| 1 | /* |
| 2 | ** $Id: lgc.c $ |
| 3 | ** Garbage Collector |
| 4 | ** See Copyright Notice in lua.h |
| 5 | */ |
| 6 | |
| 7 | #define lgc_c |
| 8 | #define LUA_CORE |
| 9 | |
| 10 | #include "lprefix.h" |
| 11 | |
| 12 | #include <stdio.h> |
| 13 | #include <string.h> |
| 14 | |
| 15 | |
| 16 | #include "lua.h" |
| 17 | |
| 18 | #include "ldebug.h" |
| 19 | #include "ldo.h" |
| 20 | #include "lfunc.h" |
| 21 | #include "lgc.h" |
| 22 | #include "lmem.h" |
| 23 | #include "lobject.h" |
| 24 | #include "lstate.h" |
| 25 | #include "lstring.h" |
| 26 | #include "ltable.h" |
| 27 | #include "ltm.h" |
| 28 | |
| 29 | |
| 30 | /* |
| 31 | ** Maximum number of elements to sweep in each single step. |
| 32 | ** (Large enough to dissipate fixed overheads but small enough |
| 33 | ** to allow small steps for the collector.) |
| 34 | */ |
| 35 | #define GCSWEEPMAX 100 |
| 36 | |
| 37 | /* |
| 38 | ** Maximum number of finalizers to call in each single step. |
| 39 | */ |
| 40 | #define GCFINMAX 10 |
| 41 | |
| 42 | |
| 43 | /* |
| 44 | ** Cost of calling one finalizer. |
| 45 | */ |
| 46 | #define GCFINALIZECOST 50 |
| 47 | |
| 48 | |
| 49 | /* |
| 50 | ** The equivalent, in bytes, of one unit of "work" (visiting a slot, |
| 51 | ** sweeping an object, etc.) |
| 52 | */ |
| 53 | #define WORK2MEM sizeof(TValue) |
| 54 | |
| 55 | |
| 56 | /* |
| 57 | ** macro to adjust 'pause': 'pause' is actually used like |
| 58 | ** 'pause / PAUSEADJ' (value chosen by tests) |
| 59 | */ |
| 60 | #define PAUSEADJ 100 |
| 61 | |
| 62 | |
| 63 | /* mask with all color bits */ |
| 64 | #define maskcolors (bitmask(BLACKBIT) | WHITEBITS) |
| 65 | |
| 66 | /* mask with all GC bits */ |
| 67 | #define maskgcbits (maskcolors | AGEBITS) |
| 68 | |
| 69 | |
| 70 | /* macro to erase all color bits then set only the current white bit */ |
| 71 | #define makewhite(g,x) \ |
| 72 | (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g))) |
| 73 | |
| 74 | /* make an object gray (neither white nor black) */ |
| 75 | #define set2gray(x) resetbits(x->marked, maskcolors) |
| 76 | |
| 77 | |
| 78 | /* make an object black (coming from any color) */ |
| 79 | #define set2black(x) \ |
| 80 | (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT))) |
| 81 | |
| 82 | |
| 83 | #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x))) |
| 84 | |
| 85 | #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n))) |
| 86 | |
| 87 | |
| 88 | /* |
| 89 | ** Protected access to objects in values |
| 90 | */ |
| 91 | #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL) |
| 92 | |
| 93 | |
| 94 | #define markvalue(g,o) { checkliveness(g->mainthread,o); \ |
| 95 | if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); } |
| 96 | |
| 97 | #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); } |
| 98 | |
| 99 | #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); } |
| 100 | |
| 101 | /* |
| 102 | ** mark an object that can be NULL (either because it is really optional, |
| 103 | ** or it was stripped as debug info, or inside an uncompleted structure) |
| 104 | */ |
| 105 | #define markobjectN(g,t) { if (t) markobject(g,t); } |
| 106 | |
| 107 | static void reallymarkobject (global_State *g, GCObject *o); |
| 108 | static lu_mem atomic (lua_State *L); |
| 109 | static void entersweep (lua_State *L); |
| 110 | |
| 111 | |
| 112 | /* |
| 113 | ** {====================================================== |
| 114 | ** Generic functions |
| 115 | ** ======================================================= |
| 116 | */ |
| 117 | |
| 118 | |
| 119 | /* |
| 120 | ** one after last element in a hash array |
| 121 | */ |
| 122 | #define gnodelast(h) gnode(h, cast_sizet(sizenode(h))) |
| 123 | |
| 124 | |
| 125 | static GCObject **getgclist (GCObject *o) { |
| 126 | switch (o->tt) { |
| 127 | case LUA_VTABLE: return &gco2t(o)->gclist; |
| 128 | case LUA_VLCL: return &gco2lcl(o)->gclist; |
| 129 | case LUA_VCCL: return &gco2ccl(o)->gclist; |
| 130 | case LUA_VTHREAD: return &gco2th(o)->gclist; |
| 131 | case LUA_VPROTO: return &gco2p(o)->gclist; |
| 132 | case LUA_VUSERDATA: { |
| 133 | Udata *u = gco2u(o); |
| 134 | lua_assert(u->nuvalue > 0); |
| 135 | return &u->gclist; |
| 136 | } |
| 137 | default: lua_assert(0); return 0; |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | |
| 142 | /* |
| 143 | ** Link a collectable object 'o' with a known type into the list 'p'. |
| 144 | ** (Must be a macro to access the 'gclist' field in different types.) |
| 145 | */ |
| 146 | #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p)) |
| 147 | |
| 148 | static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) { |
| 149 | lua_assert(!isgray(o)); /* cannot be in a gray list */ |
| 150 | *pnext = *list; |
| 151 | *list = o; |
| 152 | set2gray(o); /* now it is */ |
| 153 | } |
| 154 | |
| 155 | |
| 156 | /* |
| 157 | ** Link a generic collectable object 'o' into the list 'p'. |
| 158 | */ |
| 159 | #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p)) |
| 160 | |
| 161 | |
| 162 | |
| 163 | /* |
| 164 | ** Clear keys for empty entries in tables. If entry is empty, mark its |
| 165 | ** entry as dead. This allows the collection of the key, but keeps its |
| 166 | ** entry in the table: its removal could break a chain and could break |
| 167 | ** a table traversal. Other places never manipulate dead keys, because |
| 168 | ** its associated empty value is enough to signal that the entry is |
| 169 | ** logically empty. |
| 170 | */ |
| 171 | static void clearkey (Node *n) { |
| 172 | lua_assert(isempty(gval(n))); |
| 173 | if (keyiscollectable(n)) |
| 174 | setdeadkey(n); /* unused key; remove it */ |
| 175 | } |
| 176 | |
| 177 | |
| 178 | /* |
| 179 | ** tells whether a key or value can be cleared from a weak |
| 180 | ** table. Non-collectable objects are never removed from weak |
| 181 | ** tables. Strings behave as 'values', so are never removed too. for |
| 182 | ** other objects: if really collected, cannot keep them; for objects |
| 183 | ** being finalized, keep them in keys, but not in values |
| 184 | */ |
| 185 | static int iscleared (global_State *g, const GCObject *o) { |
| 186 | if (o == NULL) return 0; /* non-collectable value */ |
| 187 | else if (novariant(o->tt) == LUA_TSTRING) { |
| 188 | markobject(g, o); /* strings are 'values', so are never weak */ |
| 189 | return 0; |
| 190 | } |
| 191 | else return iswhite(o); |
| 192 | } |
| 193 | |
| 194 | |
| 195 | /* |
| 196 | ** Barrier that moves collector forward, that is, marks the white object |
| 197 | ** 'v' being pointed by the black object 'o'. In the generational |
| 198 | ** mode, 'v' must also become old, if 'o' is old; however, it cannot |
| 199 | ** be changed directly to OLD, because it may still point to non-old |
| 200 | ** objects. So, it is marked as OLD0. In the next cycle it will become |
| 201 | ** OLD1, and in the next it will finally become OLD (regular old). By |
| 202 | ** then, any object it points to will also be old. If called in the |
| 203 | ** incremental sweep phase, it clears the black object to white (sweep |
| 204 | ** it) to avoid other barrier calls for this same object. (That cannot |
| 205 | ** be done is generational mode, as its sweep does not distinguish |
| 206 | ** whites from deads.) |
| 207 | */ |
| 208 | void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) { |
| 209 | global_State *g = G(L); |
| 210 | lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o)); |
| 211 | if (keepinvariant(g)) { /* must keep invariant? */ |
| 212 | reallymarkobject(g, v); /* restore invariant */ |
| 213 | if (isold(o)) { |
| 214 | lua_assert(!isold(v)); /* white object could not be old */ |
| 215 | setage(v, G_OLD0); /* restore generational invariant */ |
| 216 | } |
| 217 | } |
| 218 | else { /* sweep phase */ |
| 219 | lua_assert(issweepphase(g)); |
| 220 | if (g->gckind == KGC_INC) /* incremental mode? */ |
| 221 | makewhite(g, o); /* mark 'o' as white to avoid other barriers */ |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | |
| 226 | /* |
| 227 | ** barrier that moves collector backward, that is, mark the black object |
| 228 | ** pointing to a white object as gray again. |
| 229 | */ |
| 230 | void luaC_barrierback_ (lua_State *L, GCObject *o) { |
| 231 | global_State *g = G(L); |
| 232 | lua_assert(isblack(o) && !isdead(g, o)); |
| 233 | lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1)); |
| 234 | if (getage(o) == G_TOUCHED2) /* already in gray list? */ |
| 235 | set2gray(o); /* make it gray to become touched1 */ |
| 236 | else /* link it in 'grayagain' and paint it gray */ |
| 237 | linkobjgclist(o, g->grayagain); |
| 238 | if (isold(o)) /* generational mode? */ |
| 239 | setage(o, G_TOUCHED1); /* touched in current cycle */ |
| 240 | } |
| 241 | |
| 242 | |
| 243 | void luaC_fix (lua_State *L, GCObject *o) { |
| 244 | global_State *g = G(L); |
| 245 | lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */ |
| 246 | set2gray(o); /* they will be gray forever */ |
| 247 | setage(o, G_OLD); /* and old forever */ |
| 248 | g->allgc = o->next; /* remove object from 'allgc' list */ |
| 249 | o->next = g->fixedgc; /* link it to 'fixedgc' list */ |
| 250 | g->fixedgc = o; |
| 251 | } |
| 252 | |
| 253 | |
| 254 | /* |
| 255 | ** create a new collectable object (with given type and size) and link |
| 256 | ** it to 'allgc' list. |
| 257 | */ |
| 258 | GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) { |
| 259 | global_State *g = G(L); |
| 260 | GCObject *o = cast(GCObject *, luaM_newobject(L, novariant(tt), sz)); |
| 261 | o->marked = luaC_white(g); |
| 262 | o->tt = tt; |
| 263 | o->next = g->allgc; |
| 264 | g->allgc = o; |
| 265 | return o; |
| 266 | } |
| 267 | |
| 268 | /* }====================================================== */ |
| 269 | |
| 270 | |
| 271 | |
| 272 | /* |
| 273 | ** {====================================================== |
| 274 | ** Mark functions |
| 275 | ** ======================================================= |
| 276 | */ |
| 277 | |
| 278 | |
| 279 | /* |
| 280 | ** Mark an object. Userdata with no user values, strings, and closed |
| 281 | ** upvalues are visited and turned black here. Open upvalues are |
| 282 | ** already indirectly linked through their respective threads in the |
| 283 | ** 'twups' list, so they don't go to the gray list; nevertheless, they |
| 284 | ** are kept gray to avoid barriers, as their values will be revisited |
| 285 | ** by the thread or by 'remarkupvals'. Other objects are added to the |
| 286 | ** gray list to be visited (and turned black) later. Both userdata and |
| 287 | ** upvalues can call this function recursively, but this recursion goes |
| 288 | ** for at most two levels: An upvalue cannot refer to another upvalue |
| 289 | ** (only closures can), and a userdata's metatable must be a table. |
| 290 | */ |
| 291 | static void reallymarkobject (global_State *g, GCObject *o) { |
| 292 | switch (o->tt) { |
| 293 | case LUA_VSHRSTR: |
| 294 | case LUA_VLNGSTR: { |
| 295 | set2black(o); /* nothing to visit */ |
| 296 | break; |
| 297 | } |
| 298 | case LUA_VUPVAL: { |
| 299 | UpVal *uv = gco2upv(o); |
| 300 | if (upisopen(uv)) |
| 301 | set2gray(uv); /* open upvalues are kept gray */ |
| 302 | else |
| 303 | set2black(uv); /* closed upvalues are visited here */ |
| 304 | markvalue(g, uv->v); /* mark its content */ |
| 305 | break; |
| 306 | } |
| 307 | case LUA_VUSERDATA: { |
| 308 | Udata *u = gco2u(o); |
| 309 | if (u->nuvalue == 0) { /* no user values? */ |
| 310 | markobjectN(g, u->metatable); /* mark its metatable */ |
| 311 | set2black(u); /* nothing else to mark */ |
| 312 | break; |
| 313 | } |
| 314 | /* else... */ |
| 315 | } /* FALLTHROUGH */ |
| 316 | case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE: |
| 317 | case LUA_VTHREAD: case LUA_VPROTO: { |
| 318 | linkobjgclist(o, g->gray); /* to be visited later */ |
| 319 | break; |
| 320 | } |
| 321 | default: lua_assert(0); break; |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | |
| 326 | /* |
| 327 | ** mark metamethods for basic types |
| 328 | */ |
| 329 | static void markmt (global_State *g) { |
| 330 | int i; |
| 331 | for (i=0; i < LUA_NUMTAGS; i++) |
| 332 | markobjectN(g, g->mt[i]); |
| 333 | } |
| 334 | |
| 335 | |
| 336 | /* |
| 337 | ** mark all objects in list of being-finalized |
| 338 | */ |
| 339 | static lu_mem markbeingfnz (global_State *g) { |
| 340 | GCObject *o; |
| 341 | lu_mem count = 0; |
| 342 | for (o = g->tobefnz; o != NULL; o = o->next) { |
| 343 | count++; |
| 344 | markobject(g, o); |
| 345 | } |
| 346 | return count; |
| 347 | } |
| 348 | |
| 349 | |
| 350 | /* |
| 351 | ** For each non-marked thread, simulates a barrier between each open |
| 352 | ** upvalue and its value. (If the thread is collected, the value will be |
| 353 | ** assigned to the upvalue, but then it can be too late for the barrier |
| 354 | ** to act. The "barrier" does not need to check colors: A non-marked |
| 355 | ** thread must be young; upvalues cannot be older than their threads; so |
| 356 | ** any visited upvalue must be young too.) Also removes the thread from |
| 357 | ** the list, as it was already visited. Removes also threads with no |
| 358 | ** upvalues, as they have nothing to be checked. (If the thread gets an |
| 359 | ** upvalue later, it will be linked in the list again.) |
| 360 | */ |
| 361 | static int (global_State *g) { |
| 362 | lua_State *thread; |
| 363 | lua_State **p = &g->twups; |
| 364 | int work = 0; /* estimate of how much work was done here */ |
| 365 | while ((thread = *p) != NULL) { |
| 366 | work++; |
| 367 | if (!iswhite(thread) && thread->openupval != NULL) |
| 368 | p = &thread->twups; /* keep marked thread with upvalues in the list */ |
| 369 | else { /* thread is not marked or without upvalues */ |
| 370 | UpVal *uv; |
| 371 | lua_assert(!isold(thread) || thread->openupval == NULL); |
| 372 | *p = thread->twups; /* remove thread from the list */ |
| 373 | thread->twups = thread; /* mark that it is out of list */ |
| 374 | for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) { |
| 375 | lua_assert(getage(uv) <= getage(thread)); |
| 376 | work++; |
| 377 | if (!iswhite(uv)) { /* upvalue already visited? */ |
| 378 | lua_assert(upisopen(uv) && isgray(uv)); |
| 379 | markvalue(g, uv->v); /* mark its value */ |
| 380 | } |
| 381 | } |
| 382 | } |
| 383 | } |
| 384 | return work; |
| 385 | } |
| 386 | |
| 387 | |
| 388 | static void cleargraylists (global_State *g) { |
| 389 | g->gray = g->grayagain = NULL; |
| 390 | g->weak = g->allweak = g->ephemeron = NULL; |
| 391 | } |
| 392 | |
| 393 | |
| 394 | /* |
| 395 | ** mark root set and reset all gray lists, to start a new collection |
| 396 | */ |
| 397 | static void restartcollection (global_State *g) { |
| 398 | cleargraylists(g); |
| 399 | markobject(g, g->mainthread); |
| 400 | markvalue(g, &g->l_registry); |
| 401 | markmt(g); |
| 402 | markbeingfnz(g); /* mark any finalizing object left from previous cycle */ |
| 403 | } |
| 404 | |
| 405 | /* }====================================================== */ |
| 406 | |
| 407 | |
| 408 | /* |
| 409 | ** {====================================================== |
| 410 | ** Traverse functions |
| 411 | ** ======================================================= |
| 412 | */ |
| 413 | |
| 414 | |
| 415 | /* |
| 416 | ** Check whether object 'o' should be kept in the 'grayagain' list for |
| 417 | ** post-processing by 'correctgraylist'. (It could put all old objects |
| 418 | ** in the list and leave all the work to 'correctgraylist', but it is |
| 419 | ** more efficient to avoid adding elements that will be removed.) Only |
| 420 | ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go |
| 421 | ** back to a gray list, but then it must become OLD. (That is what |
| 422 | ** 'correctgraylist' does when it finds a TOUCHED2 object.) |
| 423 | */ |
| 424 | static void genlink (global_State *g, GCObject *o) { |
| 425 | lua_assert(isblack(o)); |
| 426 | if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */ |
| 427 | linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */ |
| 428 | } /* everything else do not need to be linked back */ |
| 429 | else if (getage(o) == G_TOUCHED2) |
| 430 | changeage(o, G_TOUCHED2, G_OLD); /* advance age */ |
| 431 | } |
| 432 | |
| 433 | |
| 434 | /* |
| 435 | ** Traverse a table with weak values and link it to proper list. During |
| 436 | ** propagate phase, keep it in 'grayagain' list, to be revisited in the |
| 437 | ** atomic phase. In the atomic phase, if table has any white value, |
| 438 | ** put it in 'weak' list, to be cleared. |
| 439 | */ |
| 440 | static void traverseweakvalue (global_State *g, Table *h) { |
| 441 | Node *n, *limit = gnodelast(h); |
| 442 | /* if there is array part, assume it may have white values (it is not |
| 443 | worth traversing it now just to check) */ |
| 444 | int hasclears = (h->alimit > 0); |
| 445 | for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ |
| 446 | if (isempty(gval(n))) /* entry is empty? */ |
| 447 | clearkey(n); /* clear its key */ |
| 448 | else { |
| 449 | lua_assert(!keyisnil(n)); |
| 450 | markkey(g, n); |
| 451 | if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */ |
| 452 | hasclears = 1; /* table will have to be cleared */ |
| 453 | } |
| 454 | } |
| 455 | if (g->gcstate == GCSatomic && hasclears) |
| 456 | linkgclist(h, g->weak); /* has to be cleared later */ |
| 457 | else |
| 458 | linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ |
| 459 | } |
| 460 | |
| 461 | |
| 462 | /* |
| 463 | ** Traverse an ephemeron table and link it to proper list. Returns true |
| 464 | ** iff any object was marked during this traversal (which implies that |
| 465 | ** convergence has to continue). During propagation phase, keep table |
| 466 | ** in 'grayagain' list, to be visited again in the atomic phase. In |
| 467 | ** the atomic phase, if table has any white->white entry, it has to |
| 468 | ** be revisited during ephemeron convergence (as that key may turn |
| 469 | ** black). Otherwise, if it has any white key, table has to be cleared |
| 470 | ** (in the atomic phase). In generational mode, some tables |
| 471 | ** must be kept in some gray list for post-processing; this is done |
| 472 | ** by 'genlink'. |
| 473 | */ |
| 474 | static int traverseephemeron (global_State *g, Table *h, int inv) { |
| 475 | int marked = 0; /* true if an object is marked in this traversal */ |
| 476 | int hasclears = 0; /* true if table has white keys */ |
| 477 | int hasww = 0; /* true if table has entry "white-key -> white-value" */ |
| 478 | unsigned int i; |
| 479 | unsigned int asize = luaH_realasize(h); |
| 480 | unsigned int nsize = sizenode(h); |
| 481 | /* traverse array part */ |
| 482 | for (i = 0; i < asize; i++) { |
| 483 | if (valiswhite(&h->array[i])) { |
| 484 | marked = 1; |
| 485 | reallymarkobject(g, gcvalue(&h->array[i])); |
| 486 | } |
| 487 | } |
| 488 | /* traverse hash part; if 'inv', traverse descending |
| 489 | (see 'convergeephemerons') */ |
| 490 | for (i = 0; i < nsize; i++) { |
| 491 | Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i); |
| 492 | if (isempty(gval(n))) /* entry is empty? */ |
| 493 | clearkey(n); /* clear its key */ |
| 494 | else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */ |
| 495 | hasclears = 1; /* table must be cleared */ |
| 496 | if (valiswhite(gval(n))) /* value not marked yet? */ |
| 497 | hasww = 1; /* white-white entry */ |
| 498 | } |
| 499 | else if (valiswhite(gval(n))) { /* value not marked yet? */ |
| 500 | marked = 1; |
| 501 | reallymarkobject(g, gcvalue(gval(n))); /* mark it now */ |
| 502 | } |
| 503 | } |
| 504 | /* link table into proper list */ |
| 505 | if (g->gcstate == GCSpropagate) |
| 506 | linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ |
| 507 | else if (hasww) /* table has white->white entries? */ |
| 508 | linkgclist(h, g->ephemeron); /* have to propagate again */ |
| 509 | else if (hasclears) /* table has white keys? */ |
| 510 | linkgclist(h, g->allweak); /* may have to clean white keys */ |
| 511 | else |
| 512 | genlink(g, obj2gco(h)); /* check whether collector still needs to see it */ |
| 513 | return marked; |
| 514 | } |
| 515 | |
| 516 | |
| 517 | static void traversestrongtable (global_State *g, Table *h) { |
| 518 | Node *n, *limit = gnodelast(h); |
| 519 | unsigned int i; |
| 520 | unsigned int asize = luaH_realasize(h); |
| 521 | for (i = 0; i < asize; i++) /* traverse array part */ |
| 522 | markvalue(g, &h->array[i]); |
| 523 | for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ |
| 524 | if (isempty(gval(n))) /* entry is empty? */ |
| 525 | clearkey(n); /* clear its key */ |
| 526 | else { |
| 527 | lua_assert(!keyisnil(n)); |
| 528 | markkey(g, n); |
| 529 | markvalue(g, gval(n)); |
| 530 | } |
| 531 | } |
| 532 | genlink(g, obj2gco(h)); |
| 533 | } |
| 534 | |
| 535 | |
| 536 | static lu_mem traversetable (global_State *g, Table *h) { |
| 537 | const char *weakkey, *weakvalue; |
| 538 | const TValue *mode = gfasttm(g, h->metatable, TM_MODE); |
| 539 | markobjectN(g, h->metatable); |
| 540 | if (mode && ttisstring(mode) && /* is there a weak mode? */ |
| 541 | (cast_void(weakkey = strchr(svalue(mode), 'k')), |
| 542 | cast_void(weakvalue = strchr(svalue(mode), 'v')), |
| 543 | (weakkey || weakvalue))) { /* is really weak? */ |
| 544 | if (!weakkey) /* strong keys? */ |
| 545 | traverseweakvalue(g, h); |
| 546 | else if (!weakvalue) /* strong values? */ |
| 547 | traverseephemeron(g, h, 0); |
| 548 | else /* all weak */ |
| 549 | linkgclist(h, g->allweak); /* nothing to traverse now */ |
| 550 | } |
| 551 | else /* not weak */ |
| 552 | traversestrongtable(g, h); |
| 553 | return 1 + h->alimit + 2 * allocsizenode(h); |
| 554 | } |
| 555 | |
| 556 | |
| 557 | static int traverseudata (global_State *g, Udata *u) { |
| 558 | int i; |
| 559 | markobjectN(g, u->metatable); /* mark its metatable */ |
| 560 | for (i = 0; i < u->nuvalue; i++) |
| 561 | markvalue(g, &u->uv[i].uv); |
| 562 | genlink(g, obj2gco(u)); |
| 563 | return 1 + u->nuvalue; |
| 564 | } |
| 565 | |
| 566 | |
| 567 | /* |
| 568 | ** Traverse a prototype. (While a prototype is being build, its |
| 569 | ** arrays can be larger than needed; the extra slots are filled with |
| 570 | ** NULL, so the use of 'markobjectN') |
| 571 | */ |
| 572 | static int traverseproto (global_State *g, Proto *f) { |
| 573 | int i; |
| 574 | markobjectN(g, f->source); |
| 575 | for (i = 0; i < f->sizek; i++) /* mark literals */ |
| 576 | markvalue(g, &f->k[i]); |
| 577 | for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */ |
| 578 | markobjectN(g, f->upvalues[i].name); |
| 579 | for (i = 0; i < f->sizep; i++) /* mark nested protos */ |
| 580 | markobjectN(g, f->p[i]); |
| 581 | for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */ |
| 582 | markobjectN(g, f->locvars[i].varname); |
| 583 | return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars; |
| 584 | } |
| 585 | |
| 586 | |
| 587 | static int traverseCclosure (global_State *g, CClosure *cl) { |
| 588 | int i; |
| 589 | for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */ |
| 590 | markvalue(g, &cl->upvalue[i]); |
| 591 | return 1 + cl->nupvalues; |
| 592 | } |
| 593 | |
| 594 | /* |
| 595 | ** Traverse a Lua closure, marking its prototype and its upvalues. |
| 596 | ** (Both can be NULL while closure is being created.) |
| 597 | */ |
| 598 | static int traverseLclosure (global_State *g, LClosure *cl) { |
| 599 | int i; |
| 600 | markobjectN(g, cl->p); /* mark its prototype */ |
| 601 | for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */ |
| 602 | UpVal *uv = cl->upvals[i]; |
| 603 | markobjectN(g, uv); /* mark upvalue */ |
| 604 | } |
| 605 | return 1 + cl->nupvalues; |
| 606 | } |
| 607 | |
| 608 | |
| 609 | /* |
| 610 | ** Traverse a thread, marking the elements in the stack up to its top |
| 611 | ** and cleaning the rest of the stack in the final traversal. That |
| 612 | ** ensures that the entire stack have valid (non-dead) objects. |
| 613 | ** Threads have no barriers. In gen. mode, old threads must be visited |
| 614 | ** at every cycle, because they might point to young objects. In inc. |
| 615 | ** mode, the thread can still be modified before the end of the cycle, |
| 616 | ** and therefore it must be visited again in the atomic phase. To ensure |
| 617 | ** these visits, threads must return to a gray list if they are not new |
| 618 | ** (which can only happen in generational mode) or if the traverse is in |
| 619 | ** the propagate phase (which can only happen in incremental mode). |
| 620 | */ |
| 621 | static int traversethread (global_State *g, lua_State *th) { |
| 622 | UpVal *uv; |
| 623 | StkId o = th->stack; |
| 624 | if (isold(th) || g->gcstate == GCSpropagate) |
| 625 | linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ |
| 626 | if (o == NULL) |
| 627 | return 1; /* stack not completely built yet */ |
| 628 | lua_assert(g->gcstate == GCSatomic || |
| 629 | th->openupval == NULL || isintwups(th)); |
| 630 | for (; o < th->top; o++) /* mark live elements in the stack */ |
| 631 | markvalue(g, s2v(o)); |
| 632 | for (uv = th->openupval; uv != NULL; uv = uv->u.open.next) |
| 633 | markobject(g, uv); /* open upvalues cannot be collected */ |
| 634 | if (g->gcstate == GCSatomic) { /* final traversal? */ |
| 635 | for (; o < th->stack_last + EXTRA_STACK; o++) |
| 636 | setnilvalue(s2v(o)); /* clear dead stack slice */ |
| 637 | /* 'remarkupvals' may have removed thread from 'twups' list */ |
| 638 | if (!isintwups(th) && th->openupval != NULL) { |
| 639 | th->twups = g->twups; /* link it back to the list */ |
| 640 | g->twups = th; |
| 641 | } |
| 642 | } |
| 643 | else if (!g->gcemergency) |
| 644 | luaD_shrinkstack(th); /* do not change stack in emergency cycle */ |
| 645 | return 1 + stacksize(th); |
| 646 | } |
| 647 | |
| 648 | |
| 649 | /* |
| 650 | ** traverse one gray object, turning it to black. |
| 651 | */ |
| 652 | static lu_mem propagatemark (global_State *g) { |
| 653 | GCObject *o = g->gray; |
| 654 | nw2black(o); |
| 655 | g->gray = *getgclist(o); /* remove from 'gray' list */ |
| 656 | switch (o->tt) { |
| 657 | case LUA_VTABLE: return traversetable(g, gco2t(o)); |
| 658 | case LUA_VUSERDATA: return traverseudata(g, gco2u(o)); |
| 659 | case LUA_VLCL: return traverseLclosure(g, gco2lcl(o)); |
| 660 | case LUA_VCCL: return traverseCclosure(g, gco2ccl(o)); |
| 661 | case LUA_VPROTO: return traverseproto(g, gco2p(o)); |
| 662 | case LUA_VTHREAD: return traversethread(g, gco2th(o)); |
| 663 | default: lua_assert(0); return 0; |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | |
| 668 | static lu_mem propagateall (global_State *g) { |
| 669 | lu_mem tot = 0; |
| 670 | while (g->gray) |
| 671 | tot += propagatemark(g); |
| 672 | return tot; |
| 673 | } |
| 674 | |
| 675 | |
| 676 | /* |
| 677 | ** Traverse all ephemeron tables propagating marks from keys to values. |
| 678 | ** Repeat until it converges, that is, nothing new is marked. 'dir' |
| 679 | ** inverts the direction of the traversals, trying to speed up |
| 680 | ** convergence on chains in the same table. |
| 681 | ** |
| 682 | */ |
| 683 | static void convergeephemerons (global_State *g) { |
| 684 | int changed; |
| 685 | int dir = 0; |
| 686 | do { |
| 687 | GCObject *w; |
| 688 | GCObject *next = g->ephemeron; /* get ephemeron list */ |
| 689 | g->ephemeron = NULL; /* tables may return to this list when traversed */ |
| 690 | changed = 0; |
| 691 | while ((w = next) != NULL) { /* for each ephemeron table */ |
| 692 | Table *h = gco2t(w); |
| 693 | next = h->gclist; /* list is rebuilt during loop */ |
| 694 | nw2black(h); /* out of the list (for now) */ |
| 695 | if (traverseephemeron(g, h, dir)) { /* marked some value? */ |
| 696 | propagateall(g); /* propagate changes */ |
| 697 | changed = 1; /* will have to revisit all ephemeron tables */ |
| 698 | } |
| 699 | } |
| 700 | dir = !dir; /* invert direction next time */ |
| 701 | } while (changed); /* repeat until no more changes */ |
| 702 | } |
| 703 | |
| 704 | /* }====================================================== */ |
| 705 | |
| 706 | |
| 707 | /* |
| 708 | ** {====================================================== |
| 709 | ** Sweep Functions |
| 710 | ** ======================================================= |
| 711 | */ |
| 712 | |
| 713 | |
| 714 | /* |
| 715 | ** clear entries with unmarked keys from all weaktables in list 'l' |
| 716 | */ |
| 717 | static void clearbykeys (global_State *g, GCObject *l) { |
| 718 | for (; l; l = gco2t(l)->gclist) { |
| 719 | Table *h = gco2t(l); |
| 720 | Node *limit = gnodelast(h); |
| 721 | Node *n; |
| 722 | for (n = gnode(h, 0); n < limit; n++) { |
| 723 | if (iscleared(g, gckeyN(n))) /* unmarked key? */ |
| 724 | setempty(gval(n)); /* remove entry */ |
| 725 | if (isempty(gval(n))) /* is entry empty? */ |
| 726 | clearkey(n); /* clear its key */ |
| 727 | } |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | |
| 732 | /* |
| 733 | ** clear entries with unmarked values from all weaktables in list 'l' up |
| 734 | ** to element 'f' |
| 735 | */ |
| 736 | static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) { |
| 737 | for (; l != f; l = gco2t(l)->gclist) { |
| 738 | Table *h = gco2t(l); |
| 739 | Node *n, *limit = gnodelast(h); |
| 740 | unsigned int i; |
| 741 | unsigned int asize = luaH_realasize(h); |
| 742 | for (i = 0; i < asize; i++) { |
| 743 | TValue *o = &h->array[i]; |
| 744 | if (iscleared(g, gcvalueN(o))) /* value was collected? */ |
| 745 | setempty(o); /* remove entry */ |
| 746 | } |
| 747 | for (n = gnode(h, 0); n < limit; n++) { |
| 748 | if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */ |
| 749 | setempty(gval(n)); /* remove entry */ |
| 750 | if (isempty(gval(n))) /* is entry empty? */ |
| 751 | clearkey(n); /* clear its key */ |
| 752 | } |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | |
| 757 | static void freeupval (lua_State *L, UpVal *uv) { |
| 758 | if (upisopen(uv)) |
| 759 | luaF_unlinkupval(uv); |
| 760 | luaM_free(L, uv); |
| 761 | } |
| 762 | |
| 763 | |
| 764 | static void freeobj (lua_State *L, GCObject *o) { |
| 765 | switch (o->tt) { |
| 766 | case LUA_VPROTO: |
| 767 | luaF_freeproto(L, gco2p(o)); |
| 768 | break; |
| 769 | case LUA_VUPVAL: |
| 770 | freeupval(L, gco2upv(o)); |
| 771 | break; |
| 772 | case LUA_VLCL: { |
| 773 | LClosure *cl = gco2lcl(o); |
| 774 | luaM_freemem(L, cl, sizeLclosure(cl->nupvalues)); |
| 775 | break; |
| 776 | } |
| 777 | case LUA_VCCL: { |
| 778 | CClosure *cl = gco2ccl(o); |
| 779 | luaM_freemem(L, cl, sizeCclosure(cl->nupvalues)); |
| 780 | break; |
| 781 | } |
| 782 | case LUA_VTABLE: |
| 783 | luaH_free(L, gco2t(o)); |
| 784 | break; |
| 785 | case LUA_VTHREAD: |
| 786 | luaE_freethread(L, gco2th(o)); |
| 787 | break; |
| 788 | case LUA_VUSERDATA: { |
| 789 | Udata *u = gco2u(o); |
| 790 | luaM_freemem(L, o, sizeudata(u->nuvalue, u->len)); |
| 791 | break; |
| 792 | } |
| 793 | case LUA_VSHRSTR: { |
| 794 | TString *ts = gco2ts(o); |
| 795 | luaS_remove(L, ts); /* remove it from hash table */ |
| 796 | luaM_freemem(L, ts, sizelstring(ts->shrlen)); |
| 797 | break; |
| 798 | } |
| 799 | case LUA_VLNGSTR: { |
| 800 | TString *ts = gco2ts(o); |
| 801 | luaM_freemem(L, ts, sizelstring(ts->u.lnglen)); |
| 802 | break; |
| 803 | } |
| 804 | default: lua_assert(0); |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | |
| 809 | /* |
| 810 | ** sweep at most 'countin' elements from a list of GCObjects erasing dead |
| 811 | ** objects, where a dead object is one marked with the old (non current) |
| 812 | ** white; change all non-dead objects back to white, preparing for next |
| 813 | ** collection cycle. Return where to continue the traversal or NULL if |
| 814 | ** list is finished. ('*countout' gets the number of elements traversed.) |
| 815 | */ |
| 816 | static GCObject **sweeplist (lua_State *L, GCObject **p, int countin, |
| 817 | int *countout) { |
| 818 | global_State *g = G(L); |
| 819 | int ow = otherwhite(g); |
| 820 | int i; |
| 821 | int white = luaC_white(g); /* current white */ |
| 822 | for (i = 0; *p != NULL && i < countin; i++) { |
| 823 | GCObject *curr = *p; |
| 824 | int marked = curr->marked; |
| 825 | if (isdeadm(ow, marked)) { /* is 'curr' dead? */ |
| 826 | *p = curr->next; /* remove 'curr' from list */ |
| 827 | freeobj(L, curr); /* erase 'curr' */ |
| 828 | } |
| 829 | else { /* change mark to 'white' */ |
| 830 | curr->marked = cast_byte((marked & ~maskgcbits) | white); |
| 831 | p = &curr->next; /* go to next element */ |
| 832 | } |
| 833 | } |
| 834 | if (countout) |
| 835 | *countout = i; /* number of elements traversed */ |
| 836 | return (*p == NULL) ? NULL : p; |
| 837 | } |
| 838 | |
| 839 | |
| 840 | /* |
| 841 | ** sweep a list until a live object (or end of list) |
| 842 | */ |
| 843 | static GCObject **sweeptolive (lua_State *L, GCObject **p) { |
| 844 | GCObject **old = p; |
| 845 | do { |
| 846 | p = sweeplist(L, p, 1, NULL); |
| 847 | } while (p == old); |
| 848 | return p; |
| 849 | } |
| 850 | |
| 851 | /* }====================================================== */ |
| 852 | |
| 853 | |
| 854 | /* |
| 855 | ** {====================================================== |
| 856 | ** Finalization |
| 857 | ** ======================================================= |
| 858 | */ |
| 859 | |
| 860 | /* |
| 861 | ** If possible, shrink string table. |
| 862 | */ |
| 863 | static void checkSizes (lua_State *L, global_State *g) { |
| 864 | if (!g->gcemergency) { |
| 865 | if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */ |
| 866 | l_mem olddebt = g->GCdebt; |
| 867 | luaS_resize(L, g->strt.size / 2); |
| 868 | g->GCestimate += g->GCdebt - olddebt; /* correct estimate */ |
| 869 | } |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | |
| 874 | /* |
| 875 | ** Get the next udata to be finalized from the 'tobefnz' list, and |
| 876 | ** link it back into the 'allgc' list. |
| 877 | */ |
| 878 | static GCObject *udata2finalize (global_State *g) { |
| 879 | GCObject *o = g->tobefnz; /* get first element */ |
| 880 | lua_assert(tofinalize(o)); |
| 881 | g->tobefnz = o->next; /* remove it from 'tobefnz' list */ |
| 882 | o->next = g->allgc; /* return it to 'allgc' list */ |
| 883 | g->allgc = o; |
| 884 | resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */ |
| 885 | if (issweepphase(g)) |
| 886 | makewhite(g, o); /* "sweep" object */ |
| 887 | else if (getage(o) == G_OLD1) |
| 888 | g->firstold1 = o; /* it is the first OLD1 object in the list */ |
| 889 | return o; |
| 890 | } |
| 891 | |
| 892 | |
| 893 | static void dothecall (lua_State *L, void *ud) { |
| 894 | UNUSED(ud); |
| 895 | luaD_callnoyield(L, L->top - 2, 0); |
| 896 | } |
| 897 | |
| 898 | |
| 899 | static void GCTM (lua_State *L) { |
| 900 | global_State *g = G(L); |
| 901 | const TValue *tm; |
| 902 | TValue v; |
| 903 | lua_assert(!g->gcemergency); |
| 904 | setgcovalue(L, &v, udata2finalize(g)); |
| 905 | tm = luaT_gettmbyobj(L, &v, TM_GC); |
| 906 | if (!notm(tm)) { /* is there a finalizer? */ |
| 907 | int status; |
| 908 | lu_byte oldah = L->allowhook; |
| 909 | int running = g->gcrunning; |
| 910 | L->allowhook = 0; /* stop debug hooks during GC metamethod */ |
| 911 | g->gcrunning = 0; /* avoid GC steps */ |
| 912 | setobj2s(L, L->top++, tm); /* push finalizer... */ |
| 913 | setobj2s(L, L->top++, &v); /* ... and its argument */ |
| 914 | L->ci->callstatus |= CIST_FIN; /* will run a finalizer */ |
| 915 | status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top - 2), 0); |
| 916 | L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */ |
| 917 | L->allowhook = oldah; /* restore hooks */ |
| 918 | g->gcrunning = running; /* restore state */ |
| 919 | if (l_unlikely(status != LUA_OK)) { /* error while running __gc? */ |
| 920 | luaE_warnerror(L, "__gc metamethod" ); |
| 921 | L->top--; /* pops error object */ |
| 922 | } |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | |
| 927 | /* |
| 928 | ** Call a few finalizers |
| 929 | */ |
| 930 | static int runafewfinalizers (lua_State *L, int n) { |
| 931 | global_State *g = G(L); |
| 932 | int i; |
| 933 | for (i = 0; i < n && g->tobefnz; i++) |
| 934 | GCTM(L); /* call one finalizer */ |
| 935 | return i; |
| 936 | } |
| 937 | |
| 938 | |
| 939 | /* |
| 940 | ** call all pending finalizers |
| 941 | */ |
| 942 | static void callallpendingfinalizers (lua_State *L) { |
| 943 | global_State *g = G(L); |
| 944 | while (g->tobefnz) |
| 945 | GCTM(L); |
| 946 | } |
| 947 | |
| 948 | |
| 949 | /* |
| 950 | ** find last 'next' field in list 'p' list (to add elements in its end) |
| 951 | */ |
| 952 | static GCObject **findlast (GCObject **p) { |
| 953 | while (*p != NULL) |
| 954 | p = &(*p)->next; |
| 955 | return p; |
| 956 | } |
| 957 | |
| 958 | |
| 959 | /* |
| 960 | ** Move all unreachable objects (or 'all' objects) that need |
| 961 | ** finalization from list 'finobj' to list 'tobefnz' (to be finalized). |
| 962 | ** (Note that objects after 'finobjold1' cannot be white, so they |
| 963 | ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL, |
| 964 | ** so the whole list is traversed.) |
| 965 | */ |
| 966 | static void separatetobefnz (global_State *g, int all) { |
| 967 | GCObject *curr; |
| 968 | GCObject **p = &g->finobj; |
| 969 | GCObject **lastnext = findlast(&g->tobefnz); |
| 970 | while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */ |
| 971 | lua_assert(tofinalize(curr)); |
| 972 | if (!(iswhite(curr) || all)) /* not being collected? */ |
| 973 | p = &curr->next; /* don't bother with it */ |
| 974 | else { |
| 975 | if (curr == g->finobjsur) /* removing 'finobjsur'? */ |
| 976 | g->finobjsur = curr->next; /* correct it */ |
| 977 | *p = curr->next; /* remove 'curr' from 'finobj' list */ |
| 978 | curr->next = *lastnext; /* link at the end of 'tobefnz' list */ |
| 979 | *lastnext = curr; |
| 980 | lastnext = &curr->next; |
| 981 | } |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | |
| 986 | /* |
| 987 | ** If pointer 'p' points to 'o', move it to the next element. |
| 988 | */ |
| 989 | static void checkpointer (GCObject **p, GCObject *o) { |
| 990 | if (o == *p) |
| 991 | *p = o->next; |
| 992 | } |
| 993 | |
| 994 | |
| 995 | /* |
| 996 | ** Correct pointers to objects inside 'allgc' list when |
| 997 | ** object 'o' is being removed from the list. |
| 998 | */ |
| 999 | static void correctpointers (global_State *g, GCObject *o) { |
| 1000 | checkpointer(&g->survival, o); |
| 1001 | checkpointer(&g->old1, o); |
| 1002 | checkpointer(&g->reallyold, o); |
| 1003 | checkpointer(&g->firstold1, o); |
| 1004 | } |
| 1005 | |
| 1006 | |
| 1007 | /* |
| 1008 | ** if object 'o' has a finalizer, remove it from 'allgc' list (must |
| 1009 | ** search the list to find it) and link it in 'finobj' list. |
| 1010 | */ |
| 1011 | void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) { |
| 1012 | global_State *g = G(L); |
| 1013 | if (tofinalize(o) || /* obj. is already marked... */ |
| 1014 | gfasttm(g, mt, TM_GC) == NULL) /* or has no finalizer? */ |
| 1015 | return; /* nothing to be done */ |
| 1016 | else { /* move 'o' to 'finobj' list */ |
| 1017 | GCObject **p; |
| 1018 | if (issweepphase(g)) { |
| 1019 | makewhite(g, o); /* "sweep" object 'o' */ |
| 1020 | if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */ |
| 1021 | g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */ |
| 1022 | } |
| 1023 | else |
| 1024 | correctpointers(g, o); |
| 1025 | /* search for pointer pointing to 'o' */ |
| 1026 | for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ } |
| 1027 | *p = o->next; /* remove 'o' from 'allgc' list */ |
| 1028 | o->next = g->finobj; /* link it in 'finobj' list */ |
| 1029 | g->finobj = o; |
| 1030 | l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */ |
| 1031 | } |
| 1032 | } |
| 1033 | |
| 1034 | /* }====================================================== */ |
| 1035 | |
| 1036 | |
| 1037 | /* |
| 1038 | ** {====================================================== |
| 1039 | ** Generational Collector |
| 1040 | ** ======================================================= |
| 1041 | */ |
| 1042 | |
| 1043 | static void setpause (global_State *g); |
| 1044 | |
| 1045 | |
| 1046 | /* |
| 1047 | ** Sweep a list of objects to enter generational mode. Deletes dead |
| 1048 | ** objects and turns the non dead to old. All non-dead threads---which |
| 1049 | ** are now old---must be in a gray list. Everything else is not in a |
| 1050 | ** gray list. Open upvalues are also kept gray. |
| 1051 | */ |
| 1052 | static void sweep2old (lua_State *L, GCObject **p) { |
| 1053 | GCObject *curr; |
| 1054 | global_State *g = G(L); |
| 1055 | while ((curr = *p) != NULL) { |
| 1056 | if (iswhite(curr)) { /* is 'curr' dead? */ |
| 1057 | lua_assert(isdead(g, curr)); |
| 1058 | *p = curr->next; /* remove 'curr' from list */ |
| 1059 | freeobj(L, curr); /* erase 'curr' */ |
| 1060 | } |
| 1061 | else { /* all surviving objects become old */ |
| 1062 | setage(curr, G_OLD); |
| 1063 | if (curr->tt == LUA_VTHREAD) { /* threads must be watched */ |
| 1064 | lua_State *th = gco2th(curr); |
| 1065 | linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ |
| 1066 | } |
| 1067 | else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr))) |
| 1068 | set2gray(curr); /* open upvalues are always gray */ |
| 1069 | else /* everything else is black */ |
| 1070 | nw2black(curr); |
| 1071 | p = &curr->next; /* go to next element */ |
| 1072 | } |
| 1073 | } |
| 1074 | } |
| 1075 | |
| 1076 | |
| 1077 | /* |
| 1078 | ** Sweep for generational mode. Delete dead objects. (Because the |
| 1079 | ** collection is not incremental, there are no "new white" objects |
| 1080 | ** during the sweep. So, any white object must be dead.) For |
| 1081 | ** non-dead objects, advance their ages and clear the color of |
| 1082 | ** new objects. (Old objects keep their colors.) |
| 1083 | ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced |
| 1084 | ** here, because these old-generation objects are usually not swept |
| 1085 | ** here. They will all be advanced in 'correctgraylist'. That function |
| 1086 | ** will also remove objects turned white here from any gray list. |
| 1087 | */ |
| 1088 | static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p, |
| 1089 | GCObject *limit, GCObject **pfirstold1) { |
| 1090 | static const lu_byte nextage[] = { |
| 1091 | G_SURVIVAL, /* from G_NEW */ |
| 1092 | G_OLD1, /* from G_SURVIVAL */ |
| 1093 | G_OLD1, /* from G_OLD0 */ |
| 1094 | G_OLD, /* from G_OLD1 */ |
| 1095 | G_OLD, /* from G_OLD (do not change) */ |
| 1096 | G_TOUCHED1, /* from G_TOUCHED1 (do not change) */ |
| 1097 | G_TOUCHED2 /* from G_TOUCHED2 (do not change) */ |
| 1098 | }; |
| 1099 | int white = luaC_white(g); |
| 1100 | GCObject *curr; |
| 1101 | while ((curr = *p) != limit) { |
| 1102 | if (iswhite(curr)) { /* is 'curr' dead? */ |
| 1103 | lua_assert(!isold(curr) && isdead(g, curr)); |
| 1104 | *p = curr->next; /* remove 'curr' from list */ |
| 1105 | freeobj(L, curr); /* erase 'curr' */ |
| 1106 | } |
| 1107 | else { /* correct mark and age */ |
| 1108 | if (getage(curr) == G_NEW) { /* new objects go back to white */ |
| 1109 | int marked = curr->marked & ~maskgcbits; /* erase GC bits */ |
| 1110 | curr->marked = cast_byte(marked | G_SURVIVAL | white); |
| 1111 | } |
| 1112 | else { /* all other objects will be old, and so keep their color */ |
| 1113 | setage(curr, nextage[getage(curr)]); |
| 1114 | if (getage(curr) == G_OLD1 && *pfirstold1 == NULL) |
| 1115 | *pfirstold1 = curr; /* first OLD1 object in the list */ |
| 1116 | } |
| 1117 | p = &curr->next; /* go to next element */ |
| 1118 | } |
| 1119 | } |
| 1120 | return p; |
| 1121 | } |
| 1122 | |
| 1123 | |
| 1124 | /* |
| 1125 | ** Traverse a list making all its elements white and clearing their |
| 1126 | ** age. In incremental mode, all objects are 'new' all the time, |
| 1127 | ** except for fixed strings (which are always old). |
| 1128 | */ |
| 1129 | static void whitelist (global_State *g, GCObject *p) { |
| 1130 | int white = luaC_white(g); |
| 1131 | for (; p != NULL; p = p->next) |
| 1132 | p->marked = cast_byte((p->marked & ~maskgcbits) | white); |
| 1133 | } |
| 1134 | |
| 1135 | |
| 1136 | /* |
| 1137 | ** Correct a list of gray objects. Return pointer to where rest of the |
| 1138 | ** list should be linked. |
| 1139 | ** Because this correction is done after sweeping, young objects might |
| 1140 | ** be turned white and still be in the list. They are only removed. |
| 1141 | ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list; |
| 1142 | ** Non-white threads also remain on the list; 'TOUCHED2' objects become |
| 1143 | ** regular old; they and anything else are removed from the list. |
| 1144 | */ |
| 1145 | static GCObject **correctgraylist (GCObject **p) { |
| 1146 | GCObject *curr; |
| 1147 | while ((curr = *p) != NULL) { |
| 1148 | GCObject **next = getgclist(curr); |
| 1149 | if (iswhite(curr)) |
| 1150 | goto remove; /* remove all white objects */ |
| 1151 | else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */ |
| 1152 | lua_assert(isgray(curr)); |
| 1153 | nw2black(curr); /* make it black, for next barrier */ |
| 1154 | changeage(curr, G_TOUCHED1, G_TOUCHED2); |
| 1155 | goto remain; /* keep it in the list and go to next element */ |
| 1156 | } |
| 1157 | else if (curr->tt == LUA_VTHREAD) { |
| 1158 | lua_assert(isgray(curr)); |
| 1159 | goto remain; /* keep non-white threads on the list */ |
| 1160 | } |
| 1161 | else { /* everything else is removed */ |
| 1162 | lua_assert(isold(curr)); /* young objects should be white here */ |
| 1163 | if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */ |
| 1164 | changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */ |
| 1165 | nw2black(curr); /* make object black (to be removed) */ |
| 1166 | goto remove; |
| 1167 | } |
| 1168 | remove: *p = *next; continue; |
| 1169 | remain: p = next; continue; |
| 1170 | } |
| 1171 | return p; |
| 1172 | } |
| 1173 | |
| 1174 | |
| 1175 | /* |
| 1176 | ** Correct all gray lists, coalescing them into 'grayagain'. |
| 1177 | */ |
| 1178 | static void correctgraylists (global_State *g) { |
| 1179 | GCObject **list = correctgraylist(&g->grayagain); |
| 1180 | *list = g->weak; g->weak = NULL; |
| 1181 | list = correctgraylist(list); |
| 1182 | *list = g->allweak; g->allweak = NULL; |
| 1183 | list = correctgraylist(list); |
| 1184 | *list = g->ephemeron; g->ephemeron = NULL; |
| 1185 | correctgraylist(list); |
| 1186 | } |
| 1187 | |
| 1188 | |
| 1189 | /* |
| 1190 | ** Mark black 'OLD1' objects when starting a new young collection. |
| 1191 | ** Gray objects are already in some gray list, and so will be visited |
| 1192 | ** in the atomic step. |
| 1193 | */ |
| 1194 | static void markold (global_State *g, GCObject *from, GCObject *to) { |
| 1195 | GCObject *p; |
| 1196 | for (p = from; p != to; p = p->next) { |
| 1197 | if (getage(p) == G_OLD1) { |
| 1198 | lua_assert(!iswhite(p)); |
| 1199 | changeage(p, G_OLD1, G_OLD); /* now they are old */ |
| 1200 | if (isblack(p)) |
| 1201 | reallymarkobject(g, p); |
| 1202 | } |
| 1203 | } |
| 1204 | } |
| 1205 | |
| 1206 | |
| 1207 | /* |
| 1208 | ** Finish a young-generation collection. |
| 1209 | */ |
| 1210 | static void finishgencycle (lua_State *L, global_State *g) { |
| 1211 | correctgraylists(g); |
| 1212 | checkSizes(L, g); |
| 1213 | g->gcstate = GCSpropagate; /* skip restart */ |
| 1214 | if (!g->gcemergency) |
| 1215 | callallpendingfinalizers(L); |
| 1216 | } |
| 1217 | |
| 1218 | |
| 1219 | /* |
| 1220 | ** Does a young collection. First, mark 'OLD1' objects. Then does the |
| 1221 | ** atomic step. Then, sweep all lists and advance pointers. Finally, |
| 1222 | ** finish the collection. |
| 1223 | */ |
| 1224 | static void youngcollection (lua_State *L, global_State *g) { |
| 1225 | GCObject **psurvival; /* to point to first non-dead survival object */ |
| 1226 | GCObject *dummy; /* dummy out parameter to 'sweepgen' */ |
| 1227 | lua_assert(g->gcstate == GCSpropagate); |
| 1228 | if (g->firstold1) { /* are there regular OLD1 objects? */ |
| 1229 | markold(g, g->firstold1, g->reallyold); /* mark them */ |
| 1230 | g->firstold1 = NULL; /* no more OLD1 objects (for now) */ |
| 1231 | } |
| 1232 | markold(g, g->finobj, g->finobjrold); |
| 1233 | markold(g, g->tobefnz, NULL); |
| 1234 | atomic(L); |
| 1235 | |
| 1236 | /* sweep nursery and get a pointer to its last live element */ |
| 1237 | g->gcstate = GCSswpallgc; |
| 1238 | psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1); |
| 1239 | /* sweep 'survival' */ |
| 1240 | sweepgen(L, g, psurvival, g->old1, &g->firstold1); |
| 1241 | g->reallyold = g->old1; |
| 1242 | g->old1 = *psurvival; /* 'survival' survivals are old now */ |
| 1243 | g->survival = g->allgc; /* all news are survivals */ |
| 1244 | |
| 1245 | /* repeat for 'finobj' lists */ |
| 1246 | dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */ |
| 1247 | psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy); |
| 1248 | /* sweep 'survival' */ |
| 1249 | sweepgen(L, g, psurvival, g->finobjold1, &dummy); |
| 1250 | g->finobjrold = g->finobjold1; |
| 1251 | g->finobjold1 = *psurvival; /* 'survival' survivals are old now */ |
| 1252 | g->finobjsur = g->finobj; /* all news are survivals */ |
| 1253 | |
| 1254 | sweepgen(L, g, &g->tobefnz, NULL, &dummy); |
| 1255 | finishgencycle(L, g); |
| 1256 | } |
| 1257 | |
| 1258 | |
| 1259 | /* |
| 1260 | ** Clears all gray lists, sweeps objects, and prepare sublists to enter |
| 1261 | ** generational mode. The sweeps remove dead objects and turn all |
| 1262 | ** surviving objects to old. Threads go back to 'grayagain'; everything |
| 1263 | ** else is turned black (not in any gray list). |
| 1264 | */ |
| 1265 | static void atomic2gen (lua_State *L, global_State *g) { |
| 1266 | cleargraylists(g); |
| 1267 | /* sweep all elements making them old */ |
| 1268 | g->gcstate = GCSswpallgc; |
| 1269 | sweep2old(L, &g->allgc); |
| 1270 | /* everything alive now is old */ |
| 1271 | g->reallyold = g->old1 = g->survival = g->allgc; |
| 1272 | g->firstold1 = NULL; /* there are no OLD1 objects anywhere */ |
| 1273 | |
| 1274 | /* repeat for 'finobj' lists */ |
| 1275 | sweep2old(L, &g->finobj); |
| 1276 | g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj; |
| 1277 | |
| 1278 | sweep2old(L, &g->tobefnz); |
| 1279 | |
| 1280 | g->gckind = KGC_GEN; |
| 1281 | g->lastatomic = 0; |
| 1282 | g->GCestimate = gettotalbytes(g); /* base for memory control */ |
| 1283 | finishgencycle(L, g); |
| 1284 | } |
| 1285 | |
| 1286 | |
| 1287 | /* |
| 1288 | ** Enter generational mode. Must go until the end of an atomic cycle |
| 1289 | ** to ensure that all objects are correctly marked and weak tables |
| 1290 | ** are cleared. Then, turn all objects into old and finishes the |
| 1291 | ** collection. |
| 1292 | */ |
| 1293 | static lu_mem entergen (lua_State *L, global_State *g) { |
| 1294 | lu_mem numobjs; |
| 1295 | luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */ |
| 1296 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ |
| 1297 | numobjs = atomic(L); /* propagates all and then do the atomic stuff */ |
| 1298 | atomic2gen(L, g); |
| 1299 | return numobjs; |
| 1300 | } |
| 1301 | |
| 1302 | |
| 1303 | /* |
| 1304 | ** Enter incremental mode. Turn all objects white, make all |
| 1305 | ** intermediate lists point to NULL (to avoid invalid pointers), |
| 1306 | ** and go to the pause state. |
| 1307 | */ |
| 1308 | static void enterinc (global_State *g) { |
| 1309 | whitelist(g, g->allgc); |
| 1310 | g->reallyold = g->old1 = g->survival = NULL; |
| 1311 | whitelist(g, g->finobj); |
| 1312 | whitelist(g, g->tobefnz); |
| 1313 | g->finobjrold = g->finobjold1 = g->finobjsur = NULL; |
| 1314 | g->gcstate = GCSpause; |
| 1315 | g->gckind = KGC_INC; |
| 1316 | g->lastatomic = 0; |
| 1317 | } |
| 1318 | |
| 1319 | |
| 1320 | /* |
| 1321 | ** Change collector mode to 'newmode'. |
| 1322 | */ |
| 1323 | void luaC_changemode (lua_State *L, int newmode) { |
| 1324 | global_State *g = G(L); |
| 1325 | if (newmode != g->gckind) { |
| 1326 | if (newmode == KGC_GEN) /* entering generational mode? */ |
| 1327 | entergen(L, g); |
| 1328 | else |
| 1329 | enterinc(g); /* entering incremental mode */ |
| 1330 | } |
| 1331 | g->lastatomic = 0; |
| 1332 | } |
| 1333 | |
| 1334 | |
| 1335 | /* |
| 1336 | ** Does a full collection in generational mode. |
| 1337 | */ |
| 1338 | static lu_mem fullgen (lua_State *L, global_State *g) { |
| 1339 | enterinc(g); |
| 1340 | return entergen(L, g); |
| 1341 | } |
| 1342 | |
| 1343 | |
| 1344 | /* |
| 1345 | ** Set debt for the next minor collection, which will happen when |
| 1346 | ** memory grows 'genminormul'%. |
| 1347 | */ |
| 1348 | static void setminordebt (global_State *g) { |
| 1349 | luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul)); |
| 1350 | } |
| 1351 | |
| 1352 | |
| 1353 | /* |
| 1354 | ** Does a major collection after last collection was a "bad collection". |
| 1355 | ** |
| 1356 | ** When the program is building a big structure, it allocates lots of |
| 1357 | ** memory but generates very little garbage. In those scenarios, |
| 1358 | ** the generational mode just wastes time doing small collections, and |
| 1359 | ** major collections are frequently what we call a "bad collection", a |
| 1360 | ** collection that frees too few objects. To avoid the cost of switching |
| 1361 | ** between generational mode and the incremental mode needed for full |
| 1362 | ** (major) collections, the collector tries to stay in incremental mode |
| 1363 | ** after a bad collection, and to switch back to generational mode only |
| 1364 | ** after a "good" collection (one that traverses less than 9/8 objects |
| 1365 | ** of the previous one). |
| 1366 | ** The collector must choose whether to stay in incremental mode or to |
| 1367 | ** switch back to generational mode before sweeping. At this point, it |
| 1368 | ** does not know the real memory in use, so it cannot use memory to |
| 1369 | ** decide whether to return to generational mode. Instead, it uses the |
| 1370 | ** number of objects traversed (returned by 'atomic') as a proxy. The |
| 1371 | ** field 'g->lastatomic' keeps this count from the last collection. |
| 1372 | ** ('g->lastatomic != 0' also means that the last collection was bad.) |
| 1373 | */ |
| 1374 | static void stepgenfull (lua_State *L, global_State *g) { |
| 1375 | lu_mem newatomic; /* count of traversed objects */ |
| 1376 | lu_mem lastatomic = g->lastatomic; /* count from last collection */ |
| 1377 | if (g->gckind == KGC_GEN) /* still in generational mode? */ |
| 1378 | enterinc(g); /* enter incremental mode */ |
| 1379 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ |
| 1380 | newatomic = atomic(L); /* mark everybody */ |
| 1381 | if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */ |
| 1382 | atomic2gen(L, g); /* return to generational mode */ |
| 1383 | setminordebt(g); |
| 1384 | } |
| 1385 | else { /* another bad collection; stay in incremental mode */ |
| 1386 | g->GCestimate = gettotalbytes(g); /* first estimate */; |
| 1387 | entersweep(L); |
| 1388 | luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ |
| 1389 | setpause(g); |
| 1390 | g->lastatomic = newatomic; |
| 1391 | } |
| 1392 | } |
| 1393 | |
| 1394 | |
| 1395 | /* |
| 1396 | ** Does a generational "step". |
| 1397 | ** Usually, this means doing a minor collection and setting the debt to |
| 1398 | ** make another collection when memory grows 'genminormul'% larger. |
| 1399 | ** |
| 1400 | ** However, there are exceptions. If memory grows 'genmajormul'% |
| 1401 | ** larger than it was at the end of the last major collection (kept |
| 1402 | ** in 'g->GCestimate'), the function does a major collection. At the |
| 1403 | ** end, it checks whether the major collection was able to free a |
| 1404 | ** decent amount of memory (at least half the growth in memory since |
| 1405 | ** previous major collection). If so, the collector keeps its state, |
| 1406 | ** and the next collection will probably be minor again. Otherwise, |
| 1407 | ** we have what we call a "bad collection". In that case, set the field |
| 1408 | ** 'g->lastatomic' to signal that fact, so that the next collection will |
| 1409 | ** go to 'stepgenfull'. |
| 1410 | ** |
| 1411 | ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero; |
| 1412 | ** in that case, do a minor collection. |
| 1413 | */ |
| 1414 | static void genstep (lua_State *L, global_State *g) { |
| 1415 | if (g->lastatomic != 0) /* last collection was a bad one? */ |
| 1416 | stepgenfull(L, g); /* do a full step */ |
| 1417 | else { |
| 1418 | lu_mem majorbase = g->GCestimate; /* memory after last major collection */ |
| 1419 | lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul); |
| 1420 | if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) { |
| 1421 | lu_mem numobjs = fullgen(L, g); /* do a major collection */ |
| 1422 | if (gettotalbytes(g) < majorbase + (majorinc / 2)) { |
| 1423 | /* collected at least half of memory growth since last major |
| 1424 | collection; keep doing minor collections */ |
| 1425 | setminordebt(g); |
| 1426 | } |
| 1427 | else { /* bad collection */ |
| 1428 | g->lastatomic = numobjs; /* signal that last collection was bad */ |
| 1429 | setpause(g); /* do a long wait for next (major) collection */ |
| 1430 | } |
| 1431 | } |
| 1432 | else { /* regular case; do a minor collection */ |
| 1433 | youngcollection(L, g); |
| 1434 | setminordebt(g); |
| 1435 | g->GCestimate = majorbase; /* preserve base value */ |
| 1436 | } |
| 1437 | } |
| 1438 | lua_assert(isdecGCmodegen(g)); |
| 1439 | } |
| 1440 | |
| 1441 | /* }====================================================== */ |
| 1442 | |
| 1443 | |
| 1444 | /* |
| 1445 | ** {====================================================== |
| 1446 | ** GC control |
| 1447 | ** ======================================================= |
| 1448 | */ |
| 1449 | |
| 1450 | |
| 1451 | /* |
| 1452 | ** Set the "time" to wait before starting a new GC cycle; cycle will |
| 1453 | ** start when memory use hits the threshold of ('estimate' * pause / |
| 1454 | ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero, |
| 1455 | ** because Lua cannot even start with less than PAUSEADJ bytes). |
| 1456 | */ |
| 1457 | static void setpause (global_State *g) { |
| 1458 | l_mem threshold, debt; |
| 1459 | int pause = getgcparam(g->gcpause); |
| 1460 | l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */ |
| 1461 | lua_assert(estimate > 0); |
| 1462 | threshold = (pause < MAX_LMEM / estimate) /* overflow? */ |
| 1463 | ? estimate * pause /* no overflow */ |
| 1464 | : MAX_LMEM; /* overflow; truncate to maximum */ |
| 1465 | debt = gettotalbytes(g) - threshold; |
| 1466 | if (debt > 0) debt = 0; |
| 1467 | luaE_setdebt(g, debt); |
| 1468 | } |
| 1469 | |
| 1470 | |
| 1471 | /* |
| 1472 | ** Enter first sweep phase. |
| 1473 | ** The call to 'sweeptolive' makes the pointer point to an object |
| 1474 | ** inside the list (instead of to the header), so that the real sweep do |
| 1475 | ** not need to skip objects created between "now" and the start of the |
| 1476 | ** real sweep. |
| 1477 | */ |
| 1478 | static void entersweep (lua_State *L) { |
| 1479 | global_State *g = G(L); |
| 1480 | g->gcstate = GCSswpallgc; |
| 1481 | lua_assert(g->sweepgc == NULL); |
| 1482 | g->sweepgc = sweeptolive(L, &g->allgc); |
| 1483 | } |
| 1484 | |
| 1485 | |
| 1486 | /* |
| 1487 | ** Delete all objects in list 'p' until (but not including) object |
| 1488 | ** 'limit'. |
| 1489 | */ |
| 1490 | static void deletelist (lua_State *L, GCObject *p, GCObject *limit) { |
| 1491 | while (p != limit) { |
| 1492 | GCObject *next = p->next; |
| 1493 | freeobj(L, p); |
| 1494 | p = next; |
| 1495 | } |
| 1496 | } |
| 1497 | |
| 1498 | |
| 1499 | /* |
| 1500 | ** Call all finalizers of the objects in the given Lua state, and |
| 1501 | ** then free all objects, except for the main thread. |
| 1502 | */ |
| 1503 | void luaC_freeallobjects (lua_State *L) { |
| 1504 | global_State *g = G(L); |
| 1505 | luaC_changemode(L, KGC_INC); |
| 1506 | separatetobefnz(g, 1); /* separate all objects with finalizers */ |
| 1507 | lua_assert(g->finobj == NULL); |
| 1508 | callallpendingfinalizers(L); |
| 1509 | deletelist(L, g->allgc, obj2gco(g->mainthread)); |
| 1510 | deletelist(L, g->finobj, NULL); |
| 1511 | deletelist(L, g->fixedgc, NULL); /* collect fixed objects */ |
| 1512 | lua_assert(g->strt.nuse == 0); |
| 1513 | } |
| 1514 | |
| 1515 | |
| 1516 | static lu_mem atomic (lua_State *L) { |
| 1517 | global_State *g = G(L); |
| 1518 | lu_mem work = 0; |
| 1519 | GCObject *origweak, *origall; |
| 1520 | GCObject *grayagain = g->grayagain; /* save original list */ |
| 1521 | g->grayagain = NULL; |
| 1522 | lua_assert(g->ephemeron == NULL && g->weak == NULL); |
| 1523 | lua_assert(!iswhite(g->mainthread)); |
| 1524 | g->gcstate = GCSatomic; |
| 1525 | markobject(g, L); /* mark running thread */ |
| 1526 | /* registry and global metatables may be changed by API */ |
| 1527 | markvalue(g, &g->l_registry); |
| 1528 | markmt(g); /* mark global metatables */ |
| 1529 | work += propagateall(g); /* empties 'gray' list */ |
| 1530 | /* remark occasional upvalues of (maybe) dead threads */ |
| 1531 | work += remarkupvals(g); |
| 1532 | work += propagateall(g); /* propagate changes */ |
| 1533 | g->gray = grayagain; |
| 1534 | work += propagateall(g); /* traverse 'grayagain' list */ |
| 1535 | convergeephemerons(g); |
| 1536 | /* at this point, all strongly accessible objects are marked. */ |
| 1537 | /* Clear values from weak tables, before checking finalizers */ |
| 1538 | clearbyvalues(g, g->weak, NULL); |
| 1539 | clearbyvalues(g, g->allweak, NULL); |
| 1540 | origweak = g->weak; origall = g->allweak; |
| 1541 | separatetobefnz(g, 0); /* separate objects to be finalized */ |
| 1542 | work += markbeingfnz(g); /* mark objects that will be finalized */ |
| 1543 | work += propagateall(g); /* remark, to propagate 'resurrection' */ |
| 1544 | convergeephemerons(g); |
| 1545 | /* at this point, all resurrected objects are marked. */ |
| 1546 | /* remove dead objects from weak tables */ |
| 1547 | clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */ |
| 1548 | clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */ |
| 1549 | /* clear values from resurrected weak tables */ |
| 1550 | clearbyvalues(g, g->weak, origweak); |
| 1551 | clearbyvalues(g, g->allweak, origall); |
| 1552 | luaS_clearcache(g); |
| 1553 | g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */ |
| 1554 | lua_assert(g->gray == NULL); |
| 1555 | return work; /* estimate of slots marked by 'atomic' */ |
| 1556 | } |
| 1557 | |
| 1558 | |
| 1559 | static int sweepstep (lua_State *L, global_State *g, |
| 1560 | int nextstate, GCObject **nextlist) { |
| 1561 | if (g->sweepgc) { |
| 1562 | l_mem olddebt = g->GCdebt; |
| 1563 | int count; |
| 1564 | g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count); |
| 1565 | g->GCestimate += g->GCdebt - olddebt; /* update estimate */ |
| 1566 | return count; |
| 1567 | } |
| 1568 | else { /* enter next state */ |
| 1569 | g->gcstate = nextstate; |
| 1570 | g->sweepgc = nextlist; |
| 1571 | return 0; /* no work done */ |
| 1572 | } |
| 1573 | } |
| 1574 | |
| 1575 | |
| 1576 | static lu_mem singlestep (lua_State *L) { |
| 1577 | global_State *g = G(L); |
| 1578 | lu_mem work; |
| 1579 | lua_assert(!g->gcstopem); /* collector is not reentrant */ |
| 1580 | g->gcstopem = 1; /* no emergency collections while collecting */ |
| 1581 | switch (g->gcstate) { |
| 1582 | case GCSpause: { |
| 1583 | restartcollection(g); |
| 1584 | g->gcstate = GCSpropagate; |
| 1585 | work = 1; |
| 1586 | break; |
| 1587 | } |
| 1588 | case GCSpropagate: { |
| 1589 | if (g->gray == NULL) { /* no more gray objects? */ |
| 1590 | g->gcstate = GCSenteratomic; /* finish propagate phase */ |
| 1591 | work = 0; |
| 1592 | } |
| 1593 | else |
| 1594 | work = propagatemark(g); /* traverse one gray object */ |
| 1595 | break; |
| 1596 | } |
| 1597 | case GCSenteratomic: { |
| 1598 | work = atomic(L); /* work is what was traversed by 'atomic' */ |
| 1599 | entersweep(L); |
| 1600 | g->GCestimate = gettotalbytes(g); /* first estimate */; |
| 1601 | break; |
| 1602 | } |
| 1603 | case GCSswpallgc: { /* sweep "regular" objects */ |
| 1604 | work = sweepstep(L, g, GCSswpfinobj, &g->finobj); |
| 1605 | break; |
| 1606 | } |
| 1607 | case GCSswpfinobj: { /* sweep objects with finalizers */ |
| 1608 | work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz); |
| 1609 | break; |
| 1610 | } |
| 1611 | case GCSswptobefnz: { /* sweep objects to be finalized */ |
| 1612 | work = sweepstep(L, g, GCSswpend, NULL); |
| 1613 | break; |
| 1614 | } |
| 1615 | case GCSswpend: { /* finish sweeps */ |
| 1616 | checkSizes(L, g); |
| 1617 | g->gcstate = GCScallfin; |
| 1618 | work = 0; |
| 1619 | break; |
| 1620 | } |
| 1621 | case GCScallfin: { /* call remaining finalizers */ |
| 1622 | if (g->tobefnz && !g->gcemergency) { |
| 1623 | g->gcstopem = 0; /* ok collections during finalizers */ |
| 1624 | work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST; |
| 1625 | } |
| 1626 | else { /* emergency mode or no more finalizers */ |
| 1627 | g->gcstate = GCSpause; /* finish collection */ |
| 1628 | work = 0; |
| 1629 | } |
| 1630 | break; |
| 1631 | } |
| 1632 | default: lua_assert(0); return 0; |
| 1633 | } |
| 1634 | g->gcstopem = 0; |
| 1635 | return work; |
| 1636 | } |
| 1637 | |
| 1638 | |
| 1639 | /* |
| 1640 | ** advances the garbage collector until it reaches a state allowed |
| 1641 | ** by 'statemask' |
| 1642 | */ |
| 1643 | void luaC_runtilstate (lua_State *L, int statesmask) { |
| 1644 | global_State *g = G(L); |
| 1645 | while (!testbit(statesmask, g->gcstate)) |
| 1646 | singlestep(L); |
| 1647 | } |
| 1648 | |
| 1649 | |
| 1650 | /* |
| 1651 | ** Performs a basic incremental step. The debt and step size are |
| 1652 | ** converted from bytes to "units of work"; then the function loops |
| 1653 | ** running single steps until adding that many units of work or |
| 1654 | ** finishing a cycle (pause state). Finally, it sets the debt that |
| 1655 | ** controls when next step will be performed. |
| 1656 | */ |
| 1657 | static void incstep (lua_State *L, global_State *g) { |
| 1658 | int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */ |
| 1659 | l_mem debt = (g->GCdebt / WORK2MEM) * stepmul; |
| 1660 | l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem)) |
| 1661 | ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul |
| 1662 | : MAX_LMEM; /* overflow; keep maximum value */ |
| 1663 | do { /* repeat until pause or enough "credit" (negative debt) */ |
| 1664 | lu_mem work = singlestep(L); /* perform one single step */ |
| 1665 | debt -= work; |
| 1666 | } while (debt > -stepsize && g->gcstate != GCSpause); |
| 1667 | if (g->gcstate == GCSpause) |
| 1668 | setpause(g); /* pause until next cycle */ |
| 1669 | else { |
| 1670 | debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */ |
| 1671 | luaE_setdebt(g, debt); |
| 1672 | } |
| 1673 | } |
| 1674 | |
| 1675 | /* |
| 1676 | ** performs a basic GC step if collector is running |
| 1677 | */ |
| 1678 | void luaC_step (lua_State *L) { |
| 1679 | global_State *g = G(L); |
| 1680 | lua_assert(!g->gcemergency); |
| 1681 | if (g->gcrunning) { /* running? */ |
| 1682 | if(isdecGCmodegen(g)) |
| 1683 | genstep(L, g); |
| 1684 | else |
| 1685 | incstep(L, g); |
| 1686 | } |
| 1687 | } |
| 1688 | |
| 1689 | |
| 1690 | /* |
| 1691 | ** Perform a full collection in incremental mode. |
| 1692 | ** Before running the collection, check 'keepinvariant'; if it is true, |
| 1693 | ** there may be some objects marked as black, so the collector has |
| 1694 | ** to sweep all objects to turn them back to white (as white has not |
| 1695 | ** changed, nothing will be collected). |
| 1696 | */ |
| 1697 | static void fullinc (lua_State *L, global_State *g) { |
| 1698 | if (keepinvariant(g)) /* black objects? */ |
| 1699 | entersweep(L); /* sweep everything to turn them back to white */ |
| 1700 | /* finish any pending sweep phase to start a new cycle */ |
| 1701 | luaC_runtilstate(L, bitmask(GCSpause)); |
| 1702 | luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */ |
| 1703 | /* estimate must be correct after a full GC cycle */ |
| 1704 | lua_assert(g->GCestimate == gettotalbytes(g)); |
| 1705 | luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ |
| 1706 | setpause(g); |
| 1707 | } |
| 1708 | |
| 1709 | |
| 1710 | /* |
| 1711 | ** Performs a full GC cycle; if 'isemergency', set a flag to avoid |
| 1712 | ** some operations which could change the interpreter state in some |
| 1713 | ** unexpected ways (running finalizers and shrinking some structures). |
| 1714 | */ |
| 1715 | void luaC_fullgc (lua_State *L, int isemergency) { |
| 1716 | global_State *g = G(L); |
| 1717 | lua_assert(!g->gcemergency); |
| 1718 | g->gcemergency = isemergency; /* set flag */ |
| 1719 | if (g->gckind == KGC_INC) |
| 1720 | fullinc(L, g); |
| 1721 | else |
| 1722 | fullgen(L, g); |
| 1723 | g->gcemergency = 0; |
| 1724 | } |
| 1725 | |
| 1726 | /* }====================================================== */ |
| 1727 | |
| 1728 | |
| 1729 | |