| 1 | /* Generate the LR(0) parser states for Bison. |
| 2 | |
| 3 | Copyright (C) 1984, 1986, 1989, 2000-2002, 2004-2015, 2018-2019 Free |
| 4 | Software Foundation, Inc. |
| 5 | |
| 6 | This file is part of Bison, the GNU Compiler Compiler. |
| 7 | |
| 8 | This program is free software: you can redistribute it and/or modify |
| 9 | it under the terms of the GNU General Public License as published by |
| 10 | the Free Software Foundation, either version 3 of the License, or |
| 11 | (at your option) any later version. |
| 12 | |
| 13 | This program is distributed in the hope that it will be useful, |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | GNU General Public License for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| 20 | |
| 21 | |
| 22 | /* See comments in state.h for the data structures that represent it. |
| 23 | The entry point is generate_states. */ |
| 24 | |
| 25 | #include <config.h> |
| 26 | #include "system.h" |
| 27 | |
| 28 | #include <bitset.h> |
| 29 | |
| 30 | #include "closure.h" |
| 31 | #include "complain.h" |
| 32 | #include "getargs.h" |
| 33 | #include "gram.h" |
| 34 | #include "lalr.h" |
| 35 | #include "lr0.h" |
| 36 | #include "reader.h" |
| 37 | #include "reduce.h" |
| 38 | #include "state.h" |
| 39 | #include "symtab.h" |
| 40 | |
| 41 | typedef struct state_list |
| 42 | { |
| 43 | struct state_list *next; |
| 44 | state *state; |
| 45 | } state_list; |
| 46 | |
| 47 | static state_list *first_state = NULL; |
| 48 | static state_list *last_state = NULL; |
| 49 | |
| 50 | /* Print CORE for debugging. */ |
| 51 | static void |
| 52 | core_print (size_t core_size, item_number *core, FILE *out) |
| 53 | { |
| 54 | for (int i = 0; i < core_size; ++i) |
| 55 | { |
| 56 | item_print (ritem + core[i], NULL, out); |
| 57 | fputc ('\n', out); |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | /*------------------------------------------------------------------. |
| 62 | | A state was just discovered from another state. Queue it for | |
| 63 | | later examination, in order to find its transitions. Return it. | |
| 64 | `------------------------------------------------------------------*/ |
| 65 | |
| 66 | static state * |
| 67 | state_list_append (symbol_number sym, size_t core_size, item_number *core) |
| 68 | { |
| 69 | state_list *node = xmalloc (sizeof *node); |
| 70 | state *res = state_new (sym, core_size, core); |
| 71 | |
| 72 | if (trace_flag & trace_automaton) |
| 73 | fprintf (stderr, "state_list_append (state = %d, symbol = %d (%s))\n" , |
| 74 | nstates, sym, symbols[sym]->tag); |
| 75 | |
| 76 | node->next = NULL; |
| 77 | node->state = res; |
| 78 | |
| 79 | if (!first_state) |
| 80 | first_state = node; |
| 81 | if (last_state) |
| 82 | last_state->next = node; |
| 83 | last_state = node; |
| 84 | |
| 85 | return res; |
| 86 | } |
| 87 | |
| 88 | /* Symbols that can be "shifted" (including non terminals) from the |
| 89 | current state. */ |
| 90 | bitset shift_symbol; |
| 91 | |
| 92 | static rule **redset; |
| 93 | /* For the current state, the list of pointers to states that can be |
| 94 | reached via a shift/goto. Could be indexed by the reaching symbol, |
| 95 | but labels of incoming transitions can be recovered by the state |
| 96 | itself. */ |
| 97 | static state **shiftset; |
| 98 | |
| 99 | |
| 100 | /* KERNEL_BASE[symbol-number] -> list of item numbers (offsets inside |
| 101 | RITEM) of lenngth KERNEL_SIZE[symbol-number]. */ |
| 102 | static item_number **kernel_base; |
| 103 | static int *kernel_size; |
| 104 | |
| 105 | /* A single dimension array that serves as storage for |
| 106 | KERNEL_BASE. */ |
| 107 | static item_number *kernel_items; |
| 108 | |
| 109 | |
| 110 | static void |
| 111 | allocate_itemsets (void) |
| 112 | { |
| 113 | /* Count the number of occurrences of all the symbols in RITEMS. |
| 114 | Note that useless productions (hence useless nonterminals) are |
| 115 | browsed too, hence we need to allocate room for _all_ the |
| 116 | symbols. */ |
| 117 | size_t count = 0; |
| 118 | size_t *symbol_count = xcalloc (nsyms + nuseless_nonterminals, |
| 119 | sizeof *symbol_count); |
| 120 | |
| 121 | for (rule_number r = 0; r < nrules; ++r) |
| 122 | for (item_number *rhsp = rules[r].rhs; 0 <= *rhsp; ++rhsp) |
| 123 | { |
| 124 | symbol_number sym = item_number_as_symbol_number (*rhsp); |
| 125 | count += 1; |
| 126 | symbol_count[sym] += 1; |
| 127 | } |
| 128 | |
| 129 | /* See comments before new_itemsets. All the vectors of items |
| 130 | live inside KERNEL_ITEMS. The number of active items after |
| 131 | some symbol S cannot be more than the number of times that S |
| 132 | appears as an item, which is SYMBOL_COUNT[S]. |
| 133 | We allocate that much space for each symbol. */ |
| 134 | |
| 135 | kernel_base = xnmalloc (nsyms, sizeof *kernel_base); |
| 136 | kernel_items = xnmalloc (count, sizeof *kernel_items); |
| 137 | |
| 138 | count = 0; |
| 139 | for (symbol_number i = 0; i < nsyms; i++) |
| 140 | { |
| 141 | kernel_base[i] = kernel_items + count; |
| 142 | count += symbol_count[i]; |
| 143 | } |
| 144 | |
| 145 | free (symbol_count); |
| 146 | kernel_size = xnmalloc (nsyms, sizeof *kernel_size); |
| 147 | } |
| 148 | |
| 149 | /* Print the current kernel (in KERNEL_BASE). */ |
| 150 | static void |
| 151 | kernel_print (FILE *out) |
| 152 | { |
| 153 | for (symbol_number i = 0; i < nsyms; ++i) |
| 154 | if (kernel_size[i]) |
| 155 | { |
| 156 | fprintf (out, "kernel[%s] =\n" , symbols[i]->tag); |
| 157 | core_print (kernel_size[i], kernel_base[i], out); |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | static void |
| 162 | allocate_storage (void) |
| 163 | { |
| 164 | allocate_itemsets (); |
| 165 | |
| 166 | shiftset = xnmalloc (nsyms, sizeof *shiftset); |
| 167 | redset = xnmalloc (nrules, sizeof *redset); |
| 168 | state_hash_new (); |
| 169 | shift_symbol = bitset_create (nsyms, BITSET_FIXED); |
| 170 | } |
| 171 | |
| 172 | |
| 173 | static void |
| 174 | free_storage (void) |
| 175 | { |
| 176 | bitset_free (shift_symbol); |
| 177 | free (redset); |
| 178 | free (shiftset); |
| 179 | free (kernel_base); |
| 180 | free (kernel_size); |
| 181 | free (kernel_items); |
| 182 | state_hash_free (); |
| 183 | } |
| 184 | |
| 185 | |
| 186 | |
| 187 | |
| 188 | /*------------------------------------------------------------------. |
| 189 | | Find which term/nterm symbols can be "shifted" in S, and for each | |
| 190 | | one record which items would be active after that transition. | |
| 191 | | Uses the contents of itemset. | |
| 192 | | | |
| 193 | | shift_symbol is a bitset of the term/nterm symbols that can be | |
| 194 | | shifted. For each symbol in the grammar, kernel_base[symbol] | |
| 195 | | points to a vector of item numbers activated if that symbol is | |
| 196 | | shifted, and kernel_size[symbol] is their numbers. | |
| 197 | | | |
| 198 | | itemset is sorted on item index in ritem, which is sorted on rule | |
| 199 | | number. Compute each kernel_base[symbol] with the same sort. | |
| 200 | `------------------------------------------------------------------*/ |
| 201 | |
| 202 | static void |
| 203 | new_itemsets (state *s) |
| 204 | { |
| 205 | if (trace_flag & trace_automaton) |
| 206 | fprintf (stderr, "new_itemsets: begin: state = %d\n" , s->number); |
| 207 | |
| 208 | memset (kernel_size, 0, nsyms * sizeof *kernel_size); |
| 209 | |
| 210 | bitset_zero (shift_symbol); |
| 211 | |
| 212 | for (size_t i = 0; i < nitemset; ++i) |
| 213 | if (item_number_is_symbol_number (ritem[itemset[i]])) |
| 214 | { |
| 215 | symbol_number sym = item_number_as_symbol_number (ritem[itemset[i]]); |
| 216 | bitset_set (shift_symbol, sym); |
| 217 | kernel_base[sym][kernel_size[sym]] = itemset[i] + 1; |
| 218 | kernel_size[sym]++; |
| 219 | } |
| 220 | |
| 221 | if (trace_flag & trace_automaton) |
| 222 | { |
| 223 | kernel_print (stderr); |
| 224 | fprintf (stderr, "new_itemsets: end: state = %d\n\n" , s->number); |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | |
| 229 | |
| 230 | /*--------------------------------------------------------------. |
| 231 | | Find the state we would get to (from the current state) by | |
| 232 | | shifting SYM. Create a new state if no equivalent one exists | |
| 233 | | already. Used by append_states. | |
| 234 | `--------------------------------------------------------------*/ |
| 235 | |
| 236 | static state * |
| 237 | get_state (symbol_number sym, size_t core_size, item_number *core) |
| 238 | { |
| 239 | if (trace_flag & trace_automaton) |
| 240 | { |
| 241 | fprintf (stderr, "Entering get_state, symbol = %d (%s), core:\n" , |
| 242 | sym, symbols[sym]->tag); |
| 243 | core_print (core_size, core, stderr); |
| 244 | fputc ('\n', stderr); |
| 245 | } |
| 246 | |
| 247 | state *s = state_hash_lookup (core_size, core); |
| 248 | if (!s) |
| 249 | s = state_list_append (sym, core_size, core); |
| 250 | |
| 251 | if (trace_flag & trace_automaton) |
| 252 | fprintf (stderr, "Exiting get_state => %d\n" , s->number); |
| 253 | |
| 254 | return s; |
| 255 | } |
| 256 | |
| 257 | /*---------------------------------------------------------------. |
| 258 | | Use the information computed by new_itemsets to find the state | |
| 259 | | numbers reached by each shift transition from S. | |
| 260 | | | |
| 261 | | SHIFTSET is set up as a vector of those states. | |
| 262 | `---------------------------------------------------------------*/ |
| 263 | |
| 264 | static void |
| 265 | append_states (state *s) |
| 266 | { |
| 267 | if (trace_flag & trace_automaton) |
| 268 | fprintf (stderr, "append_states: begin: state = %d\n" , s->number); |
| 269 | |
| 270 | bitset_iterator iter; |
| 271 | symbol_number sym; |
| 272 | int i = 0; |
| 273 | BITSET_FOR_EACH (iter, shift_symbol, sym, 0) |
| 274 | { |
| 275 | shiftset[i] = get_state (sym, kernel_size[sym], kernel_base[sym]); |
| 276 | ++i; |
| 277 | } |
| 278 | |
| 279 | if (trace_flag & trace_automaton) |
| 280 | fprintf (stderr, "append_states: end: state = %d\n" , s->number); |
| 281 | } |
| 282 | |
| 283 | |
| 284 | /*----------------------------------------------------------------. |
| 285 | | Find which rules can be used for reduction transitions from the | |
| 286 | | current state and make a reductions structure for the state to | |
| 287 | | record their rule numbers. | |
| 288 | `----------------------------------------------------------------*/ |
| 289 | |
| 290 | static void |
| 291 | save_reductions (state *s) |
| 292 | { |
| 293 | int count = 0; |
| 294 | |
| 295 | /* Find and count the active items that represent ends of rules. */ |
| 296 | for (size_t i = 0; i < nitemset; ++i) |
| 297 | { |
| 298 | item_number item = ritem[itemset[i]]; |
| 299 | if (item_number_is_rule_number (item)) |
| 300 | { |
| 301 | rule_number r = item_number_as_rule_number (item); |
| 302 | redset[count++] = &rules[r]; |
| 303 | if (r == 0) |
| 304 | { |
| 305 | /* This is "reduce 0", i.e., accept. */ |
| 306 | aver (!final_state); |
| 307 | final_state = s; |
| 308 | } |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | /* Make a reductions structure and copy the data into it. */ |
| 313 | state_reductions_set (s, count, redset); |
| 314 | } |
| 315 | |
| 316 | |
| 317 | /*---------------. |
| 318 | | Build STATES. | |
| 319 | `---------------*/ |
| 320 | |
| 321 | static void |
| 322 | set_states (void) |
| 323 | { |
| 324 | states = xcalloc (nstates, sizeof *states); |
| 325 | |
| 326 | while (first_state) |
| 327 | { |
| 328 | state_list *this = first_state; |
| 329 | |
| 330 | /* Pessimization, but simplification of the code: make sure all |
| 331 | the states have valid transitions and reductions members, |
| 332 | even if reduced to 0. It is too soon for errs, which are |
| 333 | computed later, but set_conflicts. */ |
| 334 | state *s = this->state; |
| 335 | if (!s->transitions) |
| 336 | state_transitions_set (s, 0, 0); |
| 337 | if (!s->reductions) |
| 338 | state_reductions_set (s, 0, 0); |
| 339 | |
| 340 | states[s->number] = s; |
| 341 | |
| 342 | first_state = this->next; |
| 343 | free (this); |
| 344 | } |
| 345 | first_state = NULL; |
| 346 | last_state = NULL; |
| 347 | } |
| 348 | |
| 349 | |
| 350 | /*-------------------------------------------------------------------. |
| 351 | | Compute the LR(0) parser states (see state.h for details) from the | |
| 352 | | grammar. | |
| 353 | `-------------------------------------------------------------------*/ |
| 354 | |
| 355 | void |
| 356 | generate_states (void) |
| 357 | { |
| 358 | allocate_storage (); |
| 359 | closure_new (nritems); |
| 360 | |
| 361 | /* Create the initial state. The 0 at the lhs is the index of the |
| 362 | item of this initial rule. */ |
| 363 | item_number initial_core = 0; |
| 364 | state_list_append (0, 1, &initial_core); |
| 365 | |
| 366 | /* States are queued when they are created; process them all. */ |
| 367 | for (state_list *list = first_state; list; list = list->next) |
| 368 | { |
| 369 | state *s = list->state; |
| 370 | if (trace_flag & trace_automaton) |
| 371 | fprintf (stderr, "Processing state %d (reached by %s)\n" , |
| 372 | s->number, |
| 373 | symbols[s->accessing_symbol]->tag); |
| 374 | /* Set up itemset for the transitions out of this state. itemset gets a |
| 375 | vector of all the items that could be accepted next. */ |
| 376 | closure (s->items, s->nitems); |
| 377 | /* Record the reductions allowed out of this state. */ |
| 378 | save_reductions (s); |
| 379 | /* Find the itemsets of the states that shifts/gotos can reach. */ |
| 380 | new_itemsets (s); |
| 381 | /* Find or create the core structures for those states. */ |
| 382 | append_states (s); |
| 383 | |
| 384 | /* Create the shifts structures for the shifts to those states, |
| 385 | now that the state numbers transitioning to are known. */ |
| 386 | state_transitions_set (s, bitset_count (shift_symbol), shiftset); |
| 387 | } |
| 388 | |
| 389 | /* discard various storage */ |
| 390 | free_storage (); |
| 391 | |
| 392 | /* Set up STATES. */ |
| 393 | set_states (); |
| 394 | } |
| 395 | |