1 | /*************************************************************************** |
2 | * _ _ ____ _ |
3 | * Project ___| | | | _ \| | |
4 | * / __| | | | |_) | | |
5 | * | (__| |_| | _ <| |___ |
6 | * \___|\___/|_| \_\_____| |
7 | * |
8 | * Copyright (C) 1998 - 2021, Daniel Stenberg, <daniel@haxx.se>, et al. |
9 | * |
10 | * This software is licensed as described in the file COPYING, which |
11 | * you should have received as part of this distribution. The terms |
12 | * are also available at https://curl.se/docs/copyright.html. |
13 | * |
14 | * You may opt to use, copy, modify, merge, publish, distribute and/or sell |
15 | * copies of the Software, and permit persons to whom the Software is |
16 | * furnished to do so, under the terms of the COPYING file. |
17 | * |
18 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
19 | * KIND, either express or implied. |
20 | * |
21 | ***************************************************************************/ |
22 | |
23 | #include "curl_setup.h" |
24 | |
25 | /*********************************************************************** |
26 | * Only for ares-enabled builds |
27 | * And only for functions that fulfill the asynch resolver backend API |
28 | * as defined in asyn.h, nothing else belongs in this file! |
29 | **********************************************************************/ |
30 | |
31 | #ifdef CURLRES_ARES |
32 | |
33 | #include <limits.h> |
34 | #ifdef HAVE_NETINET_IN_H |
35 | #include <netinet/in.h> |
36 | #endif |
37 | #ifdef HAVE_NETDB_H |
38 | #include <netdb.h> |
39 | #endif |
40 | #ifdef HAVE_ARPA_INET_H |
41 | #include <arpa/inet.h> |
42 | #endif |
43 | #ifdef __VMS |
44 | #include <in.h> |
45 | #include <inet.h> |
46 | #endif |
47 | |
48 | #ifdef HAVE_PROCESS_H |
49 | #include <process.h> |
50 | #endif |
51 | |
52 | #if (defined(NETWARE) && defined(__NOVELL_LIBC__)) |
53 | #undef in_addr_t |
54 | #define in_addr_t unsigned long |
55 | #endif |
56 | |
57 | #include "urldata.h" |
58 | #include "sendf.h" |
59 | #include "hostip.h" |
60 | #include "hash.h" |
61 | #include "share.h" |
62 | #include "url.h" |
63 | #include "multiif.h" |
64 | #include "inet_pton.h" |
65 | #include "connect.h" |
66 | #include "select.h" |
67 | #include "progress.h" |
68 | |
69 | # if defined(CURL_STATICLIB) && !defined(CARES_STATICLIB) && \ |
70 | defined(WIN32) |
71 | # define CARES_STATICLIB |
72 | # endif |
73 | # include <ares.h> |
74 | # include <ares_version.h> /* really old c-ares didn't include this by |
75 | itself */ |
76 | |
77 | #if ARES_VERSION >= 0x010500 |
78 | /* c-ares 1.5.0 or later, the callback proto is modified */ |
79 | #define HAVE_CARES_CALLBACK_TIMEOUTS 1 |
80 | #endif |
81 | |
82 | #if ARES_VERSION >= 0x010601 |
83 | /* IPv6 supported since 1.6.1 */ |
84 | #define HAVE_CARES_IPV6 1 |
85 | #endif |
86 | |
87 | #if ARES_VERSION >= 0x010704 |
88 | #define HAVE_CARES_SERVERS_CSV 1 |
89 | #define HAVE_CARES_LOCAL_DEV 1 |
90 | #define HAVE_CARES_SET_LOCAL 1 |
91 | #endif |
92 | |
93 | #if ARES_VERSION >= 0x010b00 |
94 | #define HAVE_CARES_PORTS_CSV 1 |
95 | #endif |
96 | |
97 | #if ARES_VERSION >= 0x011000 |
98 | /* 1.16.0 or later has ares_getaddrinfo */ |
99 | #define HAVE_CARES_GETADDRINFO 1 |
100 | #endif |
101 | |
102 | /* The last 3 #include files should be in this order */ |
103 | #include "curl_printf.h" |
104 | #include "curl_memory.h" |
105 | #include "memdebug.h" |
106 | |
107 | struct thread_data { |
108 | int num_pending; /* number of outstanding c-ares requests */ |
109 | struct Curl_addrinfo *temp_ai; /* intermediary result while fetching c-ares |
110 | parts */ |
111 | int last_status; |
112 | struct curltime happy_eyeballs_dns_time; /* when this timer started, or 0 */ |
113 | }; |
114 | |
115 | /* How long we are willing to wait for additional parallel responses after |
116 | obtaining a "definitive" one. |
117 | |
118 | This is intended to equal the c-ares default timeout. cURL always uses that |
119 | default value. Unfortunately, c-ares doesn't expose its default timeout in |
120 | its API, but it is officially documented as 5 seconds. |
121 | |
122 | See query_completed_cb() for an explanation of how this is used. |
123 | */ |
124 | #define HAPPY_EYEBALLS_DNS_TIMEOUT 5000 |
125 | |
126 | /* |
127 | * Curl_resolver_global_init() - the generic low-level asynchronous name |
128 | * resolve API. Called from curl_global_init() to initialize global resolver |
129 | * environment. Initializes ares library. |
130 | */ |
131 | int Curl_resolver_global_init(void) |
132 | { |
133 | #ifdef CARES_HAVE_ARES_LIBRARY_INIT |
134 | if(ares_library_init(ARES_LIB_INIT_ALL)) { |
135 | return CURLE_FAILED_INIT; |
136 | } |
137 | #endif |
138 | return CURLE_OK; |
139 | } |
140 | |
141 | /* |
142 | * Curl_resolver_global_cleanup() |
143 | * |
144 | * Called from curl_global_cleanup() to destroy global resolver environment. |
145 | * Deinitializes ares library. |
146 | */ |
147 | void Curl_resolver_global_cleanup(void) |
148 | { |
149 | #ifdef CARES_HAVE_ARES_LIBRARY_CLEANUP |
150 | ares_library_cleanup(); |
151 | #endif |
152 | } |
153 | |
154 | |
155 | static void sock_state_cb(void *data, ares_socket_t socket_fd, |
156 | int readable, int writable) |
157 | { |
158 | struct Curl_easy *easy = data; |
159 | if(!readable && !writable) { |
160 | DEBUGASSERT(easy); |
161 | Curl_multi_closed(easy, socket_fd); |
162 | } |
163 | } |
164 | |
165 | /* |
166 | * Curl_resolver_init() |
167 | * |
168 | * Called from curl_easy_init() -> Curl_open() to initialize resolver |
169 | * URL-state specific environment ('resolver' member of the UrlState |
170 | * structure). Fills the passed pointer by the initialized ares_channel. |
171 | */ |
172 | CURLcode Curl_resolver_init(struct Curl_easy *easy, void **resolver) |
173 | { |
174 | int status; |
175 | struct ares_options options; |
176 | int optmask = ARES_OPT_SOCK_STATE_CB; |
177 | options.sock_state_cb = sock_state_cb; |
178 | options.sock_state_cb_data = easy; |
179 | status = ares_init_options((ares_channel*)resolver, &options, optmask); |
180 | if(status != ARES_SUCCESS) { |
181 | if(status == ARES_ENOMEM) |
182 | return CURLE_OUT_OF_MEMORY; |
183 | else |
184 | return CURLE_FAILED_INIT; |
185 | } |
186 | return CURLE_OK; |
187 | /* make sure that all other returns from this function should destroy the |
188 | ares channel before returning error! */ |
189 | } |
190 | |
191 | /* |
192 | * Curl_resolver_cleanup() |
193 | * |
194 | * Called from curl_easy_cleanup() -> Curl_close() to cleanup resolver |
195 | * URL-state specific environment ('resolver' member of the UrlState |
196 | * structure). Destroys the ares channel. |
197 | */ |
198 | void Curl_resolver_cleanup(void *resolver) |
199 | { |
200 | ares_destroy((ares_channel)resolver); |
201 | } |
202 | |
203 | /* |
204 | * Curl_resolver_duphandle() |
205 | * |
206 | * Called from curl_easy_duphandle() to duplicate resolver URL-state specific |
207 | * environment ('resolver' member of the UrlState structure). Duplicates the |
208 | * 'from' ares channel and passes the resulting channel to the 'to' pointer. |
209 | */ |
210 | CURLcode Curl_resolver_duphandle(struct Curl_easy *easy, void **to, void *from) |
211 | { |
212 | (void)from; |
213 | /* |
214 | * it would be better to call ares_dup instead, but right now |
215 | * it is not possible to set 'sock_state_cb_data' outside of |
216 | * ares_init_options |
217 | */ |
218 | return Curl_resolver_init(easy, to); |
219 | } |
220 | |
221 | static void destroy_async_data(struct Curl_async *async); |
222 | |
223 | /* |
224 | * Cancel all possibly still on-going resolves for this connection. |
225 | */ |
226 | void Curl_resolver_cancel(struct Curl_easy *data) |
227 | { |
228 | DEBUGASSERT(data); |
229 | if(data->state.async.resolver) |
230 | ares_cancel((ares_channel)data->state.async.resolver); |
231 | destroy_async_data(&data->state.async); |
232 | } |
233 | |
234 | /* |
235 | * We're equivalent to Curl_resolver_cancel() for the c-ares resolver. We |
236 | * never block. |
237 | */ |
238 | void Curl_resolver_kill(struct Curl_easy *data) |
239 | { |
240 | /* We don't need to check the resolver state because we can be called safely |
241 | at any time and we always do the same thing. */ |
242 | Curl_resolver_cancel(data); |
243 | } |
244 | |
245 | /* |
246 | * destroy_async_data() cleans up async resolver data. |
247 | */ |
248 | static void destroy_async_data(struct Curl_async *async) |
249 | { |
250 | free(async->hostname); |
251 | |
252 | if(async->tdata) { |
253 | struct thread_data *res = async->tdata; |
254 | if(res) { |
255 | if(res->temp_ai) { |
256 | Curl_freeaddrinfo(res->temp_ai); |
257 | res->temp_ai = NULL; |
258 | } |
259 | free(res); |
260 | } |
261 | async->tdata = NULL; |
262 | } |
263 | |
264 | async->hostname = NULL; |
265 | } |
266 | |
267 | /* |
268 | * Curl_resolver_getsock() is called when someone from the outside world |
269 | * (using curl_multi_fdset()) wants to get our fd_set setup and we're talking |
270 | * with ares. The caller must make sure that this function is only called when |
271 | * we have a working ares channel. |
272 | * |
273 | * Returns: sockets-in-use-bitmap |
274 | */ |
275 | |
276 | int Curl_resolver_getsock(struct Curl_easy *data, |
277 | curl_socket_t *socks) |
278 | { |
279 | struct timeval maxtime; |
280 | struct timeval timebuf; |
281 | struct timeval *timeout; |
282 | long milli; |
283 | int max = ares_getsock((ares_channel)data->state.async.resolver, |
284 | (ares_socket_t *)socks, MAX_SOCKSPEREASYHANDLE); |
285 | |
286 | maxtime.tv_sec = CURL_TIMEOUT_RESOLVE; |
287 | maxtime.tv_usec = 0; |
288 | |
289 | timeout = ares_timeout((ares_channel)data->state.async.resolver, &maxtime, |
290 | &timebuf); |
291 | milli = (timeout->tv_sec * 1000) + (timeout->tv_usec/1000); |
292 | if(milli == 0) |
293 | milli += 10; |
294 | Curl_expire(data, milli, EXPIRE_ASYNC_NAME); |
295 | |
296 | return max; |
297 | } |
298 | |
299 | /* |
300 | * waitperform() |
301 | * |
302 | * 1) Ask ares what sockets it currently plays with, then |
303 | * 2) wait for the timeout period to check for action on ares' sockets. |
304 | * 3) tell ares to act on all the sockets marked as "with action" |
305 | * |
306 | * return number of sockets it worked on |
307 | */ |
308 | |
309 | static int waitperform(struct Curl_easy *data, timediff_t timeout_ms) |
310 | { |
311 | int nfds; |
312 | int bitmask; |
313 | ares_socket_t socks[ARES_GETSOCK_MAXNUM]; |
314 | struct pollfd pfd[ARES_GETSOCK_MAXNUM]; |
315 | int i; |
316 | int num = 0; |
317 | |
318 | bitmask = ares_getsock((ares_channel)data->state.async.resolver, socks, |
319 | ARES_GETSOCK_MAXNUM); |
320 | |
321 | for(i = 0; i < ARES_GETSOCK_MAXNUM; i++) { |
322 | pfd[i].events = 0; |
323 | pfd[i].revents = 0; |
324 | if(ARES_GETSOCK_READABLE(bitmask, i)) { |
325 | pfd[i].fd = socks[i]; |
326 | pfd[i].events |= POLLRDNORM|POLLIN; |
327 | } |
328 | if(ARES_GETSOCK_WRITABLE(bitmask, i)) { |
329 | pfd[i].fd = socks[i]; |
330 | pfd[i].events |= POLLWRNORM|POLLOUT; |
331 | } |
332 | if(pfd[i].events) |
333 | num++; |
334 | else |
335 | break; |
336 | } |
337 | |
338 | if(num) |
339 | nfds = Curl_poll(pfd, num, timeout_ms); |
340 | else |
341 | nfds = 0; |
342 | |
343 | if(!nfds) |
344 | /* Call ares_process() unconditonally here, even if we simply timed out |
345 | above, as otherwise the ares name resolve won't timeout! */ |
346 | ares_process_fd((ares_channel)data->state.async.resolver, ARES_SOCKET_BAD, |
347 | ARES_SOCKET_BAD); |
348 | else { |
349 | /* move through the descriptors and ask for processing on them */ |
350 | for(i = 0; i < num; i++) |
351 | ares_process_fd((ares_channel)data->state.async.resolver, |
352 | (pfd[i].revents & (POLLRDNORM|POLLIN))? |
353 | pfd[i].fd:ARES_SOCKET_BAD, |
354 | (pfd[i].revents & (POLLWRNORM|POLLOUT))? |
355 | pfd[i].fd:ARES_SOCKET_BAD); |
356 | } |
357 | return nfds; |
358 | } |
359 | |
360 | /* |
361 | * Curl_resolver_is_resolved() is called repeatedly to check if a previous |
362 | * name resolve request has completed. It should also make sure to time-out if |
363 | * the operation seems to take too long. |
364 | * |
365 | * Returns normal CURLcode errors. |
366 | */ |
367 | CURLcode Curl_resolver_is_resolved(struct Curl_easy *data, |
368 | struct Curl_dns_entry **dns) |
369 | { |
370 | struct thread_data *res = data->state.async.tdata; |
371 | CURLcode result = CURLE_OK; |
372 | |
373 | DEBUGASSERT(dns); |
374 | *dns = NULL; |
375 | |
376 | waitperform(data, 0); |
377 | |
378 | /* Now that we've checked for any last minute results above, see if there are |
379 | any responses still pending when the EXPIRE_HAPPY_EYEBALLS_DNS timer |
380 | expires. */ |
381 | if(res |
382 | && res->num_pending |
383 | /* This is only set to non-zero if the timer was started. */ |
384 | && (res->happy_eyeballs_dns_time.tv_sec |
385 | || res->happy_eyeballs_dns_time.tv_usec) |
386 | && (Curl_timediff(Curl_now(), res->happy_eyeballs_dns_time) |
387 | >= HAPPY_EYEBALLS_DNS_TIMEOUT)) { |
388 | /* Remember that the EXPIRE_HAPPY_EYEBALLS_DNS timer is no longer |
389 | running. */ |
390 | memset( |
391 | &res->happy_eyeballs_dns_time, 0, sizeof(res->happy_eyeballs_dns_time)); |
392 | |
393 | /* Cancel the raw c-ares request, which will fire query_completed_cb() with |
394 | ARES_ECANCELLED synchronously for all pending responses. This will |
395 | leave us with res->num_pending == 0, which is perfect for the next |
396 | block. */ |
397 | ares_cancel((ares_channel)data->state.async.resolver); |
398 | DEBUGASSERT(res->num_pending == 0); |
399 | } |
400 | |
401 | if(res && !res->num_pending) { |
402 | (void)Curl_addrinfo_callback(data, res->last_status, res->temp_ai); |
403 | /* temp_ai ownership is moved to the connection, so we need not free-up |
404 | them */ |
405 | res->temp_ai = NULL; |
406 | |
407 | if(!data->state.async.dns) |
408 | result = Curl_resolver_error(data); |
409 | else |
410 | *dns = data->state.async.dns; |
411 | |
412 | destroy_async_data(&data->state.async); |
413 | } |
414 | |
415 | return result; |
416 | } |
417 | |
418 | /* |
419 | * Curl_resolver_wait_resolv() |
420 | * |
421 | * Waits for a resolve to finish. This function should be avoided since using |
422 | * this risk getting the multi interface to "hang". |
423 | * |
424 | * 'entry' MUST be non-NULL. |
425 | * |
426 | * Returns CURLE_COULDNT_RESOLVE_HOST if the host was not resolved, |
427 | * CURLE_OPERATION_TIMEDOUT if a time-out occurred, or other errors. |
428 | */ |
429 | CURLcode Curl_resolver_wait_resolv(struct Curl_easy *data, |
430 | struct Curl_dns_entry **entry) |
431 | { |
432 | CURLcode result = CURLE_OK; |
433 | timediff_t timeout; |
434 | struct curltime now = Curl_now(); |
435 | |
436 | DEBUGASSERT(entry); |
437 | *entry = NULL; /* clear on entry */ |
438 | |
439 | timeout = Curl_timeleft(data, &now, TRUE); |
440 | if(timeout < 0) { |
441 | /* already expired! */ |
442 | connclose(data->conn, "Timed out before name resolve started" ); |
443 | return CURLE_OPERATION_TIMEDOUT; |
444 | } |
445 | if(!timeout) |
446 | timeout = CURL_TIMEOUT_RESOLVE * 1000; /* default name resolve timeout */ |
447 | |
448 | /* Wait for the name resolve query to complete. */ |
449 | while(!result) { |
450 | struct timeval *tvp, tv, store; |
451 | int itimeout; |
452 | timediff_t timeout_ms; |
453 | |
454 | #if TIMEDIFF_T_MAX > INT_MAX |
455 | itimeout = (timeout > INT_MAX) ? INT_MAX : (int)timeout; |
456 | #else |
457 | itimeout = (int)timeout; |
458 | #endif |
459 | |
460 | store.tv_sec = itimeout/1000; |
461 | store.tv_usec = (itimeout%1000)*1000; |
462 | |
463 | tvp = ares_timeout((ares_channel)data->state.async.resolver, &store, &tv); |
464 | |
465 | /* use the timeout period ares returned to us above if less than one |
466 | second is left, otherwise just use 1000ms to make sure the progress |
467 | callback gets called frequent enough */ |
468 | if(!tvp->tv_sec) |
469 | timeout_ms = (timediff_t)(tvp->tv_usec/1000); |
470 | else |
471 | timeout_ms = 1000; |
472 | |
473 | waitperform(data, timeout_ms); |
474 | result = Curl_resolver_is_resolved(data, entry); |
475 | |
476 | if(result || data->state.async.done) |
477 | break; |
478 | |
479 | if(Curl_pgrsUpdate(data)) |
480 | result = CURLE_ABORTED_BY_CALLBACK; |
481 | else { |
482 | struct curltime now2 = Curl_now(); |
483 | timediff_t timediff = Curl_timediff(now2, now); /* spent time */ |
484 | if(timediff <= 0) |
485 | timeout -= 1; /* always deduct at least 1 */ |
486 | else if(timediff > timeout) |
487 | timeout = -1; |
488 | else |
489 | timeout -= timediff; |
490 | now = now2; /* for next loop */ |
491 | } |
492 | if(timeout < 0) |
493 | result = CURLE_OPERATION_TIMEDOUT; |
494 | } |
495 | if(result) |
496 | /* failure, so we cancel the ares operation */ |
497 | ares_cancel((ares_channel)data->state.async.resolver); |
498 | |
499 | /* Operation complete, if the lookup was successful we now have the entry |
500 | in the cache. */ |
501 | if(entry) |
502 | *entry = data->state.async.dns; |
503 | |
504 | if(result) |
505 | /* close the connection, since we can't return failure here without |
506 | cleaning up this connection properly. */ |
507 | connclose(data->conn, "c-ares resolve failed" ); |
508 | |
509 | return result; |
510 | } |
511 | |
512 | #ifndef HAVE_CARES_GETADDRINFO |
513 | |
514 | /* Connects results to the list */ |
515 | static void compound_results(struct thread_data *res, |
516 | struct Curl_addrinfo *ai) |
517 | { |
518 | if(!ai) |
519 | return; |
520 | |
521 | #ifdef ENABLE_IPV6 /* CURLRES_IPV6 */ |
522 | if(res->temp_ai && res->temp_ai->ai_family == PF_INET6) { |
523 | /* We have results already, put the new IPv6 entries at the head of the |
524 | list. */ |
525 | struct Curl_addrinfo *temp_ai_tail = res->temp_ai; |
526 | |
527 | while(temp_ai_tail->ai_next) |
528 | temp_ai_tail = temp_ai_tail->ai_next; |
529 | |
530 | temp_ai_tail->ai_next = ai; |
531 | } |
532 | else |
533 | #endif /* CURLRES_IPV6 */ |
534 | { |
535 | /* Add the new results to the list of old results. */ |
536 | struct Curl_addrinfo *ai_tail = ai; |
537 | while(ai_tail->ai_next) |
538 | ai_tail = ai_tail->ai_next; |
539 | |
540 | ai_tail->ai_next = res->temp_ai; |
541 | res->temp_ai = ai; |
542 | } |
543 | } |
544 | |
545 | /* |
546 | * ares_query_completed_cb() is the callback that ares will call when |
547 | * the host query initiated by ares_gethostbyname() from Curl_getaddrinfo(), |
548 | * when using ares, is completed either successfully or with failure. |
549 | */ |
550 | static void query_completed_cb(void *arg, /* (struct connectdata *) */ |
551 | int status, |
552 | #ifdef HAVE_CARES_CALLBACK_TIMEOUTS |
553 | int timeouts, |
554 | #endif |
555 | struct hostent *hostent) |
556 | { |
557 | struct Curl_easy *data = (struct Curl_easy *)arg; |
558 | struct thread_data *res; |
559 | |
560 | #ifdef HAVE_CARES_CALLBACK_TIMEOUTS |
561 | (void)timeouts; /* ignored */ |
562 | #endif |
563 | |
564 | if(ARES_EDESTRUCTION == status) |
565 | /* when this ares handle is getting destroyed, the 'arg' pointer may not |
566 | be valid so only defer it when we know the 'status' says its fine! */ |
567 | return; |
568 | |
569 | res = data->state.async.tdata; |
570 | if(res) { |
571 | res->num_pending--; |
572 | |
573 | if(CURL_ASYNC_SUCCESS == status) { |
574 | struct Curl_addrinfo *ai = Curl_he2ai(hostent, data->state.async.port); |
575 | if(ai) { |
576 | compound_results(res, ai); |
577 | } |
578 | } |
579 | /* A successful result overwrites any previous error */ |
580 | if(res->last_status != ARES_SUCCESS) |
581 | res->last_status = status; |
582 | |
583 | /* If there are responses still pending, we presume they must be the |
584 | complementary IPv4 or IPv6 lookups that we started in parallel in |
585 | Curl_resolver_getaddrinfo() (for Happy Eyeballs). If we've got a |
586 | "definitive" response from one of a set of parallel queries, we need to |
587 | think about how long we're willing to wait for more responses. */ |
588 | if(res->num_pending |
589 | /* Only these c-ares status values count as "definitive" for these |
590 | purposes. For example, ARES_ENODATA is what we expect when there is |
591 | no IPv6 entry for a domain name, and that's not a reason to get more |
592 | aggressive in our timeouts for the other response. Other errors are |
593 | either a result of bad input (which should affect all parallel |
594 | requests), local or network conditions, non-definitive server |
595 | responses, or us cancelling the request. */ |
596 | && (status == ARES_SUCCESS || status == ARES_ENOTFOUND)) { |
597 | /* Right now, there can only be up to two parallel queries, so don't |
598 | bother handling any other cases. */ |
599 | DEBUGASSERT(res->num_pending == 1); |
600 | |
601 | /* It's possible that one of these parallel queries could succeed |
602 | quickly, but the other could always fail or timeout (when we're |
603 | talking to a pool of DNS servers that can only successfully resolve |
604 | IPv4 address, for example). |
605 | |
606 | It's also possible that the other request could always just take |
607 | longer because it needs more time or only the second DNS server can |
608 | fulfill it successfully. But, to align with the philosophy of Happy |
609 | Eyeballs, we don't want to wait _too_ long or users will think |
610 | requests are slow when IPv6 lookups don't actually work (but IPv4 ones |
611 | do). |
612 | |
613 | So, now that we have a usable answer (some IPv4 addresses, some IPv6 |
614 | addresses, or "no such domain"), we start a timeout for the remaining |
615 | pending responses. Even though it is typical that this resolved |
616 | request came back quickly, that needn't be the case. It might be that |
617 | this completing request didn't get a result from the first DNS server |
618 | or even the first round of the whole DNS server pool. So it could |
619 | already be quite some time after we issued the DNS queries in the |
620 | first place. Without modifying c-ares, we can't know exactly where in |
621 | its retry cycle we are. We could guess based on how much time has |
622 | gone by, but it doesn't really matter. Happy Eyeballs tells us that, |
623 | given usable information in hand, we simply don't want to wait "too |
624 | much longer" after we get a result. |
625 | |
626 | We simply wait an additional amount of time equal to the default |
627 | c-ares query timeout. That is enough time for a typical parallel |
628 | response to arrive without being "too long". Even on a network |
629 | where one of the two types of queries is failing or timing out |
630 | constantly, this will usually mean we wait a total of the default |
631 | c-ares timeout (5 seconds) plus the round trip time for the successful |
632 | request, which seems bearable. The downside is that c-ares might race |
633 | with us to issue one more retry just before we give up, but it seems |
634 | better to "waste" that request instead of trying to guess the perfect |
635 | timeout to prevent it. After all, we don't even know where in the |
636 | c-ares retry cycle each request is. |
637 | */ |
638 | res->happy_eyeballs_dns_time = Curl_now(); |
639 | Curl_expire(data, HAPPY_EYEBALLS_DNS_TIMEOUT, |
640 | EXPIRE_HAPPY_EYEBALLS_DNS); |
641 | } |
642 | } |
643 | } |
644 | #else |
645 | /* c-ares 1.16.0 or later */ |
646 | |
647 | /* |
648 | * ares2addr() converts an address list provided by c-ares to an internal |
649 | * libcurl compatible list |
650 | */ |
651 | static struct Curl_addrinfo *ares2addr(struct ares_addrinfo_node *node) |
652 | { |
653 | /* traverse the ares_addrinfo_node list */ |
654 | struct ares_addrinfo_node *ai; |
655 | struct Curl_addrinfo *cafirst = NULL; |
656 | struct Curl_addrinfo *calast = NULL; |
657 | int error = 0; |
658 | |
659 | for(ai = node; ai != NULL; ai = ai->ai_next) { |
660 | size_t ss_size; |
661 | struct Curl_addrinfo *ca; |
662 | /* ignore elements with unsupported address family, */ |
663 | /* settle family-specific sockaddr structure size. */ |
664 | if(ai->ai_family == AF_INET) |
665 | ss_size = sizeof(struct sockaddr_in); |
666 | #ifdef ENABLE_IPV6 |
667 | else if(ai->ai_family == AF_INET6) |
668 | ss_size = sizeof(struct sockaddr_in6); |
669 | #endif |
670 | else |
671 | continue; |
672 | |
673 | /* ignore elements without required address info */ |
674 | if(!ai->ai_addr || !(ai->ai_addrlen > 0)) |
675 | continue; |
676 | |
677 | /* ignore elements with bogus address size */ |
678 | if((size_t)ai->ai_addrlen < ss_size) |
679 | continue; |
680 | |
681 | ca = malloc(sizeof(struct Curl_addrinfo) + ss_size); |
682 | if(!ca) { |
683 | error = EAI_MEMORY; |
684 | break; |
685 | } |
686 | |
687 | /* copy each structure member individually, member ordering, */ |
688 | /* size, or padding might be different for each platform. */ |
689 | |
690 | ca->ai_flags = ai->ai_flags; |
691 | ca->ai_family = ai->ai_family; |
692 | ca->ai_socktype = ai->ai_socktype; |
693 | ca->ai_protocol = ai->ai_protocol; |
694 | ca->ai_addrlen = (curl_socklen_t)ss_size; |
695 | ca->ai_addr = NULL; |
696 | ca->ai_canonname = NULL; |
697 | ca->ai_next = NULL; |
698 | |
699 | ca->ai_addr = (void *)((char *)ca + sizeof(struct Curl_addrinfo)); |
700 | memcpy(ca->ai_addr, ai->ai_addr, ss_size); |
701 | |
702 | /* if the return list is empty, this becomes the first element */ |
703 | if(!cafirst) |
704 | cafirst = ca; |
705 | |
706 | /* add this element last in the return list */ |
707 | if(calast) |
708 | calast->ai_next = ca; |
709 | calast = ca; |
710 | } |
711 | |
712 | /* if we failed, destroy the Curl_addrinfo list */ |
713 | if(error) { |
714 | Curl_freeaddrinfo(cafirst); |
715 | cafirst = NULL; |
716 | } |
717 | |
718 | return cafirst; |
719 | } |
720 | |
721 | static void addrinfo_cb(void *arg, int status, int timeouts, |
722 | struct ares_addrinfo *result) |
723 | { |
724 | struct Curl_easy *data = (struct Curl_easy *)arg; |
725 | struct thread_data *res = data->state.async.tdata; |
726 | (void)timeouts; |
727 | if(ARES_SUCCESS == status) { |
728 | res->temp_ai = ares2addr(result->nodes); |
729 | res->last_status = CURL_ASYNC_SUCCESS; |
730 | ares_freeaddrinfo(result); |
731 | } |
732 | res->num_pending--; |
733 | } |
734 | |
735 | #endif |
736 | /* |
737 | * Curl_resolver_getaddrinfo() - when using ares |
738 | * |
739 | * Returns name information about the given hostname and port number. If |
740 | * successful, the 'hostent' is returned and the forth argument will point to |
741 | * memory we need to free after use. That memory *MUST* be freed with |
742 | * Curl_freeaddrinfo(), nothing else. |
743 | */ |
744 | struct Curl_addrinfo *Curl_resolver_getaddrinfo(struct Curl_easy *data, |
745 | const char *hostname, |
746 | int port, |
747 | int *waitp) |
748 | { |
749 | char *bufp; |
750 | |
751 | *waitp = 0; /* default to synchronous response */ |
752 | |
753 | bufp = strdup(hostname); |
754 | if(bufp) { |
755 | struct thread_data *res = NULL; |
756 | free(data->state.async.hostname); |
757 | data->state.async.hostname = bufp; |
758 | data->state.async.port = port; |
759 | data->state.async.done = FALSE; /* not done */ |
760 | data->state.async.status = 0; /* clear */ |
761 | data->state.async.dns = NULL; /* clear */ |
762 | res = calloc(sizeof(struct thread_data), 1); |
763 | if(!res) { |
764 | free(data->state.async.hostname); |
765 | data->state.async.hostname = NULL; |
766 | return NULL; |
767 | } |
768 | data->state.async.tdata = res; |
769 | |
770 | /* initial status - failed */ |
771 | res->last_status = ARES_ENOTFOUND; |
772 | |
773 | #ifdef HAVE_CARES_GETADDRINFO |
774 | { |
775 | struct ares_addrinfo_hints hints; |
776 | char service[12]; |
777 | int pf = PF_INET; |
778 | memset(&hints, 0, sizeof(hints)); |
779 | #ifdef CURLRES_IPV6 |
780 | if(Curl_ipv6works(data)) |
781 | /* The stack seems to be IPv6-enabled */ |
782 | pf = PF_UNSPEC; |
783 | #endif /* CURLRES_IPV6 */ |
784 | hints.ai_family = pf; |
785 | hints.ai_socktype = (data->conn->transport == TRNSPRT_TCP)? |
786 | SOCK_STREAM : SOCK_DGRAM; |
787 | msnprintf(service, sizeof(service), "%d" , port); |
788 | res->num_pending = 1; |
789 | ares_getaddrinfo((ares_channel)data->state.async.resolver, hostname, |
790 | service, &hints, addrinfo_cb, data); |
791 | } |
792 | #else |
793 | |
794 | #ifdef HAVE_CARES_IPV6 |
795 | if(Curl_ipv6works(data)) { |
796 | /* The stack seems to be IPv6-enabled */ |
797 | res->num_pending = 2; |
798 | |
799 | /* areschannel is already setup in the Curl_open() function */ |
800 | ares_gethostbyname((ares_channel)data->state.async.resolver, hostname, |
801 | PF_INET, query_completed_cb, data); |
802 | ares_gethostbyname((ares_channel)data->state.async.resolver, hostname, |
803 | PF_INET6, query_completed_cb, data); |
804 | } |
805 | else |
806 | #endif |
807 | { |
808 | res->num_pending = 1; |
809 | |
810 | /* areschannel is already setup in the Curl_open() function */ |
811 | ares_gethostbyname((ares_channel)data->state.async.resolver, |
812 | hostname, PF_INET, |
813 | query_completed_cb, data); |
814 | } |
815 | #endif |
816 | *waitp = 1; /* expect asynchronous response */ |
817 | } |
818 | return NULL; /* no struct yet */ |
819 | } |
820 | |
821 | CURLcode Curl_set_dns_servers(struct Curl_easy *data, |
822 | char *servers) |
823 | { |
824 | CURLcode result = CURLE_NOT_BUILT_IN; |
825 | int ares_result; |
826 | |
827 | /* If server is NULL or empty, this would purge all DNS servers |
828 | * from ares library, which will cause any and all queries to fail. |
829 | * So, just return OK if none are configured and don't actually make |
830 | * any changes to c-ares. This lets c-ares use it's defaults, which |
831 | * it gets from the OS (for instance from /etc/resolv.conf on Linux). |
832 | */ |
833 | if(!(servers && servers[0])) |
834 | return CURLE_OK; |
835 | |
836 | #ifdef HAVE_CARES_SERVERS_CSV |
837 | #ifdef HAVE_CARES_PORTS_CSV |
838 | ares_result = ares_set_servers_ports_csv(data->state.async.resolver, |
839 | servers); |
840 | #else |
841 | ares_result = ares_set_servers_csv(data->state.async.resolver, servers); |
842 | #endif |
843 | switch(ares_result) { |
844 | case ARES_SUCCESS: |
845 | result = CURLE_OK; |
846 | break; |
847 | case ARES_ENOMEM: |
848 | result = CURLE_OUT_OF_MEMORY; |
849 | break; |
850 | case ARES_ENOTINITIALIZED: |
851 | case ARES_ENODATA: |
852 | case ARES_EBADSTR: |
853 | default: |
854 | result = CURLE_BAD_FUNCTION_ARGUMENT; |
855 | break; |
856 | } |
857 | #else /* too old c-ares version! */ |
858 | (void)data; |
859 | (void)(ares_result); |
860 | #endif |
861 | return result; |
862 | } |
863 | |
864 | CURLcode Curl_set_dns_interface(struct Curl_easy *data, |
865 | const char *interf) |
866 | { |
867 | #ifdef HAVE_CARES_LOCAL_DEV |
868 | if(!interf) |
869 | interf = "" ; |
870 | |
871 | ares_set_local_dev((ares_channel)data->state.async.resolver, interf); |
872 | |
873 | return CURLE_OK; |
874 | #else /* c-ares version too old! */ |
875 | (void)data; |
876 | (void)interf; |
877 | return CURLE_NOT_BUILT_IN; |
878 | #endif |
879 | } |
880 | |
881 | CURLcode Curl_set_dns_local_ip4(struct Curl_easy *data, |
882 | const char *local_ip4) |
883 | { |
884 | #ifdef HAVE_CARES_SET_LOCAL |
885 | struct in_addr a4; |
886 | |
887 | if((!local_ip4) || (local_ip4[0] == 0)) { |
888 | a4.s_addr = 0; /* disabled: do not bind to a specific address */ |
889 | } |
890 | else { |
891 | if(Curl_inet_pton(AF_INET, local_ip4, &a4) != 1) { |
892 | return CURLE_BAD_FUNCTION_ARGUMENT; |
893 | } |
894 | } |
895 | |
896 | ares_set_local_ip4((ares_channel)data->state.async.resolver, |
897 | ntohl(a4.s_addr)); |
898 | |
899 | return CURLE_OK; |
900 | #else /* c-ares version too old! */ |
901 | (void)data; |
902 | (void)local_ip4; |
903 | return CURLE_NOT_BUILT_IN; |
904 | #endif |
905 | } |
906 | |
907 | CURLcode Curl_set_dns_local_ip6(struct Curl_easy *data, |
908 | const char *local_ip6) |
909 | { |
910 | #if defined(HAVE_CARES_SET_LOCAL) && defined(ENABLE_IPV6) |
911 | unsigned char a6[INET6_ADDRSTRLEN]; |
912 | |
913 | if((!local_ip6) || (local_ip6[0] == 0)) { |
914 | /* disabled: do not bind to a specific address */ |
915 | memset(a6, 0, sizeof(a6)); |
916 | } |
917 | else { |
918 | if(Curl_inet_pton(AF_INET6, local_ip6, a6) != 1) { |
919 | return CURLE_BAD_FUNCTION_ARGUMENT; |
920 | } |
921 | } |
922 | |
923 | ares_set_local_ip6((ares_channel)data->state.async.resolver, a6); |
924 | |
925 | return CURLE_OK; |
926 | #else /* c-ares version too old! */ |
927 | (void)data; |
928 | (void)local_ip6; |
929 | return CURLE_NOT_BUILT_IN; |
930 | #endif |
931 | } |
932 | #endif /* CURLRES_ARES */ |
933 | |