| 1 | /* |
| 2 | * Fixed point type. |
| 3 | * Based on Allegro library by Shawn Hargreaves. |
| 4 | */ |
| 5 | |
| 6 | #ifdef HAVE_CONFIG_H |
| 7 | #include "config.h" |
| 8 | #endif |
| 9 | |
| 10 | #include "fixmath/fixmath.h" |
| 11 | |
| 12 | #include <cmath> |
| 13 | |
| 14 | namespace fixmath { |
| 15 | |
| 16 | // Ratios for converting between radians and fixed point angles. |
| 17 | const fixed fixtorad_r = (fixed)1608; // 2pi/256 |
| 18 | const fixed radtofix_r = (fixed)2670177; // 256/2pi |
| 19 | |
| 20 | fixed _cos_tbl[512] = |
| 21 | { |
| 22 | /* precalculated fixed point (16.16) cosines for a full circle (0-255) */ |
| 23 | |
| 24 | 65536L, 65531L, 65516L, 65492L, 65457L, 65413L, 65358L, 65294L, |
| 25 | 65220L, 65137L, 65043L, 64940L, 64827L, 64704L, 64571L, 64429L, |
| 26 | 64277L, 64115L, 63944L, 63763L, 63572L, 63372L, 63162L, 62943L, |
| 27 | 62714L, 62476L, 62228L, 61971L, 61705L, 61429L, 61145L, 60851L, |
| 28 | 60547L, 60235L, 59914L, 59583L, 59244L, 58896L, 58538L, 58172L, |
| 29 | 57798L, 57414L, 57022L, 56621L, 56212L, 55794L, 55368L, 54934L, |
| 30 | 54491L, 54040L, 53581L, 53114L, 52639L, 52156L, 51665L, 51166L, |
| 31 | 50660L, 50146L, 49624L, 49095L, 48559L, 48015L, 47464L, 46906L, |
| 32 | 46341L, 45769L, 45190L, 44604L, 44011L, 43412L, 42806L, 42194L, |
| 33 | 41576L, 40951L, 40320L, 39683L, 39040L, 38391L, 37736L, 37076L, |
| 34 | 36410L, 35738L, 35062L, 34380L, 33692L, 33000L, 32303L, 31600L, |
| 35 | 30893L, 30182L, 29466L, 28745L, 28020L, 27291L, 26558L, 25821L, |
| 36 | 25080L, 24335L, 23586L, 22834L, 22078L, 21320L, 20557L, 19792L, |
| 37 | 19024L, 18253L, 17479L, 16703L, 15924L, 15143L, 14359L, 13573L, |
| 38 | 12785L, 11996L, 11204L, 10411L, 9616L, 8820L, 8022L, 7224L, |
| 39 | 6424L, 5623L, 4821L, 4019L, 3216L, 2412L, 1608L, 804L, |
| 40 | 0L, -804L, -1608L, -2412L, -3216L, -4019L, -4821L, -5623L, |
| 41 | -6424L, -7224L, -8022L, -8820L, -9616L, -10411L, -11204L, -11996L, |
| 42 | -12785L, -13573L, -14359L, -15143L, -15924L, -16703L, -17479L, -18253L, |
| 43 | -19024L, -19792L, -20557L, -21320L, -22078L, -22834L, -23586L, -24335L, |
| 44 | -25080L, -25821L, -26558L, -27291L, -28020L, -28745L, -29466L, -30182L, |
| 45 | -30893L, -31600L, -32303L, -33000L, -33692L, -34380L, -35062L, -35738L, |
| 46 | -36410L, -37076L, -37736L, -38391L, -39040L, -39683L, -40320L, -40951L, |
| 47 | -41576L, -42194L, -42806L, -43412L, -44011L, -44604L, -45190L, -45769L, |
| 48 | -46341L, -46906L, -47464L, -48015L, -48559L, -49095L, -49624L, -50146L, |
| 49 | -50660L, -51166L, -51665L, -52156L, -52639L, -53114L, -53581L, -54040L, |
| 50 | -54491L, -54934L, -55368L, -55794L, -56212L, -56621L, -57022L, -57414L, |
| 51 | -57798L, -58172L, -58538L, -58896L, -59244L, -59583L, -59914L, -60235L, |
| 52 | -60547L, -60851L, -61145L, -61429L, -61705L, -61971L, -62228L, -62476L, |
| 53 | -62714L, -62943L, -63162L, -63372L, -63572L, -63763L, -63944L, -64115L, |
| 54 | -64277L, -64429L, -64571L, -64704L, -64827L, -64940L, -65043L, -65137L, |
| 55 | -65220L, -65294L, -65358L, -65413L, -65457L, -65492L, -65516L, -65531L, |
| 56 | -65536L, -65531L, -65516L, -65492L, -65457L, -65413L, -65358L, -65294L, |
| 57 | -65220L, -65137L, -65043L, -64940L, -64827L, -64704L, -64571L, -64429L, |
| 58 | -64277L, -64115L, -63944L, -63763L, -63572L, -63372L, -63162L, -62943L, |
| 59 | -62714L, -62476L, -62228L, -61971L, -61705L, -61429L, -61145L, -60851L, |
| 60 | -60547L, -60235L, -59914L, -59583L, -59244L, -58896L, -58538L, -58172L, |
| 61 | -57798L, -57414L, -57022L, -56621L, -56212L, -55794L, -55368L, -54934L, |
| 62 | -54491L, -54040L, -53581L, -53114L, -52639L, -52156L, -51665L, -51166L, |
| 63 | -50660L, -50146L, -49624L, -49095L, -48559L, -48015L, -47464L, -46906L, |
| 64 | -46341L, -45769L, -45190L, -44604L, -44011L, -43412L, -42806L, -42194L, |
| 65 | -41576L, -40951L, -40320L, -39683L, -39040L, -38391L, -37736L, -37076L, |
| 66 | -36410L, -35738L, -35062L, -34380L, -33692L, -33000L, -32303L, -31600L, |
| 67 | -30893L, -30182L, -29466L, -28745L, -28020L, -27291L, -26558L, -25821L, |
| 68 | -25080L, -24335L, -23586L, -22834L, -22078L, -21320L, -20557L, -19792L, |
| 69 | -19024L, -18253L, -17479L, -16703L, -15924L, -15143L, -14359L, -13573L, |
| 70 | -12785L, -11996L, -11204L, -10411L, -9616L, -8820L, -8022L, -7224L, |
| 71 | -6424L, -5623L, -4821L, -4019L, -3216L, -2412L, -1608L, -804L, |
| 72 | 0L, 804L, 1608L, 2412L, 3216L, 4019L, 4821L, 5623L, |
| 73 | 6424L, 7224L, 8022L, 8820L, 9616L, 10411L, 11204L, 11996L, |
| 74 | 12785L, 13573L, 14359L, 15143L, 15924L, 16703L, 17479L, 18253L, |
| 75 | 19024L, 19792L, 20557L, 21320L, 22078L, 22834L, 23586L, 24335L, |
| 76 | 25080L, 25821L, 26558L, 27291L, 28020L, 28745L, 29466L, 30182L, |
| 77 | 30893L, 31600L, 32303L, 33000L, 33692L, 34380L, 35062L, 35738L, |
| 78 | 36410L, 37076L, 37736L, 38391L, 39040L, 39683L, 40320L, 40951L, |
| 79 | 41576L, 42194L, 42806L, 43412L, 44011L, 44604L, 45190L, 45769L, |
| 80 | 46341L, 46906L, 47464L, 48015L, 48559L, 49095L, 49624L, 50146L, |
| 81 | 50660L, 51166L, 51665L, 52156L, 52639L, 53114L, 53581L, 54040L, |
| 82 | 54491L, 54934L, 55368L, 55794L, 56212L, 56621L, 57022L, 57414L, |
| 83 | 57798L, 58172L, 58538L, 58896L, 59244L, 59583L, 59914L, 60235L, |
| 84 | 60547L, 60851L, 61145L, 61429L, 61705L, 61971L, 62228L, 62476L, |
| 85 | 62714L, 62943L, 63162L, 63372L, 63572L, 63763L, 63944L, 64115L, |
| 86 | 64277L, 64429L, 64571L, 64704L, 64827L, 64940L, 65043L, 65137L, |
| 87 | 65220L, 65294L, 65358L, 65413L, 65457L, 65492L, 65516L, 65531L |
| 88 | }; |
| 89 | |
| 90 | fixed _tan_tbl[256] = |
| 91 | { |
| 92 | /* precalculated fixed point (16.16) tangents for a half circle (0-127) */ |
| 93 | |
| 94 | 0L, 804L, 1609L, 2414L, 3220L, 4026L, 4834L, 5644L, |
| 95 | 6455L, 7268L, 8083L, 8901L, 9721L, 10545L, 11372L, 12202L, |
| 96 | 13036L, 13874L, 14717L, 15564L, 16416L, 17273L, 18136L, 19005L, |
| 97 | 19880L, 20762L, 21650L, 22546L, 23449L, 24360L, 25280L, 26208L, |
| 98 | 27146L, 28093L, 29050L, 30018L, 30996L, 31986L, 32988L, 34002L, |
| 99 | 35030L, 36071L, 37126L, 38196L, 39281L, 40382L, 41500L, 42636L, |
| 100 | 43790L, 44963L, 46156L, 47369L, 48605L, 49863L, 51145L, 52451L, |
| 101 | 53784L, 55144L, 56532L, 57950L, 59398L, 60880L, 62395L, 63947L, |
| 102 | 65536L, 67165L, 68835L, 70548L, 72308L, 74116L, 75974L, 77887L, |
| 103 | 79856L, 81885L, 83977L, 86135L, 88365L, 90670L, 93054L, 95523L, |
| 104 | 98082L, 100736L, 103493L, 106358L, 109340L, 112447L, 115687L, 119071L, |
| 105 | 122609L, 126314L, 130198L, 134276L, 138564L, 143081L, 147847L, 152884L, |
| 106 | 158218L, 163878L, 169896L, 176309L, 183161L, 190499L, 198380L, 206870L, |
| 107 | 216043L, 225990L, 236817L, 248648L, 261634L, 275959L, 291845L, 309568L, |
| 108 | 329472L, 351993L, 377693L, 407305L, 441808L, 482534L, 531352L, 590958L, |
| 109 | 665398L, 761030L, 888450L, 1066730L,1334016L,1779314L,2669641L,5340086L, |
| 110 | -2147483647L,-5340086L,-2669641L,-1779314L,-1334016L,-1066730L,-888450L,-761030L, |
| 111 | -665398L,-590958L,-531352L,-482534L,-441808L,-407305L,-377693L,-351993L, |
| 112 | -329472L,-309568L,-291845L,-275959L,-261634L,-248648L,-236817L,-225990L, |
| 113 | -216043L,-206870L,-198380L,-190499L,-183161L,-176309L,-169896L,-163878L, |
| 114 | -158218L,-152884L,-147847L,-143081L,-138564L,-134276L,-130198L,-126314L, |
| 115 | -122609L,-119071L,-115687L,-112447L,-109340L,-106358L,-103493L,-100736L, |
| 116 | -98082L, -95523L, -93054L, -90670L, -88365L, -86135L, -83977L, -81885L, |
| 117 | -79856L, -77887L, -75974L, -74116L, -72308L, -70548L, -68835L, -67165L, |
| 118 | -65536L, -63947L, -62395L, -60880L, -59398L, -57950L, -56532L, -55144L, |
| 119 | -53784L, -52451L, -51145L, -49863L, -48605L, -47369L, -46156L, -44963L, |
| 120 | -43790L, -42636L, -41500L, -40382L, -39281L, -38196L, -37126L, -36071L, |
| 121 | -35030L, -34002L, -32988L, -31986L, -30996L, -30018L, -29050L, -28093L, |
| 122 | -27146L, -26208L, -25280L, -24360L, -23449L, -22546L, -21650L, -20762L, |
| 123 | -19880L, -19005L, -18136L, -17273L, -16416L, -15564L, -14717L, -13874L, |
| 124 | -13036L, -12202L, -11372L, -10545L, -9721L, -8901L, -8083L, -7268L, |
| 125 | -6455L, -5644L, -4834L, -4026L, -3220L, -2414L, -1609L, -804L |
| 126 | }; |
| 127 | |
| 128 | fixed _acos_tbl[513] = |
| 129 | { |
| 130 | /* precalculated fixed point (16.16) inverse cosines (-1 to 1) */ |
| 131 | |
| 132 | 0x800000L, 0x7C65C7L, 0x7AE75AL, 0x79C19EL, 0x78C9BEL, 0x77EF25L, 0x772953L, 0x76733AL, |
| 133 | 0x75C991L, 0x752A10L, 0x74930CL, 0x740345L, 0x7379C1L, 0x72F5BAL, 0x72768FL, 0x71FBBCL, |
| 134 | 0x7184D3L, 0x711174L, 0x70A152L, 0x703426L, 0x6FC9B5L, 0x6F61C9L, 0x6EFC36L, 0x6E98D1L, |
| 135 | 0x6E3777L, 0x6DD805L, 0x6D7A5EL, 0x6D1E68L, 0x6CC40BL, 0x6C6B2FL, 0x6C13C1L, 0x6BBDAFL, |
| 136 | 0x6B68E6L, 0x6B1558L, 0x6AC2F5L, 0x6A71B1L, 0x6A217EL, 0x69D251L, 0x698420L, 0x6936DFL, |
| 137 | 0x68EA85L, 0x689F0AL, 0x685465L, 0x680A8DL, 0x67C17DL, 0x67792CL, 0x673194L, 0x66EAAFL, |
| 138 | 0x66A476L, 0x665EE5L, 0x6619F5L, 0x65D5A2L, 0x6591E7L, 0x654EBFL, 0x650C26L, 0x64CA18L, |
| 139 | 0x648890L, 0x64478CL, 0x640706L, 0x63C6FCL, 0x63876BL, 0x63484FL, 0x6309A5L, 0x62CB6AL, |
| 140 | 0x628D9CL, 0x625037L, 0x621339L, 0x61D69FL, 0x619A68L, 0x615E90L, 0x612316L, 0x60E7F7L, |
| 141 | 0x60AD31L, 0x6072C3L, 0x6038A9L, 0x5FFEE3L, 0x5FC56EL, 0x5F8C49L, 0x5F5372L, 0x5F1AE7L, |
| 142 | 0x5EE2A7L, 0x5EAAB0L, 0x5E7301L, 0x5E3B98L, 0x5E0473L, 0x5DCD92L, 0x5D96F3L, 0x5D6095L, |
| 143 | 0x5D2A76L, 0x5CF496L, 0x5CBEF2L, 0x5C898BL, 0x5C545EL, 0x5C1F6BL, 0x5BEAB0L, 0x5BB62DL, |
| 144 | 0x5B81E1L, 0x5B4DCAL, 0x5B19E7L, 0x5AE638L, 0x5AB2BCL, 0x5A7F72L, 0x5A4C59L, 0x5A1970L, |
| 145 | 0x59E6B6L, 0x59B42AL, 0x5981CCL, 0x594F9BL, 0x591D96L, 0x58EBBDL, 0x58BA0EL, 0x588889L, |
| 146 | 0x58572DL, 0x5825FAL, 0x57F4EEL, 0x57C40AL, 0x57934DL, 0x5762B5L, 0x573243L, 0x5701F5L, |
| 147 | 0x56D1CCL, 0x56A1C6L, 0x5671E4L, 0x564224L, 0x561285L, 0x55E309L, 0x55B3ADL, 0x558471L, |
| 148 | 0x555555L, 0x552659L, 0x54F77BL, 0x54C8BCL, 0x549A1BL, 0x546B98L, 0x543D31L, 0x540EE7L, |
| 149 | 0x53E0B9L, 0x53B2A7L, 0x5384B0L, 0x5356D4L, 0x532912L, 0x52FB6BL, 0x52CDDDL, 0x52A068L, |
| 150 | 0x52730CL, 0x5245C9L, 0x52189EL, 0x51EB8BL, 0x51BE8FL, 0x5191AAL, 0x5164DCL, 0x513825L, |
| 151 | 0x510B83L, 0x50DEF7L, 0x50B280L, 0x50861FL, 0x5059D2L, 0x502D99L, 0x500175L, 0x4FD564L, |
| 152 | 0x4FA967L, 0x4F7D7DL, 0x4F51A6L, 0x4F25E2L, 0x4EFA30L, 0x4ECE90L, 0x4EA301L, 0x4E7784L, |
| 153 | 0x4E4C19L, 0x4E20BEL, 0x4DF574L, 0x4DCA3AL, 0x4D9F10L, 0x4D73F6L, 0x4D48ECL, 0x4D1DF1L, |
| 154 | 0x4CF305L, 0x4CC829L, 0x4C9D5AL, 0x4C729AL, 0x4C47E9L, 0x4C1D45L, 0x4BF2AEL, 0x4BC826L, |
| 155 | 0x4B9DAAL, 0x4B733BL, 0x4B48D9L, 0x4B1E84L, 0x4AF43BL, 0x4AC9FEL, 0x4A9FCDL, 0x4A75A7L, |
| 156 | 0x4A4B8DL, 0x4A217EL, 0x49F77AL, 0x49CD81L, 0x49A393L, 0x4979AFL, 0x494FD5L, 0x492605L, |
| 157 | 0x48FC3FL, 0x48D282L, 0x48A8CFL, 0x487F25L, 0x485584L, 0x482BECL, 0x48025DL, 0x47D8D6L, |
| 158 | 0x47AF57L, 0x4785E0L, 0x475C72L, 0x47330AL, 0x4709ABL, 0x46E052L, 0x46B701L, 0x468DB7L, |
| 159 | 0x466474L, 0x463B37L, 0x461201L, 0x45E8D0L, 0x45BFA6L, 0x459682L, 0x456D64L, 0x45444BL, |
| 160 | 0x451B37L, 0x44F229L, 0x44C920L, 0x44A01CL, 0x44771CL, 0x444E21L, 0x44252AL, 0x43FC38L, |
| 161 | 0x43D349L, 0x43AA5FL, 0x438178L, 0x435894L, 0x432FB4L, 0x4306D8L, 0x42DDFEL, 0x42B527L, |
| 162 | 0x428C53L, 0x426381L, 0x423AB2L, 0x4211E5L, 0x41E91AL, 0x41C051L, 0x41978AL, 0x416EC5L, |
| 163 | 0x414601L, 0x411D3EL, 0x40F47CL, 0x40CBBBL, 0x40A2FBL, 0x407A3CL, 0x40517DL, 0x4028BEL, |
| 164 | 0x400000L, 0x3FD742L, 0x3FAE83L, 0x3F85C4L, 0x3F5D05L, 0x3F3445L, 0x3F0B84L, 0x3EE2C2L, |
| 165 | 0x3EB9FFL, 0x3E913BL, 0x3E6876L, 0x3E3FAFL, 0x3E16E6L, 0x3DEE1BL, 0x3DC54EL, 0x3D9C7FL, |
| 166 | 0x3D73ADL, 0x3D4AD9L, 0x3D2202L, 0x3CF928L, 0x3CD04CL, 0x3CA76CL, 0x3C7E88L, 0x3C55A1L, |
| 167 | 0x3C2CB7L, 0x3C03C8L, 0x3BDAD6L, 0x3BB1DFL, 0x3B88E4L, 0x3B5FE4L, 0x3B36E0L, 0x3B0DD7L, |
| 168 | 0x3AE4C9L, 0x3ABBB5L, 0x3A929CL, 0x3A697EL, 0x3A405AL, 0x3A1730L, 0x39EDFFL, 0x39C4C9L, |
| 169 | 0x399B8CL, 0x397249L, 0x3948FFL, 0x391FAEL, 0x38F655L, 0x38CCF6L, 0x38A38EL, 0x387A20L, |
| 170 | 0x3850A9L, 0x38272AL, 0x37FDA3L, 0x37D414L, 0x37AA7CL, 0x3780DBL, 0x375731L, 0x372D7EL, |
| 171 | 0x3703C1L, 0x36D9FBL, 0x36B02BL, 0x368651L, 0x365C6DL, 0x36327FL, 0x360886L, 0x35DE82L, |
| 172 | 0x35B473L, 0x358A59L, 0x356033L, 0x353602L, 0x350BC5L, 0x34E17CL, 0x34B727L, 0x348CC5L, |
| 173 | 0x346256L, 0x3437DAL, 0x340D52L, 0x33E2BBL, 0x33B817L, 0x338D66L, 0x3362A6L, 0x3337D7L, |
| 174 | 0x330CFBL, 0x32E20FL, 0x32B714L, 0x328C0AL, 0x3260F0L, 0x3235C6L, 0x320A8CL, 0x31DF42L, |
| 175 | 0x31B3E7L, 0x31887CL, 0x315CFFL, 0x313170L, 0x3105D0L, 0x30DA1EL, 0x30AE5AL, 0x308283L, |
| 176 | 0x305699L, 0x302A9CL, 0x2FFE8BL, 0x2FD267L, 0x2FA62EL, 0x2F79E1L, 0x2F4D80L, 0x2F2109L, |
| 177 | 0x2EF47DL, 0x2EC7DBL, 0x2E9B24L, 0x2E6E56L, 0x2E4171L, 0x2E1475L, 0x2DE762L, 0x2DBA37L, |
| 178 | 0x2D8CF4L, 0x2D5F98L, 0x2D3223L, 0x2D0495L, 0x2CD6EEL, 0x2CA92CL, 0x2C7B50L, 0x2C4D59L, |
| 179 | 0x2C1F47L, 0x2BF119L, 0x2BC2CFL, 0x2B9468L, 0x2B65E5L, 0x2B3744L, 0x2B0885L, 0x2AD9A7L, |
| 180 | 0x2AAAABL, 0x2A7B8FL, 0x2A4C53L, 0x2A1CF7L, 0x29ED7BL, 0x29BDDCL, 0x298E1CL, 0x295E3AL, |
| 181 | 0x292E34L, 0x28FE0BL, 0x28CDBDL, 0x289D4BL, 0x286CB3L, 0x283BF6L, 0x280B12L, 0x27DA06L, |
| 182 | 0x27A8D3L, 0x277777L, 0x2745F2L, 0x271443L, 0x26E26AL, 0x26B065L, 0x267E34L, 0x264BD6L, |
| 183 | 0x26194AL, 0x25E690L, 0x25B3A7L, 0x25808EL, 0x254D44L, 0x2519C8L, 0x24E619L, 0x24B236L, |
| 184 | 0x247E1FL, 0x2449D3L, 0x241550L, 0x23E095L, 0x23ABA2L, 0x237675L, 0x23410EL, 0x230B6AL, |
| 185 | 0x22D58AL, 0x229F6BL, 0x22690DL, 0x22326EL, 0x21FB8DL, 0x21C468L, 0x218CFFL, 0x215550L, |
| 186 | 0x211D59L, 0x20E519L, 0x20AC8EL, 0x2073B7L, 0x203A92L, 0x20011DL, 0x1FC757L, 0x1F8D3DL, |
| 187 | 0x1F52CFL, 0x1F1809L, 0x1EDCEAL, 0x1EA170L, 0x1E6598L, 0x1E2961L, 0x1DECC7L, 0x1DAFC9L, |
| 188 | 0x1D7264L, 0x1D3496L, 0x1CF65BL, 0x1CB7B1L, 0x1C7895L, 0x1C3904L, 0x1BF8FAL, 0x1BB874L, |
| 189 | 0x1B7770L, 0x1B35E8L, 0x1AF3DAL, 0x1AB141L, 0x1A6E19L, 0x1A2A5EL, 0x19E60BL, 0x19A11BL, |
| 190 | 0x195B8AL, 0x191551L, 0x18CE6CL, 0x1886D4L, 0x183E83L, 0x17F573L, 0x17AB9BL, 0x1760F6L, |
| 191 | 0x17157BL, 0x16C921L, 0x167BE0L, 0x162DAFL, 0x15DE82L, 0x158E4FL, 0x153D0BL, 0x14EAA8L, |
| 192 | 0x14971AL, 0x144251L, 0x13EC3FL, 0x1394D1L, 0x133BF5L, 0x12E198L, 0x1285A2L, 0x1227FBL, |
| 193 | 0x11C889L, 0x11672FL, 0x1103CAL, 0x109E37L, 0x10364BL, 0xFCBDAL, 0xF5EAEL, 0xEEE8CL, |
| 194 | 0xE7B2DL, 0xE0444L, 0xD8971L, 0xD0A46L, 0xC863FL, 0xBFCBBL, 0xB6CF4L, 0xAD5F0L, |
| 195 | 0xA366FL, 0x98CC6L, 0x8D6ADL, 0x810DBL, 0x73642L, 0x63E62L, 0x518A6L, 0x39A39L, |
| 196 | 0x0L |
| 197 | }; |
| 198 | |
| 199 | // Fixed point square root routine for non-i386. |
| 200 | fixed fixsqrt(fixed x) |
| 201 | { |
| 202 | if (x > 0) |
| 203 | return ftofix(std::sqrt(fixtof(x))); |
| 204 | |
| 205 | if (x < 0) |
| 206 | errno = EDOM; |
| 207 | |
| 208 | return 0; |
| 209 | } |
| 210 | |
| 211 | // Fixed point sqrt (x*x+y*y) for non-i386. |
| 212 | fixed fixhypot(fixed x, fixed y) |
| 213 | { |
| 214 | return ftofix(hypot(fixtof(x), fixtof(y))); |
| 215 | } |
| 216 | |
| 217 | // Fixed point inverse tangent. Does a binary search on the tan table. |
| 218 | fixed fixatan(fixed x) |
| 219 | { |
| 220 | int a, b, c; /* for binary search */ |
| 221 | fixed d; /* difference value for search */ |
| 222 | |
| 223 | if (x >= 0) { /* search the first part of tan table */ |
| 224 | a = 0; |
| 225 | b = 127; |
| 226 | } |
| 227 | else { /* search the second half instead */ |
| 228 | a = 128; |
| 229 | b = 255; |
| 230 | } |
| 231 | |
| 232 | do { |
| 233 | c = (a + b) >> 1; |
| 234 | d = x - _tan_tbl[c]; |
| 235 | |
| 236 | if (d > 0) |
| 237 | a = c + 1; |
| 238 | else |
| 239 | if (d < 0) |
| 240 | b = c - 1; |
| 241 | |
| 242 | } while ((a <= b) && (d)); |
| 243 | |
| 244 | if (x >= 0) |
| 245 | return ((long)c) << 15; |
| 246 | |
| 247 | return (-0x00800000L + (((long)c) << 15)); |
| 248 | } |
| 249 | |
| 250 | // Like the libc atan2, but for fixed point numbers. |
| 251 | fixed fixatan2(fixed y, fixed x) |
| 252 | { |
| 253 | fixed r; |
| 254 | |
| 255 | if (x==0) { |
| 256 | if (y==0) { |
| 257 | errno = EDOM; |
| 258 | return 0L; |
| 259 | } |
| 260 | else |
| 261 | return ((y < 0) ? -0x00400000L : 0x00400000L); |
| 262 | } |
| 263 | |
| 264 | errno = 0; |
| 265 | r = fixdiv(y, x); |
| 266 | |
| 267 | if (errno) { |
| 268 | errno = 0; |
| 269 | return ((y < 0) ? -0x00400000L : 0x00400000L); |
| 270 | } |
| 271 | |
| 272 | r = fixatan(r); |
| 273 | |
| 274 | if (x >= 0) |
| 275 | return r; |
| 276 | |
| 277 | if (y >= 0) |
| 278 | return 0x00800000L + r; |
| 279 | |
| 280 | return r - 0x00800000L; |
| 281 | } |
| 282 | |
| 283 | } // namespace fixmath |
| 284 | |