| 1 | /*************************************************************************** |
| 2 | * _ _ ____ _ |
| 3 | * Project ___| | | | _ \| | |
| 4 | * / __| | | | |_) | | |
| 5 | * | (__| |_| | _ <| |___ |
| 6 | * \___|\___/|_| \_\_____| |
| 7 | * |
| 8 | * Copyright (C) 2012 - 2021, Daniel Stenberg, <daniel@haxx.se>, et al. |
| 9 | * Copyright (C) 2012 - 2017, Nick Zitzmann, <nickzman@gmail.com>. |
| 10 | * |
| 11 | * This software is licensed as described in the file COPYING, which |
| 12 | * you should have received as part of this distribution. The terms |
| 13 | * are also available at https://curl.se/docs/copyright.html. |
| 14 | * |
| 15 | * You may opt to use, copy, modify, merge, publish, distribute and/or sell |
| 16 | * copies of the Software, and permit persons to whom the Software is |
| 17 | * furnished to do so, under the terms of the COPYING file. |
| 18 | * |
| 19 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
| 20 | * KIND, either express or implied. |
| 21 | * |
| 22 | ***************************************************************************/ |
| 23 | |
| 24 | /* |
| 25 | * Source file for all iOS and macOS SecureTransport-specific code for the |
| 26 | * TLS/SSL layer. No code but vtls.c should ever call or use these functions. |
| 27 | */ |
| 28 | |
| 29 | #include "curl_setup.h" |
| 30 | |
| 31 | #include "urldata.h" /* for the Curl_easy definition */ |
| 32 | #include "curl_base64.h" |
| 33 | #include "strtok.h" |
| 34 | #include "multiif.h" |
| 35 | #include "strcase.h" |
| 36 | #include "x509asn1.h" |
| 37 | #include "strerror.h" |
| 38 | |
| 39 | #ifdef USE_SECTRANSP |
| 40 | |
| 41 | #ifdef __clang__ |
| 42 | #pragma clang diagnostic push |
| 43 | #pragma clang diagnostic ignored "-Wtautological-pointer-compare" |
| 44 | #endif /* __clang__ */ |
| 45 | |
| 46 | #include <limits.h> |
| 47 | |
| 48 | #include <Security/Security.h> |
| 49 | /* For some reason, when building for iOS, the omnibus header above does |
| 50 | * not include SecureTransport.h as of iOS SDK 5.1. */ |
| 51 | #include <Security/SecureTransport.h> |
| 52 | #include <CoreFoundation/CoreFoundation.h> |
| 53 | #include <CommonCrypto/CommonDigest.h> |
| 54 | |
| 55 | /* The Security framework has changed greatly between iOS and different macOS |
| 56 | versions, and we will try to support as many of them as we can (back to |
| 57 | Leopard and iOS 5) by using macros and weak-linking. |
| 58 | |
| 59 | In general, you want to build this using the most recent OS SDK, since some |
| 60 | features require curl to be built against the latest SDK. TLS 1.1 and 1.2 |
| 61 | support, for instance, require the macOS 10.8 SDK or later. TLS 1.3 |
| 62 | requires the macOS 10.13 or iOS 11 SDK or later. */ |
| 63 | #if (TARGET_OS_MAC && !(TARGET_OS_EMBEDDED || TARGET_OS_IPHONE)) |
| 64 | |
| 65 | #if MAC_OS_X_VERSION_MAX_ALLOWED < 1050 |
| 66 | #error "The Secure Transport back-end requires Leopard or later." |
| 67 | #endif /* MAC_OS_X_VERSION_MAX_ALLOWED < 1050 */ |
| 68 | |
| 69 | #define CURL_BUILD_IOS 0 |
| 70 | #define CURL_BUILD_IOS_7 0 |
| 71 | #define CURL_BUILD_IOS_9 0 |
| 72 | #define CURL_BUILD_IOS_11 0 |
| 73 | #define CURL_BUILD_IOS_13 0 |
| 74 | #define CURL_BUILD_MAC 1 |
| 75 | /* This is the maximum API level we are allowed to use when building: */ |
| 76 | #define CURL_BUILD_MAC_10_5 MAC_OS_X_VERSION_MAX_ALLOWED >= 1050 |
| 77 | #define CURL_BUILD_MAC_10_6 MAC_OS_X_VERSION_MAX_ALLOWED >= 1060 |
| 78 | #define CURL_BUILD_MAC_10_7 MAC_OS_X_VERSION_MAX_ALLOWED >= 1070 |
| 79 | #define CURL_BUILD_MAC_10_8 MAC_OS_X_VERSION_MAX_ALLOWED >= 1080 |
| 80 | #define CURL_BUILD_MAC_10_9 MAC_OS_X_VERSION_MAX_ALLOWED >= 1090 |
| 81 | #define CURL_BUILD_MAC_10_11 MAC_OS_X_VERSION_MAX_ALLOWED >= 101100 |
| 82 | #define CURL_BUILD_MAC_10_13 MAC_OS_X_VERSION_MAX_ALLOWED >= 101300 |
| 83 | #define CURL_BUILD_MAC_10_15 MAC_OS_X_VERSION_MAX_ALLOWED >= 101500 |
| 84 | /* These macros mean "the following code is present to allow runtime backward |
| 85 | compatibility with at least this cat or earlier": |
| 86 | (You set this at build-time using the compiler command line option |
| 87 | "-mmacosx-version-min.") */ |
| 88 | #define CURL_SUPPORT_MAC_10_5 MAC_OS_X_VERSION_MIN_REQUIRED <= 1050 |
| 89 | #define CURL_SUPPORT_MAC_10_6 MAC_OS_X_VERSION_MIN_REQUIRED <= 1060 |
| 90 | #define CURL_SUPPORT_MAC_10_7 MAC_OS_X_VERSION_MIN_REQUIRED <= 1070 |
| 91 | #define CURL_SUPPORT_MAC_10_8 MAC_OS_X_VERSION_MIN_REQUIRED <= 1080 |
| 92 | #define CURL_SUPPORT_MAC_10_9 MAC_OS_X_VERSION_MIN_REQUIRED <= 1090 |
| 93 | |
| 94 | #elif TARGET_OS_EMBEDDED || TARGET_OS_IPHONE |
| 95 | #define CURL_BUILD_IOS 1 |
| 96 | #define CURL_BUILD_IOS_7 __IPHONE_OS_VERSION_MAX_ALLOWED >= 70000 |
| 97 | #define CURL_BUILD_IOS_9 __IPHONE_OS_VERSION_MAX_ALLOWED >= 90000 |
| 98 | #define CURL_BUILD_IOS_11 __IPHONE_OS_VERSION_MAX_ALLOWED >= 110000 |
| 99 | #define CURL_BUILD_IOS_13 __IPHONE_OS_VERSION_MAX_ALLOWED >= 130000 |
| 100 | #define CURL_BUILD_MAC 0 |
| 101 | #define CURL_BUILD_MAC_10_5 0 |
| 102 | #define CURL_BUILD_MAC_10_6 0 |
| 103 | #define CURL_BUILD_MAC_10_7 0 |
| 104 | #define CURL_BUILD_MAC_10_8 0 |
| 105 | #define CURL_BUILD_MAC_10_9 0 |
| 106 | #define CURL_BUILD_MAC_10_11 0 |
| 107 | #define CURL_BUILD_MAC_10_13 0 |
| 108 | #define CURL_BUILD_MAC_10_15 0 |
| 109 | #define CURL_SUPPORT_MAC_10_5 0 |
| 110 | #define CURL_SUPPORT_MAC_10_6 0 |
| 111 | #define CURL_SUPPORT_MAC_10_7 0 |
| 112 | #define CURL_SUPPORT_MAC_10_8 0 |
| 113 | #define CURL_SUPPORT_MAC_10_9 0 |
| 114 | |
| 115 | #else |
| 116 | #error "The Secure Transport back-end requires iOS or macOS." |
| 117 | #endif /* (TARGET_OS_MAC && !(TARGET_OS_EMBEDDED || TARGET_OS_IPHONE)) */ |
| 118 | |
| 119 | #if CURL_BUILD_MAC |
| 120 | #include <sys/sysctl.h> |
| 121 | #endif /* CURL_BUILD_MAC */ |
| 122 | |
| 123 | #include "urldata.h" |
| 124 | #include "sendf.h" |
| 125 | #include "inet_pton.h" |
| 126 | #include "connect.h" |
| 127 | #include "select.h" |
| 128 | #include "vtls.h" |
| 129 | #include "sectransp.h" |
| 130 | #include "curl_printf.h" |
| 131 | #include "strdup.h" |
| 132 | |
| 133 | #include "curl_memory.h" |
| 134 | /* The last #include file should be: */ |
| 135 | #include "memdebug.h" |
| 136 | |
| 137 | /* From MacTypes.h (which we can't include because it isn't present in iOS: */ |
| 138 | #define ioErr -36 |
| 139 | #define paramErr -50 |
| 140 | |
| 141 | struct ssl_backend_data { |
| 142 | SSLContextRef ssl_ctx; |
| 143 | curl_socket_t ssl_sockfd; |
| 144 | bool ssl_direction; /* true if writing, false if reading */ |
| 145 | size_t ssl_write_buffered_length; |
| 146 | }; |
| 147 | |
| 148 | struct st_cipher { |
| 149 | const char *name; /* Cipher suite IANA name. It starts with "TLS_" prefix */ |
| 150 | const char *alias_name; /* Alias name is the same as OpenSSL cipher name */ |
| 151 | SSLCipherSuite num; /* Cipher suite code/number defined in IANA registry */ |
| 152 | bool weak; /* Flag to mark cipher as weak based on previous implementation |
| 153 | of Secure Transport back-end by CURL */ |
| 154 | }; |
| 155 | |
| 156 | /* Macro to initialize st_cipher data structure: stringify id to name, cipher |
| 157 | number/id, 'weak' suite flag |
| 158 | */ |
| 159 | #define CIPHER_DEF(num, alias, weak) \ |
| 160 | { #num, alias, num, weak } |
| 161 | |
| 162 | /* |
| 163 | Macro to initialize st_cipher data structure with name, code (IANA cipher |
| 164 | number/id value), and 'weak' suite flag. The first 28 cipher suite numbers |
| 165 | have the same IANA code for both SSL and TLS standards: numbers 0x0000 to |
| 166 | 0x001B. They have different names though. The first 4 letters of the cipher |
| 167 | suite name are the protocol name: "SSL_" or "TLS_", rest of the IANA name is |
| 168 | the same for both SSL and TLS cipher suite name. |
| 169 | The second part of the problem is that macOS/iOS SDKs don't define all TLS |
| 170 | codes but only 12 of them. The SDK defines all SSL codes though, i.e. SSL_NUM |
| 171 | constant is always defined for those 28 ciphers while TLS_NUM is defined only |
| 172 | for 12 of the first 28 ciphers. Those 12 TLS cipher codes match to |
| 173 | corresponding SSL enum value and represent the same cipher suite. Therefore |
| 174 | we'll use the SSL enum value for those cipher suites because it is defined |
| 175 | for all 28 of them. |
| 176 | We make internal data consistent and based on TLS names, i.e. all st_cipher |
| 177 | item names start with the "TLS_" prefix. |
| 178 | Summarizing all the above, those 28 first ciphers are presented in our table |
| 179 | with both TLS and SSL names. Their cipher numbers are assigned based on the |
| 180 | SDK enum value for the SSL cipher, which matches to IANA TLS number. |
| 181 | */ |
| 182 | #define CIPHER_DEF_SSLTLS(num_wo_prefix, alias, weak) \ |
| 183 | { "TLS_" #num_wo_prefix, alias, SSL_##num_wo_prefix, weak } |
| 184 | |
| 185 | /* |
| 186 | Cipher suites were marked as weak based on the following: |
| 187 | RC4 encryption - rfc7465, the document contains a list of deprecated ciphers. |
| 188 | Marked in the code below as weak. |
| 189 | RC2 encryption - many mentions, was found vulnerable to a relatively easy |
| 190 | attack https://link.springer.com/chapter/10.1007%2F3-540-69710-1_14 |
| 191 | Marked in the code below as weak. |
| 192 | DES and IDEA encryption - rfc5469, has a list of deprecated ciphers. |
| 193 | Marked in the code below as weak. |
| 194 | Anonymous Diffie-Hellman authentication and anonymous elliptic curve |
| 195 | Diffie-Hellman - vulnerable to a man-in-the-middle attack. Deprecated by |
| 196 | RFC 4346 aka TLS 1.1 (section A.5, page 60) |
| 197 | Null bulk encryption suites - not encrypted communication |
| 198 | Export ciphers, i.e. ciphers with restrictions to be used outside the US for |
| 199 | software exported to some countries, they were excluded from TLS 1.1 |
| 200 | version. More precisely, they were noted as ciphers which MUST NOT be |
| 201 | negotiated in RFC 4346 aka TLS 1.1 (section A.5, pages 60 and 61). |
| 202 | All of those filters were considered weak because they contain a weak |
| 203 | algorithm like DES, RC2 or RC4, and already considered weak by other |
| 204 | criteria. |
| 205 | 3DES - NIST deprecated it and is going to retire it by 2023 |
| 206 | https://csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA |
| 207 | OpenSSL https://www.openssl.org/blog/blog/2016/08/24/sweet32/ also |
| 208 | deprecated those ciphers. Some other libraries also consider it |
| 209 | vulnerable or at least not strong enough. |
| 210 | |
| 211 | CBC ciphers are vulnerable with SSL3.0 and TLS1.0: |
| 212 | https://www.cisco.com/c/en/us/support/docs/security/email-security-appliance |
| 213 | /118518-technote-esa-00.html |
| 214 | We don't take care of this issue because it is resolved by later TLS |
| 215 | versions and for us, it requires more complicated checks, we need to |
| 216 | check a protocol version also. Vulnerability doesn't look very critical |
| 217 | and we do not filter out those cipher suites. |
| 218 | */ |
| 219 | |
| 220 | #define CIPHER_WEAK_NOT_ENCRYPTED TRUE |
| 221 | #define CIPHER_WEAK_RC_ENCRYPTION TRUE |
| 222 | #define CIPHER_WEAK_DES_ENCRYPTION TRUE |
| 223 | #define CIPHER_WEAK_IDEA_ENCRYPTION TRUE |
| 224 | #define CIPHER_WEAK_ANON_AUTH TRUE |
| 225 | #define CIPHER_WEAK_3DES_ENCRYPTION TRUE |
| 226 | #define CIPHER_STRONG_ENOUGH FALSE |
| 227 | |
| 228 | /* Please do not change the order of the first ciphers available for SSL. |
| 229 | Do not insert and do not delete any of them. Code below |
| 230 | depends on their order and continuity. |
| 231 | If you add a new cipher, please maintain order by number, i.e. |
| 232 | insert in between existing items to appropriate place based on |
| 233 | cipher suite IANA number |
| 234 | */ |
| 235 | const static struct st_cipher ciphertable[] = { |
| 236 | /* SSL version 3.0 and initial TLS 1.0 cipher suites. |
| 237 | Defined since SDK 10.2.8 */ |
| 238 | CIPHER_DEF_SSLTLS(NULL_WITH_NULL_NULL, /* 0x0000 */ |
| 239 | NULL, |
| 240 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 241 | CIPHER_DEF_SSLTLS(RSA_WITH_NULL_MD5, /* 0x0001 */ |
| 242 | "NULL-MD5" , |
| 243 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 244 | CIPHER_DEF_SSLTLS(RSA_WITH_NULL_SHA, /* 0x0002 */ |
| 245 | "NULL-SHA" , |
| 246 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 247 | CIPHER_DEF_SSLTLS(RSA_EXPORT_WITH_RC4_40_MD5, /* 0x0003 */ |
| 248 | "EXP-RC4-MD5" , |
| 249 | CIPHER_WEAK_RC_ENCRYPTION), |
| 250 | CIPHER_DEF_SSLTLS(RSA_WITH_RC4_128_MD5, /* 0x0004 */ |
| 251 | "RC4-MD5" , |
| 252 | CIPHER_WEAK_RC_ENCRYPTION), |
| 253 | CIPHER_DEF_SSLTLS(RSA_WITH_RC4_128_SHA, /* 0x0005 */ |
| 254 | "RC4-SHA" , |
| 255 | CIPHER_WEAK_RC_ENCRYPTION), |
| 256 | CIPHER_DEF_SSLTLS(RSA_EXPORT_WITH_RC2_CBC_40_MD5, /* 0x0006 */ |
| 257 | "EXP-RC2-CBC-MD5" , |
| 258 | CIPHER_WEAK_RC_ENCRYPTION), |
| 259 | CIPHER_DEF_SSLTLS(RSA_WITH_IDEA_CBC_SHA, /* 0x0007 */ |
| 260 | "IDEA-CBC-SHA" , |
| 261 | CIPHER_WEAK_IDEA_ENCRYPTION), |
| 262 | CIPHER_DEF_SSLTLS(RSA_EXPORT_WITH_DES40_CBC_SHA, /* 0x0008 */ |
| 263 | "EXP-DES-CBC-SHA" , |
| 264 | CIPHER_WEAK_DES_ENCRYPTION), |
| 265 | CIPHER_DEF_SSLTLS(RSA_WITH_DES_CBC_SHA, /* 0x0009 */ |
| 266 | "DES-CBC-SHA" , |
| 267 | CIPHER_WEAK_DES_ENCRYPTION), |
| 268 | CIPHER_DEF_SSLTLS(RSA_WITH_3DES_EDE_CBC_SHA, /* 0x000A */ |
| 269 | "DES-CBC3-SHA" , |
| 270 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 271 | CIPHER_DEF_SSLTLS(DH_DSS_EXPORT_WITH_DES40_CBC_SHA, /* 0x000B */ |
| 272 | "EXP-DH-DSS-DES-CBC-SHA" , |
| 273 | CIPHER_WEAK_DES_ENCRYPTION), |
| 274 | CIPHER_DEF_SSLTLS(DH_DSS_WITH_DES_CBC_SHA, /* 0x000C */ |
| 275 | "DH-DSS-DES-CBC-SHA" , |
| 276 | CIPHER_WEAK_DES_ENCRYPTION), |
| 277 | CIPHER_DEF_SSLTLS(DH_DSS_WITH_3DES_EDE_CBC_SHA, /* 0x000D */ |
| 278 | "DH-DSS-DES-CBC3-SHA" , |
| 279 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 280 | CIPHER_DEF_SSLTLS(DH_RSA_EXPORT_WITH_DES40_CBC_SHA, /* 0x000E */ |
| 281 | "EXP-DH-RSA-DES-CBC-SHA" , |
| 282 | CIPHER_WEAK_DES_ENCRYPTION), |
| 283 | CIPHER_DEF_SSLTLS(DH_RSA_WITH_DES_CBC_SHA, /* 0x000F */ |
| 284 | "DH-RSA-DES-CBC-SHA" , |
| 285 | CIPHER_WEAK_DES_ENCRYPTION), |
| 286 | CIPHER_DEF_SSLTLS(DH_RSA_WITH_3DES_EDE_CBC_SHA, /* 0x0010 */ |
| 287 | "DH-RSA-DES-CBC3-SHA" , |
| 288 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 289 | CIPHER_DEF_SSLTLS(DHE_DSS_EXPORT_WITH_DES40_CBC_SHA, /* 0x0011 */ |
| 290 | "EXP-EDH-DSS-DES-CBC-SHA" , |
| 291 | CIPHER_WEAK_DES_ENCRYPTION), |
| 292 | CIPHER_DEF_SSLTLS(DHE_DSS_WITH_DES_CBC_SHA, /* 0x0012 */ |
| 293 | "EDH-DSS-CBC-SHA" , |
| 294 | CIPHER_WEAK_DES_ENCRYPTION), |
| 295 | CIPHER_DEF_SSLTLS(DHE_DSS_WITH_3DES_EDE_CBC_SHA, /* 0x0013 */ |
| 296 | "DHE-DSS-DES-CBC3-SHA" , |
| 297 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 298 | CIPHER_DEF_SSLTLS(DHE_RSA_EXPORT_WITH_DES40_CBC_SHA, /* 0x0014 */ |
| 299 | "EXP-EDH-RSA-DES-CBC-SHA" , |
| 300 | CIPHER_WEAK_DES_ENCRYPTION), |
| 301 | CIPHER_DEF_SSLTLS(DHE_RSA_WITH_DES_CBC_SHA, /* 0x0015 */ |
| 302 | "EDH-RSA-DES-CBC-SHA" , |
| 303 | CIPHER_WEAK_DES_ENCRYPTION), |
| 304 | CIPHER_DEF_SSLTLS(DHE_RSA_WITH_3DES_EDE_CBC_SHA, /* 0x0016 */ |
| 305 | "DHE-RSA-DES-CBC3-SHA" , |
| 306 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 307 | CIPHER_DEF_SSLTLS(DH_anon_EXPORT_WITH_RC4_40_MD5, /* 0x0017 */ |
| 308 | "EXP-ADH-RC4-MD5" , |
| 309 | CIPHER_WEAK_ANON_AUTH), |
| 310 | CIPHER_DEF_SSLTLS(DH_anon_WITH_RC4_128_MD5, /* 0x0018 */ |
| 311 | "ADH-RC4-MD5" , |
| 312 | CIPHER_WEAK_ANON_AUTH), |
| 313 | CIPHER_DEF_SSLTLS(DH_anon_EXPORT_WITH_DES40_CBC_SHA, /* 0x0019 */ |
| 314 | "EXP-ADH-DES-CBC-SHA" , |
| 315 | CIPHER_WEAK_ANON_AUTH), |
| 316 | CIPHER_DEF_SSLTLS(DH_anon_WITH_DES_CBC_SHA, /* 0x001A */ |
| 317 | "ADH-DES-CBC-SHA" , |
| 318 | CIPHER_WEAK_ANON_AUTH), |
| 319 | CIPHER_DEF_SSLTLS(DH_anon_WITH_3DES_EDE_CBC_SHA, /* 0x001B */ |
| 320 | "ADH-DES-CBC3-SHA" , |
| 321 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 322 | CIPHER_DEF(SSL_FORTEZZA_DMS_WITH_NULL_SHA, /* 0x001C */ |
| 323 | NULL, |
| 324 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 325 | CIPHER_DEF(SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA, /* 0x001D */ |
| 326 | NULL, |
| 327 | CIPHER_STRONG_ENOUGH), |
| 328 | |
| 329 | #if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 |
| 330 | /* RFC 4785 - Pre-Shared Key (PSK) Ciphersuites with NULL Encryption */ |
| 331 | CIPHER_DEF(TLS_PSK_WITH_NULL_SHA, /* 0x002C */ |
| 332 | "PSK-NULL-SHA" , |
| 333 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 334 | CIPHER_DEF(TLS_DHE_PSK_WITH_NULL_SHA, /* 0x002D */ |
| 335 | "DHE-PSK-NULL-SHA" , |
| 336 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 337 | CIPHER_DEF(TLS_RSA_PSK_WITH_NULL_SHA, /* 0x002E */ |
| 338 | "RSA-PSK-NULL-SHA" , |
| 339 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 340 | #endif /* CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 */ |
| 341 | |
| 342 | /* TLS addenda using AES, per RFC 3268. Defined since SDK 10.4u */ |
| 343 | CIPHER_DEF(TLS_RSA_WITH_AES_128_CBC_SHA, /* 0x002F */ |
| 344 | "AES128-SHA" , |
| 345 | CIPHER_STRONG_ENOUGH), |
| 346 | CIPHER_DEF(TLS_DH_DSS_WITH_AES_128_CBC_SHA, /* 0x0030 */ |
| 347 | "DH-DSS-AES128-SHA" , |
| 348 | CIPHER_STRONG_ENOUGH), |
| 349 | CIPHER_DEF(TLS_DH_RSA_WITH_AES_128_CBC_SHA, /* 0x0031 */ |
| 350 | "DH-RSA-AES128-SHA" , |
| 351 | CIPHER_STRONG_ENOUGH), |
| 352 | CIPHER_DEF(TLS_DHE_DSS_WITH_AES_128_CBC_SHA, /* 0x0032 */ |
| 353 | "DHE-DSS-AES128-SHA" , |
| 354 | CIPHER_STRONG_ENOUGH), |
| 355 | CIPHER_DEF(TLS_DHE_RSA_WITH_AES_128_CBC_SHA, /* 0x0033 */ |
| 356 | "DHE-RSA-AES128-SHA" , |
| 357 | CIPHER_STRONG_ENOUGH), |
| 358 | CIPHER_DEF(TLS_DH_anon_WITH_AES_128_CBC_SHA, /* 0x0034 */ |
| 359 | "ADH-AES128-SHA" , |
| 360 | CIPHER_WEAK_ANON_AUTH), |
| 361 | CIPHER_DEF(TLS_RSA_WITH_AES_256_CBC_SHA, /* 0x0035 */ |
| 362 | "AES256-SHA" , |
| 363 | CIPHER_STRONG_ENOUGH), |
| 364 | CIPHER_DEF(TLS_DH_DSS_WITH_AES_256_CBC_SHA, /* 0x0036 */ |
| 365 | "DH-DSS-AES256-SHA" , |
| 366 | CIPHER_STRONG_ENOUGH), |
| 367 | CIPHER_DEF(TLS_DH_RSA_WITH_AES_256_CBC_SHA, /* 0x0037 */ |
| 368 | "DH-RSA-AES256-SHA" , |
| 369 | CIPHER_STRONG_ENOUGH), |
| 370 | CIPHER_DEF(TLS_DHE_DSS_WITH_AES_256_CBC_SHA, /* 0x0038 */ |
| 371 | "DHE-DSS-AES256-SHA" , |
| 372 | CIPHER_STRONG_ENOUGH), |
| 373 | CIPHER_DEF(TLS_DHE_RSA_WITH_AES_256_CBC_SHA, /* 0x0039 */ |
| 374 | "DHE-RSA-AES256-SHA" , |
| 375 | CIPHER_STRONG_ENOUGH), |
| 376 | CIPHER_DEF(TLS_DH_anon_WITH_AES_256_CBC_SHA, /* 0x003A */ |
| 377 | "ADH-AES256-SHA" , |
| 378 | CIPHER_WEAK_ANON_AUTH), |
| 379 | |
| 380 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
| 381 | /* TLS 1.2 addenda, RFC 5246 */ |
| 382 | /* Server provided RSA certificate for key exchange. */ |
| 383 | CIPHER_DEF(TLS_RSA_WITH_NULL_SHA256, /* 0x003B */ |
| 384 | "NULL-SHA256" , |
| 385 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 386 | CIPHER_DEF(TLS_RSA_WITH_AES_128_CBC_SHA256, /* 0x003C */ |
| 387 | "AES128-SHA256" , |
| 388 | CIPHER_STRONG_ENOUGH), |
| 389 | CIPHER_DEF(TLS_RSA_WITH_AES_256_CBC_SHA256, /* 0x003D */ |
| 390 | "AES256-SHA256" , |
| 391 | CIPHER_STRONG_ENOUGH), |
| 392 | /* Server-authenticated (and optionally client-authenticated) |
| 393 | Diffie-Hellman. */ |
| 394 | CIPHER_DEF(TLS_DH_DSS_WITH_AES_128_CBC_SHA256, /* 0x003E */ |
| 395 | "DH-DSS-AES128-SHA256" , |
| 396 | CIPHER_STRONG_ENOUGH), |
| 397 | CIPHER_DEF(TLS_DH_RSA_WITH_AES_128_CBC_SHA256, /* 0x003F */ |
| 398 | "DH-RSA-AES128-SHA256" , |
| 399 | CIPHER_STRONG_ENOUGH), |
| 400 | CIPHER_DEF(TLS_DHE_DSS_WITH_AES_128_CBC_SHA256, /* 0x0040 */ |
| 401 | "DHE-DSS-AES128-SHA256" , |
| 402 | CIPHER_STRONG_ENOUGH), |
| 403 | |
| 404 | /* TLS 1.2 addenda, RFC 5246 */ |
| 405 | CIPHER_DEF(TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, /* 0x0067 */ |
| 406 | "DHE-RSA-AES128-SHA256" , |
| 407 | CIPHER_STRONG_ENOUGH), |
| 408 | CIPHER_DEF(TLS_DH_DSS_WITH_AES_256_CBC_SHA256, /* 0x0068 */ |
| 409 | "DH-DSS-AES256-SHA256" , |
| 410 | CIPHER_STRONG_ENOUGH), |
| 411 | CIPHER_DEF(TLS_DH_RSA_WITH_AES_256_CBC_SHA256, /* 0x0069 */ |
| 412 | "DH-RSA-AES256-SHA256" , |
| 413 | CIPHER_STRONG_ENOUGH), |
| 414 | CIPHER_DEF(TLS_DHE_DSS_WITH_AES_256_CBC_SHA256, /* 0x006A */ |
| 415 | "DHE-DSS-AES256-SHA256" , |
| 416 | CIPHER_STRONG_ENOUGH), |
| 417 | CIPHER_DEF(TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, /* 0x006B */ |
| 418 | "DHE-RSA-AES256-SHA256" , |
| 419 | CIPHER_STRONG_ENOUGH), |
| 420 | CIPHER_DEF(TLS_DH_anon_WITH_AES_128_CBC_SHA256, /* 0x006C */ |
| 421 | "ADH-AES128-SHA256" , |
| 422 | CIPHER_WEAK_ANON_AUTH), |
| 423 | CIPHER_DEF(TLS_DH_anon_WITH_AES_256_CBC_SHA256, /* 0x006D */ |
| 424 | "ADH-AES256-SHA256" , |
| 425 | CIPHER_WEAK_ANON_AUTH), |
| 426 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
| 427 | |
| 428 | #if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 |
| 429 | /* Addendum from RFC 4279, TLS PSK */ |
| 430 | CIPHER_DEF(TLS_PSK_WITH_RC4_128_SHA, /* 0x008A */ |
| 431 | "PSK-RC4-SHA" , |
| 432 | CIPHER_WEAK_RC_ENCRYPTION), |
| 433 | CIPHER_DEF(TLS_PSK_WITH_3DES_EDE_CBC_SHA, /* 0x008B */ |
| 434 | "PSK-3DES-EDE-CBC-SHA" , |
| 435 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 436 | CIPHER_DEF(TLS_PSK_WITH_AES_128_CBC_SHA, /* 0x008C */ |
| 437 | "PSK-AES128-CBC-SHA" , |
| 438 | CIPHER_STRONG_ENOUGH), |
| 439 | CIPHER_DEF(TLS_PSK_WITH_AES_256_CBC_SHA, /* 0x008D */ |
| 440 | "PSK-AES256-CBC-SHA" , |
| 441 | CIPHER_STRONG_ENOUGH), |
| 442 | CIPHER_DEF(TLS_DHE_PSK_WITH_RC4_128_SHA, /* 0x008E */ |
| 443 | "DHE-PSK-RC4-SHA" , |
| 444 | CIPHER_WEAK_RC_ENCRYPTION), |
| 445 | CIPHER_DEF(TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA, /* 0x008F */ |
| 446 | "DHE-PSK-3DES-EDE-CBC-SHA" , |
| 447 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 448 | CIPHER_DEF(TLS_DHE_PSK_WITH_AES_128_CBC_SHA, /* 0x0090 */ |
| 449 | "DHE-PSK-AES128-CBC-SHA" , |
| 450 | CIPHER_STRONG_ENOUGH), |
| 451 | CIPHER_DEF(TLS_DHE_PSK_WITH_AES_256_CBC_SHA, /* 0x0091 */ |
| 452 | "DHE-PSK-AES256-CBC-SHA" , |
| 453 | CIPHER_STRONG_ENOUGH), |
| 454 | CIPHER_DEF(TLS_RSA_PSK_WITH_RC4_128_SHA, /* 0x0092 */ |
| 455 | "RSA-PSK-RC4-SHA" , |
| 456 | CIPHER_WEAK_RC_ENCRYPTION), |
| 457 | CIPHER_DEF(TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA, /* 0x0093 */ |
| 458 | "RSA-PSK-3DES-EDE-CBC-SHA" , |
| 459 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 460 | CIPHER_DEF(TLS_RSA_PSK_WITH_AES_128_CBC_SHA, /* 0x0094 */ |
| 461 | "RSA-PSK-AES128-CBC-SHA" , |
| 462 | CIPHER_STRONG_ENOUGH), |
| 463 | CIPHER_DEF(TLS_RSA_PSK_WITH_AES_256_CBC_SHA, /* 0x0095 */ |
| 464 | "RSA-PSK-AES256-CBC-SHA" , |
| 465 | CIPHER_STRONG_ENOUGH), |
| 466 | #endif /* CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 */ |
| 467 | |
| 468 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
| 469 | /* Addenda from rfc 5288 AES Galois Counter Mode (GCM) Cipher Suites |
| 470 | for TLS. */ |
| 471 | CIPHER_DEF(TLS_RSA_WITH_AES_128_GCM_SHA256, /* 0x009C */ |
| 472 | "AES128-GCM-SHA256" , |
| 473 | CIPHER_STRONG_ENOUGH), |
| 474 | CIPHER_DEF(TLS_RSA_WITH_AES_256_GCM_SHA384, /* 0x009D */ |
| 475 | "AES256-GCM-SHA384" , |
| 476 | CIPHER_STRONG_ENOUGH), |
| 477 | CIPHER_DEF(TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, /* 0x009E */ |
| 478 | "DHE-RSA-AES128-GCM-SHA256" , |
| 479 | CIPHER_STRONG_ENOUGH), |
| 480 | CIPHER_DEF(TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, /* 0x009F */ |
| 481 | "DHE-RSA-AES256-GCM-SHA384" , |
| 482 | CIPHER_STRONG_ENOUGH), |
| 483 | CIPHER_DEF(TLS_DH_RSA_WITH_AES_128_GCM_SHA256, /* 0x00A0 */ |
| 484 | "DH-RSA-AES128-GCM-SHA256" , |
| 485 | CIPHER_STRONG_ENOUGH), |
| 486 | CIPHER_DEF(TLS_DH_RSA_WITH_AES_256_GCM_SHA384, /* 0x00A1 */ |
| 487 | "DH-RSA-AES256-GCM-SHA384" , |
| 488 | CIPHER_STRONG_ENOUGH), |
| 489 | CIPHER_DEF(TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, /* 0x00A2 */ |
| 490 | "DHE-DSS-AES128-GCM-SHA256" , |
| 491 | CIPHER_STRONG_ENOUGH), |
| 492 | CIPHER_DEF(TLS_DHE_DSS_WITH_AES_256_GCM_SHA384, /* 0x00A3 */ |
| 493 | "DHE-DSS-AES256-GCM-SHA384" , |
| 494 | CIPHER_STRONG_ENOUGH), |
| 495 | CIPHER_DEF(TLS_DH_DSS_WITH_AES_128_GCM_SHA256, /* 0x00A4 */ |
| 496 | "DH-DSS-AES128-GCM-SHA256" , |
| 497 | CIPHER_STRONG_ENOUGH), |
| 498 | CIPHER_DEF(TLS_DH_DSS_WITH_AES_256_GCM_SHA384, /* 0x00A5 */ |
| 499 | "DH-DSS-AES256-GCM-SHA384" , |
| 500 | CIPHER_STRONG_ENOUGH), |
| 501 | CIPHER_DEF(TLS_DH_anon_WITH_AES_128_GCM_SHA256, /* 0x00A6 */ |
| 502 | "ADH-AES128-GCM-SHA256" , |
| 503 | CIPHER_WEAK_ANON_AUTH), |
| 504 | CIPHER_DEF(TLS_DH_anon_WITH_AES_256_GCM_SHA384, /* 0x00A7 */ |
| 505 | "ADH-AES256-GCM-SHA384" , |
| 506 | CIPHER_WEAK_ANON_AUTH), |
| 507 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
| 508 | |
| 509 | #if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 |
| 510 | /* RFC 5487 - PSK with SHA-256/384 and AES GCM */ |
| 511 | CIPHER_DEF(TLS_PSK_WITH_AES_128_GCM_SHA256, /* 0x00A8 */ |
| 512 | "PSK-AES128-GCM-SHA256" , |
| 513 | CIPHER_STRONG_ENOUGH), |
| 514 | CIPHER_DEF(TLS_PSK_WITH_AES_256_GCM_SHA384, /* 0x00A9 */ |
| 515 | "PSK-AES256-GCM-SHA384" , |
| 516 | CIPHER_STRONG_ENOUGH), |
| 517 | CIPHER_DEF(TLS_DHE_PSK_WITH_AES_128_GCM_SHA256, /* 0x00AA */ |
| 518 | "DHE-PSK-AES128-GCM-SHA256" , |
| 519 | CIPHER_STRONG_ENOUGH), |
| 520 | CIPHER_DEF(TLS_DHE_PSK_WITH_AES_256_GCM_SHA384, /* 0x00AB */ |
| 521 | "DHE-PSK-AES256-GCM-SHA384" , |
| 522 | CIPHER_STRONG_ENOUGH), |
| 523 | CIPHER_DEF(TLS_RSA_PSK_WITH_AES_128_GCM_SHA256, /* 0x00AC */ |
| 524 | "RSA-PSK-AES128-GCM-SHA256" , |
| 525 | CIPHER_STRONG_ENOUGH), |
| 526 | CIPHER_DEF(TLS_RSA_PSK_WITH_AES_256_GCM_SHA384, /* 0x00AD */ |
| 527 | "RSA-PSK-AES256-GCM-SHA384" , |
| 528 | CIPHER_STRONG_ENOUGH), |
| 529 | CIPHER_DEF(TLS_PSK_WITH_AES_128_CBC_SHA256, /* 0x00AE */ |
| 530 | "PSK-AES128-CBC-SHA256" , |
| 531 | CIPHER_STRONG_ENOUGH), |
| 532 | CIPHER_DEF(TLS_PSK_WITH_AES_256_CBC_SHA384, /* 0x00AF */ |
| 533 | "PSK-AES256-CBC-SHA384" , |
| 534 | CIPHER_STRONG_ENOUGH), |
| 535 | CIPHER_DEF(TLS_PSK_WITH_NULL_SHA256, /* 0x00B0 */ |
| 536 | "PSK-NULL-SHA256" , |
| 537 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 538 | CIPHER_DEF(TLS_PSK_WITH_NULL_SHA384, /* 0x00B1 */ |
| 539 | "PSK-NULL-SHA384" , |
| 540 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 541 | CIPHER_DEF(TLS_DHE_PSK_WITH_AES_128_CBC_SHA256, /* 0x00B2 */ |
| 542 | "DHE-PSK-AES128-CBC-SHA256" , |
| 543 | CIPHER_STRONG_ENOUGH), |
| 544 | CIPHER_DEF(TLS_DHE_PSK_WITH_AES_256_CBC_SHA384, /* 0x00B3 */ |
| 545 | "DHE-PSK-AES256-CBC-SHA384" , |
| 546 | CIPHER_STRONG_ENOUGH), |
| 547 | CIPHER_DEF(TLS_DHE_PSK_WITH_NULL_SHA256, /* 0x00B4 */ |
| 548 | "DHE-PSK-NULL-SHA256" , |
| 549 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 550 | CIPHER_DEF(TLS_DHE_PSK_WITH_NULL_SHA384, /* 0x00B5 */ |
| 551 | "DHE-PSK-NULL-SHA384" , |
| 552 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 553 | CIPHER_DEF(TLS_RSA_PSK_WITH_AES_128_CBC_SHA256, /* 0x00B6 */ |
| 554 | "RSA-PSK-AES128-CBC-SHA256" , |
| 555 | CIPHER_STRONG_ENOUGH), |
| 556 | CIPHER_DEF(TLS_RSA_PSK_WITH_AES_256_CBC_SHA384, /* 0x00B7 */ |
| 557 | "RSA-PSK-AES256-CBC-SHA384" , |
| 558 | CIPHER_STRONG_ENOUGH), |
| 559 | CIPHER_DEF(TLS_RSA_PSK_WITH_NULL_SHA256, /* 0x00B8 */ |
| 560 | "RSA-PSK-NULL-SHA256" , |
| 561 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 562 | CIPHER_DEF(TLS_RSA_PSK_WITH_NULL_SHA384, /* 0x00B9 */ |
| 563 | "RSA-PSK-NULL-SHA384" , |
| 564 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 565 | #endif /* CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 */ |
| 566 | |
| 567 | /* RFC 5746 - Secure Renegotiation. This is not a real suite, |
| 568 | it is a response to initiate negotiation again */ |
| 569 | CIPHER_DEF(TLS_EMPTY_RENEGOTIATION_INFO_SCSV, /* 0x00FF */ |
| 570 | NULL, |
| 571 | CIPHER_STRONG_ENOUGH), |
| 572 | |
| 573 | #if CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 |
| 574 | /* TLS 1.3 standard cipher suites for ChaCha20+Poly1305. |
| 575 | Note: TLS 1.3 ciphersuites do not specify the key exchange |
| 576 | algorithm -- they only specify the symmetric ciphers. |
| 577 | Cipher alias name matches to OpenSSL cipher name, and for |
| 578 | TLS 1.3 ciphers */ |
| 579 | CIPHER_DEF(TLS_AES_128_GCM_SHA256, /* 0x1301 */ |
| 580 | NULL, /* The OpenSSL cipher name matches to the IANA name */ |
| 581 | CIPHER_STRONG_ENOUGH), |
| 582 | CIPHER_DEF(TLS_AES_256_GCM_SHA384, /* 0x1302 */ |
| 583 | NULL, /* The OpenSSL cipher name matches to the IANA name */ |
| 584 | CIPHER_STRONG_ENOUGH), |
| 585 | CIPHER_DEF(TLS_CHACHA20_POLY1305_SHA256, /* 0x1303 */ |
| 586 | NULL, /* The OpenSSL cipher name matches to the IANA name */ |
| 587 | CIPHER_STRONG_ENOUGH), |
| 588 | CIPHER_DEF(TLS_AES_128_CCM_SHA256, /* 0x1304 */ |
| 589 | NULL, /* The OpenSSL cipher name matches to the IANA name */ |
| 590 | CIPHER_STRONG_ENOUGH), |
| 591 | CIPHER_DEF(TLS_AES_128_CCM_8_SHA256, /* 0x1305 */ |
| 592 | NULL, /* The OpenSSL cipher name matches to the IANA name */ |
| 593 | CIPHER_STRONG_ENOUGH), |
| 594 | #endif /* CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 */ |
| 595 | |
| 596 | #if CURL_BUILD_MAC_10_6 || CURL_BUILD_IOS |
| 597 | /* ECDSA addenda, RFC 4492 */ |
| 598 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_NULL_SHA, /* 0xC001 */ |
| 599 | "ECDH-ECDSA-NULL-SHA" , |
| 600 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 601 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_RC4_128_SHA, /* 0xC002 */ |
| 602 | "ECDH-ECDSA-RC4-SHA" , |
| 603 | CIPHER_WEAK_RC_ENCRYPTION), |
| 604 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC003 */ |
| 605 | "ECDH-ECDSA-DES-CBC3-SHA" , |
| 606 | CIPHER_STRONG_ENOUGH), |
| 607 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC004 */ |
| 608 | "ECDH-ECDSA-AES128-SHA" , |
| 609 | CIPHER_STRONG_ENOUGH), |
| 610 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC005 */ |
| 611 | "ECDH-ECDSA-AES256-SHA" , |
| 612 | CIPHER_STRONG_ENOUGH), |
| 613 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_NULL_SHA, /* 0xC006 */ |
| 614 | "ECDHE-ECDSA-NULL-SHA" , |
| 615 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 616 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, /* 0xC007 */ |
| 617 | "ECDHE-ECDSA-RC4-SHA" , |
| 618 | CIPHER_WEAK_RC_ENCRYPTION), |
| 619 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC008 */ |
| 620 | "ECDHE-ECDSA-DES-CBC3-SHA" , |
| 621 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 622 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC009 */ |
| 623 | "ECDHE-ECDSA-AES128-SHA" , |
| 624 | CIPHER_STRONG_ENOUGH), |
| 625 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC00A */ |
| 626 | "ECDHE-ECDSA-AES256-SHA" , |
| 627 | CIPHER_STRONG_ENOUGH), |
| 628 | CIPHER_DEF(TLS_ECDH_RSA_WITH_NULL_SHA, /* 0xC00B */ |
| 629 | "ECDH-RSA-NULL-SHA" , |
| 630 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 631 | CIPHER_DEF(TLS_ECDH_RSA_WITH_RC4_128_SHA, /* 0xC00C */ |
| 632 | "ECDH-RSA-RC4-SHA" , |
| 633 | CIPHER_WEAK_RC_ENCRYPTION), |
| 634 | CIPHER_DEF(TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC00D */ |
| 635 | "ECDH-RSA-DES-CBC3-SHA" , |
| 636 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 637 | CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, /* 0xC00E */ |
| 638 | "ECDH-RSA-AES128-SHA" , |
| 639 | CIPHER_STRONG_ENOUGH), |
| 640 | CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, /* 0xC00F */ |
| 641 | "ECDH-RSA-AES256-SHA" , |
| 642 | CIPHER_STRONG_ENOUGH), |
| 643 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_NULL_SHA, /* 0xC010 */ |
| 644 | "ECDHE-RSA-NULL-SHA" , |
| 645 | CIPHER_WEAK_NOT_ENCRYPTED), |
| 646 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_RC4_128_SHA, /* 0xC011 */ |
| 647 | "ECDHE-RSA-RC4-SHA" , |
| 648 | CIPHER_WEAK_RC_ENCRYPTION), |
| 649 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC012 */ |
| 650 | "ECDHE-RSA-DES-CBC3-SHA" , |
| 651 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 652 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, /* 0xC013 */ |
| 653 | "ECDHE-RSA-AES128-SHA" , |
| 654 | CIPHER_STRONG_ENOUGH), |
| 655 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, /* 0xC014 */ |
| 656 | "ECDHE-RSA-AES256-SHA" , |
| 657 | CIPHER_STRONG_ENOUGH), |
| 658 | CIPHER_DEF(TLS_ECDH_anon_WITH_NULL_SHA, /* 0xC015 */ |
| 659 | "AECDH-NULL-SHA" , |
| 660 | CIPHER_WEAK_ANON_AUTH), |
| 661 | CIPHER_DEF(TLS_ECDH_anon_WITH_RC4_128_SHA, /* 0xC016 */ |
| 662 | "AECDH-RC4-SHA" , |
| 663 | CIPHER_WEAK_ANON_AUTH), |
| 664 | CIPHER_DEF(TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA, /* 0xC017 */ |
| 665 | "AECDH-DES-CBC3-SHA" , |
| 666 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 667 | CIPHER_DEF(TLS_ECDH_anon_WITH_AES_128_CBC_SHA, /* 0xC018 */ |
| 668 | "AECDH-AES128-SHA" , |
| 669 | CIPHER_WEAK_ANON_AUTH), |
| 670 | CIPHER_DEF(TLS_ECDH_anon_WITH_AES_256_CBC_SHA, /* 0xC019 */ |
| 671 | "AECDH-AES256-SHA" , |
| 672 | CIPHER_WEAK_ANON_AUTH), |
| 673 | #endif /* CURL_BUILD_MAC_10_6 || CURL_BUILD_IOS */ |
| 674 | |
| 675 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
| 676 | /* Addenda from rfc 5289 Elliptic Curve Cipher Suites with |
| 677 | HMAC SHA-256/384. */ |
| 678 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC023 */ |
| 679 | "ECDHE-ECDSA-AES128-SHA256" , |
| 680 | CIPHER_STRONG_ENOUGH), |
| 681 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC024 */ |
| 682 | "ECDHE-ECDSA-AES256-SHA384" , |
| 683 | CIPHER_STRONG_ENOUGH), |
| 684 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC025 */ |
| 685 | "ECDH-ECDSA-AES128-SHA256" , |
| 686 | CIPHER_STRONG_ENOUGH), |
| 687 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC026 */ |
| 688 | "ECDH-ECDSA-AES256-SHA384" , |
| 689 | CIPHER_STRONG_ENOUGH), |
| 690 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, /* 0xC027 */ |
| 691 | "ECDHE-RSA-AES128-SHA256" , |
| 692 | CIPHER_STRONG_ENOUGH), |
| 693 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, /* 0xC028 */ |
| 694 | "ECDHE-RSA-AES256-SHA384" , |
| 695 | CIPHER_STRONG_ENOUGH), |
| 696 | CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256, /* 0xC029 */ |
| 697 | "ECDH-RSA-AES128-SHA256" , |
| 698 | CIPHER_STRONG_ENOUGH), |
| 699 | CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384, /* 0xC02A */ |
| 700 | "ECDH-RSA-AES256-SHA384" , |
| 701 | CIPHER_STRONG_ENOUGH), |
| 702 | /* Addenda from rfc 5289 Elliptic Curve Cipher Suites with |
| 703 | SHA-256/384 and AES Galois Counter Mode (GCM) */ |
| 704 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02B */ |
| 705 | "ECDHE-ECDSA-AES128-GCM-SHA256" , |
| 706 | CIPHER_STRONG_ENOUGH), |
| 707 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02C */ |
| 708 | "ECDHE-ECDSA-AES256-GCM-SHA384" , |
| 709 | CIPHER_STRONG_ENOUGH), |
| 710 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02D */ |
| 711 | "ECDH-ECDSA-AES128-GCM-SHA256" , |
| 712 | CIPHER_STRONG_ENOUGH), |
| 713 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02E */ |
| 714 | "ECDH-ECDSA-AES256-GCM-SHA384" , |
| 715 | CIPHER_STRONG_ENOUGH), |
| 716 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, /* 0xC02F */ |
| 717 | "ECDHE-RSA-AES128-GCM-SHA256" , |
| 718 | CIPHER_STRONG_ENOUGH), |
| 719 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, /* 0xC030 */ |
| 720 | "ECDHE-RSA-AES256-GCM-SHA384" , |
| 721 | CIPHER_STRONG_ENOUGH), |
| 722 | CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256, /* 0xC031 */ |
| 723 | "ECDH-RSA-AES128-GCM-SHA256" , |
| 724 | CIPHER_STRONG_ENOUGH), |
| 725 | CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384, /* 0xC032 */ |
| 726 | "ECDH-RSA-AES256-GCM-SHA384" , |
| 727 | CIPHER_STRONG_ENOUGH), |
| 728 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
| 729 | |
| 730 | #if CURL_BUILD_MAC_10_15 || CURL_BUILD_IOS_13 |
| 731 | /* ECDHE_PSK Cipher Suites for Transport Layer Security (TLS), RFC 5489 */ |
| 732 | CIPHER_DEF(TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA, /* 0xC035 */ |
| 733 | "ECDHE-PSK-AES128-CBC-SHA" , |
| 734 | CIPHER_STRONG_ENOUGH), |
| 735 | CIPHER_DEF(TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA, /* 0xC036 */ |
| 736 | "ECDHE-PSK-AES256-CBC-SHA" , |
| 737 | CIPHER_STRONG_ENOUGH), |
| 738 | #endif /* CURL_BUILD_MAC_10_15 || CURL_BUILD_IOS_13 */ |
| 739 | |
| 740 | #if CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 |
| 741 | /* Addenda from rfc 7905 ChaCha20-Poly1305 Cipher Suites for |
| 742 | Transport Layer Security (TLS). */ |
| 743 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA8 */ |
| 744 | "ECDHE-RSA-CHACHA20-POLY1305" , |
| 745 | CIPHER_STRONG_ENOUGH), |
| 746 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA9 */ |
| 747 | "ECDHE-ECDSA-CHACHA20-POLY1305" , |
| 748 | CIPHER_STRONG_ENOUGH), |
| 749 | #endif /* CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 */ |
| 750 | |
| 751 | #if CURL_BUILD_MAC_10_15 || CURL_BUILD_IOS_13 |
| 752 | /* ChaCha20-Poly1305 Cipher Suites for Transport Layer Security (TLS), |
| 753 | RFC 7905 */ |
| 754 | CIPHER_DEF(TLS_PSK_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCAB */ |
| 755 | "PSK-CHACHA20-POLY1305" , |
| 756 | CIPHER_STRONG_ENOUGH), |
| 757 | #endif /* CURL_BUILD_MAC_10_15 || CURL_BUILD_IOS_13 */ |
| 758 | |
| 759 | /* Tags for SSL 2 cipher kinds which are not specified for SSL 3. |
| 760 | Defined since SDK 10.2.8 */ |
| 761 | CIPHER_DEF(SSL_RSA_WITH_RC2_CBC_MD5, /* 0xFF80 */ |
| 762 | NULL, |
| 763 | CIPHER_WEAK_RC_ENCRYPTION), |
| 764 | CIPHER_DEF(SSL_RSA_WITH_IDEA_CBC_MD5, /* 0xFF81 */ |
| 765 | NULL, |
| 766 | CIPHER_WEAK_IDEA_ENCRYPTION), |
| 767 | CIPHER_DEF(SSL_RSA_WITH_DES_CBC_MD5, /* 0xFF82 */ |
| 768 | NULL, |
| 769 | CIPHER_WEAK_DES_ENCRYPTION), |
| 770 | CIPHER_DEF(SSL_RSA_WITH_3DES_EDE_CBC_MD5, /* 0xFF83 */ |
| 771 | NULL, |
| 772 | CIPHER_WEAK_3DES_ENCRYPTION), |
| 773 | }; |
| 774 | |
| 775 | #define NUM_OF_CIPHERS sizeof(ciphertable)/sizeof(ciphertable[0]) |
| 776 | |
| 777 | |
| 778 | /* pinned public key support tests */ |
| 779 | |
| 780 | /* version 1 supports macOS 10.12+ and iOS 10+ */ |
| 781 | #if ((TARGET_OS_IPHONE && __IPHONE_OS_VERSION_MIN_REQUIRED >= 100000) || \ |
| 782 | (!TARGET_OS_IPHONE && __MAC_OS_X_VERSION_MIN_REQUIRED >= 101200)) |
| 783 | #define SECTRANSP_PINNEDPUBKEY_V1 1 |
| 784 | #endif |
| 785 | |
| 786 | /* version 2 supports MacOSX 10.7+ */ |
| 787 | #if (!TARGET_OS_IPHONE && __MAC_OS_X_VERSION_MIN_REQUIRED >= 1070) |
| 788 | #define SECTRANSP_PINNEDPUBKEY_V2 1 |
| 789 | #endif |
| 790 | |
| 791 | #if defined(SECTRANSP_PINNEDPUBKEY_V1) || defined(SECTRANSP_PINNEDPUBKEY_V2) |
| 792 | /* this backend supports CURLOPT_PINNEDPUBLICKEY */ |
| 793 | #define SECTRANSP_PINNEDPUBKEY 1 |
| 794 | #endif /* SECTRANSP_PINNEDPUBKEY */ |
| 795 | |
| 796 | #ifdef SECTRANSP_PINNEDPUBKEY |
| 797 | /* both new and old APIs return rsa keys missing the spki header (not DER) */ |
| 798 | static const unsigned char rsa4096SpkiHeader[] = { |
| 799 | 0x30, 0x82, 0x02, 0x22, 0x30, 0x0d, |
| 800 | 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, |
| 801 | 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, |
| 802 | 0x00, 0x03, 0x82, 0x02, 0x0f, 0x00}; |
| 803 | |
| 804 | static const unsigned char rsa2048SpkiHeader[] = { |
| 805 | 0x30, 0x82, 0x01, 0x22, 0x30, 0x0d, |
| 806 | 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, |
| 807 | 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, |
| 808 | 0x00, 0x03, 0x82, 0x01, 0x0f, 0x00}; |
| 809 | #ifdef SECTRANSP_PINNEDPUBKEY_V1 |
| 810 | /* the *new* version doesn't return DER encoded ecdsa certs like the old... */ |
| 811 | static const unsigned char ecDsaSecp256r1SpkiHeader[] = { |
| 812 | 0x30, 0x59, 0x30, 0x13, 0x06, 0x07, |
| 813 | 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, |
| 814 | 0x01, 0x06, 0x08, 0x2a, 0x86, 0x48, |
| 815 | 0xce, 0x3d, 0x03, 0x01, 0x07, 0x03, |
| 816 | 0x42, 0x00}; |
| 817 | |
| 818 | static const unsigned char ecDsaSecp384r1SpkiHeader[] = { |
| 819 | 0x30, 0x76, 0x30, 0x10, 0x06, 0x07, |
| 820 | 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, |
| 821 | 0x01, 0x06, 0x05, 0x2b, 0x81, 0x04, |
| 822 | 0x00, 0x22, 0x03, 0x62, 0x00}; |
| 823 | #endif /* SECTRANSP_PINNEDPUBKEY_V1 */ |
| 824 | #endif /* SECTRANSP_PINNEDPUBKEY */ |
| 825 | |
| 826 | /* The following two functions were ripped from Apple sample code, |
| 827 | * with some modifications: */ |
| 828 | static OSStatus SocketRead(SSLConnectionRef connection, |
| 829 | void *data, /* owned by |
| 830 | * caller, data |
| 831 | * RETURNED */ |
| 832 | size_t *dataLength) /* IN/OUT */ |
| 833 | { |
| 834 | size_t bytesToGo = *dataLength; |
| 835 | size_t initLen = bytesToGo; |
| 836 | UInt8 *currData = (UInt8 *)data; |
| 837 | /*int sock = *(int *)connection;*/ |
| 838 | struct ssl_connect_data *connssl = (struct ssl_connect_data *)connection; |
| 839 | struct ssl_backend_data *backend = connssl->backend; |
| 840 | int sock = backend->ssl_sockfd; |
| 841 | OSStatus rtn = noErr; |
| 842 | size_t bytesRead; |
| 843 | ssize_t rrtn; |
| 844 | int theErr; |
| 845 | |
| 846 | *dataLength = 0; |
| 847 | |
| 848 | for(;;) { |
| 849 | bytesRead = 0; |
| 850 | rrtn = read(sock, currData, bytesToGo); |
| 851 | if(rrtn <= 0) { |
| 852 | /* this is guesswork... */ |
| 853 | theErr = errno; |
| 854 | if(rrtn == 0) { /* EOF = server hung up */ |
| 855 | /* the framework will turn this into errSSLClosedNoNotify */ |
| 856 | rtn = errSSLClosedGraceful; |
| 857 | } |
| 858 | else /* do the switch */ |
| 859 | switch(theErr) { |
| 860 | case ENOENT: |
| 861 | /* connection closed */ |
| 862 | rtn = errSSLClosedGraceful; |
| 863 | break; |
| 864 | case ECONNRESET: |
| 865 | rtn = errSSLClosedAbort; |
| 866 | break; |
| 867 | case EAGAIN: |
| 868 | rtn = errSSLWouldBlock; |
| 869 | backend->ssl_direction = false; |
| 870 | break; |
| 871 | default: |
| 872 | rtn = ioErr; |
| 873 | break; |
| 874 | } |
| 875 | break; |
| 876 | } |
| 877 | else { |
| 878 | bytesRead = rrtn; |
| 879 | } |
| 880 | bytesToGo -= bytesRead; |
| 881 | currData += bytesRead; |
| 882 | |
| 883 | if(bytesToGo == 0) { |
| 884 | /* filled buffer with incoming data, done */ |
| 885 | break; |
| 886 | } |
| 887 | } |
| 888 | *dataLength = initLen - bytesToGo; |
| 889 | |
| 890 | return rtn; |
| 891 | } |
| 892 | |
| 893 | static OSStatus SocketWrite(SSLConnectionRef connection, |
| 894 | const void *data, |
| 895 | size_t *dataLength) /* IN/OUT */ |
| 896 | { |
| 897 | size_t bytesSent = 0; |
| 898 | /*int sock = *(int *)connection;*/ |
| 899 | struct ssl_connect_data *connssl = (struct ssl_connect_data *)connection; |
| 900 | struct ssl_backend_data *backend = connssl->backend; |
| 901 | int sock = backend->ssl_sockfd; |
| 902 | ssize_t length; |
| 903 | size_t dataLen = *dataLength; |
| 904 | const UInt8 *dataPtr = (UInt8 *)data; |
| 905 | OSStatus ortn; |
| 906 | int theErr; |
| 907 | |
| 908 | *dataLength = 0; |
| 909 | |
| 910 | do { |
| 911 | length = write(sock, |
| 912 | (char *)dataPtr + bytesSent, |
| 913 | dataLen - bytesSent); |
| 914 | } while((length > 0) && |
| 915 | ( (bytesSent += length) < dataLen) ); |
| 916 | |
| 917 | if(length <= 0) { |
| 918 | theErr = errno; |
| 919 | if(theErr == EAGAIN) { |
| 920 | ortn = errSSLWouldBlock; |
| 921 | backend->ssl_direction = true; |
| 922 | } |
| 923 | else { |
| 924 | ortn = ioErr; |
| 925 | } |
| 926 | } |
| 927 | else { |
| 928 | ortn = noErr; |
| 929 | } |
| 930 | *dataLength = bytesSent; |
| 931 | return ortn; |
| 932 | } |
| 933 | |
| 934 | #ifndef CURL_DISABLE_VERBOSE_STRINGS |
| 935 | CF_INLINE const char *TLSCipherNameForNumber(SSLCipherSuite cipher) |
| 936 | { |
| 937 | /* The first ciphers in the ciphertable are continuos. Here we do small |
| 938 | optimization and instead of loop directly get SSL name by cipher number. |
| 939 | */ |
| 940 | if(cipher <= SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA) { |
| 941 | return ciphertable[cipher].name; |
| 942 | } |
| 943 | /* Iterate through the rest of the ciphers */ |
| 944 | for(size_t i = SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA + 1; |
| 945 | i < NUM_OF_CIPHERS; |
| 946 | ++i) { |
| 947 | if(ciphertable[i].num == cipher) { |
| 948 | return ciphertable[i].name; |
| 949 | } |
| 950 | } |
| 951 | return ciphertable[SSL_NULL_WITH_NULL_NULL].name; |
| 952 | } |
| 953 | #endif /* !CURL_DISABLE_VERBOSE_STRINGS */ |
| 954 | |
| 955 | #if CURL_BUILD_MAC |
| 956 | CF_INLINE void GetDarwinVersionNumber(int *major, int *minor) |
| 957 | { |
| 958 | int mib[2]; |
| 959 | char *os_version; |
| 960 | size_t os_version_len; |
| 961 | char *os_version_major, *os_version_minor; |
| 962 | char *tok_buf; |
| 963 | |
| 964 | /* Get the Darwin kernel version from the kernel using sysctl(): */ |
| 965 | mib[0] = CTL_KERN; |
| 966 | mib[1] = KERN_OSRELEASE; |
| 967 | if(sysctl(mib, 2, NULL, &os_version_len, NULL, 0) == -1) |
| 968 | return; |
| 969 | os_version = malloc(os_version_len*sizeof(char)); |
| 970 | if(!os_version) |
| 971 | return; |
| 972 | if(sysctl(mib, 2, os_version, &os_version_len, NULL, 0) == -1) { |
| 973 | free(os_version); |
| 974 | return; |
| 975 | } |
| 976 | |
| 977 | /* Parse the version: */ |
| 978 | os_version_major = strtok_r(os_version, "." , &tok_buf); |
| 979 | os_version_minor = strtok_r(NULL, "." , &tok_buf); |
| 980 | *major = atoi(os_version_major); |
| 981 | *minor = atoi(os_version_minor); |
| 982 | free(os_version); |
| 983 | } |
| 984 | #endif /* CURL_BUILD_MAC */ |
| 985 | |
| 986 | /* Apple provides a myriad of ways of getting information about a certificate |
| 987 | into a string. Some aren't available under iOS or newer cats. So here's |
| 988 | a unified function for getting a string describing the certificate that |
| 989 | ought to work in all cats starting with Leopard. */ |
| 990 | CF_INLINE CFStringRef getsubject(SecCertificateRef cert) |
| 991 | { |
| 992 | CFStringRef server_cert_summary = CFSTR("(null)" ); |
| 993 | |
| 994 | #if CURL_BUILD_IOS |
| 995 | /* iOS: There's only one way to do this. */ |
| 996 | server_cert_summary = SecCertificateCopySubjectSummary(cert); |
| 997 | #else |
| 998 | #if CURL_BUILD_MAC_10_7 |
| 999 | /* Lion & later: Get the long description if we can. */ |
| 1000 | if(SecCertificateCopyLongDescription != NULL) |
| 1001 | server_cert_summary = |
| 1002 | SecCertificateCopyLongDescription(NULL, cert, NULL); |
| 1003 | else |
| 1004 | #endif /* CURL_BUILD_MAC_10_7 */ |
| 1005 | #if CURL_BUILD_MAC_10_6 |
| 1006 | /* Snow Leopard: Get the certificate summary. */ |
| 1007 | if(SecCertificateCopySubjectSummary != NULL) |
| 1008 | server_cert_summary = SecCertificateCopySubjectSummary(cert); |
| 1009 | else |
| 1010 | #endif /* CURL_BUILD_MAC_10_6 */ |
| 1011 | /* Leopard is as far back as we go... */ |
| 1012 | (void)SecCertificateCopyCommonName(cert, &server_cert_summary); |
| 1013 | #endif /* CURL_BUILD_IOS */ |
| 1014 | return server_cert_summary; |
| 1015 | } |
| 1016 | |
| 1017 | static CURLcode CopyCertSubject(struct Curl_easy *data, |
| 1018 | SecCertificateRef cert, char **certp) |
| 1019 | { |
| 1020 | CFStringRef c = getsubject(cert); |
| 1021 | CURLcode result = CURLE_OK; |
| 1022 | const char *direct; |
| 1023 | char *cbuf = NULL; |
| 1024 | *certp = NULL; |
| 1025 | |
| 1026 | if(!c) { |
| 1027 | failf(data, "SSL: invalid CA certificate subject" ); |
| 1028 | return CURLE_PEER_FAILED_VERIFICATION; |
| 1029 | } |
| 1030 | |
| 1031 | /* If the subject is already available as UTF-8 encoded (ie 'direct') then |
| 1032 | use that, else convert it. */ |
| 1033 | direct = CFStringGetCStringPtr(c, kCFStringEncodingUTF8); |
| 1034 | if(direct) { |
| 1035 | *certp = strdup(direct); |
| 1036 | if(!*certp) { |
| 1037 | failf(data, "SSL: out of memory" ); |
| 1038 | result = CURLE_OUT_OF_MEMORY; |
| 1039 | } |
| 1040 | } |
| 1041 | else { |
| 1042 | size_t cbuf_size = ((size_t)CFStringGetLength(c) * 4) + 1; |
| 1043 | cbuf = calloc(cbuf_size, 1); |
| 1044 | if(cbuf) { |
| 1045 | if(!CFStringGetCString(c, cbuf, cbuf_size, |
| 1046 | kCFStringEncodingUTF8)) { |
| 1047 | failf(data, "SSL: invalid CA certificate subject" ); |
| 1048 | result = CURLE_PEER_FAILED_VERIFICATION; |
| 1049 | } |
| 1050 | else |
| 1051 | /* pass back the buffer */ |
| 1052 | *certp = cbuf; |
| 1053 | } |
| 1054 | else { |
| 1055 | failf(data, "SSL: couldn't allocate %zu bytes of memory" , cbuf_size); |
| 1056 | result = CURLE_OUT_OF_MEMORY; |
| 1057 | } |
| 1058 | } |
| 1059 | if(result) |
| 1060 | free(cbuf); |
| 1061 | CFRelease(c); |
| 1062 | return result; |
| 1063 | } |
| 1064 | |
| 1065 | #if CURL_SUPPORT_MAC_10_6 |
| 1066 | /* The SecKeychainSearch API was deprecated in Lion, and using it will raise |
| 1067 | deprecation warnings, so let's not compile this unless it's necessary: */ |
| 1068 | static OSStatus CopyIdentityWithLabelOldSchool(char *label, |
| 1069 | SecIdentityRef *out_c_a_k) |
| 1070 | { |
| 1071 | OSStatus status = errSecItemNotFound; |
| 1072 | SecKeychainAttributeList attr_list; |
| 1073 | SecKeychainAttribute attr; |
| 1074 | SecKeychainSearchRef search = NULL; |
| 1075 | SecCertificateRef cert = NULL; |
| 1076 | |
| 1077 | /* Set up the attribute list: */ |
| 1078 | attr_list.count = 1L; |
| 1079 | attr_list.attr = &attr; |
| 1080 | |
| 1081 | /* Set up our lone search criterion: */ |
| 1082 | attr.tag = kSecLabelItemAttr; |
| 1083 | attr.data = label; |
| 1084 | attr.length = (UInt32)strlen(label); |
| 1085 | |
| 1086 | /* Start searching: */ |
| 1087 | status = SecKeychainSearchCreateFromAttributes(NULL, |
| 1088 | kSecCertificateItemClass, |
| 1089 | &attr_list, |
| 1090 | &search); |
| 1091 | if(status == noErr) { |
| 1092 | status = SecKeychainSearchCopyNext(search, |
| 1093 | (SecKeychainItemRef *)&cert); |
| 1094 | if(status == noErr && cert) { |
| 1095 | /* If we found a certificate, does it have a private key? */ |
| 1096 | status = SecIdentityCreateWithCertificate(NULL, cert, out_c_a_k); |
| 1097 | CFRelease(cert); |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | if(search) |
| 1102 | CFRelease(search); |
| 1103 | return status; |
| 1104 | } |
| 1105 | #endif /* CURL_SUPPORT_MAC_10_6 */ |
| 1106 | |
| 1107 | static OSStatus CopyIdentityWithLabel(char *label, |
| 1108 | SecIdentityRef *out_cert_and_key) |
| 1109 | { |
| 1110 | OSStatus status = errSecItemNotFound; |
| 1111 | |
| 1112 | #if CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS |
| 1113 | CFArrayRef keys_list; |
| 1114 | CFIndex keys_list_count; |
| 1115 | CFIndex i; |
| 1116 | CFStringRef common_name; |
| 1117 | |
| 1118 | /* SecItemCopyMatching() was introduced in iOS and Snow Leopard. |
| 1119 | kSecClassIdentity was introduced in Lion. If both exist, let's use them |
| 1120 | to find the certificate. */ |
| 1121 | if(SecItemCopyMatching != NULL && kSecClassIdentity != NULL) { |
| 1122 | CFTypeRef keys[5]; |
| 1123 | CFTypeRef values[5]; |
| 1124 | CFDictionaryRef query_dict; |
| 1125 | CFStringRef label_cf = CFStringCreateWithCString(NULL, label, |
| 1126 | kCFStringEncodingUTF8); |
| 1127 | |
| 1128 | /* Set up our search criteria and expected results: */ |
| 1129 | values[0] = kSecClassIdentity; /* we want a certificate and a key */ |
| 1130 | keys[0] = kSecClass; |
| 1131 | values[1] = kCFBooleanTrue; /* we want a reference */ |
| 1132 | keys[1] = kSecReturnRef; |
| 1133 | values[2] = kSecMatchLimitAll; /* kSecMatchLimitOne would be better if the |
| 1134 | * label matching below worked correctly */ |
| 1135 | keys[2] = kSecMatchLimit; |
| 1136 | /* identity searches need a SecPolicyRef in order to work */ |
| 1137 | values[3] = SecPolicyCreateSSL(false, NULL); |
| 1138 | keys[3] = kSecMatchPolicy; |
| 1139 | /* match the name of the certificate (doesn't work in macOS 10.12.1) */ |
| 1140 | values[4] = label_cf; |
| 1141 | keys[4] = kSecAttrLabel; |
| 1142 | query_dict = CFDictionaryCreate(NULL, (const void **)keys, |
| 1143 | (const void **)values, 5L, |
| 1144 | &kCFCopyStringDictionaryKeyCallBacks, |
| 1145 | &kCFTypeDictionaryValueCallBacks); |
| 1146 | CFRelease(values[3]); |
| 1147 | |
| 1148 | /* Do we have a match? */ |
| 1149 | status = SecItemCopyMatching(query_dict, (CFTypeRef *) &keys_list); |
| 1150 | |
| 1151 | /* Because kSecAttrLabel matching doesn't work with kSecClassIdentity, |
| 1152 | * we need to find the correct identity ourselves */ |
| 1153 | if(status == noErr) { |
| 1154 | keys_list_count = CFArrayGetCount(keys_list); |
| 1155 | *out_cert_and_key = NULL; |
| 1156 | status = 1; |
| 1157 | for(i = 0; i<keys_list_count; i++) { |
| 1158 | OSStatus err = noErr; |
| 1159 | SecCertificateRef cert = NULL; |
| 1160 | SecIdentityRef identity = |
| 1161 | (SecIdentityRef) CFArrayGetValueAtIndex(keys_list, i); |
| 1162 | err = SecIdentityCopyCertificate(identity, &cert); |
| 1163 | if(err == noErr) { |
| 1164 | OSStatus copy_status = noErr; |
| 1165 | #if CURL_BUILD_IOS |
| 1166 | common_name = SecCertificateCopySubjectSummary(cert); |
| 1167 | #elif CURL_BUILD_MAC_10_7 |
| 1168 | copy_status = SecCertificateCopyCommonName(cert, &common_name); |
| 1169 | #endif |
| 1170 | if(copy_status == noErr && |
| 1171 | CFStringCompare(common_name, label_cf, 0) == kCFCompareEqualTo) { |
| 1172 | CFRelease(cert); |
| 1173 | CFRelease(common_name); |
| 1174 | CFRetain(identity); |
| 1175 | *out_cert_and_key = identity; |
| 1176 | status = noErr; |
| 1177 | break; |
| 1178 | } |
| 1179 | CFRelease(common_name); |
| 1180 | } |
| 1181 | CFRelease(cert); |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | if(keys_list) |
| 1186 | CFRelease(keys_list); |
| 1187 | CFRelease(query_dict); |
| 1188 | CFRelease(label_cf); |
| 1189 | } |
| 1190 | else { |
| 1191 | #if CURL_SUPPORT_MAC_10_6 |
| 1192 | /* On Leopard and Snow Leopard, fall back to SecKeychainSearch. */ |
| 1193 | status = CopyIdentityWithLabelOldSchool(label, out_cert_and_key); |
| 1194 | #endif /* CURL_SUPPORT_MAC_10_6 */ |
| 1195 | } |
| 1196 | #elif CURL_SUPPORT_MAC_10_6 |
| 1197 | /* For developers building on older cats, we have no choice but to fall back |
| 1198 | to SecKeychainSearch. */ |
| 1199 | status = CopyIdentityWithLabelOldSchool(label, out_cert_and_key); |
| 1200 | #endif /* CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS */ |
| 1201 | return status; |
| 1202 | } |
| 1203 | |
| 1204 | static OSStatus CopyIdentityFromPKCS12File(const char *cPath, |
| 1205 | const struct curl_blob *blob, |
| 1206 | const char *cPassword, |
| 1207 | SecIdentityRef *out_cert_and_key) |
| 1208 | { |
| 1209 | OSStatus status = errSecItemNotFound; |
| 1210 | CFURLRef pkcs_url = NULL; |
| 1211 | CFStringRef password = cPassword ? CFStringCreateWithCString(NULL, |
| 1212 | cPassword, kCFStringEncodingUTF8) : NULL; |
| 1213 | CFDataRef pkcs_data = NULL; |
| 1214 | |
| 1215 | /* We can import P12 files on iOS or OS X 10.7 or later: */ |
| 1216 | /* These constants are documented as having first appeared in 10.6 but they |
| 1217 | raise linker errors when used on that cat for some reason. */ |
| 1218 | #if CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS |
| 1219 | bool resource_imported; |
| 1220 | |
| 1221 | if(blob) { |
| 1222 | pkcs_data = CFDataCreate(kCFAllocatorDefault, |
| 1223 | (const unsigned char *)blob->data, blob->len); |
| 1224 | status = (pkcs_data != NULL) ? errSecSuccess : errSecAllocate; |
| 1225 | resource_imported = (pkcs_data != NULL); |
| 1226 | } |
| 1227 | else { |
| 1228 | pkcs_url = |
| 1229 | CFURLCreateFromFileSystemRepresentation(NULL, |
| 1230 | (const UInt8 *)cPath, |
| 1231 | strlen(cPath), false); |
| 1232 | resource_imported = |
| 1233 | CFURLCreateDataAndPropertiesFromResource(NULL, |
| 1234 | pkcs_url, &pkcs_data, |
| 1235 | NULL, NULL, &status); |
| 1236 | } |
| 1237 | |
| 1238 | if(resource_imported) { |
| 1239 | CFArrayRef items = NULL; |
| 1240 | |
| 1241 | /* On iOS SecPKCS12Import will never add the client certificate to the |
| 1242 | * Keychain. |
| 1243 | * |
| 1244 | * It gives us back a SecIdentityRef that we can use directly. */ |
| 1245 | #if CURL_BUILD_IOS |
| 1246 | const void *cKeys[] = {kSecImportExportPassphrase}; |
| 1247 | const void *cValues[] = {password}; |
| 1248 | CFDictionaryRef options = CFDictionaryCreate(NULL, cKeys, cValues, |
| 1249 | password ? 1L : 0L, NULL, NULL); |
| 1250 | |
| 1251 | if(options != NULL) { |
| 1252 | status = SecPKCS12Import(pkcs_data, options, &items); |
| 1253 | CFRelease(options); |
| 1254 | } |
| 1255 | |
| 1256 | |
| 1257 | /* On macOS SecPKCS12Import will always add the client certificate to |
| 1258 | * the Keychain. |
| 1259 | * |
| 1260 | * As this doesn't match iOS, and apps may not want to see their client |
| 1261 | * certificate saved in the user's keychain, we use SecItemImport |
| 1262 | * with a NULL keychain to avoid importing it. |
| 1263 | * |
| 1264 | * This returns a SecCertificateRef from which we can construct a |
| 1265 | * SecIdentityRef. |
| 1266 | */ |
| 1267 | #elif CURL_BUILD_MAC_10_7 |
| 1268 | SecItemImportExportKeyParameters keyParams; |
| 1269 | SecExternalFormat inputFormat = kSecFormatPKCS12; |
| 1270 | SecExternalItemType inputType = kSecItemTypeCertificate; |
| 1271 | |
| 1272 | memset(&keyParams, 0x00, sizeof(keyParams)); |
| 1273 | keyParams.version = SEC_KEY_IMPORT_EXPORT_PARAMS_VERSION; |
| 1274 | keyParams.passphrase = password; |
| 1275 | |
| 1276 | status = SecItemImport(pkcs_data, NULL, &inputFormat, &inputType, |
| 1277 | 0, &keyParams, NULL, &items); |
| 1278 | #endif |
| 1279 | |
| 1280 | |
| 1281 | /* Extract the SecIdentityRef */ |
| 1282 | if(status == errSecSuccess && items && CFArrayGetCount(items)) { |
| 1283 | CFIndex i, count; |
| 1284 | count = CFArrayGetCount(items); |
| 1285 | |
| 1286 | for(i = 0; i < count; i++) { |
| 1287 | CFTypeRef item = (CFTypeRef) CFArrayGetValueAtIndex(items, i); |
| 1288 | CFTypeID itemID = CFGetTypeID(item); |
| 1289 | |
| 1290 | if(itemID == CFDictionaryGetTypeID()) { |
| 1291 | CFTypeRef identity = (CFTypeRef) CFDictionaryGetValue( |
| 1292 | (CFDictionaryRef) item, |
| 1293 | kSecImportItemIdentity); |
| 1294 | CFRetain(identity); |
| 1295 | *out_cert_and_key = (SecIdentityRef) identity; |
| 1296 | break; |
| 1297 | } |
| 1298 | #if CURL_BUILD_MAC_10_7 |
| 1299 | else if(itemID == SecCertificateGetTypeID()) { |
| 1300 | status = SecIdentityCreateWithCertificate(NULL, |
| 1301 | (SecCertificateRef) item, |
| 1302 | out_cert_and_key); |
| 1303 | break; |
| 1304 | } |
| 1305 | #endif |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | if(items) |
| 1310 | CFRelease(items); |
| 1311 | CFRelease(pkcs_data); |
| 1312 | } |
| 1313 | #endif /* CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS */ |
| 1314 | if(password) |
| 1315 | CFRelease(password); |
| 1316 | if(pkcs_url) |
| 1317 | CFRelease(pkcs_url); |
| 1318 | return status; |
| 1319 | } |
| 1320 | |
| 1321 | /* This code was borrowed from nss.c, with some modifications: |
| 1322 | * Determine whether the nickname passed in is a filename that needs to |
| 1323 | * be loaded as a PEM or a regular NSS nickname. |
| 1324 | * |
| 1325 | * returns 1 for a file |
| 1326 | * returns 0 for not a file |
| 1327 | */ |
| 1328 | CF_INLINE bool is_file(const char *filename) |
| 1329 | { |
| 1330 | struct_stat st; |
| 1331 | |
| 1332 | if(!filename) |
| 1333 | return false; |
| 1334 | |
| 1335 | if(stat(filename, &st) == 0) |
| 1336 | return S_ISREG(st.st_mode); |
| 1337 | return false; |
| 1338 | } |
| 1339 | |
| 1340 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
| 1341 | static CURLcode sectransp_version_from_curl(SSLProtocol *darwinver, |
| 1342 | long ssl_version) |
| 1343 | { |
| 1344 | switch(ssl_version) { |
| 1345 | case CURL_SSLVERSION_TLSv1_0: |
| 1346 | *darwinver = kTLSProtocol1; |
| 1347 | return CURLE_OK; |
| 1348 | case CURL_SSLVERSION_TLSv1_1: |
| 1349 | *darwinver = kTLSProtocol11; |
| 1350 | return CURLE_OK; |
| 1351 | case CURL_SSLVERSION_TLSv1_2: |
| 1352 | *darwinver = kTLSProtocol12; |
| 1353 | return CURLE_OK; |
| 1354 | case CURL_SSLVERSION_TLSv1_3: |
| 1355 | /* TLS 1.3 support first appeared in iOS 11 and macOS 10.13 */ |
| 1356 | #if (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1 |
| 1357 | if(__builtin_available(macOS 10.13, iOS 11.0, *)) { |
| 1358 | *darwinver = kTLSProtocol13; |
| 1359 | return CURLE_OK; |
| 1360 | } |
| 1361 | #endif /* (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && |
| 1362 | HAVE_BUILTIN_AVAILABLE == 1 */ |
| 1363 | break; |
| 1364 | } |
| 1365 | return CURLE_SSL_CONNECT_ERROR; |
| 1366 | } |
| 1367 | #endif |
| 1368 | |
| 1369 | static CURLcode |
| 1370 | set_ssl_version_min_max(struct Curl_easy *data, struct connectdata *conn, |
| 1371 | int sockindex) |
| 1372 | { |
| 1373 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 1374 | struct ssl_backend_data *backend = connssl->backend; |
| 1375 | long ssl_version = SSL_CONN_CONFIG(version); |
| 1376 | long ssl_version_max = SSL_CONN_CONFIG(version_max); |
| 1377 | long max_supported_version_by_os; |
| 1378 | |
| 1379 | /* macOS 10.5-10.7 supported TLS 1.0 only. |
| 1380 | macOS 10.8 and later, and iOS 5 and later, added TLS 1.1 and 1.2. |
| 1381 | macOS 10.13 and later, and iOS 11 and later, added TLS 1.3. */ |
| 1382 | #if (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1 |
| 1383 | if(__builtin_available(macOS 10.13, iOS 11.0, *)) { |
| 1384 | max_supported_version_by_os = CURL_SSLVERSION_MAX_TLSv1_3; |
| 1385 | } |
| 1386 | else { |
| 1387 | max_supported_version_by_os = CURL_SSLVERSION_MAX_TLSv1_2; |
| 1388 | } |
| 1389 | #else |
| 1390 | max_supported_version_by_os = CURL_SSLVERSION_MAX_TLSv1_2; |
| 1391 | #endif /* (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && |
| 1392 | HAVE_BUILTIN_AVAILABLE == 1 */ |
| 1393 | |
| 1394 | switch(ssl_version) { |
| 1395 | case CURL_SSLVERSION_DEFAULT: |
| 1396 | case CURL_SSLVERSION_TLSv1: |
| 1397 | ssl_version = CURL_SSLVERSION_TLSv1_0; |
| 1398 | break; |
| 1399 | } |
| 1400 | |
| 1401 | switch(ssl_version_max) { |
| 1402 | case CURL_SSLVERSION_MAX_NONE: |
| 1403 | case CURL_SSLVERSION_MAX_DEFAULT: |
| 1404 | ssl_version_max = max_supported_version_by_os; |
| 1405 | break; |
| 1406 | } |
| 1407 | |
| 1408 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
| 1409 | if(SSLSetProtocolVersionMax != NULL) { |
| 1410 | SSLProtocol darwin_ver_min = kTLSProtocol1; |
| 1411 | SSLProtocol darwin_ver_max = kTLSProtocol1; |
| 1412 | CURLcode result = sectransp_version_from_curl(&darwin_ver_min, |
| 1413 | ssl_version); |
| 1414 | if(result) { |
| 1415 | failf(data, "unsupported min version passed via CURLOPT_SSLVERSION" ); |
| 1416 | return result; |
| 1417 | } |
| 1418 | result = sectransp_version_from_curl(&darwin_ver_max, |
| 1419 | ssl_version_max >> 16); |
| 1420 | if(result) { |
| 1421 | failf(data, "unsupported max version passed via CURLOPT_SSLVERSION" ); |
| 1422 | return result; |
| 1423 | } |
| 1424 | |
| 1425 | (void)SSLSetProtocolVersionMin(backend->ssl_ctx, darwin_ver_min); |
| 1426 | (void)SSLSetProtocolVersionMax(backend->ssl_ctx, darwin_ver_max); |
| 1427 | return result; |
| 1428 | } |
| 1429 | else { |
| 1430 | #if CURL_SUPPORT_MAC_10_8 |
| 1431 | long i = ssl_version; |
| 1432 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
| 1433 | kSSLProtocolAll, |
| 1434 | false); |
| 1435 | for(; i <= (ssl_version_max >> 16); i++) { |
| 1436 | switch(i) { |
| 1437 | case CURL_SSLVERSION_TLSv1_0: |
| 1438 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
| 1439 | kTLSProtocol1, |
| 1440 | true); |
| 1441 | break; |
| 1442 | case CURL_SSLVERSION_TLSv1_1: |
| 1443 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
| 1444 | kTLSProtocol11, |
| 1445 | true); |
| 1446 | break; |
| 1447 | case CURL_SSLVERSION_TLSv1_2: |
| 1448 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
| 1449 | kTLSProtocol12, |
| 1450 | true); |
| 1451 | break; |
| 1452 | case CURL_SSLVERSION_TLSv1_3: |
| 1453 | failf(data, "Your version of the OS does not support TLSv1.3" ); |
| 1454 | return CURLE_SSL_CONNECT_ERROR; |
| 1455 | } |
| 1456 | } |
| 1457 | return CURLE_OK; |
| 1458 | #endif /* CURL_SUPPORT_MAC_10_8 */ |
| 1459 | } |
| 1460 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
| 1461 | failf(data, "Secure Transport: cannot set SSL protocol" ); |
| 1462 | return CURLE_SSL_CONNECT_ERROR; |
| 1463 | } |
| 1464 | |
| 1465 | static bool is_cipher_suite_strong(SSLCipherSuite suite_num) |
| 1466 | { |
| 1467 | for(size_t i = 0; i < NUM_OF_CIPHERS; ++i) { |
| 1468 | if(ciphertable[i].num == suite_num) { |
| 1469 | return !ciphertable[i].weak; |
| 1470 | } |
| 1471 | } |
| 1472 | /* If the cipher is not in our list, assume it is a new one |
| 1473 | and therefore strong. Previous implementation was the same, |
| 1474 | if cipher suite is not in the list, it was considered strong enough */ |
| 1475 | return true; |
| 1476 | } |
| 1477 | |
| 1478 | static bool is_separator(char c) |
| 1479 | { |
| 1480 | /* Return whether character is a cipher list separator. */ |
| 1481 | switch(c) { |
| 1482 | case ' ': |
| 1483 | case '\t': |
| 1484 | case ':': |
| 1485 | case ',': |
| 1486 | case ';': |
| 1487 | return true; |
| 1488 | } |
| 1489 | return false; |
| 1490 | } |
| 1491 | |
| 1492 | static CURLcode sectransp_set_default_ciphers(struct Curl_easy *data, |
| 1493 | SSLContextRef ssl_ctx) |
| 1494 | { |
| 1495 | size_t all_ciphers_count = 0UL, allowed_ciphers_count = 0UL, i; |
| 1496 | SSLCipherSuite *all_ciphers = NULL, *allowed_ciphers = NULL; |
| 1497 | OSStatus err = noErr; |
| 1498 | |
| 1499 | #if CURL_BUILD_MAC |
| 1500 | int darwinver_maj = 0, darwinver_min = 0; |
| 1501 | |
| 1502 | GetDarwinVersionNumber(&darwinver_maj, &darwinver_min); |
| 1503 | #endif /* CURL_BUILD_MAC */ |
| 1504 | |
| 1505 | /* Disable cipher suites that ST supports but are not safe. These ciphers |
| 1506 | are unlikely to be used in any case since ST gives other ciphers a much |
| 1507 | higher priority, but it's probably better that we not connect at all than |
| 1508 | to give the user a false sense of security if the server only supports |
| 1509 | insecure ciphers. (Note: We don't care about SSLv2-only ciphers.) */ |
| 1510 | err = SSLGetNumberSupportedCiphers(ssl_ctx, &all_ciphers_count); |
| 1511 | if(err != noErr) { |
| 1512 | failf(data, "SSL: SSLGetNumberSupportedCiphers() failed: OSStatus %d" , |
| 1513 | err); |
| 1514 | return CURLE_SSL_CIPHER; |
| 1515 | } |
| 1516 | all_ciphers = malloc(all_ciphers_count*sizeof(SSLCipherSuite)); |
| 1517 | if(!all_ciphers) { |
| 1518 | failf(data, "SSL: Failed to allocate memory for all ciphers" ); |
| 1519 | return CURLE_OUT_OF_MEMORY; |
| 1520 | } |
| 1521 | allowed_ciphers = malloc(all_ciphers_count*sizeof(SSLCipherSuite)); |
| 1522 | if(!allowed_ciphers) { |
| 1523 | Curl_safefree(all_ciphers); |
| 1524 | failf(data, "SSL: Failed to allocate memory for allowed ciphers" ); |
| 1525 | return CURLE_OUT_OF_MEMORY; |
| 1526 | } |
| 1527 | err = SSLGetSupportedCiphers(ssl_ctx, all_ciphers, |
| 1528 | &all_ciphers_count); |
| 1529 | if(err != noErr) { |
| 1530 | Curl_safefree(all_ciphers); |
| 1531 | Curl_safefree(allowed_ciphers); |
| 1532 | return CURLE_SSL_CIPHER; |
| 1533 | } |
| 1534 | for(i = 0UL ; i < all_ciphers_count ; i++) { |
| 1535 | #if CURL_BUILD_MAC |
| 1536 | /* There's a known bug in early versions of Mountain Lion where ST's ECC |
| 1537 | ciphers (cipher suite 0xC001 through 0xC032) simply do not work. |
| 1538 | Work around the problem here by disabling those ciphers if we are |
| 1539 | running in an affected version of OS X. */ |
| 1540 | if(darwinver_maj == 12 && darwinver_min <= 3 && |
| 1541 | all_ciphers[i] >= 0xC001 && all_ciphers[i] <= 0xC032) { |
| 1542 | continue; |
| 1543 | } |
| 1544 | #endif /* CURL_BUILD_MAC */ |
| 1545 | if(is_cipher_suite_strong(all_ciphers[i])) { |
| 1546 | allowed_ciphers[allowed_ciphers_count++] = all_ciphers[i]; |
| 1547 | } |
| 1548 | } |
| 1549 | err = SSLSetEnabledCiphers(ssl_ctx, allowed_ciphers, |
| 1550 | allowed_ciphers_count); |
| 1551 | Curl_safefree(all_ciphers); |
| 1552 | Curl_safefree(allowed_ciphers); |
| 1553 | if(err != noErr) { |
| 1554 | failf(data, "SSL: SSLSetEnabledCiphers() failed: OSStatus %d" , err); |
| 1555 | return CURLE_SSL_CIPHER; |
| 1556 | } |
| 1557 | return CURLE_OK; |
| 1558 | } |
| 1559 | |
| 1560 | static CURLcode sectransp_set_selected_ciphers(struct Curl_easy *data, |
| 1561 | SSLContextRef ssl_ctx, |
| 1562 | const char *ciphers) |
| 1563 | { |
| 1564 | size_t ciphers_count = 0; |
| 1565 | const char *cipher_start = ciphers; |
| 1566 | OSStatus err = noErr; |
| 1567 | SSLCipherSuite selected_ciphers[NUM_OF_CIPHERS]; |
| 1568 | |
| 1569 | if(!ciphers) |
| 1570 | return CURLE_OK; |
| 1571 | |
| 1572 | while(is_separator(*ciphers)) /* Skip initial separators. */ |
| 1573 | ciphers++; |
| 1574 | if(!*ciphers) |
| 1575 | return CURLE_OK; |
| 1576 | |
| 1577 | cipher_start = ciphers; |
| 1578 | while(*cipher_start && ciphers_count < NUM_OF_CIPHERS) { |
| 1579 | bool cipher_found = FALSE; |
| 1580 | size_t cipher_len = 0; |
| 1581 | const char *cipher_end = NULL; |
| 1582 | bool tls_name = FALSE; |
| 1583 | |
| 1584 | /* Skip separators */ |
| 1585 | while(is_separator(*cipher_start)) |
| 1586 | cipher_start++; |
| 1587 | if(*cipher_start == '\0') { |
| 1588 | break; |
| 1589 | } |
| 1590 | /* Find last position of a cipher in the ciphers string */ |
| 1591 | cipher_end = cipher_start; |
| 1592 | while (*cipher_end != '\0' && !is_separator(*cipher_end)) { |
| 1593 | ++cipher_end; |
| 1594 | } |
| 1595 | |
| 1596 | /* IANA cipher names start with the TLS_ or SSL_ prefix. |
| 1597 | If the 4th symbol of the cipher is '_' we look for a cipher in the |
| 1598 | table by its (TLS) name. |
| 1599 | Otherwise, we try to match cipher by an alias. */ |
| 1600 | if(cipher_start[3] == '_') { |
| 1601 | tls_name = TRUE; |
| 1602 | } |
| 1603 | /* Iterate through the cipher table and look for the cipher, starting |
| 1604 | the cipher number 0x01 because the 0x00 is not the real cipher */ |
| 1605 | cipher_len = cipher_end - cipher_start; |
| 1606 | for(size_t i = 1; i < NUM_OF_CIPHERS; ++i) { |
| 1607 | const char *table_cipher_name = NULL; |
| 1608 | if(tls_name) { |
| 1609 | table_cipher_name = ciphertable[i].name; |
| 1610 | } |
| 1611 | else if(ciphertable[i].alias_name != NULL) { |
| 1612 | table_cipher_name = ciphertable[i].alias_name; |
| 1613 | } |
| 1614 | else { |
| 1615 | continue; |
| 1616 | } |
| 1617 | /* Compare a part of the string between separators with a cipher name |
| 1618 | in the table and make sure we matched the whole cipher name */ |
| 1619 | if(strncmp(cipher_start, table_cipher_name, cipher_len) == 0 |
| 1620 | && table_cipher_name[cipher_len] == '\0') { |
| 1621 | selected_ciphers[ciphers_count] = ciphertable[i].num; |
| 1622 | ++ciphers_count; |
| 1623 | cipher_found = TRUE; |
| 1624 | break; |
| 1625 | } |
| 1626 | } |
| 1627 | if(!cipher_found) { |
| 1628 | /* It would be more human-readable if we print the wrong cipher name |
| 1629 | but we don't want to allocate any additional memory and copy the name |
| 1630 | into it, then add it into logs. |
| 1631 | Also, we do not modify an original cipher list string. We just point |
| 1632 | to positions where cipher starts and ends in the cipher list string. |
| 1633 | The message is a bit cryptic and longer than necessary but can be |
| 1634 | understood by humans. */ |
| 1635 | failf(data, "SSL: cipher string \"%s\" contains unsupported cipher name" |
| 1636 | " starting position %d and ending position %d" , |
| 1637 | ciphers, |
| 1638 | cipher_start - ciphers, |
| 1639 | cipher_end - ciphers); |
| 1640 | return CURLE_SSL_CIPHER; |
| 1641 | } |
| 1642 | if(*cipher_end) { |
| 1643 | cipher_start = cipher_end + 1; |
| 1644 | } |
| 1645 | else { |
| 1646 | break; |
| 1647 | } |
| 1648 | } |
| 1649 | /* All cipher suites in the list are found. Report to logs as-is */ |
| 1650 | infof(data, "SSL: Setting cipher suites list \"%s\"" , ciphers); |
| 1651 | |
| 1652 | err = SSLSetEnabledCiphers(ssl_ctx, selected_ciphers, ciphers_count); |
| 1653 | if(err != noErr) { |
| 1654 | failf(data, "SSL: SSLSetEnabledCiphers() failed: OSStatus %d" , err); |
| 1655 | return CURLE_SSL_CIPHER; |
| 1656 | } |
| 1657 | return CURLE_OK; |
| 1658 | } |
| 1659 | |
| 1660 | static CURLcode sectransp_connect_step1(struct Curl_easy *data, |
| 1661 | struct connectdata *conn, |
| 1662 | int sockindex) |
| 1663 | { |
| 1664 | curl_socket_t sockfd = conn->sock[sockindex]; |
| 1665 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 1666 | struct ssl_backend_data *backend = connssl->backend; |
| 1667 | const struct curl_blob *ssl_cablob = SSL_CONN_CONFIG(ca_info_blob); |
| 1668 | const char * const ssl_cafile = |
| 1669 | /* CURLOPT_CAINFO_BLOB overrides CURLOPT_CAINFO */ |
| 1670 | (ssl_cablob ? NULL : SSL_CONN_CONFIG(CAfile)); |
| 1671 | const bool verifypeer = SSL_CONN_CONFIG(verifypeer); |
| 1672 | char * const ssl_cert = SSL_SET_OPTION(primary.clientcert); |
| 1673 | const struct curl_blob *ssl_cert_blob = SSL_SET_OPTION(primary.cert_blob); |
| 1674 | bool isproxy = SSL_IS_PROXY(); |
| 1675 | const char * const hostname = SSL_HOST_NAME(); |
| 1676 | const long int port = SSL_HOST_PORT(); |
| 1677 | #ifdef ENABLE_IPV6 |
| 1678 | struct in6_addr addr; |
| 1679 | #else |
| 1680 | struct in_addr addr; |
| 1681 | #endif /* ENABLE_IPV6 */ |
| 1682 | char *ciphers; |
| 1683 | OSStatus err = noErr; |
| 1684 | #if CURL_BUILD_MAC |
| 1685 | int darwinver_maj = 0, darwinver_min = 0; |
| 1686 | |
| 1687 | GetDarwinVersionNumber(&darwinver_maj, &darwinver_min); |
| 1688 | #endif /* CURL_BUILD_MAC */ |
| 1689 | |
| 1690 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
| 1691 | if(SSLCreateContext != NULL) { /* use the newer API if available */ |
| 1692 | if(backend->ssl_ctx) |
| 1693 | CFRelease(backend->ssl_ctx); |
| 1694 | backend->ssl_ctx = SSLCreateContext(NULL, kSSLClientSide, kSSLStreamType); |
| 1695 | if(!backend->ssl_ctx) { |
| 1696 | failf(data, "SSL: couldn't create a context!" ); |
| 1697 | return CURLE_OUT_OF_MEMORY; |
| 1698 | } |
| 1699 | } |
| 1700 | else { |
| 1701 | /* The old ST API does not exist under iOS, so don't compile it: */ |
| 1702 | #if CURL_SUPPORT_MAC_10_8 |
| 1703 | if(backend->ssl_ctx) |
| 1704 | (void)SSLDisposeContext(backend->ssl_ctx); |
| 1705 | err = SSLNewContext(false, &(backend->ssl_ctx)); |
| 1706 | if(err != noErr) { |
| 1707 | failf(data, "SSL: couldn't create a context: OSStatus %d" , err); |
| 1708 | return CURLE_OUT_OF_MEMORY; |
| 1709 | } |
| 1710 | #endif /* CURL_SUPPORT_MAC_10_8 */ |
| 1711 | } |
| 1712 | #else |
| 1713 | if(backend->ssl_ctx) |
| 1714 | (void)SSLDisposeContext(backend->ssl_ctx); |
| 1715 | err = SSLNewContext(false, &(backend->ssl_ctx)); |
| 1716 | if(err != noErr) { |
| 1717 | failf(data, "SSL: couldn't create a context: OSStatus %d" , err); |
| 1718 | return CURLE_OUT_OF_MEMORY; |
| 1719 | } |
| 1720 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
| 1721 | backend->ssl_write_buffered_length = 0UL; /* reset buffered write length */ |
| 1722 | |
| 1723 | /* check to see if we've been told to use an explicit SSL/TLS version */ |
| 1724 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
| 1725 | if(SSLSetProtocolVersionMax != NULL) { |
| 1726 | switch(conn->ssl_config.version) { |
| 1727 | case CURL_SSLVERSION_TLSv1: |
| 1728 | (void)SSLSetProtocolVersionMin(backend->ssl_ctx, kTLSProtocol1); |
| 1729 | #if (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1 |
| 1730 | if(__builtin_available(macOS 10.13, iOS 11.0, *)) { |
| 1731 | (void)SSLSetProtocolVersionMax(backend->ssl_ctx, kTLSProtocol13); |
| 1732 | } |
| 1733 | else { |
| 1734 | (void)SSLSetProtocolVersionMax(backend->ssl_ctx, kTLSProtocol12); |
| 1735 | } |
| 1736 | #else |
| 1737 | (void)SSLSetProtocolVersionMax(backend->ssl_ctx, kTLSProtocol12); |
| 1738 | #endif /* (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && |
| 1739 | HAVE_BUILTIN_AVAILABLE == 1 */ |
| 1740 | break; |
| 1741 | case CURL_SSLVERSION_DEFAULT: |
| 1742 | case CURL_SSLVERSION_TLSv1_0: |
| 1743 | case CURL_SSLVERSION_TLSv1_1: |
| 1744 | case CURL_SSLVERSION_TLSv1_2: |
| 1745 | case CURL_SSLVERSION_TLSv1_3: |
| 1746 | { |
| 1747 | CURLcode result = set_ssl_version_min_max(data, conn, sockindex); |
| 1748 | if(result != CURLE_OK) |
| 1749 | return result; |
| 1750 | break; |
| 1751 | } |
| 1752 | case CURL_SSLVERSION_SSLv3: |
| 1753 | case CURL_SSLVERSION_SSLv2: |
| 1754 | failf(data, "SSL versions not supported" ); |
| 1755 | return CURLE_NOT_BUILT_IN; |
| 1756 | default: |
| 1757 | failf(data, "Unrecognized parameter passed via CURLOPT_SSLVERSION" ); |
| 1758 | return CURLE_SSL_CONNECT_ERROR; |
| 1759 | } |
| 1760 | } |
| 1761 | else { |
| 1762 | #if CURL_SUPPORT_MAC_10_8 |
| 1763 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
| 1764 | kSSLProtocolAll, |
| 1765 | false); |
| 1766 | switch(conn->ssl_config.version) { |
| 1767 | case CURL_SSLVERSION_DEFAULT: |
| 1768 | case CURL_SSLVERSION_TLSv1: |
| 1769 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
| 1770 | kTLSProtocol1, |
| 1771 | true); |
| 1772 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
| 1773 | kTLSProtocol11, |
| 1774 | true); |
| 1775 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
| 1776 | kTLSProtocol12, |
| 1777 | true); |
| 1778 | break; |
| 1779 | case CURL_SSLVERSION_TLSv1_0: |
| 1780 | case CURL_SSLVERSION_TLSv1_1: |
| 1781 | case CURL_SSLVERSION_TLSv1_2: |
| 1782 | case CURL_SSLVERSION_TLSv1_3: |
| 1783 | { |
| 1784 | CURLcode result = set_ssl_version_min_max(data, conn, sockindex); |
| 1785 | if(result != CURLE_OK) |
| 1786 | return result; |
| 1787 | break; |
| 1788 | } |
| 1789 | case CURL_SSLVERSION_SSLv3: |
| 1790 | case CURL_SSLVERSION_SSLv2: |
| 1791 | failf(data, "SSL versions not supported" ); |
| 1792 | return CURLE_NOT_BUILT_IN; |
| 1793 | default: |
| 1794 | failf(data, "Unrecognized parameter passed via CURLOPT_SSLVERSION" ); |
| 1795 | return CURLE_SSL_CONNECT_ERROR; |
| 1796 | } |
| 1797 | #endif /* CURL_SUPPORT_MAC_10_8 */ |
| 1798 | } |
| 1799 | #else |
| 1800 | if(conn->ssl_config.version_max != CURL_SSLVERSION_MAX_NONE) { |
| 1801 | failf(data, "Your version of the OS does not support to set maximum" |
| 1802 | " SSL/TLS version" ); |
| 1803 | return CURLE_SSL_CONNECT_ERROR; |
| 1804 | } |
| 1805 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, kSSLProtocolAll, false); |
| 1806 | switch(conn->ssl_config.version) { |
| 1807 | case CURL_SSLVERSION_DEFAULT: |
| 1808 | case CURL_SSLVERSION_TLSv1: |
| 1809 | case CURL_SSLVERSION_TLSv1_0: |
| 1810 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
| 1811 | kTLSProtocol1, |
| 1812 | true); |
| 1813 | break; |
| 1814 | case CURL_SSLVERSION_TLSv1_1: |
| 1815 | failf(data, "Your version of the OS does not support TLSv1.1" ); |
| 1816 | return CURLE_SSL_CONNECT_ERROR; |
| 1817 | case CURL_SSLVERSION_TLSv1_2: |
| 1818 | failf(data, "Your version of the OS does not support TLSv1.2" ); |
| 1819 | return CURLE_SSL_CONNECT_ERROR; |
| 1820 | case CURL_SSLVERSION_TLSv1_3: |
| 1821 | failf(data, "Your version of the OS does not support TLSv1.3" ); |
| 1822 | return CURLE_SSL_CONNECT_ERROR; |
| 1823 | case CURL_SSLVERSION_SSLv2: |
| 1824 | case CURL_SSLVERSION_SSLv3: |
| 1825 | failf(data, "SSL versions not supported" ); |
| 1826 | return CURLE_NOT_BUILT_IN; |
| 1827 | default: |
| 1828 | failf(data, "Unrecognized parameter passed via CURLOPT_SSLVERSION" ); |
| 1829 | return CURLE_SSL_CONNECT_ERROR; |
| 1830 | } |
| 1831 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
| 1832 | |
| 1833 | #if (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1 |
| 1834 | if(conn->bits.tls_enable_alpn) { |
| 1835 | if(__builtin_available(macOS 10.13.4, iOS 11, tvOS 11, *)) { |
| 1836 | CFMutableArrayRef alpnArr = CFArrayCreateMutable(NULL, 0, |
| 1837 | &kCFTypeArrayCallBacks); |
| 1838 | |
| 1839 | #ifdef USE_HTTP2 |
| 1840 | if(data->state.httpwant >= CURL_HTTP_VERSION_2 |
| 1841 | #ifndef CURL_DISABLE_PROXY |
| 1842 | && (!isproxy || !conn->bits.tunnel_proxy) |
| 1843 | #endif |
| 1844 | ) { |
| 1845 | CFArrayAppendValue(alpnArr, CFSTR(ALPN_H2)); |
| 1846 | infof(data, "ALPN, offering %s" , ALPN_H2); |
| 1847 | } |
| 1848 | #endif |
| 1849 | |
| 1850 | CFArrayAppendValue(alpnArr, CFSTR(ALPN_HTTP_1_1)); |
| 1851 | infof(data, "ALPN, offering %s" , ALPN_HTTP_1_1); |
| 1852 | |
| 1853 | /* expects length prefixed preference ordered list of protocols in wire |
| 1854 | * format |
| 1855 | */ |
| 1856 | err = SSLSetALPNProtocols(backend->ssl_ctx, alpnArr); |
| 1857 | if(err != noErr) |
| 1858 | infof(data, "WARNING: failed to set ALPN protocols; OSStatus %d" , |
| 1859 | err); |
| 1860 | CFRelease(alpnArr); |
| 1861 | } |
| 1862 | } |
| 1863 | #endif |
| 1864 | |
| 1865 | if(SSL_SET_OPTION(key)) { |
| 1866 | infof(data, "WARNING: SSL: CURLOPT_SSLKEY is ignored by Secure " |
| 1867 | "Transport. The private key must be in the Keychain." ); |
| 1868 | } |
| 1869 | |
| 1870 | if(ssl_cert || ssl_cert_blob) { |
| 1871 | bool is_cert_data = ssl_cert_blob != NULL; |
| 1872 | bool is_cert_file = (!is_cert_data) && is_file(ssl_cert); |
| 1873 | SecIdentityRef cert_and_key = NULL; |
| 1874 | |
| 1875 | /* User wants to authenticate with a client cert. Look for it. Assume that |
| 1876 | the user wants to use an identity loaded from the Keychain. If not, try |
| 1877 | it as a file on disk */ |
| 1878 | |
| 1879 | if(!is_cert_data) |
| 1880 | err = CopyIdentityWithLabel(ssl_cert, &cert_and_key); |
| 1881 | else |
| 1882 | err = !noErr; |
| 1883 | if((err != noErr) && (is_cert_file || is_cert_data)) { |
| 1884 | if(!SSL_SET_OPTION(cert_type)) |
| 1885 | infof(data, "SSL: Certificate type not set, assuming " |
| 1886 | "PKCS#12 format." ); |
| 1887 | else if(!strcasecompare(SSL_SET_OPTION(cert_type), "P12" )) { |
| 1888 | failf(data, "SSL: The Security framework only supports " |
| 1889 | "loading identities that are in PKCS#12 format." ); |
| 1890 | return CURLE_SSL_CERTPROBLEM; |
| 1891 | } |
| 1892 | |
| 1893 | err = CopyIdentityFromPKCS12File(ssl_cert, ssl_cert_blob, |
| 1894 | SSL_SET_OPTION(key_passwd), |
| 1895 | &cert_and_key); |
| 1896 | } |
| 1897 | |
| 1898 | if(err == noErr && cert_and_key) { |
| 1899 | SecCertificateRef cert = NULL; |
| 1900 | CFTypeRef certs_c[1]; |
| 1901 | CFArrayRef certs; |
| 1902 | |
| 1903 | /* If we found one, print it out: */ |
| 1904 | err = SecIdentityCopyCertificate(cert_and_key, &cert); |
| 1905 | if(err == noErr) { |
| 1906 | char *certp; |
| 1907 | CURLcode result = CopyCertSubject(data, cert, &certp); |
| 1908 | if(!result) { |
| 1909 | infof(data, "Client certificate: %s" , certp); |
| 1910 | free(certp); |
| 1911 | } |
| 1912 | |
| 1913 | CFRelease(cert); |
| 1914 | if(result == CURLE_PEER_FAILED_VERIFICATION) |
| 1915 | return CURLE_SSL_CERTPROBLEM; |
| 1916 | if(result) |
| 1917 | return result; |
| 1918 | } |
| 1919 | certs_c[0] = cert_and_key; |
| 1920 | certs = CFArrayCreate(NULL, (const void **)certs_c, 1L, |
| 1921 | &kCFTypeArrayCallBacks); |
| 1922 | err = SSLSetCertificate(backend->ssl_ctx, certs); |
| 1923 | if(certs) |
| 1924 | CFRelease(certs); |
| 1925 | if(err != noErr) { |
| 1926 | failf(data, "SSL: SSLSetCertificate() failed: OSStatus %d" , err); |
| 1927 | return CURLE_SSL_CERTPROBLEM; |
| 1928 | } |
| 1929 | CFRelease(cert_and_key); |
| 1930 | } |
| 1931 | else { |
| 1932 | const char *cert_showfilename_error = |
| 1933 | is_cert_data ? "(memory blob)" : ssl_cert; |
| 1934 | |
| 1935 | switch(err) { |
| 1936 | case errSecAuthFailed: case -25264: /* errSecPkcs12VerifyFailure */ |
| 1937 | failf(data, "SSL: Incorrect password for the certificate \"%s\" " |
| 1938 | "and its private key." , cert_showfilename_error); |
| 1939 | break; |
| 1940 | case -26275: /* errSecDecode */ case -25257: /* errSecUnknownFormat */ |
| 1941 | failf(data, "SSL: Couldn't make sense of the data in the " |
| 1942 | "certificate \"%s\" and its private key." , |
| 1943 | cert_showfilename_error); |
| 1944 | break; |
| 1945 | case -25260: /* errSecPassphraseRequired */ |
| 1946 | failf(data, "SSL The certificate \"%s\" requires a password." , |
| 1947 | cert_showfilename_error); |
| 1948 | break; |
| 1949 | case errSecItemNotFound: |
| 1950 | failf(data, "SSL: Can't find the certificate \"%s\" and its private " |
| 1951 | "key in the Keychain." , cert_showfilename_error); |
| 1952 | break; |
| 1953 | default: |
| 1954 | failf(data, "SSL: Can't load the certificate \"%s\" and its private " |
| 1955 | "key: OSStatus %d" , cert_showfilename_error, err); |
| 1956 | break; |
| 1957 | } |
| 1958 | return CURLE_SSL_CERTPROBLEM; |
| 1959 | } |
| 1960 | } |
| 1961 | |
| 1962 | /* SSL always tries to verify the peer, this only says whether it should |
| 1963 | * fail to connect if the verification fails, or if it should continue |
| 1964 | * anyway. In the latter case the result of the verification is checked with |
| 1965 | * SSL_get_verify_result() below. */ |
| 1966 | #if CURL_BUILD_MAC_10_6 || CURL_BUILD_IOS |
| 1967 | /* Snow Leopard introduced the SSLSetSessionOption() function, but due to |
| 1968 | a library bug with the way the kSSLSessionOptionBreakOnServerAuth flag |
| 1969 | works, it doesn't work as expected under Snow Leopard, Lion or |
| 1970 | Mountain Lion. |
| 1971 | So we need to call SSLSetEnableCertVerify() on those older cats in order |
| 1972 | to disable certificate validation if the user turned that off. |
| 1973 | (SecureTransport will always validate the certificate chain by |
| 1974 | default.) |
| 1975 | Note: |
| 1976 | Darwin 11.x.x is Lion (10.7) |
| 1977 | Darwin 12.x.x is Mountain Lion (10.8) |
| 1978 | Darwin 13.x.x is Mavericks (10.9) |
| 1979 | Darwin 14.x.x is Yosemite (10.10) |
| 1980 | Darwin 15.x.x is El Capitan (10.11) |
| 1981 | */ |
| 1982 | #if CURL_BUILD_MAC |
| 1983 | if(SSLSetSessionOption != NULL && darwinver_maj >= 13) { |
| 1984 | #else |
| 1985 | if(SSLSetSessionOption != NULL) { |
| 1986 | #endif /* CURL_BUILD_MAC */ |
| 1987 | bool break_on_auth = !conn->ssl_config.verifypeer || |
| 1988 | ssl_cafile || ssl_cablob; |
| 1989 | err = SSLSetSessionOption(backend->ssl_ctx, |
| 1990 | kSSLSessionOptionBreakOnServerAuth, |
| 1991 | break_on_auth); |
| 1992 | if(err != noErr) { |
| 1993 | failf(data, "SSL: SSLSetSessionOption() failed: OSStatus %d" , err); |
| 1994 | return CURLE_SSL_CONNECT_ERROR; |
| 1995 | } |
| 1996 | } |
| 1997 | else { |
| 1998 | #if CURL_SUPPORT_MAC_10_8 |
| 1999 | err = SSLSetEnableCertVerify(backend->ssl_ctx, |
| 2000 | conn->ssl_config.verifypeer?true:false); |
| 2001 | if(err != noErr) { |
| 2002 | failf(data, "SSL: SSLSetEnableCertVerify() failed: OSStatus %d" , err); |
| 2003 | return CURLE_SSL_CONNECT_ERROR; |
| 2004 | } |
| 2005 | #endif /* CURL_SUPPORT_MAC_10_8 */ |
| 2006 | } |
| 2007 | #else |
| 2008 | err = SSLSetEnableCertVerify(backend->ssl_ctx, |
| 2009 | conn->ssl_config.verifypeer?true:false); |
| 2010 | if(err != noErr) { |
| 2011 | failf(data, "SSL: SSLSetEnableCertVerify() failed: OSStatus %d" , err); |
| 2012 | return CURLE_SSL_CONNECT_ERROR; |
| 2013 | } |
| 2014 | #endif /* CURL_BUILD_MAC_10_6 || CURL_BUILD_IOS */ |
| 2015 | |
| 2016 | if((ssl_cafile || ssl_cablob) && verifypeer) { |
| 2017 | bool is_cert_data = ssl_cablob != NULL; |
| 2018 | bool is_cert_file = (!is_cert_data) && is_file(ssl_cafile); |
| 2019 | |
| 2020 | if(!(is_cert_file || is_cert_data)) { |
| 2021 | failf(data, "SSL: can't load CA certificate file %s" , |
| 2022 | ssl_cafile ? ssl_cafile : "(blob memory)" ); |
| 2023 | return CURLE_SSL_CACERT_BADFILE; |
| 2024 | } |
| 2025 | } |
| 2026 | |
| 2027 | /* Configure hostname check. SNI is used if available. |
| 2028 | * Both hostname check and SNI require SSLSetPeerDomainName(). |
| 2029 | * Also: the verifyhost setting influences SNI usage */ |
| 2030 | if(conn->ssl_config.verifyhost) { |
| 2031 | err = SSLSetPeerDomainName(backend->ssl_ctx, hostname, |
| 2032 | strlen(hostname)); |
| 2033 | |
| 2034 | if(err != noErr) { |
| 2035 | infof(data, "WARNING: SSL: SSLSetPeerDomainName() failed: OSStatus %d" , |
| 2036 | err); |
| 2037 | } |
| 2038 | |
| 2039 | if((Curl_inet_pton(AF_INET, hostname, &addr)) |
| 2040 | #ifdef ENABLE_IPV6 |
| 2041 | || (Curl_inet_pton(AF_INET6, hostname, &addr)) |
| 2042 | #endif |
| 2043 | ) { |
| 2044 | infof(data, "WARNING: using IP address, SNI is being disabled by " |
| 2045 | "the OS." ); |
| 2046 | } |
| 2047 | } |
| 2048 | else { |
| 2049 | infof(data, "WARNING: disabling hostname validation also disables SNI." ); |
| 2050 | } |
| 2051 | |
| 2052 | ciphers = SSL_CONN_CONFIG(cipher_list); |
| 2053 | if(ciphers) { |
| 2054 | err = sectransp_set_selected_ciphers(data, backend->ssl_ctx, ciphers); |
| 2055 | } |
| 2056 | else { |
| 2057 | err = sectransp_set_default_ciphers(data, backend->ssl_ctx); |
| 2058 | } |
| 2059 | if(err != noErr) { |
| 2060 | failf(data, "SSL: Unable to set ciphers for SSL/TLS handshake. " |
| 2061 | "Error code: %d" , err); |
| 2062 | return CURLE_SSL_CIPHER; |
| 2063 | } |
| 2064 | |
| 2065 | #if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 |
| 2066 | /* We want to enable 1/n-1 when using a CBC cipher unless the user |
| 2067 | specifically doesn't want us doing that: */ |
| 2068 | if(SSLSetSessionOption != NULL) { |
| 2069 | SSLSetSessionOption(backend->ssl_ctx, kSSLSessionOptionSendOneByteRecord, |
| 2070 | !SSL_SET_OPTION(enable_beast)); |
| 2071 | SSLSetSessionOption(backend->ssl_ctx, kSSLSessionOptionFalseStart, |
| 2072 | data->set.ssl.falsestart); /* false start support */ |
| 2073 | } |
| 2074 | #endif /* CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 */ |
| 2075 | |
| 2076 | /* Check if there's a cached ID we can/should use here! */ |
| 2077 | if(SSL_SET_OPTION(primary.sessionid)) { |
| 2078 | char *ssl_sessionid; |
| 2079 | size_t ssl_sessionid_len; |
| 2080 | |
| 2081 | Curl_ssl_sessionid_lock(data); |
| 2082 | if(!Curl_ssl_getsessionid(data, conn, isproxy, (void **)&ssl_sessionid, |
| 2083 | &ssl_sessionid_len, sockindex)) { |
| 2084 | /* we got a session id, use it! */ |
| 2085 | err = SSLSetPeerID(backend->ssl_ctx, ssl_sessionid, ssl_sessionid_len); |
| 2086 | Curl_ssl_sessionid_unlock(data); |
| 2087 | if(err != noErr) { |
| 2088 | failf(data, "SSL: SSLSetPeerID() failed: OSStatus %d" , err); |
| 2089 | return CURLE_SSL_CONNECT_ERROR; |
| 2090 | } |
| 2091 | /* Informational message */ |
| 2092 | infof(data, "SSL re-using session ID" ); |
| 2093 | } |
| 2094 | /* If there isn't one, then let's make one up! This has to be done prior |
| 2095 | to starting the handshake. */ |
| 2096 | else { |
| 2097 | CURLcode result; |
| 2098 | ssl_sessionid = |
| 2099 | aprintf("%s:%d:%d:%s:%ld" , |
| 2100 | ssl_cafile ? ssl_cafile : "(blob memory)" , |
| 2101 | verifypeer, SSL_CONN_CONFIG(verifyhost), hostname, port); |
| 2102 | ssl_sessionid_len = strlen(ssl_sessionid); |
| 2103 | |
| 2104 | err = SSLSetPeerID(backend->ssl_ctx, ssl_sessionid, ssl_sessionid_len); |
| 2105 | if(err != noErr) { |
| 2106 | Curl_ssl_sessionid_unlock(data); |
| 2107 | failf(data, "SSL: SSLSetPeerID() failed: OSStatus %d" , err); |
| 2108 | return CURLE_SSL_CONNECT_ERROR; |
| 2109 | } |
| 2110 | |
| 2111 | result = Curl_ssl_addsessionid(data, conn, isproxy, ssl_sessionid, |
| 2112 | ssl_sessionid_len, sockindex); |
| 2113 | Curl_ssl_sessionid_unlock(data); |
| 2114 | if(result) { |
| 2115 | failf(data, "failed to store ssl session" ); |
| 2116 | return result; |
| 2117 | } |
| 2118 | } |
| 2119 | } |
| 2120 | |
| 2121 | err = SSLSetIOFuncs(backend->ssl_ctx, SocketRead, SocketWrite); |
| 2122 | if(err != noErr) { |
| 2123 | failf(data, "SSL: SSLSetIOFuncs() failed: OSStatus %d" , err); |
| 2124 | return CURLE_SSL_CONNECT_ERROR; |
| 2125 | } |
| 2126 | |
| 2127 | /* pass the raw socket into the SSL layers */ |
| 2128 | /* We need to store the FD in a constant memory address, because |
| 2129 | * SSLSetConnection() will not copy that address. I've found that |
| 2130 | * conn->sock[sockindex] may change on its own. */ |
| 2131 | backend->ssl_sockfd = sockfd; |
| 2132 | err = SSLSetConnection(backend->ssl_ctx, connssl); |
| 2133 | if(err != noErr) { |
| 2134 | failf(data, "SSL: SSLSetConnection() failed: %d" , err); |
| 2135 | return CURLE_SSL_CONNECT_ERROR; |
| 2136 | } |
| 2137 | |
| 2138 | connssl->connecting_state = ssl_connect_2; |
| 2139 | return CURLE_OK; |
| 2140 | } |
| 2141 | |
| 2142 | static long pem_to_der(const char *in, unsigned char **out, size_t *outlen) |
| 2143 | { |
| 2144 | char *sep_start, *sep_end, *cert_start, *cert_end; |
| 2145 | size_t i, j, err; |
| 2146 | size_t len; |
| 2147 | unsigned char *b64; |
| 2148 | |
| 2149 | /* Jump through the separators at the beginning of the certificate. */ |
| 2150 | sep_start = strstr(in, "-----" ); |
| 2151 | if(!sep_start) |
| 2152 | return 0; |
| 2153 | cert_start = strstr(sep_start + 1, "-----" ); |
| 2154 | if(!cert_start) |
| 2155 | return -1; |
| 2156 | |
| 2157 | cert_start += 5; |
| 2158 | |
| 2159 | /* Find separator after the end of the certificate. */ |
| 2160 | cert_end = strstr(cert_start, "-----" ); |
| 2161 | if(!cert_end) |
| 2162 | return -1; |
| 2163 | |
| 2164 | sep_end = strstr(cert_end + 1, "-----" ); |
| 2165 | if(!sep_end) |
| 2166 | return -1; |
| 2167 | sep_end += 5; |
| 2168 | |
| 2169 | len = cert_end - cert_start; |
| 2170 | b64 = malloc(len + 1); |
| 2171 | if(!b64) |
| 2172 | return -1; |
| 2173 | |
| 2174 | /* Create base64 string without linefeeds. */ |
| 2175 | for(i = 0, j = 0; i < len; i++) { |
| 2176 | if(cert_start[i] != '\r' && cert_start[i] != '\n') |
| 2177 | b64[j++] = cert_start[i]; |
| 2178 | } |
| 2179 | b64[j] = '\0'; |
| 2180 | |
| 2181 | err = Curl_base64_decode((const char *)b64, out, outlen); |
| 2182 | free(b64); |
| 2183 | if(err) { |
| 2184 | free(*out); |
| 2185 | return -1; |
| 2186 | } |
| 2187 | |
| 2188 | return sep_end - in; |
| 2189 | } |
| 2190 | |
| 2191 | static int read_cert(const char *file, unsigned char **out, size_t *outlen) |
| 2192 | { |
| 2193 | int fd; |
| 2194 | ssize_t n, len = 0, cap = 512; |
| 2195 | unsigned char buf[512], *data; |
| 2196 | |
| 2197 | fd = open(file, 0); |
| 2198 | if(fd < 0) |
| 2199 | return -1; |
| 2200 | |
| 2201 | data = malloc(cap); |
| 2202 | if(!data) { |
| 2203 | close(fd); |
| 2204 | return -1; |
| 2205 | } |
| 2206 | |
| 2207 | for(;;) { |
| 2208 | n = read(fd, buf, sizeof(buf)); |
| 2209 | if(n < 0) { |
| 2210 | close(fd); |
| 2211 | free(data); |
| 2212 | return -1; |
| 2213 | } |
| 2214 | else if(n == 0) { |
| 2215 | close(fd); |
| 2216 | break; |
| 2217 | } |
| 2218 | |
| 2219 | if(len + n >= cap) { |
| 2220 | cap *= 2; |
| 2221 | data = Curl_saferealloc(data, cap); |
| 2222 | if(!data) { |
| 2223 | close(fd); |
| 2224 | return -1; |
| 2225 | } |
| 2226 | } |
| 2227 | |
| 2228 | memcpy(data + len, buf, n); |
| 2229 | len += n; |
| 2230 | } |
| 2231 | data[len] = '\0'; |
| 2232 | |
| 2233 | *out = data; |
| 2234 | *outlen = len; |
| 2235 | |
| 2236 | return 0; |
| 2237 | } |
| 2238 | |
| 2239 | static int append_cert_to_array(struct Curl_easy *data, |
| 2240 | const unsigned char *buf, size_t buflen, |
| 2241 | CFMutableArrayRef array) |
| 2242 | { |
| 2243 | CFDataRef certdata = CFDataCreate(kCFAllocatorDefault, buf, buflen); |
| 2244 | char *certp; |
| 2245 | CURLcode result; |
| 2246 | if(!certdata) { |
| 2247 | failf(data, "SSL: failed to allocate array for CA certificate" ); |
| 2248 | return CURLE_OUT_OF_MEMORY; |
| 2249 | } |
| 2250 | |
| 2251 | SecCertificateRef cacert = |
| 2252 | SecCertificateCreateWithData(kCFAllocatorDefault, certdata); |
| 2253 | CFRelease(certdata); |
| 2254 | if(!cacert) { |
| 2255 | failf(data, "SSL: failed to create SecCertificate from CA certificate" ); |
| 2256 | return CURLE_SSL_CACERT_BADFILE; |
| 2257 | } |
| 2258 | |
| 2259 | /* Check if cacert is valid. */ |
| 2260 | result = CopyCertSubject(data, cacert, &certp); |
| 2261 | switch(result) { |
| 2262 | case CURLE_OK: |
| 2263 | break; |
| 2264 | case CURLE_PEER_FAILED_VERIFICATION: |
| 2265 | return CURLE_SSL_CACERT_BADFILE; |
| 2266 | case CURLE_OUT_OF_MEMORY: |
| 2267 | default: |
| 2268 | return result; |
| 2269 | } |
| 2270 | free(certp); |
| 2271 | |
| 2272 | CFArrayAppendValue(array, cacert); |
| 2273 | CFRelease(cacert); |
| 2274 | |
| 2275 | return CURLE_OK; |
| 2276 | } |
| 2277 | |
| 2278 | static CURLcode verify_cert_buf(struct Curl_easy *data, |
| 2279 | const unsigned char *certbuf, size_t buflen, |
| 2280 | SSLContextRef ctx) |
| 2281 | { |
| 2282 | int n = 0, rc; |
| 2283 | long res; |
| 2284 | unsigned char *der; |
| 2285 | size_t derlen, offset = 0; |
| 2286 | |
| 2287 | /* |
| 2288 | * Certbuf now contains the contents of the certificate file, which can be |
| 2289 | * - a single DER certificate, |
| 2290 | * - a single PEM certificate or |
| 2291 | * - a bunch of PEM certificates (certificate bundle). |
| 2292 | * |
| 2293 | * Go through certbuf, and convert any PEM certificate in it into DER |
| 2294 | * format. |
| 2295 | */ |
| 2296 | CFMutableArrayRef array = CFArrayCreateMutable(kCFAllocatorDefault, 0, |
| 2297 | &kCFTypeArrayCallBacks); |
| 2298 | if(!array) { |
| 2299 | failf(data, "SSL: out of memory creating CA certificate array" ); |
| 2300 | return CURLE_OUT_OF_MEMORY; |
| 2301 | } |
| 2302 | |
| 2303 | while(offset < buflen) { |
| 2304 | n++; |
| 2305 | |
| 2306 | /* |
| 2307 | * Check if the certificate is in PEM format, and convert it to DER. If |
| 2308 | * this fails, we assume the certificate is in DER format. |
| 2309 | */ |
| 2310 | res = pem_to_der((const char *)certbuf + offset, &der, &derlen); |
| 2311 | if(res < 0) { |
| 2312 | CFRelease(array); |
| 2313 | failf(data, "SSL: invalid CA certificate #%d (offset %zu) in bundle" , |
| 2314 | n, offset); |
| 2315 | return CURLE_SSL_CACERT_BADFILE; |
| 2316 | } |
| 2317 | offset += res; |
| 2318 | |
| 2319 | if(res == 0 && offset == 0) { |
| 2320 | /* This is not a PEM file, probably a certificate in DER format. */ |
| 2321 | rc = append_cert_to_array(data, certbuf, buflen, array); |
| 2322 | if(rc != CURLE_OK) { |
| 2323 | CFRelease(array); |
| 2324 | return rc; |
| 2325 | } |
| 2326 | break; |
| 2327 | } |
| 2328 | else if(res == 0) { |
| 2329 | /* No more certificates in the bundle. */ |
| 2330 | break; |
| 2331 | } |
| 2332 | |
| 2333 | rc = append_cert_to_array(data, der, derlen, array); |
| 2334 | free(der); |
| 2335 | if(rc != CURLE_OK) { |
| 2336 | CFRelease(array); |
| 2337 | return rc; |
| 2338 | } |
| 2339 | } |
| 2340 | |
| 2341 | SecTrustRef trust; |
| 2342 | OSStatus ret = SSLCopyPeerTrust(ctx, &trust); |
| 2343 | if(!trust) { |
| 2344 | failf(data, "SSL: error getting certificate chain" ); |
| 2345 | CFRelease(array); |
| 2346 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2347 | } |
| 2348 | else if(ret != noErr) { |
| 2349 | CFRelease(array); |
| 2350 | failf(data, "SSLCopyPeerTrust() returned error %d" , ret); |
| 2351 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2352 | } |
| 2353 | |
| 2354 | ret = SecTrustSetAnchorCertificates(trust, array); |
| 2355 | if(ret != noErr) { |
| 2356 | CFRelease(array); |
| 2357 | CFRelease(trust); |
| 2358 | failf(data, "SecTrustSetAnchorCertificates() returned error %d" , ret); |
| 2359 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2360 | } |
| 2361 | ret = SecTrustSetAnchorCertificatesOnly(trust, true); |
| 2362 | if(ret != noErr) { |
| 2363 | CFRelease(array); |
| 2364 | CFRelease(trust); |
| 2365 | failf(data, "SecTrustSetAnchorCertificatesOnly() returned error %d" , ret); |
| 2366 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2367 | } |
| 2368 | |
| 2369 | SecTrustResultType trust_eval = 0; |
| 2370 | ret = SecTrustEvaluate(trust, &trust_eval); |
| 2371 | CFRelease(array); |
| 2372 | CFRelease(trust); |
| 2373 | if(ret != noErr) { |
| 2374 | failf(data, "SecTrustEvaluate() returned error %d" , ret); |
| 2375 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2376 | } |
| 2377 | |
| 2378 | switch(trust_eval) { |
| 2379 | case kSecTrustResultUnspecified: |
| 2380 | case kSecTrustResultProceed: |
| 2381 | return CURLE_OK; |
| 2382 | |
| 2383 | case kSecTrustResultRecoverableTrustFailure: |
| 2384 | case kSecTrustResultDeny: |
| 2385 | default: |
| 2386 | failf(data, "SSL: certificate verification failed (result: %d)" , |
| 2387 | trust_eval); |
| 2388 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2389 | } |
| 2390 | } |
| 2391 | |
| 2392 | static CURLcode verify_cert(struct Curl_easy *data, const char *cafile, |
| 2393 | const struct curl_blob *ca_info_blob, |
| 2394 | SSLContextRef ctx) |
| 2395 | { |
| 2396 | int result; |
| 2397 | unsigned char *certbuf; |
| 2398 | size_t buflen; |
| 2399 | |
| 2400 | if(ca_info_blob) { |
| 2401 | certbuf = (unsigned char *)malloc(ca_info_blob->len + 1); |
| 2402 | if(!certbuf) { |
| 2403 | return CURLE_OUT_OF_MEMORY; |
| 2404 | } |
| 2405 | buflen = ca_info_blob->len; |
| 2406 | memcpy(certbuf, ca_info_blob->data, ca_info_blob->len); |
| 2407 | certbuf[ca_info_blob->len]='\0'; |
| 2408 | } |
| 2409 | else if(cafile) { |
| 2410 | if(read_cert(cafile, &certbuf, &buflen) < 0) { |
| 2411 | failf(data, "SSL: failed to read or invalid CA certificate" ); |
| 2412 | return CURLE_SSL_CACERT_BADFILE; |
| 2413 | } |
| 2414 | } |
| 2415 | else |
| 2416 | return CURLE_SSL_CACERT_BADFILE; |
| 2417 | |
| 2418 | result = verify_cert_buf(data, certbuf, buflen, ctx); |
| 2419 | free(certbuf); |
| 2420 | return result; |
| 2421 | } |
| 2422 | |
| 2423 | |
| 2424 | #ifdef SECTRANSP_PINNEDPUBKEY |
| 2425 | static CURLcode pkp_pin_peer_pubkey(struct Curl_easy *data, |
| 2426 | SSLContextRef ctx, |
| 2427 | const char *pinnedpubkey) |
| 2428 | { /* Scratch */ |
| 2429 | size_t pubkeylen, realpubkeylen, spkiHeaderLength = 24; |
| 2430 | unsigned char *pubkey = NULL, *realpubkey = NULL; |
| 2431 | const unsigned char *spkiHeader = NULL; |
| 2432 | CFDataRef publicKeyBits = NULL; |
| 2433 | |
| 2434 | /* Result is returned to caller */ |
| 2435 | CURLcode result = CURLE_SSL_PINNEDPUBKEYNOTMATCH; |
| 2436 | |
| 2437 | /* if a path wasn't specified, don't pin */ |
| 2438 | if(!pinnedpubkey) |
| 2439 | return CURLE_OK; |
| 2440 | |
| 2441 | |
| 2442 | if(!ctx) |
| 2443 | return result; |
| 2444 | |
| 2445 | do { |
| 2446 | SecTrustRef trust; |
| 2447 | OSStatus ret = SSLCopyPeerTrust(ctx, &trust); |
| 2448 | if(ret != noErr || !trust) |
| 2449 | break; |
| 2450 | |
| 2451 | SecKeyRef keyRef = SecTrustCopyPublicKey(trust); |
| 2452 | CFRelease(trust); |
| 2453 | if(!keyRef) |
| 2454 | break; |
| 2455 | |
| 2456 | #ifdef SECTRANSP_PINNEDPUBKEY_V1 |
| 2457 | |
| 2458 | publicKeyBits = SecKeyCopyExternalRepresentation(keyRef, NULL); |
| 2459 | CFRelease(keyRef); |
| 2460 | if(!publicKeyBits) |
| 2461 | break; |
| 2462 | |
| 2463 | #elif SECTRANSP_PINNEDPUBKEY_V2 |
| 2464 | |
| 2465 | OSStatus success = SecItemExport(keyRef, kSecFormatOpenSSL, 0, NULL, |
| 2466 | &publicKeyBits); |
| 2467 | CFRelease(keyRef); |
| 2468 | if(success != errSecSuccess || !publicKeyBits) |
| 2469 | break; |
| 2470 | |
| 2471 | #endif /* SECTRANSP_PINNEDPUBKEY_V2 */ |
| 2472 | |
| 2473 | pubkeylen = CFDataGetLength(publicKeyBits); |
| 2474 | pubkey = (unsigned char *)CFDataGetBytePtr(publicKeyBits); |
| 2475 | |
| 2476 | switch(pubkeylen) { |
| 2477 | case 526: |
| 2478 | /* 4096 bit RSA pubkeylen == 526 */ |
| 2479 | spkiHeader = rsa4096SpkiHeader; |
| 2480 | break; |
| 2481 | case 270: |
| 2482 | /* 2048 bit RSA pubkeylen == 270 */ |
| 2483 | spkiHeader = rsa2048SpkiHeader; |
| 2484 | break; |
| 2485 | #ifdef SECTRANSP_PINNEDPUBKEY_V1 |
| 2486 | case 65: |
| 2487 | /* ecDSA secp256r1 pubkeylen == 65 */ |
| 2488 | spkiHeader = ecDsaSecp256r1SpkiHeader; |
| 2489 | spkiHeaderLength = 26; |
| 2490 | break; |
| 2491 | case 97: |
| 2492 | /* ecDSA secp384r1 pubkeylen == 97 */ |
| 2493 | spkiHeader = ecDsaSecp384r1SpkiHeader; |
| 2494 | spkiHeaderLength = 23; |
| 2495 | break; |
| 2496 | default: |
| 2497 | infof(data, "SSL: unhandled public key length: %d" , pubkeylen); |
| 2498 | #elif SECTRANSP_PINNEDPUBKEY_V2 |
| 2499 | default: |
| 2500 | /* ecDSA secp256r1 pubkeylen == 91 header already included? |
| 2501 | * ecDSA secp384r1 header already included too |
| 2502 | * we assume rest of algorithms do same, so do nothing |
| 2503 | */ |
| 2504 | result = Curl_pin_peer_pubkey(data, pinnedpubkey, pubkey, |
| 2505 | pubkeylen); |
| 2506 | #endif /* SECTRANSP_PINNEDPUBKEY_V2 */ |
| 2507 | continue; /* break from loop */ |
| 2508 | } |
| 2509 | |
| 2510 | realpubkeylen = pubkeylen + spkiHeaderLength; |
| 2511 | realpubkey = malloc(realpubkeylen); |
| 2512 | if(!realpubkey) |
| 2513 | break; |
| 2514 | |
| 2515 | memcpy(realpubkey, spkiHeader, spkiHeaderLength); |
| 2516 | memcpy(realpubkey + spkiHeaderLength, pubkey, pubkeylen); |
| 2517 | |
| 2518 | result = Curl_pin_peer_pubkey(data, pinnedpubkey, realpubkey, |
| 2519 | realpubkeylen); |
| 2520 | |
| 2521 | } while(0); |
| 2522 | |
| 2523 | Curl_safefree(realpubkey); |
| 2524 | if(publicKeyBits != NULL) |
| 2525 | CFRelease(publicKeyBits); |
| 2526 | |
| 2527 | return result; |
| 2528 | } |
| 2529 | #endif /* SECTRANSP_PINNEDPUBKEY */ |
| 2530 | |
| 2531 | static CURLcode |
| 2532 | sectransp_connect_step2(struct Curl_easy *data, struct connectdata *conn, |
| 2533 | int sockindex) |
| 2534 | { |
| 2535 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 2536 | struct ssl_backend_data *backend = connssl->backend; |
| 2537 | OSStatus err; |
| 2538 | SSLCipherSuite cipher; |
| 2539 | SSLProtocol protocol = 0; |
| 2540 | const char * const hostname = SSL_HOST_NAME(); |
| 2541 | |
| 2542 | DEBUGASSERT(ssl_connect_2 == connssl->connecting_state |
| 2543 | || ssl_connect_2_reading == connssl->connecting_state |
| 2544 | || ssl_connect_2_writing == connssl->connecting_state); |
| 2545 | |
| 2546 | /* Here goes nothing: */ |
| 2547 | err = SSLHandshake(backend->ssl_ctx); |
| 2548 | |
| 2549 | if(err != noErr) { |
| 2550 | switch(err) { |
| 2551 | case errSSLWouldBlock: /* they're not done with us yet */ |
| 2552 | connssl->connecting_state = backend->ssl_direction ? |
| 2553 | ssl_connect_2_writing : ssl_connect_2_reading; |
| 2554 | return CURLE_OK; |
| 2555 | |
| 2556 | /* The below is errSSLServerAuthCompleted; it's not defined in |
| 2557 | Leopard's headers */ |
| 2558 | case -9841: |
| 2559 | if((SSL_CONN_CONFIG(CAfile) || SSL_CONN_CONFIG(ca_info_blob)) && |
| 2560 | SSL_CONN_CONFIG(verifypeer)) { |
| 2561 | CURLcode result = verify_cert(data, SSL_CONN_CONFIG(CAfile), |
| 2562 | SSL_CONN_CONFIG(ca_info_blob), |
| 2563 | backend->ssl_ctx); |
| 2564 | if(result) |
| 2565 | return result; |
| 2566 | } |
| 2567 | /* the documentation says we need to call SSLHandshake() again */ |
| 2568 | return sectransp_connect_step2(data, conn, sockindex); |
| 2569 | |
| 2570 | /* Problem with encrypt / decrypt */ |
| 2571 | case errSSLPeerDecodeError: |
| 2572 | failf(data, "Decode failed" ); |
| 2573 | break; |
| 2574 | case errSSLDecryptionFail: |
| 2575 | case errSSLPeerDecryptionFail: |
| 2576 | failf(data, "Decryption failed" ); |
| 2577 | break; |
| 2578 | case errSSLPeerDecryptError: |
| 2579 | failf(data, "A decryption error occurred" ); |
| 2580 | break; |
| 2581 | case errSSLBadCipherSuite: |
| 2582 | failf(data, "A bad SSL cipher suite was encountered" ); |
| 2583 | break; |
| 2584 | case errSSLCrypto: |
| 2585 | failf(data, "An underlying cryptographic error was encountered" ); |
| 2586 | break; |
| 2587 | #if CURL_BUILD_MAC_10_11 || CURL_BUILD_IOS_9 |
| 2588 | case errSSLWeakPeerEphemeralDHKey: |
| 2589 | failf(data, "Indicates a weak ephemeral Diffie-Hellman key" ); |
| 2590 | break; |
| 2591 | #endif |
| 2592 | |
| 2593 | /* Problem with the message record validation */ |
| 2594 | case errSSLBadRecordMac: |
| 2595 | case errSSLPeerBadRecordMac: |
| 2596 | failf(data, "A record with a bad message authentication code (MAC) " |
| 2597 | "was encountered" ); |
| 2598 | break; |
| 2599 | case errSSLRecordOverflow: |
| 2600 | case errSSLPeerRecordOverflow: |
| 2601 | failf(data, "A record overflow occurred" ); |
| 2602 | break; |
| 2603 | |
| 2604 | /* Problem with zlib decompression */ |
| 2605 | case errSSLPeerDecompressFail: |
| 2606 | failf(data, "Decompression failed" ); |
| 2607 | break; |
| 2608 | |
| 2609 | /* Problem with access */ |
| 2610 | case errSSLPeerAccessDenied: |
| 2611 | failf(data, "Access was denied" ); |
| 2612 | break; |
| 2613 | case errSSLPeerInsufficientSecurity: |
| 2614 | failf(data, "There is insufficient security for this operation" ); |
| 2615 | break; |
| 2616 | |
| 2617 | /* These are all certificate problems with the server: */ |
| 2618 | case errSSLXCertChainInvalid: |
| 2619 | failf(data, "SSL certificate problem: Invalid certificate chain" ); |
| 2620 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2621 | case errSSLUnknownRootCert: |
| 2622 | failf(data, "SSL certificate problem: Untrusted root certificate" ); |
| 2623 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2624 | case errSSLNoRootCert: |
| 2625 | failf(data, "SSL certificate problem: No root certificate" ); |
| 2626 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2627 | case errSSLCertNotYetValid: |
| 2628 | failf(data, "SSL certificate problem: The certificate chain had a " |
| 2629 | "certificate that is not yet valid" ); |
| 2630 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2631 | case errSSLCertExpired: |
| 2632 | case errSSLPeerCertExpired: |
| 2633 | failf(data, "SSL certificate problem: Certificate chain had an " |
| 2634 | "expired certificate" ); |
| 2635 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2636 | case errSSLBadCert: |
| 2637 | case errSSLPeerBadCert: |
| 2638 | failf(data, "SSL certificate problem: Couldn't understand the server " |
| 2639 | "certificate format" ); |
| 2640 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2641 | case errSSLPeerUnsupportedCert: |
| 2642 | failf(data, "SSL certificate problem: An unsupported certificate " |
| 2643 | "format was encountered" ); |
| 2644 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2645 | case errSSLPeerCertRevoked: |
| 2646 | failf(data, "SSL certificate problem: The certificate was revoked" ); |
| 2647 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2648 | case errSSLPeerCertUnknown: |
| 2649 | failf(data, "SSL certificate problem: The certificate is unknown" ); |
| 2650 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2651 | |
| 2652 | /* These are all certificate problems with the client: */ |
| 2653 | case errSecAuthFailed: |
| 2654 | failf(data, "SSL authentication failed" ); |
| 2655 | break; |
| 2656 | case errSSLPeerHandshakeFail: |
| 2657 | failf(data, "SSL peer handshake failed, the server most likely " |
| 2658 | "requires a client certificate to connect" ); |
| 2659 | break; |
| 2660 | case errSSLPeerUnknownCA: |
| 2661 | failf(data, "SSL server rejected the client certificate due to " |
| 2662 | "the certificate being signed by an unknown certificate " |
| 2663 | "authority" ); |
| 2664 | break; |
| 2665 | |
| 2666 | /* This error is raised if the server's cert didn't match the server's |
| 2667 | host name: */ |
| 2668 | case errSSLHostNameMismatch: |
| 2669 | failf(data, "SSL certificate peer verification failed, the " |
| 2670 | "certificate did not match \"%s\"\n" , conn->host.dispname); |
| 2671 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2672 | |
| 2673 | /* Problem with SSL / TLS negotiation */ |
| 2674 | case errSSLNegotiation: |
| 2675 | failf(data, "Could not negotiate an SSL cipher suite with the server" ); |
| 2676 | break; |
| 2677 | case errSSLBadConfiguration: |
| 2678 | failf(data, "A configuration error occurred" ); |
| 2679 | break; |
| 2680 | case errSSLProtocol: |
| 2681 | failf(data, "SSL protocol error" ); |
| 2682 | break; |
| 2683 | case errSSLPeerProtocolVersion: |
| 2684 | failf(data, "A bad protocol version was encountered" ); |
| 2685 | break; |
| 2686 | case errSSLPeerNoRenegotiation: |
| 2687 | failf(data, "No renegotiation is allowed" ); |
| 2688 | break; |
| 2689 | |
| 2690 | /* Generic handshake errors: */ |
| 2691 | case errSSLConnectionRefused: |
| 2692 | failf(data, "Server dropped the connection during the SSL handshake" ); |
| 2693 | break; |
| 2694 | case errSSLClosedAbort: |
| 2695 | failf(data, "Server aborted the SSL handshake" ); |
| 2696 | break; |
| 2697 | case errSSLClosedGraceful: |
| 2698 | failf(data, "The connection closed gracefully" ); |
| 2699 | break; |
| 2700 | case errSSLClosedNoNotify: |
| 2701 | failf(data, "The server closed the session with no notification" ); |
| 2702 | break; |
| 2703 | /* Sometimes paramErr happens with buggy ciphers: */ |
| 2704 | case paramErr: |
| 2705 | case errSSLInternal: |
| 2706 | case errSSLPeerInternalError: |
| 2707 | failf(data, "Internal SSL engine error encountered during the " |
| 2708 | "SSL handshake" ); |
| 2709 | break; |
| 2710 | case errSSLFatalAlert: |
| 2711 | failf(data, "Fatal SSL engine error encountered during the SSL " |
| 2712 | "handshake" ); |
| 2713 | break; |
| 2714 | /* Unclassified error */ |
| 2715 | case errSSLBufferOverflow: |
| 2716 | failf(data, "An insufficient buffer was provided" ); |
| 2717 | break; |
| 2718 | case errSSLIllegalParam: |
| 2719 | failf(data, "An illegal parameter was encountered" ); |
| 2720 | break; |
| 2721 | case errSSLModuleAttach: |
| 2722 | failf(data, "Module attach failure" ); |
| 2723 | break; |
| 2724 | case errSSLSessionNotFound: |
| 2725 | failf(data, "An attempt to restore an unknown session failed" ); |
| 2726 | break; |
| 2727 | case errSSLPeerExportRestriction: |
| 2728 | failf(data, "An export restriction occurred" ); |
| 2729 | break; |
| 2730 | case errSSLPeerUserCancelled: |
| 2731 | failf(data, "The user canceled the operation" ); |
| 2732 | break; |
| 2733 | case errSSLPeerUnexpectedMsg: |
| 2734 | failf(data, "Peer rejected unexpected message" ); |
| 2735 | break; |
| 2736 | #if CURL_BUILD_MAC_10_11 || CURL_BUILD_IOS_9 |
| 2737 | /* Treaing non-fatal error as fatal like before */ |
| 2738 | case errSSLClientHelloReceived: |
| 2739 | failf(data, "A non-fatal result for providing a server name " |
| 2740 | "indication" ); |
| 2741 | break; |
| 2742 | #endif |
| 2743 | |
| 2744 | /* Error codes defined in the enum but should never be returned. |
| 2745 | We list them here just in case. */ |
| 2746 | #if CURL_BUILD_MAC_10_6 |
| 2747 | /* Only returned when kSSLSessionOptionBreakOnCertRequested is set */ |
| 2748 | case errSSLClientCertRequested: |
| 2749 | failf(data, "Server requested a client certificate during the " |
| 2750 | "handshake" ); |
| 2751 | return CURLE_SSL_CLIENTCERT; |
| 2752 | #endif |
| 2753 | #if CURL_BUILD_MAC_10_9 |
| 2754 | /* Alias for errSSLLast, end of error range */ |
| 2755 | case errSSLUnexpectedRecord: |
| 2756 | failf(data, "Unexpected (skipped) record in DTLS" ); |
| 2757 | break; |
| 2758 | #endif |
| 2759 | default: |
| 2760 | /* May also return codes listed in Security Framework Result Codes */ |
| 2761 | failf(data, "Unknown SSL protocol error in connection to %s:%d" , |
| 2762 | hostname, err); |
| 2763 | break; |
| 2764 | } |
| 2765 | return CURLE_SSL_CONNECT_ERROR; |
| 2766 | } |
| 2767 | else { |
| 2768 | /* we have been connected fine, we're not waiting for anything else. */ |
| 2769 | connssl->connecting_state = ssl_connect_3; |
| 2770 | |
| 2771 | #ifdef SECTRANSP_PINNEDPUBKEY |
| 2772 | if(data->set.str[STRING_SSL_PINNEDPUBLICKEY]) { |
| 2773 | CURLcode result = |
| 2774 | pkp_pin_peer_pubkey(data, backend->ssl_ctx, |
| 2775 | data->set.str[STRING_SSL_PINNEDPUBLICKEY]); |
| 2776 | if(result) { |
| 2777 | failf(data, "SSL: public key does not match pinned public key!" ); |
| 2778 | return result; |
| 2779 | } |
| 2780 | } |
| 2781 | #endif /* SECTRANSP_PINNEDPUBKEY */ |
| 2782 | |
| 2783 | /* Informational message */ |
| 2784 | (void)SSLGetNegotiatedCipher(backend->ssl_ctx, &cipher); |
| 2785 | (void)SSLGetNegotiatedProtocolVersion(backend->ssl_ctx, &protocol); |
| 2786 | switch(protocol) { |
| 2787 | case kSSLProtocol2: |
| 2788 | infof(data, "SSL 2.0 connection using %s" , |
| 2789 | TLSCipherNameForNumber(cipher)); |
| 2790 | break; |
| 2791 | case kSSLProtocol3: |
| 2792 | infof(data, "SSL 3.0 connection using %s" , |
| 2793 | TLSCipherNameForNumber(cipher)); |
| 2794 | break; |
| 2795 | case kTLSProtocol1: |
| 2796 | infof(data, "TLS 1.0 connection using %s" , |
| 2797 | TLSCipherNameForNumber(cipher)); |
| 2798 | break; |
| 2799 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
| 2800 | case kTLSProtocol11: |
| 2801 | infof(data, "TLS 1.1 connection using %s" , |
| 2802 | TLSCipherNameForNumber(cipher)); |
| 2803 | break; |
| 2804 | case kTLSProtocol12: |
| 2805 | infof(data, "TLS 1.2 connection using %s" , |
| 2806 | TLSCipherNameForNumber(cipher)); |
| 2807 | break; |
| 2808 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
| 2809 | #if CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 |
| 2810 | case kTLSProtocol13: |
| 2811 | infof(data, "TLS 1.3 connection using %s" , |
| 2812 | TLSCipherNameForNumber(cipher)); |
| 2813 | break; |
| 2814 | #endif /* CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 */ |
| 2815 | default: |
| 2816 | infof(data, "Unknown protocol connection" ); |
| 2817 | break; |
| 2818 | } |
| 2819 | |
| 2820 | #if(CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1 |
| 2821 | if(conn->bits.tls_enable_alpn) { |
| 2822 | if(__builtin_available(macOS 10.13.4, iOS 11, tvOS 11, *)) { |
| 2823 | CFArrayRef alpnArr = NULL; |
| 2824 | CFStringRef chosenProtocol = NULL; |
| 2825 | err = SSLCopyALPNProtocols(backend->ssl_ctx, &alpnArr); |
| 2826 | |
| 2827 | if(err == noErr && alpnArr && CFArrayGetCount(alpnArr) >= 1) |
| 2828 | chosenProtocol = CFArrayGetValueAtIndex(alpnArr, 0); |
| 2829 | |
| 2830 | #ifdef USE_HTTP2 |
| 2831 | if(chosenProtocol && |
| 2832 | !CFStringCompare(chosenProtocol, CFSTR(ALPN_H2), 0)) { |
| 2833 | conn->negnpn = CURL_HTTP_VERSION_2; |
| 2834 | } |
| 2835 | else |
| 2836 | #endif |
| 2837 | if(chosenProtocol && |
| 2838 | !CFStringCompare(chosenProtocol, CFSTR(ALPN_HTTP_1_1), 0)) { |
| 2839 | conn->negnpn = CURL_HTTP_VERSION_1_1; |
| 2840 | } |
| 2841 | else |
| 2842 | infof(data, "ALPN, server did not agree to a protocol" ); |
| 2843 | |
| 2844 | Curl_multiuse_state(data, conn->negnpn == CURL_HTTP_VERSION_2 ? |
| 2845 | BUNDLE_MULTIPLEX : BUNDLE_NO_MULTIUSE); |
| 2846 | |
| 2847 | /* chosenProtocol is a reference to the string within alpnArr |
| 2848 | and doesn't need to be freed separately */ |
| 2849 | if(alpnArr) |
| 2850 | CFRelease(alpnArr); |
| 2851 | } |
| 2852 | } |
| 2853 | #endif |
| 2854 | |
| 2855 | return CURLE_OK; |
| 2856 | } |
| 2857 | } |
| 2858 | |
| 2859 | static CURLcode |
| 2860 | add_cert_to_certinfo(struct Curl_easy *data, |
| 2861 | SecCertificateRef server_cert, |
| 2862 | int idx) |
| 2863 | { |
| 2864 | CURLcode result = CURLE_OK; |
| 2865 | const char *beg; |
| 2866 | const char *end; |
| 2867 | CFDataRef cert_data = SecCertificateCopyData(server_cert); |
| 2868 | |
| 2869 | if(!cert_data) |
| 2870 | return CURLE_PEER_FAILED_VERIFICATION; |
| 2871 | |
| 2872 | beg = (const char *)CFDataGetBytePtr(cert_data); |
| 2873 | end = beg + CFDataGetLength(cert_data); |
| 2874 | result = Curl_extract_certinfo(data, idx, beg, end); |
| 2875 | CFRelease(cert_data); |
| 2876 | return result; |
| 2877 | } |
| 2878 | |
| 2879 | static CURLcode |
| 2880 | collect_server_cert_single(struct Curl_easy *data, |
| 2881 | SecCertificateRef server_cert, |
| 2882 | CFIndex idx) |
| 2883 | { |
| 2884 | CURLcode result = CURLE_OK; |
| 2885 | #ifndef CURL_DISABLE_VERBOSE_STRINGS |
| 2886 | if(data->set.verbose) { |
| 2887 | char *certp; |
| 2888 | result = CopyCertSubject(data, server_cert, &certp); |
| 2889 | if(!result) { |
| 2890 | infof(data, "Server certificate: %s" , certp); |
| 2891 | free(certp); |
| 2892 | } |
| 2893 | } |
| 2894 | #endif |
| 2895 | if(data->set.ssl.certinfo) |
| 2896 | result = add_cert_to_certinfo(data, server_cert, (int)idx); |
| 2897 | return result; |
| 2898 | } |
| 2899 | |
| 2900 | /* This should be called during step3 of the connection at the earliest */ |
| 2901 | static CURLcode |
| 2902 | collect_server_cert(struct Curl_easy *data, |
| 2903 | struct connectdata *conn, |
| 2904 | int sockindex) |
| 2905 | { |
| 2906 | #ifndef CURL_DISABLE_VERBOSE_STRINGS |
| 2907 | const bool show_verbose_server_cert = data->set.verbose; |
| 2908 | #else |
| 2909 | const bool show_verbose_server_cert = false; |
| 2910 | #endif |
| 2911 | CURLcode result = data->set.ssl.certinfo ? |
| 2912 | CURLE_PEER_FAILED_VERIFICATION : CURLE_OK; |
| 2913 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 2914 | struct ssl_backend_data *backend = connssl->backend; |
| 2915 | CFArrayRef server_certs = NULL; |
| 2916 | SecCertificateRef server_cert; |
| 2917 | OSStatus err; |
| 2918 | CFIndex i, count; |
| 2919 | SecTrustRef trust = NULL; |
| 2920 | |
| 2921 | if(!show_verbose_server_cert && !data->set.ssl.certinfo) |
| 2922 | return CURLE_OK; |
| 2923 | |
| 2924 | if(!backend->ssl_ctx) |
| 2925 | return result; |
| 2926 | |
| 2927 | #if CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS |
| 2928 | #if CURL_BUILD_IOS |
| 2929 | #pragma unused(server_certs) |
| 2930 | err = SSLCopyPeerTrust(backend->ssl_ctx, &trust); |
| 2931 | /* For some reason, SSLCopyPeerTrust() can return noErr and yet return |
| 2932 | a null trust, so be on guard for that: */ |
| 2933 | if(err == noErr && trust) { |
| 2934 | count = SecTrustGetCertificateCount(trust); |
| 2935 | if(data->set.ssl.certinfo) |
| 2936 | result = Curl_ssl_init_certinfo(data, (int)count); |
| 2937 | for(i = 0L ; !result && (i < count) ; i++) { |
| 2938 | server_cert = SecTrustGetCertificateAtIndex(trust, i); |
| 2939 | result = collect_server_cert_single(data, server_cert, i); |
| 2940 | } |
| 2941 | CFRelease(trust); |
| 2942 | } |
| 2943 | #else |
| 2944 | /* SSLCopyPeerCertificates() is deprecated as of Mountain Lion. |
| 2945 | The function SecTrustGetCertificateAtIndex() is officially present |
| 2946 | in Lion, but it is unfortunately also present in Snow Leopard as |
| 2947 | private API and doesn't work as expected. So we have to look for |
| 2948 | a different symbol to make sure this code is only executed under |
| 2949 | Lion or later. */ |
| 2950 | if(SecTrustEvaluateAsync != NULL) { |
| 2951 | #pragma unused(server_certs) |
| 2952 | err = SSLCopyPeerTrust(backend->ssl_ctx, &trust); |
| 2953 | /* For some reason, SSLCopyPeerTrust() can return noErr and yet return |
| 2954 | a null trust, so be on guard for that: */ |
| 2955 | if(err == noErr && trust) { |
| 2956 | count = SecTrustGetCertificateCount(trust); |
| 2957 | if(data->set.ssl.certinfo) |
| 2958 | result = Curl_ssl_init_certinfo(data, (int)count); |
| 2959 | for(i = 0L ; !result && (i < count) ; i++) { |
| 2960 | server_cert = SecTrustGetCertificateAtIndex(trust, i); |
| 2961 | result = collect_server_cert_single(data, server_cert, i); |
| 2962 | } |
| 2963 | CFRelease(trust); |
| 2964 | } |
| 2965 | } |
| 2966 | else { |
| 2967 | #if CURL_SUPPORT_MAC_10_8 |
| 2968 | err = SSLCopyPeerCertificates(backend->ssl_ctx, &server_certs); |
| 2969 | /* Just in case SSLCopyPeerCertificates() returns null too... */ |
| 2970 | if(err == noErr && server_certs) { |
| 2971 | count = CFArrayGetCount(server_certs); |
| 2972 | if(data->set.ssl.certinfo) |
| 2973 | result = Curl_ssl_init_certinfo(data, (int)count); |
| 2974 | for(i = 0L ; !result && (i < count) ; i++) { |
| 2975 | server_cert = (SecCertificateRef)CFArrayGetValueAtIndex(server_certs, |
| 2976 | i); |
| 2977 | result = collect_server_cert_single(data, server_cert, i); |
| 2978 | } |
| 2979 | CFRelease(server_certs); |
| 2980 | } |
| 2981 | #endif /* CURL_SUPPORT_MAC_10_8 */ |
| 2982 | } |
| 2983 | #endif /* CURL_BUILD_IOS */ |
| 2984 | #else |
| 2985 | #pragma unused(trust) |
| 2986 | err = SSLCopyPeerCertificates(backend->ssl_ctx, &server_certs); |
| 2987 | if(err == noErr) { |
| 2988 | count = CFArrayGetCount(server_certs); |
| 2989 | if(data->set.ssl.certinfo) |
| 2990 | result = Curl_ssl_init_certinfo(data, (int)count); |
| 2991 | for(i = 0L ; !result && (i < count) ; i++) { |
| 2992 | server_cert = (SecCertificateRef)CFArrayGetValueAtIndex(server_certs, i); |
| 2993 | result = collect_server_cert_single(data, server_cert, i); |
| 2994 | } |
| 2995 | CFRelease(server_certs); |
| 2996 | } |
| 2997 | #endif /* CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS */ |
| 2998 | return result; |
| 2999 | } |
| 3000 | |
| 3001 | static CURLcode |
| 3002 | sectransp_connect_step3(struct Curl_easy *data, struct connectdata *conn, |
| 3003 | int sockindex) |
| 3004 | { |
| 3005 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 3006 | |
| 3007 | /* There is no step 3! |
| 3008 | * Well, okay, let's collect server certificates, and if verbose mode is on, |
| 3009 | * let's print the details of the server certificates. */ |
| 3010 | const CURLcode result = collect_server_cert(data, conn, sockindex); |
| 3011 | if(result) |
| 3012 | return result; |
| 3013 | |
| 3014 | connssl->connecting_state = ssl_connect_done; |
| 3015 | return CURLE_OK; |
| 3016 | } |
| 3017 | |
| 3018 | static Curl_recv sectransp_recv; |
| 3019 | static Curl_send sectransp_send; |
| 3020 | |
| 3021 | static CURLcode |
| 3022 | sectransp_connect_common(struct Curl_easy *data, |
| 3023 | struct connectdata *conn, |
| 3024 | int sockindex, |
| 3025 | bool nonblocking, |
| 3026 | bool *done) |
| 3027 | { |
| 3028 | CURLcode result; |
| 3029 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 3030 | curl_socket_t sockfd = conn->sock[sockindex]; |
| 3031 | int what; |
| 3032 | |
| 3033 | /* check if the connection has already been established */ |
| 3034 | if(ssl_connection_complete == connssl->state) { |
| 3035 | *done = TRUE; |
| 3036 | return CURLE_OK; |
| 3037 | } |
| 3038 | |
| 3039 | if(ssl_connect_1 == connssl->connecting_state) { |
| 3040 | /* Find out how much more time we're allowed */ |
| 3041 | const timediff_t timeout_ms = Curl_timeleft(data, NULL, TRUE); |
| 3042 | |
| 3043 | if(timeout_ms < 0) { |
| 3044 | /* no need to continue if time already is up */ |
| 3045 | failf(data, "SSL connection timeout" ); |
| 3046 | return CURLE_OPERATION_TIMEDOUT; |
| 3047 | } |
| 3048 | |
| 3049 | result = sectransp_connect_step1(data, conn, sockindex); |
| 3050 | if(result) |
| 3051 | return result; |
| 3052 | } |
| 3053 | |
| 3054 | while(ssl_connect_2 == connssl->connecting_state || |
| 3055 | ssl_connect_2_reading == connssl->connecting_state || |
| 3056 | ssl_connect_2_writing == connssl->connecting_state) { |
| 3057 | |
| 3058 | /* check allowed time left */ |
| 3059 | const timediff_t timeout_ms = Curl_timeleft(data, NULL, TRUE); |
| 3060 | |
| 3061 | if(timeout_ms < 0) { |
| 3062 | /* no need to continue if time already is up */ |
| 3063 | failf(data, "SSL connection timeout" ); |
| 3064 | return CURLE_OPERATION_TIMEDOUT; |
| 3065 | } |
| 3066 | |
| 3067 | /* if ssl is expecting something, check if it's available. */ |
| 3068 | if(connssl->connecting_state == ssl_connect_2_reading || |
| 3069 | connssl->connecting_state == ssl_connect_2_writing) { |
| 3070 | |
| 3071 | curl_socket_t writefd = ssl_connect_2_writing == |
| 3072 | connssl->connecting_state?sockfd:CURL_SOCKET_BAD; |
| 3073 | curl_socket_t readfd = ssl_connect_2_reading == |
| 3074 | connssl->connecting_state?sockfd:CURL_SOCKET_BAD; |
| 3075 | |
| 3076 | what = Curl_socket_check(readfd, CURL_SOCKET_BAD, writefd, |
| 3077 | nonblocking ? 0 : timeout_ms); |
| 3078 | if(what < 0) { |
| 3079 | /* fatal error */ |
| 3080 | failf(data, "select/poll on SSL socket, errno: %d" , SOCKERRNO); |
| 3081 | return CURLE_SSL_CONNECT_ERROR; |
| 3082 | } |
| 3083 | else if(0 == what) { |
| 3084 | if(nonblocking) { |
| 3085 | *done = FALSE; |
| 3086 | return CURLE_OK; |
| 3087 | } |
| 3088 | else { |
| 3089 | /* timeout */ |
| 3090 | failf(data, "SSL connection timeout" ); |
| 3091 | return CURLE_OPERATION_TIMEDOUT; |
| 3092 | } |
| 3093 | } |
| 3094 | /* socket is readable or writable */ |
| 3095 | } |
| 3096 | |
| 3097 | /* Run transaction, and return to the caller if it failed or if this |
| 3098 | * connection is done nonblocking and this loop would execute again. This |
| 3099 | * permits the owner of a multi handle to abort a connection attempt |
| 3100 | * before step2 has completed while ensuring that a client using select() |
| 3101 | * or epoll() will always have a valid fdset to wait on. |
| 3102 | */ |
| 3103 | result = sectransp_connect_step2(data, conn, sockindex); |
| 3104 | if(result || (nonblocking && |
| 3105 | (ssl_connect_2 == connssl->connecting_state || |
| 3106 | ssl_connect_2_reading == connssl->connecting_state || |
| 3107 | ssl_connect_2_writing == connssl->connecting_state))) |
| 3108 | return result; |
| 3109 | |
| 3110 | } /* repeat step2 until all transactions are done. */ |
| 3111 | |
| 3112 | |
| 3113 | if(ssl_connect_3 == connssl->connecting_state) { |
| 3114 | result = sectransp_connect_step3(data, conn, sockindex); |
| 3115 | if(result) |
| 3116 | return result; |
| 3117 | } |
| 3118 | |
| 3119 | if(ssl_connect_done == connssl->connecting_state) { |
| 3120 | connssl->state = ssl_connection_complete; |
| 3121 | conn->recv[sockindex] = sectransp_recv; |
| 3122 | conn->send[sockindex] = sectransp_send; |
| 3123 | *done = TRUE; |
| 3124 | } |
| 3125 | else |
| 3126 | *done = FALSE; |
| 3127 | |
| 3128 | /* Reset our connect state machine */ |
| 3129 | connssl->connecting_state = ssl_connect_1; |
| 3130 | |
| 3131 | return CURLE_OK; |
| 3132 | } |
| 3133 | |
| 3134 | static CURLcode sectransp_connect_nonblocking(struct Curl_easy *data, |
| 3135 | struct connectdata *conn, |
| 3136 | int sockindex, bool *done) |
| 3137 | { |
| 3138 | return sectransp_connect_common(data, conn, sockindex, TRUE, done); |
| 3139 | } |
| 3140 | |
| 3141 | static CURLcode sectransp_connect(struct Curl_easy *data, |
| 3142 | struct connectdata *conn, int sockindex) |
| 3143 | { |
| 3144 | CURLcode result; |
| 3145 | bool done = FALSE; |
| 3146 | |
| 3147 | result = sectransp_connect_common(data, conn, sockindex, FALSE, &done); |
| 3148 | |
| 3149 | if(result) |
| 3150 | return result; |
| 3151 | |
| 3152 | DEBUGASSERT(done); |
| 3153 | |
| 3154 | return CURLE_OK; |
| 3155 | } |
| 3156 | |
| 3157 | static void sectransp_close(struct Curl_easy *data, struct connectdata *conn, |
| 3158 | int sockindex) |
| 3159 | { |
| 3160 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 3161 | struct ssl_backend_data *backend = connssl->backend; |
| 3162 | |
| 3163 | (void) data; |
| 3164 | |
| 3165 | if(backend->ssl_ctx) { |
| 3166 | (void)SSLClose(backend->ssl_ctx); |
| 3167 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
| 3168 | if(SSLCreateContext != NULL) |
| 3169 | CFRelease(backend->ssl_ctx); |
| 3170 | #if CURL_SUPPORT_MAC_10_8 |
| 3171 | else |
| 3172 | (void)SSLDisposeContext(backend->ssl_ctx); |
| 3173 | #endif /* CURL_SUPPORT_MAC_10_8 */ |
| 3174 | #else |
| 3175 | (void)SSLDisposeContext(backend->ssl_ctx); |
| 3176 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
| 3177 | backend->ssl_ctx = NULL; |
| 3178 | } |
| 3179 | backend->ssl_sockfd = 0; |
| 3180 | } |
| 3181 | |
| 3182 | static int sectransp_shutdown(struct Curl_easy *data, |
| 3183 | struct connectdata *conn, int sockindex) |
| 3184 | { |
| 3185 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 3186 | struct ssl_backend_data *backend = connssl->backend; |
| 3187 | ssize_t nread; |
| 3188 | int what; |
| 3189 | int rc; |
| 3190 | char buf[120]; |
| 3191 | int loop = 10; /* avoid getting stuck */ |
| 3192 | |
| 3193 | if(!backend->ssl_ctx) |
| 3194 | return 0; |
| 3195 | |
| 3196 | #ifndef CURL_DISABLE_FTP |
| 3197 | if(data->set.ftp_ccc != CURLFTPSSL_CCC_ACTIVE) |
| 3198 | return 0; |
| 3199 | #endif |
| 3200 | |
| 3201 | sectransp_close(data, conn, sockindex); |
| 3202 | |
| 3203 | rc = 0; |
| 3204 | |
| 3205 | what = SOCKET_READABLE(conn->sock[sockindex], SSL_SHUTDOWN_TIMEOUT); |
| 3206 | |
| 3207 | while(loop--) { |
| 3208 | if(what < 0) { |
| 3209 | /* anything that gets here is fatally bad */ |
| 3210 | failf(data, "select/poll on SSL socket, errno: %d" , SOCKERRNO); |
| 3211 | rc = -1; |
| 3212 | break; |
| 3213 | } |
| 3214 | |
| 3215 | if(!what) { /* timeout */ |
| 3216 | failf(data, "SSL shutdown timeout" ); |
| 3217 | break; |
| 3218 | } |
| 3219 | |
| 3220 | /* Something to read, let's do it and hope that it is the close |
| 3221 | notify alert from the server. No way to SSL_Read now, so use read(). */ |
| 3222 | |
| 3223 | nread = read(conn->sock[sockindex], buf, sizeof(buf)); |
| 3224 | |
| 3225 | if(nread < 0) { |
| 3226 | char buffer[STRERROR_LEN]; |
| 3227 | failf(data, "read: %s" , |
| 3228 | Curl_strerror(errno, buffer, sizeof(buffer))); |
| 3229 | rc = -1; |
| 3230 | } |
| 3231 | |
| 3232 | if(nread <= 0) |
| 3233 | break; |
| 3234 | |
| 3235 | what = SOCKET_READABLE(conn->sock[sockindex], 0); |
| 3236 | } |
| 3237 | |
| 3238 | return rc; |
| 3239 | } |
| 3240 | |
| 3241 | static void sectransp_session_free(void *ptr) |
| 3242 | { |
| 3243 | /* ST, as of iOS 5 and Mountain Lion, has no public method of deleting a |
| 3244 | cached session ID inside the Security framework. There is a private |
| 3245 | function that does this, but I don't want to have to explain to you why I |
| 3246 | got your application rejected from the App Store due to the use of a |
| 3247 | private API, so the best we can do is free up our own char array that we |
| 3248 | created way back in sectransp_connect_step1... */ |
| 3249 | Curl_safefree(ptr); |
| 3250 | } |
| 3251 | |
| 3252 | static size_t sectransp_version(char *buffer, size_t size) |
| 3253 | { |
| 3254 | return msnprintf(buffer, size, "SecureTransport" ); |
| 3255 | } |
| 3256 | |
| 3257 | /* |
| 3258 | * This function uses SSLGetSessionState to determine connection status. |
| 3259 | * |
| 3260 | * Return codes: |
| 3261 | * 1 means the connection is still in place |
| 3262 | * 0 means the connection has been closed |
| 3263 | * -1 means the connection status is unknown |
| 3264 | */ |
| 3265 | static int sectransp_check_cxn(struct connectdata *conn) |
| 3266 | { |
| 3267 | struct ssl_connect_data *connssl = &conn->ssl[FIRSTSOCKET]; |
| 3268 | struct ssl_backend_data *backend = connssl->backend; |
| 3269 | OSStatus err; |
| 3270 | SSLSessionState state; |
| 3271 | |
| 3272 | if(backend->ssl_ctx) { |
| 3273 | err = SSLGetSessionState(backend->ssl_ctx, &state); |
| 3274 | if(err == noErr) |
| 3275 | return state == kSSLConnected || state == kSSLHandshake; |
| 3276 | return -1; |
| 3277 | } |
| 3278 | return 0; |
| 3279 | } |
| 3280 | |
| 3281 | static bool sectransp_data_pending(const struct connectdata *conn, |
| 3282 | int connindex) |
| 3283 | { |
| 3284 | const struct ssl_connect_data *connssl = &conn->ssl[connindex]; |
| 3285 | struct ssl_backend_data *backend = connssl->backend; |
| 3286 | OSStatus err; |
| 3287 | size_t buffer; |
| 3288 | |
| 3289 | if(backend->ssl_ctx) { /* SSL is in use */ |
| 3290 | err = SSLGetBufferedReadSize(backend->ssl_ctx, &buffer); |
| 3291 | if(err == noErr) |
| 3292 | return buffer > 0UL; |
| 3293 | return false; |
| 3294 | } |
| 3295 | else |
| 3296 | return false; |
| 3297 | } |
| 3298 | |
| 3299 | static CURLcode sectransp_random(struct Curl_easy *data UNUSED_PARAM, |
| 3300 | unsigned char *entropy, size_t length) |
| 3301 | { |
| 3302 | /* arc4random_buf() isn't available on cats older than Lion, so let's |
| 3303 | do this manually for the benefit of the older cats. */ |
| 3304 | size_t i; |
| 3305 | u_int32_t random_number = 0; |
| 3306 | |
| 3307 | (void)data; |
| 3308 | |
| 3309 | for(i = 0 ; i < length ; i++) { |
| 3310 | if(i % sizeof(u_int32_t) == 0) |
| 3311 | random_number = arc4random(); |
| 3312 | entropy[i] = random_number & 0xFF; |
| 3313 | random_number >>= 8; |
| 3314 | } |
| 3315 | i = random_number = 0; |
| 3316 | return CURLE_OK; |
| 3317 | } |
| 3318 | |
| 3319 | static CURLcode sectransp_sha256sum(const unsigned char *tmp, /* input */ |
| 3320 | size_t tmplen, |
| 3321 | unsigned char *sha256sum, /* output */ |
| 3322 | size_t sha256len) |
| 3323 | { |
| 3324 | assert(sha256len >= CURL_SHA256_DIGEST_LENGTH); |
| 3325 | (void)CC_SHA256(tmp, (CC_LONG)tmplen, sha256sum); |
| 3326 | return CURLE_OK; |
| 3327 | } |
| 3328 | |
| 3329 | static bool sectransp_false_start(void) |
| 3330 | { |
| 3331 | #if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 |
| 3332 | if(SSLSetSessionOption != NULL) |
| 3333 | return TRUE; |
| 3334 | #endif |
| 3335 | return FALSE; |
| 3336 | } |
| 3337 | |
| 3338 | static ssize_t sectransp_send(struct Curl_easy *data, |
| 3339 | int sockindex, |
| 3340 | const void *mem, |
| 3341 | size_t len, |
| 3342 | CURLcode *curlcode) |
| 3343 | { |
| 3344 | struct connectdata *conn = data->conn; |
| 3345 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
| 3346 | struct ssl_backend_data *backend = connssl->backend; |
| 3347 | size_t processed = 0UL; |
| 3348 | OSStatus err; |
| 3349 | |
| 3350 | /* The SSLWrite() function works a little differently than expected. The |
| 3351 | fourth argument (processed) is currently documented in Apple's |
| 3352 | documentation as: "On return, the length, in bytes, of the data actually |
| 3353 | written." |
| 3354 | |
| 3355 | Now, one could interpret that as "written to the socket," but actually, |
| 3356 | it returns the amount of data that was written to a buffer internal to |
| 3357 | the SSLContextRef instead. So it's possible for SSLWrite() to return |
| 3358 | errSSLWouldBlock and a number of bytes "written" because those bytes were |
| 3359 | encrypted and written to a buffer, not to the socket. |
| 3360 | |
| 3361 | So if this happens, then we need to keep calling SSLWrite() over and |
| 3362 | over again with no new data until it quits returning errSSLWouldBlock. */ |
| 3363 | |
| 3364 | /* Do we have buffered data to write from the last time we were called? */ |
| 3365 | if(backend->ssl_write_buffered_length) { |
| 3366 | /* Write the buffered data: */ |
| 3367 | err = SSLWrite(backend->ssl_ctx, NULL, 0UL, &processed); |
| 3368 | switch(err) { |
| 3369 | case noErr: |
| 3370 | /* processed is always going to be 0 because we didn't write to |
| 3371 | the buffer, so return how much was written to the socket */ |
| 3372 | processed = backend->ssl_write_buffered_length; |
| 3373 | backend->ssl_write_buffered_length = 0UL; |
| 3374 | break; |
| 3375 | case errSSLWouldBlock: /* argh, try again */ |
| 3376 | *curlcode = CURLE_AGAIN; |
| 3377 | return -1L; |
| 3378 | default: |
| 3379 | failf(data, "SSLWrite() returned error %d" , err); |
| 3380 | *curlcode = CURLE_SEND_ERROR; |
| 3381 | return -1L; |
| 3382 | } |
| 3383 | } |
| 3384 | else { |
| 3385 | /* We've got new data to write: */ |
| 3386 | err = SSLWrite(backend->ssl_ctx, mem, len, &processed); |
| 3387 | if(err != noErr) { |
| 3388 | switch(err) { |
| 3389 | case errSSLWouldBlock: |
| 3390 | /* Data was buffered but not sent, we have to tell the caller |
| 3391 | to try sending again, and remember how much was buffered */ |
| 3392 | backend->ssl_write_buffered_length = len; |
| 3393 | *curlcode = CURLE_AGAIN; |
| 3394 | return -1L; |
| 3395 | default: |
| 3396 | failf(data, "SSLWrite() returned error %d" , err); |
| 3397 | *curlcode = CURLE_SEND_ERROR; |
| 3398 | return -1L; |
| 3399 | } |
| 3400 | } |
| 3401 | } |
| 3402 | return (ssize_t)processed; |
| 3403 | } |
| 3404 | |
| 3405 | static ssize_t sectransp_recv(struct Curl_easy *data, |
| 3406 | int num, |
| 3407 | char *buf, |
| 3408 | size_t buffersize, |
| 3409 | CURLcode *curlcode) |
| 3410 | { |
| 3411 | struct connectdata *conn = data->conn; |
| 3412 | struct ssl_connect_data *connssl = &conn->ssl[num]; |
| 3413 | struct ssl_backend_data *backend = connssl->backend; |
| 3414 | size_t processed = 0UL; |
| 3415 | OSStatus err; |
| 3416 | |
| 3417 | again: |
| 3418 | err = SSLRead(backend->ssl_ctx, buf, buffersize, &processed); |
| 3419 | |
| 3420 | if(err != noErr) { |
| 3421 | switch(err) { |
| 3422 | case errSSLWouldBlock: /* return how much we read (if anything) */ |
| 3423 | if(processed) |
| 3424 | return (ssize_t)processed; |
| 3425 | *curlcode = CURLE_AGAIN; |
| 3426 | return -1L; |
| 3427 | break; |
| 3428 | |
| 3429 | /* errSSLClosedGraceful - server gracefully shut down the SSL session |
| 3430 | errSSLClosedNoNotify - server hung up on us instead of sending a |
| 3431 | closure alert notice, read() is returning 0 |
| 3432 | Either way, inform the caller that the server disconnected. */ |
| 3433 | case errSSLClosedGraceful: |
| 3434 | case errSSLClosedNoNotify: |
| 3435 | *curlcode = CURLE_OK; |
| 3436 | return -1L; |
| 3437 | break; |
| 3438 | |
| 3439 | /* The below is errSSLPeerAuthCompleted; it's not defined in |
| 3440 | Leopard's headers */ |
| 3441 | case -9841: |
| 3442 | if((SSL_CONN_CONFIG(CAfile) || SSL_CONN_CONFIG(ca_info_blob)) && |
| 3443 | SSL_CONN_CONFIG(verifypeer)) { |
| 3444 | CURLcode result = verify_cert(data, SSL_CONN_CONFIG(CAfile), |
| 3445 | SSL_CONN_CONFIG(ca_info_blob), |
| 3446 | backend->ssl_ctx); |
| 3447 | if(result) |
| 3448 | return result; |
| 3449 | } |
| 3450 | goto again; |
| 3451 | default: |
| 3452 | failf(data, "SSLRead() return error %d" , err); |
| 3453 | *curlcode = CURLE_RECV_ERROR; |
| 3454 | return -1L; |
| 3455 | break; |
| 3456 | } |
| 3457 | } |
| 3458 | return (ssize_t)processed; |
| 3459 | } |
| 3460 | |
| 3461 | static void *sectransp_get_internals(struct ssl_connect_data *connssl, |
| 3462 | CURLINFO info UNUSED_PARAM) |
| 3463 | { |
| 3464 | struct ssl_backend_data *backend = connssl->backend; |
| 3465 | (void)info; |
| 3466 | return backend->ssl_ctx; |
| 3467 | } |
| 3468 | |
| 3469 | const struct Curl_ssl Curl_ssl_sectransp = { |
| 3470 | { CURLSSLBACKEND_SECURETRANSPORT, "secure-transport" }, /* info */ |
| 3471 | |
| 3472 | SSLSUPP_CAINFO_BLOB | |
| 3473 | SSLSUPP_CERTINFO | |
| 3474 | #ifdef SECTRANSP_PINNEDPUBKEY |
| 3475 | SSLSUPP_PINNEDPUBKEY, |
| 3476 | #else |
| 3477 | 0, |
| 3478 | #endif /* SECTRANSP_PINNEDPUBKEY */ |
| 3479 | |
| 3480 | sizeof(struct ssl_backend_data), |
| 3481 | |
| 3482 | Curl_none_init, /* init */ |
| 3483 | Curl_none_cleanup, /* cleanup */ |
| 3484 | sectransp_version, /* version */ |
| 3485 | sectransp_check_cxn, /* check_cxn */ |
| 3486 | sectransp_shutdown, /* shutdown */ |
| 3487 | sectransp_data_pending, /* data_pending */ |
| 3488 | sectransp_random, /* random */ |
| 3489 | Curl_none_cert_status_request, /* cert_status_request */ |
| 3490 | sectransp_connect, /* connect */ |
| 3491 | sectransp_connect_nonblocking, /* connect_nonblocking */ |
| 3492 | Curl_ssl_getsock, /* getsock */ |
| 3493 | sectransp_get_internals, /* get_internals */ |
| 3494 | sectransp_close, /* close_one */ |
| 3495 | Curl_none_close_all, /* close_all */ |
| 3496 | sectransp_session_free, /* session_free */ |
| 3497 | Curl_none_set_engine, /* set_engine */ |
| 3498 | Curl_none_set_engine_default, /* set_engine_default */ |
| 3499 | Curl_none_engines_list, /* engines_list */ |
| 3500 | sectransp_false_start, /* false_start */ |
| 3501 | sectransp_sha256sum, /* sha256sum */ |
| 3502 | NULL, /* associate_connection */ |
| 3503 | NULL /* disassociate_connection */ |
| 3504 | }; |
| 3505 | |
| 3506 | #ifdef __clang__ |
| 3507 | #pragma clang diagnostic pop |
| 3508 | #endif |
| 3509 | |
| 3510 | #endif /* USE_SECTRANSP */ |
| 3511 | |