1 | /* |
2 | Formatting library for C++ |
3 | |
4 | Copyright (c) 2012 - present, Victor Zverovich |
5 | |
6 | Permission is hereby granted, free of charge, to any person obtaining |
7 | a copy of this software and associated documentation files (the |
8 | "Software"), to deal in the Software without restriction, including |
9 | without limitation the rights to use, copy, modify, merge, publish, |
10 | distribute, sublicense, and/or sell copies of the Software, and to |
11 | permit persons to whom the Software is furnished to do so, subject to |
12 | the following conditions: |
13 | |
14 | The above copyright notice and this permission notice shall be |
15 | included in all copies or substantial portions of the Software. |
16 | |
17 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
18 | EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
19 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
20 | NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
21 | LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
22 | OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
23 | WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
24 | |
25 | --- Optional exception to the license --- |
26 | |
27 | As an exception, if, as a result of your compiling your source code, portions |
28 | of this Software are embedded into a machine-executable object form of such |
29 | source code, you may redistribute such embedded portions in such object form |
30 | without including the above copyright and permission notices. |
31 | */ |
32 | |
33 | #ifndef FMT_FORMAT_H_ |
34 | #define FMT_FORMAT_H_ |
35 | |
36 | #include <cmath> // std::signbit |
37 | #include <cstdint> // uint32_t |
38 | #include <cstring> // std::memcpy |
39 | #include <initializer_list> // std::initializer_list |
40 | #include <limits> // std::numeric_limits |
41 | #include <memory> // std::uninitialized_copy |
42 | #include <stdexcept> // std::runtime_error |
43 | #include <system_error> // std::system_error |
44 | |
45 | #ifdef __cpp_lib_bit_cast |
46 | # include <bit> // std::bitcast |
47 | #endif |
48 | |
49 | #include "core.h" |
50 | |
51 | #if FMT_GCC_VERSION |
52 | # define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden"))) |
53 | #else |
54 | # define FMT_GCC_VISIBILITY_HIDDEN |
55 | #endif |
56 | |
57 | #ifdef __NVCC__ |
58 | # define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__) |
59 | #else |
60 | # define FMT_CUDA_VERSION 0 |
61 | #endif |
62 | |
63 | #ifdef __has_builtin |
64 | # define FMT_HAS_BUILTIN(x) __has_builtin(x) |
65 | #else |
66 | # define FMT_HAS_BUILTIN(x) 0 |
67 | #endif |
68 | |
69 | #if FMT_GCC_VERSION || FMT_CLANG_VERSION |
70 | # define FMT_NOINLINE __attribute__((noinline)) |
71 | #else |
72 | # define FMT_NOINLINE |
73 | #endif |
74 | |
75 | #if FMT_MSC_VERSION |
76 | # define FMT_MSC_DEFAULT = default |
77 | #else |
78 | # define FMT_MSC_DEFAULT |
79 | #endif |
80 | |
81 | #ifndef FMT_THROW |
82 | # if FMT_EXCEPTIONS |
83 | # if FMT_MSC_VERSION || defined(__NVCC__) |
84 | FMT_BEGIN_NAMESPACE |
85 | namespace detail { |
86 | template <typename Exception> inline void do_throw(const Exception& x) { |
87 | // Silence unreachable code warnings in MSVC and NVCC because these |
88 | // are nearly impossible to fix in a generic code. |
89 | volatile bool b = true; |
90 | if (b) throw x; |
91 | } |
92 | } // namespace detail |
93 | FMT_END_NAMESPACE |
94 | # define FMT_THROW(x) detail::do_throw(x) |
95 | # else |
96 | # define FMT_THROW(x) throw x |
97 | # endif |
98 | # else |
99 | # define FMT_THROW(x) \ |
100 | do { \ |
101 | FMT_ASSERT(false, (x).what()); \ |
102 | } while (false) |
103 | # endif |
104 | #endif |
105 | |
106 | #if FMT_EXCEPTIONS |
107 | # define FMT_TRY try |
108 | # define FMT_CATCH(x) catch (x) |
109 | #else |
110 | # define FMT_TRY if (true) |
111 | # define FMT_CATCH(x) if (false) |
112 | #endif |
113 | |
114 | #ifndef FMT_MAYBE_UNUSED |
115 | # if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused) |
116 | # define FMT_MAYBE_UNUSED [[maybe_unused]] |
117 | # else |
118 | # define FMT_MAYBE_UNUSED |
119 | # endif |
120 | #endif |
121 | |
122 | #ifndef FMT_USE_USER_DEFINED_LITERALS |
123 | // EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs. |
124 | # if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \ |
125 | FMT_MSC_VERSION >= 1900) && \ |
126 | (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480) |
127 | # define FMT_USE_USER_DEFINED_LITERALS 1 |
128 | # else |
129 | # define FMT_USE_USER_DEFINED_LITERALS 0 |
130 | # endif |
131 | #endif |
132 | |
133 | // Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of |
134 | // integer formatter template instantiations to just one by only using the |
135 | // largest integer type. This results in a reduction in binary size but will |
136 | // cause a decrease in integer formatting performance. |
137 | #if !defined(FMT_REDUCE_INT_INSTANTIATIONS) |
138 | # define FMT_REDUCE_INT_INSTANTIATIONS 0 |
139 | #endif |
140 | |
141 | // __builtin_clz is broken in clang with Microsoft CodeGen: |
142 | // https://github.com/fmtlib/fmt/issues/519. |
143 | #if !FMT_MSC_VERSION |
144 | # if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION |
145 | # define FMT_BUILTIN_CLZ(n) __builtin_clz(n) |
146 | # endif |
147 | # if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION |
148 | # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) |
149 | # endif |
150 | #endif |
151 | |
152 | // __builtin_ctz is broken in Intel Compiler Classic on Windows: |
153 | // https://github.com/fmtlib/fmt/issues/2510. |
154 | #ifndef __ICL |
155 | # if FMT_HAS_BUILTIN(__builtin_ctz) || FMT_GCC_VERSION || FMT_ICC_VERSION || \ |
156 | defined(__NVCOMPILER) |
157 | # define FMT_BUILTIN_CTZ(n) __builtin_ctz(n) |
158 | # endif |
159 | # if FMT_HAS_BUILTIN(__builtin_ctzll) || FMT_GCC_VERSION || \ |
160 | FMT_ICC_VERSION || defined(__NVCOMPILER) |
161 | # define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n) |
162 | # endif |
163 | #endif |
164 | |
165 | #if FMT_MSC_VERSION |
166 | # include <intrin.h> // _BitScanReverse[64], _BitScanForward[64], _umul128 |
167 | #endif |
168 | |
169 | // Some compilers masquerade as both MSVC and GCC-likes or otherwise support |
170 | // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the |
171 | // MSVC intrinsics if the clz and clzll builtins are not available. |
172 | #if FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL) && \ |
173 | !defined(FMT_BUILTIN_CTZLL) |
174 | FMT_BEGIN_NAMESPACE |
175 | namespace detail { |
176 | // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning. |
177 | # if !defined(__clang__) |
178 | # pragma intrinsic(_BitScanForward) |
179 | # pragma intrinsic(_BitScanReverse) |
180 | # if defined(_WIN64) |
181 | # pragma intrinsic(_BitScanForward64) |
182 | # pragma intrinsic(_BitScanReverse64) |
183 | # endif |
184 | # endif |
185 | |
186 | inline auto clz(uint32_t x) -> int { |
187 | unsigned long r = 0; |
188 | _BitScanReverse(&r, x); |
189 | FMT_ASSERT(x != 0, "" ); |
190 | // Static analysis complains about using uninitialized data |
191 | // "r", but the only way that can happen is if "x" is 0, |
192 | // which the callers guarantee to not happen. |
193 | FMT_MSC_WARNING(suppress : 6102) |
194 | return 31 ^ static_cast<int>(r); |
195 | } |
196 | # define FMT_BUILTIN_CLZ(n) detail::clz(n) |
197 | |
198 | inline auto clzll(uint64_t x) -> int { |
199 | unsigned long r = 0; |
200 | # ifdef _WIN64 |
201 | _BitScanReverse64(&r, x); |
202 | # else |
203 | // Scan the high 32 bits. |
204 | if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32))) return 63 ^ (r + 32); |
205 | // Scan the low 32 bits. |
206 | _BitScanReverse(&r, static_cast<uint32_t>(x)); |
207 | # endif |
208 | FMT_ASSERT(x != 0, "" ); |
209 | FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. |
210 | return 63 ^ static_cast<int>(r); |
211 | } |
212 | # define FMT_BUILTIN_CLZLL(n) detail::clzll(n) |
213 | |
214 | inline auto ctz(uint32_t x) -> int { |
215 | unsigned long r = 0; |
216 | _BitScanForward(&r, x); |
217 | FMT_ASSERT(x != 0, "" ); |
218 | FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. |
219 | return static_cast<int>(r); |
220 | } |
221 | # define FMT_BUILTIN_CTZ(n) detail::ctz(n) |
222 | |
223 | inline auto ctzll(uint64_t x) -> int { |
224 | unsigned long r = 0; |
225 | FMT_ASSERT(x != 0, "" ); |
226 | FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. |
227 | # ifdef _WIN64 |
228 | _BitScanForward64(&r, x); |
229 | # else |
230 | // Scan the low 32 bits. |
231 | if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r); |
232 | // Scan the high 32 bits. |
233 | _BitScanForward(&r, static_cast<uint32_t>(x >> 32)); |
234 | r += 32; |
235 | # endif |
236 | return static_cast<int>(r); |
237 | } |
238 | # define FMT_BUILTIN_CTZLL(n) detail::ctzll(n) |
239 | } // namespace detail |
240 | FMT_END_NAMESPACE |
241 | #endif |
242 | |
243 | FMT_BEGIN_NAMESPACE |
244 | namespace detail { |
245 | |
246 | FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) { |
247 | ignore_unused(condition); |
248 | #ifdef FMT_FUZZ |
249 | if (condition) throw std::runtime_error("fuzzing limit reached" ); |
250 | #endif |
251 | } |
252 | |
253 | template <typename CharT, CharT... C> struct string_literal { |
254 | static constexpr CharT value[sizeof...(C)] = {C...}; |
255 | constexpr operator basic_string_view<CharT>() const { |
256 | return {value, sizeof...(C)}; |
257 | } |
258 | }; |
259 | |
260 | #if FMT_CPLUSPLUS < 201703L |
261 | template <typename CharT, CharT... C> |
262 | constexpr CharT string_literal<CharT, C...>::value[sizeof...(C)]; |
263 | #endif |
264 | |
265 | template <typename Streambuf> class formatbuf : public Streambuf { |
266 | private: |
267 | using char_type = typename Streambuf::char_type; |
268 | using streamsize = decltype(std::declval<Streambuf>().sputn(nullptr, 0)); |
269 | using int_type = typename Streambuf::int_type; |
270 | using traits_type = typename Streambuf::traits_type; |
271 | |
272 | buffer<char_type>& buffer_; |
273 | |
274 | public: |
275 | explicit formatbuf(buffer<char_type>& buf) : buffer_(buf) {} |
276 | |
277 | protected: |
278 | // The put area is always empty. This makes the implementation simpler and has |
279 | // the advantage that the streambuf and the buffer are always in sync and |
280 | // sputc never writes into uninitialized memory. A disadvantage is that each |
281 | // call to sputc always results in a (virtual) call to overflow. There is no |
282 | // disadvantage here for sputn since this always results in a call to xsputn. |
283 | |
284 | auto overflow(int_type ch) -> int_type override { |
285 | if (!traits_type::eq_int_type(ch, traits_type::eof())) |
286 | buffer_.push_back(static_cast<char_type>(ch)); |
287 | return ch; |
288 | } |
289 | |
290 | auto xsputn(const char_type* s, streamsize count) -> streamsize override { |
291 | buffer_.append(s, s + count); |
292 | return count; |
293 | } |
294 | }; |
295 | |
296 | // Implementation of std::bit_cast for pre-C++20. |
297 | template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))> |
298 | FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To { |
299 | #ifdef __cpp_lib_bit_cast |
300 | if (is_constant_evaluated()) return std::bit_cast<To>(from); |
301 | #endif |
302 | auto to = To(); |
303 | // The cast suppresses a bogus -Wclass-memaccess on GCC. |
304 | std::memcpy(static_cast<void*>(&to), &from, sizeof(to)); |
305 | return to; |
306 | } |
307 | |
308 | inline auto is_big_endian() -> bool { |
309 | #ifdef _WIN32 |
310 | return false; |
311 | #elif defined(__BIG_ENDIAN__) |
312 | return true; |
313 | #elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) |
314 | return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__; |
315 | #else |
316 | struct bytes { |
317 | char data[sizeof(int)]; |
318 | }; |
319 | return bit_cast<bytes>(1).data[0] == 0; |
320 | #endif |
321 | } |
322 | |
323 | class uint128_fallback { |
324 | private: |
325 | uint64_t lo_, hi_; |
326 | |
327 | friend uint128_fallback umul128(uint64_t x, uint64_t y) noexcept; |
328 | |
329 | public: |
330 | constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {} |
331 | constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {} |
332 | |
333 | constexpr uint64_t high() const noexcept { return hi_; } |
334 | constexpr uint64_t low() const noexcept { return lo_; } |
335 | |
336 | template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> |
337 | constexpr explicit operator T() const { |
338 | return static_cast<T>(lo_); |
339 | } |
340 | |
341 | friend constexpr auto operator==(const uint128_fallback& lhs, |
342 | const uint128_fallback& rhs) -> bool { |
343 | return lhs.hi_ == rhs.hi_ && lhs.lo_ == rhs.lo_; |
344 | } |
345 | friend constexpr auto operator!=(const uint128_fallback& lhs, |
346 | const uint128_fallback& rhs) -> bool { |
347 | return !(lhs == rhs); |
348 | } |
349 | friend constexpr auto operator>(const uint128_fallback& lhs, |
350 | const uint128_fallback& rhs) -> bool { |
351 | return lhs.hi_ != rhs.hi_ ? lhs.hi_ > rhs.hi_ : lhs.lo_ > rhs.lo_; |
352 | } |
353 | friend constexpr auto operator|(const uint128_fallback& lhs, |
354 | const uint128_fallback& rhs) |
355 | -> uint128_fallback { |
356 | return {lhs.hi_ | rhs.hi_, lhs.lo_ | rhs.lo_}; |
357 | } |
358 | friend constexpr auto operator&(const uint128_fallback& lhs, |
359 | const uint128_fallback& rhs) |
360 | -> uint128_fallback { |
361 | return {lhs.hi_ & rhs.hi_, lhs.lo_ & rhs.lo_}; |
362 | } |
363 | friend auto operator+(const uint128_fallback& lhs, |
364 | const uint128_fallback& rhs) -> uint128_fallback { |
365 | auto result = uint128_fallback(lhs); |
366 | result += rhs; |
367 | return result; |
368 | } |
369 | friend auto operator*(const uint128_fallback& lhs, uint32_t rhs) |
370 | -> uint128_fallback { |
371 | FMT_ASSERT(lhs.hi_ == 0, "" ); |
372 | uint64_t hi = (lhs.lo_ >> 32) * rhs; |
373 | uint64_t lo = (lhs.lo_ & ~uint32_t()) * rhs; |
374 | uint64_t new_lo = (hi << 32) + lo; |
375 | return {(hi >> 32) + (new_lo < lo ? 1 : 0), new_lo}; |
376 | } |
377 | friend auto operator-(const uint128_fallback& lhs, uint64_t rhs) |
378 | -> uint128_fallback { |
379 | return {lhs.hi_ - (lhs.lo_ < rhs ? 1 : 0), lhs.lo_ - rhs}; |
380 | } |
381 | FMT_CONSTEXPR auto operator>>(int shift) const -> uint128_fallback { |
382 | if (shift == 64) return {0, hi_}; |
383 | if (shift > 64) return uint128_fallback(0, hi_) >> (shift - 64); |
384 | return {hi_ >> shift, (hi_ << (64 - shift)) | (lo_ >> shift)}; |
385 | } |
386 | FMT_CONSTEXPR auto operator<<(int shift) const -> uint128_fallback { |
387 | if (shift == 64) return {lo_, 0}; |
388 | if (shift > 64) return uint128_fallback(lo_, 0) << (shift - 64); |
389 | return {hi_ << shift | (lo_ >> (64 - shift)), (lo_ << shift)}; |
390 | } |
391 | FMT_CONSTEXPR auto operator>>=(int shift) -> uint128_fallback& { |
392 | return *this = *this >> shift; |
393 | } |
394 | FMT_CONSTEXPR void operator+=(uint128_fallback n) { |
395 | uint64_t new_lo = lo_ + n.lo_; |
396 | uint64_t new_hi = hi_ + n.hi_ + (new_lo < lo_ ? 1 : 0); |
397 | FMT_ASSERT(new_hi >= hi_, "" ); |
398 | lo_ = new_lo; |
399 | hi_ = new_hi; |
400 | } |
401 | |
402 | FMT_CONSTEXPR20 uint128_fallback& operator+=(uint64_t n) noexcept { |
403 | if (is_constant_evaluated()) { |
404 | lo_ += n; |
405 | hi_ += (lo_ < n ? 1 : 0); |
406 | return *this; |
407 | } |
408 | #if FMT_HAS_BUILTIN(__builtin_addcll) && !defined(__ibmxl__) |
409 | unsigned long long carry; |
410 | lo_ = __builtin_addcll(lo_, n, 0, &carry); |
411 | hi_ += carry; |
412 | #elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) && !defined(__ibmxl__) |
413 | unsigned long long result; |
414 | auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result); |
415 | lo_ = result; |
416 | hi_ += carry; |
417 | #elif defined(_MSC_VER) && defined(_M_X64) |
418 | auto carry = _addcarry_u64(0, lo_, n, &lo_); |
419 | _addcarry_u64(carry, hi_, 0, &hi_); |
420 | #else |
421 | lo_ += n; |
422 | hi_ += (lo_ < n ? 1 : 0); |
423 | #endif |
424 | return *this; |
425 | } |
426 | }; |
427 | |
428 | using uint128_t = conditional_t<FMT_USE_INT128, uint128_opt, uint128_fallback>; |
429 | |
430 | #ifdef UINTPTR_MAX |
431 | using uintptr_t = ::uintptr_t; |
432 | #else |
433 | using uintptr_t = uint128_t; |
434 | #endif |
435 | |
436 | // Returns the largest possible value for type T. Same as |
437 | // std::numeric_limits<T>::max() but shorter and not affected by the max macro. |
438 | template <typename T> constexpr auto max_value() -> T { |
439 | return (std::numeric_limits<T>::max)(); |
440 | } |
441 | template <typename T> constexpr auto num_bits() -> int { |
442 | return std::numeric_limits<T>::digits; |
443 | } |
444 | // std::numeric_limits<T>::digits may return 0 for 128-bit ints. |
445 | template <> constexpr auto num_bits<int128_opt>() -> int { return 128; } |
446 | template <> constexpr auto num_bits<uint128_t>() -> int { return 128; } |
447 | |
448 | // A heterogeneous bit_cast used for converting 96-bit long double to uint128_t |
449 | // and 128-bit pointers to uint128_fallback. |
450 | template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) > sizeof(From))> |
451 | inline auto bit_cast(const From& from) -> To { |
452 | constexpr auto size = static_cast<int>(sizeof(From) / sizeof(unsigned)); |
453 | struct data_t { |
454 | unsigned value[static_cast<unsigned>(size)]; |
455 | } data = bit_cast<data_t>(from); |
456 | auto result = To(); |
457 | if (const_check(is_big_endian())) { |
458 | for (int i = 0; i < size; ++i) |
459 | result = (result << num_bits<unsigned>()) | data.value[i]; |
460 | } else { |
461 | for (int i = size - 1; i >= 0; --i) |
462 | result = (result << num_bits<unsigned>()) | data.value[i]; |
463 | } |
464 | return result; |
465 | } |
466 | |
467 | FMT_INLINE void assume(bool condition) { |
468 | (void)condition; |
469 | #if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION |
470 | __builtin_assume(condition); |
471 | #endif |
472 | } |
473 | |
474 | // An approximation of iterator_t for pre-C++20 systems. |
475 | template <typename T> |
476 | using iterator_t = decltype(std::begin(std::declval<T&>())); |
477 | template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>())); |
478 | |
479 | // A workaround for std::string not having mutable data() until C++17. |
480 | template <typename Char> |
481 | inline auto get_data(std::basic_string<Char>& s) -> Char* { |
482 | return &s[0]; |
483 | } |
484 | template <typename Container> |
485 | inline auto get_data(Container& c) -> typename Container::value_type* { |
486 | return c.data(); |
487 | } |
488 | |
489 | #if defined(_SECURE_SCL) && _SECURE_SCL |
490 | // Make a checked iterator to avoid MSVC warnings. |
491 | template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>; |
492 | template <typename T> |
493 | constexpr auto make_checked(T* p, size_t size) -> checked_ptr<T> { |
494 | return {p, size}; |
495 | } |
496 | #else |
497 | template <typename T> using checked_ptr = T*; |
498 | template <typename T> constexpr auto make_checked(T* p, size_t) -> T* { |
499 | return p; |
500 | } |
501 | #endif |
502 | |
503 | // Attempts to reserve space for n extra characters in the output range. |
504 | // Returns a pointer to the reserved range or a reference to it. |
505 | template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)> |
506 | #if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION |
507 | __attribute__((no_sanitize("undefined" ))) |
508 | #endif |
509 | inline auto |
510 | reserve(std::back_insert_iterator<Container> it, size_t n) |
511 | -> checked_ptr<typename Container::value_type> { |
512 | Container& c = get_container(it); |
513 | size_t size = c.size(); |
514 | c.resize(size + n); |
515 | return make_checked(get_data(c) + size, n); |
516 | } |
517 | |
518 | template <typename T> |
519 | inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> { |
520 | buffer<T>& buf = get_container(it); |
521 | buf.try_reserve(buf.size() + n); |
522 | return it; |
523 | } |
524 | |
525 | template <typename Iterator> |
526 | constexpr auto reserve(Iterator& it, size_t) -> Iterator& { |
527 | return it; |
528 | } |
529 | |
530 | template <typename OutputIt> |
531 | using reserve_iterator = |
532 | remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>; |
533 | |
534 | template <typename T, typename OutputIt> |
535 | constexpr auto to_pointer(OutputIt, size_t) -> T* { |
536 | return nullptr; |
537 | } |
538 | template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* { |
539 | buffer<T>& buf = get_container(it); |
540 | auto size = buf.size(); |
541 | if (buf.capacity() < size + n) return nullptr; |
542 | buf.try_resize(size + n); |
543 | return buf.data() + size; |
544 | } |
545 | |
546 | template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)> |
547 | inline auto base_iterator(std::back_insert_iterator<Container>& it, |
548 | checked_ptr<typename Container::value_type>) |
549 | -> std::back_insert_iterator<Container> { |
550 | return it; |
551 | } |
552 | |
553 | template <typename Iterator> |
554 | constexpr auto base_iterator(Iterator, Iterator it) -> Iterator { |
555 | return it; |
556 | } |
557 | |
558 | // <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n |
559 | // instead (#1998). |
560 | template <typename OutputIt, typename Size, typename T> |
561 | FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value) |
562 | -> OutputIt { |
563 | for (Size i = 0; i < count; ++i) *out++ = value; |
564 | return out; |
565 | } |
566 | template <typename T, typename Size> |
567 | FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* { |
568 | if (is_constant_evaluated()) { |
569 | return fill_n<T*, Size, T>(out, count, value); |
570 | } |
571 | std::memset(out, value, to_unsigned(count)); |
572 | return out + count; |
573 | } |
574 | |
575 | #ifdef __cpp_char8_t |
576 | using char8_type = char8_t; |
577 | #else |
578 | enum char8_type : unsigned char {}; |
579 | #endif |
580 | |
581 | template <typename OutChar, typename InputIt, typename OutputIt> |
582 | FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end, |
583 | OutputIt out) -> OutputIt { |
584 | return copy_str<OutChar>(begin, end, out); |
585 | } |
586 | |
587 | // A public domain branchless UTF-8 decoder by Christopher Wellons: |
588 | // https://github.com/skeeto/branchless-utf8 |
589 | /* Decode the next character, c, from s, reporting errors in e. |
590 | * |
591 | * Since this is a branchless decoder, four bytes will be read from the |
592 | * buffer regardless of the actual length of the next character. This |
593 | * means the buffer _must_ have at least three bytes of zero padding |
594 | * following the end of the data stream. |
595 | * |
596 | * Errors are reported in e, which will be non-zero if the parsed |
597 | * character was somehow invalid: invalid byte sequence, non-canonical |
598 | * encoding, or a surrogate half. |
599 | * |
600 | * The function returns a pointer to the next character. When an error |
601 | * occurs, this pointer will be a guess that depends on the particular |
602 | * error, but it will always advance at least one byte. |
603 | */ |
604 | FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e) |
605 | -> const char* { |
606 | constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07}; |
607 | constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536}; |
608 | constexpr const int shiftc[] = {0, 18, 12, 6, 0}; |
609 | constexpr const int shifte[] = {0, 6, 4, 2, 0}; |
610 | |
611 | int len = code_point_length_impl(*s); |
612 | // Compute the pointer to the next character early so that the next |
613 | // iteration can start working on the next character. Neither Clang |
614 | // nor GCC figure out this reordering on their own. |
615 | const char* next = s + len + !len; |
616 | |
617 | using uchar = unsigned char; |
618 | |
619 | // Assume a four-byte character and load four bytes. Unused bits are |
620 | // shifted out. |
621 | *c = uint32_t(uchar(s[0]) & masks[len]) << 18; |
622 | *c |= uint32_t(uchar(s[1]) & 0x3f) << 12; |
623 | *c |= uint32_t(uchar(s[2]) & 0x3f) << 6; |
624 | *c |= uint32_t(uchar(s[3]) & 0x3f) << 0; |
625 | *c >>= shiftc[len]; |
626 | |
627 | // Accumulate the various error conditions. |
628 | *e = (*c < mins[len]) << 6; // non-canonical encoding |
629 | *e |= ((*c >> 11) == 0x1b) << 7; // surrogate half? |
630 | *e |= (*c > 0x10FFFF) << 8; // out of range? |
631 | *e |= (uchar(s[1]) & 0xc0) >> 2; |
632 | *e |= (uchar(s[2]) & 0xc0) >> 4; |
633 | *e |= uchar(s[3]) >> 6; |
634 | *e ^= 0x2a; // top two bits of each tail byte correct? |
635 | *e >>= shifte[len]; |
636 | |
637 | return next; |
638 | } |
639 | |
640 | constexpr uint32_t invalid_code_point = ~uint32_t(); |
641 | |
642 | // Invokes f(cp, sv) for every code point cp in s with sv being the string view |
643 | // corresponding to the code point. cp is invalid_code_point on error. |
644 | template <typename F> |
645 | FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) { |
646 | auto decode = [f](const char* buf_ptr, const char* ptr) { |
647 | auto cp = uint32_t(); |
648 | auto error = 0; |
649 | auto end = utf8_decode(buf_ptr, &cp, &error); |
650 | bool result = f(error ? invalid_code_point : cp, |
651 | string_view(ptr, error ? 1 : to_unsigned(end - buf_ptr))); |
652 | return result ? (error ? buf_ptr + 1 : end) : nullptr; |
653 | }; |
654 | auto p = s.data(); |
655 | const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars. |
656 | if (s.size() >= block_size) { |
657 | for (auto end = p + s.size() - block_size + 1; p < end;) { |
658 | p = decode(p, p); |
659 | if (!p) return; |
660 | } |
661 | } |
662 | if (auto num_chars_left = s.data() + s.size() - p) { |
663 | char buf[2 * block_size - 1] = {}; |
664 | copy_str<char>(p, p + num_chars_left, buf); |
665 | const char* buf_ptr = buf; |
666 | do { |
667 | auto end = decode(buf_ptr, p); |
668 | if (!end) return; |
669 | p += end - buf_ptr; |
670 | buf_ptr = end; |
671 | } while (buf_ptr - buf < num_chars_left); |
672 | } |
673 | } |
674 | |
675 | template <typename Char> |
676 | inline auto compute_width(basic_string_view<Char> s) -> size_t { |
677 | return s.size(); |
678 | } |
679 | |
680 | // Computes approximate display width of a UTF-8 string. |
681 | FMT_CONSTEXPR inline size_t compute_width(string_view s) { |
682 | size_t num_code_points = 0; |
683 | // It is not a lambda for compatibility with C++14. |
684 | struct count_code_points { |
685 | size_t* count; |
686 | FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool { |
687 | *count += detail::to_unsigned( |
688 | 1 + |
689 | (cp >= 0x1100 && |
690 | (cp <= 0x115f || // Hangul Jamo init. consonants |
691 | cp == 0x2329 || // LEFT-POINTING ANGLE BRACKET |
692 | cp == 0x232a || // RIGHT-POINTING ANGLE BRACKET |
693 | // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE: |
694 | (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) || |
695 | (cp >= 0xac00 && cp <= 0xd7a3) || // Hangul Syllables |
696 | (cp >= 0xf900 && cp <= 0xfaff) || // CJK Compatibility Ideographs |
697 | (cp >= 0xfe10 && cp <= 0xfe19) || // Vertical Forms |
698 | (cp >= 0xfe30 && cp <= 0xfe6f) || // CJK Compatibility Forms |
699 | (cp >= 0xff00 && cp <= 0xff60) || // Fullwidth Forms |
700 | (cp >= 0xffe0 && cp <= 0xffe6) || // Fullwidth Forms |
701 | (cp >= 0x20000 && cp <= 0x2fffd) || // CJK |
702 | (cp >= 0x30000 && cp <= 0x3fffd) || |
703 | // Miscellaneous Symbols and Pictographs + Emoticons: |
704 | (cp >= 0x1f300 && cp <= 0x1f64f) || |
705 | // Supplemental Symbols and Pictographs: |
706 | (cp >= 0x1f900 && cp <= 0x1f9ff)))); |
707 | return true; |
708 | } |
709 | }; |
710 | // We could avoid branches by using utf8_decode directly. |
711 | for_each_codepoint(s, count_code_points{&num_code_points}); |
712 | return num_code_points; |
713 | } |
714 | |
715 | inline auto compute_width(basic_string_view<char8_type> s) -> size_t { |
716 | return compute_width( |
717 | string_view(reinterpret_cast<const char*>(s.data()), s.size())); |
718 | } |
719 | |
720 | template <typename Char> |
721 | inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t { |
722 | size_t size = s.size(); |
723 | return n < size ? n : size; |
724 | } |
725 | |
726 | // Calculates the index of the nth code point in a UTF-8 string. |
727 | inline auto code_point_index(string_view s, size_t n) -> size_t { |
728 | const char* data = s.data(); |
729 | size_t num_code_points = 0; |
730 | for (size_t i = 0, size = s.size(); i != size; ++i) { |
731 | if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i; |
732 | } |
733 | return s.size(); |
734 | } |
735 | |
736 | inline auto code_point_index(basic_string_view<char8_type> s, size_t n) |
737 | -> size_t { |
738 | return code_point_index( |
739 | string_view(reinterpret_cast<const char*>(s.data()), s.size()), n); |
740 | } |
741 | |
742 | template <typename T> struct is_integral : std::is_integral<T> {}; |
743 | template <> struct is_integral<int128_opt> : std::true_type {}; |
744 | template <> struct is_integral<uint128_t> : std::true_type {}; |
745 | |
746 | template <typename T> |
747 | using is_signed = |
748 | std::integral_constant<bool, std::numeric_limits<T>::is_signed || |
749 | std::is_same<T, int128_opt>::value>; |
750 | |
751 | template <typename T> |
752 | using is_integer = |
753 | bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value && |
754 | !std::is_same<T, char>::value && |
755 | !std::is_same<T, wchar_t>::value>; |
756 | |
757 | #ifndef FMT_USE_FLOAT128 |
758 | # ifdef __SIZEOF_FLOAT128__ |
759 | # define FMT_USE_FLOAT128 1 |
760 | # else |
761 | # define FMT_USE_FLOAT128 0 |
762 | # endif |
763 | #endif |
764 | #if FMT_USE_FLOAT128 |
765 | using float128 = __float128; |
766 | #else |
767 | using float128 = void; |
768 | #endif |
769 | template <typename T> using is_float128 = std::is_same<T, float128>; |
770 | |
771 | template <typename T> |
772 | using is_floating_point = |
773 | bool_constant<std::is_floating_point<T>::value || is_float128<T>::value>; |
774 | |
775 | template <typename T, bool = std::is_floating_point<T>::value> |
776 | struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 && |
777 | sizeof(T) <= sizeof(double)> {}; |
778 | template <typename T> struct is_fast_float<T, false> : std::false_type {}; |
779 | |
780 | template <typename T> |
781 | using is_double_double = bool_constant<std::numeric_limits<T>::digits == 106>; |
782 | |
783 | #ifndef FMT_USE_FULL_CACHE_DRAGONBOX |
784 | # define FMT_USE_FULL_CACHE_DRAGONBOX 0 |
785 | #endif |
786 | |
787 | template <typename T> |
788 | template <typename U> |
789 | void buffer<T>::append(const U* begin, const U* end) { |
790 | while (begin != end) { |
791 | auto count = to_unsigned(end - begin); |
792 | try_reserve(size_ + count); |
793 | auto free_cap = capacity_ - size_; |
794 | if (free_cap < count) count = free_cap; |
795 | std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count)); |
796 | size_ += count; |
797 | begin += count; |
798 | } |
799 | } |
800 | |
801 | template <typename T, typename Enable = void> |
802 | struct is_locale : std::false_type {}; |
803 | template <typename T> |
804 | struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {}; |
805 | } // namespace detail |
806 | |
807 | FMT_MODULE_EXPORT_BEGIN |
808 | |
809 | // The number of characters to store in the basic_memory_buffer object itself |
810 | // to avoid dynamic memory allocation. |
811 | enum { inline_buffer_size = 500 }; |
812 | |
813 | /** |
814 | \rst |
815 | A dynamically growing memory buffer for trivially copyable/constructible types |
816 | with the first ``SIZE`` elements stored in the object itself. |
817 | |
818 | You can use the ``memory_buffer`` type alias for ``char`` instead. |
819 | |
820 | **Example**:: |
821 | |
822 | auto out = fmt::memory_buffer(); |
823 | format_to(std::back_inserter(out), "The answer is {}.", 42); |
824 | |
825 | This will append the following output to the ``out`` object: |
826 | |
827 | .. code-block:: none |
828 | |
829 | The answer is 42. |
830 | |
831 | The output can be converted to an ``std::string`` with ``to_string(out)``. |
832 | \endrst |
833 | */ |
834 | template <typename T, size_t SIZE = inline_buffer_size, |
835 | typename Allocator = std::allocator<T>> |
836 | class basic_memory_buffer final : public detail::buffer<T> { |
837 | private: |
838 | T store_[SIZE]; |
839 | |
840 | // Don't inherit from Allocator avoid generating type_info for it. |
841 | Allocator alloc_; |
842 | |
843 | // Deallocate memory allocated by the buffer. |
844 | FMT_CONSTEXPR20 void deallocate() { |
845 | T* data = this->data(); |
846 | if (data != store_) alloc_.deallocate(data, this->capacity()); |
847 | } |
848 | |
849 | protected: |
850 | FMT_CONSTEXPR20 void grow(size_t size) override; |
851 | |
852 | public: |
853 | using value_type = T; |
854 | using const_reference = const T&; |
855 | |
856 | FMT_CONSTEXPR20 explicit basic_memory_buffer( |
857 | const Allocator& alloc = Allocator()) |
858 | : alloc_(alloc) { |
859 | this->set(store_, SIZE); |
860 | if (detail::is_constant_evaluated()) detail::fill_n(store_, SIZE, T()); |
861 | } |
862 | FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); } |
863 | |
864 | private: |
865 | // Move data from other to this buffer. |
866 | FMT_CONSTEXPR20 void move(basic_memory_buffer& other) { |
867 | alloc_ = std::move(other.alloc_); |
868 | T* data = other.data(); |
869 | size_t size = other.size(), capacity = other.capacity(); |
870 | if (data == other.store_) { |
871 | this->set(store_, capacity); |
872 | detail::copy_str<T>(other.store_, other.store_ + size, |
873 | detail::make_checked(store_, capacity)); |
874 | } else { |
875 | this->set(data, capacity); |
876 | // Set pointer to the inline array so that delete is not called |
877 | // when deallocating. |
878 | other.set(other.store_, 0); |
879 | other.clear(); |
880 | } |
881 | this->resize(size); |
882 | } |
883 | |
884 | public: |
885 | /** |
886 | \rst |
887 | Constructs a :class:`fmt::basic_memory_buffer` object moving the content |
888 | of the other object to it. |
889 | \endrst |
890 | */ |
891 | FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) noexcept { |
892 | move(other); |
893 | } |
894 | |
895 | /** |
896 | \rst |
897 | Moves the content of the other ``basic_memory_buffer`` object to this one. |
898 | \endrst |
899 | */ |
900 | auto operator=(basic_memory_buffer&& other) noexcept -> basic_memory_buffer& { |
901 | FMT_ASSERT(this != &other, "" ); |
902 | deallocate(); |
903 | move(other); |
904 | return *this; |
905 | } |
906 | |
907 | // Returns a copy of the allocator associated with this buffer. |
908 | auto get_allocator() const -> Allocator { return alloc_; } |
909 | |
910 | /** |
911 | Resizes the buffer to contain *count* elements. If T is a POD type new |
912 | elements may not be initialized. |
913 | */ |
914 | FMT_CONSTEXPR20 void resize(size_t count) { this->try_resize(count); } |
915 | |
916 | /** Increases the buffer capacity to *new_capacity*. */ |
917 | void reserve(size_t new_capacity) { this->try_reserve(new_capacity); } |
918 | |
919 | // Directly append data into the buffer |
920 | using detail::buffer<T>::append; |
921 | template <typename ContiguousRange> |
922 | void append(const ContiguousRange& range) { |
923 | append(range.data(), range.data() + range.size()); |
924 | } |
925 | }; |
926 | |
927 | template <typename T, size_t SIZE, typename Allocator> |
928 | FMT_CONSTEXPR20 void basic_memory_buffer<T, SIZE, Allocator>::grow( |
929 | size_t size) { |
930 | detail::abort_fuzzing_if(size > 5000); |
931 | const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_); |
932 | size_t old_capacity = this->capacity(); |
933 | size_t new_capacity = old_capacity + old_capacity / 2; |
934 | if (size > new_capacity) |
935 | new_capacity = size; |
936 | else if (new_capacity > max_size) |
937 | new_capacity = size > max_size ? size : max_size; |
938 | T* old_data = this->data(); |
939 | T* new_data = |
940 | std::allocator_traits<Allocator>::allocate(alloc_, new_capacity); |
941 | // The following code doesn't throw, so the raw pointer above doesn't leak. |
942 | std::uninitialized_copy(old_data, old_data + this->size(), |
943 | detail::make_checked(new_data, new_capacity)); |
944 | this->set(new_data, new_capacity); |
945 | // deallocate must not throw according to the standard, but even if it does, |
946 | // the buffer already uses the new storage and will deallocate it in |
947 | // destructor. |
948 | if (old_data != store_) alloc_.deallocate(old_data, old_capacity); |
949 | } |
950 | |
951 | using memory_buffer = basic_memory_buffer<char>; |
952 | |
953 | template <typename T, size_t SIZE, typename Allocator> |
954 | struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type { |
955 | }; |
956 | |
957 | namespace detail { |
958 | #ifdef _WIN32 |
959 | FMT_API bool write_console(std::FILE* f, string_view text); |
960 | #endif |
961 | FMT_API void print(std::FILE*, string_view); |
962 | } // namespace detail |
963 | |
964 | /** A formatting error such as invalid format string. */ |
965 | FMT_CLASS_API |
966 | class FMT_API format_error : public std::runtime_error { |
967 | public: |
968 | explicit format_error(const char* message) : std::runtime_error(message) {} |
969 | explicit format_error(const std::string& message) |
970 | : std::runtime_error(message) {} |
971 | format_error(const format_error&) = default; |
972 | format_error& operator=(const format_error&) = default; |
973 | format_error(format_error&&) = default; |
974 | format_error& operator=(format_error&&) = default; |
975 | ~format_error() noexcept override FMT_MSC_DEFAULT; |
976 | }; |
977 | |
978 | namespace detail_exported { |
979 | #if FMT_USE_NONTYPE_TEMPLATE_ARGS |
980 | template <typename Char, size_t N> struct fixed_string { |
981 | constexpr fixed_string(const Char (&str)[N]) { |
982 | detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str), |
983 | str + N, data); |
984 | } |
985 | Char data[N] = {}; |
986 | }; |
987 | #endif |
988 | |
989 | // Converts a compile-time string to basic_string_view. |
990 | template <typename Char, size_t N> |
991 | constexpr auto compile_string_to_view(const Char (&s)[N]) |
992 | -> basic_string_view<Char> { |
993 | // Remove trailing NUL character if needed. Won't be present if this is used |
994 | // with a raw character array (i.e. not defined as a string). |
995 | return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)}; |
996 | } |
997 | template <typename Char> |
998 | constexpr auto compile_string_to_view(detail::std_string_view<Char> s) |
999 | -> basic_string_view<Char> { |
1000 | return {s.data(), s.size()}; |
1001 | } |
1002 | } // namespace detail_exported |
1003 | |
1004 | class loc_value { |
1005 | private: |
1006 | basic_format_arg<format_context> value_; |
1007 | |
1008 | public: |
1009 | template <typename T, FMT_ENABLE_IF(!detail::is_float128<T>::value)> |
1010 | loc_value(T value) : value_(detail::make_arg<format_context>(value)) {} |
1011 | |
1012 | template <typename T, FMT_ENABLE_IF(detail::is_float128<T>::value)> |
1013 | loc_value(T) {} |
1014 | |
1015 | template <typename Visitor> auto visit(Visitor&& vis) -> decltype(vis(0)) { |
1016 | return visit_format_arg(vis, value_); |
1017 | } |
1018 | }; |
1019 | |
1020 | // A locale facet that formats values in UTF-8. |
1021 | // It is parameterized on the locale to avoid the heavy <locale> include. |
1022 | template <typename Locale> class format_facet : public Locale::facet { |
1023 | private: |
1024 | std::string separator_; |
1025 | std::string grouping_; |
1026 | std::string decimal_point_; |
1027 | |
1028 | protected: |
1029 | virtual auto do_put(appender out, loc_value val, |
1030 | const format_specs& specs) const -> bool; |
1031 | |
1032 | public: |
1033 | static FMT_API typename Locale::id id; |
1034 | |
1035 | explicit format_facet(Locale& loc); |
1036 | explicit format_facet(string_view sep = "" , |
1037 | std::initializer_list<unsigned char> g = {3}, |
1038 | std::string decimal_point = "." ) |
1039 | : separator_(sep.data(), sep.size()), |
1040 | grouping_(g.begin(), g.end()), |
1041 | decimal_point_(decimal_point) {} |
1042 | |
1043 | auto put(appender out, loc_value val, const format_specs& specs) const |
1044 | -> bool { |
1045 | return do_put(out, val, specs); |
1046 | } |
1047 | }; |
1048 | |
1049 | FMT_BEGIN_DETAIL_NAMESPACE |
1050 | |
1051 | // Returns true if value is negative, false otherwise. |
1052 | // Same as `value < 0` but doesn't produce warnings if T is an unsigned type. |
1053 | template <typename T, FMT_ENABLE_IF(is_signed<T>::value)> |
1054 | constexpr auto is_negative(T value) -> bool { |
1055 | return value < 0; |
1056 | } |
1057 | template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)> |
1058 | constexpr auto is_negative(T) -> bool { |
1059 | return false; |
1060 | } |
1061 | |
1062 | template <typename T> |
1063 | FMT_CONSTEXPR auto is_supported_floating_point(T) -> bool { |
1064 | if (std::is_same<T, float>()) return FMT_USE_FLOAT; |
1065 | if (std::is_same<T, double>()) return FMT_USE_DOUBLE; |
1066 | if (std::is_same<T, long double>()) return FMT_USE_LONG_DOUBLE; |
1067 | return true; |
1068 | } |
1069 | |
1070 | // Smallest of uint32_t, uint64_t, uint128_t that is large enough to |
1071 | // represent all values of an integral type T. |
1072 | template <typename T> |
1073 | using uint32_or_64_or_128_t = |
1074 | conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS, |
1075 | uint32_t, |
1076 | conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>; |
1077 | template <typename T> |
1078 | using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>; |
1079 | |
1080 | #define FMT_POWERS_OF_10(factor) \ |
1081 | factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \ |
1082 | (factor)*1000000, (factor)*10000000, (factor)*100000000, \ |
1083 | (factor)*1000000000 |
1084 | |
1085 | // Converts value in the range [0, 100) to a string. |
1086 | constexpr const char* digits2(size_t value) { |
1087 | // GCC generates slightly better code when value is pointer-size. |
1088 | return &"0001020304050607080910111213141516171819" |
1089 | "2021222324252627282930313233343536373839" |
1090 | "4041424344454647484950515253545556575859" |
1091 | "6061626364656667686970717273747576777879" |
1092 | "8081828384858687888990919293949596979899" [value * 2]; |
1093 | } |
1094 | |
1095 | // Sign is a template parameter to workaround a bug in gcc 4.8. |
1096 | template <typename Char, typename Sign> constexpr Char sign(Sign s) { |
1097 | #if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604 |
1098 | static_assert(std::is_same<Sign, sign_t>::value, "" ); |
1099 | #endif |
1100 | return static_cast<Char>("\0-+ " [s]); |
1101 | } |
1102 | |
1103 | template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int { |
1104 | int count = 1; |
1105 | for (;;) { |
1106 | // Integer division is slow so do it for a group of four digits instead |
1107 | // of for every digit. The idea comes from the talk by Alexandrescu |
1108 | // "Three Optimization Tips for C++". See speed-test for a comparison. |
1109 | if (n < 10) return count; |
1110 | if (n < 100) return count + 1; |
1111 | if (n < 1000) return count + 2; |
1112 | if (n < 10000) return count + 3; |
1113 | n /= 10000u; |
1114 | count += 4; |
1115 | } |
1116 | } |
1117 | #if FMT_USE_INT128 |
1118 | FMT_CONSTEXPR inline auto count_digits(uint128_opt n) -> int { |
1119 | return count_digits_fallback(n); |
1120 | } |
1121 | #endif |
1122 | |
1123 | #ifdef FMT_BUILTIN_CLZLL |
1124 | // It is a separate function rather than a part of count_digits to workaround |
1125 | // the lack of static constexpr in constexpr functions. |
1126 | inline auto do_count_digits(uint64_t n) -> int { |
1127 | // This has comparable performance to the version by Kendall Willets |
1128 | // (https://github.com/fmtlib/format-benchmark/blob/master/digits10) |
1129 | // but uses smaller tables. |
1130 | // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)). |
1131 | static constexpr uint8_t bsr2log10[] = { |
1132 | 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, |
1133 | 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, |
1134 | 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, |
1135 | 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20}; |
1136 | auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63]; |
1137 | static constexpr const uint64_t zero_or_powers_of_10[] = { |
1138 | 0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL), |
1139 | 10000000000000000000ULL}; |
1140 | return t - (n < zero_or_powers_of_10[t]); |
1141 | } |
1142 | #endif |
1143 | |
1144 | // Returns the number of decimal digits in n. Leading zeros are not counted |
1145 | // except for n == 0 in which case count_digits returns 1. |
1146 | FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int { |
1147 | #ifdef FMT_BUILTIN_CLZLL |
1148 | if (!is_constant_evaluated()) { |
1149 | return do_count_digits(n); |
1150 | } |
1151 | #endif |
1152 | return count_digits_fallback(n); |
1153 | } |
1154 | |
1155 | // Counts the number of digits in n. BITS = log2(radix). |
1156 | template <int BITS, typename UInt> |
1157 | FMT_CONSTEXPR auto count_digits(UInt n) -> int { |
1158 | #ifdef FMT_BUILTIN_CLZ |
1159 | if (!is_constant_evaluated() && num_bits<UInt>() == 32) |
1160 | return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1; |
1161 | #endif |
1162 | // Lambda avoids unreachable code warnings from NVHPC. |
1163 | return [](UInt m) { |
1164 | int num_digits = 0; |
1165 | do { |
1166 | ++num_digits; |
1167 | } while ((m >>= BITS) != 0); |
1168 | return num_digits; |
1169 | }(n); |
1170 | } |
1171 | |
1172 | #ifdef FMT_BUILTIN_CLZ |
1173 | // It is a separate function rather than a part of count_digits to workaround |
1174 | // the lack of static constexpr in constexpr functions. |
1175 | FMT_INLINE auto do_count_digits(uint32_t n) -> int { |
1176 | // An optimization by Kendall Willets from https://bit.ly/3uOIQrB. |
1177 | // This increments the upper 32 bits (log10(T) - 1) when >= T is added. |
1178 | # define FMT_INC(T) (((sizeof(# T) - 1ull) << 32) - T) |
1179 | static constexpr uint64_t table[] = { |
1180 | FMT_INC(0), FMT_INC(0), FMT_INC(0), // 8 |
1181 | FMT_INC(10), FMT_INC(10), FMT_INC(10), // 64 |
1182 | FMT_INC(100), FMT_INC(100), FMT_INC(100), // 512 |
1183 | FMT_INC(1000), FMT_INC(1000), FMT_INC(1000), // 4096 |
1184 | FMT_INC(10000), FMT_INC(10000), FMT_INC(10000), // 32k |
1185 | FMT_INC(100000), FMT_INC(100000), FMT_INC(100000), // 256k |
1186 | FMT_INC(1000000), FMT_INC(1000000), FMT_INC(1000000), // 2048k |
1187 | FMT_INC(10000000), FMT_INC(10000000), FMT_INC(10000000), // 16M |
1188 | FMT_INC(100000000), FMT_INC(100000000), FMT_INC(100000000), // 128M |
1189 | FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000), // 1024M |
1190 | FMT_INC(1000000000), FMT_INC(1000000000) // 4B |
1191 | }; |
1192 | auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31]; |
1193 | return static_cast<int>((n + inc) >> 32); |
1194 | } |
1195 | #endif |
1196 | |
1197 | // Optional version of count_digits for better performance on 32-bit platforms. |
1198 | FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int { |
1199 | #ifdef FMT_BUILTIN_CLZ |
1200 | if (!is_constant_evaluated()) { |
1201 | return do_count_digits(n); |
1202 | } |
1203 | #endif |
1204 | return count_digits_fallback(n); |
1205 | } |
1206 | |
1207 | template <typename Int> constexpr auto digits10() noexcept -> int { |
1208 | return std::numeric_limits<Int>::digits10; |
1209 | } |
1210 | template <> constexpr auto digits10<int128_opt>() noexcept -> int { return 38; } |
1211 | template <> constexpr auto digits10<uint128_t>() noexcept -> int { return 38; } |
1212 | |
1213 | template <typename Char> struct thousands_sep_result { |
1214 | std::string grouping; |
1215 | Char thousands_sep; |
1216 | }; |
1217 | |
1218 | template <typename Char> |
1219 | FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>; |
1220 | template <typename Char> |
1221 | inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> { |
1222 | auto result = thousands_sep_impl<char>(loc); |
1223 | return {result.grouping, Char(result.thousands_sep)}; |
1224 | } |
1225 | template <> |
1226 | inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> { |
1227 | return thousands_sep_impl<wchar_t>(loc); |
1228 | } |
1229 | |
1230 | template <typename Char> |
1231 | FMT_API auto decimal_point_impl(locale_ref loc) -> Char; |
1232 | template <typename Char> inline auto decimal_point(locale_ref loc) -> Char { |
1233 | return Char(decimal_point_impl<char>(loc)); |
1234 | } |
1235 | template <> inline auto decimal_point(locale_ref loc) -> wchar_t { |
1236 | return decimal_point_impl<wchar_t>(loc); |
1237 | } |
1238 | |
1239 | // Compares two characters for equality. |
1240 | template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool { |
1241 | return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]); |
1242 | } |
1243 | inline auto equal2(const char* lhs, const char* rhs) -> bool { |
1244 | return memcmp(lhs, rhs, 2) == 0; |
1245 | } |
1246 | |
1247 | // Copies two characters from src to dst. |
1248 | template <typename Char> |
1249 | FMT_CONSTEXPR20 FMT_INLINE void copy2(Char* dst, const char* src) { |
1250 | if (!is_constant_evaluated() && sizeof(Char) == sizeof(char)) { |
1251 | memcpy(dst, src, 2); |
1252 | return; |
1253 | } |
1254 | *dst++ = static_cast<Char>(*src++); |
1255 | *dst = static_cast<Char>(*src); |
1256 | } |
1257 | |
1258 | template <typename Iterator> struct format_decimal_result { |
1259 | Iterator begin; |
1260 | Iterator end; |
1261 | }; |
1262 | |
1263 | // Formats a decimal unsigned integer value writing into out pointing to a |
1264 | // buffer of specified size. The caller must ensure that the buffer is large |
1265 | // enough. |
1266 | template <typename Char, typename UInt> |
1267 | FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size) |
1268 | -> format_decimal_result<Char*> { |
1269 | FMT_ASSERT(size >= count_digits(value), "invalid digit count" ); |
1270 | out += size; |
1271 | Char* end = out; |
1272 | while (value >= 100) { |
1273 | // Integer division is slow so do it for a group of two digits instead |
1274 | // of for every digit. The idea comes from the talk by Alexandrescu |
1275 | // "Three Optimization Tips for C++". See speed-test for a comparison. |
1276 | out -= 2; |
1277 | copy2(out, digits2(static_cast<size_t>(value % 100))); |
1278 | value /= 100; |
1279 | } |
1280 | if (value < 10) { |
1281 | *--out = static_cast<Char>('0' + value); |
1282 | return {out, end}; |
1283 | } |
1284 | out -= 2; |
1285 | copy2(out, digits2(static_cast<size_t>(value))); |
1286 | return {out, end}; |
1287 | } |
1288 | |
1289 | template <typename Char, typename UInt, typename Iterator, |
1290 | FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)> |
1291 | FMT_CONSTEXPR inline auto format_decimal(Iterator out, UInt value, int size) |
1292 | -> format_decimal_result<Iterator> { |
1293 | // Buffer is large enough to hold all digits (digits10 + 1). |
1294 | Char buffer[digits10<UInt>() + 1] = {}; |
1295 | auto end = format_decimal(buffer, value, size).end; |
1296 | return {out, detail::copy_str_noinline<Char>(buffer, end, out)}; |
1297 | } |
1298 | |
1299 | template <unsigned BASE_BITS, typename Char, typename UInt> |
1300 | FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits, |
1301 | bool upper = false) -> Char* { |
1302 | buffer += num_digits; |
1303 | Char* end = buffer; |
1304 | do { |
1305 | const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef" ; |
1306 | unsigned digit = static_cast<unsigned>(value & ((1 << BASE_BITS) - 1)); |
1307 | *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit) |
1308 | : digits[digit]); |
1309 | } while ((value >>= BASE_BITS) != 0); |
1310 | return end; |
1311 | } |
1312 | |
1313 | template <unsigned BASE_BITS, typename Char, typename It, typename UInt> |
1314 | inline auto format_uint(It out, UInt value, int num_digits, bool upper = false) |
1315 | -> It { |
1316 | if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) { |
1317 | format_uint<BASE_BITS>(ptr, value, num_digits, upper); |
1318 | return out; |
1319 | } |
1320 | // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1). |
1321 | char buffer[num_bits<UInt>() / BASE_BITS + 1]; |
1322 | format_uint<BASE_BITS>(buffer, value, num_digits, upper); |
1323 | return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out); |
1324 | } |
1325 | |
1326 | // A converter from UTF-8 to UTF-16. |
1327 | class utf8_to_utf16 { |
1328 | private: |
1329 | basic_memory_buffer<wchar_t> buffer_; |
1330 | |
1331 | public: |
1332 | FMT_API explicit utf8_to_utf16(string_view s); |
1333 | operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; } |
1334 | auto size() const -> size_t { return buffer_.size() - 1; } |
1335 | auto c_str() const -> const wchar_t* { return &buffer_[0]; } |
1336 | auto str() const -> std::wstring { return {&buffer_[0], size()}; } |
1337 | }; |
1338 | |
1339 | namespace dragonbox { |
1340 | |
1341 | // Type-specific information that Dragonbox uses. |
1342 | template <typename T, typename Enable = void> struct float_info; |
1343 | |
1344 | template <> struct float_info<float> { |
1345 | using carrier_uint = uint32_t; |
1346 | static const int exponent_bits = 8; |
1347 | static const int kappa = 1; |
1348 | static const int big_divisor = 100; |
1349 | static const int small_divisor = 10; |
1350 | static const int min_k = -31; |
1351 | static const int max_k = 46; |
1352 | static const int shorter_interval_tie_lower_threshold = -35; |
1353 | static const int shorter_interval_tie_upper_threshold = -35; |
1354 | }; |
1355 | |
1356 | template <> struct float_info<double> { |
1357 | using carrier_uint = uint64_t; |
1358 | static const int exponent_bits = 11; |
1359 | static const int kappa = 2; |
1360 | static const int big_divisor = 1000; |
1361 | static const int small_divisor = 100; |
1362 | static const int min_k = -292; |
1363 | static const int max_k = 326; |
1364 | static const int shorter_interval_tie_lower_threshold = -77; |
1365 | static const int shorter_interval_tie_upper_threshold = -77; |
1366 | }; |
1367 | |
1368 | // An 80- or 128-bit floating point number. |
1369 | template <typename T> |
1370 | struct float_info<T, enable_if_t<std::numeric_limits<T>::digits == 64 || |
1371 | std::numeric_limits<T>::digits == 113 || |
1372 | is_float128<T>::value>> { |
1373 | using carrier_uint = detail::uint128_t; |
1374 | static const int exponent_bits = 15; |
1375 | }; |
1376 | |
1377 | // A double-double floating point number. |
1378 | template <typename T> |
1379 | struct float_info<T, enable_if_t<is_double_double<T>::value>> { |
1380 | using carrier_uint = detail::uint128_t; |
1381 | }; |
1382 | |
1383 | template <typename T> struct decimal_fp { |
1384 | using significand_type = typename float_info<T>::carrier_uint; |
1385 | significand_type significand; |
1386 | int exponent; |
1387 | }; |
1388 | |
1389 | template <typename T> FMT_API auto to_decimal(T x) noexcept -> decimal_fp<T>; |
1390 | } // namespace dragonbox |
1391 | |
1392 | // Returns true iff Float has the implicit bit which is not stored. |
1393 | template <typename Float> constexpr bool has_implicit_bit() { |
1394 | // An 80-bit FP number has a 64-bit significand an no implicit bit. |
1395 | return std::numeric_limits<Float>::digits != 64; |
1396 | } |
1397 | |
1398 | // Returns the number of significand bits stored in Float. The implicit bit is |
1399 | // not counted since it is not stored. |
1400 | template <typename Float> constexpr int num_significand_bits() { |
1401 | // std::numeric_limits may not support __float128. |
1402 | return is_float128<Float>() ? 112 |
1403 | : (std::numeric_limits<Float>::digits - |
1404 | (has_implicit_bit<Float>() ? 1 : 0)); |
1405 | } |
1406 | |
1407 | template <typename Float> |
1408 | constexpr auto exponent_mask() -> |
1409 | typename dragonbox::float_info<Float>::carrier_uint { |
1410 | using uint = typename dragonbox::float_info<Float>::carrier_uint; |
1411 | return ((uint(1) << dragonbox::float_info<Float>::exponent_bits) - 1) |
1412 | << num_significand_bits<Float>(); |
1413 | } |
1414 | template <typename Float> constexpr auto exponent_bias() -> int { |
1415 | // std::numeric_limits may not support __float128. |
1416 | return is_float128<Float>() ? 16383 |
1417 | : std::numeric_limits<Float>::max_exponent - 1; |
1418 | } |
1419 | |
1420 | // Writes the exponent exp in the form "[+-]d{2,3}" to buffer. |
1421 | template <typename Char, typename It> |
1422 | FMT_CONSTEXPR auto write_exponent(int exp, It it) -> It { |
1423 | FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range" ); |
1424 | if (exp < 0) { |
1425 | *it++ = static_cast<Char>('-'); |
1426 | exp = -exp; |
1427 | } else { |
1428 | *it++ = static_cast<Char>('+'); |
1429 | } |
1430 | if (exp >= 100) { |
1431 | const char* top = digits2(to_unsigned(exp / 100)); |
1432 | if (exp >= 1000) *it++ = static_cast<Char>(top[0]); |
1433 | *it++ = static_cast<Char>(top[1]); |
1434 | exp %= 100; |
1435 | } |
1436 | const char* d = digits2(to_unsigned(exp)); |
1437 | *it++ = static_cast<Char>(d[0]); |
1438 | *it++ = static_cast<Char>(d[1]); |
1439 | return it; |
1440 | } |
1441 | |
1442 | // A floating-point number f * pow(2, e) where F is an unsigned type. |
1443 | template <typename F> struct basic_fp { |
1444 | F f; |
1445 | int e; |
1446 | |
1447 | static constexpr const int num_significand_bits = |
1448 | static_cast<int>(sizeof(F) * num_bits<unsigned char>()); |
1449 | |
1450 | constexpr basic_fp() : f(0), e(0) {} |
1451 | constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {} |
1452 | |
1453 | // Constructs fp from an IEEE754 floating-point number. |
1454 | template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); } |
1455 | |
1456 | // Assigns n to this and return true iff predecessor is closer than successor. |
1457 | template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)> |
1458 | FMT_CONSTEXPR auto assign(Float n) -> bool { |
1459 | static_assert(std::numeric_limits<Float>::digits <= 113, "unsupported FP" ); |
1460 | // Assume Float is in the format [sign][exponent][significand]. |
1461 | using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint; |
1462 | const auto num_float_significand_bits = |
1463 | detail::num_significand_bits<Float>(); |
1464 | const auto implicit_bit = carrier_uint(1) << num_float_significand_bits; |
1465 | const auto significand_mask = implicit_bit - 1; |
1466 | auto u = bit_cast<carrier_uint>(n); |
1467 | f = static_cast<F>(u & significand_mask); |
1468 | auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >> |
1469 | num_float_significand_bits); |
1470 | // The predecessor is closer if n is a normalized power of 2 (f == 0) |
1471 | // other than the smallest normalized number (biased_e > 1). |
1472 | auto is_predecessor_closer = f == 0 && biased_e > 1; |
1473 | if (biased_e == 0) |
1474 | biased_e = 1; // Subnormals use biased exponent 1 (min exponent). |
1475 | else if (has_implicit_bit<Float>()) |
1476 | f += static_cast<F>(implicit_bit); |
1477 | e = biased_e - exponent_bias<Float>() - num_float_significand_bits; |
1478 | if (!has_implicit_bit<Float>()) ++e; |
1479 | return is_predecessor_closer; |
1480 | } |
1481 | |
1482 | template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)> |
1483 | FMT_CONSTEXPR auto assign(Float n) -> bool { |
1484 | static_assert(std::numeric_limits<double>::is_iec559, "unsupported FP" ); |
1485 | return assign(static_cast<double>(n)); |
1486 | } |
1487 | }; |
1488 | |
1489 | using fp = basic_fp<unsigned long long>; |
1490 | |
1491 | // Normalizes the value converted from double and multiplied by (1 << SHIFT). |
1492 | template <int SHIFT = 0, typename F> |
1493 | FMT_CONSTEXPR basic_fp<F> normalize(basic_fp<F> value) { |
1494 | // Handle subnormals. |
1495 | const auto implicit_bit = F(1) << num_significand_bits<double>(); |
1496 | const auto shifted_implicit_bit = implicit_bit << SHIFT; |
1497 | while ((value.f & shifted_implicit_bit) == 0) { |
1498 | value.f <<= 1; |
1499 | --value.e; |
1500 | } |
1501 | // Subtract 1 to account for hidden bit. |
1502 | const auto offset = basic_fp<F>::num_significand_bits - |
1503 | num_significand_bits<double>() - SHIFT - 1; |
1504 | value.f <<= offset; |
1505 | value.e -= offset; |
1506 | return value; |
1507 | } |
1508 | |
1509 | // Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking. |
1510 | FMT_CONSTEXPR inline uint64_t multiply(uint64_t lhs, uint64_t rhs) { |
1511 | #if FMT_USE_INT128 |
1512 | auto product = static_cast<__uint128_t>(lhs) * rhs; |
1513 | auto f = static_cast<uint64_t>(product >> 64); |
1514 | return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f; |
1515 | #else |
1516 | // Multiply 32-bit parts of significands. |
1517 | uint64_t mask = (1ULL << 32) - 1; |
1518 | uint64_t a = lhs >> 32, b = lhs & mask; |
1519 | uint64_t c = rhs >> 32, d = rhs & mask; |
1520 | uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d; |
1521 | // Compute mid 64-bit of result and round. |
1522 | uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31); |
1523 | return ac + (ad >> 32) + (bc >> 32) + (mid >> 32); |
1524 | #endif |
1525 | } |
1526 | |
1527 | FMT_CONSTEXPR inline fp operator*(fp x, fp y) { |
1528 | return {multiply(x.f, y.f), x.e + y.e + 64}; |
1529 | } |
1530 | |
1531 | template <typename T = void> struct basic_data { |
1532 | // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340. |
1533 | // These are generated by support/compute-powers.py. |
1534 | static constexpr uint64_t pow10_significands[87] = { |
1535 | 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, |
1536 | 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, |
1537 | 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, |
1538 | 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5, |
1539 | 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, |
1540 | 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7, |
1541 | 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, |
1542 | 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996, |
1543 | 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, |
1544 | 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053, |
1545 | 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, |
1546 | 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, |
1547 | 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, |
1548 | 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb, |
1549 | 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, |
1550 | 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984, |
1551 | 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, |
1552 | 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8, |
1553 | 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, |
1554 | 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85, |
1555 | 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, |
1556 | 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25, |
1557 | 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, |
1558 | 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a, |
1559 | 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, |
1560 | 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129, |
1561 | 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, |
1562 | 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, |
1563 | 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b, |
1564 | }; |
1565 | |
1566 | #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 |
1567 | # pragma GCC diagnostic push |
1568 | # pragma GCC diagnostic ignored "-Wnarrowing" |
1569 | #endif |
1570 | // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding |
1571 | // to significands above. |
1572 | static constexpr int16_t pow10_exponents[87] = { |
1573 | -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, |
1574 | -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661, |
1575 | -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369, |
1576 | -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77, |
1577 | -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, |
1578 | 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508, |
1579 | 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800, |
1580 | 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066}; |
1581 | #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 |
1582 | # pragma GCC diagnostic pop |
1583 | #endif |
1584 | |
1585 | static constexpr uint64_t power_of_10_64[20] = { |
1586 | 1, FMT_POWERS_OF_10(1ULL), FMT_POWERS_OF_10(1000000000ULL), |
1587 | 10000000000000000000ULL}; |
1588 | }; |
1589 | |
1590 | #if FMT_CPLUSPLUS < 201703L |
1591 | template <typename T> constexpr uint64_t basic_data<T>::pow10_significands[]; |
1592 | template <typename T> constexpr int16_t basic_data<T>::pow10_exponents[]; |
1593 | template <typename T> constexpr uint64_t basic_data<T>::power_of_10_64[]; |
1594 | #endif |
1595 | |
1596 | // This is a struct rather than an alias to avoid shadowing warnings in gcc. |
1597 | struct data : basic_data<> {}; |
1598 | |
1599 | // Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its |
1600 | // (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`. |
1601 | FMT_CONSTEXPR inline fp get_cached_power(int min_exponent, |
1602 | int& pow10_exponent) { |
1603 | const int shift = 32; |
1604 | // log10(2) = 0x0.4d104d427de7fbcc... |
1605 | const int64_t significand = 0x4d104d427de7fbcc; |
1606 | int index = static_cast<int>( |
1607 | ((min_exponent + fp::num_significand_bits - 1) * (significand >> shift) + |
1608 | ((int64_t(1) << shift) - 1)) // ceil |
1609 | >> 32 // arithmetic shift |
1610 | ); |
1611 | // Decimal exponent of the first (smallest) cached power of 10. |
1612 | const int first_dec_exp = -348; |
1613 | // Difference between 2 consecutive decimal exponents in cached powers of 10. |
1614 | const int dec_exp_step = 8; |
1615 | index = (index - first_dec_exp - 1) / dec_exp_step + 1; |
1616 | pow10_exponent = first_dec_exp + index * dec_exp_step; |
1617 | // Using *(x + index) instead of x[index] avoids an issue with some compilers |
1618 | // using the EDG frontend (e.g. nvhpc/22.3 in C++17 mode). |
1619 | return {*(data::pow10_significands + index), |
1620 | *(data::pow10_exponents + index)}; |
1621 | } |
1622 | |
1623 | #ifndef _MSC_VER |
1624 | # define FMT_SNPRINTF snprintf |
1625 | #else |
1626 | FMT_API auto fmt_snprintf(char* buf, size_t size, const char* fmt, ...) -> int; |
1627 | # define FMT_SNPRINTF fmt_snprintf |
1628 | #endif // _MSC_VER |
1629 | |
1630 | // Formats a floating-point number with snprintf using the hexfloat format. |
1631 | template <typename T> |
1632 | auto snprintf_float(T value, int precision, float_specs specs, |
1633 | buffer<char>& buf) -> int { |
1634 | // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail. |
1635 | FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer" ); |
1636 | FMT_ASSERT(specs.format == float_format::hex, "" ); |
1637 | static_assert(!std::is_same<T, float>::value, "" ); |
1638 | |
1639 | // Build the format string. |
1640 | char format[7]; // The longest format is "%#.*Le". |
1641 | char* format_ptr = format; |
1642 | *format_ptr++ = '%'; |
1643 | if (specs.showpoint) *format_ptr++ = '#'; |
1644 | if (precision >= 0) { |
1645 | *format_ptr++ = '.'; |
1646 | *format_ptr++ = '*'; |
1647 | } |
1648 | if (std::is_same<T, long double>()) *format_ptr++ = 'L'; |
1649 | *format_ptr++ = specs.upper ? 'A' : 'a'; |
1650 | *format_ptr = '\0'; |
1651 | |
1652 | // Format using snprintf. |
1653 | auto offset = buf.size(); |
1654 | for (;;) { |
1655 | auto begin = buf.data() + offset; |
1656 | auto capacity = buf.capacity() - offset; |
1657 | abort_fuzzing_if(precision > 100000); |
1658 | // Suppress the warning about a nonliteral format string. |
1659 | // Cannot use auto because of a bug in MinGW (#1532). |
1660 | int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF; |
1661 | int result = precision >= 0 |
1662 | ? snprintf_ptr(begin, capacity, format, precision, value) |
1663 | : snprintf_ptr(begin, capacity, format, value); |
1664 | if (result < 0) { |
1665 | // The buffer will grow exponentially. |
1666 | buf.try_reserve(buf.capacity() + 1); |
1667 | continue; |
1668 | } |
1669 | auto size = to_unsigned(result); |
1670 | // Size equal to capacity means that the last character was truncated. |
1671 | if (size < capacity) { |
1672 | buf.try_resize(size + offset); |
1673 | return 0; |
1674 | } |
1675 | buf.try_reserve(size + offset + 1); // Add 1 for the terminating '\0'. |
1676 | } |
1677 | } |
1678 | |
1679 | template <typename T> |
1680 | using convert_float_result = |
1681 | conditional_t<std::is_same<T, float>::value || |
1682 | std::numeric_limits<T>::digits == |
1683 | std::numeric_limits<double>::digits, |
1684 | double, T>; |
1685 | |
1686 | template <typename T> |
1687 | constexpr auto convert_float(T value) -> convert_float_result<T> { |
1688 | return static_cast<convert_float_result<T>>(value); |
1689 | } |
1690 | |
1691 | template <typename OutputIt, typename Char> |
1692 | FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n, |
1693 | const fill_t<Char>& fill) -> OutputIt { |
1694 | auto fill_size = fill.size(); |
1695 | if (fill_size == 1) return detail::fill_n(it, n, fill[0]); |
1696 | auto data = fill.data(); |
1697 | for (size_t i = 0; i < n; ++i) |
1698 | it = copy_str<Char>(data, data + fill_size, it); |
1699 | return it; |
1700 | } |
1701 | |
1702 | // Writes the output of f, padded according to format specifications in specs. |
1703 | // size: output size in code units. |
1704 | // width: output display width in (terminal) column positions. |
1705 | template <align::type align = align::left, typename OutputIt, typename Char, |
1706 | typename F> |
1707 | FMT_CONSTEXPR auto write_padded(OutputIt out, |
1708 | const basic_format_specs<Char>& specs, |
1709 | size_t size, size_t width, F&& f) -> OutputIt { |
1710 | static_assert(align == align::left || align == align::right, "" ); |
1711 | unsigned spec_width = to_unsigned(specs.width); |
1712 | size_t padding = spec_width > width ? spec_width - width : 0; |
1713 | // Shifts are encoded as string literals because static constexpr is not |
1714 | // supported in constexpr functions. |
1715 | auto* shifts = align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01" ; |
1716 | size_t left_padding = padding >> shifts[specs.align]; |
1717 | size_t right_padding = padding - left_padding; |
1718 | auto it = reserve(out, size + padding * specs.fill.size()); |
1719 | if (left_padding != 0) it = fill(it, left_padding, specs.fill); |
1720 | it = f(it); |
1721 | if (right_padding != 0) it = fill(it, right_padding, specs.fill); |
1722 | return base_iterator(out, it); |
1723 | } |
1724 | |
1725 | template <align::type align = align::left, typename OutputIt, typename Char, |
1726 | typename F> |
1727 | constexpr auto write_padded(OutputIt out, const basic_format_specs<Char>& specs, |
1728 | size_t size, F&& f) -> OutputIt { |
1729 | return write_padded<align>(out, specs, size, size, f); |
1730 | } |
1731 | |
1732 | template <align::type align = align::left, typename Char, typename OutputIt> |
1733 | FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes, |
1734 | const basic_format_specs<Char>& specs) |
1735 | -> OutputIt { |
1736 | return write_padded<align>( |
1737 | out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) { |
1738 | const char* data = bytes.data(); |
1739 | return copy_str<Char>(data, data + bytes.size(), it); |
1740 | }); |
1741 | } |
1742 | |
1743 | template <typename Char, typename OutputIt, typename UIntPtr> |
1744 | auto write_ptr(OutputIt out, UIntPtr value, |
1745 | const basic_format_specs<Char>* specs) -> OutputIt { |
1746 | int num_digits = count_digits<4>(value); |
1747 | auto size = to_unsigned(num_digits) + size_t(2); |
1748 | auto write = [=](reserve_iterator<OutputIt> it) { |
1749 | *it++ = static_cast<Char>('0'); |
1750 | *it++ = static_cast<Char>('x'); |
1751 | return format_uint<4, Char>(it, value, num_digits); |
1752 | }; |
1753 | return specs ? write_padded<align::right>(out, *specs, size, write) |
1754 | : base_iterator(out, write(reserve(out, size))); |
1755 | } |
1756 | |
1757 | // Returns true iff the code point cp is printable. |
1758 | FMT_API auto is_printable(uint32_t cp) -> bool; |
1759 | |
1760 | inline auto needs_escape(uint32_t cp) -> bool { |
1761 | return cp < 0x20 || cp == 0x7f || cp == '"' || cp == '\\' || |
1762 | !is_printable(cp); |
1763 | } |
1764 | |
1765 | template <typename Char> struct find_escape_result { |
1766 | const Char* begin; |
1767 | const Char* end; |
1768 | uint32_t cp; |
1769 | }; |
1770 | |
1771 | template <typename Char> |
1772 | using make_unsigned_char = |
1773 | typename conditional_t<std::is_integral<Char>::value, |
1774 | std::make_unsigned<Char>, |
1775 | type_identity<uint32_t>>::type; |
1776 | |
1777 | template <typename Char> |
1778 | auto find_escape(const Char* begin, const Char* end) |
1779 | -> find_escape_result<Char> { |
1780 | for (; begin != end; ++begin) { |
1781 | uint32_t cp = static_cast<make_unsigned_char<Char>>(*begin); |
1782 | if (const_check(sizeof(Char) == 1) && cp >= 0x80) continue; |
1783 | if (needs_escape(cp)) return {begin, begin + 1, cp}; |
1784 | } |
1785 | return {begin, nullptr, 0}; |
1786 | } |
1787 | |
1788 | inline auto find_escape(const char* begin, const char* end) |
1789 | -> find_escape_result<char> { |
1790 | if (!is_utf8()) return find_escape<char>(begin, end); |
1791 | auto result = find_escape_result<char>{end, nullptr, 0}; |
1792 | for_each_codepoint(string_view(begin, to_unsigned(end - begin)), |
1793 | [&](uint32_t cp, string_view sv) { |
1794 | if (needs_escape(cp)) { |
1795 | result = {sv.begin(), sv.end(), cp}; |
1796 | return false; |
1797 | } |
1798 | return true; |
1799 | }); |
1800 | return result; |
1801 | } |
1802 | |
1803 | #define FMT_STRING_IMPL(s, base, explicit) \ |
1804 | [] { \ |
1805 | /* Use the hidden visibility as a workaround for a GCC bug (#1973). */ \ |
1806 | /* Use a macro-like name to avoid shadowing warnings. */ \ |
1807 | struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base { \ |
1808 | using char_type FMT_MAYBE_UNUSED = fmt::remove_cvref_t<decltype(s[0])>; \ |
1809 | FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit \ |
1810 | operator fmt::basic_string_view<char_type>() const { \ |
1811 | return fmt::detail_exported::compile_string_to_view<char_type>(s); \ |
1812 | } \ |
1813 | }; \ |
1814 | return FMT_COMPILE_STRING(); \ |
1815 | }() |
1816 | |
1817 | /** |
1818 | \rst |
1819 | Constructs a compile-time format string from a string literal *s*. |
1820 | |
1821 | **Example**:: |
1822 | |
1823 | // A compile-time error because 'd' is an invalid specifier for strings. |
1824 | std::string s = fmt::format(FMT_STRING("{:d}"), "foo"); |
1825 | \endrst |
1826 | */ |
1827 | #define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::detail::compile_string, ) |
1828 | |
1829 | template <size_t width, typename Char, typename OutputIt> |
1830 | auto write_codepoint(OutputIt out, char prefix, uint32_t cp) -> OutputIt { |
1831 | *out++ = static_cast<Char>('\\'); |
1832 | *out++ = static_cast<Char>(prefix); |
1833 | Char buf[width]; |
1834 | fill_n(buf, width, static_cast<Char>('0')); |
1835 | format_uint<4>(buf, cp, width); |
1836 | return copy_str<Char>(buf, buf + width, out); |
1837 | } |
1838 | |
1839 | template <typename OutputIt, typename Char> |
1840 | auto write_escaped_cp(OutputIt out, const find_escape_result<Char>& escape) |
1841 | -> OutputIt { |
1842 | auto c = static_cast<Char>(escape.cp); |
1843 | switch (escape.cp) { |
1844 | case '\n': |
1845 | *out++ = static_cast<Char>('\\'); |
1846 | c = static_cast<Char>('n'); |
1847 | break; |
1848 | case '\r': |
1849 | *out++ = static_cast<Char>('\\'); |
1850 | c = static_cast<Char>('r'); |
1851 | break; |
1852 | case '\t': |
1853 | *out++ = static_cast<Char>('\\'); |
1854 | c = static_cast<Char>('t'); |
1855 | break; |
1856 | case '"': |
1857 | FMT_FALLTHROUGH; |
1858 | case '\'': |
1859 | FMT_FALLTHROUGH; |
1860 | case '\\': |
1861 | *out++ = static_cast<Char>('\\'); |
1862 | break; |
1863 | default: |
1864 | if (is_utf8()) { |
1865 | if (escape.cp < 0x100) { |
1866 | return write_codepoint<2, Char>(out, 'x', escape.cp); |
1867 | } |
1868 | if (escape.cp < 0x10000) { |
1869 | return write_codepoint<4, Char>(out, 'u', escape.cp); |
1870 | } |
1871 | if (escape.cp < 0x110000) { |
1872 | return write_codepoint<8, Char>(out, 'U', escape.cp); |
1873 | } |
1874 | } |
1875 | for (Char escape_char : basic_string_view<Char>( |
1876 | escape.begin, to_unsigned(escape.end - escape.begin))) { |
1877 | out = write_codepoint<2, Char>(out, 'x', |
1878 | static_cast<uint32_t>(escape_char) & 0xFF); |
1879 | } |
1880 | return out; |
1881 | } |
1882 | *out++ = c; |
1883 | return out; |
1884 | } |
1885 | |
1886 | template <typename Char, typename OutputIt> |
1887 | auto write_escaped_string(OutputIt out, basic_string_view<Char> str) |
1888 | -> OutputIt { |
1889 | *out++ = static_cast<Char>('"'); |
1890 | auto begin = str.begin(), end = str.end(); |
1891 | do { |
1892 | auto escape = find_escape(begin, end); |
1893 | out = copy_str<Char>(begin, escape.begin, out); |
1894 | begin = escape.end; |
1895 | if (!begin) break; |
1896 | out = write_escaped_cp<OutputIt, Char>(out, escape); |
1897 | } while (begin != end); |
1898 | *out++ = static_cast<Char>('"'); |
1899 | return out; |
1900 | } |
1901 | |
1902 | template <typename Char, typename OutputIt> |
1903 | auto write_escaped_char(OutputIt out, Char v) -> OutputIt { |
1904 | *out++ = static_cast<Char>('\''); |
1905 | if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) || |
1906 | v == static_cast<Char>('\'')) { |
1907 | out = write_escaped_cp( |
1908 | out, find_escape_result<Char>{&v, &v + 1, static_cast<uint32_t>(v)}); |
1909 | } else { |
1910 | *out++ = v; |
1911 | } |
1912 | *out++ = static_cast<Char>('\''); |
1913 | return out; |
1914 | } |
1915 | |
1916 | template <typename Char, typename OutputIt> |
1917 | FMT_CONSTEXPR auto write_char(OutputIt out, Char value, |
1918 | const basic_format_specs<Char>& specs) |
1919 | -> OutputIt { |
1920 | bool is_debug = specs.type == presentation_type::debug; |
1921 | return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) { |
1922 | if (is_debug) return write_escaped_char(it, value); |
1923 | *it++ = value; |
1924 | return it; |
1925 | }); |
1926 | } |
1927 | template <typename Char, typename OutputIt> |
1928 | FMT_CONSTEXPR auto write(OutputIt out, Char value, |
1929 | const basic_format_specs<Char>& specs, |
1930 | locale_ref loc = {}) -> OutputIt { |
1931 | return check_char_specs(specs) |
1932 | ? write_char(out, value, specs) |
1933 | : write(out, static_cast<int>(value), specs, loc); |
1934 | } |
1935 | |
1936 | // Data for write_int that doesn't depend on output iterator type. It is used to |
1937 | // avoid template code bloat. |
1938 | template <typename Char> struct write_int_data { |
1939 | size_t size; |
1940 | size_t padding; |
1941 | |
1942 | FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix, |
1943 | const basic_format_specs<Char>& specs) |
1944 | : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) { |
1945 | if (specs.align == align::numeric) { |
1946 | auto width = to_unsigned(specs.width); |
1947 | if (width > size) { |
1948 | padding = width - size; |
1949 | size = width; |
1950 | } |
1951 | } else if (specs.precision > num_digits) { |
1952 | size = (prefix >> 24) + to_unsigned(specs.precision); |
1953 | padding = to_unsigned(specs.precision - num_digits); |
1954 | } |
1955 | } |
1956 | }; |
1957 | |
1958 | // Writes an integer in the format |
1959 | // <left-padding><prefix><numeric-padding><digits><right-padding> |
1960 | // where <digits> are written by write_digits(it). |
1961 | // prefix contains chars in three lower bytes and the size in the fourth byte. |
1962 | template <typename OutputIt, typename Char, typename W> |
1963 | FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits, |
1964 | unsigned prefix, |
1965 | const basic_format_specs<Char>& specs, |
1966 | W write_digits) -> OutputIt { |
1967 | // Slightly faster check for specs.width == 0 && specs.precision == -1. |
1968 | if ((specs.width | (specs.precision + 1)) == 0) { |
1969 | auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24)); |
1970 | if (prefix != 0) { |
1971 | for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) |
1972 | *it++ = static_cast<Char>(p & 0xff); |
1973 | } |
1974 | return base_iterator(out, write_digits(it)); |
1975 | } |
1976 | auto data = write_int_data<Char>(num_digits, prefix, specs); |
1977 | return write_padded<align::right>( |
1978 | out, specs, data.size, [=](reserve_iterator<OutputIt> it) { |
1979 | for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) |
1980 | *it++ = static_cast<Char>(p & 0xff); |
1981 | it = detail::fill_n(it, data.padding, static_cast<Char>('0')); |
1982 | return write_digits(it); |
1983 | }); |
1984 | } |
1985 | |
1986 | template <typename Char> class digit_grouping { |
1987 | private: |
1988 | std::string grouping_; |
1989 | std::basic_string<Char> thousands_sep_; |
1990 | |
1991 | struct next_state { |
1992 | std::string::const_iterator group; |
1993 | int pos; |
1994 | }; |
1995 | next_state initial_state() const { return {grouping_.begin(), 0}; } |
1996 | |
1997 | // Returns the next digit group separator position. |
1998 | int next(next_state& state) const { |
1999 | if (thousands_sep_.empty()) return max_value<int>(); |
2000 | if (state.group == grouping_.end()) return state.pos += grouping_.back(); |
2001 | if (*state.group <= 0 || *state.group == max_value<char>()) |
2002 | return max_value<int>(); |
2003 | state.pos += *state.group++; |
2004 | return state.pos; |
2005 | } |
2006 | |
2007 | public: |
2008 | explicit digit_grouping(locale_ref loc, bool localized = true) { |
2009 | if (!localized) return; |
2010 | auto sep = thousands_sep<Char>(loc); |
2011 | grouping_ = sep.grouping; |
2012 | if (sep.thousands_sep) thousands_sep_.assign(1, sep.thousands_sep); |
2013 | } |
2014 | digit_grouping(std::string grouping, std::basic_string<Char> sep) |
2015 | : grouping_(std::move(grouping)), thousands_sep_(std::move(sep)) {} |
2016 | |
2017 | bool has_separator() const { return !thousands_sep_.empty(); } |
2018 | |
2019 | int count_separators(int num_digits) const { |
2020 | int count = 0; |
2021 | auto state = initial_state(); |
2022 | while (num_digits > next(state)) ++count; |
2023 | return count; |
2024 | } |
2025 | |
2026 | // Applies grouping to digits and write the output to out. |
2027 | template <typename Out, typename C> |
2028 | Out apply(Out out, basic_string_view<C> digits) const { |
2029 | auto num_digits = static_cast<int>(digits.size()); |
2030 | auto separators = basic_memory_buffer<int>(); |
2031 | separators.push_back(0); |
2032 | auto state = initial_state(); |
2033 | while (int i = next(state)) { |
2034 | if (i >= num_digits) break; |
2035 | separators.push_back(i); |
2036 | } |
2037 | for (int i = 0, sep_index = static_cast<int>(separators.size() - 1); |
2038 | i < num_digits; ++i) { |
2039 | if (num_digits - i == separators[sep_index]) { |
2040 | out = |
2041 | copy_str<Char>(thousands_sep_.data(), |
2042 | thousands_sep_.data() + thousands_sep_.size(), out); |
2043 | --sep_index; |
2044 | } |
2045 | *out++ = static_cast<Char>(digits[to_unsigned(i)]); |
2046 | } |
2047 | return out; |
2048 | } |
2049 | }; |
2050 | |
2051 | // Writes a decimal integer with digit grouping. |
2052 | template <typename OutputIt, typename UInt, typename Char> |
2053 | auto write_int(OutputIt out, UInt value, unsigned prefix, |
2054 | const basic_format_specs<Char>& specs, |
2055 | const digit_grouping<Char>& grouping) -> OutputIt { |
2056 | static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "" ); |
2057 | int num_digits = count_digits(value); |
2058 | char digits[40]; |
2059 | format_decimal(digits, value, num_digits); |
2060 | unsigned size = to_unsigned((prefix != 0 ? 1 : 0) + num_digits + |
2061 | grouping.count_separators(num_digits)); |
2062 | return write_padded<align::right>( |
2063 | out, specs, size, size, [&](reserve_iterator<OutputIt> it) { |
2064 | if (prefix != 0) { |
2065 | char sign = static_cast<char>(prefix); |
2066 | *it++ = static_cast<Char>(sign); |
2067 | } |
2068 | return grouping.apply(it, string_view(digits, to_unsigned(num_digits))); |
2069 | }); |
2070 | } |
2071 | |
2072 | // Writes a localized value. |
2073 | FMT_API auto write_loc(appender out, loc_value value, const format_specs& specs, |
2074 | locale_ref loc) -> bool; |
2075 | template <typename OutputIt, typename Char> |
2076 | inline auto write_loc(OutputIt, loc_value, const basic_format_specs<Char>&, |
2077 | locale_ref) -> bool { |
2078 | return false; |
2079 | } |
2080 | |
2081 | FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) { |
2082 | prefix |= prefix != 0 ? value << 8 : value; |
2083 | prefix += (1u + (value > 0xff ? 1 : 0)) << 24; |
2084 | } |
2085 | |
2086 | template <typename UInt> struct write_int_arg { |
2087 | UInt abs_value; |
2088 | unsigned prefix; |
2089 | }; |
2090 | |
2091 | template <typename T> |
2092 | FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign) |
2093 | -> write_int_arg<uint32_or_64_or_128_t<T>> { |
2094 | auto prefix = 0u; |
2095 | auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value); |
2096 | if (is_negative(value)) { |
2097 | prefix = 0x01000000 | '-'; |
2098 | abs_value = 0 - abs_value; |
2099 | } else { |
2100 | constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+', |
2101 | 0x1000000u | ' '}; |
2102 | prefix = prefixes[sign]; |
2103 | } |
2104 | return {abs_value, prefix}; |
2105 | } |
2106 | |
2107 | template <typename Char = char> struct loc_writer { |
2108 | buffer_appender<Char> out; |
2109 | const basic_format_specs<Char>& specs; |
2110 | std::basic_string<Char> sep; |
2111 | std::string grouping; |
2112 | std::basic_string<Char> decimal_point; |
2113 | |
2114 | template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> |
2115 | auto operator()(T value) -> bool { |
2116 | auto arg = make_write_int_arg(value, specs.sign); |
2117 | write_int(out, static_cast<uint64_or_128_t<T>>(arg.abs_value), arg.prefix, |
2118 | specs, digit_grouping<Char>(grouping, sep)); |
2119 | return true; |
2120 | } |
2121 | |
2122 | template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)> |
2123 | auto operator()(T) -> bool { |
2124 | return false; |
2125 | } |
2126 | |
2127 | auto operator()(...) -> bool { return false; } |
2128 | }; |
2129 | |
2130 | template <typename Char, typename OutputIt, typename T> |
2131 | FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg, |
2132 | const basic_format_specs<Char>& specs, |
2133 | locale_ref) -> OutputIt { |
2134 | static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, "" ); |
2135 | auto abs_value = arg.abs_value; |
2136 | auto prefix = arg.prefix; |
2137 | switch (specs.type) { |
2138 | case presentation_type::none: |
2139 | case presentation_type::dec: { |
2140 | auto num_digits = count_digits(abs_value); |
2141 | return write_int( |
2142 | out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) { |
2143 | return format_decimal<Char>(it, abs_value, num_digits).end; |
2144 | }); |
2145 | } |
2146 | case presentation_type::hex_lower: |
2147 | case presentation_type::hex_upper: { |
2148 | bool upper = specs.type == presentation_type::hex_upper; |
2149 | if (specs.alt) |
2150 | prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0'); |
2151 | int num_digits = count_digits<4>(abs_value); |
2152 | return write_int( |
2153 | out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) { |
2154 | return format_uint<4, Char>(it, abs_value, num_digits, upper); |
2155 | }); |
2156 | } |
2157 | case presentation_type::bin_lower: |
2158 | case presentation_type::bin_upper: { |
2159 | bool upper = specs.type == presentation_type::bin_upper; |
2160 | if (specs.alt) |
2161 | prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0'); |
2162 | int num_digits = count_digits<1>(abs_value); |
2163 | return write_int(out, num_digits, prefix, specs, |
2164 | [=](reserve_iterator<OutputIt> it) { |
2165 | return format_uint<1, Char>(it, abs_value, num_digits); |
2166 | }); |
2167 | } |
2168 | case presentation_type::oct: { |
2169 | int num_digits = count_digits<3>(abs_value); |
2170 | // Octal prefix '0' is counted as a digit, so only add it if precision |
2171 | // is not greater than the number of digits. |
2172 | if (specs.alt && specs.precision <= num_digits && abs_value != 0) |
2173 | prefix_append(prefix, '0'); |
2174 | return write_int(out, num_digits, prefix, specs, |
2175 | [=](reserve_iterator<OutputIt> it) { |
2176 | return format_uint<3, Char>(it, abs_value, num_digits); |
2177 | }); |
2178 | } |
2179 | case presentation_type::chr: |
2180 | return write_char(out, static_cast<Char>(abs_value), specs); |
2181 | default: |
2182 | throw_format_error("invalid type specifier" ); |
2183 | } |
2184 | return out; |
2185 | } |
2186 | template <typename Char, typename OutputIt, typename T> |
2187 | FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline( |
2188 | OutputIt out, write_int_arg<T> arg, const basic_format_specs<Char>& specs, |
2189 | locale_ref loc) -> OutputIt { |
2190 | return write_int(out, arg, specs, loc); |
2191 | } |
2192 | template <typename Char, typename OutputIt, typename T, |
2193 | FMT_ENABLE_IF(is_integral<T>::value && |
2194 | !std::is_same<T, bool>::value && |
2195 | std::is_same<OutputIt, buffer_appender<Char>>::value)> |
2196 | FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value, |
2197 | const basic_format_specs<Char>& specs, |
2198 | locale_ref loc) -> OutputIt { |
2199 | if (specs.localized && write_loc(out, value, specs, loc)) return out; |
2200 | return write_int_noinline(out, make_write_int_arg(value, specs.sign), specs, |
2201 | loc); |
2202 | } |
2203 | // An inlined version of write used in format string compilation. |
2204 | template <typename Char, typename OutputIt, typename T, |
2205 | FMT_ENABLE_IF(is_integral<T>::value && |
2206 | !std::is_same<T, bool>::value && |
2207 | !std::is_same<OutputIt, buffer_appender<Char>>::value)> |
2208 | FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value, |
2209 | const basic_format_specs<Char>& specs, |
2210 | locale_ref loc) -> OutputIt { |
2211 | if (specs.localized && write_loc(out, value, specs, loc)) return out; |
2212 | return write_int(out, make_write_int_arg(value, specs.sign), specs, loc); |
2213 | } |
2214 | |
2215 | // An output iterator that counts the number of objects written to it and |
2216 | // discards them. |
2217 | class counting_iterator { |
2218 | private: |
2219 | size_t count_; |
2220 | |
2221 | public: |
2222 | using iterator_category = std::output_iterator_tag; |
2223 | using difference_type = std::ptrdiff_t; |
2224 | using pointer = void; |
2225 | using reference = void; |
2226 | FMT_UNCHECKED_ITERATOR(counting_iterator); |
2227 | |
2228 | struct value_type { |
2229 | template <typename T> FMT_CONSTEXPR void operator=(const T&) {} |
2230 | }; |
2231 | |
2232 | FMT_CONSTEXPR counting_iterator() : count_(0) {} |
2233 | |
2234 | FMT_CONSTEXPR size_t count() const { return count_; } |
2235 | |
2236 | FMT_CONSTEXPR counting_iterator& operator++() { |
2237 | ++count_; |
2238 | return *this; |
2239 | } |
2240 | FMT_CONSTEXPR counting_iterator operator++(int) { |
2241 | auto it = *this; |
2242 | ++*this; |
2243 | return it; |
2244 | } |
2245 | |
2246 | FMT_CONSTEXPR friend counting_iterator operator+(counting_iterator it, |
2247 | difference_type n) { |
2248 | it.count_ += static_cast<size_t>(n); |
2249 | return it; |
2250 | } |
2251 | |
2252 | FMT_CONSTEXPR value_type operator*() const { return {}; } |
2253 | }; |
2254 | |
2255 | template <typename Char, typename OutputIt> |
2256 | FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s, |
2257 | const basic_format_specs<Char>& specs) -> OutputIt { |
2258 | auto data = s.data(); |
2259 | auto size = s.size(); |
2260 | if (specs.precision >= 0 && to_unsigned(specs.precision) < size) |
2261 | size = code_point_index(s, to_unsigned(specs.precision)); |
2262 | bool is_debug = specs.type == presentation_type::debug; |
2263 | size_t width = 0; |
2264 | if (specs.width != 0) { |
2265 | if (is_debug) |
2266 | width = write_escaped_string(counting_iterator{}, s).count(); |
2267 | else |
2268 | width = compute_width(basic_string_view<Char>(data, size)); |
2269 | } |
2270 | return write_padded(out, specs, size, width, |
2271 | [=](reserve_iterator<OutputIt> it) { |
2272 | if (is_debug) return write_escaped_string(it, s); |
2273 | return copy_str<Char>(data, data + size, it); |
2274 | }); |
2275 | } |
2276 | template <typename Char, typename OutputIt> |
2277 | FMT_CONSTEXPR auto write(OutputIt out, |
2278 | basic_string_view<type_identity_t<Char>> s, |
2279 | const basic_format_specs<Char>& specs, locale_ref) |
2280 | -> OutputIt { |
2281 | check_string_type_spec(specs.type); |
2282 | return write(out, s, specs); |
2283 | } |
2284 | template <typename Char, typename OutputIt> |
2285 | FMT_CONSTEXPR auto write(OutputIt out, const Char* s, |
2286 | const basic_format_specs<Char>& specs, locale_ref) |
2287 | -> OutputIt { |
2288 | return check_cstring_type_spec(specs.type) |
2289 | ? write(out, basic_string_view<Char>(s), specs, {}) |
2290 | : write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs); |
2291 | } |
2292 | |
2293 | template <typename Char, typename OutputIt, typename T, |
2294 | FMT_ENABLE_IF(is_integral<T>::value && |
2295 | !std::is_same<T, bool>::value && |
2296 | !std::is_same<T, Char>::value)> |
2297 | FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt { |
2298 | auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value); |
2299 | bool negative = is_negative(value); |
2300 | // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer. |
2301 | if (negative) abs_value = ~abs_value + 1; |
2302 | int num_digits = count_digits(abs_value); |
2303 | auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits); |
2304 | auto it = reserve(out, size); |
2305 | if (auto ptr = to_pointer<Char>(it, size)) { |
2306 | if (negative) *ptr++ = static_cast<Char>('-'); |
2307 | format_decimal<Char>(ptr, abs_value, num_digits); |
2308 | return out; |
2309 | } |
2310 | if (negative) *it++ = static_cast<Char>('-'); |
2311 | it = format_decimal<Char>(it, abs_value, num_digits).end; |
2312 | return base_iterator(out, it); |
2313 | } |
2314 | |
2315 | template <typename Char, typename OutputIt> |
2316 | FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isnan, |
2317 | basic_format_specs<Char> specs, |
2318 | const float_specs& fspecs) -> OutputIt { |
2319 | auto str = |
2320 | isnan ? (fspecs.upper ? "NAN" : "nan" ) : (fspecs.upper ? "INF" : "inf" ); |
2321 | constexpr size_t str_size = 3; |
2322 | auto sign = fspecs.sign; |
2323 | auto size = str_size + (sign ? 1 : 0); |
2324 | // Replace '0'-padding with space for non-finite values. |
2325 | const bool is_zero_fill = |
2326 | specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0'); |
2327 | if (is_zero_fill) specs.fill[0] = static_cast<Char>(' '); |
2328 | return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) { |
2329 | if (sign) *it++ = detail::sign<Char>(sign); |
2330 | return copy_str<Char>(str, str + str_size, it); |
2331 | }); |
2332 | } |
2333 | |
2334 | // A decimal floating-point number significand * pow(10, exp). |
2335 | struct big_decimal_fp { |
2336 | const char* significand; |
2337 | int significand_size; |
2338 | int exponent; |
2339 | }; |
2340 | |
2341 | constexpr auto get_significand_size(const big_decimal_fp& f) -> int { |
2342 | return f.significand_size; |
2343 | } |
2344 | template <typename T> |
2345 | inline auto get_significand_size(const dragonbox::decimal_fp<T>& f) -> int { |
2346 | return count_digits(f.significand); |
2347 | } |
2348 | |
2349 | template <typename Char, typename OutputIt> |
2350 | constexpr auto write_significand(OutputIt out, const char* significand, |
2351 | int significand_size) -> OutputIt { |
2352 | return copy_str<Char>(significand, significand + significand_size, out); |
2353 | } |
2354 | template <typename Char, typename OutputIt, typename UInt> |
2355 | inline auto write_significand(OutputIt out, UInt significand, |
2356 | int significand_size) -> OutputIt { |
2357 | return format_decimal<Char>(out, significand, significand_size).end; |
2358 | } |
2359 | template <typename Char, typename OutputIt, typename T, typename Grouping> |
2360 | FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand, |
2361 | int significand_size, int exponent, |
2362 | const Grouping& grouping) -> OutputIt { |
2363 | if (!grouping.has_separator()) { |
2364 | out = write_significand<Char>(out, significand, significand_size); |
2365 | return detail::fill_n(out, exponent, static_cast<Char>('0')); |
2366 | } |
2367 | auto buffer = memory_buffer(); |
2368 | write_significand<char>(appender(buffer), significand, significand_size); |
2369 | detail::fill_n(appender(buffer), exponent, '0'); |
2370 | return grouping.apply(out, string_view(buffer.data(), buffer.size())); |
2371 | } |
2372 | |
2373 | template <typename Char, typename UInt, |
2374 | FMT_ENABLE_IF(std::is_integral<UInt>::value)> |
2375 | inline auto write_significand(Char* out, UInt significand, int significand_size, |
2376 | int integral_size, Char decimal_point) -> Char* { |
2377 | if (!decimal_point) |
2378 | return format_decimal(out, significand, significand_size).end; |
2379 | out += significand_size + 1; |
2380 | Char* end = out; |
2381 | int floating_size = significand_size - integral_size; |
2382 | for (int i = floating_size / 2; i > 0; --i) { |
2383 | out -= 2; |
2384 | copy2(out, digits2(static_cast<std::size_t>(significand % 100))); |
2385 | significand /= 100; |
2386 | } |
2387 | if (floating_size % 2 != 0) { |
2388 | *--out = static_cast<Char>('0' + significand % 10); |
2389 | significand /= 10; |
2390 | } |
2391 | *--out = decimal_point; |
2392 | format_decimal(out - integral_size, significand, integral_size); |
2393 | return end; |
2394 | } |
2395 | |
2396 | template <typename OutputIt, typename UInt, typename Char, |
2397 | FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)> |
2398 | inline auto write_significand(OutputIt out, UInt significand, |
2399 | int significand_size, int integral_size, |
2400 | Char decimal_point) -> OutputIt { |
2401 | // Buffer is large enough to hold digits (digits10 + 1) and a decimal point. |
2402 | Char buffer[digits10<UInt>() + 2]; |
2403 | auto end = write_significand(buffer, significand, significand_size, |
2404 | integral_size, decimal_point); |
2405 | return detail::copy_str_noinline<Char>(buffer, end, out); |
2406 | } |
2407 | |
2408 | template <typename OutputIt, typename Char> |
2409 | FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand, |
2410 | int significand_size, int integral_size, |
2411 | Char decimal_point) -> OutputIt { |
2412 | out = detail::copy_str_noinline<Char>(significand, |
2413 | significand + integral_size, out); |
2414 | if (!decimal_point) return out; |
2415 | *out++ = decimal_point; |
2416 | return detail::copy_str_noinline<Char>(significand + integral_size, |
2417 | significand + significand_size, out); |
2418 | } |
2419 | |
2420 | template <typename OutputIt, typename Char, typename T, typename Grouping> |
2421 | FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand, |
2422 | int significand_size, int integral_size, |
2423 | Char decimal_point, |
2424 | const Grouping& grouping) -> OutputIt { |
2425 | if (!grouping.has_separator()) { |
2426 | return write_significand(out, significand, significand_size, integral_size, |
2427 | decimal_point); |
2428 | } |
2429 | auto buffer = basic_memory_buffer<Char>(); |
2430 | write_significand(buffer_appender<Char>(buffer), significand, |
2431 | significand_size, integral_size, decimal_point); |
2432 | grouping.apply( |
2433 | out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size))); |
2434 | return detail::copy_str_noinline<Char>(buffer.data() + integral_size, |
2435 | buffer.end(), out); |
2436 | } |
2437 | |
2438 | template <typename OutputIt, typename DecimalFP, typename Char, |
2439 | typename Grouping = digit_grouping<Char>> |
2440 | FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& f, |
2441 | const basic_format_specs<Char>& specs, |
2442 | float_specs fspecs, locale_ref loc) |
2443 | -> OutputIt { |
2444 | auto significand = f.significand; |
2445 | int significand_size = get_significand_size(f); |
2446 | const Char zero = static_cast<Char>('0'); |
2447 | auto sign = fspecs.sign; |
2448 | size_t size = to_unsigned(significand_size) + (sign ? 1 : 0); |
2449 | using iterator = reserve_iterator<OutputIt>; |
2450 | |
2451 | Char decimal_point = |
2452 | fspecs.locale ? detail::decimal_point<Char>(loc) : static_cast<Char>('.'); |
2453 | |
2454 | int output_exp = f.exponent + significand_size - 1; |
2455 | auto use_exp_format = [=]() { |
2456 | if (fspecs.format == float_format::exp) return true; |
2457 | if (fspecs.format != float_format::general) return false; |
2458 | // Use the fixed notation if the exponent is in [exp_lower, exp_upper), |
2459 | // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation. |
2460 | const int exp_lower = -4, exp_upper = 16; |
2461 | return output_exp < exp_lower || |
2462 | output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper); |
2463 | }; |
2464 | if (use_exp_format()) { |
2465 | int num_zeros = 0; |
2466 | if (fspecs.showpoint) { |
2467 | num_zeros = fspecs.precision - significand_size; |
2468 | if (num_zeros < 0) num_zeros = 0; |
2469 | size += to_unsigned(num_zeros); |
2470 | } else if (significand_size == 1) { |
2471 | decimal_point = Char(); |
2472 | } |
2473 | auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp; |
2474 | int exp_digits = 2; |
2475 | if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3; |
2476 | |
2477 | size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits); |
2478 | char exp_char = fspecs.upper ? 'E' : 'e'; |
2479 | auto write = [=](iterator it) { |
2480 | if (sign) *it++ = detail::sign<Char>(sign); |
2481 | // Insert a decimal point after the first digit and add an exponent. |
2482 | it = write_significand(it, significand, significand_size, 1, |
2483 | decimal_point); |
2484 | if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero); |
2485 | *it++ = static_cast<Char>(exp_char); |
2486 | return write_exponent<Char>(output_exp, it); |
2487 | }; |
2488 | return specs.width > 0 ? write_padded<align::right>(out, specs, size, write) |
2489 | : base_iterator(out, write(reserve(out, size))); |
2490 | } |
2491 | |
2492 | int exp = f.exponent + significand_size; |
2493 | if (f.exponent >= 0) { |
2494 | // 1234e5 -> 123400000[.0+] |
2495 | size += to_unsigned(f.exponent); |
2496 | int num_zeros = fspecs.precision - exp; |
2497 | abort_fuzzing_if(num_zeros > 5000); |
2498 | if (fspecs.showpoint) { |
2499 | ++size; |
2500 | if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 1; |
2501 | if (num_zeros > 0) size += to_unsigned(num_zeros); |
2502 | } |
2503 | auto grouping = Grouping(loc, fspecs.locale); |
2504 | size += to_unsigned(grouping.count_separators(exp)); |
2505 | return write_padded<align::right>(out, specs, size, [&](iterator it) { |
2506 | if (sign) *it++ = detail::sign<Char>(sign); |
2507 | it = write_significand<Char>(it, significand, significand_size, |
2508 | f.exponent, grouping); |
2509 | if (!fspecs.showpoint) return it; |
2510 | *it++ = decimal_point; |
2511 | return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; |
2512 | }); |
2513 | } else if (exp > 0) { |
2514 | // 1234e-2 -> 12.34[0+] |
2515 | int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0; |
2516 | size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0); |
2517 | auto grouping = Grouping(loc, fspecs.locale); |
2518 | size += to_unsigned(grouping.count_separators(significand_size)); |
2519 | return write_padded<align::right>(out, specs, size, [&](iterator it) { |
2520 | if (sign) *it++ = detail::sign<Char>(sign); |
2521 | it = write_significand(it, significand, significand_size, exp, |
2522 | decimal_point, grouping); |
2523 | return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; |
2524 | }); |
2525 | } |
2526 | // 1234e-6 -> 0.001234 |
2527 | int num_zeros = -exp; |
2528 | if (significand_size == 0 && fspecs.precision >= 0 && |
2529 | fspecs.precision < num_zeros) { |
2530 | num_zeros = fspecs.precision; |
2531 | } |
2532 | bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint; |
2533 | size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros); |
2534 | return write_padded<align::right>(out, specs, size, [&](iterator it) { |
2535 | if (sign) *it++ = detail::sign<Char>(sign); |
2536 | *it++ = zero; |
2537 | if (!pointy) return it; |
2538 | *it++ = decimal_point; |
2539 | it = detail::fill_n(it, num_zeros, zero); |
2540 | return write_significand<Char>(it, significand, significand_size); |
2541 | }); |
2542 | } |
2543 | |
2544 | template <typename Char> class fallback_digit_grouping { |
2545 | public: |
2546 | constexpr fallback_digit_grouping(locale_ref, bool) {} |
2547 | |
2548 | constexpr bool has_separator() const { return false; } |
2549 | |
2550 | constexpr int count_separators(int) const { return 0; } |
2551 | |
2552 | template <typename Out, typename C> |
2553 | constexpr Out apply(Out out, basic_string_view<C>) const { |
2554 | return out; |
2555 | } |
2556 | }; |
2557 | |
2558 | template <typename OutputIt, typename DecimalFP, typename Char> |
2559 | FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& f, |
2560 | const basic_format_specs<Char>& specs, |
2561 | float_specs fspecs, locale_ref loc) |
2562 | -> OutputIt { |
2563 | if (is_constant_evaluated()) { |
2564 | return do_write_float<OutputIt, DecimalFP, Char, |
2565 | fallback_digit_grouping<Char>>(out, f, specs, fspecs, |
2566 | loc); |
2567 | } else { |
2568 | return do_write_float(out, f, specs, fspecs, loc); |
2569 | } |
2570 | } |
2571 | |
2572 | template <typename T> constexpr bool isnan(T value) { |
2573 | return !(value >= value); // std::isnan doesn't support __float128. |
2574 | } |
2575 | |
2576 | template <typename T, typename Enable = void> |
2577 | struct has_isfinite : std::false_type {}; |
2578 | |
2579 | template <typename T> |
2580 | struct has_isfinite<T, enable_if_t<sizeof(std::isfinite(T())) != 0>> |
2581 | : std::true_type {}; |
2582 | |
2583 | template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&& |
2584 | has_isfinite<T>::value)> |
2585 | FMT_CONSTEXPR20 bool isfinite(T value) { |
2586 | constexpr T inf = T(std::numeric_limits<double>::infinity()); |
2587 | if (is_constant_evaluated()) |
2588 | return !detail::isnan(value) && value < inf && value > -inf; |
2589 | return std::isfinite(value); |
2590 | } |
2591 | template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)> |
2592 | FMT_CONSTEXPR bool isfinite(T value) { |
2593 | T inf = T(std::numeric_limits<double>::infinity()); |
2594 | // std::isfinite doesn't support __float128. |
2595 | return !detail::isnan(value) && value < inf && value > -inf; |
2596 | } |
2597 | |
2598 | template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)> |
2599 | FMT_INLINE FMT_CONSTEXPR bool signbit(T value) { |
2600 | if (is_constant_evaluated()) { |
2601 | #ifdef __cpp_if_constexpr |
2602 | if constexpr (std::numeric_limits<double>::is_iec559) { |
2603 | auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value)); |
2604 | return (bits >> (num_bits<uint64_t>() - 1)) != 0; |
2605 | } |
2606 | #endif |
2607 | } |
2608 | return std::signbit(static_cast<double>(value)); |
2609 | } |
2610 | |
2611 | enum class round_direction { unknown, up, down }; |
2612 | |
2613 | // Given the divisor (normally a power of 10), the remainder = v % divisor for |
2614 | // some number v and the error, returns whether v should be rounded up, down, or |
2615 | // whether the rounding direction can't be determined due to error. |
2616 | // error should be less than divisor / 2. |
2617 | FMT_CONSTEXPR inline round_direction get_round_direction(uint64_t divisor, |
2618 | uint64_t remainder, |
2619 | uint64_t error) { |
2620 | FMT_ASSERT(remainder < divisor, "" ); // divisor - remainder won't overflow. |
2621 | FMT_ASSERT(error < divisor, "" ); // divisor - error won't overflow. |
2622 | FMT_ASSERT(error < divisor - error, "" ); // error * 2 won't overflow. |
2623 | // Round down if (remainder + error) * 2 <= divisor. |
2624 | if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2) |
2625 | return round_direction::down; |
2626 | // Round up if (remainder - error) * 2 >= divisor. |
2627 | if (remainder >= error && |
2628 | remainder - error >= divisor - (remainder - error)) { |
2629 | return round_direction::up; |
2630 | } |
2631 | return round_direction::unknown; |
2632 | } |
2633 | |
2634 | namespace digits { |
2635 | enum result { |
2636 | more, // Generate more digits. |
2637 | done, // Done generating digits. |
2638 | error // Digit generation cancelled due to an error. |
2639 | }; |
2640 | } |
2641 | |
2642 | struct gen_digits_handler { |
2643 | char* buf; |
2644 | int size; |
2645 | int precision; |
2646 | int exp10; |
2647 | bool fixed; |
2648 | |
2649 | FMT_CONSTEXPR digits::result on_digit(char digit, uint64_t divisor, |
2650 | uint64_t remainder, uint64_t error, |
2651 | bool integral) { |
2652 | FMT_ASSERT(remainder < divisor, "" ); |
2653 | buf[size++] = digit; |
2654 | if (!integral && error >= remainder) return digits::error; |
2655 | if (size < precision) return digits::more; |
2656 | if (!integral) { |
2657 | // Check if error * 2 < divisor with overflow prevention. |
2658 | // The check is not needed for the integral part because error = 1 |
2659 | // and divisor > (1 << 32) there. |
2660 | if (error >= divisor || error >= divisor - error) return digits::error; |
2661 | } else { |
2662 | FMT_ASSERT(error == 1 && divisor > 2, "" ); |
2663 | } |
2664 | auto dir = get_round_direction(divisor, remainder, error); |
2665 | if (dir != round_direction::up) |
2666 | return dir == round_direction::down ? digits::done : digits::error; |
2667 | ++buf[size - 1]; |
2668 | for (int i = size - 1; i > 0 && buf[i] > '9'; --i) { |
2669 | buf[i] = '0'; |
2670 | ++buf[i - 1]; |
2671 | } |
2672 | if (buf[0] > '9') { |
2673 | buf[0] = '1'; |
2674 | if (fixed) |
2675 | buf[size++] = '0'; |
2676 | else |
2677 | ++exp10; |
2678 | } |
2679 | return digits::done; |
2680 | } |
2681 | }; |
2682 | |
2683 | inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) { |
2684 | // Adjust fixed precision by exponent because it is relative to decimal |
2685 | // point. |
2686 | if (exp10 > 0 && precision > max_value<int>() - exp10) |
2687 | FMT_THROW(format_error("number is too big" )); |
2688 | precision += exp10; |
2689 | } |
2690 | |
2691 | // Generates output using the Grisu digit-gen algorithm. |
2692 | // error: the size of the region (lower, upper) outside of which numbers |
2693 | // definitely do not round to value (Delta in Grisu3). |
2694 | FMT_INLINE FMT_CONSTEXPR20 auto grisu_gen_digits(fp value, uint64_t error, |
2695 | int& exp, |
2696 | gen_digits_handler& handler) |
2697 | -> digits::result { |
2698 | const fp one(1ULL << -value.e, value.e); |
2699 | // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be |
2700 | // zero because it contains a product of two 64-bit numbers with MSB set (due |
2701 | // to normalization) - 1, shifted right by at most 60 bits. |
2702 | auto integral = static_cast<uint32_t>(value.f >> -one.e); |
2703 | FMT_ASSERT(integral != 0, "" ); |
2704 | FMT_ASSERT(integral == value.f >> -one.e, "" ); |
2705 | // The fractional part of scaled value (p2 in Grisu) c = value % one. |
2706 | uint64_t fractional = value.f & (one.f - 1); |
2707 | exp = count_digits(integral); // kappa in Grisu. |
2708 | // Non-fixed formats require at least one digit and no precision adjustment. |
2709 | if (handler.fixed) { |
2710 | adjust_precision(handler.precision, exp + handler.exp10); |
2711 | // Check if precision is satisfied just by leading zeros, e.g. |
2712 | // format("{:.2f}", 0.001) gives "0.00" without generating any digits. |
2713 | if (handler.precision <= 0) { |
2714 | if (handler.precision < 0) return digits::done; |
2715 | // Divide by 10 to prevent overflow. |
2716 | uint64_t divisor = data::power_of_10_64[exp - 1] << -one.e; |
2717 | auto dir = get_round_direction(divisor, value.f / 10, error * 10); |
2718 | if (dir == round_direction::unknown) return digits::error; |
2719 | handler.buf[handler.size++] = dir == round_direction::up ? '1' : '0'; |
2720 | return digits::done; |
2721 | } |
2722 | } |
2723 | // Generate digits for the integral part. This can produce up to 10 digits. |
2724 | do { |
2725 | uint32_t digit = 0; |
2726 | auto divmod_integral = [&](uint32_t divisor) { |
2727 | digit = integral / divisor; |
2728 | integral %= divisor; |
2729 | }; |
2730 | // This optimization by Milo Yip reduces the number of integer divisions by |
2731 | // one per iteration. |
2732 | switch (exp) { |
2733 | case 10: |
2734 | divmod_integral(1000000000); |
2735 | break; |
2736 | case 9: |
2737 | divmod_integral(100000000); |
2738 | break; |
2739 | case 8: |
2740 | divmod_integral(10000000); |
2741 | break; |
2742 | case 7: |
2743 | divmod_integral(1000000); |
2744 | break; |
2745 | case 6: |
2746 | divmod_integral(100000); |
2747 | break; |
2748 | case 5: |
2749 | divmod_integral(10000); |
2750 | break; |
2751 | case 4: |
2752 | divmod_integral(1000); |
2753 | break; |
2754 | case 3: |
2755 | divmod_integral(100); |
2756 | break; |
2757 | case 2: |
2758 | divmod_integral(10); |
2759 | break; |
2760 | case 1: |
2761 | digit = integral; |
2762 | integral = 0; |
2763 | break; |
2764 | default: |
2765 | FMT_ASSERT(false, "invalid number of digits" ); |
2766 | } |
2767 | --exp; |
2768 | auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional; |
2769 | auto result = handler.on_digit(static_cast<char>('0' + digit), |
2770 | data::power_of_10_64[exp] << -one.e, |
2771 | remainder, error, true); |
2772 | if (result != digits::more) return result; |
2773 | } while (exp > 0); |
2774 | // Generate digits for the fractional part. |
2775 | for (;;) { |
2776 | fractional *= 10; |
2777 | error *= 10; |
2778 | char digit = static_cast<char>('0' + (fractional >> -one.e)); |
2779 | fractional &= one.f - 1; |
2780 | --exp; |
2781 | auto result = handler.on_digit(digit, one.f, fractional, error, false); |
2782 | if (result != digits::more) return result; |
2783 | } |
2784 | } |
2785 | |
2786 | class bigint { |
2787 | private: |
2788 | // A bigint is stored as an array of bigits (big digits), with bigit at index |
2789 | // 0 being the least significant one. |
2790 | using bigit = uint32_t; |
2791 | using double_bigit = uint64_t; |
2792 | enum { bigits_capacity = 32 }; |
2793 | basic_memory_buffer<bigit, bigits_capacity> bigits_; |
2794 | int exp_; |
2795 | |
2796 | FMT_CONSTEXPR20 bigit operator[](int index) const { |
2797 | return bigits_[to_unsigned(index)]; |
2798 | } |
2799 | FMT_CONSTEXPR20 bigit& operator[](int index) { |
2800 | return bigits_[to_unsigned(index)]; |
2801 | } |
2802 | |
2803 | static constexpr const int bigit_bits = num_bits<bigit>(); |
2804 | |
2805 | friend struct formatter<bigint>; |
2806 | |
2807 | FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) { |
2808 | auto result = static_cast<double_bigit>((*this)[index]) - other - borrow; |
2809 | (*this)[index] = static_cast<bigit>(result); |
2810 | borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1)); |
2811 | } |
2812 | |
2813 | FMT_CONSTEXPR20 void remove_leading_zeros() { |
2814 | int num_bigits = static_cast<int>(bigits_.size()) - 1; |
2815 | while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits; |
2816 | bigits_.resize(to_unsigned(num_bigits + 1)); |
2817 | } |
2818 | |
2819 | // Computes *this -= other assuming aligned bigints and *this >= other. |
2820 | FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) { |
2821 | FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints" ); |
2822 | FMT_ASSERT(compare(*this, other) >= 0, "" ); |
2823 | bigit borrow = 0; |
2824 | int i = other.exp_ - exp_; |
2825 | for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j) |
2826 | subtract_bigits(i, other.bigits_[j], borrow); |
2827 | while (borrow > 0) subtract_bigits(i, 0, borrow); |
2828 | remove_leading_zeros(); |
2829 | } |
2830 | |
2831 | FMT_CONSTEXPR20 void multiply(uint32_t value) { |
2832 | const double_bigit wide_value = value; |
2833 | bigit carry = 0; |
2834 | for (size_t i = 0, n = bigits_.size(); i < n; ++i) { |
2835 | double_bigit result = bigits_[i] * wide_value + carry; |
2836 | bigits_[i] = static_cast<bigit>(result); |
2837 | carry = static_cast<bigit>(result >> bigit_bits); |
2838 | } |
2839 | if (carry != 0) bigits_.push_back(carry); |
2840 | } |
2841 | |
2842 | template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value || |
2843 | std::is_same<UInt, uint128_t>::value)> |
2844 | FMT_CONSTEXPR20 void multiply(UInt value) { |
2845 | using half_uint = |
2846 | conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>; |
2847 | const int shift = num_bits<half_uint>() - bigit_bits; |
2848 | const UInt lower = static_cast<half_uint>(value); |
2849 | const UInt upper = value >> num_bits<half_uint>(); |
2850 | UInt carry = 0; |
2851 | for (size_t i = 0, n = bigits_.size(); i < n; ++i) { |
2852 | UInt result = lower * bigits_[i] + static_cast<bigit>(carry); |
2853 | carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) + |
2854 | (carry >> bigit_bits); |
2855 | bigits_[i] = static_cast<bigit>(result); |
2856 | } |
2857 | while (carry != 0) { |
2858 | bigits_.push_back(static_cast<bigit>(carry)); |
2859 | carry >>= bigit_bits; |
2860 | } |
2861 | } |
2862 | |
2863 | template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value || |
2864 | std::is_same<UInt, uint128_t>::value)> |
2865 | FMT_CONSTEXPR20 void assign(UInt n) { |
2866 | size_t num_bigits = 0; |
2867 | do { |
2868 | bigits_[num_bigits++] = static_cast<bigit>(n); |
2869 | n >>= bigit_bits; |
2870 | } while (n != 0); |
2871 | bigits_.resize(num_bigits); |
2872 | exp_ = 0; |
2873 | } |
2874 | |
2875 | public: |
2876 | FMT_CONSTEXPR20 bigint() : exp_(0) {} |
2877 | explicit bigint(uint64_t n) { assign(n); } |
2878 | |
2879 | bigint(const bigint&) = delete; |
2880 | void operator=(const bigint&) = delete; |
2881 | |
2882 | FMT_CONSTEXPR20 void assign(const bigint& other) { |
2883 | auto size = other.bigits_.size(); |
2884 | bigits_.resize(size); |
2885 | auto data = other.bigits_.data(); |
2886 | std::copy(data, data + size, make_checked(bigits_.data(), size)); |
2887 | exp_ = other.exp_; |
2888 | } |
2889 | |
2890 | template <typename Int> FMT_CONSTEXPR20 void operator=(Int n) { |
2891 | FMT_ASSERT(n > 0, "" ); |
2892 | assign(uint64_or_128_t<Int>(n)); |
2893 | } |
2894 | |
2895 | FMT_CONSTEXPR20 int num_bigits() const { |
2896 | return static_cast<int>(bigits_.size()) + exp_; |
2897 | } |
2898 | |
2899 | FMT_NOINLINE FMT_CONSTEXPR20 bigint& operator<<=(int shift) { |
2900 | FMT_ASSERT(shift >= 0, "" ); |
2901 | exp_ += shift / bigit_bits; |
2902 | shift %= bigit_bits; |
2903 | if (shift == 0) return *this; |
2904 | bigit carry = 0; |
2905 | for (size_t i = 0, n = bigits_.size(); i < n; ++i) { |
2906 | bigit c = bigits_[i] >> (bigit_bits - shift); |
2907 | bigits_[i] = (bigits_[i] << shift) + carry; |
2908 | carry = c; |
2909 | } |
2910 | if (carry != 0) bigits_.push_back(carry); |
2911 | return *this; |
2912 | } |
2913 | |
2914 | template <typename Int> FMT_CONSTEXPR20 bigint& operator*=(Int value) { |
2915 | FMT_ASSERT(value > 0, "" ); |
2916 | multiply(uint32_or_64_or_128_t<Int>(value)); |
2917 | return *this; |
2918 | } |
2919 | |
2920 | friend FMT_CONSTEXPR20 int compare(const bigint& lhs, const bigint& rhs) { |
2921 | int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits(); |
2922 | if (num_lhs_bigits != num_rhs_bigits) |
2923 | return num_lhs_bigits > num_rhs_bigits ? 1 : -1; |
2924 | int i = static_cast<int>(lhs.bigits_.size()) - 1; |
2925 | int j = static_cast<int>(rhs.bigits_.size()) - 1; |
2926 | int end = i - j; |
2927 | if (end < 0) end = 0; |
2928 | for (; i >= end; --i, --j) { |
2929 | bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j]; |
2930 | if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1; |
2931 | } |
2932 | if (i != j) return i > j ? 1 : -1; |
2933 | return 0; |
2934 | } |
2935 | |
2936 | // Returns compare(lhs1 + lhs2, rhs). |
2937 | friend FMT_CONSTEXPR20 int add_compare(const bigint& lhs1, const bigint& lhs2, |
2938 | const bigint& rhs) { |
2939 | auto minimum = [](int a, int b) { return a < b ? a : b; }; |
2940 | auto maximum = [](int a, int b) { return a > b ? a : b; }; |
2941 | int max_lhs_bigits = maximum(lhs1.num_bigits(), lhs2.num_bigits()); |
2942 | int num_rhs_bigits = rhs.num_bigits(); |
2943 | if (max_lhs_bigits + 1 < num_rhs_bigits) return -1; |
2944 | if (max_lhs_bigits > num_rhs_bigits) return 1; |
2945 | auto get_bigit = [](const bigint& n, int i) -> bigit { |
2946 | return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0; |
2947 | }; |
2948 | double_bigit borrow = 0; |
2949 | int min_exp = minimum(minimum(lhs1.exp_, lhs2.exp_), rhs.exp_); |
2950 | for (int i = num_rhs_bigits - 1; i >= min_exp; --i) { |
2951 | double_bigit sum = |
2952 | static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i); |
2953 | bigit rhs_bigit = get_bigit(rhs, i); |
2954 | if (sum > rhs_bigit + borrow) return 1; |
2955 | borrow = rhs_bigit + borrow - sum; |
2956 | if (borrow > 1) return -1; |
2957 | borrow <<= bigit_bits; |
2958 | } |
2959 | return borrow != 0 ? -1 : 0; |
2960 | } |
2961 | |
2962 | // Assigns pow(10, exp) to this bigint. |
2963 | FMT_CONSTEXPR20 void assign_pow10(int exp) { |
2964 | FMT_ASSERT(exp >= 0, "" ); |
2965 | if (exp == 0) return *this = 1; |
2966 | // Find the top bit. |
2967 | int bitmask = 1; |
2968 | while (exp >= bitmask) bitmask <<= 1; |
2969 | bitmask >>= 1; |
2970 | // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by |
2971 | // repeated squaring and multiplication. |
2972 | *this = 5; |
2973 | bitmask >>= 1; |
2974 | while (bitmask != 0) { |
2975 | square(); |
2976 | if ((exp & bitmask) != 0) *this *= 5; |
2977 | bitmask >>= 1; |
2978 | } |
2979 | *this <<= exp; // Multiply by pow(2, exp) by shifting. |
2980 | } |
2981 | |
2982 | FMT_CONSTEXPR20 void square() { |
2983 | int num_bigits = static_cast<int>(bigits_.size()); |
2984 | int num_result_bigits = 2 * num_bigits; |
2985 | basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_)); |
2986 | bigits_.resize(to_unsigned(num_result_bigits)); |
2987 | auto sum = uint128_t(); |
2988 | for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) { |
2989 | // Compute bigit at position bigit_index of the result by adding |
2990 | // cross-product terms n[i] * n[j] such that i + j == bigit_index. |
2991 | for (int i = 0, j = bigit_index; j >= 0; ++i, --j) { |
2992 | // Most terms are multiplied twice which can be optimized in the future. |
2993 | sum += static_cast<double_bigit>(n[i]) * n[j]; |
2994 | } |
2995 | (*this)[bigit_index] = static_cast<bigit>(sum); |
2996 | sum >>= num_bits<bigit>(); // Compute the carry. |
2997 | } |
2998 | // Do the same for the top half. |
2999 | for (int bigit_index = num_bigits; bigit_index < num_result_bigits; |
3000 | ++bigit_index) { |
3001 | for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;) |
3002 | sum += static_cast<double_bigit>(n[i++]) * n[j--]; |
3003 | (*this)[bigit_index] = static_cast<bigit>(sum); |
3004 | sum >>= num_bits<bigit>(); |
3005 | } |
3006 | remove_leading_zeros(); |
3007 | exp_ *= 2; |
3008 | } |
3009 | |
3010 | // If this bigint has a bigger exponent than other, adds trailing zero to make |
3011 | // exponents equal. This simplifies some operations such as subtraction. |
3012 | FMT_CONSTEXPR20 void align(const bigint& other) { |
3013 | int exp_difference = exp_ - other.exp_; |
3014 | if (exp_difference <= 0) return; |
3015 | int num_bigits = static_cast<int>(bigits_.size()); |
3016 | bigits_.resize(to_unsigned(num_bigits + exp_difference)); |
3017 | for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j) |
3018 | bigits_[j] = bigits_[i]; |
3019 | std::uninitialized_fill_n(bigits_.data(), exp_difference, 0); |
3020 | exp_ -= exp_difference; |
3021 | } |
3022 | |
3023 | // Divides this bignum by divisor, assigning the remainder to this and |
3024 | // returning the quotient. |
3025 | FMT_CONSTEXPR20 int divmod_assign(const bigint& divisor) { |
3026 | FMT_ASSERT(this != &divisor, "" ); |
3027 | if (compare(*this, divisor) < 0) return 0; |
3028 | FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "" ); |
3029 | align(divisor); |
3030 | int quotient = 0; |
3031 | do { |
3032 | subtract_aligned(divisor); |
3033 | ++quotient; |
3034 | } while (compare(*this, divisor) >= 0); |
3035 | return quotient; |
3036 | } |
3037 | }; |
3038 | |
3039 | // format_dragon flags. |
3040 | enum dragon { |
3041 | predecessor_closer = 1, |
3042 | fixup = 2, // Run fixup to correct exp10 which can be off by one. |
3043 | fixed = 4, |
3044 | }; |
3045 | |
3046 | // Formats a floating-point number using a variation of the Fixed-Precision |
3047 | // Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White: |
3048 | // https://fmt.dev/papers/p372-steele.pdf. |
3049 | FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value, |
3050 | unsigned flags, int num_digits, |
3051 | buffer<char>& buf, int& exp10) { |
3052 | bigint numerator; // 2 * R in (FPP)^2. |
3053 | bigint denominator; // 2 * S in (FPP)^2. |
3054 | // lower and upper are differences between value and corresponding boundaries. |
3055 | bigint lower; // (M^- in (FPP)^2). |
3056 | bigint upper_store; // upper's value if different from lower. |
3057 | bigint* upper = nullptr; // (M^+ in (FPP)^2). |
3058 | // Shift numerator and denominator by an extra bit or two (if lower boundary |
3059 | // is closer) to make lower and upper integers. This eliminates multiplication |
3060 | // by 2 during later computations. |
3061 | bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0; |
3062 | int shift = is_predecessor_closer ? 2 : 1; |
3063 | if (value.e >= 0) { |
3064 | numerator = value.f; |
3065 | numerator <<= value.e + shift; |
3066 | lower = 1; |
3067 | lower <<= value.e; |
3068 | if (is_predecessor_closer) { |
3069 | upper_store = 1; |
3070 | upper_store <<= value.e + 1; |
3071 | upper = &upper_store; |
3072 | } |
3073 | denominator.assign_pow10(exp10); |
3074 | denominator <<= shift; |
3075 | } else if (exp10 < 0) { |
3076 | numerator.assign_pow10(-exp10); |
3077 | lower.assign(numerator); |
3078 | if (is_predecessor_closer) { |
3079 | upper_store.assign(numerator); |
3080 | upper_store <<= 1; |
3081 | upper = &upper_store; |
3082 | } |
3083 | numerator *= value.f; |
3084 | numerator <<= shift; |
3085 | denominator = 1; |
3086 | denominator <<= shift - value.e; |
3087 | } else { |
3088 | numerator = value.f; |
3089 | numerator <<= shift; |
3090 | denominator.assign_pow10(exp10); |
3091 | denominator <<= shift - value.e; |
3092 | lower = 1; |
3093 | if (is_predecessor_closer) { |
3094 | upper_store = 1ULL << 1; |
3095 | upper = &upper_store; |
3096 | } |
3097 | } |
3098 | int even = static_cast<int>((value.f & 1) == 0); |
3099 | if (!upper) upper = &lower; |
3100 | if ((flags & dragon::fixup) != 0) { |
3101 | if (add_compare(numerator, *upper, denominator) + even <= 0) { |
3102 | --exp10; |
3103 | numerator *= 10; |
3104 | if (num_digits < 0) { |
3105 | lower *= 10; |
3106 | if (upper != &lower) *upper *= 10; |
3107 | } |
3108 | } |
3109 | if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1); |
3110 | } |
3111 | // Invariant: value == (numerator / denominator) * pow(10, exp10). |
3112 | if (num_digits < 0) { |
3113 | // Generate the shortest representation. |
3114 | num_digits = 0; |
3115 | char* data = buf.data(); |
3116 | for (;;) { |
3117 | int digit = numerator.divmod_assign(denominator); |
3118 | bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower. |
3119 | // numerator + upper >[=] pow10: |
3120 | bool high = add_compare(numerator, *upper, denominator) + even > 0; |
3121 | data[num_digits++] = static_cast<char>('0' + digit); |
3122 | if (low || high) { |
3123 | if (!low) { |
3124 | ++data[num_digits - 1]; |
3125 | } else if (high) { |
3126 | int result = add_compare(numerator, numerator, denominator); |
3127 | // Round half to even. |
3128 | if (result > 0 || (result == 0 && (digit % 2) != 0)) |
3129 | ++data[num_digits - 1]; |
3130 | } |
3131 | buf.try_resize(to_unsigned(num_digits)); |
3132 | exp10 -= num_digits - 1; |
3133 | return; |
3134 | } |
3135 | numerator *= 10; |
3136 | lower *= 10; |
3137 | if (upper != &lower) *upper *= 10; |
3138 | } |
3139 | } |
3140 | // Generate the given number of digits. |
3141 | exp10 -= num_digits - 1; |
3142 | if (num_digits == 0) { |
3143 | denominator *= 10; |
3144 | auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0'; |
3145 | buf.push_back(digit); |
3146 | return; |
3147 | } |
3148 | buf.try_resize(to_unsigned(num_digits)); |
3149 | for (int i = 0; i < num_digits - 1; ++i) { |
3150 | int digit = numerator.divmod_assign(denominator); |
3151 | buf[i] = static_cast<char>('0' + digit); |
3152 | numerator *= 10; |
3153 | } |
3154 | int digit = numerator.divmod_assign(denominator); |
3155 | auto result = add_compare(numerator, numerator, denominator); |
3156 | if (result > 0 || (result == 0 && (digit % 2) != 0)) { |
3157 | if (digit == 9) { |
3158 | const auto overflow = '0' + 10; |
3159 | buf[num_digits - 1] = overflow; |
3160 | // Propagate the carry. |
3161 | for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) { |
3162 | buf[i] = '0'; |
3163 | ++buf[i - 1]; |
3164 | } |
3165 | if (buf[0] == overflow) { |
3166 | buf[0] = '1'; |
3167 | ++exp10; |
3168 | } |
3169 | return; |
3170 | } |
3171 | ++digit; |
3172 | } |
3173 | buf[num_digits - 1] = static_cast<char>('0' + digit); |
3174 | } |
3175 | |
3176 | template <typename Float> |
3177 | FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs, |
3178 | buffer<char>& buf) -> int { |
3179 | // float is passed as double to reduce the number of instantiations. |
3180 | static_assert(!std::is_same<Float, float>::value, "" ); |
3181 | FMT_ASSERT(value >= 0, "value is negative" ); |
3182 | auto converted_value = convert_float(value); |
3183 | |
3184 | const bool fixed = specs.format == float_format::fixed; |
3185 | if (value <= 0) { // <= instead of == to silence a warning. |
3186 | if (precision <= 0 || !fixed) { |
3187 | buf.push_back('0'); |
3188 | return 0; |
3189 | } |
3190 | buf.try_resize(to_unsigned(precision)); |
3191 | fill_n(buf.data(), precision, '0'); |
3192 | return -precision; |
3193 | } |
3194 | |
3195 | int exp = 0; |
3196 | bool use_dragon = true; |
3197 | unsigned dragon_flags = 0; |
3198 | if (!is_fast_float<Float>()) { |
3199 | const auto inv_log2_10 = 0.3010299956639812; // 1 / log2(10) |
3200 | using info = dragonbox::float_info<decltype(converted_value)>; |
3201 | const auto f = basic_fp<typename info::carrier_uint>(converted_value); |
3202 | // Compute exp, an approximate power of 10, such that |
3203 | // 10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1). |
3204 | // This is based on log10(value) == log2(value) / log2(10) and approximation |
3205 | // of log2(value) by e + num_fraction_bits idea from double-conversion. |
3206 | exp = static_cast<int>( |
3207 | std::ceil((f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10)); |
3208 | dragon_flags = dragon::fixup; |
3209 | } else if (!is_constant_evaluated() && precision < 0) { |
3210 | // Use Dragonbox for the shortest format. |
3211 | if (specs.binary32) { |
3212 | auto dec = dragonbox::to_decimal(static_cast<float>(value)); |
3213 | write<char>(buffer_appender<char>(buf), dec.significand); |
3214 | return dec.exponent; |
3215 | } |
3216 | auto dec = dragonbox::to_decimal(static_cast<double>(value)); |
3217 | write<char>(buffer_appender<char>(buf), dec.significand); |
3218 | return dec.exponent; |
3219 | } else { |
3220 | // Use Grisu + Dragon4 for the given precision: |
3221 | // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf. |
3222 | const int min_exp = -60; // alpha in Grisu. |
3223 | int cached_exp10 = 0; // K in Grisu. |
3224 | fp normalized = normalize(fp(converted_value)); |
3225 | const auto cached_pow = get_cached_power( |
3226 | min_exp - (normalized.e + fp::num_significand_bits), cached_exp10); |
3227 | normalized = normalized * cached_pow; |
3228 | gen_digits_handler handler{buf.data(), 0, precision, -cached_exp10, fixed}; |
3229 | if (grisu_gen_digits(normalized, 1, exp, handler) != digits::error && |
3230 | !is_constant_evaluated()) { |
3231 | exp += handler.exp10; |
3232 | buf.try_resize(to_unsigned(handler.size)); |
3233 | use_dragon = false; |
3234 | } else { |
3235 | exp += handler.size - cached_exp10 - 1; |
3236 | precision = handler.precision; |
3237 | } |
3238 | } |
3239 | if (use_dragon) { |
3240 | auto f = basic_fp<uint128_t>(); |
3241 | bool is_predecessor_closer = specs.binary32 |
3242 | ? f.assign(static_cast<float>(value)) |
3243 | : f.assign(converted_value); |
3244 | if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer; |
3245 | if (fixed) dragon_flags |= dragon::fixed; |
3246 | // Limit precision to the maximum possible number of significant digits in |
3247 | // an IEEE754 double because we don't need to generate zeros. |
3248 | const int max_double_digits = 767; |
3249 | if (precision > max_double_digits) precision = max_double_digits; |
3250 | format_dragon(f, dragon_flags, precision, buf, exp); |
3251 | } |
3252 | if (!fixed && !specs.showpoint) { |
3253 | // Remove trailing zeros. |
3254 | auto num_digits = buf.size(); |
3255 | while (num_digits > 0 && buf[num_digits - 1] == '0') { |
3256 | --num_digits; |
3257 | ++exp; |
3258 | } |
3259 | buf.try_resize(num_digits); |
3260 | } |
3261 | return exp; |
3262 | } |
3263 | template <typename Char, typename OutputIt, typename T> |
3264 | FMT_CONSTEXPR20 auto write_float(OutputIt out, T value, |
3265 | basic_format_specs<Char> specs, locale_ref loc) |
3266 | -> OutputIt { |
3267 | float_specs fspecs = parse_float_type_spec(specs); |
3268 | fspecs.sign = specs.sign; |
3269 | if (detail::signbit(value)) { // value < 0 is false for NaN so use signbit. |
3270 | fspecs.sign = sign::minus; |
3271 | value = -value; |
3272 | } else if (fspecs.sign == sign::minus) { |
3273 | fspecs.sign = sign::none; |
3274 | } |
3275 | |
3276 | if (!detail::isfinite(value)) |
3277 | return write_nonfinite(out, detail::isnan(value), specs, fspecs); |
3278 | |
3279 | if (specs.align == align::numeric && fspecs.sign) { |
3280 | auto it = reserve(out, 1); |
3281 | *it++ = detail::sign<Char>(fspecs.sign); |
3282 | out = base_iterator(out, it); |
3283 | fspecs.sign = sign::none; |
3284 | if (specs.width != 0) --specs.width; |
3285 | } |
3286 | |
3287 | memory_buffer buffer; |
3288 | if (fspecs.format == float_format::hex) { |
3289 | if (fspecs.sign) buffer.push_back(detail::sign<char>(fspecs.sign)); |
3290 | snprintf_float(convert_float(value), specs.precision, fspecs, buffer); |
3291 | return write_bytes<align::right>(out, {buffer.data(), buffer.size()}, |
3292 | specs); |
3293 | } |
3294 | int precision = specs.precision >= 0 || specs.type == presentation_type::none |
3295 | ? specs.precision |
3296 | : 6; |
3297 | if (fspecs.format == float_format::exp) { |
3298 | if (precision == max_value<int>()) |
3299 | throw_format_error("number is too big" ); |
3300 | else |
3301 | ++precision; |
3302 | } else if (fspecs.format != float_format::fixed && precision == 0) { |
3303 | precision = 1; |
3304 | } |
3305 | if (const_check(std::is_same<T, float>())) fspecs.binary32 = true; |
3306 | int exp = format_float(convert_float(value), precision, fspecs, buffer); |
3307 | fspecs.precision = precision; |
3308 | auto f = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp}; |
3309 | return write_float(out, f, specs, fspecs, loc); |
3310 | } |
3311 | |
3312 | template <typename Char, typename OutputIt, typename T, |
3313 | FMT_ENABLE_IF(is_floating_point<T>::value)> |
3314 | FMT_CONSTEXPR20 auto write(OutputIt out, T value, |
3315 | basic_format_specs<Char> specs, locale_ref loc = {}) |
3316 | -> OutputIt { |
3317 | if (const_check(!is_supported_floating_point(value))) return out; |
3318 | return specs.localized && write_loc(out, value, specs, loc) |
3319 | ? out |
3320 | : write_float(out, value, specs, loc); |
3321 | } |
3322 | |
3323 | template <typename Char, typename OutputIt, typename T, |
3324 | FMT_ENABLE_IF(is_fast_float<T>::value)> |
3325 | FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt { |
3326 | if (is_constant_evaluated()) |
3327 | return write(out, value, basic_format_specs<Char>()); |
3328 | if (const_check(!is_supported_floating_point(value))) return out; |
3329 | |
3330 | auto fspecs = float_specs(); |
3331 | if (detail::signbit(value)) { |
3332 | fspecs.sign = sign::minus; |
3333 | value = -value; |
3334 | } |
3335 | |
3336 | constexpr auto specs = basic_format_specs<Char>(); |
3337 | using floaty = conditional_t<std::is_same<T, long double>::value, double, T>; |
3338 | using uint = typename dragonbox::float_info<floaty>::carrier_uint; |
3339 | uint mask = exponent_mask<floaty>(); |
3340 | if ((bit_cast<uint>(value) & mask) == mask) |
3341 | return write_nonfinite(out, std::isnan(value), specs, fspecs); |
3342 | |
3343 | auto dec = dragonbox::to_decimal(static_cast<floaty>(value)); |
3344 | return write_float(out, dec, specs, fspecs, {}); |
3345 | } |
3346 | |
3347 | template <typename Char, typename OutputIt, typename T, |
3348 | FMT_ENABLE_IF(is_floating_point<T>::value && |
3349 | !is_fast_float<T>::value)> |
3350 | inline auto write(OutputIt out, T value) -> OutputIt { |
3351 | return write(out, value, basic_format_specs<Char>()); |
3352 | } |
3353 | |
3354 | template <typename Char, typename OutputIt> |
3355 | auto write(OutputIt out, monostate, basic_format_specs<Char> = {}, |
3356 | locale_ref = {}) -> OutputIt { |
3357 | FMT_ASSERT(false, "" ); |
3358 | return out; |
3359 | } |
3360 | |
3361 | template <typename Char, typename OutputIt> |
3362 | FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value) |
3363 | -> OutputIt { |
3364 | auto it = reserve(out, value.size()); |
3365 | it = copy_str_noinline<Char>(value.begin(), value.end(), it); |
3366 | return base_iterator(out, it); |
3367 | } |
3368 | |
3369 | template <typename Char, typename OutputIt, typename T, |
3370 | FMT_ENABLE_IF(is_string<T>::value)> |
3371 | constexpr auto write(OutputIt out, const T& value) -> OutputIt { |
3372 | return write<Char>(out, to_string_view(value)); |
3373 | } |
3374 | |
3375 | // FMT_ENABLE_IF() condition separated to workaround an MSVC bug. |
3376 | template < |
3377 | typename Char, typename OutputIt, typename T, |
3378 | bool check = |
3379 | std::is_enum<T>::value && !std::is_same<T, Char>::value && |
3380 | mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value != |
3381 | type::custom_type, |
3382 | FMT_ENABLE_IF(check)> |
3383 | FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt { |
3384 | return write<Char>(out, static_cast<underlying_t<T>>(value)); |
3385 | } |
3386 | |
3387 | template <typename Char, typename OutputIt, typename T, |
3388 | FMT_ENABLE_IF(std::is_same<T, bool>::value)> |
3389 | FMT_CONSTEXPR auto write(OutputIt out, T value, |
3390 | const basic_format_specs<Char>& specs = {}, |
3391 | locale_ref = {}) -> OutputIt { |
3392 | return specs.type != presentation_type::none && |
3393 | specs.type != presentation_type::string |
3394 | ? write(out, value ? 1 : 0, specs, {}) |
3395 | : write_bytes(out, value ? "true" : "false" , specs); |
3396 | } |
3397 | |
3398 | template <typename Char, typename OutputIt> |
3399 | FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt { |
3400 | auto it = reserve(out, 1); |
3401 | *it++ = value; |
3402 | return base_iterator(out, it); |
3403 | } |
3404 | |
3405 | template <typename Char, typename OutputIt> |
3406 | FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value) |
3407 | -> OutputIt { |
3408 | if (!value) { |
3409 | throw_format_error("string pointer is null" ); |
3410 | } else { |
3411 | out = write(out, basic_string_view<Char>(value)); |
3412 | } |
3413 | return out; |
3414 | } |
3415 | |
3416 | template <typename Char, typename OutputIt, typename T, |
3417 | FMT_ENABLE_IF(std::is_same<T, void>::value)> |
3418 | auto write(OutputIt out, const T* value, |
3419 | const basic_format_specs<Char>& specs = {}, locale_ref = {}) |
3420 | -> OutputIt { |
3421 | check_pointer_type_spec(specs.type, error_handler()); |
3422 | return write_ptr<Char>(out, bit_cast<uintptr_t>(value), &specs); |
3423 | } |
3424 | |
3425 | // A write overload that handles implicit conversions. |
3426 | template <typename Char, typename OutputIt, typename T, |
3427 | typename Context = basic_format_context<OutputIt, Char>> |
3428 | FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t< |
3429 | std::is_class<T>::value && !is_string<T>::value && |
3430 | !is_floating_point<T>::value && !std::is_same<T, Char>::value && |
3431 | !std::is_same<const T&, |
3432 | decltype(arg_mapper<Context>().map(value))>::value, |
3433 | OutputIt> { |
3434 | return write<Char>(out, arg_mapper<Context>().map(value)); |
3435 | } |
3436 | |
3437 | template <typename Char, typename OutputIt, typename T, |
3438 | typename Context = basic_format_context<OutputIt, Char>> |
3439 | FMT_CONSTEXPR auto write(OutputIt out, const T& value) |
3440 | -> enable_if_t<mapped_type_constant<T, Context>::value == type::custom_type, |
3441 | OutputIt> { |
3442 | using formatter_type = |
3443 | conditional_t<has_formatter<T, Context>::value, |
3444 | typename Context::template formatter_type<T>, |
3445 | fallback_formatter<T, Char>>; |
3446 | auto ctx = Context(out, {}, {}); |
3447 | return formatter_type().format(value, ctx); |
3448 | } |
3449 | |
3450 | // An argument visitor that formats the argument and writes it via the output |
3451 | // iterator. It's a class and not a generic lambda for compatibility with C++11. |
3452 | template <typename Char> struct default_arg_formatter { |
3453 | using iterator = buffer_appender<Char>; |
3454 | using context = buffer_context<Char>; |
3455 | |
3456 | iterator out; |
3457 | basic_format_args<context> args; |
3458 | locale_ref loc; |
3459 | |
3460 | template <typename T> auto operator()(T value) -> iterator { |
3461 | return write<Char>(out, value); |
3462 | } |
3463 | auto operator()(typename basic_format_arg<context>::handle h) -> iterator { |
3464 | basic_format_parse_context<Char> parse_ctx({}); |
3465 | context format_ctx(out, args, loc); |
3466 | h.format(parse_ctx, format_ctx); |
3467 | return format_ctx.out(); |
3468 | } |
3469 | }; |
3470 | |
3471 | template <typename Char> struct arg_formatter { |
3472 | using iterator = buffer_appender<Char>; |
3473 | using context = buffer_context<Char>; |
3474 | |
3475 | iterator out; |
3476 | const basic_format_specs<Char>& specs; |
3477 | locale_ref locale; |
3478 | |
3479 | template <typename T> |
3480 | FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator { |
3481 | return detail::write(out, value, specs, locale); |
3482 | } |
3483 | auto operator()(typename basic_format_arg<context>::handle) -> iterator { |
3484 | // User-defined types are handled separately because they require access |
3485 | // to the parse context. |
3486 | return out; |
3487 | } |
3488 | }; |
3489 | |
3490 | template <typename Char> struct custom_formatter { |
3491 | basic_format_parse_context<Char>& parse_ctx; |
3492 | buffer_context<Char>& ctx; |
3493 | |
3494 | void operator()( |
3495 | typename basic_format_arg<buffer_context<Char>>::handle h) const { |
3496 | h.format(parse_ctx, ctx); |
3497 | } |
3498 | template <typename T> void operator()(T) const {} |
3499 | }; |
3500 | |
3501 | template <typename ErrorHandler> class width_checker { |
3502 | public: |
3503 | explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {} |
3504 | |
3505 | template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> |
3506 | FMT_CONSTEXPR auto operator()(T value) -> unsigned long long { |
3507 | if (is_negative(value)) handler_.on_error("negative width" ); |
3508 | return static_cast<unsigned long long>(value); |
3509 | } |
3510 | |
3511 | template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> |
3512 | FMT_CONSTEXPR auto operator()(T) -> unsigned long long { |
3513 | handler_.on_error("width is not integer" ); |
3514 | return 0; |
3515 | } |
3516 | |
3517 | private: |
3518 | ErrorHandler& handler_; |
3519 | }; |
3520 | |
3521 | template <typename ErrorHandler> class precision_checker { |
3522 | public: |
3523 | explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {} |
3524 | |
3525 | template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> |
3526 | FMT_CONSTEXPR auto operator()(T value) -> unsigned long long { |
3527 | if (is_negative(value)) handler_.on_error("negative precision" ); |
3528 | return static_cast<unsigned long long>(value); |
3529 | } |
3530 | |
3531 | template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> |
3532 | FMT_CONSTEXPR auto operator()(T) -> unsigned long long { |
3533 | handler_.on_error("precision is not integer" ); |
3534 | return 0; |
3535 | } |
3536 | |
3537 | private: |
3538 | ErrorHandler& handler_; |
3539 | }; |
3540 | |
3541 | template <template <typename> class Handler, typename FormatArg, |
3542 | typename ErrorHandler> |
3543 | FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg, ErrorHandler eh) -> int { |
3544 | unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg); |
3545 | if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big" ); |
3546 | return static_cast<int>(value); |
3547 | } |
3548 | |
3549 | template <typename Context, typename ID> |
3550 | FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) -> |
3551 | typename Context::format_arg { |
3552 | auto arg = ctx.arg(id); |
3553 | if (!arg) ctx.on_error("argument not found" ); |
3554 | return arg; |
3555 | } |
3556 | |
3557 | // The standard format specifier handler with checking. |
3558 | template <typename Char> class specs_handler : public specs_setter<Char> { |
3559 | private: |
3560 | basic_format_parse_context<Char>& parse_context_; |
3561 | buffer_context<Char>& context_; |
3562 | |
3563 | // This is only needed for compatibility with gcc 4.4. |
3564 | using format_arg = basic_format_arg<buffer_context<Char>>; |
3565 | |
3566 | FMT_CONSTEXPR auto get_arg(auto_id) -> format_arg { |
3567 | return detail::get_arg(context_, parse_context_.next_arg_id()); |
3568 | } |
3569 | |
3570 | FMT_CONSTEXPR auto get_arg(int arg_id) -> format_arg { |
3571 | parse_context_.check_arg_id(arg_id); |
3572 | return detail::get_arg(context_, arg_id); |
3573 | } |
3574 | |
3575 | FMT_CONSTEXPR auto get_arg(basic_string_view<Char> arg_id) -> format_arg { |
3576 | parse_context_.check_arg_id(arg_id); |
3577 | return detail::get_arg(context_, arg_id); |
3578 | } |
3579 | |
3580 | public: |
3581 | FMT_CONSTEXPR specs_handler(basic_format_specs<Char>& specs, |
3582 | basic_format_parse_context<Char>& parse_ctx, |
3583 | buffer_context<Char>& ctx) |
3584 | : specs_setter<Char>(specs), parse_context_(parse_ctx), context_(ctx) {} |
3585 | |
3586 | template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) { |
3587 | this->specs_.width = get_dynamic_spec<width_checker>( |
3588 | get_arg(arg_id), context_.error_handler()); |
3589 | } |
3590 | |
3591 | template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) { |
3592 | this->specs_.precision = get_dynamic_spec<precision_checker>( |
3593 | get_arg(arg_id), context_.error_handler()); |
3594 | } |
3595 | |
3596 | void on_error(const char* message) { context_.on_error(message); } |
3597 | }; |
3598 | |
3599 | template <template <typename> class Handler, typename Context> |
3600 | FMT_CONSTEXPR void handle_dynamic_spec(int& value, |
3601 | arg_ref<typename Context::char_type> ref, |
3602 | Context& ctx) { |
3603 | switch (ref.kind) { |
3604 | case arg_id_kind::none: |
3605 | break; |
3606 | case arg_id_kind::index: |
3607 | value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.index), |
3608 | ctx.error_handler()); |
3609 | break; |
3610 | case arg_id_kind::name: |
3611 | value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.name), |
3612 | ctx.error_handler()); |
3613 | break; |
3614 | } |
3615 | } |
3616 | |
3617 | #if FMT_USE_USER_DEFINED_LITERALS |
3618 | template <typename Char> struct udl_formatter { |
3619 | basic_string_view<Char> str; |
3620 | |
3621 | template <typename... T> |
3622 | auto operator()(T&&... args) const -> std::basic_string<Char> { |
3623 | return vformat(str, fmt::make_format_args<buffer_context<Char>>(args...)); |
3624 | } |
3625 | }; |
3626 | |
3627 | # if FMT_USE_NONTYPE_TEMPLATE_ARGS |
3628 | template <typename T, typename Char, size_t N, |
3629 | fmt::detail_exported::fixed_string<Char, N> Str> |
3630 | struct statically_named_arg : view { |
3631 | static constexpr auto name = Str.data; |
3632 | |
3633 | const T& value; |
3634 | statically_named_arg(const T& v) : value(v) {} |
3635 | }; |
3636 | |
3637 | template <typename T, typename Char, size_t N, |
3638 | fmt::detail_exported::fixed_string<Char, N> Str> |
3639 | struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {}; |
3640 | |
3641 | template <typename T, typename Char, size_t N, |
3642 | fmt::detail_exported::fixed_string<Char, N> Str> |
3643 | struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>> |
3644 | : std::true_type {}; |
3645 | |
3646 | template <typename Char, size_t N, |
3647 | fmt::detail_exported::fixed_string<Char, N> Str> |
3648 | struct udl_arg { |
3649 | template <typename T> auto operator=(T&& value) const { |
3650 | return statically_named_arg<T, Char, N, Str>(std::forward<T>(value)); |
3651 | } |
3652 | }; |
3653 | # else |
3654 | template <typename Char> struct udl_arg { |
3655 | const Char* str; |
3656 | |
3657 | template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> { |
3658 | return {str, std::forward<T>(value)}; |
3659 | } |
3660 | }; |
3661 | # endif |
3662 | #endif // FMT_USE_USER_DEFINED_LITERALS |
3663 | |
3664 | template <typename Locale, typename Char> |
3665 | auto vformat(const Locale& loc, basic_string_view<Char> format_str, |
3666 | basic_format_args<buffer_context<type_identity_t<Char>>> args) |
3667 | -> std::basic_string<Char> { |
3668 | basic_memory_buffer<Char> buffer; |
3669 | detail::vformat_to(buffer, format_str, args, detail::locale_ref(loc)); |
3670 | return {buffer.data(), buffer.size()}; |
3671 | } |
3672 | |
3673 | using format_func = void (*)(detail::buffer<char>&, int, const char*); |
3674 | |
3675 | FMT_API void format_error_code(buffer<char>& out, int error_code, |
3676 | string_view message) noexcept; |
3677 | |
3678 | FMT_API void report_error(format_func func, int error_code, |
3679 | const char* message) noexcept; |
3680 | FMT_END_DETAIL_NAMESPACE |
3681 | |
3682 | FMT_API auto vsystem_error(int error_code, string_view format_str, |
3683 | format_args args) -> std::system_error; |
3684 | |
3685 | /** |
3686 | \rst |
3687 | Constructs :class:`std::system_error` with a message formatted with |
3688 | ``fmt::format(fmt, args...)``. |
3689 | *error_code* is a system error code as given by ``errno``. |
3690 | |
3691 | **Example**:: |
3692 | |
3693 | // This throws std::system_error with the description |
3694 | // cannot open file 'madeup': No such file or directory |
3695 | // or similar (system message may vary). |
3696 | const char* filename = "madeup"; |
3697 | std::FILE* file = std::fopen(filename, "r"); |
3698 | if (!file) |
3699 | throw fmt::system_error(errno, "cannot open file '{}'", filename); |
3700 | \endrst |
3701 | */ |
3702 | template <typename... T> |
3703 | auto system_error(int error_code, format_string<T...> fmt, T&&... args) |
3704 | -> std::system_error { |
3705 | return vsystem_error(error_code, fmt, fmt::make_format_args(args...)); |
3706 | } |
3707 | |
3708 | /** |
3709 | \rst |
3710 | Formats an error message for an error returned by an operating system or a |
3711 | language runtime, for example a file opening error, and writes it to *out*. |
3712 | The format is the same as the one used by ``std::system_error(ec, message)`` |
3713 | where ``ec`` is ``std::error_code(error_code, std::generic_category()})``. |
3714 | It is implementation-defined but normally looks like: |
3715 | |
3716 | .. parsed-literal:: |
3717 | *<message>*: *<system-message>* |
3718 | |
3719 | where *<message>* is the passed message and *<system-message>* is the system |
3720 | message corresponding to the error code. |
3721 | *error_code* is a system error code as given by ``errno``. |
3722 | \endrst |
3723 | */ |
3724 | FMT_API void format_system_error(detail::buffer<char>& out, int error_code, |
3725 | const char* message) noexcept; |
3726 | |
3727 | // Reports a system error without throwing an exception. |
3728 | // Can be used to report errors from destructors. |
3729 | FMT_API void report_system_error(int error_code, const char* message) noexcept; |
3730 | |
3731 | /** Fast integer formatter. */ |
3732 | class format_int { |
3733 | private: |
3734 | // Buffer should be large enough to hold all digits (digits10 + 1), |
3735 | // a sign and a null character. |
3736 | enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 }; |
3737 | mutable char buffer_[buffer_size]; |
3738 | char* str_; |
3739 | |
3740 | template <typename UInt> auto format_unsigned(UInt value) -> char* { |
3741 | auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value); |
3742 | return detail::format_decimal(buffer_, n, buffer_size - 1).begin; |
3743 | } |
3744 | |
3745 | template <typename Int> auto format_signed(Int value) -> char* { |
3746 | auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value); |
3747 | bool negative = value < 0; |
3748 | if (negative) abs_value = 0 - abs_value; |
3749 | auto begin = format_unsigned(abs_value); |
3750 | if (negative) *--begin = '-'; |
3751 | return begin; |
3752 | } |
3753 | |
3754 | public: |
3755 | explicit format_int(int value) : str_(format_signed(value)) {} |
3756 | explicit format_int(long value) : str_(format_signed(value)) {} |
3757 | explicit format_int(long long value) : str_(format_signed(value)) {} |
3758 | explicit format_int(unsigned value) : str_(format_unsigned(value)) {} |
3759 | explicit format_int(unsigned long value) : str_(format_unsigned(value)) {} |
3760 | explicit format_int(unsigned long long value) |
3761 | : str_(format_unsigned(value)) {} |
3762 | |
3763 | /** Returns the number of characters written to the output buffer. */ |
3764 | auto size() const -> size_t { |
3765 | return detail::to_unsigned(buffer_ - str_ + buffer_size - 1); |
3766 | } |
3767 | |
3768 | /** |
3769 | Returns a pointer to the output buffer content. No terminating null |
3770 | character is appended. |
3771 | */ |
3772 | auto data() const -> const char* { return str_; } |
3773 | |
3774 | /** |
3775 | Returns a pointer to the output buffer content with terminating null |
3776 | character appended. |
3777 | */ |
3778 | auto c_str() const -> const char* { |
3779 | buffer_[buffer_size - 1] = '\0'; |
3780 | return str_; |
3781 | } |
3782 | |
3783 | /** |
3784 | \rst |
3785 | Returns the content of the output buffer as an ``std::string``. |
3786 | \endrst |
3787 | */ |
3788 | auto str() const -> std::string { return std::string(str_, size()); } |
3789 | }; |
3790 | |
3791 | template <typename T, typename Char> |
3792 | template <typename FormatContext> |
3793 | FMT_CONSTEXPR FMT_INLINE auto |
3794 | formatter<T, Char, |
3795 | enable_if_t<detail::type_constant<T, Char>::value != |
3796 | detail::type::custom_type>>::format(const T& val, |
3797 | FormatContext& ctx) |
3798 | const -> decltype(ctx.out()) { |
3799 | if (specs_.width_ref.kind != detail::arg_id_kind::none || |
3800 | specs_.precision_ref.kind != detail::arg_id_kind::none) { |
3801 | auto specs = specs_; |
3802 | detail::handle_dynamic_spec<detail::width_checker>(specs.width, |
3803 | specs.width_ref, ctx); |
3804 | detail::handle_dynamic_spec<detail::precision_checker>( |
3805 | specs.precision, specs.precision_ref, ctx); |
3806 | return detail::write<Char>(ctx.out(), val, specs, ctx.locale()); |
3807 | } |
3808 | return detail::write<Char>(ctx.out(), val, specs_, ctx.locale()); |
3809 | } |
3810 | |
3811 | template <typename Char> |
3812 | struct formatter<void*, Char> : formatter<const void*, Char> { |
3813 | template <typename FormatContext> |
3814 | auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) { |
3815 | return formatter<const void*, Char>::format(val, ctx); |
3816 | } |
3817 | }; |
3818 | |
3819 | template <typename Char, size_t N> |
3820 | struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> { |
3821 | template <typename FormatContext> |
3822 | FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const |
3823 | -> decltype(ctx.out()) { |
3824 | return formatter<basic_string_view<Char>, Char>::format(val, ctx); |
3825 | } |
3826 | }; |
3827 | |
3828 | // A formatter for types known only at run time such as variant alternatives. |
3829 | // |
3830 | // Usage: |
3831 | // using variant = std::variant<int, std::string>; |
3832 | // template <> |
3833 | // struct formatter<variant>: dynamic_formatter<> { |
3834 | // auto format(const variant& v, format_context& ctx) { |
3835 | // return visit([&](const auto& val) { |
3836 | // return dynamic_formatter<>::format(val, ctx); |
3837 | // }, v); |
3838 | // } |
3839 | // }; |
3840 | template <typename Char = char> class dynamic_formatter { |
3841 | private: |
3842 | detail::dynamic_format_specs<Char> specs_; |
3843 | const Char* format_str_; |
3844 | |
3845 | struct null_handler : detail::error_handler { |
3846 | void on_align(align_t) {} |
3847 | void on_sign(sign_t) {} |
3848 | void on_hash() {} |
3849 | }; |
3850 | |
3851 | template <typename Context> void handle_specs(Context& ctx) { |
3852 | detail::handle_dynamic_spec<detail::width_checker>(specs_.width, |
3853 | specs_.width_ref, ctx); |
3854 | detail::handle_dynamic_spec<detail::precision_checker>( |
3855 | specs_.precision, specs_.precision_ref, ctx); |
3856 | } |
3857 | |
3858 | public: |
3859 | template <typename ParseContext> |
3860 | FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { |
3861 | format_str_ = ctx.begin(); |
3862 | // Checks are deferred to formatting time when the argument type is known. |
3863 | detail::dynamic_specs_handler<ParseContext> handler(specs_, ctx); |
3864 | return detail::parse_format_specs(ctx.begin(), ctx.end(), handler); |
3865 | } |
3866 | |
3867 | template <typename T, typename FormatContext> |
3868 | auto format(const T& val, FormatContext& ctx) -> decltype(ctx.out()) { |
3869 | handle_specs(ctx); |
3870 | detail::specs_checker<null_handler> checker( |
3871 | null_handler(), detail::mapped_type_constant<T, FormatContext>::value); |
3872 | checker.on_align(specs_.align); |
3873 | if (specs_.sign != sign::none) checker.on_sign(specs_.sign); |
3874 | if (specs_.alt) checker.on_hash(); |
3875 | if (specs_.precision >= 0) checker.end_precision(); |
3876 | return detail::write<Char>(ctx.out(), val, specs_, ctx.locale()); |
3877 | } |
3878 | }; |
3879 | |
3880 | /** |
3881 | \rst |
3882 | Converts ``p`` to ``const void*`` for pointer formatting. |
3883 | |
3884 | **Example**:: |
3885 | |
3886 | auto s = fmt::format("{}", fmt::ptr(p)); |
3887 | \endrst |
3888 | */ |
3889 | template <typename T> auto ptr(T p) -> const void* { |
3890 | static_assert(std::is_pointer<T>::value, "" ); |
3891 | return detail::bit_cast<const void*>(p); |
3892 | } |
3893 | template <typename T> auto ptr(const std::unique_ptr<T>& p) -> const void* { |
3894 | return p.get(); |
3895 | } |
3896 | template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* { |
3897 | return p.get(); |
3898 | } |
3899 | |
3900 | /** |
3901 | \rst |
3902 | Converts ``e`` to the underlying type. |
3903 | |
3904 | **Example**:: |
3905 | |
3906 | enum class color { red, green, blue }; |
3907 | auto s = fmt::format("{}", fmt::underlying(color::red)); |
3908 | \endrst |
3909 | */ |
3910 | template <typename Enum> |
3911 | constexpr auto underlying(Enum e) noexcept -> underlying_t<Enum> { |
3912 | return static_cast<underlying_t<Enum>>(e); |
3913 | } |
3914 | |
3915 | namespace enums { |
3916 | template <typename Enum, FMT_ENABLE_IF(std::is_enum<Enum>::value)> |
3917 | constexpr auto format_as(Enum e) noexcept -> underlying_t<Enum> { |
3918 | return static_cast<underlying_t<Enum>>(e); |
3919 | } |
3920 | } // namespace enums |
3921 | |
3922 | class bytes { |
3923 | private: |
3924 | string_view data_; |
3925 | friend struct formatter<bytes>; |
3926 | |
3927 | public: |
3928 | explicit bytes(string_view data) : data_(data) {} |
3929 | }; |
3930 | |
3931 | template <> struct formatter<bytes> { |
3932 | private: |
3933 | detail::dynamic_format_specs<char> specs_; |
3934 | |
3935 | public: |
3936 | template <typename ParseContext> |
3937 | FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { |
3938 | using handler_type = detail::dynamic_specs_handler<ParseContext>; |
3939 | detail::specs_checker<handler_type> handler(handler_type(specs_, ctx), |
3940 | detail::type::string_type); |
3941 | auto it = parse_format_specs(ctx.begin(), ctx.end(), handler); |
3942 | detail::check_string_type_spec(specs_.type, ctx.error_handler()); |
3943 | return it; |
3944 | } |
3945 | |
3946 | template <typename FormatContext> |
3947 | auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) { |
3948 | detail::handle_dynamic_spec<detail::width_checker>(specs_.width, |
3949 | specs_.width_ref, ctx); |
3950 | detail::handle_dynamic_spec<detail::precision_checker>( |
3951 | specs_.precision, specs_.precision_ref, ctx); |
3952 | return detail::write_bytes(ctx.out(), b.data_, specs_); |
3953 | } |
3954 | }; |
3955 | |
3956 | // group_digits_view is not derived from view because it copies the argument. |
3957 | template <typename T> struct group_digits_view { T value; }; |
3958 | |
3959 | /** |
3960 | \rst |
3961 | Returns a view that formats an integer value using ',' as a locale-independent |
3962 | thousands separator. |
3963 | |
3964 | **Example**:: |
3965 | |
3966 | fmt::print("{}", fmt::group_digits(12345)); |
3967 | // Output: "12,345" |
3968 | \endrst |
3969 | */ |
3970 | template <typename T> auto group_digits(T value) -> group_digits_view<T> { |
3971 | return {value}; |
3972 | } |
3973 | |
3974 | template <typename T> struct formatter<group_digits_view<T>> : formatter<T> { |
3975 | private: |
3976 | detail::dynamic_format_specs<char> specs_; |
3977 | |
3978 | public: |
3979 | template <typename ParseContext> |
3980 | FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { |
3981 | using handler_type = detail::dynamic_specs_handler<ParseContext>; |
3982 | detail::specs_checker<handler_type> handler(handler_type(specs_, ctx), |
3983 | detail::type::int_type); |
3984 | auto it = parse_format_specs(ctx.begin(), ctx.end(), handler); |
3985 | detail::check_string_type_spec(specs_.type, ctx.error_handler()); |
3986 | return it; |
3987 | } |
3988 | |
3989 | template <typename FormatContext> |
3990 | auto format(group_digits_view<T> t, FormatContext& ctx) |
3991 | -> decltype(ctx.out()) { |
3992 | detail::handle_dynamic_spec<detail::width_checker>(specs_.width, |
3993 | specs_.width_ref, ctx); |
3994 | detail::handle_dynamic_spec<detail::precision_checker>( |
3995 | specs_.precision, specs_.precision_ref, ctx); |
3996 | return detail::write_int( |
3997 | ctx.out(), static_cast<detail::uint64_or_128_t<T>>(t.value), 0, specs_, |
3998 | detail::digit_grouping<char>("\3" , "," )); |
3999 | } |
4000 | }; |
4001 | |
4002 | template <typename It, typename Sentinel, typename Char = char> |
4003 | struct join_view : detail::view { |
4004 | It begin; |
4005 | Sentinel end; |
4006 | basic_string_view<Char> sep; |
4007 | |
4008 | join_view(It b, Sentinel e, basic_string_view<Char> s) |
4009 | : begin(b), end(e), sep(s) {} |
4010 | }; |
4011 | |
4012 | template <typename It, typename Sentinel, typename Char> |
4013 | struct formatter<join_view<It, Sentinel, Char>, Char> { |
4014 | private: |
4015 | using value_type = |
4016 | #ifdef __cpp_lib_ranges |
4017 | std::iter_value_t<It>; |
4018 | #else |
4019 | typename std::iterator_traits<It>::value_type; |
4020 | #endif |
4021 | using context = buffer_context<Char>; |
4022 | using mapper = detail::arg_mapper<context>; |
4023 | |
4024 | template <typename T, FMT_ENABLE_IF(has_formatter<T, context>::value)> |
4025 | static auto map(const T& value) -> const T& { |
4026 | return value; |
4027 | } |
4028 | template <typename T, FMT_ENABLE_IF(!has_formatter<T, context>::value)> |
4029 | static auto map(const T& value) -> decltype(mapper().map(value)) { |
4030 | return mapper().map(value); |
4031 | } |
4032 | |
4033 | using formatter_type = |
4034 | conditional_t<is_formattable<value_type, Char>::value, |
4035 | formatter<remove_cvref_t<decltype(map( |
4036 | std::declval<const value_type&>()))>, |
4037 | Char>, |
4038 | detail::fallback_formatter<value_type, Char>>; |
4039 | |
4040 | formatter_type value_formatter_; |
4041 | |
4042 | public: |
4043 | template <typename ParseContext> |
4044 | FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) { |
4045 | return value_formatter_.parse(ctx); |
4046 | } |
4047 | |
4048 | template <typename FormatContext> |
4049 | auto format(const join_view<It, Sentinel, Char>& value, |
4050 | FormatContext& ctx) const -> decltype(ctx.out()) { |
4051 | auto it = value.begin; |
4052 | auto out = ctx.out(); |
4053 | if (it != value.end) { |
4054 | out = value_formatter_.format(map(*it), ctx); |
4055 | ++it; |
4056 | while (it != value.end) { |
4057 | out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out); |
4058 | ctx.advance_to(out); |
4059 | out = value_formatter_.format(map(*it), ctx); |
4060 | ++it; |
4061 | } |
4062 | } |
4063 | return out; |
4064 | } |
4065 | }; |
4066 | |
4067 | /** |
4068 | Returns a view that formats the iterator range `[begin, end)` with elements |
4069 | separated by `sep`. |
4070 | */ |
4071 | template <typename It, typename Sentinel> |
4072 | auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> { |
4073 | return {begin, end, sep}; |
4074 | } |
4075 | |
4076 | /** |
4077 | \rst |
4078 | Returns a view that formats `range` with elements separated by `sep`. |
4079 | |
4080 | **Example**:: |
4081 | |
4082 | std::vector<int> v = {1, 2, 3}; |
4083 | fmt::print("{}", fmt::join(v, ", ")); |
4084 | // Output: "1, 2, 3" |
4085 | |
4086 | ``fmt::join`` applies passed format specifiers to the range elements:: |
4087 | |
4088 | fmt::print("{:02}", fmt::join(v, ", ")); |
4089 | // Output: "01, 02, 03" |
4090 | \endrst |
4091 | */ |
4092 | template <typename Range> |
4093 | auto join(Range&& range, string_view sep) |
4094 | -> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> { |
4095 | return join(std::begin(range), std::end(range), sep); |
4096 | } |
4097 | |
4098 | /** |
4099 | \rst |
4100 | Converts *value* to ``std::string`` using the default format for type *T*. |
4101 | |
4102 | **Example**:: |
4103 | |
4104 | #include <fmt/format.h> |
4105 | |
4106 | std::string answer = fmt::to_string(42); |
4107 | \endrst |
4108 | */ |
4109 | template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> |
4110 | inline auto to_string(const T& value) -> std::string { |
4111 | auto result = std::string(); |
4112 | detail::write<char>(std::back_inserter(result), value); |
4113 | return result; |
4114 | } |
4115 | |
4116 | template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> |
4117 | FMT_NODISCARD inline auto to_string(T value) -> std::string { |
4118 | // The buffer should be large enough to store the number including the sign |
4119 | // or "false" for bool. |
4120 | constexpr int max_size = detail::digits10<T>() + 2; |
4121 | char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5]; |
4122 | char* begin = buffer; |
4123 | return std::string(begin, detail::write<char>(begin, value)); |
4124 | } |
4125 | |
4126 | template <typename Char, size_t SIZE> |
4127 | FMT_NODISCARD auto to_string(const basic_memory_buffer<Char, SIZE>& buf) |
4128 | -> std::basic_string<Char> { |
4129 | auto size = buf.size(); |
4130 | detail::assume(size < std::basic_string<Char>().max_size()); |
4131 | return std::basic_string<Char>(buf.data(), size); |
4132 | } |
4133 | |
4134 | FMT_BEGIN_DETAIL_NAMESPACE |
4135 | |
4136 | template <typename Char> |
4137 | void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt, |
4138 | basic_format_args<FMT_BUFFER_CONTEXT(Char)> args, |
4139 | locale_ref loc) { |
4140 | // workaround for msvc bug regarding name-lookup in module |
4141 | // link names into function scope |
4142 | using detail::arg_formatter; |
4143 | using detail::buffer_appender; |
4144 | using detail::custom_formatter; |
4145 | using detail::default_arg_formatter; |
4146 | using detail::get_arg; |
4147 | using detail::locale_ref; |
4148 | using detail::parse_format_specs; |
4149 | using detail::specs_checker; |
4150 | using detail::specs_handler; |
4151 | using detail::to_unsigned; |
4152 | using detail::type; |
4153 | using detail::write; |
4154 | auto out = buffer_appender<Char>(buf); |
4155 | if (fmt.size() == 2 && equal2(fmt.data(), "{}" )) { |
4156 | auto arg = args.get(0); |
4157 | if (!arg) error_handler().on_error("argument not found" ); |
4158 | visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg); |
4159 | return; |
4160 | } |
4161 | |
4162 | struct format_handler : error_handler { |
4163 | basic_format_parse_context<Char> parse_context; |
4164 | buffer_context<Char> context; |
4165 | |
4166 | format_handler(buffer_appender<Char> p_out, basic_string_view<Char> str, |
4167 | basic_format_args<buffer_context<Char>> p_args, |
4168 | locale_ref p_loc) |
4169 | : parse_context(str), context(p_out, p_args, p_loc) {} |
4170 | |
4171 | void on_text(const Char* begin, const Char* end) { |
4172 | auto text = basic_string_view<Char>(begin, to_unsigned(end - begin)); |
4173 | context.advance_to(write<Char>(context.out(), text)); |
4174 | } |
4175 | |
4176 | FMT_CONSTEXPR auto on_arg_id() -> int { |
4177 | return parse_context.next_arg_id(); |
4178 | } |
4179 | FMT_CONSTEXPR auto on_arg_id(int id) -> int { |
4180 | return parse_context.check_arg_id(id), id; |
4181 | } |
4182 | FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int { |
4183 | int arg_id = context.arg_id(id); |
4184 | if (arg_id < 0) on_error("argument not found" ); |
4185 | return arg_id; |
4186 | } |
4187 | |
4188 | FMT_INLINE void on_replacement_field(int id, const Char*) { |
4189 | auto arg = get_arg(context, id); |
4190 | context.advance_to(visit_format_arg( |
4191 | default_arg_formatter<Char>{context.out(), context.args(), |
4192 | context.locale()}, |
4193 | arg)); |
4194 | } |
4195 | |
4196 | auto on_format_specs(int id, const Char* begin, const Char* end) |
4197 | -> const Char* { |
4198 | auto arg = get_arg(context, id); |
4199 | if (arg.type() == type::custom_type) { |
4200 | parse_context.advance_to(parse_context.begin() + |
4201 | (begin - &*parse_context.begin())); |
4202 | visit_format_arg(custom_formatter<Char>{parse_context, context}, arg); |
4203 | return parse_context.begin(); |
4204 | } |
4205 | auto specs = basic_format_specs<Char>(); |
4206 | specs_checker<specs_handler<Char>> handler( |
4207 | specs_handler<Char>(specs, parse_context, context), arg.type()); |
4208 | begin = parse_format_specs(begin, end, handler); |
4209 | if (begin == end || *begin != '}') |
4210 | on_error("missing '}' in format string" ); |
4211 | auto f = arg_formatter<Char>{context.out(), specs, context.locale()}; |
4212 | context.advance_to(visit_format_arg(f, arg)); |
4213 | return begin; |
4214 | } |
4215 | }; |
4216 | detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc)); |
4217 | } |
4218 | |
4219 | #ifndef FMT_HEADER_ONLY |
4220 | extern template FMT_API void vformat_to( |
4221 | buffer<char>&, string_view, basic_format_args<FMT_BUFFER_CONTEXT(char)>, |
4222 | locale_ref); |
4223 | extern template FMT_API auto thousands_sep_impl<char>(locale_ref) |
4224 | -> thousands_sep_result<char>; |
4225 | extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref) |
4226 | -> thousands_sep_result<wchar_t>; |
4227 | extern template FMT_API auto decimal_point_impl(locale_ref) -> char; |
4228 | extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t; |
4229 | #endif // FMT_HEADER_ONLY |
4230 | |
4231 | FMT_END_DETAIL_NAMESPACE |
4232 | |
4233 | #if FMT_USE_USER_DEFINED_LITERALS |
4234 | inline namespace literals { |
4235 | /** |
4236 | \rst |
4237 | User-defined literal equivalent of :func:`fmt::arg`. |
4238 | |
4239 | **Example**:: |
4240 | |
4241 | using namespace fmt::literals; |
4242 | fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23); |
4243 | \endrst |
4244 | */ |
4245 | # if FMT_USE_NONTYPE_TEMPLATE_ARGS |
4246 | template <detail_exported::fixed_string Str> constexpr auto operator""_a () { |
4247 | using char_t = remove_cvref_t<decltype(Str.data[0])>; |
4248 | return detail::udl_arg<char_t, sizeof(Str.data) / sizeof(char_t), Str>(); |
4249 | } |
4250 | # else |
4251 | constexpr auto operator"" _a(const char* s, size_t) -> detail::udl_arg<char> { |
4252 | return {s}; |
4253 | } |
4254 | # endif |
4255 | } // namespace literals |
4256 | #endif // FMT_USE_USER_DEFINED_LITERALS |
4257 | |
4258 | template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)> |
4259 | inline auto vformat(const Locale& loc, string_view fmt, format_args args) |
4260 | -> std::string { |
4261 | return detail::vformat(loc, fmt, args); |
4262 | } |
4263 | |
4264 | template <typename Locale, typename... T, |
4265 | FMT_ENABLE_IF(detail::is_locale<Locale>::value)> |
4266 | inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args) |
4267 | -> std::string { |
4268 | return vformat(loc, string_view(fmt), fmt::make_format_args(args...)); |
4269 | } |
4270 | |
4271 | template <typename OutputIt, typename Locale, |
4272 | FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&& |
4273 | detail::is_locale<Locale>::value)> |
4274 | auto vformat_to(OutputIt out, const Locale& loc, string_view fmt, |
4275 | format_args args) -> OutputIt { |
4276 | using detail::get_buffer; |
4277 | auto&& buf = get_buffer<char>(out); |
4278 | detail::vformat_to(buf, fmt, args, detail::locale_ref(loc)); |
4279 | return detail::get_iterator(buf, out); |
4280 | } |
4281 | |
4282 | template <typename OutputIt, typename Locale, typename... T, |
4283 | FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&& |
4284 | detail::is_locale<Locale>::value)> |
4285 | FMT_INLINE auto format_to(OutputIt out, const Locale& loc, |
4286 | format_string<T...> fmt, T&&... args) -> OutputIt { |
4287 | return vformat_to(out, loc, fmt, fmt::make_format_args(args...)); |
4288 | } |
4289 | |
4290 | template <typename Locale, typename... T, |
4291 | FMT_ENABLE_IF(detail::is_locale<Locale>::value)> |
4292 | FMT_NODISCARD FMT_INLINE auto formatted_size(const Locale& loc, |
4293 | format_string<T...> fmt, |
4294 | T&&... args) -> size_t { |
4295 | auto buf = detail::counting_buffer<>(); |
4296 | detail::vformat_to(buf, string_view(fmt), |
4297 | format_args(fmt::make_format_args(args...)), |
4298 | detail::locale_ref(loc)); |
4299 | return buf.count(); |
4300 | } |
4301 | |
4302 | FMT_MODULE_EXPORT_END |
4303 | FMT_END_NAMESPACE |
4304 | |
4305 | #ifdef FMT_HEADER_ONLY |
4306 | # define FMT_FUNC inline |
4307 | # include "format-inl.h" |
4308 | #else |
4309 | # define FMT_FUNC |
4310 | #endif |
4311 | |
4312 | #endif // FMT_FORMAT_H_ |
4313 | |