| 1 | // Aseprite TGA Library |
| 2 | // Copyright (C) 2020-2022 Igara Studio S.A. |
| 3 | // |
| 4 | // This file is released under the terms of the MIT license. |
| 5 | // Read LICENSE.txt for more information. |
| 6 | |
| 7 | #include "tga.h" |
| 8 | |
| 9 | #include <cassert> |
| 10 | |
| 11 | namespace tga { |
| 12 | |
| 13 | static inline uint8_t scale_5bits_to_8bits(uint8_t v) { |
| 14 | assert(v >= 0 && v < 32); |
| 15 | return (v << 3) | (v >> 2); |
| 16 | } |
| 17 | |
| 18 | Decoder::Decoder(FileInterface* file) |
| 19 | : m_file(file) |
| 20 | { |
| 21 | } |
| 22 | |
| 23 | bool Decoder::(Header& ) |
| 24 | { |
| 25 | header.idLength = read8(); |
| 26 | header.colormapType = read8(); |
| 27 | header.imageType = read8(); |
| 28 | header.colormapOrigin = read16(); |
| 29 | header.colormapLength = read16(); |
| 30 | header.colormapDepth = read8(); |
| 31 | header.xOrigin = read16(); |
| 32 | header.yOrigin = read16(); |
| 33 | header.width = read16(); |
| 34 | header.height = read16(); |
| 35 | header.bitsPerPixel = read8(); |
| 36 | header.imageDescriptor = read8(); |
| 37 | |
| 38 | // Invalid image size |
| 39 | if (header.width == 0 || |
| 40 | header.height == 0) |
| 41 | return false; |
| 42 | |
| 43 | // Skip ID string (idLength bytes) |
| 44 | if (header.idLength > 0) { |
| 45 | uint8_t i = header.idLength; |
| 46 | while (i--) { |
| 47 | uint8_t chr = m_file->read8(); |
| 48 | header.imageId.push_back(chr); |
| 49 | } |
| 50 | } |
| 51 | |
| 52 | #if 0 |
| 53 | // In the best case the "alphaBits" should be valid, but there are |
| 54 | // invalid TGA files out there which don't indicate the |
| 55 | // "alphaBits" correctly, so they could be 0 and use the alpha |
| 56 | // channel anyway on each pixel. |
| 57 | int alphaBits = (header.imageDescriptor & 15); |
| 58 | m_hasAlpha = |
| 59 | (header.bitsPerPixel == 32 && alphaBits == 8) || |
| 60 | (header.bitsPerPixel == 16 && alphaBits == 1); |
| 61 | #else |
| 62 | // So to detect if a 32bpp or 16bpp TGA image has alpha, we'll use |
| 63 | // the "alpha histogram" in postProcessImage() to check if there are |
| 64 | // different alpha values. If there is only one alpha value (all 0 |
| 65 | // or all 255), we create an opaque image anyway. The only exception |
| 66 | // to this rule is when all pixels are black and transparent |
| 67 | // (RGBA=0), that is the only case when an image is fully |
| 68 | // transparent. |
| 69 | // |
| 70 | // Note: This same heuristic is used in apps like macOS Preview: |
| 71 | // https://twitter.com/davidcapello/status/1242803110868893697 |
| 72 | m_hasAlpha = |
| 73 | (header.bitsPerPixel == 32) || |
| 74 | (header.bitsPerPixel == 16); |
| 75 | #endif |
| 76 | |
| 77 | // Read colormap |
| 78 | if (header.colormapType == 1) |
| 79 | readColormap(header); |
| 80 | |
| 81 | return (header.validColormapType() && |
| 82 | header.valid()); |
| 83 | } |
| 84 | |
| 85 | void Decoder::(Header& ) |
| 86 | { |
| 87 | header.colormap = Colormap(header.colormapLength); |
| 88 | |
| 89 | for (int i=0; i<header.colormapLength; ++i) { |
| 90 | switch (header.colormapDepth) { |
| 91 | |
| 92 | case 15: |
| 93 | case 16: { |
| 94 | const uint16_t c = read16(); |
| 95 | header.colormap[i] = |
| 96 | rgba(scale_5bits_to_8bits((c >> 10) & 0x1F), |
| 97 | scale_5bits_to_8bits((c >> 5) & 0x1F), |
| 98 | scale_5bits_to_8bits(c & 0x1F)); |
| 99 | break; |
| 100 | } |
| 101 | |
| 102 | case 24: |
| 103 | case 32: { |
| 104 | const uint8_t b = read8(); |
| 105 | const uint8_t g = read8(); |
| 106 | const uint8_t r = read8(); |
| 107 | uint8_t a; |
| 108 | if (header.colormapDepth == 32) |
| 109 | a = read8(); |
| 110 | else |
| 111 | a = 255; |
| 112 | header.colormap[i] = rgba(r, g, b, a); |
| 113 | break; |
| 114 | } |
| 115 | } |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | bool Decoder::(const Header& , |
| 120 | Image& image, |
| 121 | Delegate* delegate) |
| 122 | { |
| 123 | // Bit 4 means right-to-left, else left-to-right |
| 124 | // Bit 5 means top-to-bottom, else bottom-to-top |
| 125 | m_iterator = details::ImageIterator(header, image); |
| 126 | |
| 127 | for (int y=0; y<header.height; ++y) { |
| 128 | switch (header.imageType) { |
| 129 | |
| 130 | case UncompressedIndexed: |
| 131 | assert(header.bitsPerPixel == 8); |
| 132 | if (readUncompressedData<uint8_t>(header.width, &Decoder::read8Color)) |
| 133 | return true; |
| 134 | break; |
| 135 | |
| 136 | case UncompressedRgb: |
| 137 | switch (header.bitsPerPixel) { |
| 138 | case 15: |
| 139 | case 16: |
| 140 | if (readUncompressedData<uint32_t>(header.width, &Decoder::read16AsRgb)) |
| 141 | return true; |
| 142 | break; |
| 143 | case 24: |
| 144 | if (readUncompressedData<uint32_t>(header.width, &Decoder::read24AsRgb)) |
| 145 | return true; |
| 146 | break; |
| 147 | case 32: |
| 148 | if (readUncompressedData<uint32_t>(header.width, &Decoder::read32AsRgb)) |
| 149 | return true; |
| 150 | break; |
| 151 | default: |
| 152 | assert(false); |
| 153 | break; |
| 154 | } |
| 155 | break; |
| 156 | |
| 157 | case UncompressedGray: |
| 158 | assert(header.bitsPerPixel == 8); |
| 159 | if (readUncompressedData<uint8_t>(header.width, &Decoder::read8Color)) |
| 160 | return true; |
| 161 | break; |
| 162 | |
| 163 | case RleIndexed: |
| 164 | assert(header.bitsPerPixel == 8); |
| 165 | if (readRleData<uint8_t>(header.width, &Decoder::read8Color)) |
| 166 | return true; |
| 167 | break; |
| 168 | |
| 169 | case RleRgb: |
| 170 | switch (header.bitsPerPixel) { |
| 171 | case 15: |
| 172 | case 16: |
| 173 | if (readRleData<uint32_t>(header.width, &Decoder::read16AsRgb)) |
| 174 | return true; |
| 175 | break; |
| 176 | case 24: |
| 177 | if (readRleData<uint32_t>(header.width, &Decoder::read24AsRgb)) |
| 178 | return true; |
| 179 | break; |
| 180 | case 32: |
| 181 | if (readRleData<uint32_t>(header.width, &Decoder::read32AsRgb)) |
| 182 | return true; |
| 183 | break; |
| 184 | default: |
| 185 | assert(false); |
| 186 | break; |
| 187 | } |
| 188 | break; |
| 189 | |
| 190 | case RleGray: |
| 191 | assert(header.bitsPerPixel == 8); |
| 192 | if (readRleData<uint8_t>(header.width, &Decoder::read8Color)) |
| 193 | return true; |
| 194 | break; |
| 195 | } |
| 196 | |
| 197 | if (delegate && |
| 198 | !delegate->notifyProgress(float(y) / float(header.height))) { |
| 199 | break; |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | return true; |
| 204 | } |
| 205 | |
| 206 | void Decoder::(const Header& , |
| 207 | Image& image) |
| 208 | { |
| 209 | // The post-processing is only for RGB images with possible invalid |
| 210 | // alpha information. |
| 211 | if (!header.isRgb() || !m_hasAlpha) |
| 212 | return; |
| 213 | |
| 214 | bool transparentImage = true; |
| 215 | bool blackImage = true; |
| 216 | |
| 217 | for (int y=0; y<header.height; ++y) { |
| 218 | auto p = (uint32_t*)(image.pixels + y*image.rowstride); |
| 219 | for (int x=0; x<header.width; ++x, ++p) { |
| 220 | color_t c = *p; |
| 221 | if (transparentImage && |
| 222 | geta(c) != 0) { |
| 223 | transparentImage = false; |
| 224 | } |
| 225 | if (blackImage && |
| 226 | (getr(c) != 0 || |
| 227 | getg(c) != 0 || |
| 228 | getb(c) != 0)) { |
| 229 | blackImage = false; |
| 230 | } |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | // If the image is fully transparent (all pixels with alpha=0) and |
| 235 | // there are pixels with RGB != 0 (!blackImage), we have to make the |
| 236 | // image completely opaque (alpha=255). |
| 237 | if (transparentImage && !blackImage) { |
| 238 | for (int y=0; y<header.height; ++y) { |
| 239 | auto p = (uint32_t*)(image.pixels + y*image.rowstride); |
| 240 | for (int x=0; x<header.width; ++x, ++p) { |
| 241 | color_t c = *p; |
| 242 | *p = rgba(getr(c), |
| 243 | getg(c), |
| 244 | getb(c), 255); |
| 245 | } |
| 246 | } |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | template<typename T> |
| 251 | bool Decoder::readUncompressedData(const int w, color_t (Decoder::*readPixel)()) |
| 252 | { |
| 253 | for (int x=0; x<w && m_file->ok(); ++x) { |
| 254 | if (m_iterator.putPixel<T>(static_cast<T>((this->*readPixel)()))) |
| 255 | return true; |
| 256 | } |
| 257 | return false; |
| 258 | } |
| 259 | |
| 260 | // In the best case (TGA 2.0 spec) this should read just one |
| 261 | // scanline, but in old TGA versions (1.0) it was possible to save |
| 262 | // several scanlines with the same RLE data. |
| 263 | // |
| 264 | // Returns true when are are done. |
| 265 | template<typename T> |
| 266 | bool Decoder::readRleData(const int w, color_t (Decoder::*readPixel)()) |
| 267 | { |
| 268 | for (int x=0; x<w && m_file->ok(); ) { |
| 269 | int c = read8(); |
| 270 | if (c & 0x80) { |
| 271 | c = (c & 0x7f) + 1; |
| 272 | x += c; |
| 273 | const T pixel = static_cast<T>((this->*readPixel)()); |
| 274 | while (c-- > 0) |
| 275 | if (m_iterator.putPixel<T>(pixel)) |
| 276 | return true; |
| 277 | } |
| 278 | else { |
| 279 | ++c; |
| 280 | x += c; |
| 281 | while (c-- > 0) { |
| 282 | if (m_iterator.putPixel<T>(static_cast<T>((this->*readPixel)()))) |
| 283 | return true; |
| 284 | } |
| 285 | } |
| 286 | } |
| 287 | return false; |
| 288 | } |
| 289 | |
| 290 | uint8_t Decoder::read8() |
| 291 | { |
| 292 | return m_file->read8(); |
| 293 | } |
| 294 | |
| 295 | // Reads a WORD (16 bits) using in little-endian byte ordering. |
| 296 | uint16_t Decoder::read16() |
| 297 | { |
| 298 | uint8_t b1 = m_file->read8(); |
| 299 | uint8_t b2 = m_file->read8(); |
| 300 | |
| 301 | if (m_file->ok()) { |
| 302 | return ((b2 << 8) | b1); // Little endian |
| 303 | } |
| 304 | else |
| 305 | return 0; |
| 306 | } |
| 307 | |
| 308 | // Reads a DWORD (32 bits) using in little-endian byte ordering. |
| 309 | uint32_t Decoder::read32() |
| 310 | { |
| 311 | const uint8_t b1 = m_file->read8(); |
| 312 | const uint8_t b2 = m_file->read8(); |
| 313 | const uint8_t b3 = m_file->read8(); |
| 314 | const uint8_t b4 = m_file->read8(); |
| 315 | |
| 316 | if (m_file->ok()) { |
| 317 | // Little endian |
| 318 | return ((b4 << 24) | (b3 << 16) | (b2 << 8) | b1); |
| 319 | } |
| 320 | else |
| 321 | return 0; |
| 322 | } |
| 323 | |
| 324 | color_t Decoder::read32AsRgb() |
| 325 | { |
| 326 | const uint8_t b = read8(); |
| 327 | const uint8_t g = read8(); |
| 328 | const uint8_t r = read8(); |
| 329 | uint8_t a = read8(); |
| 330 | if (!m_hasAlpha) |
| 331 | a = 255; |
| 332 | return rgba(r, g, b, a); |
| 333 | } |
| 334 | |
| 335 | color_t Decoder::read24AsRgb() |
| 336 | { |
| 337 | const uint8_t b = read8(); |
| 338 | const uint8_t g = read8(); |
| 339 | const uint8_t r = read8(); |
| 340 | return rgba(r, g, b, 255); |
| 341 | } |
| 342 | |
| 343 | color_t Decoder::read16AsRgb() |
| 344 | { |
| 345 | const uint16_t v = read16(); |
| 346 | uint8_t a = 255; |
| 347 | if (m_hasAlpha) { |
| 348 | if ((v & 0x8000) == 0) // Transparent bit |
| 349 | a = 0; |
| 350 | } |
| 351 | return rgba(scale_5bits_to_8bits((v >> 10) & 0x1F), |
| 352 | scale_5bits_to_8bits((v >> 5) & 0x1F), |
| 353 | scale_5bits_to_8bits(v & 0x1F), |
| 354 | a); |
| 355 | } |
| 356 | |
| 357 | } // namespace tga |
| 358 | |