1 | /*************************************************************************** |
2 | * _ _ ____ _ |
3 | * Project ___| | | | _ \| | |
4 | * / __| | | | |_) | | |
5 | * | (__| |_| | _ <| |___ |
6 | * \___|\___/|_| \_\_____| |
7 | * |
8 | * Copyright (C) 1998 - 2021, Daniel Stenberg, <daniel@haxx.se>, et al. |
9 | * |
10 | * This software is licensed as described in the file COPYING, which |
11 | * you should have received as part of this distribution. The terms |
12 | * are also available at https://curl.se/docs/copyright.html. |
13 | * |
14 | * You may opt to use, copy, modify, merge, publish, distribute and/or sell |
15 | * copies of the Software, and permit persons to whom the Software is |
16 | * furnished to do so, under the terms of the COPYING file. |
17 | * |
18 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
19 | * KIND, either express or implied. |
20 | * |
21 | ***************************************************************************/ |
22 | |
23 | #include "curl_setup.h" |
24 | |
25 | #include <curl/curl.h> |
26 | |
27 | #include "urldata.h" |
28 | #include "transfer.h" |
29 | #include "url.h" |
30 | #include "connect.h" |
31 | #include "progress.h" |
32 | #include "easyif.h" |
33 | #include "share.h" |
34 | #include "psl.h" |
35 | #include "multiif.h" |
36 | #include "sendf.h" |
37 | #include "timeval.h" |
38 | #include "http.h" |
39 | #include "select.h" |
40 | #include "warnless.h" |
41 | #include "speedcheck.h" |
42 | #include "conncache.h" |
43 | #include "multihandle.h" |
44 | #include "sigpipe.h" |
45 | #include "vtls/vtls.h" |
46 | #include "connect.h" |
47 | #include "http_proxy.h" |
48 | #include "http2.h" |
49 | #include "socketpair.h" |
50 | #include "socks.h" |
51 | /* The last 3 #include files should be in this order */ |
52 | #include "curl_printf.h" |
53 | #include "curl_memory.h" |
54 | #include "memdebug.h" |
55 | |
56 | /* |
57 | CURL_SOCKET_HASH_TABLE_SIZE should be a prime number. Increasing it from 97 |
58 | to 911 takes on a 32-bit machine 4 x 804 = 3211 more bytes. Still, every |
59 | CURL handle takes 45-50 K memory, therefore this 3K are not significant. |
60 | */ |
61 | #ifndef CURL_SOCKET_HASH_TABLE_SIZE |
62 | #define CURL_SOCKET_HASH_TABLE_SIZE 911 |
63 | #endif |
64 | |
65 | #ifndef CURL_CONNECTION_HASH_SIZE |
66 | #define CURL_CONNECTION_HASH_SIZE 97 |
67 | #endif |
68 | |
69 | #define CURL_MULTI_HANDLE 0x000bab1e |
70 | |
71 | #define GOOD_MULTI_HANDLE(x) \ |
72 | ((x) && (x)->magic == CURL_MULTI_HANDLE) |
73 | |
74 | static CURLMcode singlesocket(struct Curl_multi *multi, |
75 | struct Curl_easy *data); |
76 | static CURLMcode add_next_timeout(struct curltime now, |
77 | struct Curl_multi *multi, |
78 | struct Curl_easy *d); |
79 | static CURLMcode multi_timeout(struct Curl_multi *multi, |
80 | long *timeout_ms); |
81 | static void process_pending_handles(struct Curl_multi *multi); |
82 | |
83 | #ifdef DEBUGBUILD |
84 | static const char * const statename[]={ |
85 | "INIT" , |
86 | "PENDING" , |
87 | "CONNECT" , |
88 | "RESOLVING" , |
89 | "CONNECTING" , |
90 | "TUNNELING" , |
91 | "PROTOCONNECT" , |
92 | "PROTOCONNECTING" , |
93 | "DO" , |
94 | "DOING" , |
95 | "DOING_MORE" , |
96 | "DID" , |
97 | "PERFORMING" , |
98 | "RATELIMITING" , |
99 | "DONE" , |
100 | "COMPLETED" , |
101 | "MSGSENT" , |
102 | }; |
103 | #endif |
104 | |
105 | /* function pointer called once when switching TO a state */ |
106 | typedef void (*init_multistate_func)(struct Curl_easy *data); |
107 | |
108 | /* called in DID state, before PERFORMING state */ |
109 | static void before_perform(struct Curl_easy *data) |
110 | { |
111 | data->req.chunk = FALSE; |
112 | Curl_pgrsTime(data, TIMER_PRETRANSFER); |
113 | } |
114 | |
115 | static void init_completed(struct Curl_easy *data) |
116 | { |
117 | /* this is a completed transfer */ |
118 | |
119 | /* Important: reset the conn pointer so that we don't point to memory |
120 | that could be freed anytime */ |
121 | Curl_detach_connnection(data); |
122 | Curl_expire_clear(data); /* stop all timers */ |
123 | } |
124 | |
125 | /* always use this function to change state, to make debugging easier */ |
126 | static void mstate(struct Curl_easy *data, CURLMstate state |
127 | #ifdef DEBUGBUILD |
128 | , int lineno |
129 | #endif |
130 | ) |
131 | { |
132 | CURLMstate oldstate = data->mstate; |
133 | static const init_multistate_func finit[MSTATE_LAST] = { |
134 | NULL, /* INIT */ |
135 | NULL, /* PENDING */ |
136 | Curl_init_CONNECT, /* CONNECT */ |
137 | NULL, /* RESOLVING */ |
138 | NULL, /* CONNECTING */ |
139 | NULL, /* TUNNELING */ |
140 | NULL, /* PROTOCONNECT */ |
141 | NULL, /* PROTOCONNECTING */ |
142 | Curl_connect_free, /* DO */ |
143 | NULL, /* DOING */ |
144 | NULL, /* DOING_MORE */ |
145 | before_perform, /* DID */ |
146 | NULL, /* PERFORMING */ |
147 | NULL, /* RATELIMITING */ |
148 | NULL, /* DONE */ |
149 | init_completed, /* COMPLETED */ |
150 | NULL /* MSGSENT */ |
151 | }; |
152 | |
153 | #if defined(DEBUGBUILD) && defined(CURL_DISABLE_VERBOSE_STRINGS) |
154 | (void) lineno; |
155 | #endif |
156 | |
157 | if(oldstate == state) |
158 | /* don't bother when the new state is the same as the old state */ |
159 | return; |
160 | |
161 | data->mstate = state; |
162 | |
163 | #if defined(DEBUGBUILD) && !defined(CURL_DISABLE_VERBOSE_STRINGS) |
164 | if(data->mstate >= MSTATE_PENDING && |
165 | data->mstate < MSTATE_COMPLETED) { |
166 | long connection_id = -5000; |
167 | |
168 | if(data->conn) |
169 | connection_id = data->conn->connection_id; |
170 | |
171 | infof(data, |
172 | "STATE: %s => %s handle %p; line %d (connection #%ld)" , |
173 | statename[oldstate], statename[data->mstate], |
174 | (void *)data, lineno, connection_id); |
175 | } |
176 | #endif |
177 | |
178 | if(state == MSTATE_COMPLETED) { |
179 | /* changing to COMPLETED means there's one less easy handle 'alive' */ |
180 | DEBUGASSERT(data->multi->num_alive > 0); |
181 | data->multi->num_alive--; |
182 | } |
183 | |
184 | /* if this state has an init-function, run it */ |
185 | if(finit[state]) |
186 | finit[state](data); |
187 | } |
188 | |
189 | #ifndef DEBUGBUILD |
190 | #define multistate(x,y) mstate(x,y) |
191 | #else |
192 | #define multistate(x,y) mstate(x,y, __LINE__) |
193 | #endif |
194 | |
195 | /* |
196 | * We add one of these structs to the sockhash for each socket |
197 | */ |
198 | |
199 | struct Curl_sh_entry { |
200 | struct Curl_hash transfers; /* hash of transfers using this socket */ |
201 | unsigned int action; /* what combined action READ/WRITE this socket waits |
202 | for */ |
203 | unsigned int users; /* number of transfers using this */ |
204 | void *socketp; /* settable by users with curl_multi_assign() */ |
205 | unsigned int readers; /* this many transfers want to read */ |
206 | unsigned int writers; /* this many transfers want to write */ |
207 | }; |
208 | /* bits for 'action' having no bits means this socket is not expecting any |
209 | action */ |
210 | #define SH_READ 1 |
211 | #define SH_WRITE 2 |
212 | |
213 | /* look up a given socket in the socket hash, skip invalid sockets */ |
214 | static struct Curl_sh_entry *sh_getentry(struct Curl_hash *sh, |
215 | curl_socket_t s) |
216 | { |
217 | if(s != CURL_SOCKET_BAD) { |
218 | /* only look for proper sockets */ |
219 | return Curl_hash_pick(sh, (char *)&s, sizeof(curl_socket_t)); |
220 | } |
221 | return NULL; |
222 | } |
223 | |
224 | #define TRHASH_SIZE 13 |
225 | static size_t trhash(void *key, size_t key_length, size_t slots_num) |
226 | { |
227 | size_t keyval = (size_t)*(struct Curl_easy **)key; |
228 | (void) key_length; |
229 | |
230 | return (keyval % slots_num); |
231 | } |
232 | |
233 | static size_t trhash_compare(void *k1, size_t k1_len, void *k2, size_t k2_len) |
234 | { |
235 | (void)k1_len; |
236 | (void)k2_len; |
237 | |
238 | return *(struct Curl_easy **)k1 == *(struct Curl_easy **)k2; |
239 | } |
240 | |
241 | static void trhash_dtor(void *nada) |
242 | { |
243 | (void)nada; |
244 | } |
245 | |
246 | |
247 | /* make sure this socket is present in the hash for this handle */ |
248 | static struct Curl_sh_entry *sh_addentry(struct Curl_hash *sh, |
249 | curl_socket_t s) |
250 | { |
251 | struct Curl_sh_entry *there = sh_getentry(sh, s); |
252 | struct Curl_sh_entry *check; |
253 | |
254 | if(there) { |
255 | /* it is present, return fine */ |
256 | return there; |
257 | } |
258 | |
259 | /* not present, add it */ |
260 | check = calloc(1, sizeof(struct Curl_sh_entry)); |
261 | if(!check) |
262 | return NULL; /* major failure */ |
263 | |
264 | if(Curl_hash_init(&check->transfers, TRHASH_SIZE, trhash, |
265 | trhash_compare, trhash_dtor)) { |
266 | free(check); |
267 | return NULL; |
268 | } |
269 | |
270 | /* make/add new hash entry */ |
271 | if(!Curl_hash_add(sh, (char *)&s, sizeof(curl_socket_t), check)) { |
272 | Curl_hash_destroy(&check->transfers); |
273 | free(check); |
274 | return NULL; /* major failure */ |
275 | } |
276 | |
277 | return check; /* things are good in sockhash land */ |
278 | } |
279 | |
280 | |
281 | /* delete the given socket + handle from the hash */ |
282 | static void sh_delentry(struct Curl_sh_entry *entry, |
283 | struct Curl_hash *sh, curl_socket_t s) |
284 | { |
285 | Curl_hash_destroy(&entry->transfers); |
286 | |
287 | /* We remove the hash entry. This will end up in a call to |
288 | sh_freeentry(). */ |
289 | Curl_hash_delete(sh, (char *)&s, sizeof(curl_socket_t)); |
290 | } |
291 | |
292 | /* |
293 | * free a sockhash entry |
294 | */ |
295 | static void sh_freeentry(void *freethis) |
296 | { |
297 | struct Curl_sh_entry *p = (struct Curl_sh_entry *) freethis; |
298 | |
299 | free(p); |
300 | } |
301 | |
302 | static size_t fd_key_compare(void *k1, size_t k1_len, void *k2, size_t k2_len) |
303 | { |
304 | (void) k1_len; (void) k2_len; |
305 | |
306 | return (*((curl_socket_t *) k1)) == (*((curl_socket_t *) k2)); |
307 | } |
308 | |
309 | static size_t hash_fd(void *key, size_t key_length, size_t slots_num) |
310 | { |
311 | curl_socket_t fd = *((curl_socket_t *) key); |
312 | (void) key_length; |
313 | |
314 | return (fd % slots_num); |
315 | } |
316 | |
317 | /* |
318 | * sh_init() creates a new socket hash and returns the handle for it. |
319 | * |
320 | * Quote from README.multi_socket: |
321 | * |
322 | * "Some tests at 7000 and 9000 connections showed that the socket hash lookup |
323 | * is somewhat of a bottle neck. Its current implementation may be a bit too |
324 | * limiting. It simply has a fixed-size array, and on each entry in the array |
325 | * it has a linked list with entries. So the hash only checks which list to |
326 | * scan through. The code I had used so for used a list with merely 7 slots |
327 | * (as that is what the DNS hash uses) but with 7000 connections that would |
328 | * make an average of 1000 nodes in each list to run through. I upped that to |
329 | * 97 slots (I believe a prime is suitable) and noticed a significant speed |
330 | * increase. I need to reconsider the hash implementation or use a rather |
331 | * large default value like this. At 9000 connections I was still below 10us |
332 | * per call." |
333 | * |
334 | */ |
335 | static int sh_init(struct Curl_hash *hash, int hashsize) |
336 | { |
337 | return Curl_hash_init(hash, hashsize, hash_fd, fd_key_compare, |
338 | sh_freeentry); |
339 | } |
340 | |
341 | /* |
342 | * multi_addmsg() |
343 | * |
344 | * Called when a transfer is completed. Adds the given msg pointer to |
345 | * the list kept in the multi handle. |
346 | */ |
347 | static CURLMcode multi_addmsg(struct Curl_multi *multi, |
348 | struct Curl_message *msg) |
349 | { |
350 | Curl_llist_insert_next(&multi->msglist, multi->msglist.tail, msg, |
351 | &msg->list); |
352 | return CURLM_OK; |
353 | } |
354 | |
355 | struct Curl_multi *Curl_multi_handle(int hashsize, /* socket hash */ |
356 | int chashsize) /* connection hash */ |
357 | { |
358 | struct Curl_multi *multi = calloc(1, sizeof(struct Curl_multi)); |
359 | |
360 | if(!multi) |
361 | return NULL; |
362 | |
363 | multi->magic = CURL_MULTI_HANDLE; |
364 | |
365 | if(Curl_mk_dnscache(&multi->hostcache)) |
366 | goto error; |
367 | |
368 | if(sh_init(&multi->sockhash, hashsize)) |
369 | goto error; |
370 | |
371 | if(Curl_conncache_init(&multi->conn_cache, chashsize)) |
372 | goto error; |
373 | |
374 | Curl_llist_init(&multi->msglist, NULL); |
375 | Curl_llist_init(&multi->pending, NULL); |
376 | |
377 | multi->multiplexing = TRUE; |
378 | |
379 | /* -1 means it not set by user, use the default value */ |
380 | multi->maxconnects = -1; |
381 | multi->max_concurrent_streams = 100; |
382 | multi->ipv6_works = Curl_ipv6works(NULL); |
383 | |
384 | #ifdef USE_WINSOCK |
385 | multi->wsa_event = WSACreateEvent(); |
386 | if(multi->wsa_event == WSA_INVALID_EVENT) |
387 | goto error; |
388 | #else |
389 | #ifdef ENABLE_WAKEUP |
390 | if(Curl_socketpair(AF_UNIX, SOCK_STREAM, 0, multi->wakeup_pair) < 0) { |
391 | multi->wakeup_pair[0] = CURL_SOCKET_BAD; |
392 | multi->wakeup_pair[1] = CURL_SOCKET_BAD; |
393 | } |
394 | else if(curlx_nonblock(multi->wakeup_pair[0], TRUE) < 0 || |
395 | curlx_nonblock(multi->wakeup_pair[1], TRUE) < 0) { |
396 | sclose(multi->wakeup_pair[0]); |
397 | sclose(multi->wakeup_pair[1]); |
398 | multi->wakeup_pair[0] = CURL_SOCKET_BAD; |
399 | multi->wakeup_pair[1] = CURL_SOCKET_BAD; |
400 | } |
401 | #endif |
402 | #endif |
403 | |
404 | return multi; |
405 | |
406 | error: |
407 | |
408 | Curl_hash_destroy(&multi->sockhash); |
409 | Curl_hash_destroy(&multi->hostcache); |
410 | Curl_conncache_destroy(&multi->conn_cache); |
411 | Curl_llist_destroy(&multi->msglist, NULL); |
412 | Curl_llist_destroy(&multi->pending, NULL); |
413 | |
414 | free(multi); |
415 | return NULL; |
416 | } |
417 | |
418 | struct Curl_multi *curl_multi_init(void) |
419 | { |
420 | return Curl_multi_handle(CURL_SOCKET_HASH_TABLE_SIZE, |
421 | CURL_CONNECTION_HASH_SIZE); |
422 | } |
423 | |
424 | CURLMcode curl_multi_add_handle(struct Curl_multi *multi, |
425 | struct Curl_easy *data) |
426 | { |
427 | /* First, make some basic checks that the CURLM handle is a good handle */ |
428 | if(!GOOD_MULTI_HANDLE(multi)) |
429 | return CURLM_BAD_HANDLE; |
430 | |
431 | /* Verify that we got a somewhat good easy handle too */ |
432 | if(!GOOD_EASY_HANDLE(data)) |
433 | return CURLM_BAD_EASY_HANDLE; |
434 | |
435 | /* Prevent users from adding same easy handle more than once and prevent |
436 | adding to more than one multi stack */ |
437 | if(data->multi) |
438 | return CURLM_ADDED_ALREADY; |
439 | |
440 | if(multi->in_callback) |
441 | return CURLM_RECURSIVE_API_CALL; |
442 | |
443 | /* Initialize timeout list for this handle */ |
444 | Curl_llist_init(&data->state.timeoutlist, NULL); |
445 | |
446 | /* |
447 | * No failure allowed in this function beyond this point. And no |
448 | * modification of easy nor multi handle allowed before this except for |
449 | * potential multi's connection cache growing which won't be undone in this |
450 | * function no matter what. |
451 | */ |
452 | if(data->set.errorbuffer) |
453 | data->set.errorbuffer[0] = 0; |
454 | |
455 | /* set the easy handle */ |
456 | multistate(data, MSTATE_INIT); |
457 | |
458 | /* for multi interface connections, we share DNS cache automatically if the |
459 | easy handle's one is currently not set. */ |
460 | if(!data->dns.hostcache || |
461 | (data->dns.hostcachetype == HCACHE_NONE)) { |
462 | data->dns.hostcache = &multi->hostcache; |
463 | data->dns.hostcachetype = HCACHE_MULTI; |
464 | } |
465 | |
466 | /* Point to the shared or multi handle connection cache */ |
467 | if(data->share && (data->share->specifier & (1<< CURL_LOCK_DATA_CONNECT))) |
468 | data->state.conn_cache = &data->share->conn_cache; |
469 | else |
470 | data->state.conn_cache = &multi->conn_cache; |
471 | data->state.lastconnect_id = -1; |
472 | |
473 | #ifdef USE_LIBPSL |
474 | /* Do the same for PSL. */ |
475 | if(data->share && (data->share->specifier & (1 << CURL_LOCK_DATA_PSL))) |
476 | data->psl = &data->share->psl; |
477 | else |
478 | data->psl = &multi->psl; |
479 | #endif |
480 | |
481 | /* We add the new entry last in the list. */ |
482 | data->next = NULL; /* end of the line */ |
483 | if(multi->easyp) { |
484 | struct Curl_easy *last = multi->easylp; |
485 | last->next = data; |
486 | data->prev = last; |
487 | multi->easylp = data; /* the new last node */ |
488 | } |
489 | else { |
490 | /* first node, make prev NULL! */ |
491 | data->prev = NULL; |
492 | multi->easylp = multi->easyp = data; /* both first and last */ |
493 | } |
494 | |
495 | /* make the Curl_easy refer back to this multi handle */ |
496 | data->multi = multi; |
497 | |
498 | /* Set the timeout for this handle to expire really soon so that it will |
499 | be taken care of even when this handle is added in the midst of operation |
500 | when only the curl_multi_socket() API is used. During that flow, only |
501 | sockets that time-out or have actions will be dealt with. Since this |
502 | handle has no action yet, we make sure it times out to get things to |
503 | happen. */ |
504 | Curl_expire(data, 0, EXPIRE_RUN_NOW); |
505 | |
506 | /* increase the node-counter */ |
507 | multi->num_easy++; |
508 | |
509 | /* increase the alive-counter */ |
510 | multi->num_alive++; |
511 | |
512 | /* A somewhat crude work-around for a little glitch in Curl_update_timer() |
513 | that happens if the lastcall time is set to the same time when the handle |
514 | is removed as when the next handle is added, as then the check in |
515 | Curl_update_timer() that prevents calling the application multiple times |
516 | with the same timer info will not trigger and then the new handle's |
517 | timeout will not be notified to the app. |
518 | |
519 | The work-around is thus simply to clear the 'lastcall' variable to force |
520 | Curl_update_timer() to always trigger a callback to the app when a new |
521 | easy handle is added */ |
522 | memset(&multi->timer_lastcall, 0, sizeof(multi->timer_lastcall)); |
523 | |
524 | CONNCACHE_LOCK(data); |
525 | /* The closure handle only ever has default timeouts set. To improve the |
526 | state somewhat we clone the timeouts from each added handle so that the |
527 | closure handle always has the same timeouts as the most recently added |
528 | easy handle. */ |
529 | data->state.conn_cache->closure_handle->set.timeout = data->set.timeout; |
530 | data->state.conn_cache->closure_handle->set.server_response_timeout = |
531 | data->set.server_response_timeout; |
532 | data->state.conn_cache->closure_handle->set.no_signal = |
533 | data->set.no_signal; |
534 | CONNCACHE_UNLOCK(data); |
535 | |
536 | Curl_update_timer(multi); |
537 | return CURLM_OK; |
538 | } |
539 | |
540 | #if 0 |
541 | /* Debug-function, used like this: |
542 | * |
543 | * Curl_hash_print(multi->sockhash, debug_print_sock_hash); |
544 | * |
545 | * Enable the hash print function first by editing hash.c |
546 | */ |
547 | static void debug_print_sock_hash(void *p) |
548 | { |
549 | struct Curl_sh_entry *sh = (struct Curl_sh_entry *)p; |
550 | |
551 | fprintf(stderr, " [easy %p/magic %x/socket %d]" , |
552 | (void *)sh->data, sh->data->magic, (int)sh->socket); |
553 | } |
554 | #endif |
555 | |
556 | static CURLcode multi_done(struct Curl_easy *data, |
557 | CURLcode status, /* an error if this is called |
558 | after an error was detected */ |
559 | bool premature) |
560 | { |
561 | CURLcode result; |
562 | struct connectdata *conn = data->conn; |
563 | unsigned int i; |
564 | |
565 | DEBUGF(infof(data, "multi_done" )); |
566 | |
567 | if(data->state.done) |
568 | /* Stop if multi_done() has already been called */ |
569 | return CURLE_OK; |
570 | |
571 | /* Stop the resolver and free its own resources (but not dns_entry yet). */ |
572 | Curl_resolver_kill(data); |
573 | |
574 | /* Cleanup possible redirect junk */ |
575 | Curl_safefree(data->req.newurl); |
576 | Curl_safefree(data->req.location); |
577 | |
578 | switch(status) { |
579 | case CURLE_ABORTED_BY_CALLBACK: |
580 | case CURLE_READ_ERROR: |
581 | case CURLE_WRITE_ERROR: |
582 | /* When we're aborted due to a callback return code it basically have to |
583 | be counted as premature as there is trouble ahead if we don't. We have |
584 | many callbacks and protocols work differently, we could potentially do |
585 | this more fine-grained in the future. */ |
586 | premature = TRUE; |
587 | default: |
588 | break; |
589 | } |
590 | |
591 | /* this calls the protocol-specific function pointer previously set */ |
592 | if(conn->handler->done) |
593 | result = conn->handler->done(data, status, premature); |
594 | else |
595 | result = status; |
596 | |
597 | if(CURLE_ABORTED_BY_CALLBACK != result) { |
598 | /* avoid this if we already aborted by callback to avoid this calling |
599 | another callback */ |
600 | CURLcode rc = Curl_pgrsDone(data); |
601 | if(!result && rc) |
602 | result = CURLE_ABORTED_BY_CALLBACK; |
603 | } |
604 | |
605 | process_pending_handles(data->multi); /* connection / multiplex */ |
606 | |
607 | CONNCACHE_LOCK(data); |
608 | Curl_detach_connnection(data); |
609 | if(CONN_INUSE(conn)) { |
610 | /* Stop if still used. */ |
611 | CONNCACHE_UNLOCK(data); |
612 | DEBUGF(infof(data, "Connection still in use %zu, " |
613 | "no more multi_done now!" , |
614 | conn->easyq.size)); |
615 | return CURLE_OK; |
616 | } |
617 | |
618 | data->state.done = TRUE; /* called just now! */ |
619 | |
620 | if(conn->dns_entry) { |
621 | Curl_resolv_unlock(data, conn->dns_entry); /* done with this */ |
622 | conn->dns_entry = NULL; |
623 | } |
624 | Curl_hostcache_prune(data); |
625 | Curl_safefree(data->state.ulbuf); |
626 | |
627 | /* if the transfer was completed in a paused state there can be buffered |
628 | data left to free */ |
629 | for(i = 0; i < data->state.tempcount; i++) { |
630 | Curl_dyn_free(&data->state.tempwrite[i].b); |
631 | } |
632 | data->state.tempcount = 0; |
633 | |
634 | /* if data->set.reuse_forbid is TRUE, it means the libcurl client has |
635 | forced us to close this connection. This is ignored for requests taking |
636 | place in a NTLM/NEGOTIATE authentication handshake |
637 | |
638 | if conn->bits.close is TRUE, it means that the connection should be |
639 | closed in spite of all our efforts to be nice, due to protocol |
640 | restrictions in our or the server's end |
641 | |
642 | if premature is TRUE, it means this connection was said to be DONE before |
643 | the entire request operation is complete and thus we can't know in what |
644 | state it is for re-using, so we're forced to close it. In a perfect world |
645 | we can add code that keep track of if we really must close it here or not, |
646 | but currently we have no such detail knowledge. |
647 | */ |
648 | |
649 | if((data->set.reuse_forbid |
650 | #if defined(USE_NTLM) |
651 | && !(conn->http_ntlm_state == NTLMSTATE_TYPE2 || |
652 | conn->proxy_ntlm_state == NTLMSTATE_TYPE2) |
653 | #endif |
654 | #if defined(USE_SPNEGO) |
655 | && !(conn->http_negotiate_state == GSS_AUTHRECV || |
656 | conn->proxy_negotiate_state == GSS_AUTHRECV) |
657 | #endif |
658 | ) || conn->bits.close |
659 | || (premature && !(conn->handler->flags & PROTOPT_STREAM))) { |
660 | CURLcode res2; |
661 | connclose(conn, "disconnecting" ); |
662 | Curl_conncache_remove_conn(data, conn, FALSE); |
663 | CONNCACHE_UNLOCK(data); |
664 | res2 = Curl_disconnect(data, conn, premature); |
665 | |
666 | /* If we had an error already, make sure we return that one. But |
667 | if we got a new error, return that. */ |
668 | if(!result && res2) |
669 | result = res2; |
670 | } |
671 | else { |
672 | char buffer[256]; |
673 | const char *host = |
674 | #ifndef CURL_DISABLE_PROXY |
675 | conn->bits.socksproxy ? |
676 | conn->socks_proxy.host.dispname : |
677 | conn->bits.httpproxy ? conn->http_proxy.host.dispname : |
678 | #endif |
679 | conn->bits.conn_to_host ? conn->conn_to_host.dispname : |
680 | conn->host.dispname; |
681 | /* create string before returning the connection */ |
682 | msnprintf(buffer, sizeof(buffer), |
683 | "Connection #%ld to host %s left intact" , |
684 | conn->connection_id, host); |
685 | /* the connection is no longer in use by this transfer */ |
686 | CONNCACHE_UNLOCK(data); |
687 | if(Curl_conncache_return_conn(data, conn)) { |
688 | /* remember the most recently used connection */ |
689 | data->state.lastconnect_id = conn->connection_id; |
690 | infof(data, "%s" , buffer); |
691 | } |
692 | else |
693 | data->state.lastconnect_id = -1; |
694 | } |
695 | |
696 | Curl_safefree(data->state.buffer); |
697 | Curl_free_request_state(data); |
698 | return result; |
699 | } |
700 | |
701 | static int close_connect_only(struct Curl_easy *data, |
702 | struct connectdata *conn, void *param) |
703 | { |
704 | (void)param; |
705 | if(data->state.lastconnect_id != conn->connection_id) |
706 | return 0; |
707 | |
708 | if(!conn->bits.connect_only) |
709 | return 1; |
710 | |
711 | connclose(conn, "Removing connect-only easy handle" ); |
712 | |
713 | return 1; |
714 | } |
715 | |
716 | CURLMcode curl_multi_remove_handle(struct Curl_multi *multi, |
717 | struct Curl_easy *data) |
718 | { |
719 | struct Curl_easy *easy = data; |
720 | bool premature; |
721 | struct Curl_llist_element *e; |
722 | |
723 | /* First, make some basic checks that the CURLM handle is a good handle */ |
724 | if(!GOOD_MULTI_HANDLE(multi)) |
725 | return CURLM_BAD_HANDLE; |
726 | |
727 | /* Verify that we got a somewhat good easy handle too */ |
728 | if(!GOOD_EASY_HANDLE(data)) |
729 | return CURLM_BAD_EASY_HANDLE; |
730 | |
731 | /* Prevent users from trying to remove same easy handle more than once */ |
732 | if(!data->multi) |
733 | return CURLM_OK; /* it is already removed so let's say it is fine! */ |
734 | |
735 | /* Prevent users from trying to remove an easy handle from the wrong multi */ |
736 | if(data->multi != multi) |
737 | return CURLM_BAD_EASY_HANDLE; |
738 | |
739 | if(multi->in_callback) |
740 | return CURLM_RECURSIVE_API_CALL; |
741 | |
742 | premature = (data->mstate < MSTATE_COMPLETED) ? TRUE : FALSE; |
743 | |
744 | /* If the 'state' is not INIT or COMPLETED, we might need to do something |
745 | nice to put the easy_handle in a good known state when this returns. */ |
746 | if(premature) { |
747 | /* this handle is "alive" so we need to count down the total number of |
748 | alive connections when this is removed */ |
749 | multi->num_alive--; |
750 | } |
751 | |
752 | if(data->conn && |
753 | data->mstate > MSTATE_DO && |
754 | data->mstate < MSTATE_COMPLETED) { |
755 | /* Set connection owner so that the DONE function closes it. We can |
756 | safely do this here since connection is killed. */ |
757 | streamclose(data->conn, "Removed with partial response" ); |
758 | } |
759 | |
760 | if(data->conn) { |
761 | /* multi_done() clears the association between the easy handle and the |
762 | connection. |
763 | |
764 | Note that this ignores the return code simply because there's |
765 | nothing really useful to do with it anyway! */ |
766 | (void)multi_done(data, data->result, premature); |
767 | } |
768 | |
769 | /* The timer must be shut down before data->multi is set to NULL, else the |
770 | timenode will remain in the splay tree after curl_easy_cleanup is |
771 | called. Do it after multi_done() in case that sets another time! */ |
772 | Curl_expire_clear(data); |
773 | |
774 | if(data->connect_queue.ptr) |
775 | /* the handle was in the pending list waiting for an available connection, |
776 | so go ahead and remove it */ |
777 | Curl_llist_remove(&multi->pending, &data->connect_queue, NULL); |
778 | |
779 | if(data->dns.hostcachetype == HCACHE_MULTI) { |
780 | /* stop using the multi handle's DNS cache, *after* the possible |
781 | multi_done() call above */ |
782 | data->dns.hostcache = NULL; |
783 | data->dns.hostcachetype = HCACHE_NONE; |
784 | } |
785 | |
786 | Curl_wildcard_dtor(&data->wildcard); |
787 | |
788 | /* destroy the timeout list that is held in the easy handle, do this *after* |
789 | multi_done() as that may actually call Curl_expire that uses this */ |
790 | Curl_llist_destroy(&data->state.timeoutlist, NULL); |
791 | |
792 | /* change state without using multistate(), only to make singlesocket() do |
793 | what we want */ |
794 | data->mstate = MSTATE_COMPLETED; |
795 | singlesocket(multi, easy); /* to let the application know what sockets that |
796 | vanish with this handle */ |
797 | |
798 | /* Remove the association between the connection and the handle */ |
799 | Curl_detach_connnection(data); |
800 | |
801 | if(data->state.lastconnect_id != -1) { |
802 | /* Mark any connect-only connection for closure */ |
803 | Curl_conncache_foreach(data, data->state.conn_cache, |
804 | NULL, close_connect_only); |
805 | } |
806 | |
807 | #ifdef USE_LIBPSL |
808 | /* Remove the PSL association. */ |
809 | if(data->psl == &multi->psl) |
810 | data->psl = NULL; |
811 | #endif |
812 | |
813 | /* as this was using a shared connection cache we clear the pointer to that |
814 | since we're not part of that multi handle anymore */ |
815 | data->state.conn_cache = NULL; |
816 | |
817 | data->multi = NULL; /* clear the association to this multi handle */ |
818 | |
819 | /* make sure there's no pending message in the queue sent from this easy |
820 | handle */ |
821 | |
822 | for(e = multi->msglist.head; e; e = e->next) { |
823 | struct Curl_message *msg = e->ptr; |
824 | |
825 | if(msg->extmsg.easy_handle == easy) { |
826 | Curl_llist_remove(&multi->msglist, e, NULL); |
827 | /* there can only be one from this specific handle */ |
828 | break; |
829 | } |
830 | } |
831 | |
832 | /* Remove from the pending list if it is there. Otherwise this will |
833 | remain on the pending list forever due to the state change. */ |
834 | for(e = multi->pending.head; e; e = e->next) { |
835 | struct Curl_easy *curr_data = e->ptr; |
836 | |
837 | if(curr_data == data) { |
838 | Curl_llist_remove(&multi->pending, e, NULL); |
839 | break; |
840 | } |
841 | } |
842 | |
843 | /* make the previous node point to our next */ |
844 | if(data->prev) |
845 | data->prev->next = data->next; |
846 | else |
847 | multi->easyp = data->next; /* point to first node */ |
848 | |
849 | /* make our next point to our previous node */ |
850 | if(data->next) |
851 | data->next->prev = data->prev; |
852 | else |
853 | multi->easylp = data->prev; /* point to last node */ |
854 | |
855 | /* NOTE NOTE NOTE |
856 | We do not touch the easy handle here! */ |
857 | multi->num_easy--; /* one less to care about now */ |
858 | |
859 | process_pending_handles(multi); |
860 | |
861 | Curl_update_timer(multi); |
862 | return CURLM_OK; |
863 | } |
864 | |
865 | /* Return TRUE if the application asked for multiplexing */ |
866 | bool Curl_multiplex_wanted(const struct Curl_multi *multi) |
867 | { |
868 | return (multi && (multi->multiplexing)); |
869 | } |
870 | |
871 | /* |
872 | * Curl_detach_connnection() removes the given transfer from the connection. |
873 | * |
874 | * This is the only function that should clear data->conn. This will |
875 | * occasionally be called with the data->conn pointer already cleared. |
876 | */ |
877 | void Curl_detach_connnection(struct Curl_easy *data) |
878 | { |
879 | struct connectdata *conn = data->conn; |
880 | if(conn) { |
881 | Curl_llist_remove(&conn->easyq, &data->conn_queue, NULL); |
882 | Curl_ssl_detach_conn(data, conn); |
883 | } |
884 | data->conn = NULL; |
885 | } |
886 | |
887 | /* |
888 | * Curl_attach_connnection() attaches this transfer to this connection. |
889 | * |
890 | * This is the only function that should assign data->conn |
891 | */ |
892 | void Curl_attach_connnection(struct Curl_easy *data, |
893 | struct connectdata *conn) |
894 | { |
895 | DEBUGASSERT(!data->conn); |
896 | DEBUGASSERT(conn); |
897 | data->conn = conn; |
898 | Curl_llist_insert_next(&conn->easyq, conn->easyq.tail, data, |
899 | &data->conn_queue); |
900 | if(conn->handler->attach) |
901 | conn->handler->attach(data, conn); |
902 | Curl_ssl_associate_conn(data, conn); |
903 | } |
904 | |
905 | static int waitconnect_getsock(struct connectdata *conn, |
906 | curl_socket_t *sock) |
907 | { |
908 | int i; |
909 | int s = 0; |
910 | int rc = 0; |
911 | |
912 | #ifdef USE_SSL |
913 | #ifndef CURL_DISABLE_PROXY |
914 | if(CONNECT_FIRSTSOCKET_PROXY_SSL()) |
915 | return Curl_ssl->getsock(conn, sock); |
916 | #endif |
917 | #endif |
918 | |
919 | if(SOCKS_STATE(conn->cnnct.state)) |
920 | return Curl_SOCKS_getsock(conn, sock, FIRSTSOCKET); |
921 | |
922 | for(i = 0; i<2; i++) { |
923 | if(conn->tempsock[i] != CURL_SOCKET_BAD) { |
924 | sock[s] = conn->tempsock[i]; |
925 | rc |= GETSOCK_WRITESOCK(s); |
926 | #ifdef ENABLE_QUIC |
927 | if(conn->transport == TRNSPRT_QUIC) |
928 | /* when connecting QUIC, we want to read the socket too */ |
929 | rc |= GETSOCK_READSOCK(s); |
930 | #endif |
931 | s++; |
932 | } |
933 | } |
934 | |
935 | return rc; |
936 | } |
937 | |
938 | static int waitproxyconnect_getsock(struct connectdata *conn, |
939 | curl_socket_t *sock) |
940 | { |
941 | sock[0] = conn->sock[FIRSTSOCKET]; |
942 | |
943 | if(conn->connect_state) |
944 | return Curl_connect_getsock(conn); |
945 | |
946 | return GETSOCK_WRITESOCK(0); |
947 | } |
948 | |
949 | static int domore_getsock(struct Curl_easy *data, |
950 | struct connectdata *conn, |
951 | curl_socket_t *socks) |
952 | { |
953 | if(conn && conn->handler->domore_getsock) |
954 | return conn->handler->domore_getsock(data, conn, socks); |
955 | return GETSOCK_BLANK; |
956 | } |
957 | |
958 | static int doing_getsock(struct Curl_easy *data, |
959 | struct connectdata *conn, |
960 | curl_socket_t *socks) |
961 | { |
962 | if(conn && conn->handler->doing_getsock) |
963 | return conn->handler->doing_getsock(data, conn, socks); |
964 | return GETSOCK_BLANK; |
965 | } |
966 | |
967 | static int protocol_getsock(struct Curl_easy *data, |
968 | struct connectdata *conn, |
969 | curl_socket_t *socks) |
970 | { |
971 | if(conn->handler->proto_getsock) |
972 | return conn->handler->proto_getsock(data, conn, socks); |
973 | /* Backup getsock logic. Since there is a live socket in use, we must wait |
974 | for it or it will be removed from watching when the multi_socket API is |
975 | used. */ |
976 | socks[0] = conn->sock[FIRSTSOCKET]; |
977 | return GETSOCK_READSOCK(0) | GETSOCK_WRITESOCK(0); |
978 | } |
979 | |
980 | /* returns bitmapped flags for this handle and its sockets. The 'socks[]' |
981 | array contains MAX_SOCKSPEREASYHANDLE entries. */ |
982 | static int multi_getsock(struct Curl_easy *data, |
983 | curl_socket_t *socks) |
984 | { |
985 | struct connectdata *conn = data->conn; |
986 | /* The no connection case can happen when this is called from |
987 | curl_multi_remove_handle() => singlesocket() => multi_getsock(). |
988 | */ |
989 | if(!conn) |
990 | return 0; |
991 | |
992 | switch(data->mstate) { |
993 | default: |
994 | return 0; |
995 | |
996 | case MSTATE_RESOLVING: |
997 | return Curl_resolv_getsock(data, socks); |
998 | |
999 | case MSTATE_PROTOCONNECTING: |
1000 | case MSTATE_PROTOCONNECT: |
1001 | return protocol_getsock(data, conn, socks); |
1002 | |
1003 | case MSTATE_DO: |
1004 | case MSTATE_DOING: |
1005 | return doing_getsock(data, conn, socks); |
1006 | |
1007 | case MSTATE_TUNNELING: |
1008 | return waitproxyconnect_getsock(conn, socks); |
1009 | |
1010 | case MSTATE_CONNECTING: |
1011 | return waitconnect_getsock(conn, socks); |
1012 | |
1013 | case MSTATE_DOING_MORE: |
1014 | return domore_getsock(data, conn, socks); |
1015 | |
1016 | case MSTATE_DID: /* since is set after DO is completed, we switch to |
1017 | waiting for the same as the PERFORMING state */ |
1018 | case MSTATE_PERFORMING: |
1019 | return Curl_single_getsock(data, conn, socks); |
1020 | } |
1021 | |
1022 | } |
1023 | |
1024 | CURLMcode curl_multi_fdset(struct Curl_multi *multi, |
1025 | fd_set *read_fd_set, fd_set *write_fd_set, |
1026 | fd_set *exc_fd_set, int *max_fd) |
1027 | { |
1028 | /* Scan through all the easy handles to get the file descriptors set. |
1029 | Some easy handles may not have connected to the remote host yet, |
1030 | and then we must make sure that is done. */ |
1031 | struct Curl_easy *data; |
1032 | int this_max_fd = -1; |
1033 | curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE]; |
1034 | int i; |
1035 | (void)exc_fd_set; /* not used */ |
1036 | |
1037 | if(!GOOD_MULTI_HANDLE(multi)) |
1038 | return CURLM_BAD_HANDLE; |
1039 | |
1040 | if(multi->in_callback) |
1041 | return CURLM_RECURSIVE_API_CALL; |
1042 | |
1043 | data = multi->easyp; |
1044 | while(data) { |
1045 | int bitmap; |
1046 | #ifdef __clang_analyzer_ |
1047 | /* to prevent "The left operand of '>=' is a garbage value" warnings */ |
1048 | memset(sockbunch, 0, sizeof(sockbunch)); |
1049 | #endif |
1050 | bitmap = multi_getsock(data, sockbunch); |
1051 | |
1052 | for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++) { |
1053 | curl_socket_t s = CURL_SOCKET_BAD; |
1054 | |
1055 | if((bitmap & GETSOCK_READSOCK(i)) && VALID_SOCK(sockbunch[i])) { |
1056 | if(!FDSET_SOCK(sockbunch[i])) |
1057 | /* pretend it doesn't exist */ |
1058 | continue; |
1059 | FD_SET(sockbunch[i], read_fd_set); |
1060 | s = sockbunch[i]; |
1061 | } |
1062 | if((bitmap & GETSOCK_WRITESOCK(i)) && VALID_SOCK(sockbunch[i])) { |
1063 | if(!FDSET_SOCK(sockbunch[i])) |
1064 | /* pretend it doesn't exist */ |
1065 | continue; |
1066 | FD_SET(sockbunch[i], write_fd_set); |
1067 | s = sockbunch[i]; |
1068 | } |
1069 | if(s == CURL_SOCKET_BAD) |
1070 | /* this socket is unused, break out of loop */ |
1071 | break; |
1072 | if((int)s > this_max_fd) |
1073 | this_max_fd = (int)s; |
1074 | } |
1075 | |
1076 | data = data->next; /* check next handle */ |
1077 | } |
1078 | |
1079 | *max_fd = this_max_fd; |
1080 | |
1081 | return CURLM_OK; |
1082 | } |
1083 | |
1084 | #define NUM_POLLS_ON_STACK 10 |
1085 | |
1086 | static CURLMcode multi_wait(struct Curl_multi *multi, |
1087 | struct curl_waitfd [], |
1088 | unsigned int , |
1089 | int timeout_ms, |
1090 | int *ret, |
1091 | bool , /* when no socket, wait */ |
1092 | bool use_wakeup) |
1093 | { |
1094 | struct Curl_easy *data; |
1095 | curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE]; |
1096 | int bitmap; |
1097 | unsigned int i; |
1098 | unsigned int nfds = 0; |
1099 | unsigned int curlfds; |
1100 | long timeout_internal; |
1101 | int retcode = 0; |
1102 | struct pollfd a_few_on_stack[NUM_POLLS_ON_STACK]; |
1103 | struct pollfd *ufds = &a_few_on_stack[0]; |
1104 | bool ufds_malloc = FALSE; |
1105 | #ifdef USE_WINSOCK |
1106 | WSANETWORKEVENTS wsa_events; |
1107 | DEBUGASSERT(multi->wsa_event != WSA_INVALID_EVENT); |
1108 | #endif |
1109 | #ifndef ENABLE_WAKEUP |
1110 | (void)use_wakeup; |
1111 | #endif |
1112 | |
1113 | if(!GOOD_MULTI_HANDLE(multi)) |
1114 | return CURLM_BAD_HANDLE; |
1115 | |
1116 | if(multi->in_callback) |
1117 | return CURLM_RECURSIVE_API_CALL; |
1118 | |
1119 | if(timeout_ms < 0) |
1120 | return CURLM_BAD_FUNCTION_ARGUMENT; |
1121 | |
1122 | /* Count up how many fds we have from the multi handle */ |
1123 | data = multi->easyp; |
1124 | while(data) { |
1125 | bitmap = multi_getsock(data, sockbunch); |
1126 | |
1127 | for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++) { |
1128 | curl_socket_t s = CURL_SOCKET_BAD; |
1129 | |
1130 | if((bitmap & GETSOCK_READSOCK(i)) && VALID_SOCK((sockbunch[i]))) { |
1131 | ++nfds; |
1132 | s = sockbunch[i]; |
1133 | } |
1134 | if((bitmap & GETSOCK_WRITESOCK(i)) && VALID_SOCK((sockbunch[i]))) { |
1135 | ++nfds; |
1136 | s = sockbunch[i]; |
1137 | } |
1138 | if(s == CURL_SOCKET_BAD) { |
1139 | break; |
1140 | } |
1141 | } |
1142 | |
1143 | data = data->next; /* check next handle */ |
1144 | } |
1145 | |
1146 | /* If the internally desired timeout is actually shorter than requested from |
1147 | the outside, then use the shorter time! But only if the internal timer |
1148 | is actually larger than -1! */ |
1149 | (void)multi_timeout(multi, &timeout_internal); |
1150 | if((timeout_internal >= 0) && (timeout_internal < (long)timeout_ms)) |
1151 | timeout_ms = (int)timeout_internal; |
1152 | |
1153 | curlfds = nfds; /* number of internal file descriptors */ |
1154 | nfds += extra_nfds; /* add the externally provided ones */ |
1155 | |
1156 | #ifdef ENABLE_WAKEUP |
1157 | #ifdef USE_WINSOCK |
1158 | if(use_wakeup) { |
1159 | #else |
1160 | if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) { |
1161 | #endif |
1162 | ++nfds; |
1163 | } |
1164 | #endif |
1165 | |
1166 | if(nfds > NUM_POLLS_ON_STACK) { |
1167 | /* 'nfds' is a 32 bit value and 'struct pollfd' is typically 8 bytes |
1168 | big, so at 2^29 sockets this value might wrap. When a process gets |
1169 | the capability to actually handle over 500 million sockets this |
1170 | calculation needs a integer overflow check. */ |
1171 | ufds = malloc(nfds * sizeof(struct pollfd)); |
1172 | if(!ufds) |
1173 | return CURLM_OUT_OF_MEMORY; |
1174 | ufds_malloc = TRUE; |
1175 | } |
1176 | nfds = 0; |
1177 | |
1178 | /* only do the second loop if we found descriptors in the first stage run |
1179 | above */ |
1180 | |
1181 | if(curlfds) { |
1182 | /* Add the curl handles to our pollfds first */ |
1183 | data = multi->easyp; |
1184 | while(data) { |
1185 | bitmap = multi_getsock(data, sockbunch); |
1186 | |
1187 | for(i = 0; i < MAX_SOCKSPEREASYHANDLE; i++) { |
1188 | curl_socket_t s = CURL_SOCKET_BAD; |
1189 | #ifdef USE_WINSOCK |
1190 | long mask = 0; |
1191 | #endif |
1192 | if((bitmap & GETSOCK_READSOCK(i)) && VALID_SOCK((sockbunch[i]))) { |
1193 | s = sockbunch[i]; |
1194 | #ifdef USE_WINSOCK |
1195 | mask |= FD_READ|FD_ACCEPT|FD_CLOSE; |
1196 | #endif |
1197 | ufds[nfds].fd = s; |
1198 | ufds[nfds].events = POLLIN; |
1199 | ++nfds; |
1200 | } |
1201 | if((bitmap & GETSOCK_WRITESOCK(i)) && VALID_SOCK((sockbunch[i]))) { |
1202 | s = sockbunch[i]; |
1203 | #ifdef USE_WINSOCK |
1204 | mask |= FD_WRITE|FD_CONNECT|FD_CLOSE; |
1205 | send(s, NULL, 0, 0); /* reset FD_WRITE */ |
1206 | #endif |
1207 | ufds[nfds].fd = s; |
1208 | ufds[nfds].events = POLLOUT; |
1209 | ++nfds; |
1210 | } |
1211 | /* s is only set if either being readable or writable is checked */ |
1212 | if(s == CURL_SOCKET_BAD) { |
1213 | /* break on entry not checked for being readable or writable */ |
1214 | break; |
1215 | } |
1216 | #ifdef USE_WINSOCK |
1217 | if(WSAEventSelect(s, multi->wsa_event, mask) != 0) { |
1218 | if(ufds_malloc) |
1219 | free(ufds); |
1220 | return CURLM_INTERNAL_ERROR; |
1221 | } |
1222 | #endif |
1223 | } |
1224 | |
1225 | data = data->next; /* check next handle */ |
1226 | } |
1227 | } |
1228 | |
1229 | /* Add external file descriptions from poll-like struct curl_waitfd */ |
1230 | for(i = 0; i < extra_nfds; i++) { |
1231 | #ifdef USE_WINSOCK |
1232 | long mask = 0; |
1233 | if(extra_fds[i].events & CURL_WAIT_POLLIN) |
1234 | mask |= FD_READ|FD_ACCEPT|FD_CLOSE; |
1235 | if(extra_fds[i].events & CURL_WAIT_POLLPRI) |
1236 | mask |= FD_OOB; |
1237 | if(extra_fds[i].events & CURL_WAIT_POLLOUT) { |
1238 | mask |= FD_WRITE|FD_CONNECT|FD_CLOSE; |
1239 | send(extra_fds[i].fd, NULL, 0, 0); /* reset FD_WRITE */ |
1240 | } |
1241 | if(WSAEventSelect(extra_fds[i].fd, multi->wsa_event, mask) != 0) { |
1242 | if(ufds_malloc) |
1243 | free(ufds); |
1244 | return CURLM_INTERNAL_ERROR; |
1245 | } |
1246 | #endif |
1247 | ufds[nfds].fd = extra_fds[i].fd; |
1248 | ufds[nfds].events = 0; |
1249 | if(extra_fds[i].events & CURL_WAIT_POLLIN) |
1250 | ufds[nfds].events |= POLLIN; |
1251 | if(extra_fds[i].events & CURL_WAIT_POLLPRI) |
1252 | ufds[nfds].events |= POLLPRI; |
1253 | if(extra_fds[i].events & CURL_WAIT_POLLOUT) |
1254 | ufds[nfds].events |= POLLOUT; |
1255 | ++nfds; |
1256 | } |
1257 | |
1258 | #ifdef ENABLE_WAKEUP |
1259 | #ifndef USE_WINSOCK |
1260 | if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) { |
1261 | ufds[nfds].fd = multi->wakeup_pair[0]; |
1262 | ufds[nfds].events = POLLIN; |
1263 | ++nfds; |
1264 | } |
1265 | #endif |
1266 | #endif |
1267 | |
1268 | #if defined(ENABLE_WAKEUP) && defined(USE_WINSOCK) |
1269 | if(nfds || use_wakeup) { |
1270 | #else |
1271 | if(nfds) { |
1272 | #endif |
1273 | int pollrc; |
1274 | #ifdef USE_WINSOCK |
1275 | if(nfds) |
1276 | pollrc = Curl_poll(ufds, nfds, 0); /* just pre-check with WinSock */ |
1277 | else |
1278 | pollrc = 0; |
1279 | if(pollrc <= 0) /* now wait... if not ready during the pre-check above */ |
1280 | WSAWaitForMultipleEvents(1, &multi->wsa_event, FALSE, timeout_ms, FALSE); |
1281 | #else |
1282 | pollrc = Curl_poll(ufds, nfds, timeout_ms); /* wait... */ |
1283 | #endif |
1284 | |
1285 | if(pollrc > 0) { |
1286 | retcode = pollrc; |
1287 | #ifdef USE_WINSOCK |
1288 | } |
1289 | /* With WinSock, we have to run the following section unconditionally |
1290 | to call WSAEventSelect(fd, event, 0) on all the sockets */ |
1291 | { |
1292 | #endif |
1293 | /* copy revents results from the poll to the curl_multi_wait poll |
1294 | struct, the bit values of the actual underlying poll() implementation |
1295 | may not be the same as the ones in the public libcurl API! */ |
1296 | for(i = 0; i < extra_nfds; i++) { |
1297 | unsigned r = ufds[curlfds + i].revents; |
1298 | unsigned short mask = 0; |
1299 | #ifdef USE_WINSOCK |
1300 | wsa_events.lNetworkEvents = 0; |
1301 | if(WSAEnumNetworkEvents(extra_fds[i].fd, NULL, &wsa_events) == 0) { |
1302 | if(wsa_events.lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE)) |
1303 | mask |= CURL_WAIT_POLLIN; |
1304 | if(wsa_events.lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE)) |
1305 | mask |= CURL_WAIT_POLLOUT; |
1306 | if(wsa_events.lNetworkEvents & FD_OOB) |
1307 | mask |= CURL_WAIT_POLLPRI; |
1308 | if(ret && pollrc <= 0 && wsa_events.lNetworkEvents) |
1309 | retcode++; |
1310 | } |
1311 | WSAEventSelect(extra_fds[i].fd, multi->wsa_event, 0); |
1312 | if(pollrc <= 0) |
1313 | continue; |
1314 | #endif |
1315 | if(r & POLLIN) |
1316 | mask |= CURL_WAIT_POLLIN; |
1317 | if(r & POLLOUT) |
1318 | mask |= CURL_WAIT_POLLOUT; |
1319 | if(r & POLLPRI) |
1320 | mask |= CURL_WAIT_POLLPRI; |
1321 | extra_fds[i].revents = mask; |
1322 | } |
1323 | |
1324 | #ifdef USE_WINSOCK |
1325 | /* Count up all our own sockets that had activity, |
1326 | and remove them from the event. */ |
1327 | if(curlfds) { |
1328 | data = multi->easyp; |
1329 | while(data) { |
1330 | bitmap = multi_getsock(data, sockbunch); |
1331 | |
1332 | for(i = 0; i < MAX_SOCKSPEREASYHANDLE; i++) { |
1333 | if(bitmap & (GETSOCK_READSOCK(i) | GETSOCK_WRITESOCK(i))) { |
1334 | wsa_events.lNetworkEvents = 0; |
1335 | if(WSAEnumNetworkEvents(sockbunch[i], NULL, &wsa_events) == 0) { |
1336 | if(ret && pollrc <= 0 && wsa_events.lNetworkEvents) |
1337 | retcode++; |
1338 | } |
1339 | WSAEventSelect(sockbunch[i], multi->wsa_event, 0); |
1340 | } |
1341 | else { |
1342 | /* break on entry not checked for being readable or writable */ |
1343 | break; |
1344 | } |
1345 | } |
1346 | |
1347 | data = data->next; |
1348 | } |
1349 | } |
1350 | |
1351 | WSAResetEvent(multi->wsa_event); |
1352 | #else |
1353 | #ifdef ENABLE_WAKEUP |
1354 | if(use_wakeup && multi->wakeup_pair[0] != CURL_SOCKET_BAD) { |
1355 | if(ufds[curlfds + extra_nfds].revents & POLLIN) { |
1356 | char buf[64]; |
1357 | ssize_t nread; |
1358 | while(1) { |
1359 | /* the reading socket is non-blocking, try to read |
1360 | data from it until it receives an error (except EINTR). |
1361 | In normal cases it will get EAGAIN or EWOULDBLOCK |
1362 | when there is no more data, breaking the loop. */ |
1363 | nread = sread(multi->wakeup_pair[0], buf, sizeof(buf)); |
1364 | if(nread <= 0) { |
1365 | if(nread < 0 && EINTR == SOCKERRNO) |
1366 | continue; |
1367 | break; |
1368 | } |
1369 | } |
1370 | /* do not count the wakeup socket into the returned value */ |
1371 | retcode--; |
1372 | } |
1373 | } |
1374 | #endif |
1375 | #endif |
1376 | } |
1377 | } |
1378 | |
1379 | if(ufds_malloc) |
1380 | free(ufds); |
1381 | if(ret) |
1382 | *ret = retcode; |
1383 | #if defined(ENABLE_WAKEUP) && defined(USE_WINSOCK) |
1384 | if(extrawait && !nfds && !use_wakeup) { |
1385 | #else |
1386 | if(extrawait && !nfds) { |
1387 | #endif |
1388 | long sleep_ms = 0; |
1389 | |
1390 | /* Avoid busy-looping when there's nothing particular to wait for */ |
1391 | if(!curl_multi_timeout(multi, &sleep_ms) && sleep_ms) { |
1392 | if(sleep_ms > timeout_ms) |
1393 | sleep_ms = timeout_ms; |
1394 | /* when there are no easy handles in the multi, this holds a -1 |
1395 | timeout */ |
1396 | else if(sleep_ms < 0) |
1397 | sleep_ms = timeout_ms; |
1398 | Curl_wait_ms(sleep_ms); |
1399 | } |
1400 | } |
1401 | |
1402 | return CURLM_OK; |
1403 | } |
1404 | |
1405 | CURLMcode curl_multi_wait(struct Curl_multi *multi, |
1406 | struct curl_waitfd [], |
1407 | unsigned int , |
1408 | int timeout_ms, |
1409 | int *ret) |
1410 | { |
1411 | return multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, FALSE, |
1412 | FALSE); |
1413 | } |
1414 | |
1415 | CURLMcode curl_multi_poll(struct Curl_multi *multi, |
1416 | struct curl_waitfd [], |
1417 | unsigned int , |
1418 | int timeout_ms, |
1419 | int *ret) |
1420 | { |
1421 | return multi_wait(multi, extra_fds, extra_nfds, timeout_ms, ret, TRUE, |
1422 | TRUE); |
1423 | } |
1424 | |
1425 | CURLMcode curl_multi_wakeup(struct Curl_multi *multi) |
1426 | { |
1427 | /* this function is usually called from another thread, |
1428 | it has to be careful only to access parts of the |
1429 | Curl_multi struct that are constant */ |
1430 | |
1431 | /* GOOD_MULTI_HANDLE can be safely called */ |
1432 | if(!GOOD_MULTI_HANDLE(multi)) |
1433 | return CURLM_BAD_HANDLE; |
1434 | |
1435 | #ifdef ENABLE_WAKEUP |
1436 | #ifdef USE_WINSOCK |
1437 | if(WSASetEvent(multi->wsa_event)) |
1438 | return CURLM_OK; |
1439 | #else |
1440 | /* the wakeup_pair variable is only written during init and cleanup, |
1441 | making it safe to access from another thread after the init part |
1442 | and before cleanup */ |
1443 | if(multi->wakeup_pair[1] != CURL_SOCKET_BAD) { |
1444 | char buf[1]; |
1445 | buf[0] = 1; |
1446 | while(1) { |
1447 | /* swrite() is not thread-safe in general, because concurrent calls |
1448 | can have their messages interleaved, but in this case the content |
1449 | of the messages does not matter, which makes it ok to call. |
1450 | |
1451 | The write socket is set to non-blocking, this way this function |
1452 | cannot block, making it safe to call even from the same thread |
1453 | that will call curl_multi_wait(). If swrite() returns that it |
1454 | would block, it's considered successful because it means that |
1455 | previous calls to this function will wake up the poll(). */ |
1456 | if(swrite(multi->wakeup_pair[1], buf, sizeof(buf)) < 0) { |
1457 | int err = SOCKERRNO; |
1458 | int return_success; |
1459 | #ifdef USE_WINSOCK |
1460 | return_success = WSAEWOULDBLOCK == err; |
1461 | #else |
1462 | if(EINTR == err) |
1463 | continue; |
1464 | return_success = EWOULDBLOCK == err || EAGAIN == err; |
1465 | #endif |
1466 | if(!return_success) |
1467 | return CURLM_WAKEUP_FAILURE; |
1468 | } |
1469 | return CURLM_OK; |
1470 | } |
1471 | } |
1472 | #endif |
1473 | #endif |
1474 | return CURLM_WAKEUP_FAILURE; |
1475 | } |
1476 | |
1477 | /* |
1478 | * multi_ischanged() is called |
1479 | * |
1480 | * Returns TRUE/FALSE whether the state is changed to trigger a CONNECT_PEND |
1481 | * => CONNECT action. |
1482 | * |
1483 | * Set 'clear' to TRUE to have it also clear the state variable. |
1484 | */ |
1485 | static bool multi_ischanged(struct Curl_multi *multi, bool clear) |
1486 | { |
1487 | bool retval = multi->recheckstate; |
1488 | if(clear) |
1489 | multi->recheckstate = FALSE; |
1490 | return retval; |
1491 | } |
1492 | |
1493 | CURLMcode Curl_multi_add_perform(struct Curl_multi *multi, |
1494 | struct Curl_easy *data, |
1495 | struct connectdata *conn) |
1496 | { |
1497 | CURLMcode rc; |
1498 | |
1499 | if(multi->in_callback) |
1500 | return CURLM_RECURSIVE_API_CALL; |
1501 | |
1502 | rc = curl_multi_add_handle(multi, data); |
1503 | if(!rc) { |
1504 | struct SingleRequest *k = &data->req; |
1505 | |
1506 | /* pass in NULL for 'conn' here since we don't want to init the |
1507 | connection, only this transfer */ |
1508 | Curl_init_do(data, NULL); |
1509 | |
1510 | /* take this handle to the perform state right away */ |
1511 | multistate(data, MSTATE_PERFORMING); |
1512 | Curl_attach_connnection(data, conn); |
1513 | k->keepon |= KEEP_RECV; /* setup to receive! */ |
1514 | } |
1515 | return rc; |
1516 | } |
1517 | |
1518 | static CURLcode multi_do(struct Curl_easy *data, bool *done) |
1519 | { |
1520 | CURLcode result = CURLE_OK; |
1521 | struct connectdata *conn = data->conn; |
1522 | |
1523 | DEBUGASSERT(conn); |
1524 | DEBUGASSERT(conn->handler); |
1525 | |
1526 | if(conn->handler->do_it) |
1527 | /* generic protocol-specific function pointer set in curl_connect() */ |
1528 | result = conn->handler->do_it(data, done); |
1529 | |
1530 | return result; |
1531 | } |
1532 | |
1533 | /* |
1534 | * multi_do_more() is called during the DO_MORE multi state. It is basically a |
1535 | * second stage DO state which (wrongly) was introduced to support FTP's |
1536 | * second connection. |
1537 | * |
1538 | * 'complete' can return 0 for incomplete, 1 for done and -1 for go back to |
1539 | * DOING state there's more work to do! |
1540 | */ |
1541 | |
1542 | static CURLcode multi_do_more(struct Curl_easy *data, int *complete) |
1543 | { |
1544 | CURLcode result = CURLE_OK; |
1545 | struct connectdata *conn = data->conn; |
1546 | |
1547 | *complete = 0; |
1548 | |
1549 | if(conn->handler->do_more) |
1550 | result = conn->handler->do_more(data, complete); |
1551 | |
1552 | return result; |
1553 | } |
1554 | |
1555 | /* |
1556 | * Check whether a timeout occurred, and handle it if it did |
1557 | */ |
1558 | static bool multi_handle_timeout(struct Curl_easy *data, |
1559 | struct curltime *now, |
1560 | bool *stream_error, |
1561 | CURLcode *result, |
1562 | bool connect_timeout) |
1563 | { |
1564 | timediff_t timeout_ms; |
1565 | timeout_ms = Curl_timeleft(data, now, connect_timeout); |
1566 | |
1567 | if(timeout_ms < 0) { |
1568 | /* Handle timed out */ |
1569 | if(data->mstate == MSTATE_RESOLVING) |
1570 | failf(data, "Resolving timed out after %" CURL_FORMAT_TIMEDIFF_T |
1571 | " milliseconds" , |
1572 | Curl_timediff(*now, data->progress.t_startsingle)); |
1573 | else if(data->mstate == MSTATE_CONNECTING) |
1574 | failf(data, "Connection timed out after %" CURL_FORMAT_TIMEDIFF_T |
1575 | " milliseconds" , |
1576 | Curl_timediff(*now, data->progress.t_startsingle)); |
1577 | else { |
1578 | struct SingleRequest *k = &data->req; |
1579 | if(k->size != -1) { |
1580 | failf(data, "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T |
1581 | " milliseconds with %" CURL_FORMAT_CURL_OFF_T " out of %" |
1582 | CURL_FORMAT_CURL_OFF_T " bytes received" , |
1583 | Curl_timediff(*now, data->progress.t_startsingle), |
1584 | k->bytecount, k->size); |
1585 | } |
1586 | else { |
1587 | failf(data, "Operation timed out after %" CURL_FORMAT_TIMEDIFF_T |
1588 | " milliseconds with %" CURL_FORMAT_CURL_OFF_T |
1589 | " bytes received" , |
1590 | Curl_timediff(*now, data->progress.t_startsingle), |
1591 | k->bytecount); |
1592 | } |
1593 | } |
1594 | |
1595 | /* Force connection closed if the connection has indeed been used */ |
1596 | if(data->mstate > MSTATE_DO) { |
1597 | streamclose(data->conn, "Disconnected with pending data" ); |
1598 | *stream_error = TRUE; |
1599 | } |
1600 | *result = CURLE_OPERATION_TIMEDOUT; |
1601 | (void)multi_done(data, *result, TRUE); |
1602 | } |
1603 | |
1604 | return (timeout_ms < 0); |
1605 | } |
1606 | |
1607 | /* |
1608 | * We are doing protocol-specific connecting and this is being called over and |
1609 | * over from the multi interface until the connection phase is done on |
1610 | * protocol layer. |
1611 | */ |
1612 | |
1613 | static CURLcode protocol_connecting(struct Curl_easy *data, bool *done) |
1614 | { |
1615 | CURLcode result = CURLE_OK; |
1616 | struct connectdata *conn = data->conn; |
1617 | |
1618 | if(conn && conn->handler->connecting) { |
1619 | *done = FALSE; |
1620 | result = conn->handler->connecting(data, done); |
1621 | } |
1622 | else |
1623 | *done = TRUE; |
1624 | |
1625 | return result; |
1626 | } |
1627 | |
1628 | /* |
1629 | * We are DOING this is being called over and over from the multi interface |
1630 | * until the DOING phase is done on protocol layer. |
1631 | */ |
1632 | |
1633 | static CURLcode protocol_doing(struct Curl_easy *data, bool *done) |
1634 | { |
1635 | CURLcode result = CURLE_OK; |
1636 | struct connectdata *conn = data->conn; |
1637 | |
1638 | if(conn && conn->handler->doing) { |
1639 | *done = FALSE; |
1640 | result = conn->handler->doing(data, done); |
1641 | } |
1642 | else |
1643 | *done = TRUE; |
1644 | |
1645 | return result; |
1646 | } |
1647 | |
1648 | /* |
1649 | * We have discovered that the TCP connection has been successful, we can now |
1650 | * proceed with some action. |
1651 | * |
1652 | */ |
1653 | static CURLcode protocol_connect(struct Curl_easy *data, |
1654 | bool *protocol_done) |
1655 | { |
1656 | CURLcode result = CURLE_OK; |
1657 | struct connectdata *conn = data->conn; |
1658 | DEBUGASSERT(conn); |
1659 | DEBUGASSERT(protocol_done); |
1660 | |
1661 | *protocol_done = FALSE; |
1662 | |
1663 | if(conn->bits.tcpconnect[FIRSTSOCKET] && conn->bits.protoconnstart) { |
1664 | /* We already are connected, get back. This may happen when the connect |
1665 | worked fine in the first call, like when we connect to a local server |
1666 | or proxy. Note that we don't know if the protocol is actually done. |
1667 | |
1668 | Unless this protocol doesn't have any protocol-connect callback, as |
1669 | then we know we're done. */ |
1670 | if(!conn->handler->connecting) |
1671 | *protocol_done = TRUE; |
1672 | |
1673 | return CURLE_OK; |
1674 | } |
1675 | |
1676 | if(!conn->bits.protoconnstart) { |
1677 | #ifndef CURL_DISABLE_PROXY |
1678 | result = Curl_proxy_connect(data, FIRSTSOCKET); |
1679 | if(result) |
1680 | return result; |
1681 | |
1682 | if(CONNECT_FIRSTSOCKET_PROXY_SSL()) |
1683 | /* wait for HTTPS proxy SSL initialization to complete */ |
1684 | return CURLE_OK; |
1685 | |
1686 | if(conn->bits.tunnel_proxy && conn->bits.httpproxy && |
1687 | Curl_connect_ongoing(conn)) |
1688 | /* when using an HTTP tunnel proxy, await complete tunnel establishment |
1689 | before proceeding further. Return CURLE_OK so we'll be called again */ |
1690 | return CURLE_OK; |
1691 | #endif |
1692 | if(conn->handler->connect_it) { |
1693 | /* is there a protocol-specific connect() procedure? */ |
1694 | |
1695 | /* Call the protocol-specific connect function */ |
1696 | result = conn->handler->connect_it(data, protocol_done); |
1697 | } |
1698 | else |
1699 | *protocol_done = TRUE; |
1700 | |
1701 | /* it has started, possibly even completed but that knowledge isn't stored |
1702 | in this bit! */ |
1703 | if(!result) |
1704 | conn->bits.protoconnstart = TRUE; |
1705 | } |
1706 | |
1707 | return result; /* pass back status */ |
1708 | } |
1709 | |
1710 | /* |
1711 | * Curl_preconnect() is called immediately before a connect starts. When a |
1712 | * redirect is followed, this is then called multiple times during a single |
1713 | * transfer. |
1714 | */ |
1715 | CURLcode Curl_preconnect(struct Curl_easy *data) |
1716 | { |
1717 | if(!data->state.buffer) { |
1718 | data->state.buffer = malloc(data->set.buffer_size + 1); |
1719 | if(!data->state.buffer) |
1720 | return CURLE_OUT_OF_MEMORY; |
1721 | } |
1722 | return CURLE_OK; |
1723 | } |
1724 | |
1725 | |
1726 | static CURLMcode multi_runsingle(struct Curl_multi *multi, |
1727 | struct curltime *nowp, |
1728 | struct Curl_easy *data) |
1729 | { |
1730 | struct Curl_message *msg = NULL; |
1731 | bool connected; |
1732 | bool async; |
1733 | bool protocol_connected = FALSE; |
1734 | bool dophase_done = FALSE; |
1735 | bool done = FALSE; |
1736 | CURLMcode rc; |
1737 | CURLcode result = CURLE_OK; |
1738 | timediff_t recv_timeout_ms; |
1739 | timediff_t send_timeout_ms; |
1740 | int control; |
1741 | |
1742 | if(!GOOD_EASY_HANDLE(data)) |
1743 | return CURLM_BAD_EASY_HANDLE; |
1744 | |
1745 | do { |
1746 | /* A "stream" here is a logical stream if the protocol can handle that |
1747 | (HTTP/2), or the full connection for older protocols */ |
1748 | bool stream_error = FALSE; |
1749 | rc = CURLM_OK; |
1750 | |
1751 | if(multi_ischanged(multi, TRUE)) { |
1752 | DEBUGF(infof(data, "multi changed, check CONNECT_PEND queue!" )); |
1753 | process_pending_handles(multi); /* multiplexed */ |
1754 | } |
1755 | |
1756 | if(data->mstate > MSTATE_CONNECT && |
1757 | data->mstate < MSTATE_COMPLETED) { |
1758 | /* Make sure we set the connection's current owner */ |
1759 | DEBUGASSERT(data->conn); |
1760 | if(!data->conn) |
1761 | return CURLM_INTERNAL_ERROR; |
1762 | } |
1763 | |
1764 | if(data->conn && |
1765 | (data->mstate >= MSTATE_CONNECT) && |
1766 | (data->mstate < MSTATE_COMPLETED)) { |
1767 | /* Check for overall operation timeout here but defer handling the |
1768 | * connection timeout to later, to allow for a connection to be set up |
1769 | * in the window since we last checked timeout. This prevents us |
1770 | * tearing down a completed connection in the case where we were slow |
1771 | * to check the timeout (e.g. process descheduled during this loop). |
1772 | * We set connect_timeout=FALSE to do this. */ |
1773 | |
1774 | /* we need to wait for the connect state as only then is the start time |
1775 | stored, but we must not check already completed handles */ |
1776 | if(multi_handle_timeout(data, nowp, &stream_error, &result, FALSE)) { |
1777 | /* Skip the statemachine and go directly to error handling section. */ |
1778 | goto statemachine_end; |
1779 | } |
1780 | } |
1781 | |
1782 | switch(data->mstate) { |
1783 | case MSTATE_INIT: |
1784 | /* init this transfer. */ |
1785 | result = Curl_pretransfer(data); |
1786 | |
1787 | if(!result) { |
1788 | /* after init, go CONNECT */ |
1789 | multistate(data, MSTATE_CONNECT); |
1790 | *nowp = Curl_pgrsTime(data, TIMER_STARTOP); |
1791 | rc = CURLM_CALL_MULTI_PERFORM; |
1792 | } |
1793 | break; |
1794 | |
1795 | case MSTATE_PENDING: |
1796 | /* We will stay here until there is a connection available. Then |
1797 | we try again in the MSTATE_CONNECT state. */ |
1798 | break; |
1799 | |
1800 | case MSTATE_CONNECT: |
1801 | /* Connect. We want to get a connection identifier filled in. */ |
1802 | /* init this transfer. */ |
1803 | result = Curl_preconnect(data); |
1804 | if(result) |
1805 | break; |
1806 | |
1807 | *nowp = Curl_pgrsTime(data, TIMER_STARTSINGLE); |
1808 | if(data->set.timeout) |
1809 | Curl_expire(data, data->set.timeout, EXPIRE_TIMEOUT); |
1810 | |
1811 | if(data->set.connecttimeout) |
1812 | Curl_expire(data, data->set.connecttimeout, EXPIRE_CONNECTTIMEOUT); |
1813 | |
1814 | result = Curl_connect(data, &async, &protocol_connected); |
1815 | if(CURLE_NO_CONNECTION_AVAILABLE == result) { |
1816 | /* There was no connection available. We will go to the pending |
1817 | state and wait for an available connection. */ |
1818 | multistate(data, MSTATE_PENDING); |
1819 | |
1820 | /* add this handle to the list of connect-pending handles */ |
1821 | Curl_llist_insert_next(&multi->pending, multi->pending.tail, data, |
1822 | &data->connect_queue); |
1823 | result = CURLE_OK; |
1824 | break; |
1825 | } |
1826 | else if(data->state.previouslypending) { |
1827 | /* this transfer comes from the pending queue so try move another */ |
1828 | infof(data, "Transfer was pending, now try another" ); |
1829 | process_pending_handles(data->multi); |
1830 | } |
1831 | |
1832 | if(!result) { |
1833 | if(async) |
1834 | /* We're now waiting for an asynchronous name lookup */ |
1835 | multistate(data, MSTATE_RESOLVING); |
1836 | else { |
1837 | /* after the connect has been sent off, go WAITCONNECT unless the |
1838 | protocol connect is already done and we can go directly to |
1839 | WAITDO or DO! */ |
1840 | rc = CURLM_CALL_MULTI_PERFORM; |
1841 | |
1842 | if(protocol_connected) |
1843 | multistate(data, MSTATE_DO); |
1844 | else { |
1845 | #ifndef CURL_DISABLE_HTTP |
1846 | if(Curl_connect_ongoing(data->conn)) |
1847 | multistate(data, MSTATE_TUNNELING); |
1848 | else |
1849 | #endif |
1850 | multistate(data, MSTATE_CONNECTING); |
1851 | } |
1852 | } |
1853 | } |
1854 | break; |
1855 | |
1856 | case MSTATE_RESOLVING: |
1857 | /* awaiting an asynch name resolve to complete */ |
1858 | { |
1859 | struct Curl_dns_entry *dns = NULL; |
1860 | struct connectdata *conn = data->conn; |
1861 | const char *hostname; |
1862 | |
1863 | DEBUGASSERT(conn); |
1864 | #ifndef CURL_DISABLE_PROXY |
1865 | if(conn->bits.httpproxy) |
1866 | hostname = conn->http_proxy.host.name; |
1867 | else |
1868 | #endif |
1869 | if(conn->bits.conn_to_host) |
1870 | hostname = conn->conn_to_host.name; |
1871 | else |
1872 | hostname = conn->host.name; |
1873 | |
1874 | /* check if we have the name resolved by now */ |
1875 | dns = Curl_fetch_addr(data, hostname, (int)conn->port); |
1876 | |
1877 | if(dns) { |
1878 | #ifdef CURLRES_ASYNCH |
1879 | data->state.async.dns = dns; |
1880 | data->state.async.done = TRUE; |
1881 | #endif |
1882 | result = CURLE_OK; |
1883 | infof(data, "Hostname '%s' was found in DNS cache" , hostname); |
1884 | } |
1885 | |
1886 | if(!dns) |
1887 | result = Curl_resolv_check(data, &dns); |
1888 | |
1889 | /* Update sockets here, because the socket(s) may have been |
1890 | closed and the application thus needs to be told, even if it |
1891 | is likely that the same socket(s) will again be used further |
1892 | down. If the name has not yet been resolved, it is likely |
1893 | that new sockets have been opened in an attempt to contact |
1894 | another resolver. */ |
1895 | singlesocket(multi, data); |
1896 | |
1897 | if(dns) { |
1898 | /* Perform the next step in the connection phase, and then move on |
1899 | to the WAITCONNECT state */ |
1900 | result = Curl_once_resolved(data, &protocol_connected); |
1901 | |
1902 | if(result) |
1903 | /* if Curl_once_resolved() returns failure, the connection struct |
1904 | is already freed and gone */ |
1905 | data->conn = NULL; /* no more connection */ |
1906 | else { |
1907 | /* call again please so that we get the next socket setup */ |
1908 | rc = CURLM_CALL_MULTI_PERFORM; |
1909 | if(protocol_connected) |
1910 | multistate(data, MSTATE_DO); |
1911 | else { |
1912 | #ifndef CURL_DISABLE_HTTP |
1913 | if(Curl_connect_ongoing(data->conn)) |
1914 | multistate(data, MSTATE_TUNNELING); |
1915 | else |
1916 | #endif |
1917 | multistate(data, MSTATE_CONNECTING); |
1918 | } |
1919 | } |
1920 | } |
1921 | |
1922 | if(result) { |
1923 | /* failure detected */ |
1924 | stream_error = TRUE; |
1925 | break; |
1926 | } |
1927 | } |
1928 | break; |
1929 | |
1930 | #ifndef CURL_DISABLE_HTTP |
1931 | case MSTATE_TUNNELING: |
1932 | /* this is HTTP-specific, but sending CONNECT to a proxy is HTTP... */ |
1933 | DEBUGASSERT(data->conn); |
1934 | result = Curl_http_connect(data, &protocol_connected); |
1935 | #ifndef CURL_DISABLE_PROXY |
1936 | if(data->conn->bits.proxy_connect_closed) { |
1937 | rc = CURLM_CALL_MULTI_PERFORM; |
1938 | /* connect back to proxy again */ |
1939 | result = CURLE_OK; |
1940 | multi_done(data, CURLE_OK, FALSE); |
1941 | multistate(data, MSTATE_CONNECT); |
1942 | } |
1943 | else |
1944 | #endif |
1945 | if(!result) { |
1946 | if( |
1947 | #ifndef CURL_DISABLE_PROXY |
1948 | (data->conn->http_proxy.proxytype != CURLPROXY_HTTPS || |
1949 | data->conn->bits.proxy_ssl_connected[FIRSTSOCKET]) && |
1950 | #endif |
1951 | Curl_connect_complete(data->conn)) { |
1952 | rc = CURLM_CALL_MULTI_PERFORM; |
1953 | /* initiate protocol connect phase */ |
1954 | multistate(data, MSTATE_PROTOCONNECT); |
1955 | } |
1956 | } |
1957 | else |
1958 | stream_error = TRUE; |
1959 | break; |
1960 | #endif |
1961 | |
1962 | case MSTATE_CONNECTING: |
1963 | /* awaiting a completion of an asynch TCP connect */ |
1964 | DEBUGASSERT(data->conn); |
1965 | result = Curl_is_connected(data, data->conn, FIRSTSOCKET, &connected); |
1966 | if(connected && !result) { |
1967 | #ifndef CURL_DISABLE_HTTP |
1968 | if( |
1969 | #ifndef CURL_DISABLE_PROXY |
1970 | (data->conn->http_proxy.proxytype == CURLPROXY_HTTPS && |
1971 | !data->conn->bits.proxy_ssl_connected[FIRSTSOCKET]) || |
1972 | #endif |
1973 | Curl_connect_ongoing(data->conn)) { |
1974 | multistate(data, MSTATE_TUNNELING); |
1975 | break; |
1976 | } |
1977 | #endif |
1978 | rc = CURLM_CALL_MULTI_PERFORM; |
1979 | #ifndef CURL_DISABLE_PROXY |
1980 | multistate(data, |
1981 | data->conn->bits.tunnel_proxy? |
1982 | MSTATE_TUNNELING : MSTATE_PROTOCONNECT); |
1983 | #else |
1984 | multistate(data, MSTATE_PROTOCONNECT); |
1985 | #endif |
1986 | } |
1987 | else if(result) { |
1988 | /* failure detected */ |
1989 | Curl_posttransfer(data); |
1990 | multi_done(data, result, TRUE); |
1991 | stream_error = TRUE; |
1992 | break; |
1993 | } |
1994 | break; |
1995 | |
1996 | case MSTATE_PROTOCONNECT: |
1997 | result = protocol_connect(data, &protocol_connected); |
1998 | if(!result && !protocol_connected) |
1999 | /* switch to waiting state */ |
2000 | multistate(data, MSTATE_PROTOCONNECTING); |
2001 | else if(!result) { |
2002 | /* protocol connect has completed, go WAITDO or DO */ |
2003 | multistate(data, MSTATE_DO); |
2004 | rc = CURLM_CALL_MULTI_PERFORM; |
2005 | } |
2006 | else { |
2007 | /* failure detected */ |
2008 | Curl_posttransfer(data); |
2009 | multi_done(data, result, TRUE); |
2010 | stream_error = TRUE; |
2011 | } |
2012 | break; |
2013 | |
2014 | case MSTATE_PROTOCONNECTING: |
2015 | /* protocol-specific connect phase */ |
2016 | result = protocol_connecting(data, &protocol_connected); |
2017 | if(!result && protocol_connected) { |
2018 | /* after the connect has completed, go WAITDO or DO */ |
2019 | multistate(data, MSTATE_DO); |
2020 | rc = CURLM_CALL_MULTI_PERFORM; |
2021 | } |
2022 | else if(result) { |
2023 | /* failure detected */ |
2024 | Curl_posttransfer(data); |
2025 | multi_done(data, result, TRUE); |
2026 | stream_error = TRUE; |
2027 | } |
2028 | break; |
2029 | |
2030 | case MSTATE_DO: |
2031 | if(data->set.connect_only) { |
2032 | /* keep connection open for application to use the socket */ |
2033 | connkeep(data->conn, "CONNECT_ONLY" ); |
2034 | multistate(data, MSTATE_DONE); |
2035 | result = CURLE_OK; |
2036 | rc = CURLM_CALL_MULTI_PERFORM; |
2037 | } |
2038 | else { |
2039 | /* Perform the protocol's DO action */ |
2040 | result = multi_do(data, &dophase_done); |
2041 | |
2042 | /* When multi_do() returns failure, data->conn might be NULL! */ |
2043 | |
2044 | if(!result) { |
2045 | if(!dophase_done) { |
2046 | #ifndef CURL_DISABLE_FTP |
2047 | /* some steps needed for wildcard matching */ |
2048 | if(data->state.wildcardmatch) { |
2049 | struct WildcardData *wc = &data->wildcard; |
2050 | if(wc->state == CURLWC_DONE || wc->state == CURLWC_SKIP) { |
2051 | /* skip some states if it is important */ |
2052 | multi_done(data, CURLE_OK, FALSE); |
2053 | |
2054 | /* if there's no connection left, skip the DONE state */ |
2055 | multistate(data, data->conn ? |
2056 | MSTATE_DONE : MSTATE_COMPLETED); |
2057 | rc = CURLM_CALL_MULTI_PERFORM; |
2058 | break; |
2059 | } |
2060 | } |
2061 | #endif |
2062 | /* DO was not completed in one function call, we must continue |
2063 | DOING... */ |
2064 | multistate(data, MSTATE_DOING); |
2065 | rc = CURLM_OK; |
2066 | } |
2067 | |
2068 | /* after DO, go DO_DONE... or DO_MORE */ |
2069 | else if(data->conn->bits.do_more) { |
2070 | /* we're supposed to do more, but we need to sit down, relax |
2071 | and wait a little while first */ |
2072 | multistate(data, MSTATE_DOING_MORE); |
2073 | rc = CURLM_OK; |
2074 | } |
2075 | else { |
2076 | /* we're done with the DO, now DID */ |
2077 | multistate(data, MSTATE_DID); |
2078 | rc = CURLM_CALL_MULTI_PERFORM; |
2079 | } |
2080 | } |
2081 | else if((CURLE_SEND_ERROR == result) && |
2082 | data->conn->bits.reuse) { |
2083 | /* |
2084 | * In this situation, a connection that we were trying to use |
2085 | * may have unexpectedly died. If possible, send the connection |
2086 | * back to the CONNECT phase so we can try again. |
2087 | */ |
2088 | char *newurl = NULL; |
2089 | followtype follow = FOLLOW_NONE; |
2090 | CURLcode drc; |
2091 | |
2092 | drc = Curl_retry_request(data, &newurl); |
2093 | if(drc) { |
2094 | /* a failure here pretty much implies an out of memory */ |
2095 | result = drc; |
2096 | stream_error = TRUE; |
2097 | } |
2098 | |
2099 | Curl_posttransfer(data); |
2100 | drc = multi_done(data, result, FALSE); |
2101 | |
2102 | /* When set to retry the connection, we must to go back to |
2103 | * the CONNECT state */ |
2104 | if(newurl) { |
2105 | if(!drc || (drc == CURLE_SEND_ERROR)) { |
2106 | follow = FOLLOW_RETRY; |
2107 | drc = Curl_follow(data, newurl, follow); |
2108 | if(!drc) { |
2109 | multistate(data, MSTATE_CONNECT); |
2110 | rc = CURLM_CALL_MULTI_PERFORM; |
2111 | result = CURLE_OK; |
2112 | } |
2113 | else { |
2114 | /* Follow failed */ |
2115 | result = drc; |
2116 | } |
2117 | } |
2118 | else { |
2119 | /* done didn't return OK or SEND_ERROR */ |
2120 | result = drc; |
2121 | } |
2122 | } |
2123 | else { |
2124 | /* Have error handler disconnect conn if we can't retry */ |
2125 | stream_error = TRUE; |
2126 | } |
2127 | free(newurl); |
2128 | } |
2129 | else { |
2130 | /* failure detected */ |
2131 | Curl_posttransfer(data); |
2132 | if(data->conn) |
2133 | multi_done(data, result, FALSE); |
2134 | stream_error = TRUE; |
2135 | } |
2136 | } |
2137 | break; |
2138 | |
2139 | case MSTATE_DOING: |
2140 | /* we continue DOING until the DO phase is complete */ |
2141 | DEBUGASSERT(data->conn); |
2142 | result = protocol_doing(data, &dophase_done); |
2143 | if(!result) { |
2144 | if(dophase_done) { |
2145 | /* after DO, go DO_DONE or DO_MORE */ |
2146 | multistate(data, data->conn->bits.do_more? |
2147 | MSTATE_DOING_MORE : MSTATE_DID); |
2148 | rc = CURLM_CALL_MULTI_PERFORM; |
2149 | } /* dophase_done */ |
2150 | } |
2151 | else { |
2152 | /* failure detected */ |
2153 | Curl_posttransfer(data); |
2154 | multi_done(data, result, FALSE); |
2155 | stream_error = TRUE; |
2156 | } |
2157 | break; |
2158 | |
2159 | case MSTATE_DOING_MORE: |
2160 | /* |
2161 | * When we are connected, DOING MORE and then go DID |
2162 | */ |
2163 | DEBUGASSERT(data->conn); |
2164 | result = multi_do_more(data, &control); |
2165 | |
2166 | if(!result) { |
2167 | if(control) { |
2168 | /* if positive, advance to DO_DONE |
2169 | if negative, go back to DOING */ |
2170 | multistate(data, control == 1? |
2171 | MSTATE_DID : MSTATE_DOING); |
2172 | rc = CURLM_CALL_MULTI_PERFORM; |
2173 | } |
2174 | else |
2175 | /* stay in DO_MORE */ |
2176 | rc = CURLM_OK; |
2177 | } |
2178 | else { |
2179 | /* failure detected */ |
2180 | Curl_posttransfer(data); |
2181 | multi_done(data, result, FALSE); |
2182 | stream_error = TRUE; |
2183 | } |
2184 | break; |
2185 | |
2186 | case MSTATE_DID: |
2187 | DEBUGASSERT(data->conn); |
2188 | if(data->conn->bits.multiplex) |
2189 | /* Check if we can move pending requests to send pipe */ |
2190 | process_pending_handles(multi); /* multiplexed */ |
2191 | |
2192 | /* Only perform the transfer if there's a good socket to work with. |
2193 | Having both BAD is a signal to skip immediately to DONE */ |
2194 | if((data->conn->sockfd != CURL_SOCKET_BAD) || |
2195 | (data->conn->writesockfd != CURL_SOCKET_BAD)) |
2196 | multistate(data, MSTATE_PERFORMING); |
2197 | else { |
2198 | #ifndef CURL_DISABLE_FTP |
2199 | if(data->state.wildcardmatch && |
2200 | ((data->conn->handler->flags & PROTOPT_WILDCARD) == 0)) { |
2201 | data->wildcard.state = CURLWC_DONE; |
2202 | } |
2203 | #endif |
2204 | multistate(data, MSTATE_DONE); |
2205 | } |
2206 | rc = CURLM_CALL_MULTI_PERFORM; |
2207 | break; |
2208 | |
2209 | case MSTATE_RATELIMITING: /* limit-rate exceeded in either direction */ |
2210 | DEBUGASSERT(data->conn); |
2211 | /* if both rates are within spec, resume transfer */ |
2212 | if(Curl_pgrsUpdate(data)) |
2213 | result = CURLE_ABORTED_BY_CALLBACK; |
2214 | else |
2215 | result = Curl_speedcheck(data, *nowp); |
2216 | |
2217 | if(result) { |
2218 | if(!(data->conn->handler->flags & PROTOPT_DUAL) && |
2219 | result != CURLE_HTTP2_STREAM) |
2220 | streamclose(data->conn, "Transfer returned error" ); |
2221 | |
2222 | Curl_posttransfer(data); |
2223 | multi_done(data, result, TRUE); |
2224 | } |
2225 | else { |
2226 | send_timeout_ms = 0; |
2227 | if(data->set.max_send_speed) |
2228 | send_timeout_ms = |
2229 | Curl_pgrsLimitWaitTime(data->progress.uploaded, |
2230 | data->progress.ul_limit_size, |
2231 | data->set.max_send_speed, |
2232 | data->progress.ul_limit_start, |
2233 | *nowp); |
2234 | |
2235 | recv_timeout_ms = 0; |
2236 | if(data->set.max_recv_speed) |
2237 | recv_timeout_ms = |
2238 | Curl_pgrsLimitWaitTime(data->progress.downloaded, |
2239 | data->progress.dl_limit_size, |
2240 | data->set.max_recv_speed, |
2241 | data->progress.dl_limit_start, |
2242 | *nowp); |
2243 | |
2244 | if(!send_timeout_ms && !recv_timeout_ms) { |
2245 | multistate(data, MSTATE_PERFORMING); |
2246 | Curl_ratelimit(data, *nowp); |
2247 | } |
2248 | else if(send_timeout_ms >= recv_timeout_ms) |
2249 | Curl_expire(data, send_timeout_ms, EXPIRE_TOOFAST); |
2250 | else |
2251 | Curl_expire(data, recv_timeout_ms, EXPIRE_TOOFAST); |
2252 | } |
2253 | break; |
2254 | |
2255 | case MSTATE_PERFORMING: |
2256 | { |
2257 | char *newurl = NULL; |
2258 | bool retry = FALSE; |
2259 | bool comeback = FALSE; |
2260 | DEBUGASSERT(data->state.buffer); |
2261 | /* check if over send speed */ |
2262 | send_timeout_ms = 0; |
2263 | if(data->set.max_send_speed) |
2264 | send_timeout_ms = Curl_pgrsLimitWaitTime(data->progress.uploaded, |
2265 | data->progress.ul_limit_size, |
2266 | data->set.max_send_speed, |
2267 | data->progress.ul_limit_start, |
2268 | *nowp); |
2269 | |
2270 | /* check if over recv speed */ |
2271 | recv_timeout_ms = 0; |
2272 | if(data->set.max_recv_speed) |
2273 | recv_timeout_ms = Curl_pgrsLimitWaitTime(data->progress.downloaded, |
2274 | data->progress.dl_limit_size, |
2275 | data->set.max_recv_speed, |
2276 | data->progress.dl_limit_start, |
2277 | *nowp); |
2278 | |
2279 | if(send_timeout_ms || recv_timeout_ms) { |
2280 | Curl_ratelimit(data, *nowp); |
2281 | multistate(data, MSTATE_RATELIMITING); |
2282 | if(send_timeout_ms >= recv_timeout_ms) |
2283 | Curl_expire(data, send_timeout_ms, EXPIRE_TOOFAST); |
2284 | else |
2285 | Curl_expire(data, recv_timeout_ms, EXPIRE_TOOFAST); |
2286 | break; |
2287 | } |
2288 | |
2289 | /* read/write data if it is ready to do so */ |
2290 | result = Curl_readwrite(data->conn, data, &done, &comeback); |
2291 | |
2292 | if(done || (result == CURLE_RECV_ERROR)) { |
2293 | /* If CURLE_RECV_ERROR happens early enough, we assume it was a race |
2294 | * condition and the server closed the re-used connection exactly when |
2295 | * we wanted to use it, so figure out if that is indeed the case. |
2296 | */ |
2297 | CURLcode ret = Curl_retry_request(data, &newurl); |
2298 | if(!ret) |
2299 | retry = (newurl)?TRUE:FALSE; |
2300 | else if(!result) |
2301 | result = ret; |
2302 | |
2303 | if(retry) { |
2304 | /* if we are to retry, set the result to OK and consider the |
2305 | request as done */ |
2306 | result = CURLE_OK; |
2307 | done = TRUE; |
2308 | } |
2309 | } |
2310 | else if((CURLE_HTTP2_STREAM == result) && |
2311 | Curl_h2_http_1_1_error(data)) { |
2312 | CURLcode ret = Curl_retry_request(data, &newurl); |
2313 | |
2314 | if(!ret) { |
2315 | infof(data, "Downgrades to HTTP/1.1!" ); |
2316 | streamclose(data->conn, "Disconnect HTTP/2 for HTTP/1" ); |
2317 | data->state.httpwant = CURL_HTTP_VERSION_1_1; |
2318 | /* clear the error message bit too as we ignore the one we got */ |
2319 | data->state.errorbuf = FALSE; |
2320 | if(!newurl) |
2321 | /* typically for HTTP_1_1_REQUIRED error on first flight */ |
2322 | newurl = strdup(data->state.url); |
2323 | /* if we are to retry, set the result to OK and consider the request |
2324 | as done */ |
2325 | retry = TRUE; |
2326 | result = CURLE_OK; |
2327 | done = TRUE; |
2328 | } |
2329 | else |
2330 | result = ret; |
2331 | } |
2332 | |
2333 | if(result) { |
2334 | /* |
2335 | * The transfer phase returned error, we mark the connection to get |
2336 | * closed to prevent being re-used. This is because we can't possibly |
2337 | * know if the connection is in a good shape or not now. Unless it is |
2338 | * a protocol which uses two "channels" like FTP, as then the error |
2339 | * happened in the data connection. |
2340 | */ |
2341 | |
2342 | if(!(data->conn->handler->flags & PROTOPT_DUAL) && |
2343 | result != CURLE_HTTP2_STREAM) |
2344 | streamclose(data->conn, "Transfer returned error" ); |
2345 | |
2346 | Curl_posttransfer(data); |
2347 | multi_done(data, result, TRUE); |
2348 | } |
2349 | else if(done) { |
2350 | |
2351 | /* call this even if the readwrite function returned error */ |
2352 | Curl_posttransfer(data); |
2353 | |
2354 | /* When we follow redirects or is set to retry the connection, we must |
2355 | to go back to the CONNECT state */ |
2356 | if(data->req.newurl || retry) { |
2357 | followtype follow = FOLLOW_NONE; |
2358 | if(!retry) { |
2359 | /* if the URL is a follow-location and not just a retried request |
2360 | then figure out the URL here */ |
2361 | free(newurl); |
2362 | newurl = data->req.newurl; |
2363 | data->req.newurl = NULL; |
2364 | follow = FOLLOW_REDIR; |
2365 | } |
2366 | else |
2367 | follow = FOLLOW_RETRY; |
2368 | (void)multi_done(data, CURLE_OK, FALSE); |
2369 | /* multi_done() might return CURLE_GOT_NOTHING */ |
2370 | result = Curl_follow(data, newurl, follow); |
2371 | if(!result) { |
2372 | multistate(data, MSTATE_CONNECT); |
2373 | rc = CURLM_CALL_MULTI_PERFORM; |
2374 | } |
2375 | free(newurl); |
2376 | } |
2377 | else { |
2378 | /* after the transfer is done, go DONE */ |
2379 | |
2380 | /* but first check to see if we got a location info even though we're |
2381 | not following redirects */ |
2382 | if(data->req.location) { |
2383 | free(newurl); |
2384 | newurl = data->req.location; |
2385 | data->req.location = NULL; |
2386 | result = Curl_follow(data, newurl, FOLLOW_FAKE); |
2387 | free(newurl); |
2388 | if(result) { |
2389 | stream_error = TRUE; |
2390 | result = multi_done(data, result, TRUE); |
2391 | } |
2392 | } |
2393 | |
2394 | if(!result) { |
2395 | multistate(data, MSTATE_DONE); |
2396 | rc = CURLM_CALL_MULTI_PERFORM; |
2397 | } |
2398 | } |
2399 | } |
2400 | else if(comeback) { |
2401 | /* This avoids CURLM_CALL_MULTI_PERFORM so that a very fast transfer |
2402 | won't get stuck on this transfer at the expense of other concurrent |
2403 | transfers */ |
2404 | Curl_expire(data, 0, EXPIRE_RUN_NOW); |
2405 | rc = CURLM_OK; |
2406 | } |
2407 | break; |
2408 | } |
2409 | |
2410 | case MSTATE_DONE: |
2411 | /* this state is highly transient, so run another loop after this */ |
2412 | rc = CURLM_CALL_MULTI_PERFORM; |
2413 | |
2414 | if(data->conn) { |
2415 | CURLcode res; |
2416 | |
2417 | if(data->conn->bits.multiplex) |
2418 | /* Check if we can move pending requests to connection */ |
2419 | process_pending_handles(multi); /* multiplexing */ |
2420 | |
2421 | /* post-transfer command */ |
2422 | res = multi_done(data, result, FALSE); |
2423 | |
2424 | /* allow a previously set error code take precedence */ |
2425 | if(!result) |
2426 | result = res; |
2427 | } |
2428 | |
2429 | #ifndef CURL_DISABLE_FTP |
2430 | if(data->state.wildcardmatch) { |
2431 | if(data->wildcard.state != CURLWC_DONE) { |
2432 | /* if a wildcard is set and we are not ending -> lets start again |
2433 | with MSTATE_INIT */ |
2434 | multistate(data, MSTATE_INIT); |
2435 | break; |
2436 | } |
2437 | } |
2438 | #endif |
2439 | /* after we have DONE what we're supposed to do, go COMPLETED, and |
2440 | it doesn't matter what the multi_done() returned! */ |
2441 | multistate(data, MSTATE_COMPLETED); |
2442 | break; |
2443 | |
2444 | case MSTATE_COMPLETED: |
2445 | break; |
2446 | |
2447 | case MSTATE_MSGSENT: |
2448 | data->result = result; |
2449 | return CURLM_OK; /* do nothing */ |
2450 | |
2451 | default: |
2452 | return CURLM_INTERNAL_ERROR; |
2453 | } |
2454 | |
2455 | if(data->conn && |
2456 | data->mstate >= MSTATE_CONNECT && |
2457 | data->mstate < MSTATE_DO && |
2458 | rc != CURLM_CALL_MULTI_PERFORM && |
2459 | !multi_ischanged(multi, false)) { |
2460 | /* We now handle stream timeouts if and only if this will be the last |
2461 | * loop iteration. We only check this on the last iteration to ensure |
2462 | * that if we know we have additional work to do immediately |
2463 | * (i.e. CURLM_CALL_MULTI_PERFORM == TRUE) then we should do that before |
2464 | * declaring the connection timed out as we may almost have a completed |
2465 | * connection. */ |
2466 | multi_handle_timeout(data, nowp, &stream_error, &result, TRUE); |
2467 | } |
2468 | |
2469 | statemachine_end: |
2470 | |
2471 | if(data->mstate < MSTATE_COMPLETED) { |
2472 | if(result) { |
2473 | /* |
2474 | * If an error was returned, and we aren't in completed state now, |
2475 | * then we go to completed and consider this transfer aborted. |
2476 | */ |
2477 | |
2478 | /* NOTE: no attempt to disconnect connections must be made |
2479 | in the case blocks above - cleanup happens only here */ |
2480 | |
2481 | /* Check if we can move pending requests to send pipe */ |
2482 | process_pending_handles(multi); /* connection */ |
2483 | |
2484 | if(data->conn) { |
2485 | if(stream_error) { |
2486 | /* Don't attempt to send data over a connection that timed out */ |
2487 | bool dead_connection = result == CURLE_OPERATION_TIMEDOUT; |
2488 | struct connectdata *conn = data->conn; |
2489 | |
2490 | /* This is where we make sure that the conn pointer is reset. |
2491 | We don't have to do this in every case block above where a |
2492 | failure is detected */ |
2493 | Curl_detach_connnection(data); |
2494 | |
2495 | /* remove connection from cache */ |
2496 | Curl_conncache_remove_conn(data, conn, TRUE); |
2497 | |
2498 | /* disconnect properly */ |
2499 | Curl_disconnect(data, conn, dead_connection); |
2500 | } |
2501 | } |
2502 | else if(data->mstate == MSTATE_CONNECT) { |
2503 | /* Curl_connect() failed */ |
2504 | (void)Curl_posttransfer(data); |
2505 | } |
2506 | |
2507 | multistate(data, MSTATE_COMPLETED); |
2508 | rc = CURLM_CALL_MULTI_PERFORM; |
2509 | } |
2510 | /* if there's still a connection to use, call the progress function */ |
2511 | else if(data->conn && Curl_pgrsUpdate(data)) { |
2512 | /* aborted due to progress callback return code must close the |
2513 | connection */ |
2514 | result = CURLE_ABORTED_BY_CALLBACK; |
2515 | streamclose(data->conn, "Aborted by callback" ); |
2516 | |
2517 | /* if not yet in DONE state, go there, otherwise COMPLETED */ |
2518 | multistate(data, (data->mstate < MSTATE_DONE)? |
2519 | MSTATE_DONE: MSTATE_COMPLETED); |
2520 | rc = CURLM_CALL_MULTI_PERFORM; |
2521 | } |
2522 | } |
2523 | |
2524 | if(MSTATE_COMPLETED == data->mstate) { |
2525 | if(data->set.fmultidone) { |
2526 | /* signal via callback instead */ |
2527 | data->set.fmultidone(data, result); |
2528 | } |
2529 | else { |
2530 | /* now fill in the Curl_message with this info */ |
2531 | msg = &data->msg; |
2532 | |
2533 | msg->extmsg.msg = CURLMSG_DONE; |
2534 | msg->extmsg.easy_handle = data; |
2535 | msg->extmsg.data.result = result; |
2536 | |
2537 | rc = multi_addmsg(multi, msg); |
2538 | DEBUGASSERT(!data->conn); |
2539 | } |
2540 | multistate(data, MSTATE_MSGSENT); |
2541 | } |
2542 | } while((rc == CURLM_CALL_MULTI_PERFORM) || multi_ischanged(multi, FALSE)); |
2543 | |
2544 | data->result = result; |
2545 | return rc; |
2546 | } |
2547 | |
2548 | |
2549 | CURLMcode curl_multi_perform(struct Curl_multi *multi, int *running_handles) |
2550 | { |
2551 | struct Curl_easy *data; |
2552 | CURLMcode returncode = CURLM_OK; |
2553 | struct Curl_tree *t; |
2554 | struct curltime now = Curl_now(); |
2555 | |
2556 | if(!GOOD_MULTI_HANDLE(multi)) |
2557 | return CURLM_BAD_HANDLE; |
2558 | |
2559 | if(multi->in_callback) |
2560 | return CURLM_RECURSIVE_API_CALL; |
2561 | |
2562 | data = multi->easyp; |
2563 | while(data) { |
2564 | CURLMcode result; |
2565 | SIGPIPE_VARIABLE(pipe_st); |
2566 | |
2567 | sigpipe_ignore(data, &pipe_st); |
2568 | result = multi_runsingle(multi, &now, data); |
2569 | sigpipe_restore(&pipe_st); |
2570 | |
2571 | if(result) |
2572 | returncode = result; |
2573 | |
2574 | data = data->next; /* operate on next handle */ |
2575 | } |
2576 | |
2577 | /* |
2578 | * Simply remove all expired timers from the splay since handles are dealt |
2579 | * with unconditionally by this function and curl_multi_timeout() requires |
2580 | * that already passed/handled expire times are removed from the splay. |
2581 | * |
2582 | * It is important that the 'now' value is set at the entry of this function |
2583 | * and not for the current time as it may have ticked a little while since |
2584 | * then and then we risk this loop to remove timers that actually have not |
2585 | * been handled! |
2586 | */ |
2587 | do { |
2588 | multi->timetree = Curl_splaygetbest(now, multi->timetree, &t); |
2589 | if(t) |
2590 | /* the removed may have another timeout in queue */ |
2591 | (void)add_next_timeout(now, multi, t->payload); |
2592 | |
2593 | } while(t); |
2594 | |
2595 | *running_handles = multi->num_alive; |
2596 | |
2597 | if(CURLM_OK >= returncode) |
2598 | Curl_update_timer(multi); |
2599 | |
2600 | return returncode; |
2601 | } |
2602 | |
2603 | CURLMcode curl_multi_cleanup(struct Curl_multi *multi) |
2604 | { |
2605 | struct Curl_easy *data; |
2606 | struct Curl_easy *nextdata; |
2607 | |
2608 | if(GOOD_MULTI_HANDLE(multi)) { |
2609 | if(multi->in_callback) |
2610 | return CURLM_RECURSIVE_API_CALL; |
2611 | |
2612 | multi->magic = 0; /* not good anymore */ |
2613 | |
2614 | /* Firsrt remove all remaining easy handles */ |
2615 | data = multi->easyp; |
2616 | while(data) { |
2617 | nextdata = data->next; |
2618 | if(!data->state.done && data->conn) |
2619 | /* if DONE was never called for this handle */ |
2620 | (void)multi_done(data, CURLE_OK, TRUE); |
2621 | if(data->dns.hostcachetype == HCACHE_MULTI) { |
2622 | /* clear out the usage of the shared DNS cache */ |
2623 | Curl_hostcache_clean(data, data->dns.hostcache); |
2624 | data->dns.hostcache = NULL; |
2625 | data->dns.hostcachetype = HCACHE_NONE; |
2626 | } |
2627 | |
2628 | /* Clear the pointer to the connection cache */ |
2629 | data->state.conn_cache = NULL; |
2630 | data->multi = NULL; /* clear the association */ |
2631 | |
2632 | #ifdef USE_LIBPSL |
2633 | if(data->psl == &multi->psl) |
2634 | data->psl = NULL; |
2635 | #endif |
2636 | |
2637 | data = nextdata; |
2638 | } |
2639 | |
2640 | /* Close all the connections in the connection cache */ |
2641 | Curl_conncache_close_all_connections(&multi->conn_cache); |
2642 | |
2643 | Curl_hash_destroy(&multi->sockhash); |
2644 | Curl_conncache_destroy(&multi->conn_cache); |
2645 | Curl_llist_destroy(&multi->msglist, NULL); |
2646 | Curl_llist_destroy(&multi->pending, NULL); |
2647 | |
2648 | Curl_hash_destroy(&multi->hostcache); |
2649 | Curl_psl_destroy(&multi->psl); |
2650 | |
2651 | #ifdef USE_WINSOCK |
2652 | WSACloseEvent(multi->wsa_event); |
2653 | #else |
2654 | #ifdef ENABLE_WAKEUP |
2655 | sclose(multi->wakeup_pair[0]); |
2656 | sclose(multi->wakeup_pair[1]); |
2657 | #endif |
2658 | #endif |
2659 | free(multi); |
2660 | |
2661 | return CURLM_OK; |
2662 | } |
2663 | return CURLM_BAD_HANDLE; |
2664 | } |
2665 | |
2666 | /* |
2667 | * curl_multi_info_read() |
2668 | * |
2669 | * This function is the primary way for a multi/multi_socket application to |
2670 | * figure out if a transfer has ended. We MUST make this function as fast as |
2671 | * possible as it will be polled frequently and we MUST NOT scan any lists in |
2672 | * here to figure out things. We must scale fine to thousands of handles and |
2673 | * beyond. The current design is fully O(1). |
2674 | */ |
2675 | |
2676 | CURLMsg *curl_multi_info_read(struct Curl_multi *multi, int *msgs_in_queue) |
2677 | { |
2678 | struct Curl_message *msg; |
2679 | |
2680 | *msgs_in_queue = 0; /* default to none */ |
2681 | |
2682 | if(GOOD_MULTI_HANDLE(multi) && |
2683 | !multi->in_callback && |
2684 | Curl_llist_count(&multi->msglist)) { |
2685 | /* there is one or more messages in the list */ |
2686 | struct Curl_llist_element *e; |
2687 | |
2688 | /* extract the head of the list to return */ |
2689 | e = multi->msglist.head; |
2690 | |
2691 | msg = e->ptr; |
2692 | |
2693 | /* remove the extracted entry */ |
2694 | Curl_llist_remove(&multi->msglist, e, NULL); |
2695 | |
2696 | *msgs_in_queue = curlx_uztosi(Curl_llist_count(&multi->msglist)); |
2697 | |
2698 | return &msg->extmsg; |
2699 | } |
2700 | return NULL; |
2701 | } |
2702 | |
2703 | /* |
2704 | * singlesocket() checks what sockets we deal with and their "action state" |
2705 | * and if we have a different state in any of those sockets from last time we |
2706 | * call the callback accordingly. |
2707 | */ |
2708 | static CURLMcode singlesocket(struct Curl_multi *multi, |
2709 | struct Curl_easy *data) |
2710 | { |
2711 | curl_socket_t socks[MAX_SOCKSPEREASYHANDLE]; |
2712 | int i; |
2713 | struct Curl_sh_entry *entry; |
2714 | curl_socket_t s; |
2715 | int num; |
2716 | unsigned int curraction; |
2717 | unsigned char actions[MAX_SOCKSPEREASYHANDLE]; |
2718 | |
2719 | for(i = 0; i< MAX_SOCKSPEREASYHANDLE; i++) |
2720 | socks[i] = CURL_SOCKET_BAD; |
2721 | |
2722 | /* Fill in the 'current' struct with the state as it is now: what sockets to |
2723 | supervise and for what actions */ |
2724 | curraction = multi_getsock(data, socks); |
2725 | |
2726 | /* We have 0 .. N sockets already and we get to know about the 0 .. M |
2727 | sockets we should have from now on. Detect the differences, remove no |
2728 | longer supervised ones and add new ones */ |
2729 | |
2730 | /* walk over the sockets we got right now */ |
2731 | for(i = 0; (i< MAX_SOCKSPEREASYHANDLE) && |
2732 | (curraction & (GETSOCK_READSOCK(i) | GETSOCK_WRITESOCK(i))); |
2733 | i++) { |
2734 | unsigned char action = CURL_POLL_NONE; |
2735 | unsigned char prevaction = 0; |
2736 | int comboaction; |
2737 | bool sincebefore = FALSE; |
2738 | |
2739 | s = socks[i]; |
2740 | |
2741 | /* get it from the hash */ |
2742 | entry = sh_getentry(&multi->sockhash, s); |
2743 | |
2744 | if(curraction & GETSOCK_READSOCK(i)) |
2745 | action |= CURL_POLL_IN; |
2746 | if(curraction & GETSOCK_WRITESOCK(i)) |
2747 | action |= CURL_POLL_OUT; |
2748 | |
2749 | actions[i] = action; |
2750 | if(entry) { |
2751 | /* check if new for this transfer */ |
2752 | int j; |
2753 | for(j = 0; j< data->numsocks; j++) { |
2754 | if(s == data->sockets[j]) { |
2755 | prevaction = data->actions[j]; |
2756 | sincebefore = TRUE; |
2757 | break; |
2758 | } |
2759 | } |
2760 | } |
2761 | else { |
2762 | /* this is a socket we didn't have before, add it to the hash! */ |
2763 | entry = sh_addentry(&multi->sockhash, s); |
2764 | if(!entry) |
2765 | /* fatal */ |
2766 | return CURLM_OUT_OF_MEMORY; |
2767 | } |
2768 | if(sincebefore && (prevaction != action)) { |
2769 | /* Socket was used already, but different action now */ |
2770 | if(prevaction & CURL_POLL_IN) |
2771 | entry->readers--; |
2772 | if(prevaction & CURL_POLL_OUT) |
2773 | entry->writers--; |
2774 | if(action & CURL_POLL_IN) |
2775 | entry->readers++; |
2776 | if(action & CURL_POLL_OUT) |
2777 | entry->writers++; |
2778 | } |
2779 | else if(!sincebefore) { |
2780 | /* a new user */ |
2781 | entry->users++; |
2782 | if(action & CURL_POLL_IN) |
2783 | entry->readers++; |
2784 | if(action & CURL_POLL_OUT) |
2785 | entry->writers++; |
2786 | |
2787 | /* add 'data' to the transfer hash on this socket! */ |
2788 | if(!Curl_hash_add(&entry->transfers, (char *)&data, /* hash key */ |
2789 | sizeof(struct Curl_easy *), data)) |
2790 | return CURLM_OUT_OF_MEMORY; |
2791 | } |
2792 | |
2793 | comboaction = (entry->writers? CURL_POLL_OUT : 0) | |
2794 | (entry->readers ? CURL_POLL_IN : 0); |
2795 | |
2796 | /* socket existed before and has the same action set as before */ |
2797 | if(sincebefore && ((int)entry->action == comboaction)) |
2798 | /* same, continue */ |
2799 | continue; |
2800 | |
2801 | if(multi->socket_cb) |
2802 | multi->socket_cb(data, s, comboaction, multi->socket_userp, |
2803 | entry->socketp); |
2804 | |
2805 | entry->action = comboaction; /* store the current action state */ |
2806 | } |
2807 | |
2808 | num = i; /* number of sockets */ |
2809 | |
2810 | /* when we've walked over all the sockets we should have right now, we must |
2811 | make sure to detect sockets that are removed */ |
2812 | for(i = 0; i< data->numsocks; i++) { |
2813 | int j; |
2814 | bool stillused = FALSE; |
2815 | s = data->sockets[i]; |
2816 | for(j = 0; j < num; j++) { |
2817 | if(s == socks[j]) { |
2818 | /* this is still supervised */ |
2819 | stillused = TRUE; |
2820 | break; |
2821 | } |
2822 | } |
2823 | if(stillused) |
2824 | continue; |
2825 | |
2826 | entry = sh_getentry(&multi->sockhash, s); |
2827 | /* if this is NULL here, the socket has been closed and notified so |
2828 | already by Curl_multi_closed() */ |
2829 | if(entry) { |
2830 | unsigned char oldactions = data->actions[i]; |
2831 | /* this socket has been removed. Decrease user count */ |
2832 | entry->users--; |
2833 | if(oldactions & CURL_POLL_OUT) |
2834 | entry->writers--; |
2835 | if(oldactions & CURL_POLL_IN) |
2836 | entry->readers--; |
2837 | if(!entry->users) { |
2838 | if(multi->socket_cb) |
2839 | multi->socket_cb(data, s, CURL_POLL_REMOVE, |
2840 | multi->socket_userp, |
2841 | entry->socketp); |
2842 | sh_delentry(entry, &multi->sockhash, s); |
2843 | } |
2844 | else { |
2845 | /* still users, but remove this handle as a user of this socket */ |
2846 | if(Curl_hash_delete(&entry->transfers, (char *)&data, |
2847 | sizeof(struct Curl_easy *))) { |
2848 | DEBUGASSERT(NULL); |
2849 | } |
2850 | } |
2851 | } |
2852 | } /* for loop over numsocks */ |
2853 | |
2854 | memcpy(data->sockets, socks, num*sizeof(curl_socket_t)); |
2855 | memcpy(data->actions, actions, num*sizeof(char)); |
2856 | data->numsocks = num; |
2857 | return CURLM_OK; |
2858 | } |
2859 | |
2860 | void Curl_updatesocket(struct Curl_easy *data) |
2861 | { |
2862 | singlesocket(data->multi, data); |
2863 | } |
2864 | |
2865 | |
2866 | /* |
2867 | * Curl_multi_closed() |
2868 | * |
2869 | * Used by the connect code to tell the multi_socket code that one of the |
2870 | * sockets we were using is about to be closed. This function will then |
2871 | * remove it from the sockethash for this handle to make the multi_socket API |
2872 | * behave properly, especially for the case when libcurl will create another |
2873 | * socket again and it gets the same file descriptor number. |
2874 | */ |
2875 | |
2876 | void Curl_multi_closed(struct Curl_easy *data, curl_socket_t s) |
2877 | { |
2878 | if(data) { |
2879 | /* if there's still an easy handle associated with this connection */ |
2880 | struct Curl_multi *multi = data->multi; |
2881 | if(multi) { |
2882 | /* this is set if this connection is part of a handle that is added to |
2883 | a multi handle, and only then this is necessary */ |
2884 | struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s); |
2885 | |
2886 | if(entry) { |
2887 | if(multi->socket_cb) |
2888 | multi->socket_cb(data, s, CURL_POLL_REMOVE, |
2889 | multi->socket_userp, |
2890 | entry->socketp); |
2891 | |
2892 | /* now remove it from the socket hash */ |
2893 | sh_delentry(entry, &multi->sockhash, s); |
2894 | } |
2895 | } |
2896 | } |
2897 | } |
2898 | |
2899 | /* |
2900 | * add_next_timeout() |
2901 | * |
2902 | * Each Curl_easy has a list of timeouts. The add_next_timeout() is called |
2903 | * when it has just been removed from the splay tree because the timeout has |
2904 | * expired. This function is then to advance in the list to pick the next |
2905 | * timeout to use (skip the already expired ones) and add this node back to |
2906 | * the splay tree again. |
2907 | * |
2908 | * The splay tree only has each sessionhandle as a single node and the nearest |
2909 | * timeout is used to sort it on. |
2910 | */ |
2911 | static CURLMcode add_next_timeout(struct curltime now, |
2912 | struct Curl_multi *multi, |
2913 | struct Curl_easy *d) |
2914 | { |
2915 | struct curltime *tv = &d->state.expiretime; |
2916 | struct Curl_llist *list = &d->state.timeoutlist; |
2917 | struct Curl_llist_element *e; |
2918 | struct time_node *node = NULL; |
2919 | |
2920 | /* move over the timeout list for this specific handle and remove all |
2921 | timeouts that are now passed tense and store the next pending |
2922 | timeout in *tv */ |
2923 | for(e = list->head; e;) { |
2924 | struct Curl_llist_element *n = e->next; |
2925 | timediff_t diff; |
2926 | node = (struct time_node *)e->ptr; |
2927 | diff = Curl_timediff(node->time, now); |
2928 | if(diff <= 0) |
2929 | /* remove outdated entry */ |
2930 | Curl_llist_remove(list, e, NULL); |
2931 | else |
2932 | /* the list is sorted so get out on the first mismatch */ |
2933 | break; |
2934 | e = n; |
2935 | } |
2936 | e = list->head; |
2937 | if(!e) { |
2938 | /* clear the expire times within the handles that we remove from the |
2939 | splay tree */ |
2940 | tv->tv_sec = 0; |
2941 | tv->tv_usec = 0; |
2942 | } |
2943 | else { |
2944 | /* copy the first entry to 'tv' */ |
2945 | memcpy(tv, &node->time, sizeof(*tv)); |
2946 | |
2947 | /* Insert this node again into the splay. Keep the timer in the list in |
2948 | case we need to recompute future timers. */ |
2949 | multi->timetree = Curl_splayinsert(*tv, multi->timetree, |
2950 | &d->state.timenode); |
2951 | } |
2952 | return CURLM_OK; |
2953 | } |
2954 | |
2955 | static CURLMcode multi_socket(struct Curl_multi *multi, |
2956 | bool checkall, |
2957 | curl_socket_t s, |
2958 | int ev_bitmask, |
2959 | int *running_handles) |
2960 | { |
2961 | CURLMcode result = CURLM_OK; |
2962 | struct Curl_easy *data = NULL; |
2963 | struct Curl_tree *t; |
2964 | struct curltime now = Curl_now(); |
2965 | |
2966 | if(checkall) { |
2967 | /* *perform() deals with running_handles on its own */ |
2968 | result = curl_multi_perform(multi, running_handles); |
2969 | |
2970 | /* walk through each easy handle and do the socket state change magic |
2971 | and callbacks */ |
2972 | if(result != CURLM_BAD_HANDLE) { |
2973 | data = multi->easyp; |
2974 | while(data && !result) { |
2975 | result = singlesocket(multi, data); |
2976 | data = data->next; |
2977 | } |
2978 | } |
2979 | |
2980 | /* or should we fall-through and do the timer-based stuff? */ |
2981 | return result; |
2982 | } |
2983 | if(s != CURL_SOCKET_TIMEOUT) { |
2984 | struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s); |
2985 | |
2986 | if(!entry) |
2987 | /* Unmatched socket, we can't act on it but we ignore this fact. In |
2988 | real-world tests it has been proved that libevent can in fact give |
2989 | the application actions even though the socket was just previously |
2990 | asked to get removed, so thus we better survive stray socket actions |
2991 | and just move on. */ |
2992 | ; |
2993 | else { |
2994 | struct Curl_hash_iterator iter; |
2995 | struct Curl_hash_element *he; |
2996 | |
2997 | /* the socket can be shared by many transfers, iterate */ |
2998 | Curl_hash_start_iterate(&entry->transfers, &iter); |
2999 | for(he = Curl_hash_next_element(&iter); he; |
3000 | he = Curl_hash_next_element(&iter)) { |
3001 | data = (struct Curl_easy *)he->ptr; |
3002 | DEBUGASSERT(data); |
3003 | DEBUGASSERT(data->magic == CURLEASY_MAGIC_NUMBER); |
3004 | |
3005 | if(data->conn && !(data->conn->handler->flags & PROTOPT_DIRLOCK)) |
3006 | /* set socket event bitmask if they're not locked */ |
3007 | data->conn->cselect_bits = ev_bitmask; |
3008 | |
3009 | Curl_expire(data, 0, EXPIRE_RUN_NOW); |
3010 | } |
3011 | |
3012 | /* Now we fall-through and do the timer-based stuff, since we don't want |
3013 | to force the user to have to deal with timeouts as long as at least |
3014 | one connection in fact has traffic. */ |
3015 | |
3016 | data = NULL; /* set data to NULL again to avoid calling |
3017 | multi_runsingle() in case there's no need to */ |
3018 | now = Curl_now(); /* get a newer time since the multi_runsingle() loop |
3019 | may have taken some time */ |
3020 | } |
3021 | } |
3022 | else { |
3023 | /* Asked to run due to time-out. Clear the 'lastcall' variable to force |
3024 | Curl_update_timer() to trigger a callback to the app again even if the |
3025 | same timeout is still the one to run after this call. That handles the |
3026 | case when the application asks libcurl to run the timeout |
3027 | prematurely. */ |
3028 | memset(&multi->timer_lastcall, 0, sizeof(multi->timer_lastcall)); |
3029 | } |
3030 | |
3031 | /* |
3032 | * The loop following here will go on as long as there are expire-times left |
3033 | * to process in the splay and 'data' will be re-assigned for every expired |
3034 | * handle we deal with. |
3035 | */ |
3036 | do { |
3037 | /* the first loop lap 'data' can be NULL */ |
3038 | if(data) { |
3039 | SIGPIPE_VARIABLE(pipe_st); |
3040 | |
3041 | sigpipe_ignore(data, &pipe_st); |
3042 | result = multi_runsingle(multi, &now, data); |
3043 | sigpipe_restore(&pipe_st); |
3044 | |
3045 | if(CURLM_OK >= result) { |
3046 | /* get the socket(s) and check if the state has been changed since |
3047 | last */ |
3048 | result = singlesocket(multi, data); |
3049 | if(result) |
3050 | return result; |
3051 | } |
3052 | } |
3053 | |
3054 | /* Check if there's one (more) expired timer to deal with! This function |
3055 | extracts a matching node if there is one */ |
3056 | |
3057 | multi->timetree = Curl_splaygetbest(now, multi->timetree, &t); |
3058 | if(t) { |
3059 | data = t->payload; /* assign this for next loop */ |
3060 | (void)add_next_timeout(now, multi, t->payload); |
3061 | } |
3062 | |
3063 | } while(t); |
3064 | |
3065 | *running_handles = multi->num_alive; |
3066 | return result; |
3067 | } |
3068 | |
3069 | #undef curl_multi_setopt |
3070 | CURLMcode curl_multi_setopt(struct Curl_multi *multi, |
3071 | CURLMoption option, ...) |
3072 | { |
3073 | CURLMcode res = CURLM_OK; |
3074 | va_list param; |
3075 | |
3076 | if(!GOOD_MULTI_HANDLE(multi)) |
3077 | return CURLM_BAD_HANDLE; |
3078 | |
3079 | if(multi->in_callback) |
3080 | return CURLM_RECURSIVE_API_CALL; |
3081 | |
3082 | va_start(param, option); |
3083 | |
3084 | switch(option) { |
3085 | case CURLMOPT_SOCKETFUNCTION: |
3086 | multi->socket_cb = va_arg(param, curl_socket_callback); |
3087 | break; |
3088 | case CURLMOPT_SOCKETDATA: |
3089 | multi->socket_userp = va_arg(param, void *); |
3090 | break; |
3091 | case CURLMOPT_PUSHFUNCTION: |
3092 | multi->push_cb = va_arg(param, curl_push_callback); |
3093 | break; |
3094 | case CURLMOPT_PUSHDATA: |
3095 | multi->push_userp = va_arg(param, void *); |
3096 | break; |
3097 | case CURLMOPT_PIPELINING: |
3098 | multi->multiplexing = va_arg(param, long) & CURLPIPE_MULTIPLEX; |
3099 | break; |
3100 | case CURLMOPT_TIMERFUNCTION: |
3101 | multi->timer_cb = va_arg(param, curl_multi_timer_callback); |
3102 | break; |
3103 | case CURLMOPT_TIMERDATA: |
3104 | multi->timer_userp = va_arg(param, void *); |
3105 | break; |
3106 | case CURLMOPT_MAXCONNECTS: |
3107 | multi->maxconnects = va_arg(param, long); |
3108 | break; |
3109 | case CURLMOPT_MAX_HOST_CONNECTIONS: |
3110 | multi->max_host_connections = va_arg(param, long); |
3111 | break; |
3112 | case CURLMOPT_MAX_TOTAL_CONNECTIONS: |
3113 | multi->max_total_connections = va_arg(param, long); |
3114 | break; |
3115 | /* options formerly used for pipelining */ |
3116 | case CURLMOPT_MAX_PIPELINE_LENGTH: |
3117 | break; |
3118 | case CURLMOPT_CONTENT_LENGTH_PENALTY_SIZE: |
3119 | break; |
3120 | case CURLMOPT_CHUNK_LENGTH_PENALTY_SIZE: |
3121 | break; |
3122 | case CURLMOPT_PIPELINING_SITE_BL: |
3123 | break; |
3124 | case CURLMOPT_PIPELINING_SERVER_BL: |
3125 | break; |
3126 | case CURLMOPT_MAX_CONCURRENT_STREAMS: |
3127 | { |
3128 | long streams = va_arg(param, long); |
3129 | if(streams < 1) |
3130 | streams = 100; |
3131 | multi->max_concurrent_streams = curlx_sltoui(streams); |
3132 | } |
3133 | break; |
3134 | default: |
3135 | res = CURLM_UNKNOWN_OPTION; |
3136 | break; |
3137 | } |
3138 | va_end(param); |
3139 | return res; |
3140 | } |
3141 | |
3142 | /* we define curl_multi_socket() in the public multi.h header */ |
3143 | #undef curl_multi_socket |
3144 | |
3145 | CURLMcode curl_multi_socket(struct Curl_multi *multi, curl_socket_t s, |
3146 | int *running_handles) |
3147 | { |
3148 | CURLMcode result; |
3149 | if(multi->in_callback) |
3150 | return CURLM_RECURSIVE_API_CALL; |
3151 | result = multi_socket(multi, FALSE, s, 0, running_handles); |
3152 | if(CURLM_OK >= result) |
3153 | Curl_update_timer(multi); |
3154 | return result; |
3155 | } |
3156 | |
3157 | CURLMcode curl_multi_socket_action(struct Curl_multi *multi, curl_socket_t s, |
3158 | int ev_bitmask, int *running_handles) |
3159 | { |
3160 | CURLMcode result; |
3161 | if(multi->in_callback) |
3162 | return CURLM_RECURSIVE_API_CALL; |
3163 | result = multi_socket(multi, FALSE, s, ev_bitmask, running_handles); |
3164 | if(CURLM_OK >= result) |
3165 | Curl_update_timer(multi); |
3166 | return result; |
3167 | } |
3168 | |
3169 | CURLMcode curl_multi_socket_all(struct Curl_multi *multi, int *running_handles) |
3170 | { |
3171 | CURLMcode result; |
3172 | if(multi->in_callback) |
3173 | return CURLM_RECURSIVE_API_CALL; |
3174 | result = multi_socket(multi, TRUE, CURL_SOCKET_BAD, 0, running_handles); |
3175 | if(CURLM_OK >= result) |
3176 | Curl_update_timer(multi); |
3177 | return result; |
3178 | } |
3179 | |
3180 | static CURLMcode multi_timeout(struct Curl_multi *multi, |
3181 | long *timeout_ms) |
3182 | { |
3183 | static struct curltime tv_zero = {0, 0}; |
3184 | |
3185 | if(multi->timetree) { |
3186 | /* we have a tree of expire times */ |
3187 | struct curltime now = Curl_now(); |
3188 | |
3189 | /* splay the lowest to the bottom */ |
3190 | multi->timetree = Curl_splay(tv_zero, multi->timetree); |
3191 | |
3192 | if(Curl_splaycomparekeys(multi->timetree->key, now) > 0) { |
3193 | /* some time left before expiration */ |
3194 | timediff_t diff = Curl_timediff(multi->timetree->key, now); |
3195 | if(diff <= 0) |
3196 | /* |
3197 | * Since we only provide millisecond resolution on the returned value |
3198 | * and the diff might be less than one millisecond here, we don't |
3199 | * return zero as that may cause short bursts of busyloops on fast |
3200 | * processors while the diff is still present but less than one |
3201 | * millisecond! instead we return 1 until the time is ripe. |
3202 | */ |
3203 | *timeout_ms = 1; |
3204 | else |
3205 | /* this should be safe even on 64 bit archs, as we don't use that |
3206 | overly long timeouts */ |
3207 | *timeout_ms = (long)diff; |
3208 | } |
3209 | else |
3210 | /* 0 means immediately */ |
3211 | *timeout_ms = 0; |
3212 | } |
3213 | else |
3214 | *timeout_ms = -1; |
3215 | |
3216 | return CURLM_OK; |
3217 | } |
3218 | |
3219 | CURLMcode curl_multi_timeout(struct Curl_multi *multi, |
3220 | long *timeout_ms) |
3221 | { |
3222 | /* First, make some basic checks that the CURLM handle is a good handle */ |
3223 | if(!GOOD_MULTI_HANDLE(multi)) |
3224 | return CURLM_BAD_HANDLE; |
3225 | |
3226 | if(multi->in_callback) |
3227 | return CURLM_RECURSIVE_API_CALL; |
3228 | |
3229 | return multi_timeout(multi, timeout_ms); |
3230 | } |
3231 | |
3232 | /* |
3233 | * Tell the application it should update its timers, if it subscribes to the |
3234 | * update timer callback. |
3235 | */ |
3236 | void Curl_update_timer(struct Curl_multi *multi) |
3237 | { |
3238 | long timeout_ms; |
3239 | |
3240 | if(!multi->timer_cb) |
3241 | return; |
3242 | if(multi_timeout(multi, &timeout_ms)) { |
3243 | return; |
3244 | } |
3245 | if(timeout_ms < 0) { |
3246 | static const struct curltime none = {0, 0}; |
3247 | if(Curl_splaycomparekeys(none, multi->timer_lastcall)) { |
3248 | multi->timer_lastcall = none; |
3249 | /* there's no timeout now but there was one previously, tell the app to |
3250 | disable it */ |
3251 | multi->timer_cb(multi, -1, multi->timer_userp); |
3252 | return; |
3253 | } |
3254 | return; |
3255 | } |
3256 | |
3257 | /* When multi_timeout() is done, multi->timetree points to the node with the |
3258 | * timeout we got the (relative) time-out time for. We can thus easily check |
3259 | * if this is the same (fixed) time as we got in a previous call and then |
3260 | * avoid calling the callback again. */ |
3261 | if(Curl_splaycomparekeys(multi->timetree->key, multi->timer_lastcall) == 0) |
3262 | return; |
3263 | |
3264 | multi->timer_lastcall = multi->timetree->key; |
3265 | |
3266 | multi->timer_cb(multi, timeout_ms, multi->timer_userp); |
3267 | } |
3268 | |
3269 | /* |
3270 | * multi_deltimeout() |
3271 | * |
3272 | * Remove a given timestamp from the list of timeouts. |
3273 | */ |
3274 | static void |
3275 | multi_deltimeout(struct Curl_easy *data, expire_id eid) |
3276 | { |
3277 | struct Curl_llist_element *e; |
3278 | struct Curl_llist *timeoutlist = &data->state.timeoutlist; |
3279 | /* find and remove the specific node from the list */ |
3280 | for(e = timeoutlist->head; e; e = e->next) { |
3281 | struct time_node *n = (struct time_node *)e->ptr; |
3282 | if(n->eid == eid) { |
3283 | Curl_llist_remove(timeoutlist, e, NULL); |
3284 | return; |
3285 | } |
3286 | } |
3287 | } |
3288 | |
3289 | /* |
3290 | * multi_addtimeout() |
3291 | * |
3292 | * Add a timestamp to the list of timeouts. Keep the list sorted so that head |
3293 | * of list is always the timeout nearest in time. |
3294 | * |
3295 | */ |
3296 | static CURLMcode |
3297 | multi_addtimeout(struct Curl_easy *data, |
3298 | struct curltime *stamp, |
3299 | expire_id eid) |
3300 | { |
3301 | struct Curl_llist_element *e; |
3302 | struct time_node *node; |
3303 | struct Curl_llist_element *prev = NULL; |
3304 | size_t n; |
3305 | struct Curl_llist *timeoutlist = &data->state.timeoutlist; |
3306 | |
3307 | node = &data->state.expires[eid]; |
3308 | |
3309 | /* copy the timestamp and id */ |
3310 | memcpy(&node->time, stamp, sizeof(*stamp)); |
3311 | node->eid = eid; /* also marks it as in use */ |
3312 | |
3313 | n = Curl_llist_count(timeoutlist); |
3314 | if(n) { |
3315 | /* find the correct spot in the list */ |
3316 | for(e = timeoutlist->head; e; e = e->next) { |
3317 | struct time_node *check = (struct time_node *)e->ptr; |
3318 | timediff_t diff = Curl_timediff(check->time, node->time); |
3319 | if(diff > 0) |
3320 | break; |
3321 | prev = e; |
3322 | } |
3323 | |
3324 | } |
3325 | /* else |
3326 | this is the first timeout on the list */ |
3327 | |
3328 | Curl_llist_insert_next(timeoutlist, prev, node, &node->list); |
3329 | return CURLM_OK; |
3330 | } |
3331 | |
3332 | /* |
3333 | * Curl_expire() |
3334 | * |
3335 | * given a number of milliseconds from now to use to set the 'act before |
3336 | * this'-time for the transfer, to be extracted by curl_multi_timeout() |
3337 | * |
3338 | * The timeout will be added to a queue of timeouts if it defines a moment in |
3339 | * time that is later than the current head of queue. |
3340 | * |
3341 | * Expire replaces a former timeout using the same id if already set. |
3342 | */ |
3343 | void Curl_expire(struct Curl_easy *data, timediff_t milli, expire_id id) |
3344 | { |
3345 | struct Curl_multi *multi = data->multi; |
3346 | struct curltime *nowp = &data->state.expiretime; |
3347 | struct curltime set; |
3348 | |
3349 | /* this is only interesting while there is still an associated multi struct |
3350 | remaining! */ |
3351 | if(!multi) |
3352 | return; |
3353 | |
3354 | DEBUGASSERT(id < EXPIRE_LAST); |
3355 | |
3356 | set = Curl_now(); |
3357 | set.tv_sec += (time_t)(milli/1000); /* might be a 64 to 32 bit conversion */ |
3358 | set.tv_usec += (unsigned int)(milli%1000)*1000; |
3359 | |
3360 | if(set.tv_usec >= 1000000) { |
3361 | set.tv_sec++; |
3362 | set.tv_usec -= 1000000; |
3363 | } |
3364 | |
3365 | /* Remove any timer with the same id just in case. */ |
3366 | multi_deltimeout(data, id); |
3367 | |
3368 | /* Add it to the timer list. It must stay in the list until it has expired |
3369 | in case we need to recompute the minimum timer later. */ |
3370 | multi_addtimeout(data, &set, id); |
3371 | |
3372 | if(nowp->tv_sec || nowp->tv_usec) { |
3373 | /* This means that the struct is added as a node in the splay tree. |
3374 | Compare if the new time is earlier, and only remove-old/add-new if it |
3375 | is. */ |
3376 | timediff_t diff = Curl_timediff(set, *nowp); |
3377 | int rc; |
3378 | |
3379 | if(diff > 0) { |
3380 | /* The current splay tree entry is sooner than this new expiry time. |
3381 | We don't need to update our splay tree entry. */ |
3382 | return; |
3383 | } |
3384 | |
3385 | /* Since this is an updated time, we must remove the previous entry from |
3386 | the splay tree first and then re-add the new value */ |
3387 | rc = Curl_splayremove(multi->timetree, &data->state.timenode, |
3388 | &multi->timetree); |
3389 | if(rc) |
3390 | infof(data, "Internal error removing splay node = %d" , rc); |
3391 | } |
3392 | |
3393 | /* Indicate that we are in the splay tree and insert the new timer expiry |
3394 | value since it is our local minimum. */ |
3395 | *nowp = set; |
3396 | data->state.timenode.payload = data; |
3397 | multi->timetree = Curl_splayinsert(*nowp, multi->timetree, |
3398 | &data->state.timenode); |
3399 | } |
3400 | |
3401 | /* |
3402 | * Curl_expire_done() |
3403 | * |
3404 | * Removes the expire timer. Marks it as done. |
3405 | * |
3406 | */ |
3407 | void Curl_expire_done(struct Curl_easy *data, expire_id id) |
3408 | { |
3409 | /* remove the timer, if there */ |
3410 | multi_deltimeout(data, id); |
3411 | } |
3412 | |
3413 | /* |
3414 | * Curl_expire_clear() |
3415 | * |
3416 | * Clear ALL timeout values for this handle. |
3417 | */ |
3418 | void Curl_expire_clear(struct Curl_easy *data) |
3419 | { |
3420 | struct Curl_multi *multi = data->multi; |
3421 | struct curltime *nowp = &data->state.expiretime; |
3422 | |
3423 | /* this is only interesting while there is still an associated multi struct |
3424 | remaining! */ |
3425 | if(!multi) |
3426 | return; |
3427 | |
3428 | if(nowp->tv_sec || nowp->tv_usec) { |
3429 | /* Since this is an cleared time, we must remove the previous entry from |
3430 | the splay tree */ |
3431 | struct Curl_llist *list = &data->state.timeoutlist; |
3432 | int rc; |
3433 | |
3434 | rc = Curl_splayremove(multi->timetree, &data->state.timenode, |
3435 | &multi->timetree); |
3436 | if(rc) |
3437 | infof(data, "Internal error clearing splay node = %d" , rc); |
3438 | |
3439 | /* flush the timeout list too */ |
3440 | while(list->size > 0) { |
3441 | Curl_llist_remove(list, list->tail, NULL); |
3442 | } |
3443 | |
3444 | #ifdef DEBUGBUILD |
3445 | infof(data, "Expire cleared (transfer %p)" , data); |
3446 | #endif |
3447 | nowp->tv_sec = 0; |
3448 | nowp->tv_usec = 0; |
3449 | } |
3450 | } |
3451 | |
3452 | |
3453 | |
3454 | |
3455 | CURLMcode curl_multi_assign(struct Curl_multi *multi, curl_socket_t s, |
3456 | void *hashp) |
3457 | { |
3458 | struct Curl_sh_entry *there = NULL; |
3459 | |
3460 | if(multi->in_callback) |
3461 | return CURLM_RECURSIVE_API_CALL; |
3462 | |
3463 | there = sh_getentry(&multi->sockhash, s); |
3464 | |
3465 | if(!there) |
3466 | return CURLM_BAD_SOCKET; |
3467 | |
3468 | there->socketp = hashp; |
3469 | |
3470 | return CURLM_OK; |
3471 | } |
3472 | |
3473 | size_t Curl_multi_max_host_connections(struct Curl_multi *multi) |
3474 | { |
3475 | return multi ? multi->max_host_connections : 0; |
3476 | } |
3477 | |
3478 | size_t Curl_multi_max_total_connections(struct Curl_multi *multi) |
3479 | { |
3480 | return multi ? multi->max_total_connections : 0; |
3481 | } |
3482 | |
3483 | /* |
3484 | * When information about a connection has appeared, call this! |
3485 | */ |
3486 | |
3487 | void Curl_multiuse_state(struct Curl_easy *data, |
3488 | int bundlestate) /* use BUNDLE_* defines */ |
3489 | { |
3490 | struct connectdata *conn; |
3491 | DEBUGASSERT(data); |
3492 | DEBUGASSERT(data->multi); |
3493 | conn = data->conn; |
3494 | DEBUGASSERT(conn); |
3495 | DEBUGASSERT(conn->bundle); |
3496 | |
3497 | conn->bundle->multiuse = bundlestate; |
3498 | process_pending_handles(data->multi); |
3499 | } |
3500 | |
3501 | static void process_pending_handles(struct Curl_multi *multi) |
3502 | { |
3503 | struct Curl_llist_element *e = multi->pending.head; |
3504 | if(e) { |
3505 | struct Curl_easy *data = e->ptr; |
3506 | |
3507 | DEBUGASSERT(data->mstate == MSTATE_PENDING); |
3508 | |
3509 | multistate(data, MSTATE_CONNECT); |
3510 | |
3511 | /* Remove this node from the list */ |
3512 | Curl_llist_remove(&multi->pending, e, NULL); |
3513 | |
3514 | /* Make sure that the handle will be processed soonish. */ |
3515 | Curl_expire(data, 0, EXPIRE_RUN_NOW); |
3516 | |
3517 | /* mark this as having been in the pending queue */ |
3518 | data->state.previouslypending = TRUE; |
3519 | } |
3520 | } |
3521 | |
3522 | void Curl_set_in_callback(struct Curl_easy *data, bool value) |
3523 | { |
3524 | /* might get called when there is no data pointer! */ |
3525 | if(data) { |
3526 | if(data->multi_easy) |
3527 | data->multi_easy->in_callback = value; |
3528 | else if(data->multi) |
3529 | data->multi->in_callback = value; |
3530 | } |
3531 | } |
3532 | |
3533 | bool Curl_is_in_callback(struct Curl_easy *easy) |
3534 | { |
3535 | return ((easy->multi && easy->multi->in_callback) || |
3536 | (easy->multi_easy && easy->multi_easy->in_callback)); |
3537 | } |
3538 | |
3539 | #ifdef DEBUGBUILD |
3540 | void Curl_multi_dump(struct Curl_multi *multi) |
3541 | { |
3542 | struct Curl_easy *data; |
3543 | int i; |
3544 | fprintf(stderr, "* Multi status: %d handles, %d alive\n" , |
3545 | multi->num_easy, multi->num_alive); |
3546 | for(data = multi->easyp; data; data = data->next) { |
3547 | if(data->mstate < MSTATE_COMPLETED) { |
3548 | /* only display handles that are not completed */ |
3549 | fprintf(stderr, "handle %p, state %s, %d sockets\n" , |
3550 | (void *)data, |
3551 | statename[data->mstate], data->numsocks); |
3552 | for(i = 0; i < data->numsocks; i++) { |
3553 | curl_socket_t s = data->sockets[i]; |
3554 | struct Curl_sh_entry *entry = sh_getentry(&multi->sockhash, s); |
3555 | |
3556 | fprintf(stderr, "%d " , (int)s); |
3557 | if(!entry) { |
3558 | fprintf(stderr, "INTERNAL CONFUSION\n" ); |
3559 | continue; |
3560 | } |
3561 | fprintf(stderr, "[%s %s] " , |
3562 | (entry->action&CURL_POLL_IN)?"RECVING" :"" , |
3563 | (entry->action&CURL_POLL_OUT)?"SENDING" :"" ); |
3564 | } |
3565 | if(data->numsocks) |
3566 | fprintf(stderr, "\n" ); |
3567 | } |
3568 | } |
3569 | } |
3570 | #endif |
3571 | |
3572 | unsigned int Curl_multi_max_concurrent_streams(struct Curl_multi *multi) |
3573 | { |
3574 | DEBUGASSERT(multi); |
3575 | return multi->max_concurrent_streams; |
3576 | } |
3577 | |