1 | /*************************************************************************** |
2 | * _ _ ____ _ |
3 | * Project ___| | | | _ \| | |
4 | * / __| | | | |_) | | |
5 | * | (__| |_| | _ <| |___ |
6 | * \___|\___/|_| \_\_____| |
7 | * |
8 | * Copyright (C) 2012 - 2021, Daniel Stenberg, <daniel@haxx.se>, et al. |
9 | * Copyright (C) 2012 - 2017, Nick Zitzmann, <nickzman@gmail.com>. |
10 | * |
11 | * This software is licensed as described in the file COPYING, which |
12 | * you should have received as part of this distribution. The terms |
13 | * are also available at https://curl.se/docs/copyright.html. |
14 | * |
15 | * You may opt to use, copy, modify, merge, publish, distribute and/or sell |
16 | * copies of the Software, and permit persons to whom the Software is |
17 | * furnished to do so, under the terms of the COPYING file. |
18 | * |
19 | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
20 | * KIND, either express or implied. |
21 | * |
22 | ***************************************************************************/ |
23 | |
24 | /* |
25 | * Source file for all iOS and macOS SecureTransport-specific code for the |
26 | * TLS/SSL layer. No code but vtls.c should ever call or use these functions. |
27 | */ |
28 | |
29 | #include "curl_setup.h" |
30 | |
31 | #include "urldata.h" /* for the Curl_easy definition */ |
32 | #include "curl_base64.h" |
33 | #include "strtok.h" |
34 | #include "multiif.h" |
35 | #include "strcase.h" |
36 | #include "x509asn1.h" |
37 | #include "strerror.h" |
38 | |
39 | #ifdef USE_SECTRANSP |
40 | |
41 | #ifdef __clang__ |
42 | #pragma clang diagnostic push |
43 | #pragma clang diagnostic ignored "-Wtautological-pointer-compare" |
44 | #endif /* __clang__ */ |
45 | |
46 | #include <limits.h> |
47 | |
48 | #include <Security/Security.h> |
49 | /* For some reason, when building for iOS, the omnibus header above does |
50 | * not include SecureTransport.h as of iOS SDK 5.1. */ |
51 | #include <Security/SecureTransport.h> |
52 | #include <CoreFoundation/CoreFoundation.h> |
53 | #include <CommonCrypto/CommonDigest.h> |
54 | |
55 | /* The Security framework has changed greatly between iOS and different macOS |
56 | versions, and we will try to support as many of them as we can (back to |
57 | Leopard and iOS 5) by using macros and weak-linking. |
58 | |
59 | In general, you want to build this using the most recent OS SDK, since some |
60 | features require curl to be built against the latest SDK. TLS 1.1 and 1.2 |
61 | support, for instance, require the macOS 10.8 SDK or later. TLS 1.3 |
62 | requires the macOS 10.13 or iOS 11 SDK or later. */ |
63 | #if (TARGET_OS_MAC && !(TARGET_OS_EMBEDDED || TARGET_OS_IPHONE)) |
64 | |
65 | #if MAC_OS_X_VERSION_MAX_ALLOWED < 1050 |
66 | #error "The Secure Transport back-end requires Leopard or later." |
67 | #endif /* MAC_OS_X_VERSION_MAX_ALLOWED < 1050 */ |
68 | |
69 | #define CURL_BUILD_IOS 0 |
70 | #define CURL_BUILD_IOS_7 0 |
71 | #define CURL_BUILD_IOS_9 0 |
72 | #define CURL_BUILD_IOS_11 0 |
73 | #define CURL_BUILD_IOS_13 0 |
74 | #define CURL_BUILD_MAC 1 |
75 | /* This is the maximum API level we are allowed to use when building: */ |
76 | #define CURL_BUILD_MAC_10_5 MAC_OS_X_VERSION_MAX_ALLOWED >= 1050 |
77 | #define CURL_BUILD_MAC_10_6 MAC_OS_X_VERSION_MAX_ALLOWED >= 1060 |
78 | #define CURL_BUILD_MAC_10_7 MAC_OS_X_VERSION_MAX_ALLOWED >= 1070 |
79 | #define CURL_BUILD_MAC_10_8 MAC_OS_X_VERSION_MAX_ALLOWED >= 1080 |
80 | #define CURL_BUILD_MAC_10_9 MAC_OS_X_VERSION_MAX_ALLOWED >= 1090 |
81 | #define CURL_BUILD_MAC_10_11 MAC_OS_X_VERSION_MAX_ALLOWED >= 101100 |
82 | #define CURL_BUILD_MAC_10_13 MAC_OS_X_VERSION_MAX_ALLOWED >= 101300 |
83 | #define CURL_BUILD_MAC_10_15 MAC_OS_X_VERSION_MAX_ALLOWED >= 101500 |
84 | /* These macros mean "the following code is present to allow runtime backward |
85 | compatibility with at least this cat or earlier": |
86 | (You set this at build-time using the compiler command line option |
87 | "-mmacosx-version-min.") */ |
88 | #define CURL_SUPPORT_MAC_10_5 MAC_OS_X_VERSION_MIN_REQUIRED <= 1050 |
89 | #define CURL_SUPPORT_MAC_10_6 MAC_OS_X_VERSION_MIN_REQUIRED <= 1060 |
90 | #define CURL_SUPPORT_MAC_10_7 MAC_OS_X_VERSION_MIN_REQUIRED <= 1070 |
91 | #define CURL_SUPPORT_MAC_10_8 MAC_OS_X_VERSION_MIN_REQUIRED <= 1080 |
92 | #define CURL_SUPPORT_MAC_10_9 MAC_OS_X_VERSION_MIN_REQUIRED <= 1090 |
93 | |
94 | #elif TARGET_OS_EMBEDDED || TARGET_OS_IPHONE |
95 | #define CURL_BUILD_IOS 1 |
96 | #define CURL_BUILD_IOS_7 __IPHONE_OS_VERSION_MAX_ALLOWED >= 70000 |
97 | #define CURL_BUILD_IOS_9 __IPHONE_OS_VERSION_MAX_ALLOWED >= 90000 |
98 | #define CURL_BUILD_IOS_11 __IPHONE_OS_VERSION_MAX_ALLOWED >= 110000 |
99 | #define CURL_BUILD_IOS_13 __IPHONE_OS_VERSION_MAX_ALLOWED >= 130000 |
100 | #define CURL_BUILD_MAC 0 |
101 | #define CURL_BUILD_MAC_10_5 0 |
102 | #define CURL_BUILD_MAC_10_6 0 |
103 | #define CURL_BUILD_MAC_10_7 0 |
104 | #define CURL_BUILD_MAC_10_8 0 |
105 | #define CURL_BUILD_MAC_10_9 0 |
106 | #define CURL_BUILD_MAC_10_11 0 |
107 | #define CURL_BUILD_MAC_10_13 0 |
108 | #define CURL_BUILD_MAC_10_15 0 |
109 | #define CURL_SUPPORT_MAC_10_5 0 |
110 | #define CURL_SUPPORT_MAC_10_6 0 |
111 | #define CURL_SUPPORT_MAC_10_7 0 |
112 | #define CURL_SUPPORT_MAC_10_8 0 |
113 | #define CURL_SUPPORT_MAC_10_9 0 |
114 | |
115 | #else |
116 | #error "The Secure Transport back-end requires iOS or macOS." |
117 | #endif /* (TARGET_OS_MAC && !(TARGET_OS_EMBEDDED || TARGET_OS_IPHONE)) */ |
118 | |
119 | #if CURL_BUILD_MAC |
120 | #include <sys/sysctl.h> |
121 | #endif /* CURL_BUILD_MAC */ |
122 | |
123 | #include "urldata.h" |
124 | #include "sendf.h" |
125 | #include "inet_pton.h" |
126 | #include "connect.h" |
127 | #include "select.h" |
128 | #include "vtls.h" |
129 | #include "sectransp.h" |
130 | #include "curl_printf.h" |
131 | #include "strdup.h" |
132 | |
133 | #include "curl_memory.h" |
134 | /* The last #include file should be: */ |
135 | #include "memdebug.h" |
136 | |
137 | /* From MacTypes.h (which we can't include because it isn't present in iOS: */ |
138 | #define ioErr -36 |
139 | #define paramErr -50 |
140 | |
141 | struct ssl_backend_data { |
142 | SSLContextRef ssl_ctx; |
143 | curl_socket_t ssl_sockfd; |
144 | bool ssl_direction; /* true if writing, false if reading */ |
145 | size_t ssl_write_buffered_length; |
146 | }; |
147 | |
148 | struct st_cipher { |
149 | const char *name; /* Cipher suite IANA name. It starts with "TLS_" prefix */ |
150 | const char *alias_name; /* Alias name is the same as OpenSSL cipher name */ |
151 | SSLCipherSuite num; /* Cipher suite code/number defined in IANA registry */ |
152 | bool weak; /* Flag to mark cipher as weak based on previous implementation |
153 | of Secure Transport back-end by CURL */ |
154 | }; |
155 | |
156 | /* Macro to initialize st_cipher data structure: stringify id to name, cipher |
157 | number/id, 'weak' suite flag |
158 | */ |
159 | #define CIPHER_DEF(num, alias, weak) \ |
160 | { #num, alias, num, weak } |
161 | |
162 | /* |
163 | Macro to initialize st_cipher data structure with name, code (IANA cipher |
164 | number/id value), and 'weak' suite flag. The first 28 cipher suite numbers |
165 | have the same IANA code for both SSL and TLS standards: numbers 0x0000 to |
166 | 0x001B. They have different names though. The first 4 letters of the cipher |
167 | suite name are the protocol name: "SSL_" or "TLS_", rest of the IANA name is |
168 | the same for both SSL and TLS cipher suite name. |
169 | The second part of the problem is that macOS/iOS SDKs don't define all TLS |
170 | codes but only 12 of them. The SDK defines all SSL codes though, i.e. SSL_NUM |
171 | constant is always defined for those 28 ciphers while TLS_NUM is defined only |
172 | for 12 of the first 28 ciphers. Those 12 TLS cipher codes match to |
173 | corresponding SSL enum value and represent the same cipher suite. Therefore |
174 | we'll use the SSL enum value for those cipher suites because it is defined |
175 | for all 28 of them. |
176 | We make internal data consistent and based on TLS names, i.e. all st_cipher |
177 | item names start with the "TLS_" prefix. |
178 | Summarizing all the above, those 28 first ciphers are presented in our table |
179 | with both TLS and SSL names. Their cipher numbers are assigned based on the |
180 | SDK enum value for the SSL cipher, which matches to IANA TLS number. |
181 | */ |
182 | #define CIPHER_DEF_SSLTLS(num_wo_prefix, alias, weak) \ |
183 | { "TLS_" #num_wo_prefix, alias, SSL_##num_wo_prefix, weak } |
184 | |
185 | /* |
186 | Cipher suites were marked as weak based on the following: |
187 | RC4 encryption - rfc7465, the document contains a list of deprecated ciphers. |
188 | Marked in the code below as weak. |
189 | RC2 encryption - many mentions, was found vulnerable to a relatively easy |
190 | attack https://link.springer.com/chapter/10.1007%2F3-540-69710-1_14 |
191 | Marked in the code below as weak. |
192 | DES and IDEA encryption - rfc5469, has a list of deprecated ciphers. |
193 | Marked in the code below as weak. |
194 | Anonymous Diffie-Hellman authentication and anonymous elliptic curve |
195 | Diffie-Hellman - vulnerable to a man-in-the-middle attack. Deprecated by |
196 | RFC 4346 aka TLS 1.1 (section A.5, page 60) |
197 | Null bulk encryption suites - not encrypted communication |
198 | Export ciphers, i.e. ciphers with restrictions to be used outside the US for |
199 | software exported to some countries, they were excluded from TLS 1.1 |
200 | version. More precisely, they were noted as ciphers which MUST NOT be |
201 | negotiated in RFC 4346 aka TLS 1.1 (section A.5, pages 60 and 61). |
202 | All of those filters were considered weak because they contain a weak |
203 | algorithm like DES, RC2 or RC4, and already considered weak by other |
204 | criteria. |
205 | 3DES - NIST deprecated it and is going to retire it by 2023 |
206 | https://csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA |
207 | OpenSSL https://www.openssl.org/blog/blog/2016/08/24/sweet32/ also |
208 | deprecated those ciphers. Some other libraries also consider it |
209 | vulnerable or at least not strong enough. |
210 | |
211 | CBC ciphers are vulnerable with SSL3.0 and TLS1.0: |
212 | https://www.cisco.com/c/en/us/support/docs/security/email-security-appliance |
213 | /118518-technote-esa-00.html |
214 | We don't take care of this issue because it is resolved by later TLS |
215 | versions and for us, it requires more complicated checks, we need to |
216 | check a protocol version also. Vulnerability doesn't look very critical |
217 | and we do not filter out those cipher suites. |
218 | */ |
219 | |
220 | #define CIPHER_WEAK_NOT_ENCRYPTED TRUE |
221 | #define CIPHER_WEAK_RC_ENCRYPTION TRUE |
222 | #define CIPHER_WEAK_DES_ENCRYPTION TRUE |
223 | #define CIPHER_WEAK_IDEA_ENCRYPTION TRUE |
224 | #define CIPHER_WEAK_ANON_AUTH TRUE |
225 | #define CIPHER_WEAK_3DES_ENCRYPTION TRUE |
226 | #define CIPHER_STRONG_ENOUGH FALSE |
227 | |
228 | /* Please do not change the order of the first ciphers available for SSL. |
229 | Do not insert and do not delete any of them. Code below |
230 | depends on their order and continuity. |
231 | If you add a new cipher, please maintain order by number, i.e. |
232 | insert in between existing items to appropriate place based on |
233 | cipher suite IANA number |
234 | */ |
235 | const static struct st_cipher ciphertable[] = { |
236 | /* SSL version 3.0 and initial TLS 1.0 cipher suites. |
237 | Defined since SDK 10.2.8 */ |
238 | CIPHER_DEF_SSLTLS(NULL_WITH_NULL_NULL, /* 0x0000 */ |
239 | NULL, |
240 | CIPHER_WEAK_NOT_ENCRYPTED), |
241 | CIPHER_DEF_SSLTLS(RSA_WITH_NULL_MD5, /* 0x0001 */ |
242 | "NULL-MD5" , |
243 | CIPHER_WEAK_NOT_ENCRYPTED), |
244 | CIPHER_DEF_SSLTLS(RSA_WITH_NULL_SHA, /* 0x0002 */ |
245 | "NULL-SHA" , |
246 | CIPHER_WEAK_NOT_ENCRYPTED), |
247 | CIPHER_DEF_SSLTLS(RSA_EXPORT_WITH_RC4_40_MD5, /* 0x0003 */ |
248 | "EXP-RC4-MD5" , |
249 | CIPHER_WEAK_RC_ENCRYPTION), |
250 | CIPHER_DEF_SSLTLS(RSA_WITH_RC4_128_MD5, /* 0x0004 */ |
251 | "RC4-MD5" , |
252 | CIPHER_WEAK_RC_ENCRYPTION), |
253 | CIPHER_DEF_SSLTLS(RSA_WITH_RC4_128_SHA, /* 0x0005 */ |
254 | "RC4-SHA" , |
255 | CIPHER_WEAK_RC_ENCRYPTION), |
256 | CIPHER_DEF_SSLTLS(RSA_EXPORT_WITH_RC2_CBC_40_MD5, /* 0x0006 */ |
257 | "EXP-RC2-CBC-MD5" , |
258 | CIPHER_WEAK_RC_ENCRYPTION), |
259 | CIPHER_DEF_SSLTLS(RSA_WITH_IDEA_CBC_SHA, /* 0x0007 */ |
260 | "IDEA-CBC-SHA" , |
261 | CIPHER_WEAK_IDEA_ENCRYPTION), |
262 | CIPHER_DEF_SSLTLS(RSA_EXPORT_WITH_DES40_CBC_SHA, /* 0x0008 */ |
263 | "EXP-DES-CBC-SHA" , |
264 | CIPHER_WEAK_DES_ENCRYPTION), |
265 | CIPHER_DEF_SSLTLS(RSA_WITH_DES_CBC_SHA, /* 0x0009 */ |
266 | "DES-CBC-SHA" , |
267 | CIPHER_WEAK_DES_ENCRYPTION), |
268 | CIPHER_DEF_SSLTLS(RSA_WITH_3DES_EDE_CBC_SHA, /* 0x000A */ |
269 | "DES-CBC3-SHA" , |
270 | CIPHER_WEAK_3DES_ENCRYPTION), |
271 | CIPHER_DEF_SSLTLS(DH_DSS_EXPORT_WITH_DES40_CBC_SHA, /* 0x000B */ |
272 | "EXP-DH-DSS-DES-CBC-SHA" , |
273 | CIPHER_WEAK_DES_ENCRYPTION), |
274 | CIPHER_DEF_SSLTLS(DH_DSS_WITH_DES_CBC_SHA, /* 0x000C */ |
275 | "DH-DSS-DES-CBC-SHA" , |
276 | CIPHER_WEAK_DES_ENCRYPTION), |
277 | CIPHER_DEF_SSLTLS(DH_DSS_WITH_3DES_EDE_CBC_SHA, /* 0x000D */ |
278 | "DH-DSS-DES-CBC3-SHA" , |
279 | CIPHER_WEAK_3DES_ENCRYPTION), |
280 | CIPHER_DEF_SSLTLS(DH_RSA_EXPORT_WITH_DES40_CBC_SHA, /* 0x000E */ |
281 | "EXP-DH-RSA-DES-CBC-SHA" , |
282 | CIPHER_WEAK_DES_ENCRYPTION), |
283 | CIPHER_DEF_SSLTLS(DH_RSA_WITH_DES_CBC_SHA, /* 0x000F */ |
284 | "DH-RSA-DES-CBC-SHA" , |
285 | CIPHER_WEAK_DES_ENCRYPTION), |
286 | CIPHER_DEF_SSLTLS(DH_RSA_WITH_3DES_EDE_CBC_SHA, /* 0x0010 */ |
287 | "DH-RSA-DES-CBC3-SHA" , |
288 | CIPHER_WEAK_3DES_ENCRYPTION), |
289 | CIPHER_DEF_SSLTLS(DHE_DSS_EXPORT_WITH_DES40_CBC_SHA, /* 0x0011 */ |
290 | "EXP-EDH-DSS-DES-CBC-SHA" , |
291 | CIPHER_WEAK_DES_ENCRYPTION), |
292 | CIPHER_DEF_SSLTLS(DHE_DSS_WITH_DES_CBC_SHA, /* 0x0012 */ |
293 | "EDH-DSS-CBC-SHA" , |
294 | CIPHER_WEAK_DES_ENCRYPTION), |
295 | CIPHER_DEF_SSLTLS(DHE_DSS_WITH_3DES_EDE_CBC_SHA, /* 0x0013 */ |
296 | "DHE-DSS-DES-CBC3-SHA" , |
297 | CIPHER_WEAK_3DES_ENCRYPTION), |
298 | CIPHER_DEF_SSLTLS(DHE_RSA_EXPORT_WITH_DES40_CBC_SHA, /* 0x0014 */ |
299 | "EXP-EDH-RSA-DES-CBC-SHA" , |
300 | CIPHER_WEAK_DES_ENCRYPTION), |
301 | CIPHER_DEF_SSLTLS(DHE_RSA_WITH_DES_CBC_SHA, /* 0x0015 */ |
302 | "EDH-RSA-DES-CBC-SHA" , |
303 | CIPHER_WEAK_DES_ENCRYPTION), |
304 | CIPHER_DEF_SSLTLS(DHE_RSA_WITH_3DES_EDE_CBC_SHA, /* 0x0016 */ |
305 | "DHE-RSA-DES-CBC3-SHA" , |
306 | CIPHER_WEAK_3DES_ENCRYPTION), |
307 | CIPHER_DEF_SSLTLS(DH_anon_EXPORT_WITH_RC4_40_MD5, /* 0x0017 */ |
308 | "EXP-ADH-RC4-MD5" , |
309 | CIPHER_WEAK_ANON_AUTH), |
310 | CIPHER_DEF_SSLTLS(DH_anon_WITH_RC4_128_MD5, /* 0x0018 */ |
311 | "ADH-RC4-MD5" , |
312 | CIPHER_WEAK_ANON_AUTH), |
313 | CIPHER_DEF_SSLTLS(DH_anon_EXPORT_WITH_DES40_CBC_SHA, /* 0x0019 */ |
314 | "EXP-ADH-DES-CBC-SHA" , |
315 | CIPHER_WEAK_ANON_AUTH), |
316 | CIPHER_DEF_SSLTLS(DH_anon_WITH_DES_CBC_SHA, /* 0x001A */ |
317 | "ADH-DES-CBC-SHA" , |
318 | CIPHER_WEAK_ANON_AUTH), |
319 | CIPHER_DEF_SSLTLS(DH_anon_WITH_3DES_EDE_CBC_SHA, /* 0x001B */ |
320 | "ADH-DES-CBC3-SHA" , |
321 | CIPHER_WEAK_3DES_ENCRYPTION), |
322 | CIPHER_DEF(SSL_FORTEZZA_DMS_WITH_NULL_SHA, /* 0x001C */ |
323 | NULL, |
324 | CIPHER_WEAK_NOT_ENCRYPTED), |
325 | CIPHER_DEF(SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA, /* 0x001D */ |
326 | NULL, |
327 | CIPHER_STRONG_ENOUGH), |
328 | |
329 | #if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 |
330 | /* RFC 4785 - Pre-Shared Key (PSK) Ciphersuites with NULL Encryption */ |
331 | CIPHER_DEF(TLS_PSK_WITH_NULL_SHA, /* 0x002C */ |
332 | "PSK-NULL-SHA" , |
333 | CIPHER_WEAK_NOT_ENCRYPTED), |
334 | CIPHER_DEF(TLS_DHE_PSK_WITH_NULL_SHA, /* 0x002D */ |
335 | "DHE-PSK-NULL-SHA" , |
336 | CIPHER_WEAK_NOT_ENCRYPTED), |
337 | CIPHER_DEF(TLS_RSA_PSK_WITH_NULL_SHA, /* 0x002E */ |
338 | "RSA-PSK-NULL-SHA" , |
339 | CIPHER_WEAK_NOT_ENCRYPTED), |
340 | #endif /* CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 */ |
341 | |
342 | /* TLS addenda using AES, per RFC 3268. Defined since SDK 10.4u */ |
343 | CIPHER_DEF(TLS_RSA_WITH_AES_128_CBC_SHA, /* 0x002F */ |
344 | "AES128-SHA" , |
345 | CIPHER_STRONG_ENOUGH), |
346 | CIPHER_DEF(TLS_DH_DSS_WITH_AES_128_CBC_SHA, /* 0x0030 */ |
347 | "DH-DSS-AES128-SHA" , |
348 | CIPHER_STRONG_ENOUGH), |
349 | CIPHER_DEF(TLS_DH_RSA_WITH_AES_128_CBC_SHA, /* 0x0031 */ |
350 | "DH-RSA-AES128-SHA" , |
351 | CIPHER_STRONG_ENOUGH), |
352 | CIPHER_DEF(TLS_DHE_DSS_WITH_AES_128_CBC_SHA, /* 0x0032 */ |
353 | "DHE-DSS-AES128-SHA" , |
354 | CIPHER_STRONG_ENOUGH), |
355 | CIPHER_DEF(TLS_DHE_RSA_WITH_AES_128_CBC_SHA, /* 0x0033 */ |
356 | "DHE-RSA-AES128-SHA" , |
357 | CIPHER_STRONG_ENOUGH), |
358 | CIPHER_DEF(TLS_DH_anon_WITH_AES_128_CBC_SHA, /* 0x0034 */ |
359 | "ADH-AES128-SHA" , |
360 | CIPHER_WEAK_ANON_AUTH), |
361 | CIPHER_DEF(TLS_RSA_WITH_AES_256_CBC_SHA, /* 0x0035 */ |
362 | "AES256-SHA" , |
363 | CIPHER_STRONG_ENOUGH), |
364 | CIPHER_DEF(TLS_DH_DSS_WITH_AES_256_CBC_SHA, /* 0x0036 */ |
365 | "DH-DSS-AES256-SHA" , |
366 | CIPHER_STRONG_ENOUGH), |
367 | CIPHER_DEF(TLS_DH_RSA_WITH_AES_256_CBC_SHA, /* 0x0037 */ |
368 | "DH-RSA-AES256-SHA" , |
369 | CIPHER_STRONG_ENOUGH), |
370 | CIPHER_DEF(TLS_DHE_DSS_WITH_AES_256_CBC_SHA, /* 0x0038 */ |
371 | "DHE-DSS-AES256-SHA" , |
372 | CIPHER_STRONG_ENOUGH), |
373 | CIPHER_DEF(TLS_DHE_RSA_WITH_AES_256_CBC_SHA, /* 0x0039 */ |
374 | "DHE-RSA-AES256-SHA" , |
375 | CIPHER_STRONG_ENOUGH), |
376 | CIPHER_DEF(TLS_DH_anon_WITH_AES_256_CBC_SHA, /* 0x003A */ |
377 | "ADH-AES256-SHA" , |
378 | CIPHER_WEAK_ANON_AUTH), |
379 | |
380 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
381 | /* TLS 1.2 addenda, RFC 5246 */ |
382 | /* Server provided RSA certificate for key exchange. */ |
383 | CIPHER_DEF(TLS_RSA_WITH_NULL_SHA256, /* 0x003B */ |
384 | "NULL-SHA256" , |
385 | CIPHER_WEAK_NOT_ENCRYPTED), |
386 | CIPHER_DEF(TLS_RSA_WITH_AES_128_CBC_SHA256, /* 0x003C */ |
387 | "AES128-SHA256" , |
388 | CIPHER_STRONG_ENOUGH), |
389 | CIPHER_DEF(TLS_RSA_WITH_AES_256_CBC_SHA256, /* 0x003D */ |
390 | "AES256-SHA256" , |
391 | CIPHER_STRONG_ENOUGH), |
392 | /* Server-authenticated (and optionally client-authenticated) |
393 | Diffie-Hellman. */ |
394 | CIPHER_DEF(TLS_DH_DSS_WITH_AES_128_CBC_SHA256, /* 0x003E */ |
395 | "DH-DSS-AES128-SHA256" , |
396 | CIPHER_STRONG_ENOUGH), |
397 | CIPHER_DEF(TLS_DH_RSA_WITH_AES_128_CBC_SHA256, /* 0x003F */ |
398 | "DH-RSA-AES128-SHA256" , |
399 | CIPHER_STRONG_ENOUGH), |
400 | CIPHER_DEF(TLS_DHE_DSS_WITH_AES_128_CBC_SHA256, /* 0x0040 */ |
401 | "DHE-DSS-AES128-SHA256" , |
402 | CIPHER_STRONG_ENOUGH), |
403 | |
404 | /* TLS 1.2 addenda, RFC 5246 */ |
405 | CIPHER_DEF(TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, /* 0x0067 */ |
406 | "DHE-RSA-AES128-SHA256" , |
407 | CIPHER_STRONG_ENOUGH), |
408 | CIPHER_DEF(TLS_DH_DSS_WITH_AES_256_CBC_SHA256, /* 0x0068 */ |
409 | "DH-DSS-AES256-SHA256" , |
410 | CIPHER_STRONG_ENOUGH), |
411 | CIPHER_DEF(TLS_DH_RSA_WITH_AES_256_CBC_SHA256, /* 0x0069 */ |
412 | "DH-RSA-AES256-SHA256" , |
413 | CIPHER_STRONG_ENOUGH), |
414 | CIPHER_DEF(TLS_DHE_DSS_WITH_AES_256_CBC_SHA256, /* 0x006A */ |
415 | "DHE-DSS-AES256-SHA256" , |
416 | CIPHER_STRONG_ENOUGH), |
417 | CIPHER_DEF(TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, /* 0x006B */ |
418 | "DHE-RSA-AES256-SHA256" , |
419 | CIPHER_STRONG_ENOUGH), |
420 | CIPHER_DEF(TLS_DH_anon_WITH_AES_128_CBC_SHA256, /* 0x006C */ |
421 | "ADH-AES128-SHA256" , |
422 | CIPHER_WEAK_ANON_AUTH), |
423 | CIPHER_DEF(TLS_DH_anon_WITH_AES_256_CBC_SHA256, /* 0x006D */ |
424 | "ADH-AES256-SHA256" , |
425 | CIPHER_WEAK_ANON_AUTH), |
426 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
427 | |
428 | #if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 |
429 | /* Addendum from RFC 4279, TLS PSK */ |
430 | CIPHER_DEF(TLS_PSK_WITH_RC4_128_SHA, /* 0x008A */ |
431 | "PSK-RC4-SHA" , |
432 | CIPHER_WEAK_RC_ENCRYPTION), |
433 | CIPHER_DEF(TLS_PSK_WITH_3DES_EDE_CBC_SHA, /* 0x008B */ |
434 | "PSK-3DES-EDE-CBC-SHA" , |
435 | CIPHER_WEAK_3DES_ENCRYPTION), |
436 | CIPHER_DEF(TLS_PSK_WITH_AES_128_CBC_SHA, /* 0x008C */ |
437 | "PSK-AES128-CBC-SHA" , |
438 | CIPHER_STRONG_ENOUGH), |
439 | CIPHER_DEF(TLS_PSK_WITH_AES_256_CBC_SHA, /* 0x008D */ |
440 | "PSK-AES256-CBC-SHA" , |
441 | CIPHER_STRONG_ENOUGH), |
442 | CIPHER_DEF(TLS_DHE_PSK_WITH_RC4_128_SHA, /* 0x008E */ |
443 | "DHE-PSK-RC4-SHA" , |
444 | CIPHER_WEAK_RC_ENCRYPTION), |
445 | CIPHER_DEF(TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA, /* 0x008F */ |
446 | "DHE-PSK-3DES-EDE-CBC-SHA" , |
447 | CIPHER_WEAK_3DES_ENCRYPTION), |
448 | CIPHER_DEF(TLS_DHE_PSK_WITH_AES_128_CBC_SHA, /* 0x0090 */ |
449 | "DHE-PSK-AES128-CBC-SHA" , |
450 | CIPHER_STRONG_ENOUGH), |
451 | CIPHER_DEF(TLS_DHE_PSK_WITH_AES_256_CBC_SHA, /* 0x0091 */ |
452 | "DHE-PSK-AES256-CBC-SHA" , |
453 | CIPHER_STRONG_ENOUGH), |
454 | CIPHER_DEF(TLS_RSA_PSK_WITH_RC4_128_SHA, /* 0x0092 */ |
455 | "RSA-PSK-RC4-SHA" , |
456 | CIPHER_WEAK_RC_ENCRYPTION), |
457 | CIPHER_DEF(TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA, /* 0x0093 */ |
458 | "RSA-PSK-3DES-EDE-CBC-SHA" , |
459 | CIPHER_WEAK_3DES_ENCRYPTION), |
460 | CIPHER_DEF(TLS_RSA_PSK_WITH_AES_128_CBC_SHA, /* 0x0094 */ |
461 | "RSA-PSK-AES128-CBC-SHA" , |
462 | CIPHER_STRONG_ENOUGH), |
463 | CIPHER_DEF(TLS_RSA_PSK_WITH_AES_256_CBC_SHA, /* 0x0095 */ |
464 | "RSA-PSK-AES256-CBC-SHA" , |
465 | CIPHER_STRONG_ENOUGH), |
466 | #endif /* CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 */ |
467 | |
468 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
469 | /* Addenda from rfc 5288 AES Galois Counter Mode (GCM) Cipher Suites |
470 | for TLS. */ |
471 | CIPHER_DEF(TLS_RSA_WITH_AES_128_GCM_SHA256, /* 0x009C */ |
472 | "AES128-GCM-SHA256" , |
473 | CIPHER_STRONG_ENOUGH), |
474 | CIPHER_DEF(TLS_RSA_WITH_AES_256_GCM_SHA384, /* 0x009D */ |
475 | "AES256-GCM-SHA384" , |
476 | CIPHER_STRONG_ENOUGH), |
477 | CIPHER_DEF(TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, /* 0x009E */ |
478 | "DHE-RSA-AES128-GCM-SHA256" , |
479 | CIPHER_STRONG_ENOUGH), |
480 | CIPHER_DEF(TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, /* 0x009F */ |
481 | "DHE-RSA-AES256-GCM-SHA384" , |
482 | CIPHER_STRONG_ENOUGH), |
483 | CIPHER_DEF(TLS_DH_RSA_WITH_AES_128_GCM_SHA256, /* 0x00A0 */ |
484 | "DH-RSA-AES128-GCM-SHA256" , |
485 | CIPHER_STRONG_ENOUGH), |
486 | CIPHER_DEF(TLS_DH_RSA_WITH_AES_256_GCM_SHA384, /* 0x00A1 */ |
487 | "DH-RSA-AES256-GCM-SHA384" , |
488 | CIPHER_STRONG_ENOUGH), |
489 | CIPHER_DEF(TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, /* 0x00A2 */ |
490 | "DHE-DSS-AES128-GCM-SHA256" , |
491 | CIPHER_STRONG_ENOUGH), |
492 | CIPHER_DEF(TLS_DHE_DSS_WITH_AES_256_GCM_SHA384, /* 0x00A3 */ |
493 | "DHE-DSS-AES256-GCM-SHA384" , |
494 | CIPHER_STRONG_ENOUGH), |
495 | CIPHER_DEF(TLS_DH_DSS_WITH_AES_128_GCM_SHA256, /* 0x00A4 */ |
496 | "DH-DSS-AES128-GCM-SHA256" , |
497 | CIPHER_STRONG_ENOUGH), |
498 | CIPHER_DEF(TLS_DH_DSS_WITH_AES_256_GCM_SHA384, /* 0x00A5 */ |
499 | "DH-DSS-AES256-GCM-SHA384" , |
500 | CIPHER_STRONG_ENOUGH), |
501 | CIPHER_DEF(TLS_DH_anon_WITH_AES_128_GCM_SHA256, /* 0x00A6 */ |
502 | "ADH-AES128-GCM-SHA256" , |
503 | CIPHER_WEAK_ANON_AUTH), |
504 | CIPHER_DEF(TLS_DH_anon_WITH_AES_256_GCM_SHA384, /* 0x00A7 */ |
505 | "ADH-AES256-GCM-SHA384" , |
506 | CIPHER_WEAK_ANON_AUTH), |
507 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
508 | |
509 | #if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 |
510 | /* RFC 5487 - PSK with SHA-256/384 and AES GCM */ |
511 | CIPHER_DEF(TLS_PSK_WITH_AES_128_GCM_SHA256, /* 0x00A8 */ |
512 | "PSK-AES128-GCM-SHA256" , |
513 | CIPHER_STRONG_ENOUGH), |
514 | CIPHER_DEF(TLS_PSK_WITH_AES_256_GCM_SHA384, /* 0x00A9 */ |
515 | "PSK-AES256-GCM-SHA384" , |
516 | CIPHER_STRONG_ENOUGH), |
517 | CIPHER_DEF(TLS_DHE_PSK_WITH_AES_128_GCM_SHA256, /* 0x00AA */ |
518 | "DHE-PSK-AES128-GCM-SHA256" , |
519 | CIPHER_STRONG_ENOUGH), |
520 | CIPHER_DEF(TLS_DHE_PSK_WITH_AES_256_GCM_SHA384, /* 0x00AB */ |
521 | "DHE-PSK-AES256-GCM-SHA384" , |
522 | CIPHER_STRONG_ENOUGH), |
523 | CIPHER_DEF(TLS_RSA_PSK_WITH_AES_128_GCM_SHA256, /* 0x00AC */ |
524 | "RSA-PSK-AES128-GCM-SHA256" , |
525 | CIPHER_STRONG_ENOUGH), |
526 | CIPHER_DEF(TLS_RSA_PSK_WITH_AES_256_GCM_SHA384, /* 0x00AD */ |
527 | "RSA-PSK-AES256-GCM-SHA384" , |
528 | CIPHER_STRONG_ENOUGH), |
529 | CIPHER_DEF(TLS_PSK_WITH_AES_128_CBC_SHA256, /* 0x00AE */ |
530 | "PSK-AES128-CBC-SHA256" , |
531 | CIPHER_STRONG_ENOUGH), |
532 | CIPHER_DEF(TLS_PSK_WITH_AES_256_CBC_SHA384, /* 0x00AF */ |
533 | "PSK-AES256-CBC-SHA384" , |
534 | CIPHER_STRONG_ENOUGH), |
535 | CIPHER_DEF(TLS_PSK_WITH_NULL_SHA256, /* 0x00B0 */ |
536 | "PSK-NULL-SHA256" , |
537 | CIPHER_WEAK_NOT_ENCRYPTED), |
538 | CIPHER_DEF(TLS_PSK_WITH_NULL_SHA384, /* 0x00B1 */ |
539 | "PSK-NULL-SHA384" , |
540 | CIPHER_WEAK_NOT_ENCRYPTED), |
541 | CIPHER_DEF(TLS_DHE_PSK_WITH_AES_128_CBC_SHA256, /* 0x00B2 */ |
542 | "DHE-PSK-AES128-CBC-SHA256" , |
543 | CIPHER_STRONG_ENOUGH), |
544 | CIPHER_DEF(TLS_DHE_PSK_WITH_AES_256_CBC_SHA384, /* 0x00B3 */ |
545 | "DHE-PSK-AES256-CBC-SHA384" , |
546 | CIPHER_STRONG_ENOUGH), |
547 | CIPHER_DEF(TLS_DHE_PSK_WITH_NULL_SHA256, /* 0x00B4 */ |
548 | "DHE-PSK-NULL-SHA256" , |
549 | CIPHER_WEAK_NOT_ENCRYPTED), |
550 | CIPHER_DEF(TLS_DHE_PSK_WITH_NULL_SHA384, /* 0x00B5 */ |
551 | "DHE-PSK-NULL-SHA384" , |
552 | CIPHER_WEAK_NOT_ENCRYPTED), |
553 | CIPHER_DEF(TLS_RSA_PSK_WITH_AES_128_CBC_SHA256, /* 0x00B6 */ |
554 | "RSA-PSK-AES128-CBC-SHA256" , |
555 | CIPHER_STRONG_ENOUGH), |
556 | CIPHER_DEF(TLS_RSA_PSK_WITH_AES_256_CBC_SHA384, /* 0x00B7 */ |
557 | "RSA-PSK-AES256-CBC-SHA384" , |
558 | CIPHER_STRONG_ENOUGH), |
559 | CIPHER_DEF(TLS_RSA_PSK_WITH_NULL_SHA256, /* 0x00B8 */ |
560 | "RSA-PSK-NULL-SHA256" , |
561 | CIPHER_WEAK_NOT_ENCRYPTED), |
562 | CIPHER_DEF(TLS_RSA_PSK_WITH_NULL_SHA384, /* 0x00B9 */ |
563 | "RSA-PSK-NULL-SHA384" , |
564 | CIPHER_WEAK_NOT_ENCRYPTED), |
565 | #endif /* CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 */ |
566 | |
567 | /* RFC 5746 - Secure Renegotiation. This is not a real suite, |
568 | it is a response to initiate negotiation again */ |
569 | CIPHER_DEF(TLS_EMPTY_RENEGOTIATION_INFO_SCSV, /* 0x00FF */ |
570 | NULL, |
571 | CIPHER_STRONG_ENOUGH), |
572 | |
573 | #if CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 |
574 | /* TLS 1.3 standard cipher suites for ChaCha20+Poly1305. |
575 | Note: TLS 1.3 ciphersuites do not specify the key exchange |
576 | algorithm -- they only specify the symmetric ciphers. |
577 | Cipher alias name matches to OpenSSL cipher name, and for |
578 | TLS 1.3 ciphers */ |
579 | CIPHER_DEF(TLS_AES_128_GCM_SHA256, /* 0x1301 */ |
580 | NULL, /* The OpenSSL cipher name matches to the IANA name */ |
581 | CIPHER_STRONG_ENOUGH), |
582 | CIPHER_DEF(TLS_AES_256_GCM_SHA384, /* 0x1302 */ |
583 | NULL, /* The OpenSSL cipher name matches to the IANA name */ |
584 | CIPHER_STRONG_ENOUGH), |
585 | CIPHER_DEF(TLS_CHACHA20_POLY1305_SHA256, /* 0x1303 */ |
586 | NULL, /* The OpenSSL cipher name matches to the IANA name */ |
587 | CIPHER_STRONG_ENOUGH), |
588 | CIPHER_DEF(TLS_AES_128_CCM_SHA256, /* 0x1304 */ |
589 | NULL, /* The OpenSSL cipher name matches to the IANA name */ |
590 | CIPHER_STRONG_ENOUGH), |
591 | CIPHER_DEF(TLS_AES_128_CCM_8_SHA256, /* 0x1305 */ |
592 | NULL, /* The OpenSSL cipher name matches to the IANA name */ |
593 | CIPHER_STRONG_ENOUGH), |
594 | #endif /* CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 */ |
595 | |
596 | #if CURL_BUILD_MAC_10_6 || CURL_BUILD_IOS |
597 | /* ECDSA addenda, RFC 4492 */ |
598 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_NULL_SHA, /* 0xC001 */ |
599 | "ECDH-ECDSA-NULL-SHA" , |
600 | CIPHER_WEAK_NOT_ENCRYPTED), |
601 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_RC4_128_SHA, /* 0xC002 */ |
602 | "ECDH-ECDSA-RC4-SHA" , |
603 | CIPHER_WEAK_RC_ENCRYPTION), |
604 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC003 */ |
605 | "ECDH-ECDSA-DES-CBC3-SHA" , |
606 | CIPHER_STRONG_ENOUGH), |
607 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC004 */ |
608 | "ECDH-ECDSA-AES128-SHA" , |
609 | CIPHER_STRONG_ENOUGH), |
610 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC005 */ |
611 | "ECDH-ECDSA-AES256-SHA" , |
612 | CIPHER_STRONG_ENOUGH), |
613 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_NULL_SHA, /* 0xC006 */ |
614 | "ECDHE-ECDSA-NULL-SHA" , |
615 | CIPHER_WEAK_NOT_ENCRYPTED), |
616 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, /* 0xC007 */ |
617 | "ECDHE-ECDSA-RC4-SHA" , |
618 | CIPHER_WEAK_RC_ENCRYPTION), |
619 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC008 */ |
620 | "ECDHE-ECDSA-DES-CBC3-SHA" , |
621 | CIPHER_WEAK_3DES_ENCRYPTION), |
622 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC009 */ |
623 | "ECDHE-ECDSA-AES128-SHA" , |
624 | CIPHER_STRONG_ENOUGH), |
625 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC00A */ |
626 | "ECDHE-ECDSA-AES256-SHA" , |
627 | CIPHER_STRONG_ENOUGH), |
628 | CIPHER_DEF(TLS_ECDH_RSA_WITH_NULL_SHA, /* 0xC00B */ |
629 | "ECDH-RSA-NULL-SHA" , |
630 | CIPHER_WEAK_NOT_ENCRYPTED), |
631 | CIPHER_DEF(TLS_ECDH_RSA_WITH_RC4_128_SHA, /* 0xC00C */ |
632 | "ECDH-RSA-RC4-SHA" , |
633 | CIPHER_WEAK_RC_ENCRYPTION), |
634 | CIPHER_DEF(TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC00D */ |
635 | "ECDH-RSA-DES-CBC3-SHA" , |
636 | CIPHER_WEAK_3DES_ENCRYPTION), |
637 | CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, /* 0xC00E */ |
638 | "ECDH-RSA-AES128-SHA" , |
639 | CIPHER_STRONG_ENOUGH), |
640 | CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, /* 0xC00F */ |
641 | "ECDH-RSA-AES256-SHA" , |
642 | CIPHER_STRONG_ENOUGH), |
643 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_NULL_SHA, /* 0xC010 */ |
644 | "ECDHE-RSA-NULL-SHA" , |
645 | CIPHER_WEAK_NOT_ENCRYPTED), |
646 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_RC4_128_SHA, /* 0xC011 */ |
647 | "ECDHE-RSA-RC4-SHA" , |
648 | CIPHER_WEAK_RC_ENCRYPTION), |
649 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC012 */ |
650 | "ECDHE-RSA-DES-CBC3-SHA" , |
651 | CIPHER_WEAK_3DES_ENCRYPTION), |
652 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, /* 0xC013 */ |
653 | "ECDHE-RSA-AES128-SHA" , |
654 | CIPHER_STRONG_ENOUGH), |
655 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, /* 0xC014 */ |
656 | "ECDHE-RSA-AES256-SHA" , |
657 | CIPHER_STRONG_ENOUGH), |
658 | CIPHER_DEF(TLS_ECDH_anon_WITH_NULL_SHA, /* 0xC015 */ |
659 | "AECDH-NULL-SHA" , |
660 | CIPHER_WEAK_ANON_AUTH), |
661 | CIPHER_DEF(TLS_ECDH_anon_WITH_RC4_128_SHA, /* 0xC016 */ |
662 | "AECDH-RC4-SHA" , |
663 | CIPHER_WEAK_ANON_AUTH), |
664 | CIPHER_DEF(TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA, /* 0xC017 */ |
665 | "AECDH-DES-CBC3-SHA" , |
666 | CIPHER_WEAK_3DES_ENCRYPTION), |
667 | CIPHER_DEF(TLS_ECDH_anon_WITH_AES_128_CBC_SHA, /* 0xC018 */ |
668 | "AECDH-AES128-SHA" , |
669 | CIPHER_WEAK_ANON_AUTH), |
670 | CIPHER_DEF(TLS_ECDH_anon_WITH_AES_256_CBC_SHA, /* 0xC019 */ |
671 | "AECDH-AES256-SHA" , |
672 | CIPHER_WEAK_ANON_AUTH), |
673 | #endif /* CURL_BUILD_MAC_10_6 || CURL_BUILD_IOS */ |
674 | |
675 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
676 | /* Addenda from rfc 5289 Elliptic Curve Cipher Suites with |
677 | HMAC SHA-256/384. */ |
678 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC023 */ |
679 | "ECDHE-ECDSA-AES128-SHA256" , |
680 | CIPHER_STRONG_ENOUGH), |
681 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC024 */ |
682 | "ECDHE-ECDSA-AES256-SHA384" , |
683 | CIPHER_STRONG_ENOUGH), |
684 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC025 */ |
685 | "ECDH-ECDSA-AES128-SHA256" , |
686 | CIPHER_STRONG_ENOUGH), |
687 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC026 */ |
688 | "ECDH-ECDSA-AES256-SHA384" , |
689 | CIPHER_STRONG_ENOUGH), |
690 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, /* 0xC027 */ |
691 | "ECDHE-RSA-AES128-SHA256" , |
692 | CIPHER_STRONG_ENOUGH), |
693 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, /* 0xC028 */ |
694 | "ECDHE-RSA-AES256-SHA384" , |
695 | CIPHER_STRONG_ENOUGH), |
696 | CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256, /* 0xC029 */ |
697 | "ECDH-RSA-AES128-SHA256" , |
698 | CIPHER_STRONG_ENOUGH), |
699 | CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384, /* 0xC02A */ |
700 | "ECDH-RSA-AES256-SHA384" , |
701 | CIPHER_STRONG_ENOUGH), |
702 | /* Addenda from rfc 5289 Elliptic Curve Cipher Suites with |
703 | SHA-256/384 and AES Galois Counter Mode (GCM) */ |
704 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02B */ |
705 | "ECDHE-ECDSA-AES128-GCM-SHA256" , |
706 | CIPHER_STRONG_ENOUGH), |
707 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02C */ |
708 | "ECDHE-ECDSA-AES256-GCM-SHA384" , |
709 | CIPHER_STRONG_ENOUGH), |
710 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02D */ |
711 | "ECDH-ECDSA-AES128-GCM-SHA256" , |
712 | CIPHER_STRONG_ENOUGH), |
713 | CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02E */ |
714 | "ECDH-ECDSA-AES256-GCM-SHA384" , |
715 | CIPHER_STRONG_ENOUGH), |
716 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, /* 0xC02F */ |
717 | "ECDHE-RSA-AES128-GCM-SHA256" , |
718 | CIPHER_STRONG_ENOUGH), |
719 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, /* 0xC030 */ |
720 | "ECDHE-RSA-AES256-GCM-SHA384" , |
721 | CIPHER_STRONG_ENOUGH), |
722 | CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256, /* 0xC031 */ |
723 | "ECDH-RSA-AES128-GCM-SHA256" , |
724 | CIPHER_STRONG_ENOUGH), |
725 | CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384, /* 0xC032 */ |
726 | "ECDH-RSA-AES256-GCM-SHA384" , |
727 | CIPHER_STRONG_ENOUGH), |
728 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
729 | |
730 | #if CURL_BUILD_MAC_10_15 || CURL_BUILD_IOS_13 |
731 | /* ECDHE_PSK Cipher Suites for Transport Layer Security (TLS), RFC 5489 */ |
732 | CIPHER_DEF(TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA, /* 0xC035 */ |
733 | "ECDHE-PSK-AES128-CBC-SHA" , |
734 | CIPHER_STRONG_ENOUGH), |
735 | CIPHER_DEF(TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA, /* 0xC036 */ |
736 | "ECDHE-PSK-AES256-CBC-SHA" , |
737 | CIPHER_STRONG_ENOUGH), |
738 | #endif /* CURL_BUILD_MAC_10_15 || CURL_BUILD_IOS_13 */ |
739 | |
740 | #if CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 |
741 | /* Addenda from rfc 7905 ChaCha20-Poly1305 Cipher Suites for |
742 | Transport Layer Security (TLS). */ |
743 | CIPHER_DEF(TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA8 */ |
744 | "ECDHE-RSA-CHACHA20-POLY1305" , |
745 | CIPHER_STRONG_ENOUGH), |
746 | CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA9 */ |
747 | "ECDHE-ECDSA-CHACHA20-POLY1305" , |
748 | CIPHER_STRONG_ENOUGH), |
749 | #endif /* CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 */ |
750 | |
751 | #if CURL_BUILD_MAC_10_15 || CURL_BUILD_IOS_13 |
752 | /* ChaCha20-Poly1305 Cipher Suites for Transport Layer Security (TLS), |
753 | RFC 7905 */ |
754 | CIPHER_DEF(TLS_PSK_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCAB */ |
755 | "PSK-CHACHA20-POLY1305" , |
756 | CIPHER_STRONG_ENOUGH), |
757 | #endif /* CURL_BUILD_MAC_10_15 || CURL_BUILD_IOS_13 */ |
758 | |
759 | /* Tags for SSL 2 cipher kinds which are not specified for SSL 3. |
760 | Defined since SDK 10.2.8 */ |
761 | CIPHER_DEF(SSL_RSA_WITH_RC2_CBC_MD5, /* 0xFF80 */ |
762 | NULL, |
763 | CIPHER_WEAK_RC_ENCRYPTION), |
764 | CIPHER_DEF(SSL_RSA_WITH_IDEA_CBC_MD5, /* 0xFF81 */ |
765 | NULL, |
766 | CIPHER_WEAK_IDEA_ENCRYPTION), |
767 | CIPHER_DEF(SSL_RSA_WITH_DES_CBC_MD5, /* 0xFF82 */ |
768 | NULL, |
769 | CIPHER_WEAK_DES_ENCRYPTION), |
770 | CIPHER_DEF(SSL_RSA_WITH_3DES_EDE_CBC_MD5, /* 0xFF83 */ |
771 | NULL, |
772 | CIPHER_WEAK_3DES_ENCRYPTION), |
773 | }; |
774 | |
775 | #define NUM_OF_CIPHERS sizeof(ciphertable)/sizeof(ciphertable[0]) |
776 | |
777 | |
778 | /* pinned public key support tests */ |
779 | |
780 | /* version 1 supports macOS 10.12+ and iOS 10+ */ |
781 | #if ((TARGET_OS_IPHONE && __IPHONE_OS_VERSION_MIN_REQUIRED >= 100000) || \ |
782 | (!TARGET_OS_IPHONE && __MAC_OS_X_VERSION_MIN_REQUIRED >= 101200)) |
783 | #define SECTRANSP_PINNEDPUBKEY_V1 1 |
784 | #endif |
785 | |
786 | /* version 2 supports MacOSX 10.7+ */ |
787 | #if (!TARGET_OS_IPHONE && __MAC_OS_X_VERSION_MIN_REQUIRED >= 1070) |
788 | #define SECTRANSP_PINNEDPUBKEY_V2 1 |
789 | #endif |
790 | |
791 | #if defined(SECTRANSP_PINNEDPUBKEY_V1) || defined(SECTRANSP_PINNEDPUBKEY_V2) |
792 | /* this backend supports CURLOPT_PINNEDPUBLICKEY */ |
793 | #define SECTRANSP_PINNEDPUBKEY 1 |
794 | #endif /* SECTRANSP_PINNEDPUBKEY */ |
795 | |
796 | #ifdef SECTRANSP_PINNEDPUBKEY |
797 | /* both new and old APIs return rsa keys missing the spki header (not DER) */ |
798 | static const unsigned char rsa4096SpkiHeader[] = { |
799 | 0x30, 0x82, 0x02, 0x22, 0x30, 0x0d, |
800 | 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, |
801 | 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, |
802 | 0x00, 0x03, 0x82, 0x02, 0x0f, 0x00}; |
803 | |
804 | static const unsigned char rsa2048SpkiHeader[] = { |
805 | 0x30, 0x82, 0x01, 0x22, 0x30, 0x0d, |
806 | 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, |
807 | 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, |
808 | 0x00, 0x03, 0x82, 0x01, 0x0f, 0x00}; |
809 | #ifdef SECTRANSP_PINNEDPUBKEY_V1 |
810 | /* the *new* version doesn't return DER encoded ecdsa certs like the old... */ |
811 | static const unsigned char ecDsaSecp256r1SpkiHeader[] = { |
812 | 0x30, 0x59, 0x30, 0x13, 0x06, 0x07, |
813 | 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, |
814 | 0x01, 0x06, 0x08, 0x2a, 0x86, 0x48, |
815 | 0xce, 0x3d, 0x03, 0x01, 0x07, 0x03, |
816 | 0x42, 0x00}; |
817 | |
818 | static const unsigned char ecDsaSecp384r1SpkiHeader[] = { |
819 | 0x30, 0x76, 0x30, 0x10, 0x06, 0x07, |
820 | 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, |
821 | 0x01, 0x06, 0x05, 0x2b, 0x81, 0x04, |
822 | 0x00, 0x22, 0x03, 0x62, 0x00}; |
823 | #endif /* SECTRANSP_PINNEDPUBKEY_V1 */ |
824 | #endif /* SECTRANSP_PINNEDPUBKEY */ |
825 | |
826 | /* The following two functions were ripped from Apple sample code, |
827 | * with some modifications: */ |
828 | static OSStatus SocketRead(SSLConnectionRef connection, |
829 | void *data, /* owned by |
830 | * caller, data |
831 | * RETURNED */ |
832 | size_t *dataLength) /* IN/OUT */ |
833 | { |
834 | size_t bytesToGo = *dataLength; |
835 | size_t initLen = bytesToGo; |
836 | UInt8 *currData = (UInt8 *)data; |
837 | /*int sock = *(int *)connection;*/ |
838 | struct ssl_connect_data *connssl = (struct ssl_connect_data *)connection; |
839 | struct ssl_backend_data *backend = connssl->backend; |
840 | int sock = backend->ssl_sockfd; |
841 | OSStatus rtn = noErr; |
842 | size_t bytesRead; |
843 | ssize_t rrtn; |
844 | int theErr; |
845 | |
846 | *dataLength = 0; |
847 | |
848 | for(;;) { |
849 | bytesRead = 0; |
850 | rrtn = read(sock, currData, bytesToGo); |
851 | if(rrtn <= 0) { |
852 | /* this is guesswork... */ |
853 | theErr = errno; |
854 | if(rrtn == 0) { /* EOF = server hung up */ |
855 | /* the framework will turn this into errSSLClosedNoNotify */ |
856 | rtn = errSSLClosedGraceful; |
857 | } |
858 | else /* do the switch */ |
859 | switch(theErr) { |
860 | case ENOENT: |
861 | /* connection closed */ |
862 | rtn = errSSLClosedGraceful; |
863 | break; |
864 | case ECONNRESET: |
865 | rtn = errSSLClosedAbort; |
866 | break; |
867 | case EAGAIN: |
868 | rtn = errSSLWouldBlock; |
869 | backend->ssl_direction = false; |
870 | break; |
871 | default: |
872 | rtn = ioErr; |
873 | break; |
874 | } |
875 | break; |
876 | } |
877 | else { |
878 | bytesRead = rrtn; |
879 | } |
880 | bytesToGo -= bytesRead; |
881 | currData += bytesRead; |
882 | |
883 | if(bytesToGo == 0) { |
884 | /* filled buffer with incoming data, done */ |
885 | break; |
886 | } |
887 | } |
888 | *dataLength = initLen - bytesToGo; |
889 | |
890 | return rtn; |
891 | } |
892 | |
893 | static OSStatus SocketWrite(SSLConnectionRef connection, |
894 | const void *data, |
895 | size_t *dataLength) /* IN/OUT */ |
896 | { |
897 | size_t bytesSent = 0; |
898 | /*int sock = *(int *)connection;*/ |
899 | struct ssl_connect_data *connssl = (struct ssl_connect_data *)connection; |
900 | struct ssl_backend_data *backend = connssl->backend; |
901 | int sock = backend->ssl_sockfd; |
902 | ssize_t length; |
903 | size_t dataLen = *dataLength; |
904 | const UInt8 *dataPtr = (UInt8 *)data; |
905 | OSStatus ortn; |
906 | int theErr; |
907 | |
908 | *dataLength = 0; |
909 | |
910 | do { |
911 | length = write(sock, |
912 | (char *)dataPtr + bytesSent, |
913 | dataLen - bytesSent); |
914 | } while((length > 0) && |
915 | ( (bytesSent += length) < dataLen) ); |
916 | |
917 | if(length <= 0) { |
918 | theErr = errno; |
919 | if(theErr == EAGAIN) { |
920 | ortn = errSSLWouldBlock; |
921 | backend->ssl_direction = true; |
922 | } |
923 | else { |
924 | ortn = ioErr; |
925 | } |
926 | } |
927 | else { |
928 | ortn = noErr; |
929 | } |
930 | *dataLength = bytesSent; |
931 | return ortn; |
932 | } |
933 | |
934 | #ifndef CURL_DISABLE_VERBOSE_STRINGS |
935 | CF_INLINE const char *TLSCipherNameForNumber(SSLCipherSuite cipher) |
936 | { |
937 | /* The first ciphers in the ciphertable are continuos. Here we do small |
938 | optimization and instead of loop directly get SSL name by cipher number. |
939 | */ |
940 | if(cipher <= SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA) { |
941 | return ciphertable[cipher].name; |
942 | } |
943 | /* Iterate through the rest of the ciphers */ |
944 | for(size_t i = SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA + 1; |
945 | i < NUM_OF_CIPHERS; |
946 | ++i) { |
947 | if(ciphertable[i].num == cipher) { |
948 | return ciphertable[i].name; |
949 | } |
950 | } |
951 | return ciphertable[SSL_NULL_WITH_NULL_NULL].name; |
952 | } |
953 | #endif /* !CURL_DISABLE_VERBOSE_STRINGS */ |
954 | |
955 | #if CURL_BUILD_MAC |
956 | CF_INLINE void GetDarwinVersionNumber(int *major, int *minor) |
957 | { |
958 | int mib[2]; |
959 | char *os_version; |
960 | size_t os_version_len; |
961 | char *os_version_major, *os_version_minor; |
962 | char *tok_buf; |
963 | |
964 | /* Get the Darwin kernel version from the kernel using sysctl(): */ |
965 | mib[0] = CTL_KERN; |
966 | mib[1] = KERN_OSRELEASE; |
967 | if(sysctl(mib, 2, NULL, &os_version_len, NULL, 0) == -1) |
968 | return; |
969 | os_version = malloc(os_version_len*sizeof(char)); |
970 | if(!os_version) |
971 | return; |
972 | if(sysctl(mib, 2, os_version, &os_version_len, NULL, 0) == -1) { |
973 | free(os_version); |
974 | return; |
975 | } |
976 | |
977 | /* Parse the version: */ |
978 | os_version_major = strtok_r(os_version, "." , &tok_buf); |
979 | os_version_minor = strtok_r(NULL, "." , &tok_buf); |
980 | *major = atoi(os_version_major); |
981 | *minor = atoi(os_version_minor); |
982 | free(os_version); |
983 | } |
984 | #endif /* CURL_BUILD_MAC */ |
985 | |
986 | /* Apple provides a myriad of ways of getting information about a certificate |
987 | into a string. Some aren't available under iOS or newer cats. So here's |
988 | a unified function for getting a string describing the certificate that |
989 | ought to work in all cats starting with Leopard. */ |
990 | CF_INLINE CFStringRef getsubject(SecCertificateRef cert) |
991 | { |
992 | CFStringRef server_cert_summary = CFSTR("(null)" ); |
993 | |
994 | #if CURL_BUILD_IOS |
995 | /* iOS: There's only one way to do this. */ |
996 | server_cert_summary = SecCertificateCopySubjectSummary(cert); |
997 | #else |
998 | #if CURL_BUILD_MAC_10_7 |
999 | /* Lion & later: Get the long description if we can. */ |
1000 | if(SecCertificateCopyLongDescription != NULL) |
1001 | server_cert_summary = |
1002 | SecCertificateCopyLongDescription(NULL, cert, NULL); |
1003 | else |
1004 | #endif /* CURL_BUILD_MAC_10_7 */ |
1005 | #if CURL_BUILD_MAC_10_6 |
1006 | /* Snow Leopard: Get the certificate summary. */ |
1007 | if(SecCertificateCopySubjectSummary != NULL) |
1008 | server_cert_summary = SecCertificateCopySubjectSummary(cert); |
1009 | else |
1010 | #endif /* CURL_BUILD_MAC_10_6 */ |
1011 | /* Leopard is as far back as we go... */ |
1012 | (void)SecCertificateCopyCommonName(cert, &server_cert_summary); |
1013 | #endif /* CURL_BUILD_IOS */ |
1014 | return server_cert_summary; |
1015 | } |
1016 | |
1017 | static CURLcode CopyCertSubject(struct Curl_easy *data, |
1018 | SecCertificateRef cert, char **certp) |
1019 | { |
1020 | CFStringRef c = getsubject(cert); |
1021 | CURLcode result = CURLE_OK; |
1022 | const char *direct; |
1023 | char *cbuf = NULL; |
1024 | *certp = NULL; |
1025 | |
1026 | if(!c) { |
1027 | failf(data, "SSL: invalid CA certificate subject" ); |
1028 | return CURLE_PEER_FAILED_VERIFICATION; |
1029 | } |
1030 | |
1031 | /* If the subject is already available as UTF-8 encoded (ie 'direct') then |
1032 | use that, else convert it. */ |
1033 | direct = CFStringGetCStringPtr(c, kCFStringEncodingUTF8); |
1034 | if(direct) { |
1035 | *certp = strdup(direct); |
1036 | if(!*certp) { |
1037 | failf(data, "SSL: out of memory" ); |
1038 | result = CURLE_OUT_OF_MEMORY; |
1039 | } |
1040 | } |
1041 | else { |
1042 | size_t cbuf_size = ((size_t)CFStringGetLength(c) * 4) + 1; |
1043 | cbuf = calloc(cbuf_size, 1); |
1044 | if(cbuf) { |
1045 | if(!CFStringGetCString(c, cbuf, cbuf_size, |
1046 | kCFStringEncodingUTF8)) { |
1047 | failf(data, "SSL: invalid CA certificate subject" ); |
1048 | result = CURLE_PEER_FAILED_VERIFICATION; |
1049 | } |
1050 | else |
1051 | /* pass back the buffer */ |
1052 | *certp = cbuf; |
1053 | } |
1054 | else { |
1055 | failf(data, "SSL: couldn't allocate %zu bytes of memory" , cbuf_size); |
1056 | result = CURLE_OUT_OF_MEMORY; |
1057 | } |
1058 | } |
1059 | if(result) |
1060 | free(cbuf); |
1061 | CFRelease(c); |
1062 | return result; |
1063 | } |
1064 | |
1065 | #if CURL_SUPPORT_MAC_10_6 |
1066 | /* The SecKeychainSearch API was deprecated in Lion, and using it will raise |
1067 | deprecation warnings, so let's not compile this unless it's necessary: */ |
1068 | static OSStatus CopyIdentityWithLabelOldSchool(char *label, |
1069 | SecIdentityRef *out_c_a_k) |
1070 | { |
1071 | OSStatus status = errSecItemNotFound; |
1072 | SecKeychainAttributeList attr_list; |
1073 | SecKeychainAttribute attr; |
1074 | SecKeychainSearchRef search = NULL; |
1075 | SecCertificateRef cert = NULL; |
1076 | |
1077 | /* Set up the attribute list: */ |
1078 | attr_list.count = 1L; |
1079 | attr_list.attr = &attr; |
1080 | |
1081 | /* Set up our lone search criterion: */ |
1082 | attr.tag = kSecLabelItemAttr; |
1083 | attr.data = label; |
1084 | attr.length = (UInt32)strlen(label); |
1085 | |
1086 | /* Start searching: */ |
1087 | status = SecKeychainSearchCreateFromAttributes(NULL, |
1088 | kSecCertificateItemClass, |
1089 | &attr_list, |
1090 | &search); |
1091 | if(status == noErr) { |
1092 | status = SecKeychainSearchCopyNext(search, |
1093 | (SecKeychainItemRef *)&cert); |
1094 | if(status == noErr && cert) { |
1095 | /* If we found a certificate, does it have a private key? */ |
1096 | status = SecIdentityCreateWithCertificate(NULL, cert, out_c_a_k); |
1097 | CFRelease(cert); |
1098 | } |
1099 | } |
1100 | |
1101 | if(search) |
1102 | CFRelease(search); |
1103 | return status; |
1104 | } |
1105 | #endif /* CURL_SUPPORT_MAC_10_6 */ |
1106 | |
1107 | static OSStatus CopyIdentityWithLabel(char *label, |
1108 | SecIdentityRef *out_cert_and_key) |
1109 | { |
1110 | OSStatus status = errSecItemNotFound; |
1111 | |
1112 | #if CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS |
1113 | CFArrayRef keys_list; |
1114 | CFIndex keys_list_count; |
1115 | CFIndex i; |
1116 | CFStringRef common_name; |
1117 | |
1118 | /* SecItemCopyMatching() was introduced in iOS and Snow Leopard. |
1119 | kSecClassIdentity was introduced in Lion. If both exist, let's use them |
1120 | to find the certificate. */ |
1121 | if(SecItemCopyMatching != NULL && kSecClassIdentity != NULL) { |
1122 | CFTypeRef keys[5]; |
1123 | CFTypeRef values[5]; |
1124 | CFDictionaryRef query_dict; |
1125 | CFStringRef label_cf = CFStringCreateWithCString(NULL, label, |
1126 | kCFStringEncodingUTF8); |
1127 | |
1128 | /* Set up our search criteria and expected results: */ |
1129 | values[0] = kSecClassIdentity; /* we want a certificate and a key */ |
1130 | keys[0] = kSecClass; |
1131 | values[1] = kCFBooleanTrue; /* we want a reference */ |
1132 | keys[1] = kSecReturnRef; |
1133 | values[2] = kSecMatchLimitAll; /* kSecMatchLimitOne would be better if the |
1134 | * label matching below worked correctly */ |
1135 | keys[2] = kSecMatchLimit; |
1136 | /* identity searches need a SecPolicyRef in order to work */ |
1137 | values[3] = SecPolicyCreateSSL(false, NULL); |
1138 | keys[3] = kSecMatchPolicy; |
1139 | /* match the name of the certificate (doesn't work in macOS 10.12.1) */ |
1140 | values[4] = label_cf; |
1141 | keys[4] = kSecAttrLabel; |
1142 | query_dict = CFDictionaryCreate(NULL, (const void **)keys, |
1143 | (const void **)values, 5L, |
1144 | &kCFCopyStringDictionaryKeyCallBacks, |
1145 | &kCFTypeDictionaryValueCallBacks); |
1146 | CFRelease(values[3]); |
1147 | |
1148 | /* Do we have a match? */ |
1149 | status = SecItemCopyMatching(query_dict, (CFTypeRef *) &keys_list); |
1150 | |
1151 | /* Because kSecAttrLabel matching doesn't work with kSecClassIdentity, |
1152 | * we need to find the correct identity ourselves */ |
1153 | if(status == noErr) { |
1154 | keys_list_count = CFArrayGetCount(keys_list); |
1155 | *out_cert_and_key = NULL; |
1156 | status = 1; |
1157 | for(i = 0; i<keys_list_count; i++) { |
1158 | OSStatus err = noErr; |
1159 | SecCertificateRef cert = NULL; |
1160 | SecIdentityRef identity = |
1161 | (SecIdentityRef) CFArrayGetValueAtIndex(keys_list, i); |
1162 | err = SecIdentityCopyCertificate(identity, &cert); |
1163 | if(err == noErr) { |
1164 | OSStatus copy_status = noErr; |
1165 | #if CURL_BUILD_IOS |
1166 | common_name = SecCertificateCopySubjectSummary(cert); |
1167 | #elif CURL_BUILD_MAC_10_7 |
1168 | copy_status = SecCertificateCopyCommonName(cert, &common_name); |
1169 | #endif |
1170 | if(copy_status == noErr && |
1171 | CFStringCompare(common_name, label_cf, 0) == kCFCompareEqualTo) { |
1172 | CFRelease(cert); |
1173 | CFRelease(common_name); |
1174 | CFRetain(identity); |
1175 | *out_cert_and_key = identity; |
1176 | status = noErr; |
1177 | break; |
1178 | } |
1179 | CFRelease(common_name); |
1180 | } |
1181 | CFRelease(cert); |
1182 | } |
1183 | } |
1184 | |
1185 | if(keys_list) |
1186 | CFRelease(keys_list); |
1187 | CFRelease(query_dict); |
1188 | CFRelease(label_cf); |
1189 | } |
1190 | else { |
1191 | #if CURL_SUPPORT_MAC_10_6 |
1192 | /* On Leopard and Snow Leopard, fall back to SecKeychainSearch. */ |
1193 | status = CopyIdentityWithLabelOldSchool(label, out_cert_and_key); |
1194 | #endif /* CURL_SUPPORT_MAC_10_6 */ |
1195 | } |
1196 | #elif CURL_SUPPORT_MAC_10_6 |
1197 | /* For developers building on older cats, we have no choice but to fall back |
1198 | to SecKeychainSearch. */ |
1199 | status = CopyIdentityWithLabelOldSchool(label, out_cert_and_key); |
1200 | #endif /* CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS */ |
1201 | return status; |
1202 | } |
1203 | |
1204 | static OSStatus CopyIdentityFromPKCS12File(const char *cPath, |
1205 | const struct curl_blob *blob, |
1206 | const char *cPassword, |
1207 | SecIdentityRef *out_cert_and_key) |
1208 | { |
1209 | OSStatus status = errSecItemNotFound; |
1210 | CFURLRef pkcs_url = NULL; |
1211 | CFStringRef password = cPassword ? CFStringCreateWithCString(NULL, |
1212 | cPassword, kCFStringEncodingUTF8) : NULL; |
1213 | CFDataRef pkcs_data = NULL; |
1214 | |
1215 | /* We can import P12 files on iOS or OS X 10.7 or later: */ |
1216 | /* These constants are documented as having first appeared in 10.6 but they |
1217 | raise linker errors when used on that cat for some reason. */ |
1218 | #if CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS |
1219 | bool resource_imported; |
1220 | |
1221 | if(blob) { |
1222 | pkcs_data = CFDataCreate(kCFAllocatorDefault, |
1223 | (const unsigned char *)blob->data, blob->len); |
1224 | status = (pkcs_data != NULL) ? errSecSuccess : errSecAllocate; |
1225 | resource_imported = (pkcs_data != NULL); |
1226 | } |
1227 | else { |
1228 | pkcs_url = |
1229 | CFURLCreateFromFileSystemRepresentation(NULL, |
1230 | (const UInt8 *)cPath, |
1231 | strlen(cPath), false); |
1232 | resource_imported = |
1233 | CFURLCreateDataAndPropertiesFromResource(NULL, |
1234 | pkcs_url, &pkcs_data, |
1235 | NULL, NULL, &status); |
1236 | } |
1237 | |
1238 | if(resource_imported) { |
1239 | CFArrayRef items = NULL; |
1240 | |
1241 | /* On iOS SecPKCS12Import will never add the client certificate to the |
1242 | * Keychain. |
1243 | * |
1244 | * It gives us back a SecIdentityRef that we can use directly. */ |
1245 | #if CURL_BUILD_IOS |
1246 | const void *cKeys[] = {kSecImportExportPassphrase}; |
1247 | const void *cValues[] = {password}; |
1248 | CFDictionaryRef options = CFDictionaryCreate(NULL, cKeys, cValues, |
1249 | password ? 1L : 0L, NULL, NULL); |
1250 | |
1251 | if(options != NULL) { |
1252 | status = SecPKCS12Import(pkcs_data, options, &items); |
1253 | CFRelease(options); |
1254 | } |
1255 | |
1256 | |
1257 | /* On macOS SecPKCS12Import will always add the client certificate to |
1258 | * the Keychain. |
1259 | * |
1260 | * As this doesn't match iOS, and apps may not want to see their client |
1261 | * certificate saved in the user's keychain, we use SecItemImport |
1262 | * with a NULL keychain to avoid importing it. |
1263 | * |
1264 | * This returns a SecCertificateRef from which we can construct a |
1265 | * SecIdentityRef. |
1266 | */ |
1267 | #elif CURL_BUILD_MAC_10_7 |
1268 | SecItemImportExportKeyParameters keyParams; |
1269 | SecExternalFormat inputFormat = kSecFormatPKCS12; |
1270 | SecExternalItemType inputType = kSecItemTypeCertificate; |
1271 | |
1272 | memset(&keyParams, 0x00, sizeof(keyParams)); |
1273 | keyParams.version = SEC_KEY_IMPORT_EXPORT_PARAMS_VERSION; |
1274 | keyParams.passphrase = password; |
1275 | |
1276 | status = SecItemImport(pkcs_data, NULL, &inputFormat, &inputType, |
1277 | 0, &keyParams, NULL, &items); |
1278 | #endif |
1279 | |
1280 | |
1281 | /* Extract the SecIdentityRef */ |
1282 | if(status == errSecSuccess && items && CFArrayGetCount(items)) { |
1283 | CFIndex i, count; |
1284 | count = CFArrayGetCount(items); |
1285 | |
1286 | for(i = 0; i < count; i++) { |
1287 | CFTypeRef item = (CFTypeRef) CFArrayGetValueAtIndex(items, i); |
1288 | CFTypeID itemID = CFGetTypeID(item); |
1289 | |
1290 | if(itemID == CFDictionaryGetTypeID()) { |
1291 | CFTypeRef identity = (CFTypeRef) CFDictionaryGetValue( |
1292 | (CFDictionaryRef) item, |
1293 | kSecImportItemIdentity); |
1294 | CFRetain(identity); |
1295 | *out_cert_and_key = (SecIdentityRef) identity; |
1296 | break; |
1297 | } |
1298 | #if CURL_BUILD_MAC_10_7 |
1299 | else if(itemID == SecCertificateGetTypeID()) { |
1300 | status = SecIdentityCreateWithCertificate(NULL, |
1301 | (SecCertificateRef) item, |
1302 | out_cert_and_key); |
1303 | break; |
1304 | } |
1305 | #endif |
1306 | } |
1307 | } |
1308 | |
1309 | if(items) |
1310 | CFRelease(items); |
1311 | CFRelease(pkcs_data); |
1312 | } |
1313 | #endif /* CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS */ |
1314 | if(password) |
1315 | CFRelease(password); |
1316 | if(pkcs_url) |
1317 | CFRelease(pkcs_url); |
1318 | return status; |
1319 | } |
1320 | |
1321 | /* This code was borrowed from nss.c, with some modifications: |
1322 | * Determine whether the nickname passed in is a filename that needs to |
1323 | * be loaded as a PEM or a regular NSS nickname. |
1324 | * |
1325 | * returns 1 for a file |
1326 | * returns 0 for not a file |
1327 | */ |
1328 | CF_INLINE bool is_file(const char *filename) |
1329 | { |
1330 | struct_stat st; |
1331 | |
1332 | if(!filename) |
1333 | return false; |
1334 | |
1335 | if(stat(filename, &st) == 0) |
1336 | return S_ISREG(st.st_mode); |
1337 | return false; |
1338 | } |
1339 | |
1340 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
1341 | static CURLcode sectransp_version_from_curl(SSLProtocol *darwinver, |
1342 | long ssl_version) |
1343 | { |
1344 | switch(ssl_version) { |
1345 | case CURL_SSLVERSION_TLSv1_0: |
1346 | *darwinver = kTLSProtocol1; |
1347 | return CURLE_OK; |
1348 | case CURL_SSLVERSION_TLSv1_1: |
1349 | *darwinver = kTLSProtocol11; |
1350 | return CURLE_OK; |
1351 | case CURL_SSLVERSION_TLSv1_2: |
1352 | *darwinver = kTLSProtocol12; |
1353 | return CURLE_OK; |
1354 | case CURL_SSLVERSION_TLSv1_3: |
1355 | /* TLS 1.3 support first appeared in iOS 11 and macOS 10.13 */ |
1356 | #if (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1 |
1357 | if(__builtin_available(macOS 10.13, iOS 11.0, *)) { |
1358 | *darwinver = kTLSProtocol13; |
1359 | return CURLE_OK; |
1360 | } |
1361 | #endif /* (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && |
1362 | HAVE_BUILTIN_AVAILABLE == 1 */ |
1363 | break; |
1364 | } |
1365 | return CURLE_SSL_CONNECT_ERROR; |
1366 | } |
1367 | #endif |
1368 | |
1369 | static CURLcode |
1370 | set_ssl_version_min_max(struct Curl_easy *data, struct connectdata *conn, |
1371 | int sockindex) |
1372 | { |
1373 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
1374 | struct ssl_backend_data *backend = connssl->backend; |
1375 | long ssl_version = SSL_CONN_CONFIG(version); |
1376 | long ssl_version_max = SSL_CONN_CONFIG(version_max); |
1377 | long max_supported_version_by_os; |
1378 | |
1379 | /* macOS 10.5-10.7 supported TLS 1.0 only. |
1380 | macOS 10.8 and later, and iOS 5 and later, added TLS 1.1 and 1.2. |
1381 | macOS 10.13 and later, and iOS 11 and later, added TLS 1.3. */ |
1382 | #if (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1 |
1383 | if(__builtin_available(macOS 10.13, iOS 11.0, *)) { |
1384 | max_supported_version_by_os = CURL_SSLVERSION_MAX_TLSv1_3; |
1385 | } |
1386 | else { |
1387 | max_supported_version_by_os = CURL_SSLVERSION_MAX_TLSv1_2; |
1388 | } |
1389 | #else |
1390 | max_supported_version_by_os = CURL_SSLVERSION_MAX_TLSv1_2; |
1391 | #endif /* (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && |
1392 | HAVE_BUILTIN_AVAILABLE == 1 */ |
1393 | |
1394 | switch(ssl_version) { |
1395 | case CURL_SSLVERSION_DEFAULT: |
1396 | case CURL_SSLVERSION_TLSv1: |
1397 | ssl_version = CURL_SSLVERSION_TLSv1_0; |
1398 | break; |
1399 | } |
1400 | |
1401 | switch(ssl_version_max) { |
1402 | case CURL_SSLVERSION_MAX_NONE: |
1403 | case CURL_SSLVERSION_MAX_DEFAULT: |
1404 | ssl_version_max = max_supported_version_by_os; |
1405 | break; |
1406 | } |
1407 | |
1408 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
1409 | if(SSLSetProtocolVersionMax != NULL) { |
1410 | SSLProtocol darwin_ver_min = kTLSProtocol1; |
1411 | SSLProtocol darwin_ver_max = kTLSProtocol1; |
1412 | CURLcode result = sectransp_version_from_curl(&darwin_ver_min, |
1413 | ssl_version); |
1414 | if(result) { |
1415 | failf(data, "unsupported min version passed via CURLOPT_SSLVERSION" ); |
1416 | return result; |
1417 | } |
1418 | result = sectransp_version_from_curl(&darwin_ver_max, |
1419 | ssl_version_max >> 16); |
1420 | if(result) { |
1421 | failf(data, "unsupported max version passed via CURLOPT_SSLVERSION" ); |
1422 | return result; |
1423 | } |
1424 | |
1425 | (void)SSLSetProtocolVersionMin(backend->ssl_ctx, darwin_ver_min); |
1426 | (void)SSLSetProtocolVersionMax(backend->ssl_ctx, darwin_ver_max); |
1427 | return result; |
1428 | } |
1429 | else { |
1430 | #if CURL_SUPPORT_MAC_10_8 |
1431 | long i = ssl_version; |
1432 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
1433 | kSSLProtocolAll, |
1434 | false); |
1435 | for(; i <= (ssl_version_max >> 16); i++) { |
1436 | switch(i) { |
1437 | case CURL_SSLVERSION_TLSv1_0: |
1438 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
1439 | kTLSProtocol1, |
1440 | true); |
1441 | break; |
1442 | case CURL_SSLVERSION_TLSv1_1: |
1443 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
1444 | kTLSProtocol11, |
1445 | true); |
1446 | break; |
1447 | case CURL_SSLVERSION_TLSv1_2: |
1448 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
1449 | kTLSProtocol12, |
1450 | true); |
1451 | break; |
1452 | case CURL_SSLVERSION_TLSv1_3: |
1453 | failf(data, "Your version of the OS does not support TLSv1.3" ); |
1454 | return CURLE_SSL_CONNECT_ERROR; |
1455 | } |
1456 | } |
1457 | return CURLE_OK; |
1458 | #endif /* CURL_SUPPORT_MAC_10_8 */ |
1459 | } |
1460 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
1461 | failf(data, "Secure Transport: cannot set SSL protocol" ); |
1462 | return CURLE_SSL_CONNECT_ERROR; |
1463 | } |
1464 | |
1465 | static bool is_cipher_suite_strong(SSLCipherSuite suite_num) |
1466 | { |
1467 | for(size_t i = 0; i < NUM_OF_CIPHERS; ++i) { |
1468 | if(ciphertable[i].num == suite_num) { |
1469 | return !ciphertable[i].weak; |
1470 | } |
1471 | } |
1472 | /* If the cipher is not in our list, assume it is a new one |
1473 | and therefore strong. Previous implementation was the same, |
1474 | if cipher suite is not in the list, it was considered strong enough */ |
1475 | return true; |
1476 | } |
1477 | |
1478 | static bool is_separator(char c) |
1479 | { |
1480 | /* Return whether character is a cipher list separator. */ |
1481 | switch(c) { |
1482 | case ' ': |
1483 | case '\t': |
1484 | case ':': |
1485 | case ',': |
1486 | case ';': |
1487 | return true; |
1488 | } |
1489 | return false; |
1490 | } |
1491 | |
1492 | static CURLcode sectransp_set_default_ciphers(struct Curl_easy *data, |
1493 | SSLContextRef ssl_ctx) |
1494 | { |
1495 | size_t all_ciphers_count = 0UL, allowed_ciphers_count = 0UL, i; |
1496 | SSLCipherSuite *all_ciphers = NULL, *allowed_ciphers = NULL; |
1497 | OSStatus err = noErr; |
1498 | |
1499 | #if CURL_BUILD_MAC |
1500 | int darwinver_maj = 0, darwinver_min = 0; |
1501 | |
1502 | GetDarwinVersionNumber(&darwinver_maj, &darwinver_min); |
1503 | #endif /* CURL_BUILD_MAC */ |
1504 | |
1505 | /* Disable cipher suites that ST supports but are not safe. These ciphers |
1506 | are unlikely to be used in any case since ST gives other ciphers a much |
1507 | higher priority, but it's probably better that we not connect at all than |
1508 | to give the user a false sense of security if the server only supports |
1509 | insecure ciphers. (Note: We don't care about SSLv2-only ciphers.) */ |
1510 | err = SSLGetNumberSupportedCiphers(ssl_ctx, &all_ciphers_count); |
1511 | if(err != noErr) { |
1512 | failf(data, "SSL: SSLGetNumberSupportedCiphers() failed: OSStatus %d" , |
1513 | err); |
1514 | return CURLE_SSL_CIPHER; |
1515 | } |
1516 | all_ciphers = malloc(all_ciphers_count*sizeof(SSLCipherSuite)); |
1517 | if(!all_ciphers) { |
1518 | failf(data, "SSL: Failed to allocate memory for all ciphers" ); |
1519 | return CURLE_OUT_OF_MEMORY; |
1520 | } |
1521 | allowed_ciphers = malloc(all_ciphers_count*sizeof(SSLCipherSuite)); |
1522 | if(!allowed_ciphers) { |
1523 | Curl_safefree(all_ciphers); |
1524 | failf(data, "SSL: Failed to allocate memory for allowed ciphers" ); |
1525 | return CURLE_OUT_OF_MEMORY; |
1526 | } |
1527 | err = SSLGetSupportedCiphers(ssl_ctx, all_ciphers, |
1528 | &all_ciphers_count); |
1529 | if(err != noErr) { |
1530 | Curl_safefree(all_ciphers); |
1531 | Curl_safefree(allowed_ciphers); |
1532 | return CURLE_SSL_CIPHER; |
1533 | } |
1534 | for(i = 0UL ; i < all_ciphers_count ; i++) { |
1535 | #if CURL_BUILD_MAC |
1536 | /* There's a known bug in early versions of Mountain Lion where ST's ECC |
1537 | ciphers (cipher suite 0xC001 through 0xC032) simply do not work. |
1538 | Work around the problem here by disabling those ciphers if we are |
1539 | running in an affected version of OS X. */ |
1540 | if(darwinver_maj == 12 && darwinver_min <= 3 && |
1541 | all_ciphers[i] >= 0xC001 && all_ciphers[i] <= 0xC032) { |
1542 | continue; |
1543 | } |
1544 | #endif /* CURL_BUILD_MAC */ |
1545 | if(is_cipher_suite_strong(all_ciphers[i])) { |
1546 | allowed_ciphers[allowed_ciphers_count++] = all_ciphers[i]; |
1547 | } |
1548 | } |
1549 | err = SSLSetEnabledCiphers(ssl_ctx, allowed_ciphers, |
1550 | allowed_ciphers_count); |
1551 | Curl_safefree(all_ciphers); |
1552 | Curl_safefree(allowed_ciphers); |
1553 | if(err != noErr) { |
1554 | failf(data, "SSL: SSLSetEnabledCiphers() failed: OSStatus %d" , err); |
1555 | return CURLE_SSL_CIPHER; |
1556 | } |
1557 | return CURLE_OK; |
1558 | } |
1559 | |
1560 | static CURLcode sectransp_set_selected_ciphers(struct Curl_easy *data, |
1561 | SSLContextRef ssl_ctx, |
1562 | const char *ciphers) |
1563 | { |
1564 | size_t ciphers_count = 0; |
1565 | const char *cipher_start = ciphers; |
1566 | OSStatus err = noErr; |
1567 | SSLCipherSuite selected_ciphers[NUM_OF_CIPHERS]; |
1568 | |
1569 | if(!ciphers) |
1570 | return CURLE_OK; |
1571 | |
1572 | while(is_separator(*ciphers)) /* Skip initial separators. */ |
1573 | ciphers++; |
1574 | if(!*ciphers) |
1575 | return CURLE_OK; |
1576 | |
1577 | cipher_start = ciphers; |
1578 | while(*cipher_start && ciphers_count < NUM_OF_CIPHERS) { |
1579 | bool cipher_found = FALSE; |
1580 | size_t cipher_len = 0; |
1581 | const char *cipher_end = NULL; |
1582 | bool tls_name = FALSE; |
1583 | |
1584 | /* Skip separators */ |
1585 | while(is_separator(*cipher_start)) |
1586 | cipher_start++; |
1587 | if(*cipher_start == '\0') { |
1588 | break; |
1589 | } |
1590 | /* Find last position of a cipher in the ciphers string */ |
1591 | cipher_end = cipher_start; |
1592 | while (*cipher_end != '\0' && !is_separator(*cipher_end)) { |
1593 | ++cipher_end; |
1594 | } |
1595 | |
1596 | /* IANA cipher names start with the TLS_ or SSL_ prefix. |
1597 | If the 4th symbol of the cipher is '_' we look for a cipher in the |
1598 | table by its (TLS) name. |
1599 | Otherwise, we try to match cipher by an alias. */ |
1600 | if(cipher_start[3] == '_') { |
1601 | tls_name = TRUE; |
1602 | } |
1603 | /* Iterate through the cipher table and look for the cipher, starting |
1604 | the cipher number 0x01 because the 0x00 is not the real cipher */ |
1605 | cipher_len = cipher_end - cipher_start; |
1606 | for(size_t i = 1; i < NUM_OF_CIPHERS; ++i) { |
1607 | const char *table_cipher_name = NULL; |
1608 | if(tls_name) { |
1609 | table_cipher_name = ciphertable[i].name; |
1610 | } |
1611 | else if(ciphertable[i].alias_name != NULL) { |
1612 | table_cipher_name = ciphertable[i].alias_name; |
1613 | } |
1614 | else { |
1615 | continue; |
1616 | } |
1617 | /* Compare a part of the string between separators with a cipher name |
1618 | in the table and make sure we matched the whole cipher name */ |
1619 | if(strncmp(cipher_start, table_cipher_name, cipher_len) == 0 |
1620 | && table_cipher_name[cipher_len] == '\0') { |
1621 | selected_ciphers[ciphers_count] = ciphertable[i].num; |
1622 | ++ciphers_count; |
1623 | cipher_found = TRUE; |
1624 | break; |
1625 | } |
1626 | } |
1627 | if(!cipher_found) { |
1628 | /* It would be more human-readable if we print the wrong cipher name |
1629 | but we don't want to allocate any additional memory and copy the name |
1630 | into it, then add it into logs. |
1631 | Also, we do not modify an original cipher list string. We just point |
1632 | to positions where cipher starts and ends in the cipher list string. |
1633 | The message is a bit cryptic and longer than necessary but can be |
1634 | understood by humans. */ |
1635 | failf(data, "SSL: cipher string \"%s\" contains unsupported cipher name" |
1636 | " starting position %d and ending position %d" , |
1637 | ciphers, |
1638 | cipher_start - ciphers, |
1639 | cipher_end - ciphers); |
1640 | return CURLE_SSL_CIPHER; |
1641 | } |
1642 | if(*cipher_end) { |
1643 | cipher_start = cipher_end + 1; |
1644 | } |
1645 | else { |
1646 | break; |
1647 | } |
1648 | } |
1649 | /* All cipher suites in the list are found. Report to logs as-is */ |
1650 | infof(data, "SSL: Setting cipher suites list \"%s\"" , ciphers); |
1651 | |
1652 | err = SSLSetEnabledCiphers(ssl_ctx, selected_ciphers, ciphers_count); |
1653 | if(err != noErr) { |
1654 | failf(data, "SSL: SSLSetEnabledCiphers() failed: OSStatus %d" , err); |
1655 | return CURLE_SSL_CIPHER; |
1656 | } |
1657 | return CURLE_OK; |
1658 | } |
1659 | |
1660 | static CURLcode sectransp_connect_step1(struct Curl_easy *data, |
1661 | struct connectdata *conn, |
1662 | int sockindex) |
1663 | { |
1664 | curl_socket_t sockfd = conn->sock[sockindex]; |
1665 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
1666 | struct ssl_backend_data *backend = connssl->backend; |
1667 | const struct curl_blob *ssl_cablob = SSL_CONN_CONFIG(ca_info_blob); |
1668 | const char * const ssl_cafile = |
1669 | /* CURLOPT_CAINFO_BLOB overrides CURLOPT_CAINFO */ |
1670 | (ssl_cablob ? NULL : SSL_CONN_CONFIG(CAfile)); |
1671 | const bool verifypeer = SSL_CONN_CONFIG(verifypeer); |
1672 | char * const ssl_cert = SSL_SET_OPTION(primary.clientcert); |
1673 | const struct curl_blob *ssl_cert_blob = SSL_SET_OPTION(primary.cert_blob); |
1674 | bool isproxy = SSL_IS_PROXY(); |
1675 | const char * const hostname = SSL_HOST_NAME(); |
1676 | const long int port = SSL_HOST_PORT(); |
1677 | #ifdef ENABLE_IPV6 |
1678 | struct in6_addr addr; |
1679 | #else |
1680 | struct in_addr addr; |
1681 | #endif /* ENABLE_IPV6 */ |
1682 | char *ciphers; |
1683 | OSStatus err = noErr; |
1684 | #if CURL_BUILD_MAC |
1685 | int darwinver_maj = 0, darwinver_min = 0; |
1686 | |
1687 | GetDarwinVersionNumber(&darwinver_maj, &darwinver_min); |
1688 | #endif /* CURL_BUILD_MAC */ |
1689 | |
1690 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
1691 | if(SSLCreateContext != NULL) { /* use the newer API if available */ |
1692 | if(backend->ssl_ctx) |
1693 | CFRelease(backend->ssl_ctx); |
1694 | backend->ssl_ctx = SSLCreateContext(NULL, kSSLClientSide, kSSLStreamType); |
1695 | if(!backend->ssl_ctx) { |
1696 | failf(data, "SSL: couldn't create a context!" ); |
1697 | return CURLE_OUT_OF_MEMORY; |
1698 | } |
1699 | } |
1700 | else { |
1701 | /* The old ST API does not exist under iOS, so don't compile it: */ |
1702 | #if CURL_SUPPORT_MAC_10_8 |
1703 | if(backend->ssl_ctx) |
1704 | (void)SSLDisposeContext(backend->ssl_ctx); |
1705 | err = SSLNewContext(false, &(backend->ssl_ctx)); |
1706 | if(err != noErr) { |
1707 | failf(data, "SSL: couldn't create a context: OSStatus %d" , err); |
1708 | return CURLE_OUT_OF_MEMORY; |
1709 | } |
1710 | #endif /* CURL_SUPPORT_MAC_10_8 */ |
1711 | } |
1712 | #else |
1713 | if(backend->ssl_ctx) |
1714 | (void)SSLDisposeContext(backend->ssl_ctx); |
1715 | err = SSLNewContext(false, &(backend->ssl_ctx)); |
1716 | if(err != noErr) { |
1717 | failf(data, "SSL: couldn't create a context: OSStatus %d" , err); |
1718 | return CURLE_OUT_OF_MEMORY; |
1719 | } |
1720 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
1721 | backend->ssl_write_buffered_length = 0UL; /* reset buffered write length */ |
1722 | |
1723 | /* check to see if we've been told to use an explicit SSL/TLS version */ |
1724 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
1725 | if(SSLSetProtocolVersionMax != NULL) { |
1726 | switch(conn->ssl_config.version) { |
1727 | case CURL_SSLVERSION_TLSv1: |
1728 | (void)SSLSetProtocolVersionMin(backend->ssl_ctx, kTLSProtocol1); |
1729 | #if (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1 |
1730 | if(__builtin_available(macOS 10.13, iOS 11.0, *)) { |
1731 | (void)SSLSetProtocolVersionMax(backend->ssl_ctx, kTLSProtocol13); |
1732 | } |
1733 | else { |
1734 | (void)SSLSetProtocolVersionMax(backend->ssl_ctx, kTLSProtocol12); |
1735 | } |
1736 | #else |
1737 | (void)SSLSetProtocolVersionMax(backend->ssl_ctx, kTLSProtocol12); |
1738 | #endif /* (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && |
1739 | HAVE_BUILTIN_AVAILABLE == 1 */ |
1740 | break; |
1741 | case CURL_SSLVERSION_DEFAULT: |
1742 | case CURL_SSLVERSION_TLSv1_0: |
1743 | case CURL_SSLVERSION_TLSv1_1: |
1744 | case CURL_SSLVERSION_TLSv1_2: |
1745 | case CURL_SSLVERSION_TLSv1_3: |
1746 | { |
1747 | CURLcode result = set_ssl_version_min_max(data, conn, sockindex); |
1748 | if(result != CURLE_OK) |
1749 | return result; |
1750 | break; |
1751 | } |
1752 | case CURL_SSLVERSION_SSLv3: |
1753 | case CURL_SSLVERSION_SSLv2: |
1754 | failf(data, "SSL versions not supported" ); |
1755 | return CURLE_NOT_BUILT_IN; |
1756 | default: |
1757 | failf(data, "Unrecognized parameter passed via CURLOPT_SSLVERSION" ); |
1758 | return CURLE_SSL_CONNECT_ERROR; |
1759 | } |
1760 | } |
1761 | else { |
1762 | #if CURL_SUPPORT_MAC_10_8 |
1763 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
1764 | kSSLProtocolAll, |
1765 | false); |
1766 | switch(conn->ssl_config.version) { |
1767 | case CURL_SSLVERSION_DEFAULT: |
1768 | case CURL_SSLVERSION_TLSv1: |
1769 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
1770 | kTLSProtocol1, |
1771 | true); |
1772 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
1773 | kTLSProtocol11, |
1774 | true); |
1775 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
1776 | kTLSProtocol12, |
1777 | true); |
1778 | break; |
1779 | case CURL_SSLVERSION_TLSv1_0: |
1780 | case CURL_SSLVERSION_TLSv1_1: |
1781 | case CURL_SSLVERSION_TLSv1_2: |
1782 | case CURL_SSLVERSION_TLSv1_3: |
1783 | { |
1784 | CURLcode result = set_ssl_version_min_max(data, conn, sockindex); |
1785 | if(result != CURLE_OK) |
1786 | return result; |
1787 | break; |
1788 | } |
1789 | case CURL_SSLVERSION_SSLv3: |
1790 | case CURL_SSLVERSION_SSLv2: |
1791 | failf(data, "SSL versions not supported" ); |
1792 | return CURLE_NOT_BUILT_IN; |
1793 | default: |
1794 | failf(data, "Unrecognized parameter passed via CURLOPT_SSLVERSION" ); |
1795 | return CURLE_SSL_CONNECT_ERROR; |
1796 | } |
1797 | #endif /* CURL_SUPPORT_MAC_10_8 */ |
1798 | } |
1799 | #else |
1800 | if(conn->ssl_config.version_max != CURL_SSLVERSION_MAX_NONE) { |
1801 | failf(data, "Your version of the OS does not support to set maximum" |
1802 | " SSL/TLS version" ); |
1803 | return CURLE_SSL_CONNECT_ERROR; |
1804 | } |
1805 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, kSSLProtocolAll, false); |
1806 | switch(conn->ssl_config.version) { |
1807 | case CURL_SSLVERSION_DEFAULT: |
1808 | case CURL_SSLVERSION_TLSv1: |
1809 | case CURL_SSLVERSION_TLSv1_0: |
1810 | (void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, |
1811 | kTLSProtocol1, |
1812 | true); |
1813 | break; |
1814 | case CURL_SSLVERSION_TLSv1_1: |
1815 | failf(data, "Your version of the OS does not support TLSv1.1" ); |
1816 | return CURLE_SSL_CONNECT_ERROR; |
1817 | case CURL_SSLVERSION_TLSv1_2: |
1818 | failf(data, "Your version of the OS does not support TLSv1.2" ); |
1819 | return CURLE_SSL_CONNECT_ERROR; |
1820 | case CURL_SSLVERSION_TLSv1_3: |
1821 | failf(data, "Your version of the OS does not support TLSv1.3" ); |
1822 | return CURLE_SSL_CONNECT_ERROR; |
1823 | case CURL_SSLVERSION_SSLv2: |
1824 | case CURL_SSLVERSION_SSLv3: |
1825 | failf(data, "SSL versions not supported" ); |
1826 | return CURLE_NOT_BUILT_IN; |
1827 | default: |
1828 | failf(data, "Unrecognized parameter passed via CURLOPT_SSLVERSION" ); |
1829 | return CURLE_SSL_CONNECT_ERROR; |
1830 | } |
1831 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
1832 | |
1833 | #if (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1 |
1834 | if(conn->bits.tls_enable_alpn) { |
1835 | if(__builtin_available(macOS 10.13.4, iOS 11, tvOS 11, *)) { |
1836 | CFMutableArrayRef alpnArr = CFArrayCreateMutable(NULL, 0, |
1837 | &kCFTypeArrayCallBacks); |
1838 | |
1839 | #ifdef USE_HTTP2 |
1840 | if(data->state.httpwant >= CURL_HTTP_VERSION_2 |
1841 | #ifndef CURL_DISABLE_PROXY |
1842 | && (!isproxy || !conn->bits.tunnel_proxy) |
1843 | #endif |
1844 | ) { |
1845 | CFArrayAppendValue(alpnArr, CFSTR(ALPN_H2)); |
1846 | infof(data, "ALPN, offering %s" , ALPN_H2); |
1847 | } |
1848 | #endif |
1849 | |
1850 | CFArrayAppendValue(alpnArr, CFSTR(ALPN_HTTP_1_1)); |
1851 | infof(data, "ALPN, offering %s" , ALPN_HTTP_1_1); |
1852 | |
1853 | /* expects length prefixed preference ordered list of protocols in wire |
1854 | * format |
1855 | */ |
1856 | err = SSLSetALPNProtocols(backend->ssl_ctx, alpnArr); |
1857 | if(err != noErr) |
1858 | infof(data, "WARNING: failed to set ALPN protocols; OSStatus %d" , |
1859 | err); |
1860 | CFRelease(alpnArr); |
1861 | } |
1862 | } |
1863 | #endif |
1864 | |
1865 | if(SSL_SET_OPTION(key)) { |
1866 | infof(data, "WARNING: SSL: CURLOPT_SSLKEY is ignored by Secure " |
1867 | "Transport. The private key must be in the Keychain." ); |
1868 | } |
1869 | |
1870 | if(ssl_cert || ssl_cert_blob) { |
1871 | bool is_cert_data = ssl_cert_blob != NULL; |
1872 | bool is_cert_file = (!is_cert_data) && is_file(ssl_cert); |
1873 | SecIdentityRef cert_and_key = NULL; |
1874 | |
1875 | /* User wants to authenticate with a client cert. Look for it. Assume that |
1876 | the user wants to use an identity loaded from the Keychain. If not, try |
1877 | it as a file on disk */ |
1878 | |
1879 | if(!is_cert_data) |
1880 | err = CopyIdentityWithLabel(ssl_cert, &cert_and_key); |
1881 | else |
1882 | err = !noErr; |
1883 | if((err != noErr) && (is_cert_file || is_cert_data)) { |
1884 | if(!SSL_SET_OPTION(cert_type)) |
1885 | infof(data, "SSL: Certificate type not set, assuming " |
1886 | "PKCS#12 format." ); |
1887 | else if(!strcasecompare(SSL_SET_OPTION(cert_type), "P12" )) { |
1888 | failf(data, "SSL: The Security framework only supports " |
1889 | "loading identities that are in PKCS#12 format." ); |
1890 | return CURLE_SSL_CERTPROBLEM; |
1891 | } |
1892 | |
1893 | err = CopyIdentityFromPKCS12File(ssl_cert, ssl_cert_blob, |
1894 | SSL_SET_OPTION(key_passwd), |
1895 | &cert_and_key); |
1896 | } |
1897 | |
1898 | if(err == noErr && cert_and_key) { |
1899 | SecCertificateRef cert = NULL; |
1900 | CFTypeRef certs_c[1]; |
1901 | CFArrayRef certs; |
1902 | |
1903 | /* If we found one, print it out: */ |
1904 | err = SecIdentityCopyCertificate(cert_and_key, &cert); |
1905 | if(err == noErr) { |
1906 | char *certp; |
1907 | CURLcode result = CopyCertSubject(data, cert, &certp); |
1908 | if(!result) { |
1909 | infof(data, "Client certificate: %s" , certp); |
1910 | free(certp); |
1911 | } |
1912 | |
1913 | CFRelease(cert); |
1914 | if(result == CURLE_PEER_FAILED_VERIFICATION) |
1915 | return CURLE_SSL_CERTPROBLEM; |
1916 | if(result) |
1917 | return result; |
1918 | } |
1919 | certs_c[0] = cert_and_key; |
1920 | certs = CFArrayCreate(NULL, (const void **)certs_c, 1L, |
1921 | &kCFTypeArrayCallBacks); |
1922 | err = SSLSetCertificate(backend->ssl_ctx, certs); |
1923 | if(certs) |
1924 | CFRelease(certs); |
1925 | if(err != noErr) { |
1926 | failf(data, "SSL: SSLSetCertificate() failed: OSStatus %d" , err); |
1927 | return CURLE_SSL_CERTPROBLEM; |
1928 | } |
1929 | CFRelease(cert_and_key); |
1930 | } |
1931 | else { |
1932 | const char *cert_showfilename_error = |
1933 | is_cert_data ? "(memory blob)" : ssl_cert; |
1934 | |
1935 | switch(err) { |
1936 | case errSecAuthFailed: case -25264: /* errSecPkcs12VerifyFailure */ |
1937 | failf(data, "SSL: Incorrect password for the certificate \"%s\" " |
1938 | "and its private key." , cert_showfilename_error); |
1939 | break; |
1940 | case -26275: /* errSecDecode */ case -25257: /* errSecUnknownFormat */ |
1941 | failf(data, "SSL: Couldn't make sense of the data in the " |
1942 | "certificate \"%s\" and its private key." , |
1943 | cert_showfilename_error); |
1944 | break; |
1945 | case -25260: /* errSecPassphraseRequired */ |
1946 | failf(data, "SSL The certificate \"%s\" requires a password." , |
1947 | cert_showfilename_error); |
1948 | break; |
1949 | case errSecItemNotFound: |
1950 | failf(data, "SSL: Can't find the certificate \"%s\" and its private " |
1951 | "key in the Keychain." , cert_showfilename_error); |
1952 | break; |
1953 | default: |
1954 | failf(data, "SSL: Can't load the certificate \"%s\" and its private " |
1955 | "key: OSStatus %d" , cert_showfilename_error, err); |
1956 | break; |
1957 | } |
1958 | return CURLE_SSL_CERTPROBLEM; |
1959 | } |
1960 | } |
1961 | |
1962 | /* SSL always tries to verify the peer, this only says whether it should |
1963 | * fail to connect if the verification fails, or if it should continue |
1964 | * anyway. In the latter case the result of the verification is checked with |
1965 | * SSL_get_verify_result() below. */ |
1966 | #if CURL_BUILD_MAC_10_6 || CURL_BUILD_IOS |
1967 | /* Snow Leopard introduced the SSLSetSessionOption() function, but due to |
1968 | a library bug with the way the kSSLSessionOptionBreakOnServerAuth flag |
1969 | works, it doesn't work as expected under Snow Leopard, Lion or |
1970 | Mountain Lion. |
1971 | So we need to call SSLSetEnableCertVerify() on those older cats in order |
1972 | to disable certificate validation if the user turned that off. |
1973 | (SecureTransport will always validate the certificate chain by |
1974 | default.) |
1975 | Note: |
1976 | Darwin 11.x.x is Lion (10.7) |
1977 | Darwin 12.x.x is Mountain Lion (10.8) |
1978 | Darwin 13.x.x is Mavericks (10.9) |
1979 | Darwin 14.x.x is Yosemite (10.10) |
1980 | Darwin 15.x.x is El Capitan (10.11) |
1981 | */ |
1982 | #if CURL_BUILD_MAC |
1983 | if(SSLSetSessionOption != NULL && darwinver_maj >= 13) { |
1984 | #else |
1985 | if(SSLSetSessionOption != NULL) { |
1986 | #endif /* CURL_BUILD_MAC */ |
1987 | bool break_on_auth = !conn->ssl_config.verifypeer || |
1988 | ssl_cafile || ssl_cablob; |
1989 | err = SSLSetSessionOption(backend->ssl_ctx, |
1990 | kSSLSessionOptionBreakOnServerAuth, |
1991 | break_on_auth); |
1992 | if(err != noErr) { |
1993 | failf(data, "SSL: SSLSetSessionOption() failed: OSStatus %d" , err); |
1994 | return CURLE_SSL_CONNECT_ERROR; |
1995 | } |
1996 | } |
1997 | else { |
1998 | #if CURL_SUPPORT_MAC_10_8 |
1999 | err = SSLSetEnableCertVerify(backend->ssl_ctx, |
2000 | conn->ssl_config.verifypeer?true:false); |
2001 | if(err != noErr) { |
2002 | failf(data, "SSL: SSLSetEnableCertVerify() failed: OSStatus %d" , err); |
2003 | return CURLE_SSL_CONNECT_ERROR; |
2004 | } |
2005 | #endif /* CURL_SUPPORT_MAC_10_8 */ |
2006 | } |
2007 | #else |
2008 | err = SSLSetEnableCertVerify(backend->ssl_ctx, |
2009 | conn->ssl_config.verifypeer?true:false); |
2010 | if(err != noErr) { |
2011 | failf(data, "SSL: SSLSetEnableCertVerify() failed: OSStatus %d" , err); |
2012 | return CURLE_SSL_CONNECT_ERROR; |
2013 | } |
2014 | #endif /* CURL_BUILD_MAC_10_6 || CURL_BUILD_IOS */ |
2015 | |
2016 | if((ssl_cafile || ssl_cablob) && verifypeer) { |
2017 | bool is_cert_data = ssl_cablob != NULL; |
2018 | bool is_cert_file = (!is_cert_data) && is_file(ssl_cafile); |
2019 | |
2020 | if(!(is_cert_file || is_cert_data)) { |
2021 | failf(data, "SSL: can't load CA certificate file %s" , |
2022 | ssl_cafile ? ssl_cafile : "(blob memory)" ); |
2023 | return CURLE_SSL_CACERT_BADFILE; |
2024 | } |
2025 | } |
2026 | |
2027 | /* Configure hostname check. SNI is used if available. |
2028 | * Both hostname check and SNI require SSLSetPeerDomainName(). |
2029 | * Also: the verifyhost setting influences SNI usage */ |
2030 | if(conn->ssl_config.verifyhost) { |
2031 | err = SSLSetPeerDomainName(backend->ssl_ctx, hostname, |
2032 | strlen(hostname)); |
2033 | |
2034 | if(err != noErr) { |
2035 | infof(data, "WARNING: SSL: SSLSetPeerDomainName() failed: OSStatus %d" , |
2036 | err); |
2037 | } |
2038 | |
2039 | if((Curl_inet_pton(AF_INET, hostname, &addr)) |
2040 | #ifdef ENABLE_IPV6 |
2041 | || (Curl_inet_pton(AF_INET6, hostname, &addr)) |
2042 | #endif |
2043 | ) { |
2044 | infof(data, "WARNING: using IP address, SNI is being disabled by " |
2045 | "the OS." ); |
2046 | } |
2047 | } |
2048 | else { |
2049 | infof(data, "WARNING: disabling hostname validation also disables SNI." ); |
2050 | } |
2051 | |
2052 | ciphers = SSL_CONN_CONFIG(cipher_list); |
2053 | if(ciphers) { |
2054 | err = sectransp_set_selected_ciphers(data, backend->ssl_ctx, ciphers); |
2055 | } |
2056 | else { |
2057 | err = sectransp_set_default_ciphers(data, backend->ssl_ctx); |
2058 | } |
2059 | if(err != noErr) { |
2060 | failf(data, "SSL: Unable to set ciphers for SSL/TLS handshake. " |
2061 | "Error code: %d" , err); |
2062 | return CURLE_SSL_CIPHER; |
2063 | } |
2064 | |
2065 | #if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 |
2066 | /* We want to enable 1/n-1 when using a CBC cipher unless the user |
2067 | specifically doesn't want us doing that: */ |
2068 | if(SSLSetSessionOption != NULL) { |
2069 | SSLSetSessionOption(backend->ssl_ctx, kSSLSessionOptionSendOneByteRecord, |
2070 | !SSL_SET_OPTION(enable_beast)); |
2071 | SSLSetSessionOption(backend->ssl_ctx, kSSLSessionOptionFalseStart, |
2072 | data->set.ssl.falsestart); /* false start support */ |
2073 | } |
2074 | #endif /* CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 */ |
2075 | |
2076 | /* Check if there's a cached ID we can/should use here! */ |
2077 | if(SSL_SET_OPTION(primary.sessionid)) { |
2078 | char *ssl_sessionid; |
2079 | size_t ssl_sessionid_len; |
2080 | |
2081 | Curl_ssl_sessionid_lock(data); |
2082 | if(!Curl_ssl_getsessionid(data, conn, isproxy, (void **)&ssl_sessionid, |
2083 | &ssl_sessionid_len, sockindex)) { |
2084 | /* we got a session id, use it! */ |
2085 | err = SSLSetPeerID(backend->ssl_ctx, ssl_sessionid, ssl_sessionid_len); |
2086 | Curl_ssl_sessionid_unlock(data); |
2087 | if(err != noErr) { |
2088 | failf(data, "SSL: SSLSetPeerID() failed: OSStatus %d" , err); |
2089 | return CURLE_SSL_CONNECT_ERROR; |
2090 | } |
2091 | /* Informational message */ |
2092 | infof(data, "SSL re-using session ID" ); |
2093 | } |
2094 | /* If there isn't one, then let's make one up! This has to be done prior |
2095 | to starting the handshake. */ |
2096 | else { |
2097 | CURLcode result; |
2098 | ssl_sessionid = |
2099 | aprintf("%s:%d:%d:%s:%ld" , |
2100 | ssl_cafile ? ssl_cafile : "(blob memory)" , |
2101 | verifypeer, SSL_CONN_CONFIG(verifyhost), hostname, port); |
2102 | ssl_sessionid_len = strlen(ssl_sessionid); |
2103 | |
2104 | err = SSLSetPeerID(backend->ssl_ctx, ssl_sessionid, ssl_sessionid_len); |
2105 | if(err != noErr) { |
2106 | Curl_ssl_sessionid_unlock(data); |
2107 | failf(data, "SSL: SSLSetPeerID() failed: OSStatus %d" , err); |
2108 | return CURLE_SSL_CONNECT_ERROR; |
2109 | } |
2110 | |
2111 | result = Curl_ssl_addsessionid(data, conn, isproxy, ssl_sessionid, |
2112 | ssl_sessionid_len, sockindex); |
2113 | Curl_ssl_sessionid_unlock(data); |
2114 | if(result) { |
2115 | failf(data, "failed to store ssl session" ); |
2116 | return result; |
2117 | } |
2118 | } |
2119 | } |
2120 | |
2121 | err = SSLSetIOFuncs(backend->ssl_ctx, SocketRead, SocketWrite); |
2122 | if(err != noErr) { |
2123 | failf(data, "SSL: SSLSetIOFuncs() failed: OSStatus %d" , err); |
2124 | return CURLE_SSL_CONNECT_ERROR; |
2125 | } |
2126 | |
2127 | /* pass the raw socket into the SSL layers */ |
2128 | /* We need to store the FD in a constant memory address, because |
2129 | * SSLSetConnection() will not copy that address. I've found that |
2130 | * conn->sock[sockindex] may change on its own. */ |
2131 | backend->ssl_sockfd = sockfd; |
2132 | err = SSLSetConnection(backend->ssl_ctx, connssl); |
2133 | if(err != noErr) { |
2134 | failf(data, "SSL: SSLSetConnection() failed: %d" , err); |
2135 | return CURLE_SSL_CONNECT_ERROR; |
2136 | } |
2137 | |
2138 | connssl->connecting_state = ssl_connect_2; |
2139 | return CURLE_OK; |
2140 | } |
2141 | |
2142 | static long pem_to_der(const char *in, unsigned char **out, size_t *outlen) |
2143 | { |
2144 | char *sep_start, *sep_end, *cert_start, *cert_end; |
2145 | size_t i, j, err; |
2146 | size_t len; |
2147 | unsigned char *b64; |
2148 | |
2149 | /* Jump through the separators at the beginning of the certificate. */ |
2150 | sep_start = strstr(in, "-----" ); |
2151 | if(!sep_start) |
2152 | return 0; |
2153 | cert_start = strstr(sep_start + 1, "-----" ); |
2154 | if(!cert_start) |
2155 | return -1; |
2156 | |
2157 | cert_start += 5; |
2158 | |
2159 | /* Find separator after the end of the certificate. */ |
2160 | cert_end = strstr(cert_start, "-----" ); |
2161 | if(!cert_end) |
2162 | return -1; |
2163 | |
2164 | sep_end = strstr(cert_end + 1, "-----" ); |
2165 | if(!sep_end) |
2166 | return -1; |
2167 | sep_end += 5; |
2168 | |
2169 | len = cert_end - cert_start; |
2170 | b64 = malloc(len + 1); |
2171 | if(!b64) |
2172 | return -1; |
2173 | |
2174 | /* Create base64 string without linefeeds. */ |
2175 | for(i = 0, j = 0; i < len; i++) { |
2176 | if(cert_start[i] != '\r' && cert_start[i] != '\n') |
2177 | b64[j++] = cert_start[i]; |
2178 | } |
2179 | b64[j] = '\0'; |
2180 | |
2181 | err = Curl_base64_decode((const char *)b64, out, outlen); |
2182 | free(b64); |
2183 | if(err) { |
2184 | free(*out); |
2185 | return -1; |
2186 | } |
2187 | |
2188 | return sep_end - in; |
2189 | } |
2190 | |
2191 | static int read_cert(const char *file, unsigned char **out, size_t *outlen) |
2192 | { |
2193 | int fd; |
2194 | ssize_t n, len = 0, cap = 512; |
2195 | unsigned char buf[512], *data; |
2196 | |
2197 | fd = open(file, 0); |
2198 | if(fd < 0) |
2199 | return -1; |
2200 | |
2201 | data = malloc(cap); |
2202 | if(!data) { |
2203 | close(fd); |
2204 | return -1; |
2205 | } |
2206 | |
2207 | for(;;) { |
2208 | n = read(fd, buf, sizeof(buf)); |
2209 | if(n < 0) { |
2210 | close(fd); |
2211 | free(data); |
2212 | return -1; |
2213 | } |
2214 | else if(n == 0) { |
2215 | close(fd); |
2216 | break; |
2217 | } |
2218 | |
2219 | if(len + n >= cap) { |
2220 | cap *= 2; |
2221 | data = Curl_saferealloc(data, cap); |
2222 | if(!data) { |
2223 | close(fd); |
2224 | return -1; |
2225 | } |
2226 | } |
2227 | |
2228 | memcpy(data + len, buf, n); |
2229 | len += n; |
2230 | } |
2231 | data[len] = '\0'; |
2232 | |
2233 | *out = data; |
2234 | *outlen = len; |
2235 | |
2236 | return 0; |
2237 | } |
2238 | |
2239 | static int append_cert_to_array(struct Curl_easy *data, |
2240 | const unsigned char *buf, size_t buflen, |
2241 | CFMutableArrayRef array) |
2242 | { |
2243 | CFDataRef certdata = CFDataCreate(kCFAllocatorDefault, buf, buflen); |
2244 | char *certp; |
2245 | CURLcode result; |
2246 | if(!certdata) { |
2247 | failf(data, "SSL: failed to allocate array for CA certificate" ); |
2248 | return CURLE_OUT_OF_MEMORY; |
2249 | } |
2250 | |
2251 | SecCertificateRef cacert = |
2252 | SecCertificateCreateWithData(kCFAllocatorDefault, certdata); |
2253 | CFRelease(certdata); |
2254 | if(!cacert) { |
2255 | failf(data, "SSL: failed to create SecCertificate from CA certificate" ); |
2256 | return CURLE_SSL_CACERT_BADFILE; |
2257 | } |
2258 | |
2259 | /* Check if cacert is valid. */ |
2260 | result = CopyCertSubject(data, cacert, &certp); |
2261 | switch(result) { |
2262 | case CURLE_OK: |
2263 | break; |
2264 | case CURLE_PEER_FAILED_VERIFICATION: |
2265 | return CURLE_SSL_CACERT_BADFILE; |
2266 | case CURLE_OUT_OF_MEMORY: |
2267 | default: |
2268 | return result; |
2269 | } |
2270 | free(certp); |
2271 | |
2272 | CFArrayAppendValue(array, cacert); |
2273 | CFRelease(cacert); |
2274 | |
2275 | return CURLE_OK; |
2276 | } |
2277 | |
2278 | static CURLcode verify_cert_buf(struct Curl_easy *data, |
2279 | const unsigned char *certbuf, size_t buflen, |
2280 | SSLContextRef ctx) |
2281 | { |
2282 | int n = 0, rc; |
2283 | long res; |
2284 | unsigned char *der; |
2285 | size_t derlen, offset = 0; |
2286 | |
2287 | /* |
2288 | * Certbuf now contains the contents of the certificate file, which can be |
2289 | * - a single DER certificate, |
2290 | * - a single PEM certificate or |
2291 | * - a bunch of PEM certificates (certificate bundle). |
2292 | * |
2293 | * Go through certbuf, and convert any PEM certificate in it into DER |
2294 | * format. |
2295 | */ |
2296 | CFMutableArrayRef array = CFArrayCreateMutable(kCFAllocatorDefault, 0, |
2297 | &kCFTypeArrayCallBacks); |
2298 | if(!array) { |
2299 | failf(data, "SSL: out of memory creating CA certificate array" ); |
2300 | return CURLE_OUT_OF_MEMORY; |
2301 | } |
2302 | |
2303 | while(offset < buflen) { |
2304 | n++; |
2305 | |
2306 | /* |
2307 | * Check if the certificate is in PEM format, and convert it to DER. If |
2308 | * this fails, we assume the certificate is in DER format. |
2309 | */ |
2310 | res = pem_to_der((const char *)certbuf + offset, &der, &derlen); |
2311 | if(res < 0) { |
2312 | CFRelease(array); |
2313 | failf(data, "SSL: invalid CA certificate #%d (offset %zu) in bundle" , |
2314 | n, offset); |
2315 | return CURLE_SSL_CACERT_BADFILE; |
2316 | } |
2317 | offset += res; |
2318 | |
2319 | if(res == 0 && offset == 0) { |
2320 | /* This is not a PEM file, probably a certificate in DER format. */ |
2321 | rc = append_cert_to_array(data, certbuf, buflen, array); |
2322 | if(rc != CURLE_OK) { |
2323 | CFRelease(array); |
2324 | return rc; |
2325 | } |
2326 | break; |
2327 | } |
2328 | else if(res == 0) { |
2329 | /* No more certificates in the bundle. */ |
2330 | break; |
2331 | } |
2332 | |
2333 | rc = append_cert_to_array(data, der, derlen, array); |
2334 | free(der); |
2335 | if(rc != CURLE_OK) { |
2336 | CFRelease(array); |
2337 | return rc; |
2338 | } |
2339 | } |
2340 | |
2341 | SecTrustRef trust; |
2342 | OSStatus ret = SSLCopyPeerTrust(ctx, &trust); |
2343 | if(!trust) { |
2344 | failf(data, "SSL: error getting certificate chain" ); |
2345 | CFRelease(array); |
2346 | return CURLE_PEER_FAILED_VERIFICATION; |
2347 | } |
2348 | else if(ret != noErr) { |
2349 | CFRelease(array); |
2350 | failf(data, "SSLCopyPeerTrust() returned error %d" , ret); |
2351 | return CURLE_PEER_FAILED_VERIFICATION; |
2352 | } |
2353 | |
2354 | ret = SecTrustSetAnchorCertificates(trust, array); |
2355 | if(ret != noErr) { |
2356 | CFRelease(array); |
2357 | CFRelease(trust); |
2358 | failf(data, "SecTrustSetAnchorCertificates() returned error %d" , ret); |
2359 | return CURLE_PEER_FAILED_VERIFICATION; |
2360 | } |
2361 | ret = SecTrustSetAnchorCertificatesOnly(trust, true); |
2362 | if(ret != noErr) { |
2363 | CFRelease(array); |
2364 | CFRelease(trust); |
2365 | failf(data, "SecTrustSetAnchorCertificatesOnly() returned error %d" , ret); |
2366 | return CURLE_PEER_FAILED_VERIFICATION; |
2367 | } |
2368 | |
2369 | SecTrustResultType trust_eval = 0; |
2370 | ret = SecTrustEvaluate(trust, &trust_eval); |
2371 | CFRelease(array); |
2372 | CFRelease(trust); |
2373 | if(ret != noErr) { |
2374 | failf(data, "SecTrustEvaluate() returned error %d" , ret); |
2375 | return CURLE_PEER_FAILED_VERIFICATION; |
2376 | } |
2377 | |
2378 | switch(trust_eval) { |
2379 | case kSecTrustResultUnspecified: |
2380 | case kSecTrustResultProceed: |
2381 | return CURLE_OK; |
2382 | |
2383 | case kSecTrustResultRecoverableTrustFailure: |
2384 | case kSecTrustResultDeny: |
2385 | default: |
2386 | failf(data, "SSL: certificate verification failed (result: %d)" , |
2387 | trust_eval); |
2388 | return CURLE_PEER_FAILED_VERIFICATION; |
2389 | } |
2390 | } |
2391 | |
2392 | static CURLcode verify_cert(struct Curl_easy *data, const char *cafile, |
2393 | const struct curl_blob *ca_info_blob, |
2394 | SSLContextRef ctx) |
2395 | { |
2396 | int result; |
2397 | unsigned char *certbuf; |
2398 | size_t buflen; |
2399 | |
2400 | if(ca_info_blob) { |
2401 | certbuf = (unsigned char *)malloc(ca_info_blob->len + 1); |
2402 | if(!certbuf) { |
2403 | return CURLE_OUT_OF_MEMORY; |
2404 | } |
2405 | buflen = ca_info_blob->len; |
2406 | memcpy(certbuf, ca_info_blob->data, ca_info_blob->len); |
2407 | certbuf[ca_info_blob->len]='\0'; |
2408 | } |
2409 | else if(cafile) { |
2410 | if(read_cert(cafile, &certbuf, &buflen) < 0) { |
2411 | failf(data, "SSL: failed to read or invalid CA certificate" ); |
2412 | return CURLE_SSL_CACERT_BADFILE; |
2413 | } |
2414 | } |
2415 | else |
2416 | return CURLE_SSL_CACERT_BADFILE; |
2417 | |
2418 | result = verify_cert_buf(data, certbuf, buflen, ctx); |
2419 | free(certbuf); |
2420 | return result; |
2421 | } |
2422 | |
2423 | |
2424 | #ifdef SECTRANSP_PINNEDPUBKEY |
2425 | static CURLcode pkp_pin_peer_pubkey(struct Curl_easy *data, |
2426 | SSLContextRef ctx, |
2427 | const char *pinnedpubkey) |
2428 | { /* Scratch */ |
2429 | size_t pubkeylen, realpubkeylen, spkiHeaderLength = 24; |
2430 | unsigned char *pubkey = NULL, *realpubkey = NULL; |
2431 | const unsigned char *spkiHeader = NULL; |
2432 | CFDataRef publicKeyBits = NULL; |
2433 | |
2434 | /* Result is returned to caller */ |
2435 | CURLcode result = CURLE_SSL_PINNEDPUBKEYNOTMATCH; |
2436 | |
2437 | /* if a path wasn't specified, don't pin */ |
2438 | if(!pinnedpubkey) |
2439 | return CURLE_OK; |
2440 | |
2441 | |
2442 | if(!ctx) |
2443 | return result; |
2444 | |
2445 | do { |
2446 | SecTrustRef trust; |
2447 | OSStatus ret = SSLCopyPeerTrust(ctx, &trust); |
2448 | if(ret != noErr || !trust) |
2449 | break; |
2450 | |
2451 | SecKeyRef keyRef = SecTrustCopyPublicKey(trust); |
2452 | CFRelease(trust); |
2453 | if(!keyRef) |
2454 | break; |
2455 | |
2456 | #ifdef SECTRANSP_PINNEDPUBKEY_V1 |
2457 | |
2458 | publicKeyBits = SecKeyCopyExternalRepresentation(keyRef, NULL); |
2459 | CFRelease(keyRef); |
2460 | if(!publicKeyBits) |
2461 | break; |
2462 | |
2463 | #elif SECTRANSP_PINNEDPUBKEY_V2 |
2464 | |
2465 | OSStatus success = SecItemExport(keyRef, kSecFormatOpenSSL, 0, NULL, |
2466 | &publicKeyBits); |
2467 | CFRelease(keyRef); |
2468 | if(success != errSecSuccess || !publicKeyBits) |
2469 | break; |
2470 | |
2471 | #endif /* SECTRANSP_PINNEDPUBKEY_V2 */ |
2472 | |
2473 | pubkeylen = CFDataGetLength(publicKeyBits); |
2474 | pubkey = (unsigned char *)CFDataGetBytePtr(publicKeyBits); |
2475 | |
2476 | switch(pubkeylen) { |
2477 | case 526: |
2478 | /* 4096 bit RSA pubkeylen == 526 */ |
2479 | spkiHeader = rsa4096SpkiHeader; |
2480 | break; |
2481 | case 270: |
2482 | /* 2048 bit RSA pubkeylen == 270 */ |
2483 | spkiHeader = rsa2048SpkiHeader; |
2484 | break; |
2485 | #ifdef SECTRANSP_PINNEDPUBKEY_V1 |
2486 | case 65: |
2487 | /* ecDSA secp256r1 pubkeylen == 65 */ |
2488 | spkiHeader = ecDsaSecp256r1SpkiHeader; |
2489 | spkiHeaderLength = 26; |
2490 | break; |
2491 | case 97: |
2492 | /* ecDSA secp384r1 pubkeylen == 97 */ |
2493 | spkiHeader = ecDsaSecp384r1SpkiHeader; |
2494 | spkiHeaderLength = 23; |
2495 | break; |
2496 | default: |
2497 | infof(data, "SSL: unhandled public key length: %d" , pubkeylen); |
2498 | #elif SECTRANSP_PINNEDPUBKEY_V2 |
2499 | default: |
2500 | /* ecDSA secp256r1 pubkeylen == 91 header already included? |
2501 | * ecDSA secp384r1 header already included too |
2502 | * we assume rest of algorithms do same, so do nothing |
2503 | */ |
2504 | result = Curl_pin_peer_pubkey(data, pinnedpubkey, pubkey, |
2505 | pubkeylen); |
2506 | #endif /* SECTRANSP_PINNEDPUBKEY_V2 */ |
2507 | continue; /* break from loop */ |
2508 | } |
2509 | |
2510 | realpubkeylen = pubkeylen + spkiHeaderLength; |
2511 | realpubkey = malloc(realpubkeylen); |
2512 | if(!realpubkey) |
2513 | break; |
2514 | |
2515 | memcpy(realpubkey, spkiHeader, spkiHeaderLength); |
2516 | memcpy(realpubkey + spkiHeaderLength, pubkey, pubkeylen); |
2517 | |
2518 | result = Curl_pin_peer_pubkey(data, pinnedpubkey, realpubkey, |
2519 | realpubkeylen); |
2520 | |
2521 | } while(0); |
2522 | |
2523 | Curl_safefree(realpubkey); |
2524 | if(publicKeyBits != NULL) |
2525 | CFRelease(publicKeyBits); |
2526 | |
2527 | return result; |
2528 | } |
2529 | #endif /* SECTRANSP_PINNEDPUBKEY */ |
2530 | |
2531 | static CURLcode |
2532 | sectransp_connect_step2(struct Curl_easy *data, struct connectdata *conn, |
2533 | int sockindex) |
2534 | { |
2535 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
2536 | struct ssl_backend_data *backend = connssl->backend; |
2537 | OSStatus err; |
2538 | SSLCipherSuite cipher; |
2539 | SSLProtocol protocol = 0; |
2540 | const char * const hostname = SSL_HOST_NAME(); |
2541 | |
2542 | DEBUGASSERT(ssl_connect_2 == connssl->connecting_state |
2543 | || ssl_connect_2_reading == connssl->connecting_state |
2544 | || ssl_connect_2_writing == connssl->connecting_state); |
2545 | |
2546 | /* Here goes nothing: */ |
2547 | err = SSLHandshake(backend->ssl_ctx); |
2548 | |
2549 | if(err != noErr) { |
2550 | switch(err) { |
2551 | case errSSLWouldBlock: /* they're not done with us yet */ |
2552 | connssl->connecting_state = backend->ssl_direction ? |
2553 | ssl_connect_2_writing : ssl_connect_2_reading; |
2554 | return CURLE_OK; |
2555 | |
2556 | /* The below is errSSLServerAuthCompleted; it's not defined in |
2557 | Leopard's headers */ |
2558 | case -9841: |
2559 | if((SSL_CONN_CONFIG(CAfile) || SSL_CONN_CONFIG(ca_info_blob)) && |
2560 | SSL_CONN_CONFIG(verifypeer)) { |
2561 | CURLcode result = verify_cert(data, SSL_CONN_CONFIG(CAfile), |
2562 | SSL_CONN_CONFIG(ca_info_blob), |
2563 | backend->ssl_ctx); |
2564 | if(result) |
2565 | return result; |
2566 | } |
2567 | /* the documentation says we need to call SSLHandshake() again */ |
2568 | return sectransp_connect_step2(data, conn, sockindex); |
2569 | |
2570 | /* Problem with encrypt / decrypt */ |
2571 | case errSSLPeerDecodeError: |
2572 | failf(data, "Decode failed" ); |
2573 | break; |
2574 | case errSSLDecryptionFail: |
2575 | case errSSLPeerDecryptionFail: |
2576 | failf(data, "Decryption failed" ); |
2577 | break; |
2578 | case errSSLPeerDecryptError: |
2579 | failf(data, "A decryption error occurred" ); |
2580 | break; |
2581 | case errSSLBadCipherSuite: |
2582 | failf(data, "A bad SSL cipher suite was encountered" ); |
2583 | break; |
2584 | case errSSLCrypto: |
2585 | failf(data, "An underlying cryptographic error was encountered" ); |
2586 | break; |
2587 | #if CURL_BUILD_MAC_10_11 || CURL_BUILD_IOS_9 |
2588 | case errSSLWeakPeerEphemeralDHKey: |
2589 | failf(data, "Indicates a weak ephemeral Diffie-Hellman key" ); |
2590 | break; |
2591 | #endif |
2592 | |
2593 | /* Problem with the message record validation */ |
2594 | case errSSLBadRecordMac: |
2595 | case errSSLPeerBadRecordMac: |
2596 | failf(data, "A record with a bad message authentication code (MAC) " |
2597 | "was encountered" ); |
2598 | break; |
2599 | case errSSLRecordOverflow: |
2600 | case errSSLPeerRecordOverflow: |
2601 | failf(data, "A record overflow occurred" ); |
2602 | break; |
2603 | |
2604 | /* Problem with zlib decompression */ |
2605 | case errSSLPeerDecompressFail: |
2606 | failf(data, "Decompression failed" ); |
2607 | break; |
2608 | |
2609 | /* Problem with access */ |
2610 | case errSSLPeerAccessDenied: |
2611 | failf(data, "Access was denied" ); |
2612 | break; |
2613 | case errSSLPeerInsufficientSecurity: |
2614 | failf(data, "There is insufficient security for this operation" ); |
2615 | break; |
2616 | |
2617 | /* These are all certificate problems with the server: */ |
2618 | case errSSLXCertChainInvalid: |
2619 | failf(data, "SSL certificate problem: Invalid certificate chain" ); |
2620 | return CURLE_PEER_FAILED_VERIFICATION; |
2621 | case errSSLUnknownRootCert: |
2622 | failf(data, "SSL certificate problem: Untrusted root certificate" ); |
2623 | return CURLE_PEER_FAILED_VERIFICATION; |
2624 | case errSSLNoRootCert: |
2625 | failf(data, "SSL certificate problem: No root certificate" ); |
2626 | return CURLE_PEER_FAILED_VERIFICATION; |
2627 | case errSSLCertNotYetValid: |
2628 | failf(data, "SSL certificate problem: The certificate chain had a " |
2629 | "certificate that is not yet valid" ); |
2630 | return CURLE_PEER_FAILED_VERIFICATION; |
2631 | case errSSLCertExpired: |
2632 | case errSSLPeerCertExpired: |
2633 | failf(data, "SSL certificate problem: Certificate chain had an " |
2634 | "expired certificate" ); |
2635 | return CURLE_PEER_FAILED_VERIFICATION; |
2636 | case errSSLBadCert: |
2637 | case errSSLPeerBadCert: |
2638 | failf(data, "SSL certificate problem: Couldn't understand the server " |
2639 | "certificate format" ); |
2640 | return CURLE_PEER_FAILED_VERIFICATION; |
2641 | case errSSLPeerUnsupportedCert: |
2642 | failf(data, "SSL certificate problem: An unsupported certificate " |
2643 | "format was encountered" ); |
2644 | return CURLE_PEER_FAILED_VERIFICATION; |
2645 | case errSSLPeerCertRevoked: |
2646 | failf(data, "SSL certificate problem: The certificate was revoked" ); |
2647 | return CURLE_PEER_FAILED_VERIFICATION; |
2648 | case errSSLPeerCertUnknown: |
2649 | failf(data, "SSL certificate problem: The certificate is unknown" ); |
2650 | return CURLE_PEER_FAILED_VERIFICATION; |
2651 | |
2652 | /* These are all certificate problems with the client: */ |
2653 | case errSecAuthFailed: |
2654 | failf(data, "SSL authentication failed" ); |
2655 | break; |
2656 | case errSSLPeerHandshakeFail: |
2657 | failf(data, "SSL peer handshake failed, the server most likely " |
2658 | "requires a client certificate to connect" ); |
2659 | break; |
2660 | case errSSLPeerUnknownCA: |
2661 | failf(data, "SSL server rejected the client certificate due to " |
2662 | "the certificate being signed by an unknown certificate " |
2663 | "authority" ); |
2664 | break; |
2665 | |
2666 | /* This error is raised if the server's cert didn't match the server's |
2667 | host name: */ |
2668 | case errSSLHostNameMismatch: |
2669 | failf(data, "SSL certificate peer verification failed, the " |
2670 | "certificate did not match \"%s\"\n" , conn->host.dispname); |
2671 | return CURLE_PEER_FAILED_VERIFICATION; |
2672 | |
2673 | /* Problem with SSL / TLS negotiation */ |
2674 | case errSSLNegotiation: |
2675 | failf(data, "Could not negotiate an SSL cipher suite with the server" ); |
2676 | break; |
2677 | case errSSLBadConfiguration: |
2678 | failf(data, "A configuration error occurred" ); |
2679 | break; |
2680 | case errSSLProtocol: |
2681 | failf(data, "SSL protocol error" ); |
2682 | break; |
2683 | case errSSLPeerProtocolVersion: |
2684 | failf(data, "A bad protocol version was encountered" ); |
2685 | break; |
2686 | case errSSLPeerNoRenegotiation: |
2687 | failf(data, "No renegotiation is allowed" ); |
2688 | break; |
2689 | |
2690 | /* Generic handshake errors: */ |
2691 | case errSSLConnectionRefused: |
2692 | failf(data, "Server dropped the connection during the SSL handshake" ); |
2693 | break; |
2694 | case errSSLClosedAbort: |
2695 | failf(data, "Server aborted the SSL handshake" ); |
2696 | break; |
2697 | case errSSLClosedGraceful: |
2698 | failf(data, "The connection closed gracefully" ); |
2699 | break; |
2700 | case errSSLClosedNoNotify: |
2701 | failf(data, "The server closed the session with no notification" ); |
2702 | break; |
2703 | /* Sometimes paramErr happens with buggy ciphers: */ |
2704 | case paramErr: |
2705 | case errSSLInternal: |
2706 | case errSSLPeerInternalError: |
2707 | failf(data, "Internal SSL engine error encountered during the " |
2708 | "SSL handshake" ); |
2709 | break; |
2710 | case errSSLFatalAlert: |
2711 | failf(data, "Fatal SSL engine error encountered during the SSL " |
2712 | "handshake" ); |
2713 | break; |
2714 | /* Unclassified error */ |
2715 | case errSSLBufferOverflow: |
2716 | failf(data, "An insufficient buffer was provided" ); |
2717 | break; |
2718 | case errSSLIllegalParam: |
2719 | failf(data, "An illegal parameter was encountered" ); |
2720 | break; |
2721 | case errSSLModuleAttach: |
2722 | failf(data, "Module attach failure" ); |
2723 | break; |
2724 | case errSSLSessionNotFound: |
2725 | failf(data, "An attempt to restore an unknown session failed" ); |
2726 | break; |
2727 | case errSSLPeerExportRestriction: |
2728 | failf(data, "An export restriction occurred" ); |
2729 | break; |
2730 | case errSSLPeerUserCancelled: |
2731 | failf(data, "The user canceled the operation" ); |
2732 | break; |
2733 | case errSSLPeerUnexpectedMsg: |
2734 | failf(data, "Peer rejected unexpected message" ); |
2735 | break; |
2736 | #if CURL_BUILD_MAC_10_11 || CURL_BUILD_IOS_9 |
2737 | /* Treaing non-fatal error as fatal like before */ |
2738 | case errSSLClientHelloReceived: |
2739 | failf(data, "A non-fatal result for providing a server name " |
2740 | "indication" ); |
2741 | break; |
2742 | #endif |
2743 | |
2744 | /* Error codes defined in the enum but should never be returned. |
2745 | We list them here just in case. */ |
2746 | #if CURL_BUILD_MAC_10_6 |
2747 | /* Only returned when kSSLSessionOptionBreakOnCertRequested is set */ |
2748 | case errSSLClientCertRequested: |
2749 | failf(data, "Server requested a client certificate during the " |
2750 | "handshake" ); |
2751 | return CURLE_SSL_CLIENTCERT; |
2752 | #endif |
2753 | #if CURL_BUILD_MAC_10_9 |
2754 | /* Alias for errSSLLast, end of error range */ |
2755 | case errSSLUnexpectedRecord: |
2756 | failf(data, "Unexpected (skipped) record in DTLS" ); |
2757 | break; |
2758 | #endif |
2759 | default: |
2760 | /* May also return codes listed in Security Framework Result Codes */ |
2761 | failf(data, "Unknown SSL protocol error in connection to %s:%d" , |
2762 | hostname, err); |
2763 | break; |
2764 | } |
2765 | return CURLE_SSL_CONNECT_ERROR; |
2766 | } |
2767 | else { |
2768 | /* we have been connected fine, we're not waiting for anything else. */ |
2769 | connssl->connecting_state = ssl_connect_3; |
2770 | |
2771 | #ifdef SECTRANSP_PINNEDPUBKEY |
2772 | if(data->set.str[STRING_SSL_PINNEDPUBLICKEY]) { |
2773 | CURLcode result = |
2774 | pkp_pin_peer_pubkey(data, backend->ssl_ctx, |
2775 | data->set.str[STRING_SSL_PINNEDPUBLICKEY]); |
2776 | if(result) { |
2777 | failf(data, "SSL: public key does not match pinned public key!" ); |
2778 | return result; |
2779 | } |
2780 | } |
2781 | #endif /* SECTRANSP_PINNEDPUBKEY */ |
2782 | |
2783 | /* Informational message */ |
2784 | (void)SSLGetNegotiatedCipher(backend->ssl_ctx, &cipher); |
2785 | (void)SSLGetNegotiatedProtocolVersion(backend->ssl_ctx, &protocol); |
2786 | switch(protocol) { |
2787 | case kSSLProtocol2: |
2788 | infof(data, "SSL 2.0 connection using %s" , |
2789 | TLSCipherNameForNumber(cipher)); |
2790 | break; |
2791 | case kSSLProtocol3: |
2792 | infof(data, "SSL 3.0 connection using %s" , |
2793 | TLSCipherNameForNumber(cipher)); |
2794 | break; |
2795 | case kTLSProtocol1: |
2796 | infof(data, "TLS 1.0 connection using %s" , |
2797 | TLSCipherNameForNumber(cipher)); |
2798 | break; |
2799 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
2800 | case kTLSProtocol11: |
2801 | infof(data, "TLS 1.1 connection using %s" , |
2802 | TLSCipherNameForNumber(cipher)); |
2803 | break; |
2804 | case kTLSProtocol12: |
2805 | infof(data, "TLS 1.2 connection using %s" , |
2806 | TLSCipherNameForNumber(cipher)); |
2807 | break; |
2808 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
2809 | #if CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 |
2810 | case kTLSProtocol13: |
2811 | infof(data, "TLS 1.3 connection using %s" , |
2812 | TLSCipherNameForNumber(cipher)); |
2813 | break; |
2814 | #endif /* CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 */ |
2815 | default: |
2816 | infof(data, "Unknown protocol connection" ); |
2817 | break; |
2818 | } |
2819 | |
2820 | #if(CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1 |
2821 | if(conn->bits.tls_enable_alpn) { |
2822 | if(__builtin_available(macOS 10.13.4, iOS 11, tvOS 11, *)) { |
2823 | CFArrayRef alpnArr = NULL; |
2824 | CFStringRef chosenProtocol = NULL; |
2825 | err = SSLCopyALPNProtocols(backend->ssl_ctx, &alpnArr); |
2826 | |
2827 | if(err == noErr && alpnArr && CFArrayGetCount(alpnArr) >= 1) |
2828 | chosenProtocol = CFArrayGetValueAtIndex(alpnArr, 0); |
2829 | |
2830 | #ifdef USE_HTTP2 |
2831 | if(chosenProtocol && |
2832 | !CFStringCompare(chosenProtocol, CFSTR(ALPN_H2), 0)) { |
2833 | conn->negnpn = CURL_HTTP_VERSION_2; |
2834 | } |
2835 | else |
2836 | #endif |
2837 | if(chosenProtocol && |
2838 | !CFStringCompare(chosenProtocol, CFSTR(ALPN_HTTP_1_1), 0)) { |
2839 | conn->negnpn = CURL_HTTP_VERSION_1_1; |
2840 | } |
2841 | else |
2842 | infof(data, "ALPN, server did not agree to a protocol" ); |
2843 | |
2844 | Curl_multiuse_state(data, conn->negnpn == CURL_HTTP_VERSION_2 ? |
2845 | BUNDLE_MULTIPLEX : BUNDLE_NO_MULTIUSE); |
2846 | |
2847 | /* chosenProtocol is a reference to the string within alpnArr |
2848 | and doesn't need to be freed separately */ |
2849 | if(alpnArr) |
2850 | CFRelease(alpnArr); |
2851 | } |
2852 | } |
2853 | #endif |
2854 | |
2855 | return CURLE_OK; |
2856 | } |
2857 | } |
2858 | |
2859 | static CURLcode |
2860 | add_cert_to_certinfo(struct Curl_easy *data, |
2861 | SecCertificateRef server_cert, |
2862 | int idx) |
2863 | { |
2864 | CURLcode result = CURLE_OK; |
2865 | const char *beg; |
2866 | const char *end; |
2867 | CFDataRef cert_data = SecCertificateCopyData(server_cert); |
2868 | |
2869 | if(!cert_data) |
2870 | return CURLE_PEER_FAILED_VERIFICATION; |
2871 | |
2872 | beg = (const char *)CFDataGetBytePtr(cert_data); |
2873 | end = beg + CFDataGetLength(cert_data); |
2874 | result = Curl_extract_certinfo(data, idx, beg, end); |
2875 | CFRelease(cert_data); |
2876 | return result; |
2877 | } |
2878 | |
2879 | static CURLcode |
2880 | collect_server_cert_single(struct Curl_easy *data, |
2881 | SecCertificateRef server_cert, |
2882 | CFIndex idx) |
2883 | { |
2884 | CURLcode result = CURLE_OK; |
2885 | #ifndef CURL_DISABLE_VERBOSE_STRINGS |
2886 | if(data->set.verbose) { |
2887 | char *certp; |
2888 | result = CopyCertSubject(data, server_cert, &certp); |
2889 | if(!result) { |
2890 | infof(data, "Server certificate: %s" , certp); |
2891 | free(certp); |
2892 | } |
2893 | } |
2894 | #endif |
2895 | if(data->set.ssl.certinfo) |
2896 | result = add_cert_to_certinfo(data, server_cert, (int)idx); |
2897 | return result; |
2898 | } |
2899 | |
2900 | /* This should be called during step3 of the connection at the earliest */ |
2901 | static CURLcode |
2902 | collect_server_cert(struct Curl_easy *data, |
2903 | struct connectdata *conn, |
2904 | int sockindex) |
2905 | { |
2906 | #ifndef CURL_DISABLE_VERBOSE_STRINGS |
2907 | const bool show_verbose_server_cert = data->set.verbose; |
2908 | #else |
2909 | const bool show_verbose_server_cert = false; |
2910 | #endif |
2911 | CURLcode result = data->set.ssl.certinfo ? |
2912 | CURLE_PEER_FAILED_VERIFICATION : CURLE_OK; |
2913 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
2914 | struct ssl_backend_data *backend = connssl->backend; |
2915 | CFArrayRef server_certs = NULL; |
2916 | SecCertificateRef server_cert; |
2917 | OSStatus err; |
2918 | CFIndex i, count; |
2919 | SecTrustRef trust = NULL; |
2920 | |
2921 | if(!show_verbose_server_cert && !data->set.ssl.certinfo) |
2922 | return CURLE_OK; |
2923 | |
2924 | if(!backend->ssl_ctx) |
2925 | return result; |
2926 | |
2927 | #if CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS |
2928 | #if CURL_BUILD_IOS |
2929 | #pragma unused(server_certs) |
2930 | err = SSLCopyPeerTrust(backend->ssl_ctx, &trust); |
2931 | /* For some reason, SSLCopyPeerTrust() can return noErr and yet return |
2932 | a null trust, so be on guard for that: */ |
2933 | if(err == noErr && trust) { |
2934 | count = SecTrustGetCertificateCount(trust); |
2935 | if(data->set.ssl.certinfo) |
2936 | result = Curl_ssl_init_certinfo(data, (int)count); |
2937 | for(i = 0L ; !result && (i < count) ; i++) { |
2938 | server_cert = SecTrustGetCertificateAtIndex(trust, i); |
2939 | result = collect_server_cert_single(data, server_cert, i); |
2940 | } |
2941 | CFRelease(trust); |
2942 | } |
2943 | #else |
2944 | /* SSLCopyPeerCertificates() is deprecated as of Mountain Lion. |
2945 | The function SecTrustGetCertificateAtIndex() is officially present |
2946 | in Lion, but it is unfortunately also present in Snow Leopard as |
2947 | private API and doesn't work as expected. So we have to look for |
2948 | a different symbol to make sure this code is only executed under |
2949 | Lion or later. */ |
2950 | if(SecTrustEvaluateAsync != NULL) { |
2951 | #pragma unused(server_certs) |
2952 | err = SSLCopyPeerTrust(backend->ssl_ctx, &trust); |
2953 | /* For some reason, SSLCopyPeerTrust() can return noErr and yet return |
2954 | a null trust, so be on guard for that: */ |
2955 | if(err == noErr && trust) { |
2956 | count = SecTrustGetCertificateCount(trust); |
2957 | if(data->set.ssl.certinfo) |
2958 | result = Curl_ssl_init_certinfo(data, (int)count); |
2959 | for(i = 0L ; !result && (i < count) ; i++) { |
2960 | server_cert = SecTrustGetCertificateAtIndex(trust, i); |
2961 | result = collect_server_cert_single(data, server_cert, i); |
2962 | } |
2963 | CFRelease(trust); |
2964 | } |
2965 | } |
2966 | else { |
2967 | #if CURL_SUPPORT_MAC_10_8 |
2968 | err = SSLCopyPeerCertificates(backend->ssl_ctx, &server_certs); |
2969 | /* Just in case SSLCopyPeerCertificates() returns null too... */ |
2970 | if(err == noErr && server_certs) { |
2971 | count = CFArrayGetCount(server_certs); |
2972 | if(data->set.ssl.certinfo) |
2973 | result = Curl_ssl_init_certinfo(data, (int)count); |
2974 | for(i = 0L ; !result && (i < count) ; i++) { |
2975 | server_cert = (SecCertificateRef)CFArrayGetValueAtIndex(server_certs, |
2976 | i); |
2977 | result = collect_server_cert_single(data, server_cert, i); |
2978 | } |
2979 | CFRelease(server_certs); |
2980 | } |
2981 | #endif /* CURL_SUPPORT_MAC_10_8 */ |
2982 | } |
2983 | #endif /* CURL_BUILD_IOS */ |
2984 | #else |
2985 | #pragma unused(trust) |
2986 | err = SSLCopyPeerCertificates(backend->ssl_ctx, &server_certs); |
2987 | if(err == noErr) { |
2988 | count = CFArrayGetCount(server_certs); |
2989 | if(data->set.ssl.certinfo) |
2990 | result = Curl_ssl_init_certinfo(data, (int)count); |
2991 | for(i = 0L ; !result && (i < count) ; i++) { |
2992 | server_cert = (SecCertificateRef)CFArrayGetValueAtIndex(server_certs, i); |
2993 | result = collect_server_cert_single(data, server_cert, i); |
2994 | } |
2995 | CFRelease(server_certs); |
2996 | } |
2997 | #endif /* CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS */ |
2998 | return result; |
2999 | } |
3000 | |
3001 | static CURLcode |
3002 | sectransp_connect_step3(struct Curl_easy *data, struct connectdata *conn, |
3003 | int sockindex) |
3004 | { |
3005 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
3006 | |
3007 | /* There is no step 3! |
3008 | * Well, okay, let's collect server certificates, and if verbose mode is on, |
3009 | * let's print the details of the server certificates. */ |
3010 | const CURLcode result = collect_server_cert(data, conn, sockindex); |
3011 | if(result) |
3012 | return result; |
3013 | |
3014 | connssl->connecting_state = ssl_connect_done; |
3015 | return CURLE_OK; |
3016 | } |
3017 | |
3018 | static Curl_recv sectransp_recv; |
3019 | static Curl_send sectransp_send; |
3020 | |
3021 | static CURLcode |
3022 | sectransp_connect_common(struct Curl_easy *data, |
3023 | struct connectdata *conn, |
3024 | int sockindex, |
3025 | bool nonblocking, |
3026 | bool *done) |
3027 | { |
3028 | CURLcode result; |
3029 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
3030 | curl_socket_t sockfd = conn->sock[sockindex]; |
3031 | int what; |
3032 | |
3033 | /* check if the connection has already been established */ |
3034 | if(ssl_connection_complete == connssl->state) { |
3035 | *done = TRUE; |
3036 | return CURLE_OK; |
3037 | } |
3038 | |
3039 | if(ssl_connect_1 == connssl->connecting_state) { |
3040 | /* Find out how much more time we're allowed */ |
3041 | const timediff_t timeout_ms = Curl_timeleft(data, NULL, TRUE); |
3042 | |
3043 | if(timeout_ms < 0) { |
3044 | /* no need to continue if time already is up */ |
3045 | failf(data, "SSL connection timeout" ); |
3046 | return CURLE_OPERATION_TIMEDOUT; |
3047 | } |
3048 | |
3049 | result = sectransp_connect_step1(data, conn, sockindex); |
3050 | if(result) |
3051 | return result; |
3052 | } |
3053 | |
3054 | while(ssl_connect_2 == connssl->connecting_state || |
3055 | ssl_connect_2_reading == connssl->connecting_state || |
3056 | ssl_connect_2_writing == connssl->connecting_state) { |
3057 | |
3058 | /* check allowed time left */ |
3059 | const timediff_t timeout_ms = Curl_timeleft(data, NULL, TRUE); |
3060 | |
3061 | if(timeout_ms < 0) { |
3062 | /* no need to continue if time already is up */ |
3063 | failf(data, "SSL connection timeout" ); |
3064 | return CURLE_OPERATION_TIMEDOUT; |
3065 | } |
3066 | |
3067 | /* if ssl is expecting something, check if it's available. */ |
3068 | if(connssl->connecting_state == ssl_connect_2_reading || |
3069 | connssl->connecting_state == ssl_connect_2_writing) { |
3070 | |
3071 | curl_socket_t writefd = ssl_connect_2_writing == |
3072 | connssl->connecting_state?sockfd:CURL_SOCKET_BAD; |
3073 | curl_socket_t readfd = ssl_connect_2_reading == |
3074 | connssl->connecting_state?sockfd:CURL_SOCKET_BAD; |
3075 | |
3076 | what = Curl_socket_check(readfd, CURL_SOCKET_BAD, writefd, |
3077 | nonblocking ? 0 : timeout_ms); |
3078 | if(what < 0) { |
3079 | /* fatal error */ |
3080 | failf(data, "select/poll on SSL socket, errno: %d" , SOCKERRNO); |
3081 | return CURLE_SSL_CONNECT_ERROR; |
3082 | } |
3083 | else if(0 == what) { |
3084 | if(nonblocking) { |
3085 | *done = FALSE; |
3086 | return CURLE_OK; |
3087 | } |
3088 | else { |
3089 | /* timeout */ |
3090 | failf(data, "SSL connection timeout" ); |
3091 | return CURLE_OPERATION_TIMEDOUT; |
3092 | } |
3093 | } |
3094 | /* socket is readable or writable */ |
3095 | } |
3096 | |
3097 | /* Run transaction, and return to the caller if it failed or if this |
3098 | * connection is done nonblocking and this loop would execute again. This |
3099 | * permits the owner of a multi handle to abort a connection attempt |
3100 | * before step2 has completed while ensuring that a client using select() |
3101 | * or epoll() will always have a valid fdset to wait on. |
3102 | */ |
3103 | result = sectransp_connect_step2(data, conn, sockindex); |
3104 | if(result || (nonblocking && |
3105 | (ssl_connect_2 == connssl->connecting_state || |
3106 | ssl_connect_2_reading == connssl->connecting_state || |
3107 | ssl_connect_2_writing == connssl->connecting_state))) |
3108 | return result; |
3109 | |
3110 | } /* repeat step2 until all transactions are done. */ |
3111 | |
3112 | |
3113 | if(ssl_connect_3 == connssl->connecting_state) { |
3114 | result = sectransp_connect_step3(data, conn, sockindex); |
3115 | if(result) |
3116 | return result; |
3117 | } |
3118 | |
3119 | if(ssl_connect_done == connssl->connecting_state) { |
3120 | connssl->state = ssl_connection_complete; |
3121 | conn->recv[sockindex] = sectransp_recv; |
3122 | conn->send[sockindex] = sectransp_send; |
3123 | *done = TRUE; |
3124 | } |
3125 | else |
3126 | *done = FALSE; |
3127 | |
3128 | /* Reset our connect state machine */ |
3129 | connssl->connecting_state = ssl_connect_1; |
3130 | |
3131 | return CURLE_OK; |
3132 | } |
3133 | |
3134 | static CURLcode sectransp_connect_nonblocking(struct Curl_easy *data, |
3135 | struct connectdata *conn, |
3136 | int sockindex, bool *done) |
3137 | { |
3138 | return sectransp_connect_common(data, conn, sockindex, TRUE, done); |
3139 | } |
3140 | |
3141 | static CURLcode sectransp_connect(struct Curl_easy *data, |
3142 | struct connectdata *conn, int sockindex) |
3143 | { |
3144 | CURLcode result; |
3145 | bool done = FALSE; |
3146 | |
3147 | result = sectransp_connect_common(data, conn, sockindex, FALSE, &done); |
3148 | |
3149 | if(result) |
3150 | return result; |
3151 | |
3152 | DEBUGASSERT(done); |
3153 | |
3154 | return CURLE_OK; |
3155 | } |
3156 | |
3157 | static void sectransp_close(struct Curl_easy *data, struct connectdata *conn, |
3158 | int sockindex) |
3159 | { |
3160 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
3161 | struct ssl_backend_data *backend = connssl->backend; |
3162 | |
3163 | (void) data; |
3164 | |
3165 | if(backend->ssl_ctx) { |
3166 | (void)SSLClose(backend->ssl_ctx); |
3167 | #if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS |
3168 | if(SSLCreateContext != NULL) |
3169 | CFRelease(backend->ssl_ctx); |
3170 | #if CURL_SUPPORT_MAC_10_8 |
3171 | else |
3172 | (void)SSLDisposeContext(backend->ssl_ctx); |
3173 | #endif /* CURL_SUPPORT_MAC_10_8 */ |
3174 | #else |
3175 | (void)SSLDisposeContext(backend->ssl_ctx); |
3176 | #endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */ |
3177 | backend->ssl_ctx = NULL; |
3178 | } |
3179 | backend->ssl_sockfd = 0; |
3180 | } |
3181 | |
3182 | static int sectransp_shutdown(struct Curl_easy *data, |
3183 | struct connectdata *conn, int sockindex) |
3184 | { |
3185 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
3186 | struct ssl_backend_data *backend = connssl->backend; |
3187 | ssize_t nread; |
3188 | int what; |
3189 | int rc; |
3190 | char buf[120]; |
3191 | int loop = 10; /* avoid getting stuck */ |
3192 | |
3193 | if(!backend->ssl_ctx) |
3194 | return 0; |
3195 | |
3196 | #ifndef CURL_DISABLE_FTP |
3197 | if(data->set.ftp_ccc != CURLFTPSSL_CCC_ACTIVE) |
3198 | return 0; |
3199 | #endif |
3200 | |
3201 | sectransp_close(data, conn, sockindex); |
3202 | |
3203 | rc = 0; |
3204 | |
3205 | what = SOCKET_READABLE(conn->sock[sockindex], SSL_SHUTDOWN_TIMEOUT); |
3206 | |
3207 | while(loop--) { |
3208 | if(what < 0) { |
3209 | /* anything that gets here is fatally bad */ |
3210 | failf(data, "select/poll on SSL socket, errno: %d" , SOCKERRNO); |
3211 | rc = -1; |
3212 | break; |
3213 | } |
3214 | |
3215 | if(!what) { /* timeout */ |
3216 | failf(data, "SSL shutdown timeout" ); |
3217 | break; |
3218 | } |
3219 | |
3220 | /* Something to read, let's do it and hope that it is the close |
3221 | notify alert from the server. No way to SSL_Read now, so use read(). */ |
3222 | |
3223 | nread = read(conn->sock[sockindex], buf, sizeof(buf)); |
3224 | |
3225 | if(nread < 0) { |
3226 | char buffer[STRERROR_LEN]; |
3227 | failf(data, "read: %s" , |
3228 | Curl_strerror(errno, buffer, sizeof(buffer))); |
3229 | rc = -1; |
3230 | } |
3231 | |
3232 | if(nread <= 0) |
3233 | break; |
3234 | |
3235 | what = SOCKET_READABLE(conn->sock[sockindex], 0); |
3236 | } |
3237 | |
3238 | return rc; |
3239 | } |
3240 | |
3241 | static void sectransp_session_free(void *ptr) |
3242 | { |
3243 | /* ST, as of iOS 5 and Mountain Lion, has no public method of deleting a |
3244 | cached session ID inside the Security framework. There is a private |
3245 | function that does this, but I don't want to have to explain to you why I |
3246 | got your application rejected from the App Store due to the use of a |
3247 | private API, so the best we can do is free up our own char array that we |
3248 | created way back in sectransp_connect_step1... */ |
3249 | Curl_safefree(ptr); |
3250 | } |
3251 | |
3252 | static size_t sectransp_version(char *buffer, size_t size) |
3253 | { |
3254 | return msnprintf(buffer, size, "SecureTransport" ); |
3255 | } |
3256 | |
3257 | /* |
3258 | * This function uses SSLGetSessionState to determine connection status. |
3259 | * |
3260 | * Return codes: |
3261 | * 1 means the connection is still in place |
3262 | * 0 means the connection has been closed |
3263 | * -1 means the connection status is unknown |
3264 | */ |
3265 | static int sectransp_check_cxn(struct connectdata *conn) |
3266 | { |
3267 | struct ssl_connect_data *connssl = &conn->ssl[FIRSTSOCKET]; |
3268 | struct ssl_backend_data *backend = connssl->backend; |
3269 | OSStatus err; |
3270 | SSLSessionState state; |
3271 | |
3272 | if(backend->ssl_ctx) { |
3273 | err = SSLGetSessionState(backend->ssl_ctx, &state); |
3274 | if(err == noErr) |
3275 | return state == kSSLConnected || state == kSSLHandshake; |
3276 | return -1; |
3277 | } |
3278 | return 0; |
3279 | } |
3280 | |
3281 | static bool sectransp_data_pending(const struct connectdata *conn, |
3282 | int connindex) |
3283 | { |
3284 | const struct ssl_connect_data *connssl = &conn->ssl[connindex]; |
3285 | struct ssl_backend_data *backend = connssl->backend; |
3286 | OSStatus err; |
3287 | size_t buffer; |
3288 | |
3289 | if(backend->ssl_ctx) { /* SSL is in use */ |
3290 | err = SSLGetBufferedReadSize(backend->ssl_ctx, &buffer); |
3291 | if(err == noErr) |
3292 | return buffer > 0UL; |
3293 | return false; |
3294 | } |
3295 | else |
3296 | return false; |
3297 | } |
3298 | |
3299 | static CURLcode sectransp_random(struct Curl_easy *data UNUSED_PARAM, |
3300 | unsigned char *entropy, size_t length) |
3301 | { |
3302 | /* arc4random_buf() isn't available on cats older than Lion, so let's |
3303 | do this manually for the benefit of the older cats. */ |
3304 | size_t i; |
3305 | u_int32_t random_number = 0; |
3306 | |
3307 | (void)data; |
3308 | |
3309 | for(i = 0 ; i < length ; i++) { |
3310 | if(i % sizeof(u_int32_t) == 0) |
3311 | random_number = arc4random(); |
3312 | entropy[i] = random_number & 0xFF; |
3313 | random_number >>= 8; |
3314 | } |
3315 | i = random_number = 0; |
3316 | return CURLE_OK; |
3317 | } |
3318 | |
3319 | static CURLcode sectransp_sha256sum(const unsigned char *tmp, /* input */ |
3320 | size_t tmplen, |
3321 | unsigned char *sha256sum, /* output */ |
3322 | size_t sha256len) |
3323 | { |
3324 | assert(sha256len >= CURL_SHA256_DIGEST_LENGTH); |
3325 | (void)CC_SHA256(tmp, (CC_LONG)tmplen, sha256sum); |
3326 | return CURLE_OK; |
3327 | } |
3328 | |
3329 | static bool sectransp_false_start(void) |
3330 | { |
3331 | #if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 |
3332 | if(SSLSetSessionOption != NULL) |
3333 | return TRUE; |
3334 | #endif |
3335 | return FALSE; |
3336 | } |
3337 | |
3338 | static ssize_t sectransp_send(struct Curl_easy *data, |
3339 | int sockindex, |
3340 | const void *mem, |
3341 | size_t len, |
3342 | CURLcode *curlcode) |
3343 | { |
3344 | struct connectdata *conn = data->conn; |
3345 | struct ssl_connect_data *connssl = &conn->ssl[sockindex]; |
3346 | struct ssl_backend_data *backend = connssl->backend; |
3347 | size_t processed = 0UL; |
3348 | OSStatus err; |
3349 | |
3350 | /* The SSLWrite() function works a little differently than expected. The |
3351 | fourth argument (processed) is currently documented in Apple's |
3352 | documentation as: "On return, the length, in bytes, of the data actually |
3353 | written." |
3354 | |
3355 | Now, one could interpret that as "written to the socket," but actually, |
3356 | it returns the amount of data that was written to a buffer internal to |
3357 | the SSLContextRef instead. So it's possible for SSLWrite() to return |
3358 | errSSLWouldBlock and a number of bytes "written" because those bytes were |
3359 | encrypted and written to a buffer, not to the socket. |
3360 | |
3361 | So if this happens, then we need to keep calling SSLWrite() over and |
3362 | over again with no new data until it quits returning errSSLWouldBlock. */ |
3363 | |
3364 | /* Do we have buffered data to write from the last time we were called? */ |
3365 | if(backend->ssl_write_buffered_length) { |
3366 | /* Write the buffered data: */ |
3367 | err = SSLWrite(backend->ssl_ctx, NULL, 0UL, &processed); |
3368 | switch(err) { |
3369 | case noErr: |
3370 | /* processed is always going to be 0 because we didn't write to |
3371 | the buffer, so return how much was written to the socket */ |
3372 | processed = backend->ssl_write_buffered_length; |
3373 | backend->ssl_write_buffered_length = 0UL; |
3374 | break; |
3375 | case errSSLWouldBlock: /* argh, try again */ |
3376 | *curlcode = CURLE_AGAIN; |
3377 | return -1L; |
3378 | default: |
3379 | failf(data, "SSLWrite() returned error %d" , err); |
3380 | *curlcode = CURLE_SEND_ERROR; |
3381 | return -1L; |
3382 | } |
3383 | } |
3384 | else { |
3385 | /* We've got new data to write: */ |
3386 | err = SSLWrite(backend->ssl_ctx, mem, len, &processed); |
3387 | if(err != noErr) { |
3388 | switch(err) { |
3389 | case errSSLWouldBlock: |
3390 | /* Data was buffered but not sent, we have to tell the caller |
3391 | to try sending again, and remember how much was buffered */ |
3392 | backend->ssl_write_buffered_length = len; |
3393 | *curlcode = CURLE_AGAIN; |
3394 | return -1L; |
3395 | default: |
3396 | failf(data, "SSLWrite() returned error %d" , err); |
3397 | *curlcode = CURLE_SEND_ERROR; |
3398 | return -1L; |
3399 | } |
3400 | } |
3401 | } |
3402 | return (ssize_t)processed; |
3403 | } |
3404 | |
3405 | static ssize_t sectransp_recv(struct Curl_easy *data, |
3406 | int num, |
3407 | char *buf, |
3408 | size_t buffersize, |
3409 | CURLcode *curlcode) |
3410 | { |
3411 | struct connectdata *conn = data->conn; |
3412 | struct ssl_connect_data *connssl = &conn->ssl[num]; |
3413 | struct ssl_backend_data *backend = connssl->backend; |
3414 | size_t processed = 0UL; |
3415 | OSStatus err; |
3416 | |
3417 | again: |
3418 | err = SSLRead(backend->ssl_ctx, buf, buffersize, &processed); |
3419 | |
3420 | if(err != noErr) { |
3421 | switch(err) { |
3422 | case errSSLWouldBlock: /* return how much we read (if anything) */ |
3423 | if(processed) |
3424 | return (ssize_t)processed; |
3425 | *curlcode = CURLE_AGAIN; |
3426 | return -1L; |
3427 | break; |
3428 | |
3429 | /* errSSLClosedGraceful - server gracefully shut down the SSL session |
3430 | errSSLClosedNoNotify - server hung up on us instead of sending a |
3431 | closure alert notice, read() is returning 0 |
3432 | Either way, inform the caller that the server disconnected. */ |
3433 | case errSSLClosedGraceful: |
3434 | case errSSLClosedNoNotify: |
3435 | *curlcode = CURLE_OK; |
3436 | return -1L; |
3437 | break; |
3438 | |
3439 | /* The below is errSSLPeerAuthCompleted; it's not defined in |
3440 | Leopard's headers */ |
3441 | case -9841: |
3442 | if((SSL_CONN_CONFIG(CAfile) || SSL_CONN_CONFIG(ca_info_blob)) && |
3443 | SSL_CONN_CONFIG(verifypeer)) { |
3444 | CURLcode result = verify_cert(data, SSL_CONN_CONFIG(CAfile), |
3445 | SSL_CONN_CONFIG(ca_info_blob), |
3446 | backend->ssl_ctx); |
3447 | if(result) |
3448 | return result; |
3449 | } |
3450 | goto again; |
3451 | default: |
3452 | failf(data, "SSLRead() return error %d" , err); |
3453 | *curlcode = CURLE_RECV_ERROR; |
3454 | return -1L; |
3455 | break; |
3456 | } |
3457 | } |
3458 | return (ssize_t)processed; |
3459 | } |
3460 | |
3461 | static void *sectransp_get_internals(struct ssl_connect_data *connssl, |
3462 | CURLINFO info UNUSED_PARAM) |
3463 | { |
3464 | struct ssl_backend_data *backend = connssl->backend; |
3465 | (void)info; |
3466 | return backend->ssl_ctx; |
3467 | } |
3468 | |
3469 | const struct Curl_ssl Curl_ssl_sectransp = { |
3470 | { CURLSSLBACKEND_SECURETRANSPORT, "secure-transport" }, /* info */ |
3471 | |
3472 | SSLSUPP_CAINFO_BLOB | |
3473 | SSLSUPP_CERTINFO | |
3474 | #ifdef SECTRANSP_PINNEDPUBKEY |
3475 | SSLSUPP_PINNEDPUBKEY, |
3476 | #else |
3477 | 0, |
3478 | #endif /* SECTRANSP_PINNEDPUBKEY */ |
3479 | |
3480 | sizeof(struct ssl_backend_data), |
3481 | |
3482 | Curl_none_init, /* init */ |
3483 | Curl_none_cleanup, /* cleanup */ |
3484 | sectransp_version, /* version */ |
3485 | sectransp_check_cxn, /* check_cxn */ |
3486 | sectransp_shutdown, /* shutdown */ |
3487 | sectransp_data_pending, /* data_pending */ |
3488 | sectransp_random, /* random */ |
3489 | Curl_none_cert_status_request, /* cert_status_request */ |
3490 | sectransp_connect, /* connect */ |
3491 | sectransp_connect_nonblocking, /* connect_nonblocking */ |
3492 | Curl_ssl_getsock, /* getsock */ |
3493 | sectransp_get_internals, /* get_internals */ |
3494 | sectransp_close, /* close_one */ |
3495 | Curl_none_close_all, /* close_all */ |
3496 | sectransp_session_free, /* session_free */ |
3497 | Curl_none_set_engine, /* set_engine */ |
3498 | Curl_none_set_engine_default, /* set_engine_default */ |
3499 | Curl_none_engines_list, /* engines_list */ |
3500 | sectransp_false_start, /* false_start */ |
3501 | sectransp_sha256sum, /* sha256sum */ |
3502 | NULL, /* associate_connection */ |
3503 | NULL /* disassociate_connection */ |
3504 | }; |
3505 | |
3506 | #ifdef __clang__ |
3507 | #pragma clang diagnostic pop |
3508 | #endif |
3509 | |
3510 | #endif /* USE_SECTRANSP */ |
3511 | |