1 | /* |
2 | ** $Id: lcode.c $ |
3 | ** Code generator for Lua |
4 | ** See Copyright Notice in lua.h |
5 | */ |
6 | |
7 | #define lcode_c |
8 | #define LUA_CORE |
9 | |
10 | #include "lprefix.h" |
11 | |
12 | |
13 | #include <limits.h> |
14 | #include <math.h> |
15 | #include <stdlib.h> |
16 | |
17 | #include "lua.h" |
18 | |
19 | #include "lcode.h" |
20 | #include "ldebug.h" |
21 | #include "ldo.h" |
22 | #include "lgc.h" |
23 | #include "llex.h" |
24 | #include "lmem.h" |
25 | #include "lobject.h" |
26 | #include "lopcodes.h" |
27 | #include "lparser.h" |
28 | #include "lstring.h" |
29 | #include "ltable.h" |
30 | #include "lvm.h" |
31 | |
32 | |
33 | /* Maximum number of registers in a Lua function (must fit in 8 bits) */ |
34 | #define MAXREGS 255 |
35 | |
36 | |
37 | #define hasjumps(e) ((e)->t != (e)->f) |
38 | |
39 | |
40 | static int codesJ (FuncState *fs, OpCode o, int sj, int k); |
41 | |
42 | |
43 | |
44 | /* semantic error */ |
45 | l_noret luaK_semerror (LexState *ls, const char *msg) { |
46 | ls->t.token = 0; /* remove "near <token>" from final message */ |
47 | luaX_syntaxerror(ls, msg); |
48 | } |
49 | |
50 | |
51 | /* |
52 | ** If expression is a numeric constant, fills 'v' with its value |
53 | ** and returns 1. Otherwise, returns 0. |
54 | */ |
55 | static int tonumeral (const expdesc *e, TValue *v) { |
56 | if (hasjumps(e)) |
57 | return 0; /* not a numeral */ |
58 | switch (e->k) { |
59 | case VKINT: |
60 | if (v) setivalue(v, e->u.ival); |
61 | return 1; |
62 | case VKFLT: |
63 | if (v) setfltvalue(v, e->u.nval); |
64 | return 1; |
65 | default: return 0; |
66 | } |
67 | } |
68 | |
69 | |
70 | /* |
71 | ** Get the constant value from a constant expression |
72 | */ |
73 | static TValue *const2val (FuncState *fs, const expdesc *e) { |
74 | lua_assert(e->k == VCONST); |
75 | return &fs->ls->dyd->actvar.arr[e->u.info].k; |
76 | } |
77 | |
78 | |
79 | /* |
80 | ** If expression is a constant, fills 'v' with its value |
81 | ** and returns 1. Otherwise, returns 0. |
82 | */ |
83 | int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) { |
84 | if (hasjumps(e)) |
85 | return 0; /* not a constant */ |
86 | switch (e->k) { |
87 | case VFALSE: |
88 | setbfvalue(v); |
89 | return 1; |
90 | case VTRUE: |
91 | setbtvalue(v); |
92 | return 1; |
93 | case VNIL: |
94 | setnilvalue(v); |
95 | return 1; |
96 | case VKSTR: { |
97 | setsvalue(fs->ls->L, v, e->u.strval); |
98 | return 1; |
99 | } |
100 | case VCONST: { |
101 | setobj(fs->ls->L, v, const2val(fs, e)); |
102 | return 1; |
103 | } |
104 | default: return tonumeral(e, v); |
105 | } |
106 | } |
107 | |
108 | |
109 | /* |
110 | ** Return the previous instruction of the current code. If there |
111 | ** may be a jump target between the current instruction and the |
112 | ** previous one, return an invalid instruction (to avoid wrong |
113 | ** optimizations). |
114 | */ |
115 | static Instruction *previousinstruction (FuncState *fs) { |
116 | static const Instruction invalidinstruction = ~(Instruction)0; |
117 | if (fs->pc > fs->lasttarget) |
118 | return &fs->f->code[fs->pc - 1]; /* previous instruction */ |
119 | else |
120 | return cast(Instruction*, &invalidinstruction); |
121 | } |
122 | |
123 | |
124 | /* |
125 | ** Create a OP_LOADNIL instruction, but try to optimize: if the previous |
126 | ** instruction is also OP_LOADNIL and ranges are compatible, adjust |
127 | ** range of previous instruction instead of emitting a new one. (For |
128 | ** instance, 'local a; local b' will generate a single opcode.) |
129 | */ |
130 | void luaK_nil (FuncState *fs, int from, int n) { |
131 | int l = from + n - 1; /* last register to set nil */ |
132 | Instruction *previous = previousinstruction(fs); |
133 | if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */ |
134 | int pfrom = GETARG_A(*previous); /* get previous range */ |
135 | int pl = pfrom + GETARG_B(*previous); |
136 | if ((pfrom <= from && from <= pl + 1) || |
137 | (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */ |
138 | if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */ |
139 | if (pl > l) l = pl; /* l = max(l, pl) */ |
140 | SETARG_A(*previous, from); |
141 | SETARG_B(*previous, l - from); |
142 | return; |
143 | } /* else go through */ |
144 | } |
145 | luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */ |
146 | } |
147 | |
148 | |
149 | /* |
150 | ** Gets the destination address of a jump instruction. Used to traverse |
151 | ** a list of jumps. |
152 | */ |
153 | static int getjump (FuncState *fs, int pc) { |
154 | int offset = GETARG_sJ(fs->f->code[pc]); |
155 | if (offset == NO_JUMP) /* point to itself represents end of list */ |
156 | return NO_JUMP; /* end of list */ |
157 | else |
158 | return (pc+1)+offset; /* turn offset into absolute position */ |
159 | } |
160 | |
161 | |
162 | /* |
163 | ** Fix jump instruction at position 'pc' to jump to 'dest'. |
164 | ** (Jump addresses are relative in Lua) |
165 | */ |
166 | static void fixjump (FuncState *fs, int pc, int dest) { |
167 | Instruction *jmp = &fs->f->code[pc]; |
168 | int offset = dest - (pc + 1); |
169 | lua_assert(dest != NO_JUMP); |
170 | if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ)) |
171 | luaX_syntaxerror(fs->ls, "control structure too long" ); |
172 | lua_assert(GET_OPCODE(*jmp) == OP_JMP); |
173 | SETARG_sJ(*jmp, offset); |
174 | } |
175 | |
176 | |
177 | /* |
178 | ** Concatenate jump-list 'l2' into jump-list 'l1' |
179 | */ |
180 | void luaK_concat (FuncState *fs, int *l1, int l2) { |
181 | if (l2 == NO_JUMP) return; /* nothing to concatenate? */ |
182 | else if (*l1 == NO_JUMP) /* no original list? */ |
183 | *l1 = l2; /* 'l1' points to 'l2' */ |
184 | else { |
185 | int list = *l1; |
186 | int next; |
187 | while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */ |
188 | list = next; |
189 | fixjump(fs, list, l2); /* last element links to 'l2' */ |
190 | } |
191 | } |
192 | |
193 | |
194 | /* |
195 | ** Create a jump instruction and return its position, so its destination |
196 | ** can be fixed later (with 'fixjump'). |
197 | */ |
198 | int luaK_jump (FuncState *fs) { |
199 | return codesJ(fs, OP_JMP, NO_JUMP, 0); |
200 | } |
201 | |
202 | |
203 | /* |
204 | ** Code a 'return' instruction |
205 | */ |
206 | void luaK_ret (FuncState *fs, int first, int nret) { |
207 | OpCode op; |
208 | switch (nret) { |
209 | case 0: op = OP_RETURN0; break; |
210 | case 1: op = OP_RETURN1; break; |
211 | default: op = OP_RETURN; break; |
212 | } |
213 | luaK_codeABC(fs, op, first, nret + 1, 0); |
214 | } |
215 | |
216 | |
217 | /* |
218 | ** Code a "conditional jump", that is, a test or comparison opcode |
219 | ** followed by a jump. Return jump position. |
220 | */ |
221 | static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) { |
222 | luaK_codeABCk(fs, op, A, B, C, k); |
223 | return luaK_jump(fs); |
224 | } |
225 | |
226 | |
227 | /* |
228 | ** returns current 'pc' and marks it as a jump target (to avoid wrong |
229 | ** optimizations with consecutive instructions not in the same basic block). |
230 | */ |
231 | int luaK_getlabel (FuncState *fs) { |
232 | fs->lasttarget = fs->pc; |
233 | return fs->pc; |
234 | } |
235 | |
236 | |
237 | /* |
238 | ** Returns the position of the instruction "controlling" a given |
239 | ** jump (that is, its condition), or the jump itself if it is |
240 | ** unconditional. |
241 | */ |
242 | static Instruction *getjumpcontrol (FuncState *fs, int pc) { |
243 | Instruction *pi = &fs->f->code[pc]; |
244 | if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1)))) |
245 | return pi-1; |
246 | else |
247 | return pi; |
248 | } |
249 | |
250 | |
251 | /* |
252 | ** Patch destination register for a TESTSET instruction. |
253 | ** If instruction in position 'node' is not a TESTSET, return 0 ("fails"). |
254 | ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination |
255 | ** register. Otherwise, change instruction to a simple 'TEST' (produces |
256 | ** no register value) |
257 | */ |
258 | static int patchtestreg (FuncState *fs, int node, int reg) { |
259 | Instruction *i = getjumpcontrol(fs, node); |
260 | if (GET_OPCODE(*i) != OP_TESTSET) |
261 | return 0; /* cannot patch other instructions */ |
262 | if (reg != NO_REG && reg != GETARG_B(*i)) |
263 | SETARG_A(*i, reg); |
264 | else { |
265 | /* no register to put value or register already has the value; |
266 | change instruction to simple test */ |
267 | *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i)); |
268 | } |
269 | return 1; |
270 | } |
271 | |
272 | |
273 | /* |
274 | ** Traverse a list of tests ensuring no one produces a value |
275 | */ |
276 | static void removevalues (FuncState *fs, int list) { |
277 | for (; list != NO_JUMP; list = getjump(fs, list)) |
278 | patchtestreg(fs, list, NO_REG); |
279 | } |
280 | |
281 | |
282 | /* |
283 | ** Traverse a list of tests, patching their destination address and |
284 | ** registers: tests producing values jump to 'vtarget' (and put their |
285 | ** values in 'reg'), other tests jump to 'dtarget'. |
286 | */ |
287 | static void patchlistaux (FuncState *fs, int list, int vtarget, int reg, |
288 | int dtarget) { |
289 | while (list != NO_JUMP) { |
290 | int next = getjump(fs, list); |
291 | if (patchtestreg(fs, list, reg)) |
292 | fixjump(fs, list, vtarget); |
293 | else |
294 | fixjump(fs, list, dtarget); /* jump to default target */ |
295 | list = next; |
296 | } |
297 | } |
298 | |
299 | |
300 | /* |
301 | ** Path all jumps in 'list' to jump to 'target'. |
302 | ** (The assert means that we cannot fix a jump to a forward address |
303 | ** because we only know addresses once code is generated.) |
304 | */ |
305 | void luaK_patchlist (FuncState *fs, int list, int target) { |
306 | lua_assert(target <= fs->pc); |
307 | patchlistaux(fs, list, target, NO_REG, target); |
308 | } |
309 | |
310 | |
311 | void luaK_patchtohere (FuncState *fs, int list) { |
312 | int hr = luaK_getlabel(fs); /* mark "here" as a jump target */ |
313 | luaK_patchlist(fs, list, hr); |
314 | } |
315 | |
316 | |
317 | /* limit for difference between lines in relative line info. */ |
318 | #define LIMLINEDIFF 0x80 |
319 | |
320 | |
321 | /* |
322 | ** Save line info for a new instruction. If difference from last line |
323 | ** does not fit in a byte, of after that many instructions, save a new |
324 | ** absolute line info; (in that case, the special value 'ABSLINEINFO' |
325 | ** in 'lineinfo' signals the existence of this absolute information.) |
326 | ** Otherwise, store the difference from last line in 'lineinfo'. |
327 | */ |
328 | static void savelineinfo (FuncState *fs, Proto *f, int line) { |
329 | int linedif = line - fs->previousline; |
330 | int pc = fs->pc - 1; /* last instruction coded */ |
331 | if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) { |
332 | luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo, |
333 | f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines" ); |
334 | f->abslineinfo[fs->nabslineinfo].pc = pc; |
335 | f->abslineinfo[fs->nabslineinfo++].line = line; |
336 | linedif = ABSLINEINFO; /* signal that there is absolute information */ |
337 | fs->iwthabs = 1; /* restart counter */ |
338 | } |
339 | luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte, |
340 | MAX_INT, "opcodes" ); |
341 | f->lineinfo[pc] = linedif; |
342 | fs->previousline = line; /* last line saved */ |
343 | } |
344 | |
345 | |
346 | /* |
347 | ** Remove line information from the last instruction. |
348 | ** If line information for that instruction is absolute, set 'iwthabs' |
349 | ** above its max to force the new (replacing) instruction to have |
350 | ** absolute line info, too. |
351 | */ |
352 | static void removelastlineinfo (FuncState *fs) { |
353 | Proto *f = fs->f; |
354 | int pc = fs->pc - 1; /* last instruction coded */ |
355 | if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */ |
356 | fs->previousline -= f->lineinfo[pc]; /* correct last line saved */ |
357 | fs->iwthabs--; /* undo previous increment */ |
358 | } |
359 | else { /* absolute line information */ |
360 | lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc); |
361 | fs->nabslineinfo--; /* remove it */ |
362 | fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */ |
363 | } |
364 | } |
365 | |
366 | |
367 | /* |
368 | ** Remove the last instruction created, correcting line information |
369 | ** accordingly. |
370 | */ |
371 | static void removelastinstruction (FuncState *fs) { |
372 | removelastlineinfo(fs); |
373 | fs->pc--; |
374 | } |
375 | |
376 | |
377 | /* |
378 | ** Emit instruction 'i', checking for array sizes and saving also its |
379 | ** line information. Return 'i' position. |
380 | */ |
381 | int luaK_code (FuncState *fs, Instruction i) { |
382 | Proto *f = fs->f; |
383 | /* put new instruction in code array */ |
384 | luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction, |
385 | MAX_INT, "opcodes" ); |
386 | f->code[fs->pc++] = i; |
387 | savelineinfo(fs, f, fs->ls->lastline); |
388 | return fs->pc - 1; /* index of new instruction */ |
389 | } |
390 | |
391 | |
392 | /* |
393 | ** Format and emit an 'iABC' instruction. (Assertions check consistency |
394 | ** of parameters versus opcode.) |
395 | */ |
396 | int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) { |
397 | lua_assert(getOpMode(o) == iABC); |
398 | lua_assert(a <= MAXARG_A && b <= MAXARG_B && |
399 | c <= MAXARG_C && (k & ~1) == 0); |
400 | return luaK_code(fs, CREATE_ABCk(o, a, b, c, k)); |
401 | } |
402 | |
403 | |
404 | /* |
405 | ** Format and emit an 'iABx' instruction. |
406 | */ |
407 | int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) { |
408 | lua_assert(getOpMode(o) == iABx); |
409 | lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx); |
410 | return luaK_code(fs, CREATE_ABx(o, a, bc)); |
411 | } |
412 | |
413 | |
414 | /* |
415 | ** Format and emit an 'iAsBx' instruction. |
416 | */ |
417 | int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) { |
418 | unsigned int b = bc + OFFSET_sBx; |
419 | lua_assert(getOpMode(o) == iAsBx); |
420 | lua_assert(a <= MAXARG_A && b <= MAXARG_Bx); |
421 | return luaK_code(fs, CREATE_ABx(o, a, b)); |
422 | } |
423 | |
424 | |
425 | /* |
426 | ** Format and emit an 'isJ' instruction. |
427 | */ |
428 | static int codesJ (FuncState *fs, OpCode o, int sj, int k) { |
429 | unsigned int j = sj + OFFSET_sJ; |
430 | lua_assert(getOpMode(o) == isJ); |
431 | lua_assert(j <= MAXARG_sJ && (k & ~1) == 0); |
432 | return luaK_code(fs, CREATE_sJ(o, j, k)); |
433 | } |
434 | |
435 | |
436 | /* |
437 | ** Emit an "extra argument" instruction (format 'iAx') |
438 | */ |
439 | static int (FuncState *fs, int a) { |
440 | lua_assert(a <= MAXARG_Ax); |
441 | return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a)); |
442 | } |
443 | |
444 | |
445 | /* |
446 | ** Emit a "load constant" instruction, using either 'OP_LOADK' |
447 | ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX' |
448 | ** instruction with "extra argument". |
449 | */ |
450 | static int luaK_codek (FuncState *fs, int reg, int k) { |
451 | if (k <= MAXARG_Bx) |
452 | return luaK_codeABx(fs, OP_LOADK, reg, k); |
453 | else { |
454 | int p = luaK_codeABx(fs, OP_LOADKX, reg, 0); |
455 | codeextraarg(fs, k); |
456 | return p; |
457 | } |
458 | } |
459 | |
460 | |
461 | /* |
462 | ** Check register-stack level, keeping track of its maximum size |
463 | ** in field 'maxstacksize' |
464 | */ |
465 | void luaK_checkstack (FuncState *fs, int n) { |
466 | int newstack = fs->freereg + n; |
467 | if (newstack > fs->f->maxstacksize) { |
468 | if (newstack >= MAXREGS) |
469 | luaX_syntaxerror(fs->ls, |
470 | "function or expression needs too many registers" ); |
471 | fs->f->maxstacksize = cast_byte(newstack); |
472 | } |
473 | } |
474 | |
475 | |
476 | /* |
477 | ** Reserve 'n' registers in register stack |
478 | */ |
479 | void luaK_reserveregs (FuncState *fs, int n) { |
480 | luaK_checkstack(fs, n); |
481 | fs->freereg += n; |
482 | } |
483 | |
484 | |
485 | /* |
486 | ** Free register 'reg', if it is neither a constant index nor |
487 | ** a local variable. |
488 | ) |
489 | */ |
490 | static void freereg (FuncState *fs, int reg) { |
491 | if (reg >= luaY_nvarstack(fs)) { |
492 | fs->freereg--; |
493 | lua_assert(reg == fs->freereg); |
494 | } |
495 | } |
496 | |
497 | |
498 | /* |
499 | ** Free two registers in proper order |
500 | */ |
501 | static void freeregs (FuncState *fs, int r1, int r2) { |
502 | if (r1 > r2) { |
503 | freereg(fs, r1); |
504 | freereg(fs, r2); |
505 | } |
506 | else { |
507 | freereg(fs, r2); |
508 | freereg(fs, r1); |
509 | } |
510 | } |
511 | |
512 | |
513 | /* |
514 | ** Free register used by expression 'e' (if any) |
515 | */ |
516 | static void freeexp (FuncState *fs, expdesc *e) { |
517 | if (e->k == VNONRELOC) |
518 | freereg(fs, e->u.info); |
519 | } |
520 | |
521 | |
522 | /* |
523 | ** Free registers used by expressions 'e1' and 'e2' (if any) in proper |
524 | ** order. |
525 | */ |
526 | static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) { |
527 | int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1; |
528 | int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1; |
529 | freeregs(fs, r1, r2); |
530 | } |
531 | |
532 | |
533 | /* |
534 | ** Add constant 'v' to prototype's list of constants (field 'k'). |
535 | ** Use scanner's table to cache position of constants in constant list |
536 | ** and try to reuse constants. Because some values should not be used |
537 | ** as keys (nil cannot be a key, integer keys can collapse with float |
538 | ** keys), the caller must provide a useful 'key' for indexing the cache. |
539 | ** Note that all functions share the same table, so entering or exiting |
540 | ** a function can make some indices wrong. |
541 | */ |
542 | static int addk (FuncState *fs, TValue *key, TValue *v) { |
543 | TValue val; |
544 | lua_State *L = fs->ls->L; |
545 | Proto *f = fs->f; |
546 | const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */ |
547 | int k, oldsize; |
548 | if (ttisinteger(idx)) { /* is there an index there? */ |
549 | k = cast_int(ivalue(idx)); |
550 | /* correct value? (warning: must distinguish floats from integers!) */ |
551 | if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) && |
552 | luaV_rawequalobj(&f->k[k], v)) |
553 | return k; /* reuse index */ |
554 | } |
555 | /* constant not found; create a new entry */ |
556 | oldsize = f->sizek; |
557 | k = fs->nk; |
558 | /* numerical value does not need GC barrier; |
559 | table has no metatable, so it does not need to invalidate cache */ |
560 | setivalue(&val, k); |
561 | luaH_finishset(L, fs->ls->h, key, idx, &val); |
562 | luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants" ); |
563 | while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]); |
564 | setobj(L, &f->k[k], v); |
565 | fs->nk++; |
566 | luaC_barrier(L, f, v); |
567 | return k; |
568 | } |
569 | |
570 | |
571 | /* |
572 | ** Add a string to list of constants and return its index. |
573 | */ |
574 | static int stringK (FuncState *fs, TString *s) { |
575 | TValue o; |
576 | setsvalue(fs->ls->L, &o, s); |
577 | return addk(fs, &o, &o); /* use string itself as key */ |
578 | } |
579 | |
580 | |
581 | /* |
582 | ** Add an integer to list of constants and return its index. |
583 | ** Integers use userdata as keys to avoid collision with floats with |
584 | ** same value; conversion to 'void*' is used only for hashing, so there |
585 | ** are no "precision" problems. |
586 | */ |
587 | static int luaK_intK (FuncState *fs, lua_Integer n) { |
588 | TValue k, o; |
589 | setpvalue(&k, cast_voidp(cast_sizet(n))); |
590 | setivalue(&o, n); |
591 | return addk(fs, &k, &o); |
592 | } |
593 | |
594 | /* |
595 | ** Add a float to list of constants and return its index. |
596 | */ |
597 | static int luaK_numberK (FuncState *fs, lua_Number r) { |
598 | TValue o; |
599 | setfltvalue(&o, r); |
600 | return addk(fs, &o, &o); /* use number itself as key */ |
601 | } |
602 | |
603 | |
604 | /* |
605 | ** Add a false to list of constants and return its index. |
606 | */ |
607 | static int boolF (FuncState *fs) { |
608 | TValue o; |
609 | setbfvalue(&o); |
610 | return addk(fs, &o, &o); /* use boolean itself as key */ |
611 | } |
612 | |
613 | |
614 | /* |
615 | ** Add a true to list of constants and return its index. |
616 | */ |
617 | static int boolT (FuncState *fs) { |
618 | TValue o; |
619 | setbtvalue(&o); |
620 | return addk(fs, &o, &o); /* use boolean itself as key */ |
621 | } |
622 | |
623 | |
624 | /* |
625 | ** Add nil to list of constants and return its index. |
626 | */ |
627 | static int nilK (FuncState *fs) { |
628 | TValue k, v; |
629 | setnilvalue(&v); |
630 | /* cannot use nil as key; instead use table itself to represent nil */ |
631 | sethvalue(fs->ls->L, &k, fs->ls->h); |
632 | return addk(fs, &k, &v); |
633 | } |
634 | |
635 | |
636 | /* |
637 | ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to |
638 | ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of |
639 | ** overflows in the hidden addition inside 'int2sC'. |
640 | */ |
641 | static int fitsC (lua_Integer i) { |
642 | return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C)); |
643 | } |
644 | |
645 | |
646 | /* |
647 | ** Check whether 'i' can be stored in an 'sBx' operand. |
648 | */ |
649 | static int fitsBx (lua_Integer i) { |
650 | return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx); |
651 | } |
652 | |
653 | |
654 | void luaK_int (FuncState *fs, int reg, lua_Integer i) { |
655 | if (fitsBx(i)) |
656 | luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i)); |
657 | else |
658 | luaK_codek(fs, reg, luaK_intK(fs, i)); |
659 | } |
660 | |
661 | |
662 | static void luaK_float (FuncState *fs, int reg, lua_Number f) { |
663 | lua_Integer fi; |
664 | if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi)) |
665 | luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi)); |
666 | else |
667 | luaK_codek(fs, reg, luaK_numberK(fs, f)); |
668 | } |
669 | |
670 | |
671 | /* |
672 | ** Convert a constant in 'v' into an expression description 'e' |
673 | */ |
674 | static void const2exp (TValue *v, expdesc *e) { |
675 | switch (ttypetag(v)) { |
676 | case LUA_VNUMINT: |
677 | e->k = VKINT; e->u.ival = ivalue(v); |
678 | break; |
679 | case LUA_VNUMFLT: |
680 | e->k = VKFLT; e->u.nval = fltvalue(v); |
681 | break; |
682 | case LUA_VFALSE: |
683 | e->k = VFALSE; |
684 | break; |
685 | case LUA_VTRUE: |
686 | e->k = VTRUE; |
687 | break; |
688 | case LUA_VNIL: |
689 | e->k = VNIL; |
690 | break; |
691 | case LUA_VSHRSTR: case LUA_VLNGSTR: |
692 | e->k = VKSTR; e->u.strval = tsvalue(v); |
693 | break; |
694 | default: lua_assert(0); |
695 | } |
696 | } |
697 | |
698 | |
699 | /* |
700 | ** Fix an expression to return the number of results 'nresults'. |
701 | ** 'e' must be a multi-ret expression (function call or vararg). |
702 | */ |
703 | void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) { |
704 | Instruction *pc = &getinstruction(fs, e); |
705 | if (e->k == VCALL) /* expression is an open function call? */ |
706 | SETARG_C(*pc, nresults + 1); |
707 | else { |
708 | lua_assert(e->k == VVARARG); |
709 | SETARG_C(*pc, nresults + 1); |
710 | SETARG_A(*pc, fs->freereg); |
711 | luaK_reserveregs(fs, 1); |
712 | } |
713 | } |
714 | |
715 | |
716 | /* |
717 | ** Convert a VKSTR to a VK |
718 | */ |
719 | static void str2K (FuncState *fs, expdesc *e) { |
720 | lua_assert(e->k == VKSTR); |
721 | e->u.info = stringK(fs, e->u.strval); |
722 | e->k = VK; |
723 | } |
724 | |
725 | |
726 | /* |
727 | ** Fix an expression to return one result. |
728 | ** If expression is not a multi-ret expression (function call or |
729 | ** vararg), it already returns one result, so nothing needs to be done. |
730 | ** Function calls become VNONRELOC expressions (as its result comes |
731 | ** fixed in the base register of the call), while vararg expressions |
732 | ** become VRELOC (as OP_VARARG puts its results where it wants). |
733 | ** (Calls are created returning one result, so that does not need |
734 | ** to be fixed.) |
735 | */ |
736 | void luaK_setoneret (FuncState *fs, expdesc *e) { |
737 | if (e->k == VCALL) { /* expression is an open function call? */ |
738 | /* already returns 1 value */ |
739 | lua_assert(GETARG_C(getinstruction(fs, e)) == 2); |
740 | e->k = VNONRELOC; /* result has fixed position */ |
741 | e->u.info = GETARG_A(getinstruction(fs, e)); |
742 | } |
743 | else if (e->k == VVARARG) { |
744 | SETARG_C(getinstruction(fs, e), 2); |
745 | e->k = VRELOC; /* can relocate its simple result */ |
746 | } |
747 | } |
748 | |
749 | |
750 | /* |
751 | ** Ensure that expression 'e' is not a variable (nor a <const>). |
752 | ** (Expression still may have jump lists.) |
753 | */ |
754 | void luaK_dischargevars (FuncState *fs, expdesc *e) { |
755 | switch (e->k) { |
756 | case VCONST: { |
757 | const2exp(const2val(fs, e), e); |
758 | break; |
759 | } |
760 | case VLOCAL: { /* already in a register */ |
761 | e->u.info = e->u.var.ridx; |
762 | e->k = VNONRELOC; /* becomes a non-relocatable value */ |
763 | break; |
764 | } |
765 | case VUPVAL: { /* move value to some (pending) register */ |
766 | e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0); |
767 | e->k = VRELOC; |
768 | break; |
769 | } |
770 | case VINDEXUP: { |
771 | e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx); |
772 | e->k = VRELOC; |
773 | break; |
774 | } |
775 | case VINDEXI: { |
776 | freereg(fs, e->u.ind.t); |
777 | e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx); |
778 | e->k = VRELOC; |
779 | break; |
780 | } |
781 | case VINDEXSTR: { |
782 | freereg(fs, e->u.ind.t); |
783 | e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx); |
784 | e->k = VRELOC; |
785 | break; |
786 | } |
787 | case VINDEXED: { |
788 | freeregs(fs, e->u.ind.t, e->u.ind.idx); |
789 | e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx); |
790 | e->k = VRELOC; |
791 | break; |
792 | } |
793 | case VVARARG: case VCALL: { |
794 | luaK_setoneret(fs, e); |
795 | break; |
796 | } |
797 | default: break; /* there is one value available (somewhere) */ |
798 | } |
799 | } |
800 | |
801 | |
802 | /* |
803 | ** Ensure expression value is in register 'reg', making 'e' a |
804 | ** non-relocatable expression. |
805 | ** (Expression still may have jump lists.) |
806 | */ |
807 | static void discharge2reg (FuncState *fs, expdesc *e, int reg) { |
808 | luaK_dischargevars(fs, e); |
809 | switch (e->k) { |
810 | case VNIL: { |
811 | luaK_nil(fs, reg, 1); |
812 | break; |
813 | } |
814 | case VFALSE: { |
815 | luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0); |
816 | break; |
817 | } |
818 | case VTRUE: { |
819 | luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0); |
820 | break; |
821 | } |
822 | case VKSTR: { |
823 | str2K(fs, e); |
824 | } /* FALLTHROUGH */ |
825 | case VK: { |
826 | luaK_codek(fs, reg, e->u.info); |
827 | break; |
828 | } |
829 | case VKFLT: { |
830 | luaK_float(fs, reg, e->u.nval); |
831 | break; |
832 | } |
833 | case VKINT: { |
834 | luaK_int(fs, reg, e->u.ival); |
835 | break; |
836 | } |
837 | case VRELOC: { |
838 | Instruction *pc = &getinstruction(fs, e); |
839 | SETARG_A(*pc, reg); /* instruction will put result in 'reg' */ |
840 | break; |
841 | } |
842 | case VNONRELOC: { |
843 | if (reg != e->u.info) |
844 | luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0); |
845 | break; |
846 | } |
847 | default: { |
848 | lua_assert(e->k == VJMP); |
849 | return; /* nothing to do... */ |
850 | } |
851 | } |
852 | e->u.info = reg; |
853 | e->k = VNONRELOC; |
854 | } |
855 | |
856 | |
857 | /* |
858 | ** Ensure expression value is in a register, making 'e' a |
859 | ** non-relocatable expression. |
860 | ** (Expression still may have jump lists.) |
861 | */ |
862 | static void discharge2anyreg (FuncState *fs, expdesc *e) { |
863 | if (e->k != VNONRELOC) { /* no fixed register yet? */ |
864 | luaK_reserveregs(fs, 1); /* get a register */ |
865 | discharge2reg(fs, e, fs->freereg-1); /* put value there */ |
866 | } |
867 | } |
868 | |
869 | |
870 | static int code_loadbool (FuncState *fs, int A, OpCode op) { |
871 | luaK_getlabel(fs); /* those instructions may be jump targets */ |
872 | return luaK_codeABC(fs, op, A, 0, 0); |
873 | } |
874 | |
875 | |
876 | /* |
877 | ** check whether list has any jump that do not produce a value |
878 | ** or produce an inverted value |
879 | */ |
880 | static int need_value (FuncState *fs, int list) { |
881 | for (; list != NO_JUMP; list = getjump(fs, list)) { |
882 | Instruction i = *getjumpcontrol(fs, list); |
883 | if (GET_OPCODE(i) != OP_TESTSET) return 1; |
884 | } |
885 | return 0; /* not found */ |
886 | } |
887 | |
888 | |
889 | /* |
890 | ** Ensures final expression result (which includes results from its |
891 | ** jump lists) is in register 'reg'. |
892 | ** If expression has jumps, need to patch these jumps either to |
893 | ** its final position or to "load" instructions (for those tests |
894 | ** that do not produce values). |
895 | */ |
896 | static void exp2reg (FuncState *fs, expdesc *e, int reg) { |
897 | discharge2reg(fs, e, reg); |
898 | if (e->k == VJMP) /* expression itself is a test? */ |
899 | luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */ |
900 | if (hasjumps(e)) { |
901 | int final; /* position after whole expression */ |
902 | int p_f = NO_JUMP; /* position of an eventual LOAD false */ |
903 | int p_t = NO_JUMP; /* position of an eventual LOAD true */ |
904 | if (need_value(fs, e->t) || need_value(fs, e->f)) { |
905 | int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs); |
906 | p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */ |
907 | p_t = code_loadbool(fs, reg, OP_LOADTRUE); |
908 | /* jump around these booleans if 'e' is not a test */ |
909 | luaK_patchtohere(fs, fj); |
910 | } |
911 | final = luaK_getlabel(fs); |
912 | patchlistaux(fs, e->f, final, reg, p_f); |
913 | patchlistaux(fs, e->t, final, reg, p_t); |
914 | } |
915 | e->f = e->t = NO_JUMP; |
916 | e->u.info = reg; |
917 | e->k = VNONRELOC; |
918 | } |
919 | |
920 | |
921 | /* |
922 | ** Ensures final expression result is in next available register. |
923 | */ |
924 | void luaK_exp2nextreg (FuncState *fs, expdesc *e) { |
925 | luaK_dischargevars(fs, e); |
926 | freeexp(fs, e); |
927 | luaK_reserveregs(fs, 1); |
928 | exp2reg(fs, e, fs->freereg - 1); |
929 | } |
930 | |
931 | |
932 | /* |
933 | ** Ensures final expression result is in some (any) register |
934 | ** and return that register. |
935 | */ |
936 | int luaK_exp2anyreg (FuncState *fs, expdesc *e) { |
937 | luaK_dischargevars(fs, e); |
938 | if (e->k == VNONRELOC) { /* expression already has a register? */ |
939 | if (!hasjumps(e)) /* no jumps? */ |
940 | return e->u.info; /* result is already in a register */ |
941 | if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */ |
942 | exp2reg(fs, e, e->u.info); /* put final result in it */ |
943 | return e->u.info; |
944 | } |
945 | /* else expression has jumps and cannot change its register |
946 | to hold the jump values, because it is a local variable. |
947 | Go through to the default case. */ |
948 | } |
949 | luaK_exp2nextreg(fs, e); /* default: use next available register */ |
950 | return e->u.info; |
951 | } |
952 | |
953 | |
954 | /* |
955 | ** Ensures final expression result is either in a register |
956 | ** or in an upvalue. |
957 | */ |
958 | void luaK_exp2anyregup (FuncState *fs, expdesc *e) { |
959 | if (e->k != VUPVAL || hasjumps(e)) |
960 | luaK_exp2anyreg(fs, e); |
961 | } |
962 | |
963 | |
964 | /* |
965 | ** Ensures final expression result is either in a register |
966 | ** or it is a constant. |
967 | */ |
968 | void luaK_exp2val (FuncState *fs, expdesc *e) { |
969 | if (hasjumps(e)) |
970 | luaK_exp2anyreg(fs, e); |
971 | else |
972 | luaK_dischargevars(fs, e); |
973 | } |
974 | |
975 | |
976 | /* |
977 | ** Try to make 'e' a K expression with an index in the range of R/K |
978 | ** indices. Return true iff succeeded. |
979 | */ |
980 | static int luaK_exp2K (FuncState *fs, expdesc *e) { |
981 | if (!hasjumps(e)) { |
982 | int info; |
983 | switch (e->k) { /* move constants to 'k' */ |
984 | case VTRUE: info = boolT(fs); break; |
985 | case VFALSE: info = boolF(fs); break; |
986 | case VNIL: info = nilK(fs); break; |
987 | case VKINT: info = luaK_intK(fs, e->u.ival); break; |
988 | case VKFLT: info = luaK_numberK(fs, e->u.nval); break; |
989 | case VKSTR: info = stringK(fs, e->u.strval); break; |
990 | case VK: info = e->u.info; break; |
991 | default: return 0; /* not a constant */ |
992 | } |
993 | if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */ |
994 | e->k = VK; /* make expression a 'K' expression */ |
995 | e->u.info = info; |
996 | return 1; |
997 | } |
998 | } |
999 | /* else, expression doesn't fit; leave it unchanged */ |
1000 | return 0; |
1001 | } |
1002 | |
1003 | |
1004 | /* |
1005 | ** Ensures final expression result is in a valid R/K index |
1006 | ** (that is, it is either in a register or in 'k' with an index |
1007 | ** in the range of R/K indices). |
1008 | ** Returns 1 iff expression is K. |
1009 | */ |
1010 | int luaK_exp2RK (FuncState *fs, expdesc *e) { |
1011 | if (luaK_exp2K(fs, e)) |
1012 | return 1; |
1013 | else { /* not a constant in the right range: put it in a register */ |
1014 | luaK_exp2anyreg(fs, e); |
1015 | return 0; |
1016 | } |
1017 | } |
1018 | |
1019 | |
1020 | static void codeABRK (FuncState *fs, OpCode o, int a, int b, |
1021 | expdesc *ec) { |
1022 | int k = luaK_exp2RK(fs, ec); |
1023 | luaK_codeABCk(fs, o, a, b, ec->u.info, k); |
1024 | } |
1025 | |
1026 | |
1027 | /* |
1028 | ** Generate code to store result of expression 'ex' into variable 'var'. |
1029 | */ |
1030 | void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) { |
1031 | switch (var->k) { |
1032 | case VLOCAL: { |
1033 | freeexp(fs, ex); |
1034 | exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */ |
1035 | return; |
1036 | } |
1037 | case VUPVAL: { |
1038 | int e = luaK_exp2anyreg(fs, ex); |
1039 | luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0); |
1040 | break; |
1041 | } |
1042 | case VINDEXUP: { |
1043 | codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex); |
1044 | break; |
1045 | } |
1046 | case VINDEXI: { |
1047 | codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex); |
1048 | break; |
1049 | } |
1050 | case VINDEXSTR: { |
1051 | codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex); |
1052 | break; |
1053 | } |
1054 | case VINDEXED: { |
1055 | codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex); |
1056 | break; |
1057 | } |
1058 | default: lua_assert(0); /* invalid var kind to store */ |
1059 | } |
1060 | freeexp(fs, ex); |
1061 | } |
1062 | |
1063 | |
1064 | /* |
1065 | ** Emit SELF instruction (convert expression 'e' into 'e:key(e,'). |
1066 | */ |
1067 | void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { |
1068 | int ereg; |
1069 | luaK_exp2anyreg(fs, e); |
1070 | ereg = e->u.info; /* register where 'e' was placed */ |
1071 | freeexp(fs, e); |
1072 | e->u.info = fs->freereg; /* base register for op_self */ |
1073 | e->k = VNONRELOC; /* self expression has a fixed register */ |
1074 | luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */ |
1075 | codeABRK(fs, OP_SELF, e->u.info, ereg, key); |
1076 | freeexp(fs, key); |
1077 | } |
1078 | |
1079 | |
1080 | /* |
1081 | ** Negate condition 'e' (where 'e' is a comparison). |
1082 | */ |
1083 | static void negatecondition (FuncState *fs, expdesc *e) { |
1084 | Instruction *pc = getjumpcontrol(fs, e->u.info); |
1085 | lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET && |
1086 | GET_OPCODE(*pc) != OP_TEST); |
1087 | SETARG_k(*pc, (GETARG_k(*pc) ^ 1)); |
1088 | } |
1089 | |
1090 | |
1091 | /* |
1092 | ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond' |
1093 | ** is true, code will jump if 'e' is true.) Return jump position. |
1094 | ** Optimize when 'e' is 'not' something, inverting the condition |
1095 | ** and removing the 'not'. |
1096 | */ |
1097 | static int jumponcond (FuncState *fs, expdesc *e, int cond) { |
1098 | if (e->k == VRELOC) { |
1099 | Instruction ie = getinstruction(fs, e); |
1100 | if (GET_OPCODE(ie) == OP_NOT) { |
1101 | removelastinstruction(fs); /* remove previous OP_NOT */ |
1102 | return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond); |
1103 | } |
1104 | /* else go through */ |
1105 | } |
1106 | discharge2anyreg(fs, e); |
1107 | freeexp(fs, e); |
1108 | return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond); |
1109 | } |
1110 | |
1111 | |
1112 | /* |
1113 | ** Emit code to go through if 'e' is true, jump otherwise. |
1114 | */ |
1115 | void luaK_goiftrue (FuncState *fs, expdesc *e) { |
1116 | int pc; /* pc of new jump */ |
1117 | luaK_dischargevars(fs, e); |
1118 | switch (e->k) { |
1119 | case VJMP: { /* condition? */ |
1120 | negatecondition(fs, e); /* jump when it is false */ |
1121 | pc = e->u.info; /* save jump position */ |
1122 | break; |
1123 | } |
1124 | case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { |
1125 | pc = NO_JUMP; /* always true; do nothing */ |
1126 | break; |
1127 | } |
1128 | default: { |
1129 | pc = jumponcond(fs, e, 0); /* jump when false */ |
1130 | break; |
1131 | } |
1132 | } |
1133 | luaK_concat(fs, &e->f, pc); /* insert new jump in false list */ |
1134 | luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */ |
1135 | e->t = NO_JUMP; |
1136 | } |
1137 | |
1138 | |
1139 | /* |
1140 | ** Emit code to go through if 'e' is false, jump otherwise. |
1141 | */ |
1142 | void luaK_goiffalse (FuncState *fs, expdesc *e) { |
1143 | int pc; /* pc of new jump */ |
1144 | luaK_dischargevars(fs, e); |
1145 | switch (e->k) { |
1146 | case VJMP: { |
1147 | pc = e->u.info; /* already jump if true */ |
1148 | break; |
1149 | } |
1150 | case VNIL: case VFALSE: { |
1151 | pc = NO_JUMP; /* always false; do nothing */ |
1152 | break; |
1153 | } |
1154 | default: { |
1155 | pc = jumponcond(fs, e, 1); /* jump if true */ |
1156 | break; |
1157 | } |
1158 | } |
1159 | luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */ |
1160 | luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */ |
1161 | e->f = NO_JUMP; |
1162 | } |
1163 | |
1164 | |
1165 | /* |
1166 | ** Code 'not e', doing constant folding. |
1167 | */ |
1168 | static void codenot (FuncState *fs, expdesc *e) { |
1169 | switch (e->k) { |
1170 | case VNIL: case VFALSE: { |
1171 | e->k = VTRUE; /* true == not nil == not false */ |
1172 | break; |
1173 | } |
1174 | case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { |
1175 | e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */ |
1176 | break; |
1177 | } |
1178 | case VJMP: { |
1179 | negatecondition(fs, e); |
1180 | break; |
1181 | } |
1182 | case VRELOC: |
1183 | case VNONRELOC: { |
1184 | discharge2anyreg(fs, e); |
1185 | freeexp(fs, e); |
1186 | e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0); |
1187 | e->k = VRELOC; |
1188 | break; |
1189 | } |
1190 | default: lua_assert(0); /* cannot happen */ |
1191 | } |
1192 | /* interchange true and false lists */ |
1193 | { int temp = e->f; e->f = e->t; e->t = temp; } |
1194 | removevalues(fs, e->f); /* values are useless when negated */ |
1195 | removevalues(fs, e->t); |
1196 | } |
1197 | |
1198 | |
1199 | /* |
1200 | ** Check whether expression 'e' is a small literal string |
1201 | */ |
1202 | static int isKstr (FuncState *fs, expdesc *e) { |
1203 | return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B && |
1204 | ttisshrstring(&fs->f->k[e->u.info])); |
1205 | } |
1206 | |
1207 | /* |
1208 | ** Check whether expression 'e' is a literal integer. |
1209 | */ |
1210 | int luaK_isKint (expdesc *e) { |
1211 | return (e->k == VKINT && !hasjumps(e)); |
1212 | } |
1213 | |
1214 | |
1215 | /* |
1216 | ** Check whether expression 'e' is a literal integer in |
1217 | ** proper range to fit in register C |
1218 | */ |
1219 | static int isCint (expdesc *e) { |
1220 | return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C)); |
1221 | } |
1222 | |
1223 | |
1224 | /* |
1225 | ** Check whether expression 'e' is a literal integer in |
1226 | ** proper range to fit in register sC |
1227 | */ |
1228 | static int isSCint (expdesc *e) { |
1229 | return luaK_isKint(e) && fitsC(e->u.ival); |
1230 | } |
1231 | |
1232 | |
1233 | /* |
1234 | ** Check whether expression 'e' is a literal integer or float in |
1235 | ** proper range to fit in a register (sB or sC). |
1236 | */ |
1237 | static int isSCnumber (expdesc *e, int *pi, int *isfloat) { |
1238 | lua_Integer i; |
1239 | if (e->k == VKINT) |
1240 | i = e->u.ival; |
1241 | else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq)) |
1242 | *isfloat = 1; |
1243 | else |
1244 | return 0; /* not a number */ |
1245 | if (!hasjumps(e) && fitsC(i)) { |
1246 | *pi = int2sC(cast_int(i)); |
1247 | return 1; |
1248 | } |
1249 | else |
1250 | return 0; |
1251 | } |
1252 | |
1253 | |
1254 | /* |
1255 | ** Create expression 't[k]'. 't' must have its final result already in a |
1256 | ** register or upvalue. Upvalues can only be indexed by literal strings. |
1257 | ** Keys can be literal strings in the constant table or arbitrary |
1258 | ** values in registers. |
1259 | */ |
1260 | void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { |
1261 | if (k->k == VKSTR) |
1262 | str2K(fs, k); |
1263 | lua_assert(!hasjumps(t) && |
1264 | (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL)); |
1265 | if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */ |
1266 | luaK_exp2anyreg(fs, t); /* put it in a register */ |
1267 | if (t->k == VUPVAL) { |
1268 | t->u.ind.t = t->u.info; /* upvalue index */ |
1269 | t->u.ind.idx = k->u.info; /* literal string */ |
1270 | t->k = VINDEXUP; |
1271 | } |
1272 | else { |
1273 | /* register index of the table */ |
1274 | t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info; |
1275 | if (isKstr(fs, k)) { |
1276 | t->u.ind.idx = k->u.info; /* literal string */ |
1277 | t->k = VINDEXSTR; |
1278 | } |
1279 | else if (isCint(k)) { |
1280 | t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */ |
1281 | t->k = VINDEXI; |
1282 | } |
1283 | else { |
1284 | t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */ |
1285 | t->k = VINDEXED; |
1286 | } |
1287 | } |
1288 | } |
1289 | |
1290 | |
1291 | /* |
1292 | ** Return false if folding can raise an error. |
1293 | ** Bitwise operations need operands convertible to integers; division |
1294 | ** operations cannot have 0 as divisor. |
1295 | */ |
1296 | static int validop (int op, TValue *v1, TValue *v2) { |
1297 | switch (op) { |
1298 | case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: |
1299 | case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */ |
1300 | lua_Integer i; |
1301 | return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) && |
1302 | luaV_tointegerns(v2, &i, LUA_FLOORN2I)); |
1303 | } |
1304 | case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */ |
1305 | return (nvalue(v2) != 0); |
1306 | default: return 1; /* everything else is valid */ |
1307 | } |
1308 | } |
1309 | |
1310 | |
1311 | /* |
1312 | ** Try to "constant-fold" an operation; return 1 iff successful. |
1313 | ** (In this case, 'e1' has the final result.) |
1314 | */ |
1315 | static int constfolding (FuncState *fs, int op, expdesc *e1, |
1316 | const expdesc *e2) { |
1317 | TValue v1, v2, res; |
1318 | if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2)) |
1319 | return 0; /* non-numeric operands or not safe to fold */ |
1320 | luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */ |
1321 | if (ttisinteger(&res)) { |
1322 | e1->k = VKINT; |
1323 | e1->u.ival = ivalue(&res); |
1324 | } |
1325 | else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */ |
1326 | lua_Number n = fltvalue(&res); |
1327 | if (luai_numisnan(n) || n == 0) |
1328 | return 0; |
1329 | e1->k = VKFLT; |
1330 | e1->u.nval = n; |
1331 | } |
1332 | return 1; |
1333 | } |
1334 | |
1335 | |
1336 | /* |
1337 | ** Emit code for unary expressions that "produce values" |
1338 | ** (everything but 'not'). |
1339 | ** Expression to produce final result will be encoded in 'e'. |
1340 | */ |
1341 | static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) { |
1342 | int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */ |
1343 | freeexp(fs, e); |
1344 | e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */ |
1345 | e->k = VRELOC; /* all those operations are relocatable */ |
1346 | luaK_fixline(fs, line); |
1347 | } |
1348 | |
1349 | |
1350 | /* |
1351 | ** Emit code for binary expressions that "produce values" |
1352 | ** (everything but logical operators 'and'/'or' and comparison |
1353 | ** operators). |
1354 | ** Expression to produce final result will be encoded in 'e1'. |
1355 | */ |
1356 | static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2, |
1357 | OpCode op, int v2, int flip, int line, |
1358 | OpCode mmop, TMS event) { |
1359 | int v1 = luaK_exp2anyreg(fs, e1); |
1360 | int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0); |
1361 | freeexps(fs, e1, e2); |
1362 | e1->u.info = pc; |
1363 | e1->k = VRELOC; /* all those operations are relocatable */ |
1364 | luaK_fixline(fs, line); |
1365 | luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */ |
1366 | luaK_fixline(fs, line); |
1367 | } |
1368 | |
1369 | |
1370 | /* |
1371 | ** Emit code for binary expressions that "produce values" over |
1372 | ** two registers. |
1373 | */ |
1374 | static void codebinexpval (FuncState *fs, OpCode op, |
1375 | expdesc *e1, expdesc *e2, int line) { |
1376 | int v2 = luaK_exp2anyreg(fs, e2); /* both operands are in registers */ |
1377 | lua_assert(OP_ADD <= op && op <= OP_SHR); |
1378 | finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, |
1379 | cast(TMS, (op - OP_ADD) + TM_ADD)); |
1380 | } |
1381 | |
1382 | |
1383 | /* |
1384 | ** Code binary operators with immediate operands. |
1385 | */ |
1386 | static void codebini (FuncState *fs, OpCode op, |
1387 | expdesc *e1, expdesc *e2, int flip, int line, |
1388 | TMS event) { |
1389 | int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */ |
1390 | lua_assert(e2->k == VKINT); |
1391 | finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event); |
1392 | } |
1393 | |
1394 | |
1395 | /* Try to code a binary operator negating its second operand. |
1396 | ** For the metamethod, 2nd operand must keep its original value. |
1397 | */ |
1398 | static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2, |
1399 | OpCode op, int line, TMS event) { |
1400 | if (!luaK_isKint(e2)) |
1401 | return 0; /* not an integer constant */ |
1402 | else { |
1403 | lua_Integer i2 = e2->u.ival; |
1404 | if (!(fitsC(i2) && fitsC(-i2))) |
1405 | return 0; /* not in the proper range */ |
1406 | else { /* operating a small integer constant */ |
1407 | int v2 = cast_int(i2); |
1408 | finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event); |
1409 | /* correct metamethod argument */ |
1410 | SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2)); |
1411 | return 1; /* successfully coded */ |
1412 | } |
1413 | } |
1414 | } |
1415 | |
1416 | |
1417 | static void swapexps (expdesc *e1, expdesc *e2) { |
1418 | expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */ |
1419 | } |
1420 | |
1421 | |
1422 | /* |
1423 | ** Code arithmetic operators ('+', '-', ...). If second operand is a |
1424 | ** constant in the proper range, use variant opcodes with K operands. |
1425 | */ |
1426 | static void codearith (FuncState *fs, BinOpr opr, |
1427 | expdesc *e1, expdesc *e2, int flip, int line) { |
1428 | TMS event = cast(TMS, opr + TM_ADD); |
1429 | if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) { /* K operand? */ |
1430 | int v2 = e2->u.info; /* K index */ |
1431 | OpCode op = cast(OpCode, opr + OP_ADDK); |
1432 | finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event); |
1433 | } |
1434 | else { /* 'e2' is neither an immediate nor a K operand */ |
1435 | OpCode op = cast(OpCode, opr + OP_ADD); |
1436 | if (flip) |
1437 | swapexps(e1, e2); /* back to original order */ |
1438 | codebinexpval(fs, op, e1, e2, line); /* use standard operators */ |
1439 | } |
1440 | } |
1441 | |
1442 | |
1443 | /* |
1444 | ** Code commutative operators ('+', '*'). If first operand is a |
1445 | ** numeric constant, change order of operands to try to use an |
1446 | ** immediate or K operator. |
1447 | */ |
1448 | static void codecommutative (FuncState *fs, BinOpr op, |
1449 | expdesc *e1, expdesc *e2, int line) { |
1450 | int flip = 0; |
1451 | if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */ |
1452 | swapexps(e1, e2); /* change order */ |
1453 | flip = 1; |
1454 | } |
1455 | if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */ |
1456 | codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD); |
1457 | else |
1458 | codearith(fs, op, e1, e2, flip, line); |
1459 | } |
1460 | |
1461 | |
1462 | /* |
1463 | ** Code bitwise operations; they are all associative, so the function |
1464 | ** tries to put an integer constant as the 2nd operand (a K operand). |
1465 | */ |
1466 | static void codebitwise (FuncState *fs, BinOpr opr, |
1467 | expdesc *e1, expdesc *e2, int line) { |
1468 | int flip = 0; |
1469 | int v2; |
1470 | OpCode op; |
1471 | if (e1->k == VKINT && luaK_exp2RK(fs, e1)) { |
1472 | swapexps(e1, e2); /* 'e2' will be the constant operand */ |
1473 | flip = 1; |
1474 | } |
1475 | else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) { /* no constants? */ |
1476 | op = cast(OpCode, opr + OP_ADD); |
1477 | codebinexpval(fs, op, e1, e2, line); /* all-register opcodes */ |
1478 | return; |
1479 | } |
1480 | v2 = e2->u.info; /* index in K array */ |
1481 | op = cast(OpCode, opr + OP_ADDK); |
1482 | lua_assert(ttisinteger(&fs->f->k[v2])); |
1483 | finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, |
1484 | cast(TMS, opr + TM_ADD)); |
1485 | } |
1486 | |
1487 | |
1488 | /* |
1489 | ** Emit code for order comparisons. When using an immediate operand, |
1490 | ** 'isfloat' tells whether the original value was a float. |
1491 | */ |
1492 | static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) { |
1493 | int r1, r2; |
1494 | int im; |
1495 | int isfloat = 0; |
1496 | if (isSCnumber(e2, &im, &isfloat)) { |
1497 | /* use immediate operand */ |
1498 | r1 = luaK_exp2anyreg(fs, e1); |
1499 | r2 = im; |
1500 | op = cast(OpCode, (op - OP_LT) + OP_LTI); |
1501 | } |
1502 | else if (isSCnumber(e1, &im, &isfloat)) { |
1503 | /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */ |
1504 | r1 = luaK_exp2anyreg(fs, e2); |
1505 | r2 = im; |
1506 | op = (op == OP_LT) ? OP_GTI : OP_GEI; |
1507 | } |
1508 | else { /* regular case, compare two registers */ |
1509 | r1 = luaK_exp2anyreg(fs, e1); |
1510 | r2 = luaK_exp2anyreg(fs, e2); |
1511 | } |
1512 | freeexps(fs, e1, e2); |
1513 | e1->u.info = condjump(fs, op, r1, r2, isfloat, 1); |
1514 | e1->k = VJMP; |
1515 | } |
1516 | |
1517 | |
1518 | /* |
1519 | ** Emit code for equality comparisons ('==', '~='). |
1520 | ** 'e1' was already put as RK by 'luaK_infix'. |
1521 | */ |
1522 | static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { |
1523 | int r1, r2; |
1524 | int im; |
1525 | int isfloat = 0; /* not needed here, but kept for symmetry */ |
1526 | OpCode op; |
1527 | if (e1->k != VNONRELOC) { |
1528 | lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT); |
1529 | swapexps(e1, e2); |
1530 | } |
1531 | r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */ |
1532 | if (isSCnumber(e2, &im, &isfloat)) { |
1533 | op = OP_EQI; |
1534 | r2 = im; /* immediate operand */ |
1535 | } |
1536 | else if (luaK_exp2RK(fs, e2)) { /* 1st expression is constant? */ |
1537 | op = OP_EQK; |
1538 | r2 = e2->u.info; /* constant index */ |
1539 | } |
1540 | else { |
1541 | op = OP_EQ; /* will compare two registers */ |
1542 | r2 = luaK_exp2anyreg(fs, e2); |
1543 | } |
1544 | freeexps(fs, e1, e2); |
1545 | e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ)); |
1546 | e1->k = VJMP; |
1547 | } |
1548 | |
1549 | |
1550 | /* |
1551 | ** Apply prefix operation 'op' to expression 'e'. |
1552 | */ |
1553 | void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) { |
1554 | static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP}; |
1555 | luaK_dischargevars(fs, e); |
1556 | switch (op) { |
1557 | case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */ |
1558 | if (constfolding(fs, op + LUA_OPUNM, e, &ef)) |
1559 | break; |
1560 | /* else */ /* FALLTHROUGH */ |
1561 | case OPR_LEN: |
1562 | codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line); |
1563 | break; |
1564 | case OPR_NOT: codenot(fs, e); break; |
1565 | default: lua_assert(0); |
1566 | } |
1567 | } |
1568 | |
1569 | |
1570 | /* |
1571 | ** Process 1st operand 'v' of binary operation 'op' before reading |
1572 | ** 2nd operand. |
1573 | */ |
1574 | void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { |
1575 | luaK_dischargevars(fs, v); |
1576 | switch (op) { |
1577 | case OPR_AND: { |
1578 | luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */ |
1579 | break; |
1580 | } |
1581 | case OPR_OR: { |
1582 | luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */ |
1583 | break; |
1584 | } |
1585 | case OPR_CONCAT: { |
1586 | luaK_exp2nextreg(fs, v); /* operand must be on the stack */ |
1587 | break; |
1588 | } |
1589 | case OPR_ADD: case OPR_SUB: |
1590 | case OPR_MUL: case OPR_DIV: case OPR_IDIV: |
1591 | case OPR_MOD: case OPR_POW: |
1592 | case OPR_BAND: case OPR_BOR: case OPR_BXOR: |
1593 | case OPR_SHL: case OPR_SHR: { |
1594 | if (!tonumeral(v, NULL)) |
1595 | luaK_exp2anyreg(fs, v); |
1596 | /* else keep numeral, which may be folded with 2nd operand */ |
1597 | break; |
1598 | } |
1599 | case OPR_EQ: case OPR_NE: { |
1600 | if (!tonumeral(v, NULL)) |
1601 | luaK_exp2RK(fs, v); |
1602 | /* else keep numeral, which may be an immediate operand */ |
1603 | break; |
1604 | } |
1605 | case OPR_LT: case OPR_LE: |
1606 | case OPR_GT: case OPR_GE: { |
1607 | int dummy, dummy2; |
1608 | if (!isSCnumber(v, &dummy, &dummy2)) |
1609 | luaK_exp2anyreg(fs, v); |
1610 | /* else keep numeral, which may be an immediate operand */ |
1611 | break; |
1612 | } |
1613 | default: lua_assert(0); |
1614 | } |
1615 | } |
1616 | |
1617 | /* |
1618 | ** Create code for '(e1 .. e2)'. |
1619 | ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))', |
1620 | ** because concatenation is right associative), merge both CONCATs. |
1621 | */ |
1622 | static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) { |
1623 | Instruction *ie2 = previousinstruction(fs); |
1624 | if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */ |
1625 | int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */ |
1626 | lua_assert(e1->u.info + 1 == GETARG_A(*ie2)); |
1627 | freeexp(fs, e2); |
1628 | SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */ |
1629 | SETARG_B(*ie2, n + 1); /* will concatenate one more element */ |
1630 | } |
1631 | else { /* 'e2' is not a concatenation */ |
1632 | luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */ |
1633 | freeexp(fs, e2); |
1634 | luaK_fixline(fs, line); |
1635 | } |
1636 | } |
1637 | |
1638 | |
1639 | /* |
1640 | ** Finalize code for binary operation, after reading 2nd operand. |
1641 | */ |
1642 | void luaK_posfix (FuncState *fs, BinOpr opr, |
1643 | expdesc *e1, expdesc *e2, int line) { |
1644 | luaK_dischargevars(fs, e2); |
1645 | if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2)) |
1646 | return; /* done by folding */ |
1647 | switch (opr) { |
1648 | case OPR_AND: { |
1649 | lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */ |
1650 | luaK_concat(fs, &e2->f, e1->f); |
1651 | *e1 = *e2; |
1652 | break; |
1653 | } |
1654 | case OPR_OR: { |
1655 | lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */ |
1656 | luaK_concat(fs, &e2->t, e1->t); |
1657 | *e1 = *e2; |
1658 | break; |
1659 | } |
1660 | case OPR_CONCAT: { /* e1 .. e2 */ |
1661 | luaK_exp2nextreg(fs, e2); |
1662 | codeconcat(fs, e1, e2, line); |
1663 | break; |
1664 | } |
1665 | case OPR_ADD: case OPR_MUL: { |
1666 | codecommutative(fs, opr, e1, e2, line); |
1667 | break; |
1668 | } |
1669 | case OPR_SUB: { |
1670 | if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB)) |
1671 | break; /* coded as (r1 + -I) */ |
1672 | /* ELSE */ |
1673 | } /* FALLTHROUGH */ |
1674 | case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: { |
1675 | codearith(fs, opr, e1, e2, 0, line); |
1676 | break; |
1677 | } |
1678 | case OPR_BAND: case OPR_BOR: case OPR_BXOR: { |
1679 | codebitwise(fs, opr, e1, e2, line); |
1680 | break; |
1681 | } |
1682 | case OPR_SHL: { |
1683 | if (isSCint(e1)) { |
1684 | swapexps(e1, e2); |
1685 | codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */ |
1686 | } |
1687 | else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) { |
1688 | /* coded as (r1 >> -I) */; |
1689 | } |
1690 | else /* regular case (two registers) */ |
1691 | codebinexpval(fs, OP_SHL, e1, e2, line); |
1692 | break; |
1693 | } |
1694 | case OPR_SHR: { |
1695 | if (isSCint(e2)) |
1696 | codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */ |
1697 | else /* regular case (two registers) */ |
1698 | codebinexpval(fs, OP_SHR, e1, e2, line); |
1699 | break; |
1700 | } |
1701 | case OPR_EQ: case OPR_NE: { |
1702 | codeeq(fs, opr, e1, e2); |
1703 | break; |
1704 | } |
1705 | case OPR_LT: case OPR_LE: { |
1706 | OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ); |
1707 | codeorder(fs, op, e1, e2); |
1708 | break; |
1709 | } |
1710 | case OPR_GT: case OPR_GE: { |
1711 | /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */ |
1712 | OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ); |
1713 | swapexps(e1, e2); |
1714 | codeorder(fs, op, e1, e2); |
1715 | break; |
1716 | } |
1717 | default: lua_assert(0); |
1718 | } |
1719 | } |
1720 | |
1721 | |
1722 | /* |
1723 | ** Change line information associated with current position, by removing |
1724 | ** previous info and adding it again with new line. |
1725 | */ |
1726 | void luaK_fixline (FuncState *fs, int line) { |
1727 | removelastlineinfo(fs); |
1728 | savelineinfo(fs, fs->f, line); |
1729 | } |
1730 | |
1731 | |
1732 | void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) { |
1733 | Instruction *inst = &fs->f->code[pc]; |
1734 | int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */ |
1735 | int = asize / (MAXARG_C + 1); /* higher bits of array size */ |
1736 | int rc = asize % (MAXARG_C + 1); /* lower bits of array size */ |
1737 | int k = (extra > 0); /* true iff needs extra argument */ |
1738 | *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k); |
1739 | *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra); |
1740 | } |
1741 | |
1742 | |
1743 | /* |
1744 | ** Emit a SETLIST instruction. |
1745 | ** 'base' is register that keeps table; |
1746 | ** 'nelems' is #table plus those to be stored now; |
1747 | ** 'tostore' is number of values (in registers 'base + 1',...) to add to |
1748 | ** table (or LUA_MULTRET to add up to stack top). |
1749 | */ |
1750 | void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) { |
1751 | lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH); |
1752 | if (tostore == LUA_MULTRET) |
1753 | tostore = 0; |
1754 | if (nelems <= MAXARG_C) |
1755 | luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems); |
1756 | else { |
1757 | int = nelems / (MAXARG_C + 1); |
1758 | nelems %= (MAXARG_C + 1); |
1759 | luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1); |
1760 | codeextraarg(fs, extra); |
1761 | } |
1762 | fs->freereg = base + 1; /* free registers with list values */ |
1763 | } |
1764 | |
1765 | |
1766 | /* |
1767 | ** return the final target of a jump (skipping jumps to jumps) |
1768 | */ |
1769 | static int finaltarget (Instruction *code, int i) { |
1770 | int count; |
1771 | for (count = 0; count < 100; count++) { /* avoid infinite loops */ |
1772 | Instruction pc = code[i]; |
1773 | if (GET_OPCODE(pc) != OP_JMP) |
1774 | break; |
1775 | else |
1776 | i += GETARG_sJ(pc) + 1; |
1777 | } |
1778 | return i; |
1779 | } |
1780 | |
1781 | |
1782 | /* |
1783 | ** Do a final pass over the code of a function, doing small peephole |
1784 | ** optimizations and adjustments. |
1785 | */ |
1786 | void luaK_finish (FuncState *fs) { |
1787 | int i; |
1788 | Proto *p = fs->f; |
1789 | for (i = 0; i < fs->pc; i++) { |
1790 | Instruction *pc = &p->code[i]; |
1791 | lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc)); |
1792 | switch (GET_OPCODE(*pc)) { |
1793 | case OP_RETURN0: case OP_RETURN1: { |
1794 | if (!(fs->needclose || p->is_vararg)) |
1795 | break; /* no extra work */ |
1796 | /* else use OP_RETURN to do the extra work */ |
1797 | SET_OPCODE(*pc, OP_RETURN); |
1798 | } /* FALLTHROUGH */ |
1799 | case OP_RETURN: case OP_TAILCALL: { |
1800 | if (fs->needclose) |
1801 | SETARG_k(*pc, 1); /* signal that it needs to close */ |
1802 | if (p->is_vararg) |
1803 | SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */ |
1804 | break; |
1805 | } |
1806 | case OP_JMP: { |
1807 | int target = finaltarget(p->code, i); |
1808 | fixjump(fs, i, target); |
1809 | break; |
1810 | } |
1811 | default: break; |
1812 | } |
1813 | } |
1814 | } |
1815 | |