| 1 | // [Blend2D] |
| 2 | // 2D Vector Graphics Powered by a JIT Compiler. |
| 3 | // |
| 4 | // [License] |
| 5 | // Zlib - See LICENSE.md file in the package. |
| 6 | |
| 7 | #include "./blapi-build_p.h" |
| 8 | #include "./blarrayops_p.h" |
| 9 | #include "./blmath_p.h" |
| 10 | #include "./blsupport_p.h" |
| 11 | |
| 12 | // ============================================================================ |
| 13 | // [CubicRoots] |
| 14 | // ============================================================================ |
| 15 | |
| 16 | // Ax^3 + Bx^2 + Cx + D = 0. |
| 17 | // |
| 18 | // Roots3And4.c: Graphics Gems, original author Jochen Schwarze (schwarze@isa.de). |
| 19 | // See also the wiki article at http://en.wikipedia.org/wiki/Cubic_function for |
| 20 | // other equations. |
| 21 | size_t blCubicRoots(double* dst, const double* poly, double tMin, double tMax) noexcept { |
| 22 | constexpr double k1Div3 = 1.0 / 3.0; |
| 23 | constexpr double k1Div9 = 1.0 / 9.0; |
| 24 | constexpr double k2Div27 = 2.0 / 27.0; |
| 25 | |
| 26 | size_t nRoots = 0; |
| 27 | double norm = poly[0]; |
| 28 | double a = poly[1]; |
| 29 | double b = poly[2]; |
| 30 | double c = poly[3]; |
| 31 | |
| 32 | if (norm == 0.0) |
| 33 | return blQuadRoots(dst, a, b, c, tMin, tMax); |
| 34 | |
| 35 | // Convert to a normalized form `x^3 + Ax^2 + Bx + C == 0`. |
| 36 | a /= norm; |
| 37 | b /= norm; |
| 38 | c /= norm; |
| 39 | |
| 40 | // Substitute x = y - A/3 to eliminate quadric term `x^3 + px + q = 0`. |
| 41 | double sa = a * a; |
| 42 | double p = -k1Div9 * sa + k1Div3 * b; |
| 43 | double q = (k2Div27 * sa - k1Div3 * b) * 0.5 * a + c; |
| 44 | |
| 45 | // Use Cardano's formula. |
| 46 | double p3 = p * p * p; |
| 47 | double d = q * q + p3; |
| 48 | |
| 49 | // Resubstitution constant. |
| 50 | double sub = -k1Div3 * a; |
| 51 | |
| 52 | if (isNearZero(d)) { |
| 53 | // One triple solution. |
| 54 | if (isNearZero(q)) { |
| 55 | dst[0] = sub; |
| 56 | return size_t(sub >= tMin && sub <= tMax); |
| 57 | } |
| 58 | |
| 59 | // One single and one double solution. |
| 60 | double u = blCbrt(-q); |
| 61 | nRoots = 2; |
| 62 | |
| 63 | dst[0] = sub + 2.0 * u; |
| 64 | dst[1] = sub - u; |
| 65 | |
| 66 | // Sort. |
| 67 | if (dst[0] > dst[1]) |
| 68 | std::swap(dst[0], dst[1]); |
| 69 | } |
| 70 | else if (d < 0.0) { |
| 71 | // Three real solutions. |
| 72 | double phi = k1Div3 * blAcos(-q / blSqrt(-p3)); |
| 73 | double t = 2.0 * blSqrt(-p); |
| 74 | |
| 75 | nRoots = 3; |
| 76 | dst[0] = sub + t * blCos(phi); |
| 77 | dst[1] = sub - t * blCos(phi + BL_MATH_PI_DIV_3); |
| 78 | dst[2] = sub - t * blCos(phi - BL_MATH_PI_DIV_3); |
| 79 | |
| 80 | // Sort. |
| 81 | if (dst[0] > dst[1]) std::swap(dst[0], dst[1]); |
| 82 | if (dst[1] > dst[2]) std::swap(dst[1], dst[2]); |
| 83 | if (dst[0] > dst[1]) std::swap(dst[0], dst[1]); |
| 84 | } |
| 85 | else { |
| 86 | // One real solution. |
| 87 | double sqrt_d = blSqrt(d); |
| 88 | double u = blCbrt(sqrt_d - q); |
| 89 | double v = -blCbrt(sqrt_d + q); |
| 90 | |
| 91 | nRoots = 1; |
| 92 | dst[0] = sub + u + v; |
| 93 | } |
| 94 | |
| 95 | size_t n = 0; |
| 96 | for (size_t i = 0; i < nRoots; i++) |
| 97 | if (dst[i] >= tMin && dst[i] <= tMax) |
| 98 | dst[n++] = dst[i]; |
| 99 | return n; |
| 100 | } |
| 101 | |
| 102 | // ============================================================================ |
| 103 | // [PolyRoots] |
| 104 | // ============================================================================ |
| 105 | |
| 106 | // The code adapted from: |
| 107 | // |
| 108 | // rpoly.cpp -- Jenkins-Traub real polynomial root finder. |
| 109 | // (C) 2002, C. Bond. All rights reserved. |
| 110 | // |
| 111 | // Translation of TOMS493 from FORTRAN to C. This implementation of Jenkins-Traub |
| 112 | // partially adapts the original code to a C environment by restruction many of |
| 113 | // the 'goto' controls to better fit a block structured form. It also eliminates |
| 114 | // the global memory allocation in favor of stack memory allocation. |
| 115 | |
| 116 | #define JT_BASE 2.0 |
| 117 | #define JT_ETA 2.22e-16 |
| 118 | #define JT_INF 3.4e38 |
| 119 | #define JT_SMALL 1.2e-38 |
| 120 | |
| 121 | class BLJenkinsTraubSolver { |
| 122 | public: |
| 123 | BLMemBufferTmp<2048> mem; |
| 124 | double* temp; |
| 125 | double* pt; |
| 126 | double* p; |
| 127 | double* qp; |
| 128 | double* k; |
| 129 | double* qk; |
| 130 | double* svk; |
| 131 | double* zeror; |
| 132 | double* zeroi; |
| 133 | |
| 134 | double sr, si, u, v, a, b, c, d, a1, a2; |
| 135 | double a3, a6, a7, e, f, g, h, szr, szi, lzr, lzi; |
| 136 | double are, mre; |
| 137 | |
| 138 | int degree, n, nn, nmi, zerok; |
| 139 | int itercnt; |
| 140 | |
| 141 | BLJenkinsTraubSolver(const double* polynomial, int degree); |
| 142 | bool init(int degree); |
| 143 | |
| 144 | void quad(double a, double b1, double c, double* sr, double* si, double* lr, double* li); |
| 145 | void fxshfr(int l2, int* nz); |
| 146 | void quadit(double* uu, double* vv, int* nz); |
| 147 | void realit(double sss, int* nz, int* iflag); |
| 148 | void calcsc(int* type); |
| 149 | void nextk(int* type); |
| 150 | void newest(int type, double* uu, double* vv); |
| 151 | void quadsd(int n, double* u, double* v, double* p, double* q, double* a, double* b); |
| 152 | |
| 153 | // Called by fPolyRoots_t(). |
| 154 | int solve(); |
| 155 | }; |
| 156 | |
| 157 | BLJenkinsTraubSolver::BLJenkinsTraubSolver(const double* poly, int degree) { |
| 158 | // Alloc memory and initialize pointers. |
| 159 | if (!init(degree)) |
| 160 | return; |
| 161 | |
| 162 | // Copy the polynomial. |
| 163 | for (int i = 0; i <= degree; i++) |
| 164 | p[i] = poly[i]; |
| 165 | } |
| 166 | |
| 167 | bool BLJenkinsTraubSolver::init(int degree) { |
| 168 | temp = reinterpret_cast<double*>(mem.alloc(unsigned(degree + 1) * 9u * sizeof(double))); |
| 169 | |
| 170 | if (temp == nullptr) |
| 171 | return false; |
| 172 | |
| 173 | pt = temp + (degree + 1); |
| 174 | p = pt + (degree + 1); |
| 175 | qp = p + (degree + 1); |
| 176 | k = qp + (degree + 1); |
| 177 | qk = k + (degree + 1); |
| 178 | svk = qk + (degree + 1); |
| 179 | zeror = svk + (degree + 1); |
| 180 | zeroi = zeror + (degree + 1); |
| 181 | |
| 182 | this->n = degree; |
| 183 | this->degree = degree; |
| 184 | |
| 185 | return true; |
| 186 | } |
| 187 | |
| 188 | // Computes up to L2 fixed shift k-polynomials, testing for convergence in the |
| 189 | // linear or quadratic case. Initiates one of the variable shift iterations and |
| 190 | // returns with the number of zeros found. |
| 191 | void BLJenkinsTraubSolver::fxshfr(int l2, int* nz) { |
| 192 | double svu, svv, ui, vi, s; |
| 193 | double betas, betav, oss, ovv, ss, vv, ts, tv; |
| 194 | double ots, otv, tvv, tss; |
| 195 | int type, i, j, iflag, vpass, spass, vtry, stry; |
| 196 | |
| 197 | *nz = 0; |
| 198 | betav = 0.25; |
| 199 | betas = 0.25; |
| 200 | oss = sr; |
| 201 | ovv = v; |
| 202 | |
| 203 | // Evaluate polynomial by synthetic division. |
| 204 | quadsd(n,&u,&v,p,qp,&a,&b); |
| 205 | calcsc(&type); |
| 206 | |
| 207 | for (j = 0; j < l2; j++) { |
| 208 | // Calculate next k polynomial and estimate v. |
| 209 | nextk(&type); |
| 210 | calcsc(&type); |
| 211 | newest(type,&ui,&vi); |
| 212 | vv = vi; |
| 213 | |
| 214 | // Estimate s. |
| 215 | ss = k[n-1] == 0.0 ? 0.0 : -p[n] / k[n - 1]; |
| 216 | tv = 1.0; |
| 217 | ts = 1.0; |
| 218 | if (j == 0 || type == 3) |
| 219 | goto _70; |
| 220 | |
| 221 | // Compute relative measures of convergence of s and v sequences. |
| 222 | if (vv != 0.0) tv = blAbs((vv - ovv) / vv); |
| 223 | if (ss != 0.0) ts = blAbs((ss - oss) / ss); |
| 224 | |
| 225 | // If decreasing, multiply two most recent convergence measures. |
| 226 | tvv = tv < otv ? tv * otv : 1.0; |
| 227 | tss = ts < ots ? ts * ots : 1.0; |
| 228 | |
| 229 | // Compare with convergence criteria. |
| 230 | vpass = (tvv < betav); |
| 231 | spass = (tss < betas); |
| 232 | if (!(spass || vpass)) |
| 233 | goto _70; |
| 234 | |
| 235 | // At least one sequence has passed the convergence test. Store variables |
| 236 | // before iterating. |
| 237 | svu = u; |
| 238 | svv = v; |
| 239 | for (i = 0; i < n; i++) |
| 240 | svk[i] = k[i]; |
| 241 | s = ss; |
| 242 | |
| 243 | // Choose iteration according to the fastest converging sequence. |
| 244 | vtry = 0; |
| 245 | stry = 0; |
| 246 | if (spass && (!vpass || tss < tvv)) |
| 247 | goto _40; |
| 248 | |
| 249 | _20: |
| 250 | quadit(&ui, &vi, nz); |
| 251 | if (*nz > 0) |
| 252 | return; |
| 253 | |
| 254 | // Quadratic iteration has failed. Flag that it has been tried and decrease |
| 255 | // the convergence criterion. |
| 256 | vtry = 1; |
| 257 | betav *= 0.25; |
| 258 | |
| 259 | // Try linear iteration if it has not been tried and the S sequence is converging. |
| 260 | if (stry || !spass) goto _50; |
| 261 | for (i = 0; i < n; i++) |
| 262 | k[i] = svk[i]; |
| 263 | |
| 264 | _40: |
| 265 | realit(s, nz, &iflag); |
| 266 | if (*nz > 0) |
| 267 | return; |
| 268 | |
| 269 | // Linear iteration has failed. Flag that it has been tried and decrease |
| 270 | // the convergence criterion. |
| 271 | stry = 1; |
| 272 | betas *=0.25; |
| 273 | if (iflag == 0) |
| 274 | goto _50; |
| 275 | |
| 276 | // If linear iteration signals an almost double real zero attempt quadratic |
| 277 | // iteration. |
| 278 | ui = -(s+s); |
| 279 | vi = s*s; |
| 280 | goto _20; |
| 281 | |
| 282 | // Restore variables. |
| 283 | _50: |
| 284 | u = svu; |
| 285 | v = svv; |
| 286 | for (i = 0; i < n; i++) |
| 287 | k[i] = svk[i]; |
| 288 | |
| 289 | // Try quadratic iteration if it has not been tried and the V sequence is |
| 290 | // converging. |
| 291 | if (vpass && !vtry) |
| 292 | goto _20; |
| 293 | |
| 294 | // Recompute QP and scalar values to continue the second stage. |
| 295 | quadsd(n, &u, &v, p, qp, &a, &b); |
| 296 | calcsc(&type); |
| 297 | |
| 298 | _70: |
| 299 | ovv = vv; |
| 300 | oss = ss; |
| 301 | otv = tv; |
| 302 | ots = ts; |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | // Variable-shift k-polynomial iteration for a quadratic factor converges only |
| 307 | // if the zeros are equimodular or nearly so. |
| 308 | // |
| 309 | // uu, vv - coefficients of starting quadratic. |
| 310 | // nz - number of zeros found. |
| 311 | void BLJenkinsTraubSolver::quadit(double* uu, double* vv, int* nz) { |
| 312 | double ui, vi; |
| 313 | double mp, omp, ee, relstp, t, zm; |
| 314 | int type, i, j, tried; |
| 315 | |
| 316 | *nz = 0; |
| 317 | tried = 0; |
| 318 | u = *uu; |
| 319 | v = *vv; |
| 320 | j = 0; |
| 321 | |
| 322 | // Main loop. |
| 323 | for (;;) { |
| 324 | itercnt++; |
| 325 | quad(1.0, u, v, &szr, &szi, &lzr, &lzi); |
| 326 | |
| 327 | // Return if roots of the quadratic are real and not close to multiple or |
| 328 | // nearly equal and of opposite sign. |
| 329 | if (blAbs(blAbs(szr) - blAbs(lzr)) > 0.01 * blAbs(lzr)) |
| 330 | return; |
| 331 | |
| 332 | // Evaluate polynomial by quadratic synthetic division. |
| 333 | quadsd(n, &u, &v, p, qp, &a, &b); |
| 334 | mp = blAbs(a - szr * b) + blAbs(szi * b); |
| 335 | |
| 336 | // Compute a rigorous bound on the rounding error in evaluating p. |
| 337 | zm = blSqrt(blAbs(v)); |
| 338 | ee = 2.0 * blAbs(qp[0]); |
| 339 | t = -szr*b; |
| 340 | |
| 341 | for (i = 1; i < n; i++) |
| 342 | ee = ee * zm + blAbs(qp[i]); |
| 343 | |
| 344 | ee = ee * zm + blAbs(a+t); |
| 345 | ee *= (5.0 * mre + 4.0 * are); |
| 346 | ee = ee - (5.0 * mre + 2.0 * are) * (blAbs(a + t) + blAbs(b) * zm); |
| 347 | ee = ee + 2.0*are * blAbs(t); |
| 348 | |
| 349 | // Iteration has converged sufficiently if the polynomial value is less than |
| 350 | // 20 times this bound. |
| 351 | if (mp <= 20.0 * ee) { |
| 352 | *nz = 2; |
| 353 | return; |
| 354 | } |
| 355 | |
| 356 | // Stop iteration after 20 steps. |
| 357 | if (++j > 20) |
| 358 | return; |
| 359 | |
| 360 | if (!(j < 2 || relstp > 0.01 || mp < omp || tried)) { |
| 361 | // A cluster appears to be stalling the convergence. Five fixed shift steps |
| 362 | // are taken with a u,v close to the cluster. |
| 363 | if (relstp < JT_ETA) |
| 364 | relstp = JT_ETA; |
| 365 | |
| 366 | relstp = blSqrt(relstp); |
| 367 | u = u - u * relstp; |
| 368 | v = v + v * relstp; |
| 369 | quadsd(n, &u, &v, p, qp, &a, &b); |
| 370 | |
| 371 | for (i = 0; i < 5; i++) { |
| 372 | calcsc(&type); |
| 373 | nextk(&type); |
| 374 | } |
| 375 | |
| 376 | tried = 1; |
| 377 | j = 0; |
| 378 | } |
| 379 | |
| 380 | omp = mp; |
| 381 | |
| 382 | // Calculate next k polynomial and new u and v. |
| 383 | calcsc(&type); |
| 384 | nextk(&type); |
| 385 | calcsc(&type); |
| 386 | newest(type,&ui,&vi); |
| 387 | |
| 388 | // If vi is zero the iteration is not converging. |
| 389 | if (vi == 0.0) |
| 390 | return; |
| 391 | |
| 392 | relstp = blAbs((vi - v) / vi); |
| 393 | u = ui; |
| 394 | v = vi; |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | // Variable-shift H polynomial iteration for a real zero. |
| 399 | // |
| 400 | // sss - starting iterate |
| 401 | // nz - number of zeros found |
| 402 | // iflag - flag to indicate a pair of zeros near real axis. |
| 403 | void BLJenkinsTraubSolver::realit(double sss, int* nz, int* iflag) { |
| 404 | double pv, kv, t, s; |
| 405 | double ms, mp, omp, ee; |
| 406 | int i, j; |
| 407 | |
| 408 | *nz = 0; |
| 409 | *iflag = 0; |
| 410 | |
| 411 | s = sss; |
| 412 | j = 0; |
| 413 | |
| 414 | for (;;) { |
| 415 | itercnt++; |
| 416 | pv = p[0]; |
| 417 | |
| 418 | // Evaluate p at s. |
| 419 | qp[0] = pv; |
| 420 | |
| 421 | for (i = 1; i <= n; i++) { |
| 422 | pv = pv*s + p[i]; |
| 423 | qp[i] = pv; |
| 424 | } |
| 425 | mp = blAbs(pv); |
| 426 | |
| 427 | // Compute a rigorous bound on the error in evaluating p. |
| 428 | ms = blAbs(s); |
| 429 | ee = (mre / (are + mre)) * blAbs(qp[0]); |
| 430 | |
| 431 | for (i = 1; i <= n; i++) |
| 432 | ee = ee * ms + blAbs(qp[i]); |
| 433 | |
| 434 | // Iteration has converged sufficiently if the polynomial value is less |
| 435 | // than 20 times this bound. |
| 436 | if (mp <= 20.0 * ((are+mre)*ee-mre*mp)) { |
| 437 | *nz = 1; |
| 438 | szr = s; |
| 439 | szi = 0.0; |
| 440 | return; |
| 441 | } |
| 442 | j++; |
| 443 | |
| 444 | // Stop iteration after 10 steps. |
| 445 | if (j > 10) return; |
| 446 | if (j < 2) goto _50; |
| 447 | if (blAbs(t) > 0.001 * blAbs(s-t) || mp < omp) goto _50; |
| 448 | |
| 449 | // A cluster of zeros near the real axis has been encountered. Return with |
| 450 | // iflag set to initiate a quadratic iteration. |
| 451 | *iflag = 1; |
| 452 | sss = s; |
| 453 | return; |
| 454 | |
| 455 | _50: |
| 456 | omp = mp; |
| 457 | |
| 458 | // Compute t, the next polynomial, and the new iterate. |
| 459 | kv = k[0]; |
| 460 | qk[0] = kv; |
| 461 | |
| 462 | for (i = 1; i < n; i++) { |
| 463 | kv = kv*s + k[i]; |
| 464 | qk[i] = kv; |
| 465 | } |
| 466 | |
| 467 | // HVE n -> n-1 |
| 468 | if (blAbs(kv) <= blAbs(k[n-1])*10.0*JT_ETA) { |
| 469 | // Use the unscaled form. |
| 470 | k[0] = 0.0; |
| 471 | for (i = 1; i < n; i++) |
| 472 | k[i] = qk[i-1]; |
| 473 | } |
| 474 | else { |
| 475 | // Use the scaled form of the recurrence if the value of k at s is nonzero. |
| 476 | t = -pv / kv; |
| 477 | k[0] = qp[0]; |
| 478 | for (i = 1; i < n; i++) |
| 479 | k[i] = t*qk[i-1] + qp[i]; |
| 480 | } |
| 481 | |
| 482 | kv = k[0]; |
| 483 | for (i = 1; i < n; i++) |
| 484 | kv = kv*s + k[i]; |
| 485 | |
| 486 | t = 0.0; |
| 487 | if (blAbs(kv) > blAbs(k[n-1] * 10.0 * JT_ETA)) |
| 488 | t = -pv/kv; |
| 489 | |
| 490 | s += t; |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | // This routine calculates scalar quantities used to compute the next k |
| 495 | // polynomial and new estimates of the quadratic coefficients. |
| 496 | // |
| 497 | // type - integer variable set here indicating how the calculations are |
| 498 | // normalized to avoid overflow. |
| 499 | void BLJenkinsTraubSolver::calcsc(int* type) { |
| 500 | // Synthetic division of k by the quadratic 1, u, v. |
| 501 | quadsd(n - 1, &u, &v, k, qk, &c, &d); |
| 502 | |
| 503 | if (blAbs(c) > blAbs(k[n-1] * 100.0 * JT_ETA)) goto _10; |
| 504 | if (blAbs(d) > blAbs(k[n-2] * 100.0 * JT_ETA)) goto _10; |
| 505 | |
| 506 | // Type=3 indicates the quadratic is almost a factor of k. |
| 507 | *type = 3; |
| 508 | return; |
| 509 | |
| 510 | _10: |
| 511 | if (blAbs(d) < blAbs(c)) { |
| 512 | // Type=1 indicates that all formulas are divided by c. |
| 513 | *type = 1; |
| 514 | e = a / c; |
| 515 | f = d / c; |
| 516 | g = u * e; |
| 517 | h = v * b; |
| 518 | |
| 519 | a3 = a * e + b * (h / c + g); |
| 520 | a1 = b - a * (d / c); |
| 521 | a7 = a + g * d + h * f; |
| 522 | return; |
| 523 | } |
| 524 | else { |
| 525 | // Type=2 indicates that all formulas are divided by d. |
| 526 | *type = 2; |
| 527 | e = a / d; |
| 528 | f = c / d; |
| 529 | g = u * b; |
| 530 | h = v * b; |
| 531 | |
| 532 | a3 = (a + g) * e + h * (b / d); |
| 533 | a1 = b * f - a; |
| 534 | a7 = (f + u) * a + h; |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | // Computes the next k polynomials using scalars computed in calcsc. |
| 539 | void BLJenkinsTraubSolver::nextk(int* type) { |
| 540 | double x; |
| 541 | int i; |
| 542 | |
| 543 | if (*type == 3) { |
| 544 | // Use unscaled form of the recurrence if type is 3. |
| 545 | k[0] = 0.0; |
| 546 | k[1] = 0.0; |
| 547 | |
| 548 | for (i = 2; i < n; i++) |
| 549 | k[i] = qk[i-2]; |
| 550 | } |
| 551 | else { |
| 552 | x = a; |
| 553 | if (*type == 1) x = b; |
| 554 | |
| 555 | if (blAbs(a1) <= blAbs(x) * 10.0 * JT_ETA) { |
| 556 | // If a1 is nearly zero then use a special form of the recurrence. |
| 557 | k[0] = 0.0; |
| 558 | k[1] = -a7 * qp[0]; |
| 559 | |
| 560 | for (i = 2; i < n; i++) |
| 561 | k[i] = a3 * qk[i-2] - a7 * qp[i-1]; |
| 562 | } |
| 563 | else { |
| 564 | // Use scaled form of the recurrence. |
| 565 | a7 /= a1; |
| 566 | a3 /= a1; |
| 567 | k[0] = qp[0]; |
| 568 | k[1] = qp[1] - a7*qp[0]; |
| 569 | |
| 570 | for (i = 2; i < n; i++) |
| 571 | k[i] = a3 * qk[i-2] - a7 * qp[i-1] + qp[i]; |
| 572 | } |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | // Compute new estimates of the quadratic coefficients using the scalars |
| 577 | // computed in calcsc. |
| 578 | void BLJenkinsTraubSolver::newest(int type, double* uu, double* vv) { |
| 579 | // Use formulas appropriate to setting of type. |
| 580 | if (type == 3) { |
| 581 | // If type=3 the quadratic is zeroed. |
| 582 | *uu = 0.0; |
| 583 | *vv = 0.0; |
| 584 | return; |
| 585 | } |
| 586 | |
| 587 | double a4, a5; |
| 588 | if (type == 2) { |
| 589 | a4 = (a + g) * f + h; |
| 590 | a5 = (f + u) * c + v * d; |
| 591 | } |
| 592 | else { |
| 593 | a4 = a + u * b + h * f; |
| 594 | a5 = c + d * (u + v * f); |
| 595 | } |
| 596 | |
| 597 | // Evaluate new quadratic coefficients. |
| 598 | double b1 = -k[n-1] / p[n]; |
| 599 | double b2 = -(k[n-2] + b1 * p[n-1]) / p[n]; |
| 600 | double c1 = v * b2 * a1; |
| 601 | double c2 = b1 * a7; |
| 602 | double c3 = b1 * b1 * a3; |
| 603 | double c4 = c1 - c2 - c3; |
| 604 | |
| 605 | double t = a5 + b1 * a4 - c4; |
| 606 | if (t == 0.0) { |
| 607 | *uu = 0.0; |
| 608 | *vv = 0.0; |
| 609 | } |
| 610 | else { |
| 611 | *uu = u - (u * (c3 + c2) + v * (b1 * a1 + b2 * a7)) / t; |
| 612 | *vv = v * (1.0 + c4 / t); |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | // Divides p by the quadratic 1,u,v placing the quotient in q and the remainder in a, b. |
| 617 | void BLJenkinsTraubSolver::quadsd(int nn, double* u, double* v, double* p, double* q, double* a, double* b) { |
| 618 | double c; |
| 619 | int i; |
| 620 | |
| 621 | *b = p[0]; |
| 622 | q[0] = *b; |
| 623 | *a = p[1] - (*b)*(*u); |
| 624 | q[1] = *a; |
| 625 | |
| 626 | for (i = 2; i <= nn; i++) { |
| 627 | c = p[i] - (*a)*(*u) - (*b)*(*v); |
| 628 | q[i] = c; |
| 629 | *b = *a; |
| 630 | *a = c; |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | // Calculate the zeros of the quadratic a*z^2 + b1*z + c. The quadratic formula, |
| 635 | // modified to avoid overflow, is used to find the larger zero if the zeros are |
| 636 | // real and both are complex. The smaller real zero is found directly from the |
| 637 | // product of the zeros c/a. |
| 638 | void BLJenkinsTraubSolver::quad(double a, double b1, double c, double* sr, double* si, double* lr, double* li) { |
| 639 | double b, d, e; |
| 640 | |
| 641 | if (a == 0.0) { |
| 642 | // Less than two roots. |
| 643 | if (b1 != 0.0) |
| 644 | *sr = -c/b1; |
| 645 | else |
| 646 | *sr = 0.0; |
| 647 | |
| 648 | *lr = 0.0; |
| 649 | *si = 0.0; |
| 650 | *li = 0.0; |
| 651 | return; |
| 652 | } |
| 653 | |
| 654 | if (c == 0.0) { |
| 655 | // one real root, one zero root. |
| 656 | *sr = 0.0; |
| 657 | *lr = -b1 / a; |
| 658 | *si = 0.0; |
| 659 | *li = 0.0; |
| 660 | return; |
| 661 | } |
| 662 | |
| 663 | // Compute discriminant avoiding overflow. |
| 664 | b = b1 / 2.0; |
| 665 | if (blAbs(b) < blAbs(c)) { |
| 666 | e = c >= 0.0 ? a : -a; |
| 667 | e = b * (b / blAbs(c)) - e; |
| 668 | d = blSqrt(blAbs(e)) * blSqrt(blAbs(c)); |
| 669 | } |
| 670 | else { |
| 671 | e = 1.0 - (a/b)*(c/b); |
| 672 | d = blSqrt(blAbs(e)) * blAbs(b); |
| 673 | } |
| 674 | |
| 675 | if (e < 0.0) { |
| 676 | // Complex conjugate zeros. |
| 677 | *sr = -b / a; |
| 678 | *lr = *sr; |
| 679 | *si = blAbs(d/a); |
| 680 | *li = -(*si); |
| 681 | } |
| 682 | else { |
| 683 | // Real zeros. |
| 684 | if (b >= 0.0) |
| 685 | d = -d; |
| 686 | *lr = (d - b)/a; |
| 687 | *sr = 0.0; |
| 688 | |
| 689 | if (*lr != 0.0) |
| 690 | *sr = (c / *lr) / a; |
| 691 | *si = 0.0; |
| 692 | *li = 0.0; |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | int BLJenkinsTraubSolver::solve() { |
| 697 | double t, aa, bb, cc, factor; |
| 698 | double lo, max, min, xx, yy, cosr, sinr, xxx, x, sc, bnd; |
| 699 | double xm, ff, df, dx; |
| 700 | int cnt, nz, i, j, jj, l, nm1, zerok; |
| 701 | |
| 702 | // Algorithm fails of the leading coefficient is zero. |
| 703 | BL_ASSERT(p[0] != 0.0); |
| 704 | BL_ASSERT(n > 0); |
| 705 | |
| 706 | are = JT_ETA; |
| 707 | mre = JT_ETA; |
| 708 | lo = JT_SMALL / JT_ETA; |
| 709 | |
| 710 | // Initialization of constants for shift rotation. |
| 711 | xx = BL_SQRT_0p5; // sqrt(0.5). |
| 712 | yy = -xx; //-sqrt(0.5). |
| 713 | sinr = 0.99756405025982424761; // sin(94 * PI / 180). |
| 714 | cosr = -0.06975647374412530078; // cos(94 * PI / 180). |
| 715 | |
| 716 | // Start the algorithm for one zero. |
| 717 | _40: |
| 718 | itercnt = 0; |
| 719 | |
| 720 | if (n == 1) { |
| 721 | zeror[degree-1] = -p[1] / p[0]; |
| 722 | zeroi[degree-1] = 0.0; |
| 723 | n -= 1; |
| 724 | goto _99; |
| 725 | } |
| 726 | |
| 727 | // Calculate the final zero or pair of zeros. |
| 728 | if (n == 2) { |
| 729 | quad(p[0], p[1], p[2], &zeror[degree-2], &zeroi[degree-2], &zeror[degree-1], &zeroi[degree-1]); |
| 730 | n -= 2; |
| 731 | goto _99; |
| 732 | } |
| 733 | |
| 734 | // Find largest and smallest moduli of coefficients. |
| 735 | min = JT_INF; |
| 736 | max = 0.0; |
| 737 | |
| 738 | for (i = 0; i <= n; i++) { |
| 739 | x = blAbs(p[i]); |
| 740 | |
| 741 | if (x > max) |
| 742 | max = x; |
| 743 | if (x != 0.0 && x < min) |
| 744 | min = x; |
| 745 | } |
| 746 | |
| 747 | // Scale if there are large or very small coefficients. Computes a scale |
| 748 | // factor to multiply the coefficients of the polynomial. The scaling is |
| 749 | // done to avoid overflow and to avoid undetected underflow interfering |
| 750 | // with the convergence criterion. The factor is a power of the JT_BASE. |
| 751 | sc = lo / min; |
| 752 | if (sc > 1.0 && max > JT_INF / sc) |
| 753 | goto _110; |
| 754 | |
| 755 | if (sc <= 1.0) { |
| 756 | if (max < 10.0) |
| 757 | goto _110; |
| 758 | |
| 759 | if (sc == 0.0) |
| 760 | sc = JT_SMALL; |
| 761 | } |
| 762 | |
| 763 | // 1.44269504088896340736 == 1 / log(JT_BASE) |
| 764 | l = blRoundToInt(1.44269504088896340736 * log(sc)); |
| 765 | |
| 766 | // Scale polynomial. |
| 767 | factor = blPow(JT_BASE, l); |
| 768 | if (factor != 1.0) { |
| 769 | for (i = 0;i <= n; i++) |
| 770 | p[i] = factor * p[i]; |
| 771 | } |
| 772 | |
| 773 | _110: |
| 774 | // Compute lower bound on moduli of roots. |
| 775 | for (i = 0; i <= n; i++) |
| 776 | pt[i] = (blAbs(p[i])); |
| 777 | pt[n] = - pt[n]; |
| 778 | |
| 779 | // Compute upper estimate of bound. |
| 780 | x = exp((log(-pt[n]) -log(pt[0])) / (double)n); |
| 781 | |
| 782 | // If Newton step at the origin is better, use it. |
| 783 | if (pt[n - 1] != 0.0) { |
| 784 | xm = -pt[n] / pt[n - 1]; |
| 785 | if (xm < x) x = xm; |
| 786 | } |
| 787 | |
| 788 | // Chop the interval (0,x) until ff <= 0. |
| 789 | for (;;) { |
| 790 | xm = x * 0.1; |
| 791 | ff = pt[0]; |
| 792 | |
| 793 | for (i = 1; i <= n; i++) |
| 794 | ff = ff*xm + pt[i]; |
| 795 | |
| 796 | if (ff <= 0.0) |
| 797 | break; |
| 798 | x = xm; |
| 799 | } |
| 800 | dx = x; |
| 801 | |
| 802 | // Do Newton interation until x converges to two decimal places. |
| 803 | while (blAbs(dx/x) > 0.005) { |
| 804 | ff = pt[0]; |
| 805 | df = ff; |
| 806 | |
| 807 | for (i = 1; i < n; i++) { |
| 808 | ff = ff*x + pt[i]; |
| 809 | df = df*x + ff; |
| 810 | } |
| 811 | |
| 812 | ff = ff*x + pt[n]; |
| 813 | dx = ff/df; |
| 814 | x -= dx; |
| 815 | itercnt++; |
| 816 | } |
| 817 | bnd = x; |
| 818 | |
| 819 | // Compute the derivative as the initial k polynomial and do 5 steps with |
| 820 | // no shift. |
| 821 | nm1 = n - 1; |
| 822 | |
| 823 | for (i=1;i<n;i++) |
| 824 | k[i] = (double)(n-i)*p[i]/(double)n; |
| 825 | k[0] = p[0]; |
| 826 | |
| 827 | aa = p[n]; |
| 828 | bb = p[n-1]; |
| 829 | zerok = (k[n-1] == 0); |
| 830 | |
| 831 | for (jj = 0; jj < 5; jj++) { |
| 832 | itercnt++; |
| 833 | cc = k[n-1]; |
| 834 | |
| 835 | if (!zerok) { |
| 836 | // Use a scaled form of recurrence if value of k at 0 is nonzero. |
| 837 | t = -aa/cc; |
| 838 | for (i=0;i<nm1;i++) { |
| 839 | j = n-i-1; |
| 840 | k[j] = t*k[j-1]+p[j]; |
| 841 | } |
| 842 | k[0] = p[0]; |
| 843 | zerok = (blAbs(k[n-1]) <= blAbs(bb) * JT_ETA * 10.0); |
| 844 | } |
| 845 | else { |
| 846 | // Use unscaled form of recurrence. |
| 847 | for (i = 0; i < nm1; i++) { |
| 848 | j = n-i-1; |
| 849 | k[j] = k[j-1]; |
| 850 | } |
| 851 | k[0] = 0.0; |
| 852 | zerok = (k[n-1] == 0.0); |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | // Save k for restarts with new shifts. |
| 857 | for (i=0;i<n;i++) |
| 858 | temp[i] = k[i]; |
| 859 | |
| 860 | // Loop to select the quadratic corresponding to each new shift. |
| 861 | for (cnt = 0; cnt < 20; cnt++) { |
| 862 | // Quadratic corresponds to a double shift to a non-real point and its |
| 863 | // complex conjugate. The point has modulus bnd and amplitude rotated |
| 864 | // by 94 degrees from the previous shift. |
| 865 | xxx = cosr * xx - sinr * yy; |
| 866 | yy = sinr * xx + cosr * yy; |
| 867 | xx = xxx; |
| 868 | sr = bnd * xx; |
| 869 | si = bnd * yy; |
| 870 | u = -2.0 * sr; |
| 871 | v = bnd; |
| 872 | fxshfr(20 * (cnt + 1), &nz); |
| 873 | |
| 874 | if (nz != 0) { |
| 875 | // The second stage jumps directly to one of the third stage iterations |
| 876 | // and returns here if successful. Deflate the polynomial, store the |
| 877 | // zero or zeros and return to the main algorithm. |
| 878 | j = degree - n; |
| 879 | zeror[j] = szr; |
| 880 | zeroi[j] = szi; |
| 881 | n -= nz; |
| 882 | |
| 883 | for (i = 0; i <= n; i++) { |
| 884 | p[i] = qp[i]; |
| 885 | } |
| 886 | |
| 887 | if (nz != 1) { |
| 888 | zeror[j+1] = lzr; |
| 889 | zeroi[j+1] = lzi; |
| 890 | } |
| 891 | goto _40; |
| 892 | } |
| 893 | |
| 894 | // If the iteration is unsuccessful, another quadratic is chosen after |
| 895 | // restoring k. |
| 896 | for (i = 0; i < n; i++) { |
| 897 | k[i] = temp[i]; |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | // Return with failure if no convergence after 20 shifts. |
| 902 | _99: |
| 903 | return degree - n; |
| 904 | } |
| 905 | |
| 906 | // Inject root into an array. |
| 907 | static BL_INLINE size_t injectRoot(double* arr, size_t n, double value) noexcept { |
| 908 | size_t i, j; |
| 909 | |
| 910 | for (i = 0; i < n; i++) { |
| 911 | if (arr[i] < value) |
| 912 | continue; |
| 913 | if (arr[i] == value) |
| 914 | return n; |
| 915 | break; |
| 916 | } |
| 917 | |
| 918 | for (j = n; j != i; j++) |
| 919 | arr[j] = arr[j - 1]; |
| 920 | |
| 921 | arr[i] = value; |
| 922 | return n + 1; |
| 923 | } |
| 924 | |
| 925 | size_t blPolyRoots(double* dst, const double* poly, int degree, double tMin, double tMax) noexcept { |
| 926 | size_t i; |
| 927 | size_t zeros = 0; |
| 928 | |
| 929 | // Decrease degree of polynomial if the highest degree coefficient is zero. |
| 930 | if (degree <= 0) |
| 931 | return 0; |
| 932 | |
| 933 | while (poly[0] == 0.0) { |
| 934 | poly++; |
| 935 | if (--degree <= 3) |
| 936 | break; |
| 937 | } |
| 938 | |
| 939 | // Remove the zeros at the origin, if any. |
| 940 | if (degree <= 0) |
| 941 | return 0; |
| 942 | |
| 943 | while (poly[degree] == 0.0) { |
| 944 | zeros++; |
| 945 | if (--degree <= 3) |
| 946 | break; |
| 947 | } |
| 948 | |
| 949 | // Use an analytic method if the degree was decreased to 3. |
| 950 | if (degree <= 3) { |
| 951 | size_t roots; |
| 952 | |
| 953 | if (degree == 1) { |
| 954 | double x = -poly[1] / poly[0]; |
| 955 | dst[0] = x; |
| 956 | return size_t(x >= tMin && x <= tMax); |
| 957 | } |
| 958 | else if (degree == 2) { |
| 959 | roots = blQuadRoots(dst, poly, tMin, tMax); |
| 960 | } |
| 961 | else { |
| 962 | roots = blCubicRoots(dst, poly, tMin, tMax); |
| 963 | } |
| 964 | |
| 965 | if (zeros != 0 && tMin <= 0.0 && tMax >= 0.0) |
| 966 | return injectRoot(dst, roots, 0.0); |
| 967 | else |
| 968 | return roots; |
| 969 | } |
| 970 | |
| 971 | // Limit the maximum polynomial degree. |
| 972 | if (degree > 1024) |
| 973 | return 0; |
| 974 | |
| 975 | BLJenkinsTraubSolver solver(poly, degree); |
| 976 | size_t roots = unsigned(solver.solve()); |
| 977 | |
| 978 | if (zeros) |
| 979 | dst[roots++] = 0.0; |
| 980 | |
| 981 | size_t nInterestingRoots = 0; |
| 982 | for (i = 0; i < roots; i++) { |
| 983 | if (isNearZero(solver.zeroi[i])) { |
| 984 | double r = solver.zeror[i]; |
| 985 | if (r >= tMin && r <= tMax) |
| 986 | dst[nInterestingRoots++] = r; |
| 987 | } |
| 988 | } |
| 989 | roots = nInterestingRoots; |
| 990 | |
| 991 | if (roots > 1) |
| 992 | blQuickSort<double>(dst, roots); |
| 993 | |
| 994 | return roots; |
| 995 | } |
| 996 | |
| 997 | // ============================================================================ |
| 998 | // [BLMath{Roots} - Unit Tests] |
| 999 | // ============================================================================ |
| 1000 | |
| 1001 | #ifdef BL_TEST |
| 1002 | UNIT(blend2d_math) { |
| 1003 | INFO("blFloor()" ); |
| 1004 | { |
| 1005 | EXPECT(blFloor(-1.5f) ==-2.0f); |
| 1006 | EXPECT(blFloor(-1.5 ) ==-2.0 ); |
| 1007 | EXPECT(blFloor(-0.9f) ==-1.0f); |
| 1008 | EXPECT(blFloor(-0.9 ) ==-1.0 ); |
| 1009 | EXPECT(blFloor(-0.5f) ==-1.0f); |
| 1010 | EXPECT(blFloor(-0.5 ) ==-1.0 ); |
| 1011 | EXPECT(blFloor(-0.1f) ==-1.0f); |
| 1012 | EXPECT(blFloor(-0.1 ) ==-1.0 ); |
| 1013 | EXPECT(blFloor( 0.0f) == 0.0f); |
| 1014 | EXPECT(blFloor( 0.0 ) == 0.0 ); |
| 1015 | EXPECT(blFloor( 0.1f) == 0.0f); |
| 1016 | EXPECT(blFloor( 0.1 ) == 0.0 ); |
| 1017 | EXPECT(blFloor( 0.5f) == 0.0f); |
| 1018 | EXPECT(blFloor( 0.5 ) == 0.0 ); |
| 1019 | EXPECT(blFloor( 0.9f) == 0.0f); |
| 1020 | EXPECT(blFloor( 0.9 ) == 0.0 ); |
| 1021 | EXPECT(blFloor( 1.5f) == 1.0f); |
| 1022 | EXPECT(blFloor( 1.5 ) == 1.0 ); |
| 1023 | EXPECT(blFloor(-4503599627370496.0) == -4503599627370496.0); |
| 1024 | EXPECT(blFloor( 4503599627370496.0) == 4503599627370496.0); |
| 1025 | } |
| 1026 | |
| 1027 | INFO("blCeil()" ); |
| 1028 | { |
| 1029 | EXPECT(blCeil(-1.5f) ==-1.0f); |
| 1030 | EXPECT(blCeil(-1.5 ) ==-1.0 ); |
| 1031 | EXPECT(blCeil(-0.9f) == 0.0f); |
| 1032 | EXPECT(blCeil(-0.9 ) == 0.0 ); |
| 1033 | EXPECT(blCeil(-0.5f) == 0.0f); |
| 1034 | EXPECT(blCeil(-0.5 ) == 0.0 ); |
| 1035 | EXPECT(blCeil(-0.1f) == 0.0f); |
| 1036 | EXPECT(blCeil(-0.1 ) == 0.0 ); |
| 1037 | EXPECT(blCeil( 0.0f) == 0.0f); |
| 1038 | EXPECT(blCeil( 0.0 ) == 0.0 ); |
| 1039 | EXPECT(blCeil( 0.1f) == 1.0f); |
| 1040 | EXPECT(blCeil( 0.1 ) == 1.0 ); |
| 1041 | EXPECT(blCeil( 0.5f) == 1.0f); |
| 1042 | EXPECT(blCeil( 0.5 ) == 1.0 ); |
| 1043 | EXPECT(blCeil( 0.9f) == 1.0f); |
| 1044 | EXPECT(blCeil( 0.9 ) == 1.0 ); |
| 1045 | EXPECT(blCeil( 1.5f) == 2.0f); |
| 1046 | EXPECT(blCeil( 1.5 ) == 2.0 ); |
| 1047 | EXPECT(blCeil(-4503599627370496.0) == -4503599627370496.0); |
| 1048 | EXPECT(blCeil( 4503599627370496.0) == 4503599627370496.0); |
| 1049 | } |
| 1050 | |
| 1051 | INFO("blTrunc()" ); |
| 1052 | { |
| 1053 | EXPECT(blTrunc(-1.5f) ==-1.0f); |
| 1054 | EXPECT(blTrunc(-1.5 ) ==-1.0 ); |
| 1055 | EXPECT(blTrunc(-0.9f) == 0.0f); |
| 1056 | EXPECT(blTrunc(-0.9 ) == 0.0 ); |
| 1057 | EXPECT(blTrunc(-0.5f) == 0.0f); |
| 1058 | EXPECT(blTrunc(-0.5 ) == 0.0 ); |
| 1059 | EXPECT(blTrunc(-0.1f) == 0.0f); |
| 1060 | EXPECT(blTrunc(-0.1 ) == 0.0 ); |
| 1061 | EXPECT(blTrunc( 0.0f) == 0.0f); |
| 1062 | EXPECT(blTrunc( 0.0 ) == 0.0 ); |
| 1063 | EXPECT(blTrunc( 0.1f) == 0.0f); |
| 1064 | EXPECT(blTrunc( 0.1 ) == 0.0 ); |
| 1065 | EXPECT(blTrunc( 0.5f) == 0.0f); |
| 1066 | EXPECT(blTrunc( 0.5 ) == 0.0 ); |
| 1067 | EXPECT(blTrunc( 0.9f) == 0.0f); |
| 1068 | EXPECT(blTrunc( 0.9 ) == 0.0 ); |
| 1069 | EXPECT(blTrunc( 1.5f) == 1.0f); |
| 1070 | EXPECT(blTrunc( 1.5 ) == 1.0 ); |
| 1071 | EXPECT(blTrunc(-4503599627370496.0) == -4503599627370496.0); |
| 1072 | EXPECT(blTrunc( 4503599627370496.0) == 4503599627370496.0); |
| 1073 | } |
| 1074 | |
| 1075 | INFO("blRound()" ); |
| 1076 | { |
| 1077 | EXPECT(blRound(-1.5f) ==-1.0f); |
| 1078 | EXPECT(blRound(-1.5 ) ==-1.0 ); |
| 1079 | EXPECT(blRound(-0.9f) ==-1.0f); |
| 1080 | EXPECT(blRound(-0.9 ) ==-1.0 ); |
| 1081 | EXPECT(blRound(-0.5f) == 0.0f); |
| 1082 | EXPECT(blRound(-0.5 ) == 0.0 ); |
| 1083 | EXPECT(blRound(-0.1f) == 0.0f); |
| 1084 | EXPECT(blRound(-0.1 ) == 0.0 ); |
| 1085 | EXPECT(blRound( 0.0f) == 0.0f); |
| 1086 | EXPECT(blRound( 0.0 ) == 0.0 ); |
| 1087 | EXPECT(blRound( 0.1f) == 0.0f); |
| 1088 | EXPECT(blRound( 0.1 ) == 0.0 ); |
| 1089 | EXPECT(blRound( 0.5f) == 1.0f); |
| 1090 | EXPECT(blRound( 0.5 ) == 1.0 ); |
| 1091 | EXPECT(blRound( 0.9f) == 1.0f); |
| 1092 | EXPECT(blRound( 0.9 ) == 1.0 ); |
| 1093 | EXPECT(blRound( 1.5f) == 2.0f); |
| 1094 | EXPECT(blRound( 1.5 ) == 2.0 ); |
| 1095 | EXPECT(blRound(-4503599627370496.0) == -4503599627370496.0); |
| 1096 | EXPECT(blRound( 4503599627370496.0) == 4503599627370496.0); |
| 1097 | } |
| 1098 | |
| 1099 | INFO("blFloorToInt()" ); |
| 1100 | { |
| 1101 | EXPECT(blFloorToInt(-1.5f) ==-2); |
| 1102 | EXPECT(blFloorToInt(-1.5 ) ==-2); |
| 1103 | EXPECT(blFloorToInt(-0.9f) ==-1); |
| 1104 | EXPECT(blFloorToInt(-0.9 ) ==-1); |
| 1105 | EXPECT(blFloorToInt(-0.5f) ==-1); |
| 1106 | EXPECT(blFloorToInt(-0.5 ) ==-1); |
| 1107 | EXPECT(blFloorToInt(-0.1f) ==-1); |
| 1108 | EXPECT(blFloorToInt(-0.1 ) ==-1); |
| 1109 | EXPECT(blFloorToInt( 0.0f) == 0); |
| 1110 | EXPECT(blFloorToInt( 0.0 ) == 0); |
| 1111 | EXPECT(blFloorToInt( 0.1f) == 0); |
| 1112 | EXPECT(blFloorToInt( 0.1 ) == 0); |
| 1113 | EXPECT(blFloorToInt( 0.5f) == 0); |
| 1114 | EXPECT(blFloorToInt( 0.5 ) == 0); |
| 1115 | EXPECT(blFloorToInt( 0.9f) == 0); |
| 1116 | EXPECT(blFloorToInt( 0.9 ) == 0); |
| 1117 | EXPECT(blFloorToInt( 1.5f) == 1); |
| 1118 | EXPECT(blFloorToInt( 1.5 ) == 1); |
| 1119 | } |
| 1120 | |
| 1121 | INFO("blCeilToInt()" ); |
| 1122 | { |
| 1123 | EXPECT(blCeilToInt(-1.5f) ==-1); |
| 1124 | EXPECT(blCeilToInt(-1.5 ) ==-1); |
| 1125 | EXPECT(blCeilToInt(-0.9f) == 0); |
| 1126 | EXPECT(blCeilToInt(-0.9 ) == 0); |
| 1127 | EXPECT(blCeilToInt(-0.5f) == 0); |
| 1128 | EXPECT(blCeilToInt(-0.5 ) == 0); |
| 1129 | EXPECT(blCeilToInt(-0.1f) == 0); |
| 1130 | EXPECT(blCeilToInt(-0.1 ) == 0); |
| 1131 | EXPECT(blCeilToInt( 0.0f) == 0); |
| 1132 | EXPECT(blCeilToInt( 0.0 ) == 0); |
| 1133 | EXPECT(blCeilToInt( 0.1f) == 1); |
| 1134 | EXPECT(blCeilToInt( 0.1 ) == 1); |
| 1135 | EXPECT(blCeilToInt( 0.5f) == 1); |
| 1136 | EXPECT(blCeilToInt( 0.5 ) == 1); |
| 1137 | EXPECT(blCeilToInt( 0.9f) == 1); |
| 1138 | EXPECT(blCeilToInt( 0.9 ) == 1); |
| 1139 | EXPECT(blCeilToInt( 1.5f) == 2); |
| 1140 | EXPECT(blCeilToInt( 1.5 ) == 2); |
| 1141 | } |
| 1142 | |
| 1143 | INFO("blTruncToInt()" ); |
| 1144 | { |
| 1145 | EXPECT(blTruncToInt(-1.5f) ==-1); |
| 1146 | EXPECT(blTruncToInt(-1.5 ) ==-1); |
| 1147 | EXPECT(blTruncToInt(-0.9f) == 0); |
| 1148 | EXPECT(blTruncToInt(-0.9 ) == 0); |
| 1149 | EXPECT(blTruncToInt(-0.5f) == 0); |
| 1150 | EXPECT(blTruncToInt(-0.5 ) == 0); |
| 1151 | EXPECT(blTruncToInt(-0.1f) == 0); |
| 1152 | EXPECT(blTruncToInt(-0.1 ) == 0); |
| 1153 | EXPECT(blTruncToInt( 0.0f) == 0); |
| 1154 | EXPECT(blTruncToInt( 0.0 ) == 0); |
| 1155 | EXPECT(blTruncToInt( 0.1f) == 0); |
| 1156 | EXPECT(blTruncToInt( 0.1 ) == 0); |
| 1157 | EXPECT(blTruncToInt( 0.5f) == 0); |
| 1158 | EXPECT(blTruncToInt( 0.5 ) == 0); |
| 1159 | EXPECT(blTruncToInt( 0.9f) == 0); |
| 1160 | EXPECT(blTruncToInt( 0.9 ) == 0); |
| 1161 | EXPECT(blTruncToInt( 1.5f) == 1); |
| 1162 | EXPECT(blTruncToInt( 1.5 ) == 1); |
| 1163 | } |
| 1164 | |
| 1165 | INFO("blRoundToInt()" ); |
| 1166 | { |
| 1167 | EXPECT(blRoundToInt(-1.5f) ==-1); |
| 1168 | EXPECT(blRoundToInt(-1.5 ) ==-1); |
| 1169 | EXPECT(blRoundToInt(-0.9f) ==-1); |
| 1170 | EXPECT(blRoundToInt(-0.9 ) ==-1); |
| 1171 | EXPECT(blRoundToInt(-0.5f) == 0); |
| 1172 | EXPECT(blRoundToInt(-0.5 ) == 0); |
| 1173 | EXPECT(blRoundToInt(-0.1f) == 0); |
| 1174 | EXPECT(blRoundToInt(-0.1 ) == 0); |
| 1175 | EXPECT(blRoundToInt( 0.0f) == 0); |
| 1176 | EXPECT(blRoundToInt( 0.0 ) == 0); |
| 1177 | EXPECT(blRoundToInt( 0.1f) == 0); |
| 1178 | EXPECT(blRoundToInt( 0.1 ) == 0); |
| 1179 | EXPECT(blRoundToInt( 0.5f) == 1); |
| 1180 | EXPECT(blRoundToInt( 0.5 ) == 1); |
| 1181 | EXPECT(blRoundToInt( 0.9f) == 1); |
| 1182 | EXPECT(blRoundToInt( 0.9 ) == 1); |
| 1183 | EXPECT(blRoundToInt( 1.5f) == 2); |
| 1184 | EXPECT(blRoundToInt( 1.5 ) == 2); |
| 1185 | } |
| 1186 | |
| 1187 | INFO("blFrac()" ); |
| 1188 | { |
| 1189 | EXPECT(blFrac( 0.00f) == 0.00f); |
| 1190 | EXPECT(blFrac( 0.00 ) == 0.00 ); |
| 1191 | EXPECT(blFrac( 1.00f) == 0.00f); |
| 1192 | EXPECT(blFrac( 1.00 ) == 0.00 ); |
| 1193 | EXPECT(blFrac( 1.25f) == 0.25f); |
| 1194 | EXPECT(blFrac( 1.25 ) == 0.25 ); |
| 1195 | EXPECT(blFrac( 1.75f) == 0.75f); |
| 1196 | EXPECT(blFrac( 1.75 ) == 0.75 ); |
| 1197 | EXPECT(blFrac(-1.00f) == 0.00f); |
| 1198 | EXPECT(blFrac(-1.00 ) == 0.00 ); |
| 1199 | EXPECT(blFrac(-1.25f) == 0.75f); |
| 1200 | EXPECT(blFrac(-1.25 ) == 0.75 ); |
| 1201 | EXPECT(blFrac(-1.75f) == 0.25f); |
| 1202 | EXPECT(blFrac(-1.75 ) == 0.25 ); |
| 1203 | } |
| 1204 | |
| 1205 | INFO("blIsBetween0And1()" ); |
| 1206 | { |
| 1207 | EXPECT(blIsBetween0And1( 0.0f ) == true); |
| 1208 | EXPECT(blIsBetween0And1( 0.0 ) == true); |
| 1209 | EXPECT(blIsBetween0And1( 0.5f ) == true); |
| 1210 | EXPECT(blIsBetween0And1( 0.5 ) == true); |
| 1211 | EXPECT(blIsBetween0And1( 1.0f ) == true); |
| 1212 | EXPECT(blIsBetween0And1( 1.0 ) == true); |
| 1213 | EXPECT(blIsBetween0And1(-0.0f ) == true); |
| 1214 | EXPECT(blIsBetween0And1(-0.0 ) == true); |
| 1215 | EXPECT(blIsBetween0And1(-1.0f ) == false); |
| 1216 | EXPECT(blIsBetween0And1(-1.0 ) == false); |
| 1217 | EXPECT(blIsBetween0And1( 1.001f) == false); |
| 1218 | EXPECT(blIsBetween0And1( 1.001 ) == false); |
| 1219 | } |
| 1220 | |
| 1221 | INFO("blQuadRoots" ); |
| 1222 | { |
| 1223 | size_t count; |
| 1224 | double roots[2]; |
| 1225 | |
| 1226 | // x^2 + 4x + 4 == 0 |
| 1227 | count = blQuadRoots(roots, 1.0, 4.0, 4.0, blMinValue<double>(), blMaxValue<double>()); |
| 1228 | |
| 1229 | EXPECT(count == 1); |
| 1230 | EXPECT(roots[0] == -2.0); |
| 1231 | |
| 1232 | // -4x^2 + 8x + 12 == 0 |
| 1233 | count = blQuadRoots(roots, -4.0, 8.0, 12.0, blMinValue<double>(), blMaxValue<double>()); |
| 1234 | |
| 1235 | EXPECT(count == 2); |
| 1236 | EXPECT(roots[0] == -1.0); |
| 1237 | EXPECT(roots[1] == 3.0); |
| 1238 | } |
| 1239 | } |
| 1240 | #endif |
| 1241 | |