| 1 | /*************************************************************************** |
| 2 | * _ _ ____ _ |
| 3 | * Project ___| | | | _ \| | |
| 4 | * / __| | | | |_) | | |
| 5 | * | (__| |_| | _ <| |___ |
| 6 | * \___|\___/|_| \_\_____| |
| 7 | * |
| 8 | * Copyright (C) 1998 - 2021, Daniel Stenberg, <daniel@haxx.se>, et al. |
| 9 | * |
| 10 | * This software is licensed as described in the file COPYING, which |
| 11 | * you should have received as part of this distribution. The terms |
| 12 | * are also available at https://curl.se/docs/copyright.html. |
| 13 | * |
| 14 | * You may opt to use, copy, modify, merge, publish, distribute and/or sell |
| 15 | * copies of the Software, and permit persons to whom the Software is |
| 16 | * furnished to do so, under the terms of the COPYING file. |
| 17 | * |
| 18 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
| 19 | * KIND, either express or implied. |
| 20 | * |
| 21 | ***************************************************************************/ |
| 22 | |
| 23 | #include "curl_setup.h" |
| 24 | |
| 25 | #ifdef HAVE_NETINET_IN_H |
| 26 | #include <netinet/in.h> |
| 27 | #endif |
| 28 | #ifdef HAVE_NETINET_IN6_H |
| 29 | #include <netinet/in6.h> |
| 30 | #endif |
| 31 | #ifdef HAVE_NETDB_H |
| 32 | #include <netdb.h> |
| 33 | #endif |
| 34 | #ifdef HAVE_ARPA_INET_H |
| 35 | #include <arpa/inet.h> |
| 36 | #endif |
| 37 | #ifdef __VMS |
| 38 | #include <in.h> |
| 39 | #include <inet.h> |
| 40 | #endif |
| 41 | |
| 42 | #ifdef HAVE_SETJMP_H |
| 43 | #include <setjmp.h> |
| 44 | #endif |
| 45 | #ifdef HAVE_SIGNAL_H |
| 46 | #include <signal.h> |
| 47 | #endif |
| 48 | |
| 49 | #ifdef HAVE_PROCESS_H |
| 50 | #include <process.h> |
| 51 | #endif |
| 52 | |
| 53 | #include "urldata.h" |
| 54 | #include "sendf.h" |
| 55 | #include "hostip.h" |
| 56 | #include "hash.h" |
| 57 | #include "rand.h" |
| 58 | #include "share.h" |
| 59 | #include "url.h" |
| 60 | #include "inet_ntop.h" |
| 61 | #include "inet_pton.h" |
| 62 | #include "multiif.h" |
| 63 | #include "doh.h" |
| 64 | #include "warnless.h" |
| 65 | #include "strcase.h" |
| 66 | /* The last 3 #include files should be in this order */ |
| 67 | #include "curl_printf.h" |
| 68 | #include "curl_memory.h" |
| 69 | #include "memdebug.h" |
| 70 | |
| 71 | #if defined(ENABLE_IPV6) && defined(CURL_OSX_CALL_COPYPROXIES) |
| 72 | #include <SystemConfiguration/SCDynamicStoreCopySpecific.h> |
| 73 | #endif |
| 74 | |
| 75 | #if defined(CURLRES_SYNCH) && \ |
| 76 | defined(HAVE_ALARM) && defined(SIGALRM) && defined(HAVE_SIGSETJMP) |
| 77 | /* alarm-based timeouts can only be used with all the dependencies satisfied */ |
| 78 | #define USE_ALARM_TIMEOUT |
| 79 | #endif |
| 80 | |
| 81 | #define MAX_HOSTCACHE_LEN (255 + 7) /* max FQDN + colon + port number + zero */ |
| 82 | |
| 83 | /* |
| 84 | * hostip.c explained |
| 85 | * ================== |
| 86 | * |
| 87 | * The main COMPILE-TIME DEFINES to keep in mind when reading the host*.c |
| 88 | * source file are these: |
| 89 | * |
| 90 | * CURLRES_IPV6 - this host has getaddrinfo() and family, and thus we use |
| 91 | * that. The host may not be able to resolve IPv6, but we don't really have to |
| 92 | * take that into account. Hosts that aren't IPv6-enabled have CURLRES_IPV4 |
| 93 | * defined. |
| 94 | * |
| 95 | * CURLRES_ARES - is defined if libcurl is built to use c-ares for |
| 96 | * asynchronous name resolves. This can be Windows or *nix. |
| 97 | * |
| 98 | * CURLRES_THREADED - is defined if libcurl is built to run under (native) |
| 99 | * Windows, and then the name resolve will be done in a new thread, and the |
| 100 | * supported API will be the same as for ares-builds. |
| 101 | * |
| 102 | * If any of the two previous are defined, CURLRES_ASYNCH is defined too. If |
| 103 | * libcurl is not built to use an asynchronous resolver, CURLRES_SYNCH is |
| 104 | * defined. |
| 105 | * |
| 106 | * The host*.c sources files are split up like this: |
| 107 | * |
| 108 | * hostip.c - method-independent resolver functions and utility functions |
| 109 | * hostasyn.c - functions for asynchronous name resolves |
| 110 | * hostsyn.c - functions for synchronous name resolves |
| 111 | * hostip4.c - IPv4 specific functions |
| 112 | * hostip6.c - IPv6 specific functions |
| 113 | * |
| 114 | * The two asynchronous name resolver backends are implemented in: |
| 115 | * asyn-ares.c - functions for ares-using name resolves |
| 116 | * asyn-thread.c - functions for threaded name resolves |
| 117 | |
| 118 | * The hostip.h is the united header file for all this. It defines the |
| 119 | * CURLRES_* defines based on the config*.h and curl_setup.h defines. |
| 120 | */ |
| 121 | |
| 122 | static void freednsentry(void *freethis); |
| 123 | |
| 124 | /* |
| 125 | * Return # of addresses in a Curl_addrinfo struct |
| 126 | */ |
| 127 | int Curl_num_addresses(const struct Curl_addrinfo *addr) |
| 128 | { |
| 129 | int i = 0; |
| 130 | while(addr) { |
| 131 | addr = addr->ai_next; |
| 132 | i++; |
| 133 | } |
| 134 | return i; |
| 135 | } |
| 136 | |
| 137 | /* |
| 138 | * Curl_printable_address() stores a printable version of the 1st address |
| 139 | * given in the 'ai' argument. The result will be stored in the buf that is |
| 140 | * bufsize bytes big. |
| 141 | * |
| 142 | * If the conversion fails, the target buffer is empty. |
| 143 | */ |
| 144 | void Curl_printable_address(const struct Curl_addrinfo *ai, char *buf, |
| 145 | size_t bufsize) |
| 146 | { |
| 147 | DEBUGASSERT(bufsize); |
| 148 | buf[0] = 0; |
| 149 | |
| 150 | switch(ai->ai_family) { |
| 151 | case AF_INET: { |
| 152 | const struct sockaddr_in *sa4 = (const void *)ai->ai_addr; |
| 153 | const struct in_addr *ipaddr4 = &sa4->sin_addr; |
| 154 | (void)Curl_inet_ntop(ai->ai_family, (const void *)ipaddr4, buf, bufsize); |
| 155 | break; |
| 156 | } |
| 157 | #ifdef ENABLE_IPV6 |
| 158 | case AF_INET6: { |
| 159 | const struct sockaddr_in6 *sa6 = (const void *)ai->ai_addr; |
| 160 | const struct in6_addr *ipaddr6 = &sa6->sin6_addr; |
| 161 | (void)Curl_inet_ntop(ai->ai_family, (const void *)ipaddr6, buf, bufsize); |
| 162 | break; |
| 163 | } |
| 164 | #endif |
| 165 | default: |
| 166 | break; |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | /* |
| 171 | * Create a hostcache id string for the provided host + port, to be used by |
| 172 | * the DNS caching. Without alloc. |
| 173 | */ |
| 174 | static void |
| 175 | create_hostcache_id(const char *name, int port, char *ptr, size_t buflen) |
| 176 | { |
| 177 | size_t len = strlen(name); |
| 178 | if(len > (buflen - 7)) |
| 179 | len = buflen - 7; |
| 180 | /* store and lower case the name */ |
| 181 | while(len--) |
| 182 | *ptr++ = (char)TOLOWER(*name++); |
| 183 | msnprintf(ptr, 7, ":%u" , port); |
| 184 | } |
| 185 | |
| 186 | struct hostcache_prune_data { |
| 187 | long cache_timeout; |
| 188 | time_t now; |
| 189 | }; |
| 190 | |
| 191 | /* |
| 192 | * This function is set as a callback to be called for every entry in the DNS |
| 193 | * cache when we want to prune old unused entries. |
| 194 | * |
| 195 | * Returning non-zero means remove the entry, return 0 to keep it in the |
| 196 | * cache. |
| 197 | */ |
| 198 | static int |
| 199 | hostcache_timestamp_remove(void *datap, void *hc) |
| 200 | { |
| 201 | struct hostcache_prune_data *data = |
| 202 | (struct hostcache_prune_data *) datap; |
| 203 | struct Curl_dns_entry *c = (struct Curl_dns_entry *) hc; |
| 204 | |
| 205 | return (0 != c->timestamp) |
| 206 | && (data->now - c->timestamp >= data->cache_timeout); |
| 207 | } |
| 208 | |
| 209 | /* |
| 210 | * Prune the DNS cache. This assumes that a lock has already been taken. |
| 211 | */ |
| 212 | static void |
| 213 | hostcache_prune(struct Curl_hash *hostcache, long cache_timeout, time_t now) |
| 214 | { |
| 215 | struct hostcache_prune_data user; |
| 216 | |
| 217 | user.cache_timeout = cache_timeout; |
| 218 | user.now = now; |
| 219 | |
| 220 | Curl_hash_clean_with_criterium(hostcache, |
| 221 | (void *) &user, |
| 222 | hostcache_timestamp_remove); |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * Library-wide function for pruning the DNS cache. This function takes and |
| 227 | * returns the appropriate locks. |
| 228 | */ |
| 229 | void Curl_hostcache_prune(struct Curl_easy *data) |
| 230 | { |
| 231 | time_t now; |
| 232 | |
| 233 | if((data->set.dns_cache_timeout == -1) || !data->dns.hostcache) |
| 234 | /* cache forever means never prune, and NULL hostcache means |
| 235 | we can't do it */ |
| 236 | return; |
| 237 | |
| 238 | if(data->share) |
| 239 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
| 240 | |
| 241 | time(&now); |
| 242 | |
| 243 | /* Remove outdated and unused entries from the hostcache */ |
| 244 | hostcache_prune(data->dns.hostcache, |
| 245 | data->set.dns_cache_timeout, |
| 246 | now); |
| 247 | |
| 248 | if(data->share) |
| 249 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
| 250 | } |
| 251 | |
| 252 | #ifdef HAVE_SIGSETJMP |
| 253 | /* Beware this is a global and unique instance. This is used to store the |
| 254 | return address that we can jump back to from inside a signal handler. This |
| 255 | is not thread-safe stuff. */ |
| 256 | sigjmp_buf curl_jmpenv; |
| 257 | #endif |
| 258 | |
| 259 | /* lookup address, returns entry if found and not stale */ |
| 260 | static struct Curl_dns_entry *fetch_addr(struct Curl_easy *data, |
| 261 | const char *hostname, |
| 262 | int port) |
| 263 | { |
| 264 | struct Curl_dns_entry *dns = NULL; |
| 265 | size_t entry_len; |
| 266 | char entry_id[MAX_HOSTCACHE_LEN]; |
| 267 | |
| 268 | /* Create an entry id, based upon the hostname and port */ |
| 269 | create_hostcache_id(hostname, port, entry_id, sizeof(entry_id)); |
| 270 | entry_len = strlen(entry_id); |
| 271 | |
| 272 | /* See if its already in our dns cache */ |
| 273 | dns = Curl_hash_pick(data->dns.hostcache, entry_id, entry_len + 1); |
| 274 | |
| 275 | /* No entry found in cache, check if we might have a wildcard entry */ |
| 276 | if(!dns && data->state.wildcard_resolve) { |
| 277 | create_hostcache_id("*" , port, entry_id, sizeof(entry_id)); |
| 278 | entry_len = strlen(entry_id); |
| 279 | |
| 280 | /* See if it's already in our dns cache */ |
| 281 | dns = Curl_hash_pick(data->dns.hostcache, entry_id, entry_len + 1); |
| 282 | } |
| 283 | |
| 284 | if(dns && (data->set.dns_cache_timeout != -1)) { |
| 285 | /* See whether the returned entry is stale. Done before we release lock */ |
| 286 | struct hostcache_prune_data user; |
| 287 | |
| 288 | time(&user.now); |
| 289 | user.cache_timeout = data->set.dns_cache_timeout; |
| 290 | |
| 291 | if(hostcache_timestamp_remove(&user, dns)) { |
| 292 | infof(data, "Hostname in DNS cache was stale, zapped" ); |
| 293 | dns = NULL; /* the memory deallocation is being handled by the hash */ |
| 294 | Curl_hash_delete(data->dns.hostcache, entry_id, entry_len + 1); |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | return dns; |
| 299 | } |
| 300 | |
| 301 | /* |
| 302 | * Curl_fetch_addr() fetches a 'Curl_dns_entry' already in the DNS cache. |
| 303 | * |
| 304 | * Curl_resolv() checks initially and multi_runsingle() checks each time |
| 305 | * it discovers the handle in the state WAITRESOLVE whether the hostname |
| 306 | * has already been resolved and the address has already been stored in |
| 307 | * the DNS cache. This short circuits waiting for a lot of pending |
| 308 | * lookups for the same hostname requested by different handles. |
| 309 | * |
| 310 | * Returns the Curl_dns_entry entry pointer or NULL if not in the cache. |
| 311 | * |
| 312 | * The returned data *MUST* be "unlocked" with Curl_resolv_unlock() after |
| 313 | * use, or we'll leak memory! |
| 314 | */ |
| 315 | struct Curl_dns_entry * |
| 316 | Curl_fetch_addr(struct Curl_easy *data, |
| 317 | const char *hostname, |
| 318 | int port) |
| 319 | { |
| 320 | struct Curl_dns_entry *dns = NULL; |
| 321 | |
| 322 | if(data->share) |
| 323 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
| 324 | |
| 325 | dns = fetch_addr(data, hostname, port); |
| 326 | |
| 327 | if(dns) |
| 328 | dns->inuse++; /* we use it! */ |
| 329 | |
| 330 | if(data->share) |
| 331 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
| 332 | |
| 333 | return dns; |
| 334 | } |
| 335 | |
| 336 | #ifndef CURL_DISABLE_SHUFFLE_DNS |
| 337 | UNITTEST CURLcode Curl_shuffle_addr(struct Curl_easy *data, |
| 338 | struct Curl_addrinfo **addr); |
| 339 | /* |
| 340 | * Curl_shuffle_addr() shuffles the order of addresses in a 'Curl_addrinfo' |
| 341 | * struct by re-linking its linked list. |
| 342 | * |
| 343 | * The addr argument should be the address of a pointer to the head node of a |
| 344 | * `Curl_addrinfo` list and it will be modified to point to the new head after |
| 345 | * shuffling. |
| 346 | * |
| 347 | * Not declared static only to make it easy to use in a unit test! |
| 348 | * |
| 349 | * @unittest: 1608 |
| 350 | */ |
| 351 | UNITTEST CURLcode Curl_shuffle_addr(struct Curl_easy *data, |
| 352 | struct Curl_addrinfo **addr) |
| 353 | { |
| 354 | CURLcode result = CURLE_OK; |
| 355 | const int num_addrs = Curl_num_addresses(*addr); |
| 356 | |
| 357 | if(num_addrs > 1) { |
| 358 | struct Curl_addrinfo **nodes; |
| 359 | infof(data, "Shuffling %i addresses" , num_addrs); |
| 360 | |
| 361 | nodes = malloc(num_addrs*sizeof(*nodes)); |
| 362 | if(nodes) { |
| 363 | int i; |
| 364 | unsigned int *rnd; |
| 365 | const size_t rnd_size = num_addrs * sizeof(*rnd); |
| 366 | |
| 367 | /* build a plain array of Curl_addrinfo pointers */ |
| 368 | nodes[0] = *addr; |
| 369 | for(i = 1; i < num_addrs; i++) { |
| 370 | nodes[i] = nodes[i-1]->ai_next; |
| 371 | } |
| 372 | |
| 373 | rnd = malloc(rnd_size); |
| 374 | if(rnd) { |
| 375 | /* Fisher-Yates shuffle */ |
| 376 | if(Curl_rand(data, (unsigned char *)rnd, rnd_size) == CURLE_OK) { |
| 377 | struct Curl_addrinfo *swap_tmp; |
| 378 | for(i = num_addrs - 1; i > 0; i--) { |
| 379 | swap_tmp = nodes[rnd[i] % (i + 1)]; |
| 380 | nodes[rnd[i] % (i + 1)] = nodes[i]; |
| 381 | nodes[i] = swap_tmp; |
| 382 | } |
| 383 | |
| 384 | /* relink list in the new order */ |
| 385 | for(i = 1; i < num_addrs; i++) { |
| 386 | nodes[i-1]->ai_next = nodes[i]; |
| 387 | } |
| 388 | |
| 389 | nodes[num_addrs-1]->ai_next = NULL; |
| 390 | *addr = nodes[0]; |
| 391 | } |
| 392 | free(rnd); |
| 393 | } |
| 394 | else |
| 395 | result = CURLE_OUT_OF_MEMORY; |
| 396 | free(nodes); |
| 397 | } |
| 398 | else |
| 399 | result = CURLE_OUT_OF_MEMORY; |
| 400 | } |
| 401 | return result; |
| 402 | } |
| 403 | #endif |
| 404 | |
| 405 | /* |
| 406 | * Curl_cache_addr() stores a 'Curl_addrinfo' struct in the DNS cache. |
| 407 | * |
| 408 | * When calling Curl_resolv() has resulted in a response with a returned |
| 409 | * address, we call this function to store the information in the dns |
| 410 | * cache etc |
| 411 | * |
| 412 | * Returns the Curl_dns_entry entry pointer or NULL if the storage failed. |
| 413 | */ |
| 414 | struct Curl_dns_entry * |
| 415 | Curl_cache_addr(struct Curl_easy *data, |
| 416 | struct Curl_addrinfo *addr, |
| 417 | const char *hostname, |
| 418 | int port) |
| 419 | { |
| 420 | char entry_id[MAX_HOSTCACHE_LEN]; |
| 421 | size_t entry_len; |
| 422 | struct Curl_dns_entry *dns; |
| 423 | struct Curl_dns_entry *dns2; |
| 424 | |
| 425 | #ifndef CURL_DISABLE_SHUFFLE_DNS |
| 426 | /* shuffle addresses if requested */ |
| 427 | if(data->set.dns_shuffle_addresses) { |
| 428 | CURLcode result = Curl_shuffle_addr(data, &addr); |
| 429 | if(result) |
| 430 | return NULL; |
| 431 | } |
| 432 | #endif |
| 433 | |
| 434 | /* Create a new cache entry */ |
| 435 | dns = calloc(1, sizeof(struct Curl_dns_entry)); |
| 436 | if(!dns) { |
| 437 | return NULL; |
| 438 | } |
| 439 | |
| 440 | /* Create an entry id, based upon the hostname and port */ |
| 441 | create_hostcache_id(hostname, port, entry_id, sizeof(entry_id)); |
| 442 | entry_len = strlen(entry_id); |
| 443 | |
| 444 | dns->inuse = 1; /* the cache has the first reference */ |
| 445 | dns->addr = addr; /* this is the address(es) */ |
| 446 | time(&dns->timestamp); |
| 447 | if(dns->timestamp == 0) |
| 448 | dns->timestamp = 1; /* zero indicates permanent CURLOPT_RESOLVE entry */ |
| 449 | |
| 450 | /* Store the resolved data in our DNS cache. */ |
| 451 | dns2 = Curl_hash_add(data->dns.hostcache, entry_id, entry_len + 1, |
| 452 | (void *)dns); |
| 453 | if(!dns2) { |
| 454 | free(dns); |
| 455 | return NULL; |
| 456 | } |
| 457 | |
| 458 | dns = dns2; |
| 459 | dns->inuse++; /* mark entry as in-use */ |
| 460 | return dns; |
| 461 | } |
| 462 | |
| 463 | #ifdef ENABLE_IPV6 |
| 464 | /* return a static IPv6 resolve for 'localhost' */ |
| 465 | static struct Curl_addrinfo *get_localhost6(int port) |
| 466 | { |
| 467 | struct Curl_addrinfo *ca; |
| 468 | const size_t ss_size = sizeof(struct sockaddr_in6); |
| 469 | const size_t hostlen = strlen("localhost" ); |
| 470 | struct sockaddr_in6 sa6; |
| 471 | unsigned char ipv6[16]; |
| 472 | unsigned short port16 = (unsigned short)(port & 0xffff); |
| 473 | ca = calloc(sizeof(struct Curl_addrinfo) + ss_size + hostlen + 1, 1); |
| 474 | if(!ca) |
| 475 | return NULL; |
| 476 | |
| 477 | sa6.sin6_family = AF_INET6; |
| 478 | sa6.sin6_port = htons(port16); |
| 479 | sa6.sin6_flowinfo = 0; |
| 480 | sa6.sin6_scope_id = 0; |
| 481 | if(Curl_inet_pton(AF_INET6, "::1" , ipv6) < 1) |
| 482 | return NULL; |
| 483 | memcpy(&sa6.sin6_addr, ipv6, sizeof(ipv6)); |
| 484 | |
| 485 | ca->ai_flags = 0; |
| 486 | ca->ai_family = AF_INET6; |
| 487 | ca->ai_socktype = SOCK_STREAM; |
| 488 | ca->ai_protocol = IPPROTO_TCP; |
| 489 | ca->ai_addrlen = (curl_socklen_t)ss_size; |
| 490 | ca->ai_next = NULL; |
| 491 | ca->ai_addr = (void *)((char *)ca + sizeof(struct Curl_addrinfo)); |
| 492 | memcpy(ca->ai_addr, &sa6, ss_size); |
| 493 | ca->ai_canonname = (char *)ca->ai_addr + ss_size; |
| 494 | strcpy(ca->ai_canonname, "localhost" ); |
| 495 | return ca; |
| 496 | } |
| 497 | #else |
| 498 | #define get_localhost6(x) NULL |
| 499 | #endif |
| 500 | |
| 501 | /* return a static IPv4 resolve for 'localhost' */ |
| 502 | static struct Curl_addrinfo *get_localhost(int port) |
| 503 | { |
| 504 | struct Curl_addrinfo *ca; |
| 505 | const size_t ss_size = sizeof(struct sockaddr_in); |
| 506 | const size_t hostlen = strlen("localhost" ); |
| 507 | struct sockaddr_in sa; |
| 508 | unsigned int ipv4; |
| 509 | unsigned short port16 = (unsigned short)(port & 0xffff); |
| 510 | ca = calloc(sizeof(struct Curl_addrinfo) + ss_size + hostlen + 1, 1); |
| 511 | if(!ca) |
| 512 | return NULL; |
| 513 | |
| 514 | /* memset to clear the sa.sin_zero field */ |
| 515 | memset(&sa, 0, sizeof(sa)); |
| 516 | sa.sin_family = AF_INET; |
| 517 | sa.sin_port = htons(port16); |
| 518 | if(Curl_inet_pton(AF_INET, "127.0.0.1" , (char *)&ipv4) < 1) |
| 519 | return NULL; |
| 520 | memcpy(&sa.sin_addr, &ipv4, sizeof(ipv4)); |
| 521 | |
| 522 | ca->ai_flags = 0; |
| 523 | ca->ai_family = AF_INET; |
| 524 | ca->ai_socktype = SOCK_STREAM; |
| 525 | ca->ai_protocol = IPPROTO_TCP; |
| 526 | ca->ai_addrlen = (curl_socklen_t)ss_size; |
| 527 | ca->ai_addr = (void *)((char *)ca + sizeof(struct Curl_addrinfo)); |
| 528 | memcpy(ca->ai_addr, &sa, ss_size); |
| 529 | ca->ai_canonname = (char *)ca->ai_addr + ss_size; |
| 530 | strcpy(ca->ai_canonname, "localhost" ); |
| 531 | ca->ai_next = get_localhost6(port); |
| 532 | return ca; |
| 533 | } |
| 534 | |
| 535 | #ifdef ENABLE_IPV6 |
| 536 | /* |
| 537 | * Curl_ipv6works() returns TRUE if IPv6 seems to work. |
| 538 | */ |
| 539 | bool Curl_ipv6works(struct Curl_easy *data) |
| 540 | { |
| 541 | if(data) { |
| 542 | /* the nature of most system is that IPv6 status doesn't come and go |
| 543 | during a program's lifetime so we only probe the first time and then we |
| 544 | have the info kept for fast re-use */ |
| 545 | DEBUGASSERT(data); |
| 546 | DEBUGASSERT(data->multi); |
| 547 | return data->multi->ipv6_works; |
| 548 | } |
| 549 | else { |
| 550 | int ipv6_works = -1; |
| 551 | /* probe to see if we have a working IPv6 stack */ |
| 552 | curl_socket_t s = socket(PF_INET6, SOCK_DGRAM, 0); |
| 553 | if(s == CURL_SOCKET_BAD) |
| 554 | /* an IPv6 address was requested but we can't get/use one */ |
| 555 | ipv6_works = 0; |
| 556 | else { |
| 557 | ipv6_works = 1; |
| 558 | sclose(s); |
| 559 | } |
| 560 | return (ipv6_works>0)?TRUE:FALSE; |
| 561 | } |
| 562 | } |
| 563 | #endif /* ENABLE_IPV6 */ |
| 564 | |
| 565 | /* |
| 566 | * Curl_host_is_ipnum() returns TRUE if the given string is a numerical IPv4 |
| 567 | * (or IPv6 if supported) address. |
| 568 | */ |
| 569 | bool Curl_host_is_ipnum(const char *hostname) |
| 570 | { |
| 571 | struct in_addr in; |
| 572 | #ifdef ENABLE_IPV6 |
| 573 | struct in6_addr in6; |
| 574 | #endif |
| 575 | if(Curl_inet_pton(AF_INET, hostname, &in) > 0 |
| 576 | #ifdef ENABLE_IPV6 |
| 577 | || Curl_inet_pton(AF_INET6, hostname, &in6) > 0 |
| 578 | #endif |
| 579 | ) |
| 580 | return TRUE; |
| 581 | return FALSE; |
| 582 | } |
| 583 | |
| 584 | /* |
| 585 | * Curl_resolv() is the main name resolve function within libcurl. It resolves |
| 586 | * a name and returns a pointer to the entry in the 'entry' argument (if one |
| 587 | * is provided). This function might return immediately if we're using asynch |
| 588 | * resolves. See the return codes. |
| 589 | * |
| 590 | * The cache entry we return will get its 'inuse' counter increased when this |
| 591 | * function is used. You MUST call Curl_resolv_unlock() later (when you're |
| 592 | * done using this struct) to decrease the counter again. |
| 593 | * |
| 594 | * Return codes: |
| 595 | * |
| 596 | * CURLRESOLV_ERROR (-1) = error, no pointer |
| 597 | * CURLRESOLV_RESOLVED (0) = OK, pointer provided |
| 598 | * CURLRESOLV_PENDING (1) = waiting for response, no pointer |
| 599 | */ |
| 600 | |
| 601 | enum resolve_t Curl_resolv(struct Curl_easy *data, |
| 602 | const char *hostname, |
| 603 | int port, |
| 604 | bool allowDOH, |
| 605 | struct Curl_dns_entry **entry) |
| 606 | { |
| 607 | struct Curl_dns_entry *dns = NULL; |
| 608 | CURLcode result; |
| 609 | enum resolve_t rc = CURLRESOLV_ERROR; /* default to failure */ |
| 610 | struct connectdata *conn = data->conn; |
| 611 | *entry = NULL; |
| 612 | conn->bits.doh = FALSE; /* default is not */ |
| 613 | |
| 614 | if(data->share) |
| 615 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
| 616 | |
| 617 | dns = fetch_addr(data, hostname, port); |
| 618 | |
| 619 | if(dns) { |
| 620 | infof(data, "Hostname %s was found in DNS cache" , hostname); |
| 621 | dns->inuse++; /* we use it! */ |
| 622 | rc = CURLRESOLV_RESOLVED; |
| 623 | } |
| 624 | |
| 625 | if(data->share) |
| 626 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
| 627 | |
| 628 | if(!dns) { |
| 629 | /* The entry was not in the cache. Resolve it to IP address */ |
| 630 | |
| 631 | struct Curl_addrinfo *addr = NULL; |
| 632 | int respwait = 0; |
| 633 | struct in_addr in; |
| 634 | #ifndef USE_RESOLVE_ON_IPS |
| 635 | const |
| 636 | #endif |
| 637 | bool ipnum = FALSE; |
| 638 | |
| 639 | /* notify the resolver start callback */ |
| 640 | if(data->set.resolver_start) { |
| 641 | int st; |
| 642 | Curl_set_in_callback(data, true); |
| 643 | st = data->set.resolver_start( |
| 644 | #ifdef USE_CURL_ASYNC |
| 645 | data->state.async.resolver, |
| 646 | #else |
| 647 | NULL, |
| 648 | #endif |
| 649 | NULL, |
| 650 | data->set.resolver_start_client); |
| 651 | Curl_set_in_callback(data, false); |
| 652 | if(st) |
| 653 | return CURLRESOLV_ERROR; |
| 654 | } |
| 655 | |
| 656 | #if defined(ENABLE_IPV6) && defined(CURL_OSX_CALL_COPYPROXIES) |
| 657 | { |
| 658 | /* |
| 659 | * The automagic conversion from IPv4 literals to IPv6 literals only |
| 660 | * works if the SCDynamicStoreCopyProxies system function gets called |
| 661 | * first. As Curl currently doesn't support system-wide HTTP proxies, we |
| 662 | * therefore don't use any value this function might return. |
| 663 | * |
| 664 | * This function is only available on a macOS and is not needed for |
| 665 | * IPv4-only builds, hence the conditions above. |
| 666 | */ |
| 667 | CFDictionaryRef dict = SCDynamicStoreCopyProxies(NULL); |
| 668 | if(dict) |
| 669 | CFRelease(dict); |
| 670 | } |
| 671 | #endif |
| 672 | |
| 673 | #ifndef USE_RESOLVE_ON_IPS |
| 674 | /* First check if this is an IPv4 address string */ |
| 675 | if(Curl_inet_pton(AF_INET, hostname, &in) > 0) |
| 676 | /* This is a dotted IP address 123.123.123.123-style */ |
| 677 | addr = Curl_ip2addr(AF_INET, &in, hostname, port); |
| 678 | #ifdef ENABLE_IPV6 |
| 679 | if(!addr) { |
| 680 | struct in6_addr in6; |
| 681 | /* check if this is an IPv6 address string */ |
| 682 | if(Curl_inet_pton(AF_INET6, hostname, &in6) > 0) |
| 683 | /* This is an IPv6 address literal */ |
| 684 | addr = Curl_ip2addr(AF_INET6, &in6, hostname, port); |
| 685 | } |
| 686 | #endif /* ENABLE_IPV6 */ |
| 687 | |
| 688 | #else /* if USE_RESOLVE_ON_IPS */ |
| 689 | /* First check if this is an IPv4 address string */ |
| 690 | if(Curl_inet_pton(AF_INET, hostname, &in) > 0) |
| 691 | /* This is a dotted IP address 123.123.123.123-style */ |
| 692 | ipnum = TRUE; |
| 693 | #ifdef ENABLE_IPV6 |
| 694 | else { |
| 695 | struct in6_addr in6; |
| 696 | /* check if this is an IPv6 address string */ |
| 697 | if(Curl_inet_pton(AF_INET6, hostname, &in6) > 0) |
| 698 | /* This is an IPv6 address literal */ |
| 699 | ipnum = TRUE; |
| 700 | } |
| 701 | #endif /* ENABLE_IPV6 */ |
| 702 | |
| 703 | #endif /* !USE_RESOLVE_ON_IPS */ |
| 704 | |
| 705 | if(!addr) { |
| 706 | if(conn->ip_version == CURL_IPRESOLVE_V6 && !Curl_ipv6works(data)) |
| 707 | return CURLRESOLV_ERROR; |
| 708 | |
| 709 | if(strcasecompare(hostname, "localhost" )) |
| 710 | addr = get_localhost(port); |
| 711 | else if(allowDOH && data->set.doh && !ipnum) |
| 712 | addr = Curl_doh(data, hostname, port, &respwait); |
| 713 | else { |
| 714 | /* Check what IP specifics the app has requested and if we can provide |
| 715 | * it. If not, bail out. */ |
| 716 | if(!Curl_ipvalid(data, conn)) |
| 717 | return CURLRESOLV_ERROR; |
| 718 | /* If Curl_getaddrinfo() returns NULL, 'respwait' might be set to a |
| 719 | non-zero value indicating that we need to wait for the response to |
| 720 | the resolve call */ |
| 721 | addr = Curl_getaddrinfo(data, hostname, port, &respwait); |
| 722 | } |
| 723 | } |
| 724 | if(!addr) { |
| 725 | if(respwait) { |
| 726 | /* the response to our resolve call will come asynchronously at |
| 727 | a later time, good or bad */ |
| 728 | /* First, check that we haven't received the info by now */ |
| 729 | result = Curl_resolv_check(data, &dns); |
| 730 | if(result) /* error detected */ |
| 731 | return CURLRESOLV_ERROR; |
| 732 | if(dns) |
| 733 | rc = CURLRESOLV_RESOLVED; /* pointer provided */ |
| 734 | else |
| 735 | rc = CURLRESOLV_PENDING; /* no info yet */ |
| 736 | } |
| 737 | } |
| 738 | else { |
| 739 | if(data->share) |
| 740 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
| 741 | |
| 742 | /* we got a response, store it in the cache */ |
| 743 | dns = Curl_cache_addr(data, addr, hostname, port); |
| 744 | |
| 745 | if(data->share) |
| 746 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
| 747 | |
| 748 | if(!dns) |
| 749 | /* returned failure, bail out nicely */ |
| 750 | Curl_freeaddrinfo(addr); |
| 751 | else |
| 752 | rc = CURLRESOLV_RESOLVED; |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | *entry = dns; |
| 757 | |
| 758 | return rc; |
| 759 | } |
| 760 | |
| 761 | #ifdef USE_ALARM_TIMEOUT |
| 762 | /* |
| 763 | * This signal handler jumps back into the main libcurl code and continues |
| 764 | * execution. This effectively causes the remainder of the application to run |
| 765 | * within a signal handler which is nonportable and could lead to problems. |
| 766 | */ |
| 767 | static |
| 768 | void alarmfunc(int sig) |
| 769 | { |
| 770 | /* this is for "-ansi -Wall -pedantic" to stop complaining! (rabe) */ |
| 771 | (void)sig; |
| 772 | siglongjmp(curl_jmpenv, 1); |
| 773 | } |
| 774 | #endif /* USE_ALARM_TIMEOUT */ |
| 775 | |
| 776 | /* |
| 777 | * Curl_resolv_timeout() is the same as Curl_resolv() but specifies a |
| 778 | * timeout. This function might return immediately if we're using asynch |
| 779 | * resolves. See the return codes. |
| 780 | * |
| 781 | * The cache entry we return will get its 'inuse' counter increased when this |
| 782 | * function is used. You MUST call Curl_resolv_unlock() later (when you're |
| 783 | * done using this struct) to decrease the counter again. |
| 784 | * |
| 785 | * If built with a synchronous resolver and use of signals is not |
| 786 | * disabled by the application, then a nonzero timeout will cause a |
| 787 | * timeout after the specified number of milliseconds. Otherwise, timeout |
| 788 | * is ignored. |
| 789 | * |
| 790 | * Return codes: |
| 791 | * |
| 792 | * CURLRESOLV_TIMEDOUT(-2) = warning, time too short or previous alarm expired |
| 793 | * CURLRESOLV_ERROR (-1) = error, no pointer |
| 794 | * CURLRESOLV_RESOLVED (0) = OK, pointer provided |
| 795 | * CURLRESOLV_PENDING (1) = waiting for response, no pointer |
| 796 | */ |
| 797 | |
| 798 | enum resolve_t Curl_resolv_timeout(struct Curl_easy *data, |
| 799 | const char *hostname, |
| 800 | int port, |
| 801 | struct Curl_dns_entry **entry, |
| 802 | timediff_t timeoutms) |
| 803 | { |
| 804 | #ifdef USE_ALARM_TIMEOUT |
| 805 | #ifdef HAVE_SIGACTION |
| 806 | struct sigaction keep_sigact; /* store the old struct here */ |
| 807 | volatile bool keep_copysig = FALSE; /* whether old sigact has been saved */ |
| 808 | struct sigaction sigact; |
| 809 | #else |
| 810 | #ifdef HAVE_SIGNAL |
| 811 | void (*keep_sigact)(int); /* store the old handler here */ |
| 812 | #endif /* HAVE_SIGNAL */ |
| 813 | #endif /* HAVE_SIGACTION */ |
| 814 | volatile long timeout; |
| 815 | volatile unsigned int prev_alarm = 0; |
| 816 | #endif /* USE_ALARM_TIMEOUT */ |
| 817 | enum resolve_t rc; |
| 818 | |
| 819 | *entry = NULL; |
| 820 | |
| 821 | if(timeoutms < 0) |
| 822 | /* got an already expired timeout */ |
| 823 | return CURLRESOLV_TIMEDOUT; |
| 824 | |
| 825 | #ifdef USE_ALARM_TIMEOUT |
| 826 | if(data->set.no_signal) |
| 827 | /* Ignore the timeout when signals are disabled */ |
| 828 | timeout = 0; |
| 829 | else |
| 830 | timeout = (timeoutms > LONG_MAX) ? LONG_MAX : (long)timeoutms; |
| 831 | |
| 832 | if(!timeout) |
| 833 | /* USE_ALARM_TIMEOUT defined, but no timeout actually requested */ |
| 834 | return Curl_resolv(data, hostname, port, TRUE, entry); |
| 835 | |
| 836 | if(timeout < 1000) { |
| 837 | /* The alarm() function only provides integer second resolution, so if |
| 838 | we want to wait less than one second we must bail out already now. */ |
| 839 | failf(data, |
| 840 | "remaining timeout of %ld too small to resolve via SIGALRM method" , |
| 841 | timeout); |
| 842 | return CURLRESOLV_TIMEDOUT; |
| 843 | } |
| 844 | /* This allows us to time-out from the name resolver, as the timeout |
| 845 | will generate a signal and we will siglongjmp() from that here. |
| 846 | This technique has problems (see alarmfunc). |
| 847 | This should be the last thing we do before calling Curl_resolv(), |
| 848 | as otherwise we'd have to worry about variables that get modified |
| 849 | before we invoke Curl_resolv() (and thus use "volatile"). */ |
| 850 | if(sigsetjmp(curl_jmpenv, 1)) { |
| 851 | /* this is coming from a siglongjmp() after an alarm signal */ |
| 852 | failf(data, "name lookup timed out" ); |
| 853 | rc = CURLRESOLV_ERROR; |
| 854 | goto clean_up; |
| 855 | } |
| 856 | else { |
| 857 | /************************************************************* |
| 858 | * Set signal handler to catch SIGALRM |
| 859 | * Store the old value to be able to set it back later! |
| 860 | *************************************************************/ |
| 861 | #ifdef HAVE_SIGACTION |
| 862 | sigaction(SIGALRM, NULL, &sigact); |
| 863 | keep_sigact = sigact; |
| 864 | keep_copysig = TRUE; /* yes, we have a copy */ |
| 865 | sigact.sa_handler = alarmfunc; |
| 866 | #ifdef SA_RESTART |
| 867 | /* HPUX doesn't have SA_RESTART but defaults to that behavior! */ |
| 868 | sigact.sa_flags &= ~SA_RESTART; |
| 869 | #endif |
| 870 | /* now set the new struct */ |
| 871 | sigaction(SIGALRM, &sigact, NULL); |
| 872 | #else /* HAVE_SIGACTION */ |
| 873 | /* no sigaction(), revert to the much lamer signal() */ |
| 874 | #ifdef HAVE_SIGNAL |
| 875 | keep_sigact = signal(SIGALRM, alarmfunc); |
| 876 | #endif |
| 877 | #endif /* HAVE_SIGACTION */ |
| 878 | |
| 879 | /* alarm() makes a signal get sent when the timeout fires off, and that |
| 880 | will abort system calls */ |
| 881 | prev_alarm = alarm(curlx_sltoui(timeout/1000L)); |
| 882 | } |
| 883 | |
| 884 | #else |
| 885 | #ifndef CURLRES_ASYNCH |
| 886 | if(timeoutms) |
| 887 | infof(data, "timeout on name lookup is not supported" ); |
| 888 | #else |
| 889 | (void)timeoutms; /* timeoutms not used with an async resolver */ |
| 890 | #endif |
| 891 | #endif /* USE_ALARM_TIMEOUT */ |
| 892 | |
| 893 | /* Perform the actual name resolution. This might be interrupted by an |
| 894 | * alarm if it takes too long. |
| 895 | */ |
| 896 | rc = Curl_resolv(data, hostname, port, TRUE, entry); |
| 897 | |
| 898 | #ifdef USE_ALARM_TIMEOUT |
| 899 | clean_up: |
| 900 | |
| 901 | if(!prev_alarm) |
| 902 | /* deactivate a possibly active alarm before uninstalling the handler */ |
| 903 | alarm(0); |
| 904 | |
| 905 | #ifdef HAVE_SIGACTION |
| 906 | if(keep_copysig) { |
| 907 | /* we got a struct as it looked before, now put that one back nice |
| 908 | and clean */ |
| 909 | sigaction(SIGALRM, &keep_sigact, NULL); /* put it back */ |
| 910 | } |
| 911 | #else |
| 912 | #ifdef HAVE_SIGNAL |
| 913 | /* restore the previous SIGALRM handler */ |
| 914 | signal(SIGALRM, keep_sigact); |
| 915 | #endif |
| 916 | #endif /* HAVE_SIGACTION */ |
| 917 | |
| 918 | /* switch back the alarm() to either zero or to what it was before minus |
| 919 | the time we spent until now! */ |
| 920 | if(prev_alarm) { |
| 921 | /* there was an alarm() set before us, now put it back */ |
| 922 | timediff_t elapsed_secs = Curl_timediff(Curl_now(), |
| 923 | data->conn->created) / 1000; |
| 924 | |
| 925 | /* the alarm period is counted in even number of seconds */ |
| 926 | unsigned long alarm_set = (unsigned long)(prev_alarm - elapsed_secs); |
| 927 | |
| 928 | if(!alarm_set || |
| 929 | ((alarm_set >= 0x80000000) && (prev_alarm < 0x80000000)) ) { |
| 930 | /* if the alarm time-left reached zero or turned "negative" (counted |
| 931 | with unsigned values), we should fire off a SIGALRM here, but we |
| 932 | won't, and zero would be to switch it off so we never set it to |
| 933 | less than 1! */ |
| 934 | alarm(1); |
| 935 | rc = CURLRESOLV_TIMEDOUT; |
| 936 | failf(data, "Previous alarm fired off!" ); |
| 937 | } |
| 938 | else |
| 939 | alarm((unsigned int)alarm_set); |
| 940 | } |
| 941 | #endif /* USE_ALARM_TIMEOUT */ |
| 942 | |
| 943 | return rc; |
| 944 | } |
| 945 | |
| 946 | /* |
| 947 | * Curl_resolv_unlock() unlocks the given cached DNS entry. When this has been |
| 948 | * made, the struct may be destroyed due to pruning. It is important that only |
| 949 | * one unlock is made for each Curl_resolv() call. |
| 950 | * |
| 951 | * May be called with 'data' == NULL for global cache. |
| 952 | */ |
| 953 | void Curl_resolv_unlock(struct Curl_easy *data, struct Curl_dns_entry *dns) |
| 954 | { |
| 955 | if(data && data->share) |
| 956 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
| 957 | |
| 958 | freednsentry(dns); |
| 959 | |
| 960 | if(data && data->share) |
| 961 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
| 962 | } |
| 963 | |
| 964 | /* |
| 965 | * File-internal: release cache dns entry reference, free if inuse drops to 0 |
| 966 | */ |
| 967 | static void freednsentry(void *freethis) |
| 968 | { |
| 969 | struct Curl_dns_entry *dns = (struct Curl_dns_entry *) freethis; |
| 970 | DEBUGASSERT(dns && (dns->inuse>0)); |
| 971 | |
| 972 | dns->inuse--; |
| 973 | if(dns->inuse == 0) { |
| 974 | Curl_freeaddrinfo(dns->addr); |
| 975 | free(dns); |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | /* |
| 980 | * Curl_mk_dnscache() inits a new DNS cache and returns success/failure. |
| 981 | */ |
| 982 | int Curl_mk_dnscache(struct Curl_hash *hash) |
| 983 | { |
| 984 | return Curl_hash_init(hash, 7, Curl_hash_str, Curl_str_key_compare, |
| 985 | freednsentry); |
| 986 | } |
| 987 | |
| 988 | /* |
| 989 | * Curl_hostcache_clean() |
| 990 | * |
| 991 | * This _can_ be called with 'data' == NULL but then of course no locking |
| 992 | * can be done! |
| 993 | */ |
| 994 | |
| 995 | void Curl_hostcache_clean(struct Curl_easy *data, |
| 996 | struct Curl_hash *hash) |
| 997 | { |
| 998 | if(data && data->share) |
| 999 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
| 1000 | |
| 1001 | Curl_hash_clean(hash); |
| 1002 | |
| 1003 | if(data && data->share) |
| 1004 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
| 1005 | } |
| 1006 | |
| 1007 | |
| 1008 | CURLcode Curl_loadhostpairs(struct Curl_easy *data) |
| 1009 | { |
| 1010 | struct curl_slist *hostp; |
| 1011 | char hostname[256]; |
| 1012 | int port = 0; |
| 1013 | |
| 1014 | /* Default is no wildcard found */ |
| 1015 | data->state.wildcard_resolve = false; |
| 1016 | |
| 1017 | for(hostp = data->state.resolve; hostp; hostp = hostp->next) { |
| 1018 | char entry_id[MAX_HOSTCACHE_LEN]; |
| 1019 | if(!hostp->data) |
| 1020 | continue; |
| 1021 | if(hostp->data[0] == '-') { |
| 1022 | size_t entry_len; |
| 1023 | |
| 1024 | if(2 != sscanf(hostp->data + 1, "%255[^:]:%d" , hostname, &port)) { |
| 1025 | infof(data, "Couldn't parse CURLOPT_RESOLVE removal entry '%s'" , |
| 1026 | hostp->data); |
| 1027 | continue; |
| 1028 | } |
| 1029 | |
| 1030 | /* Create an entry id, based upon the hostname and port */ |
| 1031 | create_hostcache_id(hostname, port, entry_id, sizeof(entry_id)); |
| 1032 | entry_len = strlen(entry_id); |
| 1033 | |
| 1034 | if(data->share) |
| 1035 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
| 1036 | |
| 1037 | /* delete entry, ignore if it didn't exist */ |
| 1038 | Curl_hash_delete(data->dns.hostcache, entry_id, entry_len + 1); |
| 1039 | |
| 1040 | if(data->share) |
| 1041 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
| 1042 | } |
| 1043 | else { |
| 1044 | struct Curl_dns_entry *dns; |
| 1045 | struct Curl_addrinfo *head = NULL, *tail = NULL; |
| 1046 | size_t entry_len; |
| 1047 | char address[64]; |
| 1048 | #if !defined(CURL_DISABLE_VERBOSE_STRINGS) |
| 1049 | char *addresses = NULL; |
| 1050 | #endif |
| 1051 | char *addr_begin; |
| 1052 | char *addr_end; |
| 1053 | char *port_ptr; |
| 1054 | char *end_ptr; |
| 1055 | bool permanent = TRUE; |
| 1056 | char *host_begin; |
| 1057 | char *host_end; |
| 1058 | unsigned long tmp_port; |
| 1059 | bool error = true; |
| 1060 | |
| 1061 | host_begin = hostp->data; |
| 1062 | if(host_begin[0] == '+') { |
| 1063 | host_begin++; |
| 1064 | permanent = FALSE; |
| 1065 | } |
| 1066 | host_end = strchr(host_begin, ':'); |
| 1067 | if(!host_end || |
| 1068 | ((host_end - host_begin) >= (ptrdiff_t)sizeof(hostname))) |
| 1069 | goto err; |
| 1070 | |
| 1071 | memcpy(hostname, host_begin, host_end - host_begin); |
| 1072 | hostname[host_end - host_begin] = '\0'; |
| 1073 | |
| 1074 | port_ptr = host_end + 1; |
| 1075 | tmp_port = strtoul(port_ptr, &end_ptr, 10); |
| 1076 | if(tmp_port > USHRT_MAX || end_ptr == port_ptr || *end_ptr != ':') |
| 1077 | goto err; |
| 1078 | |
| 1079 | port = (int)tmp_port; |
| 1080 | #if !defined(CURL_DISABLE_VERBOSE_STRINGS) |
| 1081 | addresses = end_ptr + 1; |
| 1082 | #endif |
| 1083 | |
| 1084 | while(*end_ptr) { |
| 1085 | size_t alen; |
| 1086 | struct Curl_addrinfo *ai; |
| 1087 | |
| 1088 | addr_begin = end_ptr + 1; |
| 1089 | addr_end = strchr(addr_begin, ','); |
| 1090 | if(!addr_end) |
| 1091 | addr_end = addr_begin + strlen(addr_begin); |
| 1092 | end_ptr = addr_end; |
| 1093 | |
| 1094 | /* allow IP(v6) address within [brackets] */ |
| 1095 | if(*addr_begin == '[') { |
| 1096 | if(addr_end == addr_begin || *(addr_end - 1) != ']') |
| 1097 | goto err; |
| 1098 | ++addr_begin; |
| 1099 | --addr_end; |
| 1100 | } |
| 1101 | |
| 1102 | alen = addr_end - addr_begin; |
| 1103 | if(!alen) |
| 1104 | continue; |
| 1105 | |
| 1106 | if(alen >= sizeof(address)) |
| 1107 | goto err; |
| 1108 | |
| 1109 | memcpy(address, addr_begin, alen); |
| 1110 | address[alen] = '\0'; |
| 1111 | |
| 1112 | #ifndef ENABLE_IPV6 |
| 1113 | if(strchr(address, ':')) { |
| 1114 | infof(data, "Ignoring resolve address '%s', missing IPv6 support." , |
| 1115 | address); |
| 1116 | continue; |
| 1117 | } |
| 1118 | #endif |
| 1119 | |
| 1120 | ai = Curl_str2addr(address, port); |
| 1121 | if(!ai) { |
| 1122 | infof(data, "Resolve address '%s' found illegal!" , address); |
| 1123 | goto err; |
| 1124 | } |
| 1125 | |
| 1126 | if(tail) { |
| 1127 | tail->ai_next = ai; |
| 1128 | tail = tail->ai_next; |
| 1129 | } |
| 1130 | else { |
| 1131 | head = tail = ai; |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | if(!head) |
| 1136 | goto err; |
| 1137 | |
| 1138 | error = false; |
| 1139 | err: |
| 1140 | if(error) { |
| 1141 | failf(data, "Couldn't parse CURLOPT_RESOLVE entry '%s'!" , |
| 1142 | hostp->data); |
| 1143 | Curl_freeaddrinfo(head); |
| 1144 | return CURLE_SETOPT_OPTION_SYNTAX; |
| 1145 | } |
| 1146 | |
| 1147 | /* Create an entry id, based upon the hostname and port */ |
| 1148 | create_hostcache_id(hostname, port, entry_id, sizeof(entry_id)); |
| 1149 | entry_len = strlen(entry_id); |
| 1150 | |
| 1151 | if(data->share) |
| 1152 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
| 1153 | |
| 1154 | /* See if it's already in our dns cache */ |
| 1155 | dns = Curl_hash_pick(data->dns.hostcache, entry_id, entry_len + 1); |
| 1156 | |
| 1157 | if(dns) { |
| 1158 | infof(data, "RESOLVE %s:%d is - old addresses discarded!" , |
| 1159 | hostname, port); |
| 1160 | /* delete old entry, there are two reasons for this |
| 1161 | 1. old entry may have different addresses. |
| 1162 | 2. even if entry with correct addresses is already in the cache, |
| 1163 | but if it is close to expire, then by the time next http |
| 1164 | request is made, it can get expired and pruned because old |
| 1165 | entry is not necessarily marked as permanent. |
| 1166 | 3. when adding a non-permanent entry, we want it to remove and |
| 1167 | replace an existing permanent entry. |
| 1168 | 4. when adding a non-permanent entry, we want it to get a "fresh" |
| 1169 | timeout that starts _now_. */ |
| 1170 | |
| 1171 | Curl_hash_delete(data->dns.hostcache, entry_id, entry_len + 1); |
| 1172 | } |
| 1173 | |
| 1174 | /* put this new host in the cache */ |
| 1175 | dns = Curl_cache_addr(data, head, hostname, port); |
| 1176 | if(dns) { |
| 1177 | if(permanent) |
| 1178 | dns->timestamp = 0; /* mark as permanent */ |
| 1179 | /* release the returned reference; the cache itself will keep the |
| 1180 | * entry alive: */ |
| 1181 | dns->inuse--; |
| 1182 | } |
| 1183 | |
| 1184 | if(data->share) |
| 1185 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
| 1186 | |
| 1187 | if(!dns) { |
| 1188 | Curl_freeaddrinfo(head); |
| 1189 | return CURLE_OUT_OF_MEMORY; |
| 1190 | } |
| 1191 | infof(data, "Added %s:%d:%s to DNS cache%s" , |
| 1192 | hostname, port, addresses, permanent ? "" : " (non-permanent)" ); |
| 1193 | |
| 1194 | /* Wildcard hostname */ |
| 1195 | if(hostname[0] == '*' && hostname[1] == '\0') { |
| 1196 | infof(data, "RESOLVE %s:%d is wildcard, enabling wildcard checks" , |
| 1197 | hostname, port); |
| 1198 | data->state.wildcard_resolve = true; |
| 1199 | } |
| 1200 | } |
| 1201 | } |
| 1202 | data->state.resolve = NULL; /* dealt with now */ |
| 1203 | |
| 1204 | return CURLE_OK; |
| 1205 | } |
| 1206 | |
| 1207 | CURLcode Curl_resolv_check(struct Curl_easy *data, |
| 1208 | struct Curl_dns_entry **dns) |
| 1209 | { |
| 1210 | #if defined(CURL_DISABLE_DOH) && !defined(CURLRES_ASYNCH) |
| 1211 | (void)dns; |
| 1212 | #endif |
| 1213 | |
| 1214 | if(data->conn->bits.doh) |
| 1215 | return Curl_doh_is_resolved(data, dns); |
| 1216 | return Curl_resolver_is_resolved(data, dns); |
| 1217 | } |
| 1218 | |
| 1219 | int Curl_resolv_getsock(struct Curl_easy *data, |
| 1220 | curl_socket_t *socks) |
| 1221 | { |
| 1222 | #ifdef CURLRES_ASYNCH |
| 1223 | if(data->conn->bits.doh) |
| 1224 | /* nothing to wait for during DoH resolve, those handles have their own |
| 1225 | sockets */ |
| 1226 | return GETSOCK_BLANK; |
| 1227 | return Curl_resolver_getsock(data, socks); |
| 1228 | #else |
| 1229 | (void)data; |
| 1230 | (void)socks; |
| 1231 | return GETSOCK_BLANK; |
| 1232 | #endif |
| 1233 | } |
| 1234 | |
| 1235 | /* Call this function after Curl_connect() has returned async=TRUE and |
| 1236 | then a successful name resolve has been received. |
| 1237 | |
| 1238 | Note: this function disconnects and frees the conn data in case of |
| 1239 | resolve failure */ |
| 1240 | CURLcode Curl_once_resolved(struct Curl_easy *data, bool *protocol_done) |
| 1241 | { |
| 1242 | CURLcode result; |
| 1243 | struct connectdata *conn = data->conn; |
| 1244 | |
| 1245 | #ifdef USE_CURL_ASYNC |
| 1246 | if(data->state.async.dns) { |
| 1247 | conn->dns_entry = data->state.async.dns; |
| 1248 | data->state.async.dns = NULL; |
| 1249 | } |
| 1250 | #endif |
| 1251 | |
| 1252 | result = Curl_setup_conn(data, protocol_done); |
| 1253 | |
| 1254 | if(result) { |
| 1255 | Curl_detach_connnection(data); |
| 1256 | Curl_conncache_remove_conn(data, conn, TRUE); |
| 1257 | Curl_disconnect(data, conn, TRUE); |
| 1258 | } |
| 1259 | return result; |
| 1260 | } |
| 1261 | |
| 1262 | /* |
| 1263 | * Curl_resolver_error() calls failf() with the appropriate message after a |
| 1264 | * resolve error |
| 1265 | */ |
| 1266 | |
| 1267 | #ifdef USE_CURL_ASYNC |
| 1268 | CURLcode Curl_resolver_error(struct Curl_easy *data) |
| 1269 | { |
| 1270 | const char *host_or_proxy; |
| 1271 | CURLcode result; |
| 1272 | |
| 1273 | #ifndef CURL_DISABLE_PROXY |
| 1274 | struct connectdata *conn = data->conn; |
| 1275 | if(conn->bits.httpproxy) { |
| 1276 | host_or_proxy = "proxy" ; |
| 1277 | result = CURLE_COULDNT_RESOLVE_PROXY; |
| 1278 | } |
| 1279 | else |
| 1280 | #endif |
| 1281 | { |
| 1282 | host_or_proxy = "host" ; |
| 1283 | result = CURLE_COULDNT_RESOLVE_HOST; |
| 1284 | } |
| 1285 | |
| 1286 | failf(data, "Could not resolve %s: %s" , host_or_proxy, |
| 1287 | data->state.async.hostname); |
| 1288 | |
| 1289 | return result; |
| 1290 | } |
| 1291 | #endif /* USE_CURL_ASYNC */ |
| 1292 | |