1 | /* |
2 | ** $Id: lgc.c $ |
3 | ** Garbage Collector |
4 | ** See Copyright Notice in lua.h |
5 | */ |
6 | |
7 | #define lgc_c |
8 | #define LUA_CORE |
9 | |
10 | #include "lprefix.h" |
11 | |
12 | #include <stdio.h> |
13 | #include <string.h> |
14 | |
15 | |
16 | #include "lua.h" |
17 | |
18 | #include "ldebug.h" |
19 | #include "ldo.h" |
20 | #include "lfunc.h" |
21 | #include "lgc.h" |
22 | #include "lmem.h" |
23 | #include "lobject.h" |
24 | #include "lstate.h" |
25 | #include "lstring.h" |
26 | #include "ltable.h" |
27 | #include "ltm.h" |
28 | |
29 | |
30 | /* |
31 | ** Maximum number of elements to sweep in each single step. |
32 | ** (Large enough to dissipate fixed overheads but small enough |
33 | ** to allow small steps for the collector.) |
34 | */ |
35 | #define GCSWEEPMAX 100 |
36 | |
37 | /* |
38 | ** Maximum number of finalizers to call in each single step. |
39 | */ |
40 | #define GCFINMAX 10 |
41 | |
42 | |
43 | /* |
44 | ** Cost of calling one finalizer. |
45 | */ |
46 | #define GCFINALIZECOST 50 |
47 | |
48 | |
49 | /* |
50 | ** The equivalent, in bytes, of one unit of "work" (visiting a slot, |
51 | ** sweeping an object, etc.) |
52 | */ |
53 | #define WORK2MEM sizeof(TValue) |
54 | |
55 | |
56 | /* |
57 | ** macro to adjust 'pause': 'pause' is actually used like |
58 | ** 'pause / PAUSEADJ' (value chosen by tests) |
59 | */ |
60 | #define PAUSEADJ 100 |
61 | |
62 | |
63 | /* mask with all color bits */ |
64 | #define maskcolors (bitmask(BLACKBIT) | WHITEBITS) |
65 | |
66 | /* mask with all GC bits */ |
67 | #define maskgcbits (maskcolors | AGEBITS) |
68 | |
69 | |
70 | /* macro to erase all color bits then set only the current white bit */ |
71 | #define makewhite(g,x) \ |
72 | (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g))) |
73 | |
74 | /* make an object gray (neither white nor black) */ |
75 | #define set2gray(x) resetbits(x->marked, maskcolors) |
76 | |
77 | |
78 | /* make an object black (coming from any color) */ |
79 | #define set2black(x) \ |
80 | (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT))) |
81 | |
82 | |
83 | #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x))) |
84 | |
85 | #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n))) |
86 | |
87 | |
88 | /* |
89 | ** Protected access to objects in values |
90 | */ |
91 | #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL) |
92 | |
93 | |
94 | #define markvalue(g,o) { checkliveness(g->mainthread,o); \ |
95 | if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); } |
96 | |
97 | #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); } |
98 | |
99 | #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); } |
100 | |
101 | /* |
102 | ** mark an object that can be NULL (either because it is really optional, |
103 | ** or it was stripped as debug info, or inside an uncompleted structure) |
104 | */ |
105 | #define markobjectN(g,t) { if (t) markobject(g,t); } |
106 | |
107 | static void reallymarkobject (global_State *g, GCObject *o); |
108 | static lu_mem atomic (lua_State *L); |
109 | static void entersweep (lua_State *L); |
110 | |
111 | |
112 | /* |
113 | ** {====================================================== |
114 | ** Generic functions |
115 | ** ======================================================= |
116 | */ |
117 | |
118 | |
119 | /* |
120 | ** one after last element in a hash array |
121 | */ |
122 | #define gnodelast(h) gnode(h, cast_sizet(sizenode(h))) |
123 | |
124 | |
125 | static GCObject **getgclist (GCObject *o) { |
126 | switch (o->tt) { |
127 | case LUA_VTABLE: return &gco2t(o)->gclist; |
128 | case LUA_VLCL: return &gco2lcl(o)->gclist; |
129 | case LUA_VCCL: return &gco2ccl(o)->gclist; |
130 | case LUA_VTHREAD: return &gco2th(o)->gclist; |
131 | case LUA_VPROTO: return &gco2p(o)->gclist; |
132 | case LUA_VUSERDATA: { |
133 | Udata *u = gco2u(o); |
134 | lua_assert(u->nuvalue > 0); |
135 | return &u->gclist; |
136 | } |
137 | default: lua_assert(0); return 0; |
138 | } |
139 | } |
140 | |
141 | |
142 | /* |
143 | ** Link a collectable object 'o' with a known type into the list 'p'. |
144 | ** (Must be a macro to access the 'gclist' field in different types.) |
145 | */ |
146 | #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p)) |
147 | |
148 | static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) { |
149 | lua_assert(!isgray(o)); /* cannot be in a gray list */ |
150 | *pnext = *list; |
151 | *list = o; |
152 | set2gray(o); /* now it is */ |
153 | } |
154 | |
155 | |
156 | /* |
157 | ** Link a generic collectable object 'o' into the list 'p'. |
158 | */ |
159 | #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p)) |
160 | |
161 | |
162 | |
163 | /* |
164 | ** Clear keys for empty entries in tables. If entry is empty, mark its |
165 | ** entry as dead. This allows the collection of the key, but keeps its |
166 | ** entry in the table: its removal could break a chain and could break |
167 | ** a table traversal. Other places never manipulate dead keys, because |
168 | ** its associated empty value is enough to signal that the entry is |
169 | ** logically empty. |
170 | */ |
171 | static void clearkey (Node *n) { |
172 | lua_assert(isempty(gval(n))); |
173 | if (keyiscollectable(n)) |
174 | setdeadkey(n); /* unused key; remove it */ |
175 | } |
176 | |
177 | |
178 | /* |
179 | ** tells whether a key or value can be cleared from a weak |
180 | ** table. Non-collectable objects are never removed from weak |
181 | ** tables. Strings behave as 'values', so are never removed too. for |
182 | ** other objects: if really collected, cannot keep them; for objects |
183 | ** being finalized, keep them in keys, but not in values |
184 | */ |
185 | static int iscleared (global_State *g, const GCObject *o) { |
186 | if (o == NULL) return 0; /* non-collectable value */ |
187 | else if (novariant(o->tt) == LUA_TSTRING) { |
188 | markobject(g, o); /* strings are 'values', so are never weak */ |
189 | return 0; |
190 | } |
191 | else return iswhite(o); |
192 | } |
193 | |
194 | |
195 | /* |
196 | ** Barrier that moves collector forward, that is, marks the white object |
197 | ** 'v' being pointed by the black object 'o'. In the generational |
198 | ** mode, 'v' must also become old, if 'o' is old; however, it cannot |
199 | ** be changed directly to OLD, because it may still point to non-old |
200 | ** objects. So, it is marked as OLD0. In the next cycle it will become |
201 | ** OLD1, and in the next it will finally become OLD (regular old). By |
202 | ** then, any object it points to will also be old. If called in the |
203 | ** incremental sweep phase, it clears the black object to white (sweep |
204 | ** it) to avoid other barrier calls for this same object. (That cannot |
205 | ** be done is generational mode, as its sweep does not distinguish |
206 | ** whites from deads.) |
207 | */ |
208 | void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) { |
209 | global_State *g = G(L); |
210 | lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o)); |
211 | if (keepinvariant(g)) { /* must keep invariant? */ |
212 | reallymarkobject(g, v); /* restore invariant */ |
213 | if (isold(o)) { |
214 | lua_assert(!isold(v)); /* white object could not be old */ |
215 | setage(v, G_OLD0); /* restore generational invariant */ |
216 | } |
217 | } |
218 | else { /* sweep phase */ |
219 | lua_assert(issweepphase(g)); |
220 | if (g->gckind == KGC_INC) /* incremental mode? */ |
221 | makewhite(g, o); /* mark 'o' as white to avoid other barriers */ |
222 | } |
223 | } |
224 | |
225 | |
226 | /* |
227 | ** barrier that moves collector backward, that is, mark the black object |
228 | ** pointing to a white object as gray again. |
229 | */ |
230 | void luaC_barrierback_ (lua_State *L, GCObject *o) { |
231 | global_State *g = G(L); |
232 | lua_assert(isblack(o) && !isdead(g, o)); |
233 | lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1)); |
234 | if (getage(o) == G_TOUCHED2) /* already in gray list? */ |
235 | set2gray(o); /* make it gray to become touched1 */ |
236 | else /* link it in 'grayagain' and paint it gray */ |
237 | linkobjgclist(o, g->grayagain); |
238 | if (isold(o)) /* generational mode? */ |
239 | setage(o, G_TOUCHED1); /* touched in current cycle */ |
240 | } |
241 | |
242 | |
243 | void luaC_fix (lua_State *L, GCObject *o) { |
244 | global_State *g = G(L); |
245 | lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */ |
246 | set2gray(o); /* they will be gray forever */ |
247 | setage(o, G_OLD); /* and old forever */ |
248 | g->allgc = o->next; /* remove object from 'allgc' list */ |
249 | o->next = g->fixedgc; /* link it to 'fixedgc' list */ |
250 | g->fixedgc = o; |
251 | } |
252 | |
253 | |
254 | /* |
255 | ** create a new collectable object (with given type and size) and link |
256 | ** it to 'allgc' list. |
257 | */ |
258 | GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) { |
259 | global_State *g = G(L); |
260 | GCObject *o = cast(GCObject *, luaM_newobject(L, novariant(tt), sz)); |
261 | o->marked = luaC_white(g); |
262 | o->tt = tt; |
263 | o->next = g->allgc; |
264 | g->allgc = o; |
265 | return o; |
266 | } |
267 | |
268 | /* }====================================================== */ |
269 | |
270 | |
271 | |
272 | /* |
273 | ** {====================================================== |
274 | ** Mark functions |
275 | ** ======================================================= |
276 | */ |
277 | |
278 | |
279 | /* |
280 | ** Mark an object. Userdata with no user values, strings, and closed |
281 | ** upvalues are visited and turned black here. Open upvalues are |
282 | ** already indirectly linked through their respective threads in the |
283 | ** 'twups' list, so they don't go to the gray list; nevertheless, they |
284 | ** are kept gray to avoid barriers, as their values will be revisited |
285 | ** by the thread or by 'remarkupvals'. Other objects are added to the |
286 | ** gray list to be visited (and turned black) later. Both userdata and |
287 | ** upvalues can call this function recursively, but this recursion goes |
288 | ** for at most two levels: An upvalue cannot refer to another upvalue |
289 | ** (only closures can), and a userdata's metatable must be a table. |
290 | */ |
291 | static void reallymarkobject (global_State *g, GCObject *o) { |
292 | switch (o->tt) { |
293 | case LUA_VSHRSTR: |
294 | case LUA_VLNGSTR: { |
295 | set2black(o); /* nothing to visit */ |
296 | break; |
297 | } |
298 | case LUA_VUPVAL: { |
299 | UpVal *uv = gco2upv(o); |
300 | if (upisopen(uv)) |
301 | set2gray(uv); /* open upvalues are kept gray */ |
302 | else |
303 | set2black(uv); /* closed upvalues are visited here */ |
304 | markvalue(g, uv->v); /* mark its content */ |
305 | break; |
306 | } |
307 | case LUA_VUSERDATA: { |
308 | Udata *u = gco2u(o); |
309 | if (u->nuvalue == 0) { /* no user values? */ |
310 | markobjectN(g, u->metatable); /* mark its metatable */ |
311 | set2black(u); /* nothing else to mark */ |
312 | break; |
313 | } |
314 | /* else... */ |
315 | } /* FALLTHROUGH */ |
316 | case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE: |
317 | case LUA_VTHREAD: case LUA_VPROTO: { |
318 | linkobjgclist(o, g->gray); /* to be visited later */ |
319 | break; |
320 | } |
321 | default: lua_assert(0); break; |
322 | } |
323 | } |
324 | |
325 | |
326 | /* |
327 | ** mark metamethods for basic types |
328 | */ |
329 | static void markmt (global_State *g) { |
330 | int i; |
331 | for (i=0; i < LUA_NUMTAGS; i++) |
332 | markobjectN(g, g->mt[i]); |
333 | } |
334 | |
335 | |
336 | /* |
337 | ** mark all objects in list of being-finalized |
338 | */ |
339 | static lu_mem markbeingfnz (global_State *g) { |
340 | GCObject *o; |
341 | lu_mem count = 0; |
342 | for (o = g->tobefnz; o != NULL; o = o->next) { |
343 | count++; |
344 | markobject(g, o); |
345 | } |
346 | return count; |
347 | } |
348 | |
349 | |
350 | /* |
351 | ** For each non-marked thread, simulates a barrier between each open |
352 | ** upvalue and its value. (If the thread is collected, the value will be |
353 | ** assigned to the upvalue, but then it can be too late for the barrier |
354 | ** to act. The "barrier" does not need to check colors: A non-marked |
355 | ** thread must be young; upvalues cannot be older than their threads; so |
356 | ** any visited upvalue must be young too.) Also removes the thread from |
357 | ** the list, as it was already visited. Removes also threads with no |
358 | ** upvalues, as they have nothing to be checked. (If the thread gets an |
359 | ** upvalue later, it will be linked in the list again.) |
360 | */ |
361 | static int (global_State *g) { |
362 | lua_State *thread; |
363 | lua_State **p = &g->twups; |
364 | int work = 0; /* estimate of how much work was done here */ |
365 | while ((thread = *p) != NULL) { |
366 | work++; |
367 | if (!iswhite(thread) && thread->openupval != NULL) |
368 | p = &thread->twups; /* keep marked thread with upvalues in the list */ |
369 | else { /* thread is not marked or without upvalues */ |
370 | UpVal *uv; |
371 | lua_assert(!isold(thread) || thread->openupval == NULL); |
372 | *p = thread->twups; /* remove thread from the list */ |
373 | thread->twups = thread; /* mark that it is out of list */ |
374 | for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) { |
375 | lua_assert(getage(uv) <= getage(thread)); |
376 | work++; |
377 | if (!iswhite(uv)) { /* upvalue already visited? */ |
378 | lua_assert(upisopen(uv) && isgray(uv)); |
379 | markvalue(g, uv->v); /* mark its value */ |
380 | } |
381 | } |
382 | } |
383 | } |
384 | return work; |
385 | } |
386 | |
387 | |
388 | static void cleargraylists (global_State *g) { |
389 | g->gray = g->grayagain = NULL; |
390 | g->weak = g->allweak = g->ephemeron = NULL; |
391 | } |
392 | |
393 | |
394 | /* |
395 | ** mark root set and reset all gray lists, to start a new collection |
396 | */ |
397 | static void restartcollection (global_State *g) { |
398 | cleargraylists(g); |
399 | markobject(g, g->mainthread); |
400 | markvalue(g, &g->l_registry); |
401 | markmt(g); |
402 | markbeingfnz(g); /* mark any finalizing object left from previous cycle */ |
403 | } |
404 | |
405 | /* }====================================================== */ |
406 | |
407 | |
408 | /* |
409 | ** {====================================================== |
410 | ** Traverse functions |
411 | ** ======================================================= |
412 | */ |
413 | |
414 | |
415 | /* |
416 | ** Check whether object 'o' should be kept in the 'grayagain' list for |
417 | ** post-processing by 'correctgraylist'. (It could put all old objects |
418 | ** in the list and leave all the work to 'correctgraylist', but it is |
419 | ** more efficient to avoid adding elements that will be removed.) Only |
420 | ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go |
421 | ** back to a gray list, but then it must become OLD. (That is what |
422 | ** 'correctgraylist' does when it finds a TOUCHED2 object.) |
423 | */ |
424 | static void genlink (global_State *g, GCObject *o) { |
425 | lua_assert(isblack(o)); |
426 | if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */ |
427 | linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */ |
428 | } /* everything else do not need to be linked back */ |
429 | else if (getage(o) == G_TOUCHED2) |
430 | changeage(o, G_TOUCHED2, G_OLD); /* advance age */ |
431 | } |
432 | |
433 | |
434 | /* |
435 | ** Traverse a table with weak values and link it to proper list. During |
436 | ** propagate phase, keep it in 'grayagain' list, to be revisited in the |
437 | ** atomic phase. In the atomic phase, if table has any white value, |
438 | ** put it in 'weak' list, to be cleared. |
439 | */ |
440 | static void traverseweakvalue (global_State *g, Table *h) { |
441 | Node *n, *limit = gnodelast(h); |
442 | /* if there is array part, assume it may have white values (it is not |
443 | worth traversing it now just to check) */ |
444 | int hasclears = (h->alimit > 0); |
445 | for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ |
446 | if (isempty(gval(n))) /* entry is empty? */ |
447 | clearkey(n); /* clear its key */ |
448 | else { |
449 | lua_assert(!keyisnil(n)); |
450 | markkey(g, n); |
451 | if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */ |
452 | hasclears = 1; /* table will have to be cleared */ |
453 | } |
454 | } |
455 | if (g->gcstate == GCSatomic && hasclears) |
456 | linkgclist(h, g->weak); /* has to be cleared later */ |
457 | else |
458 | linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ |
459 | } |
460 | |
461 | |
462 | /* |
463 | ** Traverse an ephemeron table and link it to proper list. Returns true |
464 | ** iff any object was marked during this traversal (which implies that |
465 | ** convergence has to continue). During propagation phase, keep table |
466 | ** in 'grayagain' list, to be visited again in the atomic phase. In |
467 | ** the atomic phase, if table has any white->white entry, it has to |
468 | ** be revisited during ephemeron convergence (as that key may turn |
469 | ** black). Otherwise, if it has any white key, table has to be cleared |
470 | ** (in the atomic phase). In generational mode, some tables |
471 | ** must be kept in some gray list for post-processing; this is done |
472 | ** by 'genlink'. |
473 | */ |
474 | static int traverseephemeron (global_State *g, Table *h, int inv) { |
475 | int marked = 0; /* true if an object is marked in this traversal */ |
476 | int hasclears = 0; /* true if table has white keys */ |
477 | int hasww = 0; /* true if table has entry "white-key -> white-value" */ |
478 | unsigned int i; |
479 | unsigned int asize = luaH_realasize(h); |
480 | unsigned int nsize = sizenode(h); |
481 | /* traverse array part */ |
482 | for (i = 0; i < asize; i++) { |
483 | if (valiswhite(&h->array[i])) { |
484 | marked = 1; |
485 | reallymarkobject(g, gcvalue(&h->array[i])); |
486 | } |
487 | } |
488 | /* traverse hash part; if 'inv', traverse descending |
489 | (see 'convergeephemerons') */ |
490 | for (i = 0; i < nsize; i++) { |
491 | Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i); |
492 | if (isempty(gval(n))) /* entry is empty? */ |
493 | clearkey(n); /* clear its key */ |
494 | else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */ |
495 | hasclears = 1; /* table must be cleared */ |
496 | if (valiswhite(gval(n))) /* value not marked yet? */ |
497 | hasww = 1; /* white-white entry */ |
498 | } |
499 | else if (valiswhite(gval(n))) { /* value not marked yet? */ |
500 | marked = 1; |
501 | reallymarkobject(g, gcvalue(gval(n))); /* mark it now */ |
502 | } |
503 | } |
504 | /* link table into proper list */ |
505 | if (g->gcstate == GCSpropagate) |
506 | linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ |
507 | else if (hasww) /* table has white->white entries? */ |
508 | linkgclist(h, g->ephemeron); /* have to propagate again */ |
509 | else if (hasclears) /* table has white keys? */ |
510 | linkgclist(h, g->allweak); /* may have to clean white keys */ |
511 | else |
512 | genlink(g, obj2gco(h)); /* check whether collector still needs to see it */ |
513 | return marked; |
514 | } |
515 | |
516 | |
517 | static void traversestrongtable (global_State *g, Table *h) { |
518 | Node *n, *limit = gnodelast(h); |
519 | unsigned int i; |
520 | unsigned int asize = luaH_realasize(h); |
521 | for (i = 0; i < asize; i++) /* traverse array part */ |
522 | markvalue(g, &h->array[i]); |
523 | for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ |
524 | if (isempty(gval(n))) /* entry is empty? */ |
525 | clearkey(n); /* clear its key */ |
526 | else { |
527 | lua_assert(!keyisnil(n)); |
528 | markkey(g, n); |
529 | markvalue(g, gval(n)); |
530 | } |
531 | } |
532 | genlink(g, obj2gco(h)); |
533 | } |
534 | |
535 | |
536 | static lu_mem traversetable (global_State *g, Table *h) { |
537 | const char *weakkey, *weakvalue; |
538 | const TValue *mode = gfasttm(g, h->metatable, TM_MODE); |
539 | markobjectN(g, h->metatable); |
540 | if (mode && ttisstring(mode) && /* is there a weak mode? */ |
541 | (cast_void(weakkey = strchr(svalue(mode), 'k')), |
542 | cast_void(weakvalue = strchr(svalue(mode), 'v')), |
543 | (weakkey || weakvalue))) { /* is really weak? */ |
544 | if (!weakkey) /* strong keys? */ |
545 | traverseweakvalue(g, h); |
546 | else if (!weakvalue) /* strong values? */ |
547 | traverseephemeron(g, h, 0); |
548 | else /* all weak */ |
549 | linkgclist(h, g->allweak); /* nothing to traverse now */ |
550 | } |
551 | else /* not weak */ |
552 | traversestrongtable(g, h); |
553 | return 1 + h->alimit + 2 * allocsizenode(h); |
554 | } |
555 | |
556 | |
557 | static int traverseudata (global_State *g, Udata *u) { |
558 | int i; |
559 | markobjectN(g, u->metatable); /* mark its metatable */ |
560 | for (i = 0; i < u->nuvalue; i++) |
561 | markvalue(g, &u->uv[i].uv); |
562 | genlink(g, obj2gco(u)); |
563 | return 1 + u->nuvalue; |
564 | } |
565 | |
566 | |
567 | /* |
568 | ** Traverse a prototype. (While a prototype is being build, its |
569 | ** arrays can be larger than needed; the extra slots are filled with |
570 | ** NULL, so the use of 'markobjectN') |
571 | */ |
572 | static int traverseproto (global_State *g, Proto *f) { |
573 | int i; |
574 | markobjectN(g, f->source); |
575 | for (i = 0; i < f->sizek; i++) /* mark literals */ |
576 | markvalue(g, &f->k[i]); |
577 | for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */ |
578 | markobjectN(g, f->upvalues[i].name); |
579 | for (i = 0; i < f->sizep; i++) /* mark nested protos */ |
580 | markobjectN(g, f->p[i]); |
581 | for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */ |
582 | markobjectN(g, f->locvars[i].varname); |
583 | return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars; |
584 | } |
585 | |
586 | |
587 | static int traverseCclosure (global_State *g, CClosure *cl) { |
588 | int i; |
589 | for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */ |
590 | markvalue(g, &cl->upvalue[i]); |
591 | return 1 + cl->nupvalues; |
592 | } |
593 | |
594 | /* |
595 | ** Traverse a Lua closure, marking its prototype and its upvalues. |
596 | ** (Both can be NULL while closure is being created.) |
597 | */ |
598 | static int traverseLclosure (global_State *g, LClosure *cl) { |
599 | int i; |
600 | markobjectN(g, cl->p); /* mark its prototype */ |
601 | for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */ |
602 | UpVal *uv = cl->upvals[i]; |
603 | markobjectN(g, uv); /* mark upvalue */ |
604 | } |
605 | return 1 + cl->nupvalues; |
606 | } |
607 | |
608 | |
609 | /* |
610 | ** Traverse a thread, marking the elements in the stack up to its top |
611 | ** and cleaning the rest of the stack in the final traversal. That |
612 | ** ensures that the entire stack have valid (non-dead) objects. |
613 | ** Threads have no barriers. In gen. mode, old threads must be visited |
614 | ** at every cycle, because they might point to young objects. In inc. |
615 | ** mode, the thread can still be modified before the end of the cycle, |
616 | ** and therefore it must be visited again in the atomic phase. To ensure |
617 | ** these visits, threads must return to a gray list if they are not new |
618 | ** (which can only happen in generational mode) or if the traverse is in |
619 | ** the propagate phase (which can only happen in incremental mode). |
620 | */ |
621 | static int traversethread (global_State *g, lua_State *th) { |
622 | UpVal *uv; |
623 | StkId o = th->stack; |
624 | if (isold(th) || g->gcstate == GCSpropagate) |
625 | linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ |
626 | if (o == NULL) |
627 | return 1; /* stack not completely built yet */ |
628 | lua_assert(g->gcstate == GCSatomic || |
629 | th->openupval == NULL || isintwups(th)); |
630 | for (; o < th->top; o++) /* mark live elements in the stack */ |
631 | markvalue(g, s2v(o)); |
632 | for (uv = th->openupval; uv != NULL; uv = uv->u.open.next) |
633 | markobject(g, uv); /* open upvalues cannot be collected */ |
634 | if (g->gcstate == GCSatomic) { /* final traversal? */ |
635 | for (; o < th->stack_last + EXTRA_STACK; o++) |
636 | setnilvalue(s2v(o)); /* clear dead stack slice */ |
637 | /* 'remarkupvals' may have removed thread from 'twups' list */ |
638 | if (!isintwups(th) && th->openupval != NULL) { |
639 | th->twups = g->twups; /* link it back to the list */ |
640 | g->twups = th; |
641 | } |
642 | } |
643 | else if (!g->gcemergency) |
644 | luaD_shrinkstack(th); /* do not change stack in emergency cycle */ |
645 | return 1 + stacksize(th); |
646 | } |
647 | |
648 | |
649 | /* |
650 | ** traverse one gray object, turning it to black. |
651 | */ |
652 | static lu_mem propagatemark (global_State *g) { |
653 | GCObject *o = g->gray; |
654 | nw2black(o); |
655 | g->gray = *getgclist(o); /* remove from 'gray' list */ |
656 | switch (o->tt) { |
657 | case LUA_VTABLE: return traversetable(g, gco2t(o)); |
658 | case LUA_VUSERDATA: return traverseudata(g, gco2u(o)); |
659 | case LUA_VLCL: return traverseLclosure(g, gco2lcl(o)); |
660 | case LUA_VCCL: return traverseCclosure(g, gco2ccl(o)); |
661 | case LUA_VPROTO: return traverseproto(g, gco2p(o)); |
662 | case LUA_VTHREAD: return traversethread(g, gco2th(o)); |
663 | default: lua_assert(0); return 0; |
664 | } |
665 | } |
666 | |
667 | |
668 | static lu_mem propagateall (global_State *g) { |
669 | lu_mem tot = 0; |
670 | while (g->gray) |
671 | tot += propagatemark(g); |
672 | return tot; |
673 | } |
674 | |
675 | |
676 | /* |
677 | ** Traverse all ephemeron tables propagating marks from keys to values. |
678 | ** Repeat until it converges, that is, nothing new is marked. 'dir' |
679 | ** inverts the direction of the traversals, trying to speed up |
680 | ** convergence on chains in the same table. |
681 | ** |
682 | */ |
683 | static void convergeephemerons (global_State *g) { |
684 | int changed; |
685 | int dir = 0; |
686 | do { |
687 | GCObject *w; |
688 | GCObject *next = g->ephemeron; /* get ephemeron list */ |
689 | g->ephemeron = NULL; /* tables may return to this list when traversed */ |
690 | changed = 0; |
691 | while ((w = next) != NULL) { /* for each ephemeron table */ |
692 | Table *h = gco2t(w); |
693 | next = h->gclist; /* list is rebuilt during loop */ |
694 | nw2black(h); /* out of the list (for now) */ |
695 | if (traverseephemeron(g, h, dir)) { /* marked some value? */ |
696 | propagateall(g); /* propagate changes */ |
697 | changed = 1; /* will have to revisit all ephemeron tables */ |
698 | } |
699 | } |
700 | dir = !dir; /* invert direction next time */ |
701 | } while (changed); /* repeat until no more changes */ |
702 | } |
703 | |
704 | /* }====================================================== */ |
705 | |
706 | |
707 | /* |
708 | ** {====================================================== |
709 | ** Sweep Functions |
710 | ** ======================================================= |
711 | */ |
712 | |
713 | |
714 | /* |
715 | ** clear entries with unmarked keys from all weaktables in list 'l' |
716 | */ |
717 | static void clearbykeys (global_State *g, GCObject *l) { |
718 | for (; l; l = gco2t(l)->gclist) { |
719 | Table *h = gco2t(l); |
720 | Node *limit = gnodelast(h); |
721 | Node *n; |
722 | for (n = gnode(h, 0); n < limit; n++) { |
723 | if (iscleared(g, gckeyN(n))) /* unmarked key? */ |
724 | setempty(gval(n)); /* remove entry */ |
725 | if (isempty(gval(n))) /* is entry empty? */ |
726 | clearkey(n); /* clear its key */ |
727 | } |
728 | } |
729 | } |
730 | |
731 | |
732 | /* |
733 | ** clear entries with unmarked values from all weaktables in list 'l' up |
734 | ** to element 'f' |
735 | */ |
736 | static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) { |
737 | for (; l != f; l = gco2t(l)->gclist) { |
738 | Table *h = gco2t(l); |
739 | Node *n, *limit = gnodelast(h); |
740 | unsigned int i; |
741 | unsigned int asize = luaH_realasize(h); |
742 | for (i = 0; i < asize; i++) { |
743 | TValue *o = &h->array[i]; |
744 | if (iscleared(g, gcvalueN(o))) /* value was collected? */ |
745 | setempty(o); /* remove entry */ |
746 | } |
747 | for (n = gnode(h, 0); n < limit; n++) { |
748 | if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */ |
749 | setempty(gval(n)); /* remove entry */ |
750 | if (isempty(gval(n))) /* is entry empty? */ |
751 | clearkey(n); /* clear its key */ |
752 | } |
753 | } |
754 | } |
755 | |
756 | |
757 | static void freeupval (lua_State *L, UpVal *uv) { |
758 | if (upisopen(uv)) |
759 | luaF_unlinkupval(uv); |
760 | luaM_free(L, uv); |
761 | } |
762 | |
763 | |
764 | static void freeobj (lua_State *L, GCObject *o) { |
765 | switch (o->tt) { |
766 | case LUA_VPROTO: |
767 | luaF_freeproto(L, gco2p(o)); |
768 | break; |
769 | case LUA_VUPVAL: |
770 | freeupval(L, gco2upv(o)); |
771 | break; |
772 | case LUA_VLCL: { |
773 | LClosure *cl = gco2lcl(o); |
774 | luaM_freemem(L, cl, sizeLclosure(cl->nupvalues)); |
775 | break; |
776 | } |
777 | case LUA_VCCL: { |
778 | CClosure *cl = gco2ccl(o); |
779 | luaM_freemem(L, cl, sizeCclosure(cl->nupvalues)); |
780 | break; |
781 | } |
782 | case LUA_VTABLE: |
783 | luaH_free(L, gco2t(o)); |
784 | break; |
785 | case LUA_VTHREAD: |
786 | luaE_freethread(L, gco2th(o)); |
787 | break; |
788 | case LUA_VUSERDATA: { |
789 | Udata *u = gco2u(o); |
790 | luaM_freemem(L, o, sizeudata(u->nuvalue, u->len)); |
791 | break; |
792 | } |
793 | case LUA_VSHRSTR: { |
794 | TString *ts = gco2ts(o); |
795 | luaS_remove(L, ts); /* remove it from hash table */ |
796 | luaM_freemem(L, ts, sizelstring(ts->shrlen)); |
797 | break; |
798 | } |
799 | case LUA_VLNGSTR: { |
800 | TString *ts = gco2ts(o); |
801 | luaM_freemem(L, ts, sizelstring(ts->u.lnglen)); |
802 | break; |
803 | } |
804 | default: lua_assert(0); |
805 | } |
806 | } |
807 | |
808 | |
809 | /* |
810 | ** sweep at most 'countin' elements from a list of GCObjects erasing dead |
811 | ** objects, where a dead object is one marked with the old (non current) |
812 | ** white; change all non-dead objects back to white, preparing for next |
813 | ** collection cycle. Return where to continue the traversal or NULL if |
814 | ** list is finished. ('*countout' gets the number of elements traversed.) |
815 | */ |
816 | static GCObject **sweeplist (lua_State *L, GCObject **p, int countin, |
817 | int *countout) { |
818 | global_State *g = G(L); |
819 | int ow = otherwhite(g); |
820 | int i; |
821 | int white = luaC_white(g); /* current white */ |
822 | for (i = 0; *p != NULL && i < countin; i++) { |
823 | GCObject *curr = *p; |
824 | int marked = curr->marked; |
825 | if (isdeadm(ow, marked)) { /* is 'curr' dead? */ |
826 | *p = curr->next; /* remove 'curr' from list */ |
827 | freeobj(L, curr); /* erase 'curr' */ |
828 | } |
829 | else { /* change mark to 'white' */ |
830 | curr->marked = cast_byte((marked & ~maskgcbits) | white); |
831 | p = &curr->next; /* go to next element */ |
832 | } |
833 | } |
834 | if (countout) |
835 | *countout = i; /* number of elements traversed */ |
836 | return (*p == NULL) ? NULL : p; |
837 | } |
838 | |
839 | |
840 | /* |
841 | ** sweep a list until a live object (or end of list) |
842 | */ |
843 | static GCObject **sweeptolive (lua_State *L, GCObject **p) { |
844 | GCObject **old = p; |
845 | do { |
846 | p = sweeplist(L, p, 1, NULL); |
847 | } while (p == old); |
848 | return p; |
849 | } |
850 | |
851 | /* }====================================================== */ |
852 | |
853 | |
854 | /* |
855 | ** {====================================================== |
856 | ** Finalization |
857 | ** ======================================================= |
858 | */ |
859 | |
860 | /* |
861 | ** If possible, shrink string table. |
862 | */ |
863 | static void checkSizes (lua_State *L, global_State *g) { |
864 | if (!g->gcemergency) { |
865 | if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */ |
866 | l_mem olddebt = g->GCdebt; |
867 | luaS_resize(L, g->strt.size / 2); |
868 | g->GCestimate += g->GCdebt - olddebt; /* correct estimate */ |
869 | } |
870 | } |
871 | } |
872 | |
873 | |
874 | /* |
875 | ** Get the next udata to be finalized from the 'tobefnz' list, and |
876 | ** link it back into the 'allgc' list. |
877 | */ |
878 | static GCObject *udata2finalize (global_State *g) { |
879 | GCObject *o = g->tobefnz; /* get first element */ |
880 | lua_assert(tofinalize(o)); |
881 | g->tobefnz = o->next; /* remove it from 'tobefnz' list */ |
882 | o->next = g->allgc; /* return it to 'allgc' list */ |
883 | g->allgc = o; |
884 | resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */ |
885 | if (issweepphase(g)) |
886 | makewhite(g, o); /* "sweep" object */ |
887 | else if (getage(o) == G_OLD1) |
888 | g->firstold1 = o; /* it is the first OLD1 object in the list */ |
889 | return o; |
890 | } |
891 | |
892 | |
893 | static void dothecall (lua_State *L, void *ud) { |
894 | UNUSED(ud); |
895 | luaD_callnoyield(L, L->top - 2, 0); |
896 | } |
897 | |
898 | |
899 | static void GCTM (lua_State *L) { |
900 | global_State *g = G(L); |
901 | const TValue *tm; |
902 | TValue v; |
903 | lua_assert(!g->gcemergency); |
904 | setgcovalue(L, &v, udata2finalize(g)); |
905 | tm = luaT_gettmbyobj(L, &v, TM_GC); |
906 | if (!notm(tm)) { /* is there a finalizer? */ |
907 | int status; |
908 | lu_byte oldah = L->allowhook; |
909 | int running = g->gcrunning; |
910 | L->allowhook = 0; /* stop debug hooks during GC metamethod */ |
911 | g->gcrunning = 0; /* avoid GC steps */ |
912 | setobj2s(L, L->top++, tm); /* push finalizer... */ |
913 | setobj2s(L, L->top++, &v); /* ... and its argument */ |
914 | L->ci->callstatus |= CIST_FIN; /* will run a finalizer */ |
915 | status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top - 2), 0); |
916 | L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */ |
917 | L->allowhook = oldah; /* restore hooks */ |
918 | g->gcrunning = running; /* restore state */ |
919 | if (l_unlikely(status != LUA_OK)) { /* error while running __gc? */ |
920 | luaE_warnerror(L, "__gc metamethod" ); |
921 | L->top--; /* pops error object */ |
922 | } |
923 | } |
924 | } |
925 | |
926 | |
927 | /* |
928 | ** Call a few finalizers |
929 | */ |
930 | static int runafewfinalizers (lua_State *L, int n) { |
931 | global_State *g = G(L); |
932 | int i; |
933 | for (i = 0; i < n && g->tobefnz; i++) |
934 | GCTM(L); /* call one finalizer */ |
935 | return i; |
936 | } |
937 | |
938 | |
939 | /* |
940 | ** call all pending finalizers |
941 | */ |
942 | static void callallpendingfinalizers (lua_State *L) { |
943 | global_State *g = G(L); |
944 | while (g->tobefnz) |
945 | GCTM(L); |
946 | } |
947 | |
948 | |
949 | /* |
950 | ** find last 'next' field in list 'p' list (to add elements in its end) |
951 | */ |
952 | static GCObject **findlast (GCObject **p) { |
953 | while (*p != NULL) |
954 | p = &(*p)->next; |
955 | return p; |
956 | } |
957 | |
958 | |
959 | /* |
960 | ** Move all unreachable objects (or 'all' objects) that need |
961 | ** finalization from list 'finobj' to list 'tobefnz' (to be finalized). |
962 | ** (Note that objects after 'finobjold1' cannot be white, so they |
963 | ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL, |
964 | ** so the whole list is traversed.) |
965 | */ |
966 | static void separatetobefnz (global_State *g, int all) { |
967 | GCObject *curr; |
968 | GCObject **p = &g->finobj; |
969 | GCObject **lastnext = findlast(&g->tobefnz); |
970 | while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */ |
971 | lua_assert(tofinalize(curr)); |
972 | if (!(iswhite(curr) || all)) /* not being collected? */ |
973 | p = &curr->next; /* don't bother with it */ |
974 | else { |
975 | if (curr == g->finobjsur) /* removing 'finobjsur'? */ |
976 | g->finobjsur = curr->next; /* correct it */ |
977 | *p = curr->next; /* remove 'curr' from 'finobj' list */ |
978 | curr->next = *lastnext; /* link at the end of 'tobefnz' list */ |
979 | *lastnext = curr; |
980 | lastnext = &curr->next; |
981 | } |
982 | } |
983 | } |
984 | |
985 | |
986 | /* |
987 | ** If pointer 'p' points to 'o', move it to the next element. |
988 | */ |
989 | static void checkpointer (GCObject **p, GCObject *o) { |
990 | if (o == *p) |
991 | *p = o->next; |
992 | } |
993 | |
994 | |
995 | /* |
996 | ** Correct pointers to objects inside 'allgc' list when |
997 | ** object 'o' is being removed from the list. |
998 | */ |
999 | static void correctpointers (global_State *g, GCObject *o) { |
1000 | checkpointer(&g->survival, o); |
1001 | checkpointer(&g->old1, o); |
1002 | checkpointer(&g->reallyold, o); |
1003 | checkpointer(&g->firstold1, o); |
1004 | } |
1005 | |
1006 | |
1007 | /* |
1008 | ** if object 'o' has a finalizer, remove it from 'allgc' list (must |
1009 | ** search the list to find it) and link it in 'finobj' list. |
1010 | */ |
1011 | void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) { |
1012 | global_State *g = G(L); |
1013 | if (tofinalize(o) || /* obj. is already marked... */ |
1014 | gfasttm(g, mt, TM_GC) == NULL) /* or has no finalizer? */ |
1015 | return; /* nothing to be done */ |
1016 | else { /* move 'o' to 'finobj' list */ |
1017 | GCObject **p; |
1018 | if (issweepphase(g)) { |
1019 | makewhite(g, o); /* "sweep" object 'o' */ |
1020 | if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */ |
1021 | g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */ |
1022 | } |
1023 | else |
1024 | correctpointers(g, o); |
1025 | /* search for pointer pointing to 'o' */ |
1026 | for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ } |
1027 | *p = o->next; /* remove 'o' from 'allgc' list */ |
1028 | o->next = g->finobj; /* link it in 'finobj' list */ |
1029 | g->finobj = o; |
1030 | l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */ |
1031 | } |
1032 | } |
1033 | |
1034 | /* }====================================================== */ |
1035 | |
1036 | |
1037 | /* |
1038 | ** {====================================================== |
1039 | ** Generational Collector |
1040 | ** ======================================================= |
1041 | */ |
1042 | |
1043 | static void setpause (global_State *g); |
1044 | |
1045 | |
1046 | /* |
1047 | ** Sweep a list of objects to enter generational mode. Deletes dead |
1048 | ** objects and turns the non dead to old. All non-dead threads---which |
1049 | ** are now old---must be in a gray list. Everything else is not in a |
1050 | ** gray list. Open upvalues are also kept gray. |
1051 | */ |
1052 | static void sweep2old (lua_State *L, GCObject **p) { |
1053 | GCObject *curr; |
1054 | global_State *g = G(L); |
1055 | while ((curr = *p) != NULL) { |
1056 | if (iswhite(curr)) { /* is 'curr' dead? */ |
1057 | lua_assert(isdead(g, curr)); |
1058 | *p = curr->next; /* remove 'curr' from list */ |
1059 | freeobj(L, curr); /* erase 'curr' */ |
1060 | } |
1061 | else { /* all surviving objects become old */ |
1062 | setage(curr, G_OLD); |
1063 | if (curr->tt == LUA_VTHREAD) { /* threads must be watched */ |
1064 | lua_State *th = gco2th(curr); |
1065 | linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ |
1066 | } |
1067 | else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr))) |
1068 | set2gray(curr); /* open upvalues are always gray */ |
1069 | else /* everything else is black */ |
1070 | nw2black(curr); |
1071 | p = &curr->next; /* go to next element */ |
1072 | } |
1073 | } |
1074 | } |
1075 | |
1076 | |
1077 | /* |
1078 | ** Sweep for generational mode. Delete dead objects. (Because the |
1079 | ** collection is not incremental, there are no "new white" objects |
1080 | ** during the sweep. So, any white object must be dead.) For |
1081 | ** non-dead objects, advance their ages and clear the color of |
1082 | ** new objects. (Old objects keep their colors.) |
1083 | ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced |
1084 | ** here, because these old-generation objects are usually not swept |
1085 | ** here. They will all be advanced in 'correctgraylist'. That function |
1086 | ** will also remove objects turned white here from any gray list. |
1087 | */ |
1088 | static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p, |
1089 | GCObject *limit, GCObject **pfirstold1) { |
1090 | static const lu_byte nextage[] = { |
1091 | G_SURVIVAL, /* from G_NEW */ |
1092 | G_OLD1, /* from G_SURVIVAL */ |
1093 | G_OLD1, /* from G_OLD0 */ |
1094 | G_OLD, /* from G_OLD1 */ |
1095 | G_OLD, /* from G_OLD (do not change) */ |
1096 | G_TOUCHED1, /* from G_TOUCHED1 (do not change) */ |
1097 | G_TOUCHED2 /* from G_TOUCHED2 (do not change) */ |
1098 | }; |
1099 | int white = luaC_white(g); |
1100 | GCObject *curr; |
1101 | while ((curr = *p) != limit) { |
1102 | if (iswhite(curr)) { /* is 'curr' dead? */ |
1103 | lua_assert(!isold(curr) && isdead(g, curr)); |
1104 | *p = curr->next; /* remove 'curr' from list */ |
1105 | freeobj(L, curr); /* erase 'curr' */ |
1106 | } |
1107 | else { /* correct mark and age */ |
1108 | if (getage(curr) == G_NEW) { /* new objects go back to white */ |
1109 | int marked = curr->marked & ~maskgcbits; /* erase GC bits */ |
1110 | curr->marked = cast_byte(marked | G_SURVIVAL | white); |
1111 | } |
1112 | else { /* all other objects will be old, and so keep their color */ |
1113 | setage(curr, nextage[getage(curr)]); |
1114 | if (getage(curr) == G_OLD1 && *pfirstold1 == NULL) |
1115 | *pfirstold1 = curr; /* first OLD1 object in the list */ |
1116 | } |
1117 | p = &curr->next; /* go to next element */ |
1118 | } |
1119 | } |
1120 | return p; |
1121 | } |
1122 | |
1123 | |
1124 | /* |
1125 | ** Traverse a list making all its elements white and clearing their |
1126 | ** age. In incremental mode, all objects are 'new' all the time, |
1127 | ** except for fixed strings (which are always old). |
1128 | */ |
1129 | static void whitelist (global_State *g, GCObject *p) { |
1130 | int white = luaC_white(g); |
1131 | for (; p != NULL; p = p->next) |
1132 | p->marked = cast_byte((p->marked & ~maskgcbits) | white); |
1133 | } |
1134 | |
1135 | |
1136 | /* |
1137 | ** Correct a list of gray objects. Return pointer to where rest of the |
1138 | ** list should be linked. |
1139 | ** Because this correction is done after sweeping, young objects might |
1140 | ** be turned white and still be in the list. They are only removed. |
1141 | ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list; |
1142 | ** Non-white threads also remain on the list; 'TOUCHED2' objects become |
1143 | ** regular old; they and anything else are removed from the list. |
1144 | */ |
1145 | static GCObject **correctgraylist (GCObject **p) { |
1146 | GCObject *curr; |
1147 | while ((curr = *p) != NULL) { |
1148 | GCObject **next = getgclist(curr); |
1149 | if (iswhite(curr)) |
1150 | goto remove; /* remove all white objects */ |
1151 | else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */ |
1152 | lua_assert(isgray(curr)); |
1153 | nw2black(curr); /* make it black, for next barrier */ |
1154 | changeage(curr, G_TOUCHED1, G_TOUCHED2); |
1155 | goto remain; /* keep it in the list and go to next element */ |
1156 | } |
1157 | else if (curr->tt == LUA_VTHREAD) { |
1158 | lua_assert(isgray(curr)); |
1159 | goto remain; /* keep non-white threads on the list */ |
1160 | } |
1161 | else { /* everything else is removed */ |
1162 | lua_assert(isold(curr)); /* young objects should be white here */ |
1163 | if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */ |
1164 | changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */ |
1165 | nw2black(curr); /* make object black (to be removed) */ |
1166 | goto remove; |
1167 | } |
1168 | remove: *p = *next; continue; |
1169 | remain: p = next; continue; |
1170 | } |
1171 | return p; |
1172 | } |
1173 | |
1174 | |
1175 | /* |
1176 | ** Correct all gray lists, coalescing them into 'grayagain'. |
1177 | */ |
1178 | static void correctgraylists (global_State *g) { |
1179 | GCObject **list = correctgraylist(&g->grayagain); |
1180 | *list = g->weak; g->weak = NULL; |
1181 | list = correctgraylist(list); |
1182 | *list = g->allweak; g->allweak = NULL; |
1183 | list = correctgraylist(list); |
1184 | *list = g->ephemeron; g->ephemeron = NULL; |
1185 | correctgraylist(list); |
1186 | } |
1187 | |
1188 | |
1189 | /* |
1190 | ** Mark black 'OLD1' objects when starting a new young collection. |
1191 | ** Gray objects are already in some gray list, and so will be visited |
1192 | ** in the atomic step. |
1193 | */ |
1194 | static void markold (global_State *g, GCObject *from, GCObject *to) { |
1195 | GCObject *p; |
1196 | for (p = from; p != to; p = p->next) { |
1197 | if (getage(p) == G_OLD1) { |
1198 | lua_assert(!iswhite(p)); |
1199 | changeage(p, G_OLD1, G_OLD); /* now they are old */ |
1200 | if (isblack(p)) |
1201 | reallymarkobject(g, p); |
1202 | } |
1203 | } |
1204 | } |
1205 | |
1206 | |
1207 | /* |
1208 | ** Finish a young-generation collection. |
1209 | */ |
1210 | static void finishgencycle (lua_State *L, global_State *g) { |
1211 | correctgraylists(g); |
1212 | checkSizes(L, g); |
1213 | g->gcstate = GCSpropagate; /* skip restart */ |
1214 | if (!g->gcemergency) |
1215 | callallpendingfinalizers(L); |
1216 | } |
1217 | |
1218 | |
1219 | /* |
1220 | ** Does a young collection. First, mark 'OLD1' objects. Then does the |
1221 | ** atomic step. Then, sweep all lists and advance pointers. Finally, |
1222 | ** finish the collection. |
1223 | */ |
1224 | static void youngcollection (lua_State *L, global_State *g) { |
1225 | GCObject **psurvival; /* to point to first non-dead survival object */ |
1226 | GCObject *dummy; /* dummy out parameter to 'sweepgen' */ |
1227 | lua_assert(g->gcstate == GCSpropagate); |
1228 | if (g->firstold1) { /* are there regular OLD1 objects? */ |
1229 | markold(g, g->firstold1, g->reallyold); /* mark them */ |
1230 | g->firstold1 = NULL; /* no more OLD1 objects (for now) */ |
1231 | } |
1232 | markold(g, g->finobj, g->finobjrold); |
1233 | markold(g, g->tobefnz, NULL); |
1234 | atomic(L); |
1235 | |
1236 | /* sweep nursery and get a pointer to its last live element */ |
1237 | g->gcstate = GCSswpallgc; |
1238 | psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1); |
1239 | /* sweep 'survival' */ |
1240 | sweepgen(L, g, psurvival, g->old1, &g->firstold1); |
1241 | g->reallyold = g->old1; |
1242 | g->old1 = *psurvival; /* 'survival' survivals are old now */ |
1243 | g->survival = g->allgc; /* all news are survivals */ |
1244 | |
1245 | /* repeat for 'finobj' lists */ |
1246 | dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */ |
1247 | psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy); |
1248 | /* sweep 'survival' */ |
1249 | sweepgen(L, g, psurvival, g->finobjold1, &dummy); |
1250 | g->finobjrold = g->finobjold1; |
1251 | g->finobjold1 = *psurvival; /* 'survival' survivals are old now */ |
1252 | g->finobjsur = g->finobj; /* all news are survivals */ |
1253 | |
1254 | sweepgen(L, g, &g->tobefnz, NULL, &dummy); |
1255 | finishgencycle(L, g); |
1256 | } |
1257 | |
1258 | |
1259 | /* |
1260 | ** Clears all gray lists, sweeps objects, and prepare sublists to enter |
1261 | ** generational mode. The sweeps remove dead objects and turn all |
1262 | ** surviving objects to old. Threads go back to 'grayagain'; everything |
1263 | ** else is turned black (not in any gray list). |
1264 | */ |
1265 | static void atomic2gen (lua_State *L, global_State *g) { |
1266 | cleargraylists(g); |
1267 | /* sweep all elements making them old */ |
1268 | g->gcstate = GCSswpallgc; |
1269 | sweep2old(L, &g->allgc); |
1270 | /* everything alive now is old */ |
1271 | g->reallyold = g->old1 = g->survival = g->allgc; |
1272 | g->firstold1 = NULL; /* there are no OLD1 objects anywhere */ |
1273 | |
1274 | /* repeat for 'finobj' lists */ |
1275 | sweep2old(L, &g->finobj); |
1276 | g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj; |
1277 | |
1278 | sweep2old(L, &g->tobefnz); |
1279 | |
1280 | g->gckind = KGC_GEN; |
1281 | g->lastatomic = 0; |
1282 | g->GCestimate = gettotalbytes(g); /* base for memory control */ |
1283 | finishgencycle(L, g); |
1284 | } |
1285 | |
1286 | |
1287 | /* |
1288 | ** Enter generational mode. Must go until the end of an atomic cycle |
1289 | ** to ensure that all objects are correctly marked and weak tables |
1290 | ** are cleared. Then, turn all objects into old and finishes the |
1291 | ** collection. |
1292 | */ |
1293 | static lu_mem entergen (lua_State *L, global_State *g) { |
1294 | lu_mem numobjs; |
1295 | luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */ |
1296 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ |
1297 | numobjs = atomic(L); /* propagates all and then do the atomic stuff */ |
1298 | atomic2gen(L, g); |
1299 | return numobjs; |
1300 | } |
1301 | |
1302 | |
1303 | /* |
1304 | ** Enter incremental mode. Turn all objects white, make all |
1305 | ** intermediate lists point to NULL (to avoid invalid pointers), |
1306 | ** and go to the pause state. |
1307 | */ |
1308 | static void enterinc (global_State *g) { |
1309 | whitelist(g, g->allgc); |
1310 | g->reallyold = g->old1 = g->survival = NULL; |
1311 | whitelist(g, g->finobj); |
1312 | whitelist(g, g->tobefnz); |
1313 | g->finobjrold = g->finobjold1 = g->finobjsur = NULL; |
1314 | g->gcstate = GCSpause; |
1315 | g->gckind = KGC_INC; |
1316 | g->lastatomic = 0; |
1317 | } |
1318 | |
1319 | |
1320 | /* |
1321 | ** Change collector mode to 'newmode'. |
1322 | */ |
1323 | void luaC_changemode (lua_State *L, int newmode) { |
1324 | global_State *g = G(L); |
1325 | if (newmode != g->gckind) { |
1326 | if (newmode == KGC_GEN) /* entering generational mode? */ |
1327 | entergen(L, g); |
1328 | else |
1329 | enterinc(g); /* entering incremental mode */ |
1330 | } |
1331 | g->lastatomic = 0; |
1332 | } |
1333 | |
1334 | |
1335 | /* |
1336 | ** Does a full collection in generational mode. |
1337 | */ |
1338 | static lu_mem fullgen (lua_State *L, global_State *g) { |
1339 | enterinc(g); |
1340 | return entergen(L, g); |
1341 | } |
1342 | |
1343 | |
1344 | /* |
1345 | ** Set debt for the next minor collection, which will happen when |
1346 | ** memory grows 'genminormul'%. |
1347 | */ |
1348 | static void setminordebt (global_State *g) { |
1349 | luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul)); |
1350 | } |
1351 | |
1352 | |
1353 | /* |
1354 | ** Does a major collection after last collection was a "bad collection". |
1355 | ** |
1356 | ** When the program is building a big structure, it allocates lots of |
1357 | ** memory but generates very little garbage. In those scenarios, |
1358 | ** the generational mode just wastes time doing small collections, and |
1359 | ** major collections are frequently what we call a "bad collection", a |
1360 | ** collection that frees too few objects. To avoid the cost of switching |
1361 | ** between generational mode and the incremental mode needed for full |
1362 | ** (major) collections, the collector tries to stay in incremental mode |
1363 | ** after a bad collection, and to switch back to generational mode only |
1364 | ** after a "good" collection (one that traverses less than 9/8 objects |
1365 | ** of the previous one). |
1366 | ** The collector must choose whether to stay in incremental mode or to |
1367 | ** switch back to generational mode before sweeping. At this point, it |
1368 | ** does not know the real memory in use, so it cannot use memory to |
1369 | ** decide whether to return to generational mode. Instead, it uses the |
1370 | ** number of objects traversed (returned by 'atomic') as a proxy. The |
1371 | ** field 'g->lastatomic' keeps this count from the last collection. |
1372 | ** ('g->lastatomic != 0' also means that the last collection was bad.) |
1373 | */ |
1374 | static void stepgenfull (lua_State *L, global_State *g) { |
1375 | lu_mem newatomic; /* count of traversed objects */ |
1376 | lu_mem lastatomic = g->lastatomic; /* count from last collection */ |
1377 | if (g->gckind == KGC_GEN) /* still in generational mode? */ |
1378 | enterinc(g); /* enter incremental mode */ |
1379 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ |
1380 | newatomic = atomic(L); /* mark everybody */ |
1381 | if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */ |
1382 | atomic2gen(L, g); /* return to generational mode */ |
1383 | setminordebt(g); |
1384 | } |
1385 | else { /* another bad collection; stay in incremental mode */ |
1386 | g->GCestimate = gettotalbytes(g); /* first estimate */; |
1387 | entersweep(L); |
1388 | luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ |
1389 | setpause(g); |
1390 | g->lastatomic = newatomic; |
1391 | } |
1392 | } |
1393 | |
1394 | |
1395 | /* |
1396 | ** Does a generational "step". |
1397 | ** Usually, this means doing a minor collection and setting the debt to |
1398 | ** make another collection when memory grows 'genminormul'% larger. |
1399 | ** |
1400 | ** However, there are exceptions. If memory grows 'genmajormul'% |
1401 | ** larger than it was at the end of the last major collection (kept |
1402 | ** in 'g->GCestimate'), the function does a major collection. At the |
1403 | ** end, it checks whether the major collection was able to free a |
1404 | ** decent amount of memory (at least half the growth in memory since |
1405 | ** previous major collection). If so, the collector keeps its state, |
1406 | ** and the next collection will probably be minor again. Otherwise, |
1407 | ** we have what we call a "bad collection". In that case, set the field |
1408 | ** 'g->lastatomic' to signal that fact, so that the next collection will |
1409 | ** go to 'stepgenfull'. |
1410 | ** |
1411 | ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero; |
1412 | ** in that case, do a minor collection. |
1413 | */ |
1414 | static void genstep (lua_State *L, global_State *g) { |
1415 | if (g->lastatomic != 0) /* last collection was a bad one? */ |
1416 | stepgenfull(L, g); /* do a full step */ |
1417 | else { |
1418 | lu_mem majorbase = g->GCestimate; /* memory after last major collection */ |
1419 | lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul); |
1420 | if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) { |
1421 | lu_mem numobjs = fullgen(L, g); /* do a major collection */ |
1422 | if (gettotalbytes(g) < majorbase + (majorinc / 2)) { |
1423 | /* collected at least half of memory growth since last major |
1424 | collection; keep doing minor collections */ |
1425 | setminordebt(g); |
1426 | } |
1427 | else { /* bad collection */ |
1428 | g->lastatomic = numobjs; /* signal that last collection was bad */ |
1429 | setpause(g); /* do a long wait for next (major) collection */ |
1430 | } |
1431 | } |
1432 | else { /* regular case; do a minor collection */ |
1433 | youngcollection(L, g); |
1434 | setminordebt(g); |
1435 | g->GCestimate = majorbase; /* preserve base value */ |
1436 | } |
1437 | } |
1438 | lua_assert(isdecGCmodegen(g)); |
1439 | } |
1440 | |
1441 | /* }====================================================== */ |
1442 | |
1443 | |
1444 | /* |
1445 | ** {====================================================== |
1446 | ** GC control |
1447 | ** ======================================================= |
1448 | */ |
1449 | |
1450 | |
1451 | /* |
1452 | ** Set the "time" to wait before starting a new GC cycle; cycle will |
1453 | ** start when memory use hits the threshold of ('estimate' * pause / |
1454 | ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero, |
1455 | ** because Lua cannot even start with less than PAUSEADJ bytes). |
1456 | */ |
1457 | static void setpause (global_State *g) { |
1458 | l_mem threshold, debt; |
1459 | int pause = getgcparam(g->gcpause); |
1460 | l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */ |
1461 | lua_assert(estimate > 0); |
1462 | threshold = (pause < MAX_LMEM / estimate) /* overflow? */ |
1463 | ? estimate * pause /* no overflow */ |
1464 | : MAX_LMEM; /* overflow; truncate to maximum */ |
1465 | debt = gettotalbytes(g) - threshold; |
1466 | if (debt > 0) debt = 0; |
1467 | luaE_setdebt(g, debt); |
1468 | } |
1469 | |
1470 | |
1471 | /* |
1472 | ** Enter first sweep phase. |
1473 | ** The call to 'sweeptolive' makes the pointer point to an object |
1474 | ** inside the list (instead of to the header), so that the real sweep do |
1475 | ** not need to skip objects created between "now" and the start of the |
1476 | ** real sweep. |
1477 | */ |
1478 | static void entersweep (lua_State *L) { |
1479 | global_State *g = G(L); |
1480 | g->gcstate = GCSswpallgc; |
1481 | lua_assert(g->sweepgc == NULL); |
1482 | g->sweepgc = sweeptolive(L, &g->allgc); |
1483 | } |
1484 | |
1485 | |
1486 | /* |
1487 | ** Delete all objects in list 'p' until (but not including) object |
1488 | ** 'limit'. |
1489 | */ |
1490 | static void deletelist (lua_State *L, GCObject *p, GCObject *limit) { |
1491 | while (p != limit) { |
1492 | GCObject *next = p->next; |
1493 | freeobj(L, p); |
1494 | p = next; |
1495 | } |
1496 | } |
1497 | |
1498 | |
1499 | /* |
1500 | ** Call all finalizers of the objects in the given Lua state, and |
1501 | ** then free all objects, except for the main thread. |
1502 | */ |
1503 | void luaC_freeallobjects (lua_State *L) { |
1504 | global_State *g = G(L); |
1505 | luaC_changemode(L, KGC_INC); |
1506 | separatetobefnz(g, 1); /* separate all objects with finalizers */ |
1507 | lua_assert(g->finobj == NULL); |
1508 | callallpendingfinalizers(L); |
1509 | deletelist(L, g->allgc, obj2gco(g->mainthread)); |
1510 | deletelist(L, g->finobj, NULL); |
1511 | deletelist(L, g->fixedgc, NULL); /* collect fixed objects */ |
1512 | lua_assert(g->strt.nuse == 0); |
1513 | } |
1514 | |
1515 | |
1516 | static lu_mem atomic (lua_State *L) { |
1517 | global_State *g = G(L); |
1518 | lu_mem work = 0; |
1519 | GCObject *origweak, *origall; |
1520 | GCObject *grayagain = g->grayagain; /* save original list */ |
1521 | g->grayagain = NULL; |
1522 | lua_assert(g->ephemeron == NULL && g->weak == NULL); |
1523 | lua_assert(!iswhite(g->mainthread)); |
1524 | g->gcstate = GCSatomic; |
1525 | markobject(g, L); /* mark running thread */ |
1526 | /* registry and global metatables may be changed by API */ |
1527 | markvalue(g, &g->l_registry); |
1528 | markmt(g); /* mark global metatables */ |
1529 | work += propagateall(g); /* empties 'gray' list */ |
1530 | /* remark occasional upvalues of (maybe) dead threads */ |
1531 | work += remarkupvals(g); |
1532 | work += propagateall(g); /* propagate changes */ |
1533 | g->gray = grayagain; |
1534 | work += propagateall(g); /* traverse 'grayagain' list */ |
1535 | convergeephemerons(g); |
1536 | /* at this point, all strongly accessible objects are marked. */ |
1537 | /* Clear values from weak tables, before checking finalizers */ |
1538 | clearbyvalues(g, g->weak, NULL); |
1539 | clearbyvalues(g, g->allweak, NULL); |
1540 | origweak = g->weak; origall = g->allweak; |
1541 | separatetobefnz(g, 0); /* separate objects to be finalized */ |
1542 | work += markbeingfnz(g); /* mark objects that will be finalized */ |
1543 | work += propagateall(g); /* remark, to propagate 'resurrection' */ |
1544 | convergeephemerons(g); |
1545 | /* at this point, all resurrected objects are marked. */ |
1546 | /* remove dead objects from weak tables */ |
1547 | clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */ |
1548 | clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */ |
1549 | /* clear values from resurrected weak tables */ |
1550 | clearbyvalues(g, g->weak, origweak); |
1551 | clearbyvalues(g, g->allweak, origall); |
1552 | luaS_clearcache(g); |
1553 | g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */ |
1554 | lua_assert(g->gray == NULL); |
1555 | return work; /* estimate of slots marked by 'atomic' */ |
1556 | } |
1557 | |
1558 | |
1559 | static int sweepstep (lua_State *L, global_State *g, |
1560 | int nextstate, GCObject **nextlist) { |
1561 | if (g->sweepgc) { |
1562 | l_mem olddebt = g->GCdebt; |
1563 | int count; |
1564 | g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count); |
1565 | g->GCestimate += g->GCdebt - olddebt; /* update estimate */ |
1566 | return count; |
1567 | } |
1568 | else { /* enter next state */ |
1569 | g->gcstate = nextstate; |
1570 | g->sweepgc = nextlist; |
1571 | return 0; /* no work done */ |
1572 | } |
1573 | } |
1574 | |
1575 | |
1576 | static lu_mem singlestep (lua_State *L) { |
1577 | global_State *g = G(L); |
1578 | lu_mem work; |
1579 | lua_assert(!g->gcstopem); /* collector is not reentrant */ |
1580 | g->gcstopem = 1; /* no emergency collections while collecting */ |
1581 | switch (g->gcstate) { |
1582 | case GCSpause: { |
1583 | restartcollection(g); |
1584 | g->gcstate = GCSpropagate; |
1585 | work = 1; |
1586 | break; |
1587 | } |
1588 | case GCSpropagate: { |
1589 | if (g->gray == NULL) { /* no more gray objects? */ |
1590 | g->gcstate = GCSenteratomic; /* finish propagate phase */ |
1591 | work = 0; |
1592 | } |
1593 | else |
1594 | work = propagatemark(g); /* traverse one gray object */ |
1595 | break; |
1596 | } |
1597 | case GCSenteratomic: { |
1598 | work = atomic(L); /* work is what was traversed by 'atomic' */ |
1599 | entersweep(L); |
1600 | g->GCestimate = gettotalbytes(g); /* first estimate */; |
1601 | break; |
1602 | } |
1603 | case GCSswpallgc: { /* sweep "regular" objects */ |
1604 | work = sweepstep(L, g, GCSswpfinobj, &g->finobj); |
1605 | break; |
1606 | } |
1607 | case GCSswpfinobj: { /* sweep objects with finalizers */ |
1608 | work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz); |
1609 | break; |
1610 | } |
1611 | case GCSswptobefnz: { /* sweep objects to be finalized */ |
1612 | work = sweepstep(L, g, GCSswpend, NULL); |
1613 | break; |
1614 | } |
1615 | case GCSswpend: { /* finish sweeps */ |
1616 | checkSizes(L, g); |
1617 | g->gcstate = GCScallfin; |
1618 | work = 0; |
1619 | break; |
1620 | } |
1621 | case GCScallfin: { /* call remaining finalizers */ |
1622 | if (g->tobefnz && !g->gcemergency) { |
1623 | g->gcstopem = 0; /* ok collections during finalizers */ |
1624 | work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST; |
1625 | } |
1626 | else { /* emergency mode or no more finalizers */ |
1627 | g->gcstate = GCSpause; /* finish collection */ |
1628 | work = 0; |
1629 | } |
1630 | break; |
1631 | } |
1632 | default: lua_assert(0); return 0; |
1633 | } |
1634 | g->gcstopem = 0; |
1635 | return work; |
1636 | } |
1637 | |
1638 | |
1639 | /* |
1640 | ** advances the garbage collector until it reaches a state allowed |
1641 | ** by 'statemask' |
1642 | */ |
1643 | void luaC_runtilstate (lua_State *L, int statesmask) { |
1644 | global_State *g = G(L); |
1645 | while (!testbit(statesmask, g->gcstate)) |
1646 | singlestep(L); |
1647 | } |
1648 | |
1649 | |
1650 | /* |
1651 | ** Performs a basic incremental step. The debt and step size are |
1652 | ** converted from bytes to "units of work"; then the function loops |
1653 | ** running single steps until adding that many units of work or |
1654 | ** finishing a cycle (pause state). Finally, it sets the debt that |
1655 | ** controls when next step will be performed. |
1656 | */ |
1657 | static void incstep (lua_State *L, global_State *g) { |
1658 | int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */ |
1659 | l_mem debt = (g->GCdebt / WORK2MEM) * stepmul; |
1660 | l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem)) |
1661 | ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul |
1662 | : MAX_LMEM; /* overflow; keep maximum value */ |
1663 | do { /* repeat until pause or enough "credit" (negative debt) */ |
1664 | lu_mem work = singlestep(L); /* perform one single step */ |
1665 | debt -= work; |
1666 | } while (debt > -stepsize && g->gcstate != GCSpause); |
1667 | if (g->gcstate == GCSpause) |
1668 | setpause(g); /* pause until next cycle */ |
1669 | else { |
1670 | debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */ |
1671 | luaE_setdebt(g, debt); |
1672 | } |
1673 | } |
1674 | |
1675 | /* |
1676 | ** performs a basic GC step if collector is running |
1677 | */ |
1678 | void luaC_step (lua_State *L) { |
1679 | global_State *g = G(L); |
1680 | lua_assert(!g->gcemergency); |
1681 | if (g->gcrunning) { /* running? */ |
1682 | if(isdecGCmodegen(g)) |
1683 | genstep(L, g); |
1684 | else |
1685 | incstep(L, g); |
1686 | } |
1687 | } |
1688 | |
1689 | |
1690 | /* |
1691 | ** Perform a full collection in incremental mode. |
1692 | ** Before running the collection, check 'keepinvariant'; if it is true, |
1693 | ** there may be some objects marked as black, so the collector has |
1694 | ** to sweep all objects to turn them back to white (as white has not |
1695 | ** changed, nothing will be collected). |
1696 | */ |
1697 | static void fullinc (lua_State *L, global_State *g) { |
1698 | if (keepinvariant(g)) /* black objects? */ |
1699 | entersweep(L); /* sweep everything to turn them back to white */ |
1700 | /* finish any pending sweep phase to start a new cycle */ |
1701 | luaC_runtilstate(L, bitmask(GCSpause)); |
1702 | luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */ |
1703 | /* estimate must be correct after a full GC cycle */ |
1704 | lua_assert(g->GCestimate == gettotalbytes(g)); |
1705 | luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ |
1706 | setpause(g); |
1707 | } |
1708 | |
1709 | |
1710 | /* |
1711 | ** Performs a full GC cycle; if 'isemergency', set a flag to avoid |
1712 | ** some operations which could change the interpreter state in some |
1713 | ** unexpected ways (running finalizers and shrinking some structures). |
1714 | */ |
1715 | void luaC_fullgc (lua_State *L, int isemergency) { |
1716 | global_State *g = G(L); |
1717 | lua_assert(!g->gcemergency); |
1718 | g->gcemergency = isemergency; /* set flag */ |
1719 | if (g->gckind == KGC_INC) |
1720 | fullinc(L, g); |
1721 | else |
1722 | fullgen(L, g); |
1723 | g->gcemergency = 0; |
1724 | } |
1725 | |
1726 | /* }====================================================== */ |
1727 | |
1728 | |
1729 | |