| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************//
|
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********//
|
| 3 | #pragma once
|
| 4 |
|
| 5 | #include "Prerequisites/BsPrerequisitesUtil.h"
|
| 6 |
|
| 7 | namespace bs
|
| 8 | {
|
| 9 | /** @addtogroup Math
|
| 10 | * @{
|
| 11 | */
|
| 12 |
|
| 13 | /** Complex numbers. */
|
| 14 | template <class Type>
|
| 15 | class Complex
|
| 16 | {
|
| 17 | public:
|
| 18 | Complex() = default;
|
| 19 |
|
| 20 | Complex(const Type& r, const Type& i)
|
| 21 | : mReal(r), mImag(i) {}
|
| 22 |
|
| 23 | Complex(const Complex& other)
|
| 24 | : mReal(other.real()), mImag(other.imag()) {}
|
| 25 |
|
| 26 | Complex<Type>& operator= (const Type& other)
|
| 27 | {
|
| 28 | mReal = other;
|
| 29 | mImag = Type();
|
| 30 |
|
| 31 | return *this;
|
| 32 | }
|
| 33 |
|
| 34 | Complex<Type>& operator+= (const Type& other)
|
| 35 | {
|
| 36 | mReal += other;
|
| 37 |
|
| 38 | return *this;
|
| 39 | }
|
| 40 |
|
| 41 | Complex<Type>& operator-= (const Type& other)
|
| 42 | {
|
| 43 | mReal -= other;
|
| 44 |
|
| 45 | return *this;
|
| 46 | }
|
| 47 |
|
| 48 | Complex<Type>& operator*= (const Type& other)
|
| 49 | {
|
| 50 | mReal *= other;
|
| 51 | mImag *= other;
|
| 52 |
|
| 53 | return *this;
|
| 54 | }
|
| 55 |
|
| 56 | Complex<Type>& operator/= (const Type& other)
|
| 57 | {
|
| 58 | mReal /= other;
|
| 59 | mImag /= other;
|
| 60 |
|
| 61 | return *this;
|
| 62 | }
|
| 63 |
|
| 64 | Complex<Type>& operator= (const Complex<Type>& other)
|
| 65 | {
|
| 66 | mReal = other.real();
|
| 67 | mImag = other.imag();
|
| 68 |
|
| 69 | return *this;
|
| 70 | }
|
| 71 |
|
| 72 | Complex<Type>& operator+= (const Complex<Type>& other)
|
| 73 | {
|
| 74 | mReal += other.real();
|
| 75 | mImag += other.imag();
|
| 76 |
|
| 77 | return *this;
|
| 78 | }
|
| 79 |
|
| 80 | Complex<Type>& operator-= (const Complex<Type>& other)
|
| 81 | {
|
| 82 | mReal -= other.real();
|
| 83 | mImag -= other.imag();
|
| 84 |
|
| 85 | return *this;
|
| 86 | }
|
| 87 |
|
| 88 | Complex<Type>& operator*= (const Complex<Type>& other)
|
| 89 | {
|
| 90 | const Type r = mReal * other.real() - mImag * other.imag();
|
| 91 | mImag = mReal * other.imag() + mImag * other.real();
|
| 92 | mReal = r;
|
| 93 |
|
| 94 | return *this;
|
| 95 | }
|
| 96 |
|
| 97 | Complex<Type>& operator/= (const Complex<Type>& other)
|
| 98 | {
|
| 99 | const Type r = mReal * other.real() + mImag * other.imag();
|
| 100 | const Type n = Complex::norm(other);
|
| 101 | mImag = (mImag * other.real() - mReal * other.imag()) / n;
|
| 102 | mReal = r / n;
|
| 103 |
|
| 104 | return *this;
|
| 105 | }
|
| 106 |
|
| 107 | Complex<Type> operator+ (const Type& other) const
|
| 108 | {
|
| 109 | return Complex(mReal + other, mImag);
|
| 110 | }
|
| 111 |
|
| 112 | Complex<Type> operator- (const Type& other) const
|
| 113 | {
|
| 114 | return Complex(mReal - other, mImag);
|
| 115 | }
|
| 116 |
|
| 117 | Complex<Type> operator* (const Type& other) const
|
| 118 | {
|
| 119 | return Complex(mReal * other, mImag);
|
| 120 | }
|
| 121 |
|
| 122 | Complex<Type> operator/ (const Type& other) const
|
| 123 | {
|
| 124 | return Complex(mReal / other, mImag);
|
| 125 | }
|
| 126 |
|
| 127 | Complex<Type> operator+ (const Complex<Type>& other) const
|
| 128 | {
|
| 129 | return Complex(mReal + other.real(), mImag + other.imag());
|
| 130 | }
|
| 131 |
|
| 132 | Complex<Type> operator- (const Complex<Type>& other) const
|
| 133 | {
|
| 134 | return Complex(mReal - other.real(), mImag - other.imag());
|
| 135 | }
|
| 136 |
|
| 137 | Complex<Type> operator* (const Complex<Type>& other) const
|
| 138 | {
|
| 139 | Complex<Type> res = *this;
|
| 140 |
|
| 141 | res *= other;
|
| 142 |
|
| 143 | return res;
|
| 144 | }
|
| 145 |
|
| 146 | Complex<Type> operator/ (const Complex<Type>& other) const
|
| 147 | {
|
| 148 | Complex<Type> res = *this;
|
| 149 |
|
| 150 | res /= other;
|
| 151 |
|
| 152 | return res;
|
| 153 | }
|
| 154 |
|
| 155 | bool operator== (const Complex<Type>& other) const
|
| 156 | {
|
| 157 | return mReal == other.real() && mImag == other.imag();
|
| 158 | }
|
| 159 |
|
| 160 | bool operator== (const Type& other) const
|
| 161 | {
|
| 162 | return mReal == other && mImag == Type();
|
| 163 | }
|
| 164 |
|
| 165 | bool operator!= (const Complex<Type>& other) const
|
| 166 | {
|
| 167 | return mReal != other.real() || mImag != other.imag();
|
| 168 | }
|
| 169 |
|
| 170 | bool operator!= (const Type& other) const
|
| 171 | {
|
| 172 | return mReal != other || mImag != Type();
|
| 173 | }
|
| 174 |
|
| 175 | Type& real() { return mReal; }
|
| 176 | Type& imag() { return mImag; }
|
| 177 |
|
| 178 | const Type& real() const { return mReal; }
|
| 179 | const Type& imag() const { return mImag; }
|
| 180 |
|
| 181 | static Type abs(const Complex<Type>& other)
|
| 182 | {
|
| 183 | Type x = other.real();
|
| 184 | Type y = other.imag();
|
| 185 | const Type s = std::max(std::abs(x), std::abs(y));
|
| 186 | if (s == Type())
|
| 187 | return s;
|
| 188 |
|
| 189 | x /= s;
|
| 190 | y /= s;
|
| 191 |
|
| 192 | return s * std::sqrt(x * x + y * y);
|
| 193 | }
|
| 194 |
|
| 195 | static Type arg(const Complex<Type>& other)
|
| 196 | {
|
| 197 | return std::atan2(other.imag(), other.real());
|
| 198 | }
|
| 199 |
|
| 200 | static Type norm(const Complex<Type>& other)
|
| 201 | {
|
| 202 | const Type x = other.real();
|
| 203 | const Type y = other.imag();
|
| 204 |
|
| 205 | return x * x + y * y;
|
| 206 | }
|
| 207 |
|
| 208 | static Complex<Type> conj(const Complex<Type>& other)
|
| 209 | {
|
| 210 | return Complex(other.real(), -other.imag());
|
| 211 | }
|
| 212 |
|
| 213 | static Complex<Type> polar(const Type& r, const Type& t = 0)
|
| 214 | {
|
| 215 | return Complex(r * std::cos(t), r * std::sin(t));
|
| 216 | }
|
| 217 |
|
| 218 | static Complex<Type> cos(const Complex<Type>& other)
|
| 219 | {
|
| 220 | const Type x = other.real();
|
| 221 | const Type y = other.imag();
|
| 222 |
|
| 223 | return Complex(std::cos(x) * std::cosh(y), -std::sin(x) * std::sinh(y));
|
| 224 | }
|
| 225 |
|
| 226 | static Complex<Type> cosh(const Complex<Type>& other)
|
| 227 | {
|
| 228 | const Type x = other.real();
|
| 229 | const Type y = other.imag();
|
| 230 |
|
| 231 | return Complex(std::cosh(x) * std::cos(y), std::sinh(x) * std::sin(y));
|
| 232 | }
|
| 233 |
|
| 234 | static Complex<Type> exp(const Complex<Type>& other)
|
| 235 | {
|
| 236 | return Complex::polar(std::exp(other.real()), other.imag());
|
| 237 | }
|
| 238 |
|
| 239 | static Complex<Type> log(const Complex<Type>& other)
|
| 240 | {
|
| 241 | return Complex(std::log(Complex::abs(other)), Complex::arg(other));
|
| 242 | }
|
| 243 |
|
| 244 | static Complex<Type> log10(const Complex<Type>& other)
|
| 245 | {
|
| 246 | return Complex::log(other) / std::log(Type(10));
|
| 247 | }
|
| 248 |
|
| 249 | static Complex<Type> pow(const Complex<Type>& other, const Type& i)
|
| 250 | {
|
| 251 | if (other.imag() == Type() && other.real() > Type())
|
| 252 | return Complex(std::pow(other.real(), i), other.imag());
|
| 253 |
|
| 254 | Complex<Type> t = Complex::log(other);
|
| 255 | return Complex::polar(std::exp(i * t.real()), i * t.imag());
|
| 256 | }
|
| 257 |
|
| 258 | static Complex<Type> pow(const Complex<Type>& x, const Complex<Type>& y)
|
| 259 | {
|
| 260 | return Complex::exp(y * Complex::log(x));
|
| 261 | }
|
| 262 |
|
| 263 | static Complex<Type> pow(const Type& i, const Complex<Type>& other)
|
| 264 | {
|
| 265 | return i > Type() ?
|
| 266 | Complex::polar(std::pow(i, other.real()), other.imag() * std::log(i))
|
| 267 | : Complex::pow(Complex(i, Type()), other);
|
| 268 | }
|
| 269 |
|
| 270 | static Complex<Type> sin(const Complex<Type>& other)
|
| 271 | {
|
| 272 | const Type x = other.real();
|
| 273 | const Type y = other.imag();
|
| 274 |
|
| 275 | return Complex(std::sin(x) * std::cosh(y), std::cos(x) * std::sinh(y));
|
| 276 | }
|
| 277 |
|
| 278 | static Complex<Type> sinh(const Complex<Type>& other)
|
| 279 | {
|
| 280 | const Type x = other.real();
|
| 281 | const Type y = other.imag();
|
| 282 |
|
| 283 | return Complex(std::sinh(x) * std::cos(y), std::cosh(x) * std::sin(y));
|
| 284 | }
|
| 285 |
|
| 286 | static Complex<Type> sqrt(const Complex<Type>& other)
|
| 287 | {
|
| 288 | const Type x = other.real();
|
| 289 | const Type y = other.imag();
|
| 290 |
|
| 291 | if (x == Type())
|
| 292 | {
|
| 293 | Type t = std::sqrt(std::abs(y) / 2);
|
| 294 | return Complex(t, y < Type() ? -t : t);
|
| 295 | }
|
| 296 | else
|
| 297 | {
|
| 298 | Type t = std::sqrt(2 * (Complex::abs(other) + std::abs(x)));
|
| 299 | Type u = t / 2;
|
| 300 | return x > Type() ? Complex(u, y / t)
|
| 301 | : Complex(std::abs(y) / t, y < Type() ? -u : u);
|
| 302 | }
|
| 303 | }
|
| 304 |
|
| 305 | static Complex<Type> tan(const Complex<Type>& other)
|
| 306 | {
|
| 307 | return Complex::sin(other) / Complex::cos(other);
|
| 308 | }
|
| 309 |
|
| 310 | static Complex<Type> tanh(const Complex<Type>& other)
|
| 311 | {
|
| 312 | return Complex::sinh(other) / Complex::cosh(other);
|
| 313 | }
|
| 314 |
|
| 315 | friend std::ostream& operator<< (std::ostream& os, const Complex<Type> other)
|
| 316 | {
|
| 317 | return os << other.real() << ", " << other.imag();
|
| 318 | }
|
| 319 |
|
| 320 | private:
|
| 321 | Type mReal;
|
| 322 | Type mImag;
|
| 323 | };
|
| 324 |
|
| 325 | /** @} */
|
| 326 | }
|
| 327 | |