_OCTREE_IS_OPAQUE) |
134 | colorCount--; |
135 | |
136 | // If we can improve the octree accuracy, makePalette returns false, then |
137 | // outside from this function we must re-construct the octreeMap all again with |
138 | // deep level equal to 8. |
139 | if (levelDeep == 7 && m_leavesVector.size() < colorCount) |
140 | return false; |
141 | |
142 | |
143 | OctreeNodes auxLeavesVector; // auxiliary collapsed node accumulator |
144 | bool keepReducingMap = true; |
145 | |
146 | for (int level = levelDeep; level > -1; level--) { |
147 | for (int i=m_leavesVector.size()-1; i>=0; i--) { |
148 | if (m_leavesVector.size() + auxLeavesVector.size() <= colorCount) { |
149 | for (int j=0; j < auxLeavesVector.size(); j++) |
150 | m_leavesVector.push_back(auxLeavesVector[auxLeavesVector.size() - 1 - j]); |
151 | keepReducingMap = false; |
152 | break; |
153 | } |
154 | else if (m_leavesVector.size() == 0) { |
155 | // When colorCount is < 16, auxLeavesVector->size() could reach the 16 size, |
156 | // if this is true and we don't stop the regular removeLeaves algorithm, |
157 | // the 16 remains colors will collapse in one. |
158 | // So, we have to reduce color with other method: |
159 | // Sort colors by pixelCount (most pixelCount on front of sortedVector), |
160 | // then: |
161 | // Blend in pairs from the least pixelCount colors. |
162 | if (auxLeavesVector.size() <= 16 && colorCount < 16 && colorCount > 0) { |
163 | // Sort colors: |
164 | OctreeNodes sortedVector; |
165 | int auxVectorSize = auxLeavesVector.size(); |
166 | for (int k=0; k < auxVectorSize; k++) { |
167 | size_t maximumCount = auxLeavesVector[0]->leafColor().pixelCount(); |
168 | int maximumIndex = 0; |
169 | for (int j=1; j < auxLeavesVector.size(); j++) { |
170 | if (auxLeavesVector[j]->leafColor().pixelCount() > maximumCount) { |
171 | maximumCount = auxLeavesVector[j]->leafColor().pixelCount(); |
172 | maximumIndex = j; |
173 | } |
174 | } |
175 | sortedVector.push_back(auxLeavesVector[maximumIndex]); |
176 | auxLeavesVector.erase(auxLeavesVector.begin() + maximumIndex); |
177 | } |
178 | // End Sort colors. |
179 | // Blend colors: |
180 | for (;;) { |
181 | if (sortedVector.size() <= colorCount) { |
182 | for (int k=0; k<sortedVector.size(); k++) |
183 | m_leavesVector.push_back(sortedVector[k]); |
184 | break; |
185 | } |
186 | sortedVector[sortedVector.size()-2]->leafColor() |
187 | .add(sortedVector[sortedVector.size()-1]->leafColor()); |
188 | sortedVector.pop_back(); |
189 | } |
190 | // End Blend colors: |
191 | keepReducingMap = false; |
192 | break; |
193 | } |
194 | else |
195 | break; |
196 | } |
197 | |
198 | m_leavesVector.back()->parent()->removeLeaves(auxLeavesVector, m_leavesVector); |
199 | } |
200 | if (keepReducingMap) { |
201 | // Copy collapsed leaves to m_leavesVector |
202 | int auxLeavesVectorSize = auxLeavesVector.size(); |
203 | for (int i=0; i<auxLeavesVectorSize; i++) |
204 | m_leavesVector.push_back(auxLeavesVector[auxLeavesVector.size() - 1 - i]); |
205 | auxLeavesVector.clear(); |
206 | } |
207 | else |
208 | break; |
209 | } |
210 | int leafCount = m_leavesVector.size(); |
211 | int aux = 0; |
212 | if (m_maskColor == DOC_OCTREE_IS_OPAQUE) |
213 | palette->resize(leafCount); |
214 | else { |
215 | palette->resize(leafCount + 1); |
216 | palette->setEntry(0, m_maskColor); |
217 | aux = 1; |
218 | } |
219 | |
220 | for (int i=0; i<leafCount; i++) |
221 | palette->setEntry(i+aux, |
222 | m_leavesVector[i]->leafColor().rgbaColor()); |
223 | |
224 | return true; |
225 | } |
226 | |
227 | void OctreeMap::feedWithImage(const Image* image, |
228 | const bool withAlpha, |
229 | const color_t maskColor, |
230 | const int levelDeep) |
231 | { |
232 | ASSERT(image); |
233 | ASSERT(image->pixelFormat() == IMAGE_RGB || image->pixelFormat() == IMAGE_GRAYSCALE); |
234 | color_t forceFullOpacity; |
235 | const bool imageIsRGBA = (image->pixelFormat() == IMAGE_RGB); |
236 | |
237 | auto add_color_to_octree = |
238 | [this, &forceFullOpacity, levelDeep, imageIsRGBA](color_t color) { |
239 | const int alpha = (imageIsRGBA ? rgba_geta(color) : graya_geta(color)); |
240 | if (alpha >= MIN_ALPHA_THRESHOLD) { // Colors which alpha is less than |
241 | // MIN_ALPHA_THRESHOLD will not registered |
242 | color |= forceFullOpacity; |
243 | color = (imageIsRGBA ? color : rgba(graya_getv(color), |
244 | graya_getv(color), |
245 | graya_getv(color), |
246 | alpha)); |
247 | addColor(color, levelDeep); |
248 | } |
249 | }; |
250 | |
251 | switch (image->pixelFormat()) { |
252 | case IMAGE_RGB: { |
253 | forceFullOpacity = (withAlpha ? 0 : rgba_a_mask); |
254 | doc::for_each_pixel<RgbTraits>(image, add_color_to_octree); |
255 | break; |
256 | } |
257 | case IMAGE_GRAYSCALE: { |
258 | forceFullOpacity = (withAlpha ? 0 : graya_a_mask); |
259 | doc::for_each_pixel<GrayscaleTraits>(image, add_color_to_octree); |
260 | break; |
261 | } |
262 | } |
263 | m_maskColor = maskColor; |
264 | } |
265 | |
266 | int OctreeMap::mapColor(color_t rgba) const |
267 | { |
268 | return m_root.mapColor(rgba_getr(rgba), |
269 | rgba_getg(rgba), |
270 | rgba_getb(rgba), |
271 | rgba_geta(rgba), |
272 | m_maskIndex, |
273 | m_palette, 0); |
274 | } |
275 | |
276 | void OctreeMap::regenerateMap(const Palette* palette, const int maskIndex) |
277 | { |
278 | ASSERT(palette); |
279 | if (!palette) |
280 | return; |
281 | |
282 | // Skip useless regenerations |
283 | if (m_palette == palette && |
284 | m_modifications == palette->getModifications() && |
285 | m_maskIndex == maskIndex) |
286 | return; |
287 | |
288 | m_root = OctreeNode(); |
289 | m_leavesVector.clear(); |
290 | m_maskIndex = maskIndex; |
291 | int maskColorBestFitIndex; |
292 | if (maskIndex < 0) { |
293 | m_maskColor = DOC_OCTREE_IS_OPAQUE; |
294 | maskColorBestFitIndex = -1; |
295 | } |
296 | else { |
297 | m_maskColor = palette->getEntry(maskIndex); |
298 | maskColorBestFitIndex = palette->findBestfit(rgba_getr(m_maskColor), |
299 | rgba_getg(m_maskColor), |
300 | rgba_getb(m_maskColor), |
301 | rgba_geta(m_maskColor), maskIndex); |
302 | } |
303 | |
304 | for (int i=0; i<palette->size(); i++) { |
305 | if (i == maskIndex) { |
306 | m_root.addColor(palette->entry(i), 0, &m_root, maskColorBestFitIndex, 8); |
307 | continue; |
308 | } |
309 | m_root.addColor(palette->entry(i), 0, &m_root, i, 8); |
310 | } |
311 | |
312 | m_palette = palette; |
313 | m_modifications = palette->getModifications(); |
314 | } |
315 | |
316 | } // namespace doc |
317 | |