| 1 | /////////////////////////////////////////////////////////////////////////////// |
| 2 | // // |
| 3 | // TetGen // |
| 4 | // // |
| 5 | // A Quality Tetrahedral Mesh Generator and A 3D Delaunay Triangulator // |
| 6 | // // |
| 7 | // Version 1.5 // |
| 8 | // November 4, 2013 // |
| 9 | // // |
| 10 | // TetGen is freely available through the website: http://www.tetgen.org. // |
| 11 | // It may be copied, modified, and redistributed for non-commercial use. // |
| 12 | // Please consult the file LICENSE for the detailed copyright notices. // |
| 13 | // // |
| 14 | /////////////////////////////////////////////////////////////////////////////// |
| 15 | |
| 16 | #include "TetGen/tetgen.h" |
| 17 | #include <inttypes.h> |
| 18 | |
| 19 | //// io_cxx /////////////////////////////////////////////////////////////////// |
| 20 | //// //// |
| 21 | //// //// |
| 22 | |
| 23 | /////////////////////////////////////////////////////////////////////////////// |
| 24 | // // |
| 25 | // load_node_call() Read a list of points from a file. // |
| 26 | // // |
| 27 | // 'infile' is the file handle contains the node list. It may point to a // |
| 28 | // .node, or .poly or .smesh file. 'markers' indicates each node contains an // |
| 29 | // additional marker (integer) or not. 'uvflag' indicates each node contains // |
| 30 | // u,v coordinates or not. It is reuqired by a PSC. 'infilename' is the name // |
| 31 | // of the file being read, it is only used in error messages. // |
| 32 | // // |
| 33 | // The 'firstnumber' (0 or 1) is automatically determined by the number of // |
| 34 | // the first index of the first point. // |
| 35 | // // |
| 36 | /////////////////////////////////////////////////////////////////////////////// |
| 37 | |
| 38 | #ifdef _MSC_VER |
| 39 | # pragma warning(push) |
| 40 | # pragma warning(disable: 4996) |
| 41 | #endif |
| 42 | |
| 43 | bool tetgenio::load_node_call(FILE* infile, int markers, int uvflag, |
| 44 | char* infilename) |
| 45 | { |
| 46 | char inputline[INPUTLINESIZE]; |
| 47 | char *stringptr; |
| 48 | REAL x, y, z, attrib; |
| 49 | int firstnode, currentmarker; |
| 50 | int index, attribindex; |
| 51 | int i, j; |
| 52 | |
| 53 | // Initialize 'pointlist', 'pointattributelist', and 'pointmarkerlist'. |
| 54 | pointlist = new REAL[numberofpoints * 3]; |
| 55 | if (pointlist == (REAL *) NULL) { |
| 56 | terminatetetgen(NULL, 1); |
| 57 | } |
| 58 | if (numberofpointattributes > 0) { |
| 59 | pointattributelist = new REAL[numberofpoints * numberofpointattributes]; |
| 60 | if (pointattributelist == (REAL *) NULL) { |
| 61 | terminatetetgen(NULL, 1); |
| 62 | } |
| 63 | } |
| 64 | if (markers) { |
| 65 | pointmarkerlist = new int[numberofpoints]; |
| 66 | if (pointmarkerlist == (int *) NULL) { |
| 67 | terminatetetgen(NULL, 1); |
| 68 | } |
| 69 | } |
| 70 | if (uvflag) { |
| 71 | pointparamlist = new pointparam[numberofpoints]; |
| 72 | if (pointparamlist == NULL) { |
| 73 | terminatetetgen(NULL, 1); |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | // Read the point section. |
| 78 | index = 0; |
| 79 | attribindex = 0; |
| 80 | for (i = 0; i < numberofpoints; i++) { |
| 81 | stringptr = readnumberline(inputline, infile, infilename); |
| 82 | if (useindex) { |
| 83 | if (i == 0) { |
| 84 | firstnode = (int) strtol (stringptr, &stringptr, 0); |
| 85 | if ((firstnode == 0) || (firstnode == 1)) { |
| 86 | firstnumber = firstnode; |
| 87 | } |
| 88 | } |
| 89 | stringptr = findnextnumber(stringptr); |
| 90 | } // if (useindex) |
| 91 | if (*stringptr == '\0') { |
| 92 | printf("Error: Point %d has no x coordinate.\n" , firstnumber + i); |
| 93 | break; |
| 94 | } |
| 95 | x = (REAL) strtod(stringptr, &stringptr); |
| 96 | stringptr = findnextnumber(stringptr); |
| 97 | if (*stringptr == '\0') { |
| 98 | printf("Error: Point %d has no y coordinate.\n" , firstnumber + i); |
| 99 | break; |
| 100 | } |
| 101 | y = (REAL) strtod(stringptr, &stringptr); |
| 102 | if (mesh_dim == 3) { |
| 103 | stringptr = findnextnumber(stringptr); |
| 104 | if (*stringptr == '\0') { |
| 105 | printf("Error: Point %d has no z coordinate.\n" , firstnumber + i); |
| 106 | break; |
| 107 | } |
| 108 | z = (REAL) strtod(stringptr, &stringptr); |
| 109 | } else { |
| 110 | z = 0.0; // mesh_dim == 2; |
| 111 | } |
| 112 | pointlist[index++] = x; |
| 113 | pointlist[index++] = y; |
| 114 | pointlist[index++] = z; |
| 115 | // Read the point attributes. |
| 116 | for (j = 0; j < numberofpointattributes; j++) { |
| 117 | stringptr = findnextnumber(stringptr); |
| 118 | if (*stringptr == '\0') { |
| 119 | attrib = 0.0; |
| 120 | } else { |
| 121 | attrib = (REAL) strtod(stringptr, &stringptr); |
| 122 | } |
| 123 | pointattributelist[attribindex++] = attrib; |
| 124 | } |
| 125 | if (markers) { |
| 126 | // Read a point marker. |
| 127 | stringptr = findnextnumber(stringptr); |
| 128 | if (*stringptr == '\0') { |
| 129 | currentmarker = 0; |
| 130 | } else { |
| 131 | currentmarker = (int) strtol (stringptr, &stringptr, 0); |
| 132 | } |
| 133 | pointmarkerlist[i] = currentmarker; |
| 134 | } |
| 135 | if (uvflag) { |
| 136 | // Read point paramteters. |
| 137 | stringptr = findnextnumber(stringptr); |
| 138 | if (*stringptr == '\0') { |
| 139 | printf("Error: Point %d has no uv[0].\n" , firstnumber + i); |
| 140 | break; |
| 141 | } |
| 142 | pointparamlist[i].uv[0] = (REAL) strtod(stringptr, &stringptr); |
| 143 | stringptr = findnextnumber(stringptr); |
| 144 | if (*stringptr == '\0') { |
| 145 | printf("Error: Point %d has no uv[1].\n" , firstnumber + i); |
| 146 | break; |
| 147 | } |
| 148 | pointparamlist[i].uv[1] = (REAL) strtod(stringptr, &stringptr); |
| 149 | stringptr = findnextnumber(stringptr); |
| 150 | if (*stringptr == '\0') { |
| 151 | printf("Error: Point %d has no tag.\n" , firstnumber + i); |
| 152 | break; |
| 153 | } |
| 154 | pointparamlist[i].tag = (int) strtol (stringptr, &stringptr, 0); |
| 155 | stringptr = findnextnumber(stringptr); |
| 156 | if (*stringptr == '\0') { |
| 157 | printf("Error: Point %d has no type.\n" , firstnumber + i); |
| 158 | break; |
| 159 | } |
| 160 | pointparamlist[i].type = (int) strtol (stringptr, &stringptr, 0); |
| 161 | if ((pointparamlist[i].type < 0) || (pointparamlist[i].type > 2)) { |
| 162 | printf("Error: Point %d has an invalid type.\n" , firstnumber + i); |
| 163 | break; |
| 164 | } |
| 165 | } |
| 166 | } |
| 167 | if (i < numberofpoints) { |
| 168 | // Failed to read points due to some error. |
| 169 | delete [] pointlist; |
| 170 | pointlist = (REAL *) NULL; |
| 171 | if (markers) { |
| 172 | delete [] pointmarkerlist; |
| 173 | pointmarkerlist = (int *) NULL; |
| 174 | } |
| 175 | if (numberofpointattributes > 0) { |
| 176 | delete [] pointattributelist; |
| 177 | pointattributelist = (REAL *) NULL; |
| 178 | } |
| 179 | if (uvflag) { |
| 180 | delete [] pointparamlist; |
| 181 | pointparamlist = NULL; |
| 182 | } |
| 183 | numberofpoints = 0; |
| 184 | return false; |
| 185 | } |
| 186 | return true; |
| 187 | } |
| 188 | |
| 189 | /////////////////////////////////////////////////////////////////////////////// |
| 190 | // // |
| 191 | // load_node() Load a list of points from a .node file. // |
| 192 | // // |
| 193 | /////////////////////////////////////////////////////////////////////////////// |
| 194 | |
| 195 | bool tetgenio::load_node(char* filebasename) |
| 196 | { |
| 197 | FILE *infile; |
| 198 | char innodefilename[FILENAMESIZE]; |
| 199 | char inputline[INPUTLINESIZE]; |
| 200 | char *stringptr; |
| 201 | bool okflag; |
| 202 | int markers; |
| 203 | int uvflag; // for psc input. |
| 204 | |
| 205 | // Assembling the actual file names we want to open. |
| 206 | strcpy(innodefilename, filebasename); |
| 207 | strcat(innodefilename, ".node" ); |
| 208 | |
| 209 | // Try to open a .node file. |
| 210 | infile = fopen(innodefilename, "r" ); |
| 211 | if (infile == (FILE *) NULL) { |
| 212 | printf(" Cannot access file %s.\n" , innodefilename); |
| 213 | return false; |
| 214 | } |
| 215 | printf("Opening %s.\n" , innodefilename); |
| 216 | |
| 217 | // Set initial flags. |
| 218 | mesh_dim = 3; |
| 219 | numberofpointattributes = 0; // no point attribute. |
| 220 | markers = 0; // no boundary marker. |
| 221 | uvflag = 0; // no uv parameters (required by a PSC). |
| 222 | |
| 223 | // Read the first line of the file. |
| 224 | stringptr = readnumberline(inputline, infile, innodefilename); |
| 225 | // Does this file contain an index column? |
| 226 | stringptr = strstr(inputline, "rbox" ); |
| 227 | if (stringptr == NULL) { |
| 228 | // Read number of points, number of dimensions, number of point |
| 229 | // attributes, and number of boundary markers. |
| 230 | stringptr = inputline; |
| 231 | numberofpoints = (int) strtol (stringptr, &stringptr, 0); |
| 232 | stringptr = findnextnumber(stringptr); |
| 233 | if (*stringptr != '\0') { |
| 234 | mesh_dim = (int) strtol (stringptr, &stringptr, 0); |
| 235 | } |
| 236 | stringptr = findnextnumber(stringptr); |
| 237 | if (*stringptr != '\0') { |
| 238 | numberofpointattributes = (int) strtol (stringptr, &stringptr, 0); |
| 239 | } |
| 240 | stringptr = findnextnumber(stringptr); |
| 241 | if (*stringptr != '\0') { |
| 242 | markers = (int) strtol (stringptr, &stringptr, 0); |
| 243 | } |
| 244 | stringptr = findnextnumber(stringptr); |
| 245 | if (*stringptr != '\0') { |
| 246 | uvflag = (int) strtol (stringptr, &stringptr, 0); |
| 247 | } |
| 248 | } else { |
| 249 | // It is a rbox (qhull) input file. |
| 250 | stringptr = inputline; |
| 251 | // Get the dimension. |
| 252 | mesh_dim = (int) strtol (stringptr, &stringptr, 0); |
| 253 | // Get the number of points. |
| 254 | stringptr = readnumberline(inputline, infile, innodefilename); |
| 255 | numberofpoints = (int) strtol (stringptr, &stringptr, 0); |
| 256 | // There is no index column. |
| 257 | useindex = 0; |
| 258 | } |
| 259 | |
| 260 | // Load the list of nodes. |
| 261 | okflag = load_node_call(infile, markers, uvflag, innodefilename); |
| 262 | |
| 263 | fclose(infile); |
| 264 | return okflag; |
| 265 | } |
| 266 | |
| 267 | /////////////////////////////////////////////////////////////////////////////// |
| 268 | // // |
| 269 | // load_edge() Load a list of edges from a .edge file. // |
| 270 | // // |
| 271 | /////////////////////////////////////////////////////////////////////////////// |
| 272 | |
| 273 | bool tetgenio::load_edge(char* filebasename) |
| 274 | { |
| 275 | FILE *infile; |
| 276 | char inedgefilename[FILENAMESIZE]; |
| 277 | char inputline[INPUTLINESIZE]; |
| 278 | char *stringptr; |
| 279 | int markers, corner; |
| 280 | int index; |
| 281 | int i, j; |
| 282 | |
| 283 | strcpy(inedgefilename, filebasename); |
| 284 | strcat(inedgefilename, ".edge" ); |
| 285 | |
| 286 | infile = fopen(inedgefilename, "r" ); |
| 287 | if (infile != (FILE *) NULL) { |
| 288 | printf("Opening %s.\n" , inedgefilename); |
| 289 | } else { |
| 290 | //printf(" Cannot access file %s.\n", inedgefilename); |
| 291 | return false; |
| 292 | } |
| 293 | |
| 294 | // Read number of boundary edges. |
| 295 | stringptr = readnumberline(inputline, infile, inedgefilename); |
| 296 | numberofedges = (int) strtol (stringptr, &stringptr, 0); |
| 297 | if (numberofedges > 0) { |
| 298 | edgelist = new int[numberofedges * 2]; |
| 299 | if (edgelist == (int *) NULL) { |
| 300 | terminatetetgen(NULL, 1); |
| 301 | } |
| 302 | stringptr = findnextnumber(stringptr); |
| 303 | if (*stringptr == '\0') { |
| 304 | markers = 0; // Default value. |
| 305 | } else { |
| 306 | markers = (int) strtol (stringptr, &stringptr, 0); |
| 307 | } |
| 308 | if (markers > 0) { |
| 309 | edgemarkerlist = new int[numberofedges]; |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | // Read the list of edges. |
| 314 | index = 0; |
| 315 | for (i = 0; i < numberofedges; i++) { |
| 316 | // Read edge index and the edge's two endpoints. |
| 317 | stringptr = readnumberline(inputline, infile, inedgefilename); |
| 318 | for (j = 0; j < 2; j++) { |
| 319 | stringptr = findnextnumber(stringptr); |
| 320 | if (*stringptr == '\0') { |
| 321 | printf("Error: Edge %d is missing vertex %d in %s.\n" , |
| 322 | i + firstnumber, j + 1, inedgefilename); |
| 323 | terminatetetgen(NULL, 1); |
| 324 | } |
| 325 | corner = (int) strtol(stringptr, &stringptr, 0); |
| 326 | if (corner < firstnumber || corner >= numberofpoints + firstnumber) { |
| 327 | printf("Error: Edge %d has an invalid vertex index.\n" , |
| 328 | i + firstnumber); |
| 329 | terminatetetgen(NULL, 1); |
| 330 | } |
| 331 | edgelist[index++] = corner; |
| 332 | } |
| 333 | if (numberofcorners == 10) { |
| 334 | // Skip an extra vertex (generated by a previous -o2 option). |
| 335 | stringptr = findnextnumber(stringptr); |
| 336 | } |
| 337 | // Read the edge marker if it has. |
| 338 | if (markers) { |
| 339 | stringptr = findnextnumber(stringptr); |
| 340 | edgemarkerlist[i] = (int) strtol(stringptr, &stringptr, 0); |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | fclose(infile); |
| 345 | return true; |
| 346 | } |
| 347 | |
| 348 | /////////////////////////////////////////////////////////////////////////////// |
| 349 | // // |
| 350 | // load_face() Load a list of faces (triangles) from a .face file. // |
| 351 | // // |
| 352 | /////////////////////////////////////////////////////////////////////////////// |
| 353 | |
| 354 | bool tetgenio::load_face(char* filebasename) |
| 355 | { |
| 356 | FILE *infile; |
| 357 | char infilename[FILENAMESIZE]; |
| 358 | char inputline[INPUTLINESIZE]; |
| 359 | char *stringptr; |
| 360 | REAL attrib; |
| 361 | int markers, corner; |
| 362 | int index; |
| 363 | int i, j; |
| 364 | |
| 365 | strcpy(infilename, filebasename); |
| 366 | strcat(infilename, ".face" ); |
| 367 | |
| 368 | infile = fopen(infilename, "r" ); |
| 369 | if (infile != (FILE *) NULL) { |
| 370 | printf("Opening %s.\n" , infilename); |
| 371 | } else { |
| 372 | return false; |
| 373 | } |
| 374 | |
| 375 | // Read number of faces, boundary markers. |
| 376 | stringptr = readnumberline(inputline, infile, infilename); |
| 377 | numberoftrifaces = (int) strtol (stringptr, &stringptr, 0); |
| 378 | stringptr = findnextnumber(stringptr); |
| 379 | if (mesh_dim == 2) { |
| 380 | // Skip a number. |
| 381 | stringptr = findnextnumber(stringptr); |
| 382 | } |
| 383 | if (*stringptr == '\0') { |
| 384 | markers = 0; // Default there is no marker per face. |
| 385 | } else { |
| 386 | markers = (int) strtol (stringptr, &stringptr, 0); |
| 387 | } |
| 388 | if (numberoftrifaces > 0) { |
| 389 | trifacelist = new int[numberoftrifaces * 3]; |
| 390 | if (trifacelist == (int *) NULL) { |
| 391 | terminatetetgen(NULL, 1); |
| 392 | } |
| 393 | if (markers) { |
| 394 | trifacemarkerlist = new int[numberoftrifaces]; |
| 395 | if (trifacemarkerlist == (int *) NULL) { |
| 396 | terminatetetgen(NULL, 1); |
| 397 | } |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | // Read the list of faces. |
| 402 | index = 0; |
| 403 | for (i = 0; i < numberoftrifaces; i++) { |
| 404 | // Read face index and the face's three corners. |
| 405 | stringptr = readnumberline(inputline, infile, infilename); |
| 406 | for (j = 0; j < 3; j++) { |
| 407 | stringptr = findnextnumber(stringptr); |
| 408 | if (*stringptr == '\0') { |
| 409 | printf("Error: Face %d is missing vertex %d in %s.\n" , |
| 410 | i + firstnumber, j + 1, infilename); |
| 411 | terminatetetgen(NULL, 1); |
| 412 | } |
| 413 | corner = (int) strtol(stringptr, &stringptr, 0); |
| 414 | if (corner < firstnumber || corner >= numberofpoints + firstnumber) { |
| 415 | printf("Error: Face %d has an invalid vertex index.\n" , |
| 416 | i + firstnumber); |
| 417 | terminatetetgen(NULL, 1); |
| 418 | } |
| 419 | trifacelist[index++] = corner; |
| 420 | } |
| 421 | if (numberofcorners == 10) { |
| 422 | // Skip 3 extra vertices (generated by a previous -o2 option). |
| 423 | for (j = 0; j < 3; j++) { |
| 424 | stringptr = findnextnumber(stringptr); |
| 425 | } |
| 426 | } |
| 427 | // Read the boundary marker if it exists. |
| 428 | if (markers) { |
| 429 | stringptr = findnextnumber(stringptr); |
| 430 | if (*stringptr == '\0') { |
| 431 | attrib = 0.0; |
| 432 | } else { |
| 433 | attrib = (REAL) strtod(stringptr, &stringptr); |
| 434 | } |
| 435 | trifacemarkerlist[i] = (int) attrib; |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | fclose(infile); |
| 440 | |
| 441 | return true; |
| 442 | } |
| 443 | |
| 444 | /////////////////////////////////////////////////////////////////////////////// |
| 445 | // // |
| 446 | // load_tet() Load a list of tetrahedra from a .ele file. // |
| 447 | // // |
| 448 | /////////////////////////////////////////////////////////////////////////////// |
| 449 | |
| 450 | bool tetgenio::load_tet(char* filebasename) |
| 451 | { |
| 452 | FILE *infile; |
| 453 | char infilename[FILENAMESIZE]; |
| 454 | char inputline[INPUTLINESIZE]; |
| 455 | char *stringptr; |
| 456 | REAL attrib; |
| 457 | int corner; |
| 458 | int index, attribindex; |
| 459 | int i, j; |
| 460 | |
| 461 | strcpy(infilename, filebasename); |
| 462 | strcat(infilename, ".ele" ); |
| 463 | |
| 464 | infile = fopen(infilename, "r" ); |
| 465 | if (infile != (FILE *) NULL) { |
| 466 | printf("Opening %s.\n" , infilename); |
| 467 | } else { |
| 468 | return false; |
| 469 | } |
| 470 | |
| 471 | // Read number of elements, number of corners (4 or 10), number of |
| 472 | // element attributes. |
| 473 | stringptr = readnumberline(inputline, infile, infilename); |
| 474 | numberoftetrahedra = (int) strtol (stringptr, &stringptr, 0); |
| 475 | if (numberoftetrahedra <= 0) { |
| 476 | printf("Error: Invalid number of tetrahedra.\n" ); |
| 477 | fclose(infile); |
| 478 | return false; |
| 479 | } |
| 480 | stringptr = findnextnumber(stringptr); |
| 481 | if (*stringptr == '\0') { |
| 482 | numberofcorners = 4; // Default read 4 nodes per element. |
| 483 | } else { |
| 484 | numberofcorners = (int) strtol(stringptr, &stringptr, 0); |
| 485 | } |
| 486 | stringptr = findnextnumber(stringptr); |
| 487 | if (*stringptr == '\0') { |
| 488 | numberoftetrahedronattributes = 0; // Default no attribute. |
| 489 | } else { |
| 490 | numberoftetrahedronattributes = (int) strtol(stringptr, &stringptr, 0); |
| 491 | } |
| 492 | if (numberofcorners != 4 && numberofcorners != 10) { |
| 493 | printf("Error: Wrong number of corners %d (should be 4 or 10).\n" , |
| 494 | numberofcorners); |
| 495 | fclose(infile); |
| 496 | return false; |
| 497 | } |
| 498 | |
| 499 | // Allocate memory for tetrahedra. |
| 500 | tetrahedronlist = new int[numberoftetrahedra * numberofcorners]; |
| 501 | if (tetrahedronlist == (int *) NULL) { |
| 502 | terminatetetgen(NULL, 1); |
| 503 | } |
| 504 | // Allocate memory for output tetrahedron attributes if necessary. |
| 505 | if (numberoftetrahedronattributes > 0) { |
| 506 | tetrahedronattributelist = new REAL[numberoftetrahedra * |
| 507 | numberoftetrahedronattributes]; |
| 508 | if (tetrahedronattributelist == (REAL *) NULL) { |
| 509 | terminatetetgen(NULL, 1); |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | // Read the list of tetrahedra. |
| 514 | index = 0; |
| 515 | attribindex = 0; |
| 516 | for (i = 0; i < numberoftetrahedra; i++) { |
| 517 | // Read tetrahedron index and the tetrahedron's corners. |
| 518 | stringptr = readnumberline(inputline, infile, infilename); |
| 519 | for (j = 0; j < numberofcorners; j++) { |
| 520 | stringptr = findnextnumber(stringptr); |
| 521 | if (*stringptr == '\0') { |
| 522 | printf("Error: Tetrahedron %d is missing vertex %d in %s.\n" , |
| 523 | i + firstnumber, j + 1, infilename); |
| 524 | terminatetetgen(NULL, 1); |
| 525 | } |
| 526 | corner = (int) strtol(stringptr, &stringptr, 0); |
| 527 | if (corner < firstnumber || corner >= numberofpoints + firstnumber) { |
| 528 | printf("Error: Tetrahedron %d has an invalid vertex index.\n" , |
| 529 | i + firstnumber); |
| 530 | terminatetetgen(NULL, 1); |
| 531 | } |
| 532 | tetrahedronlist[index++] = corner; |
| 533 | } |
| 534 | // Read the tetrahedron's attributes. |
| 535 | for (j = 0; j < numberoftetrahedronattributes; j++) { |
| 536 | stringptr = findnextnumber(stringptr); |
| 537 | if (*stringptr == '\0') { |
| 538 | attrib = 0.0; |
| 539 | } else { |
| 540 | attrib = (REAL) strtod(stringptr, &stringptr); |
| 541 | } |
| 542 | tetrahedronattributelist[attribindex++] = attrib; |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | fclose(infile); |
| 547 | |
| 548 | return true; |
| 549 | } |
| 550 | |
| 551 | /////////////////////////////////////////////////////////////////////////////// |
| 552 | // // |
| 553 | // load_vol() Load a list of volume constraints from a .vol file. // |
| 554 | // // |
| 555 | /////////////////////////////////////////////////////////////////////////////// |
| 556 | |
| 557 | bool tetgenio::load_vol(char* filebasename) |
| 558 | { |
| 559 | FILE *infile; |
| 560 | char inelefilename[FILENAMESIZE]; |
| 561 | char infilename[FILENAMESIZE]; |
| 562 | char inputline[INPUTLINESIZE]; |
| 563 | char *stringptr; |
| 564 | REAL volume; |
| 565 | int volelements; |
| 566 | int i; |
| 567 | |
| 568 | strcpy(infilename, filebasename); |
| 569 | strcat(infilename, ".vol" ); |
| 570 | |
| 571 | infile = fopen(infilename, "r" ); |
| 572 | if (infile != (FILE *) NULL) { |
| 573 | printf("Opening %s.\n" , infilename); |
| 574 | } else { |
| 575 | return false; |
| 576 | } |
| 577 | |
| 578 | // Read number of tetrahedra. |
| 579 | stringptr = readnumberline(inputline, infile, infilename); |
| 580 | volelements = (int) strtol (stringptr, &stringptr, 0); |
| 581 | if (volelements != numberoftetrahedra) { |
| 582 | strcpy(inelefilename, filebasename); |
| 583 | strcat(infilename, ".ele" ); |
| 584 | printf("Warning: %s and %s disagree on number of tetrahedra.\n" , |
| 585 | inelefilename, infilename); |
| 586 | fclose(infile); |
| 587 | return false; |
| 588 | } |
| 589 | |
| 590 | tetrahedronvolumelist = new REAL[volelements]; |
| 591 | if (tetrahedronvolumelist == (REAL *) NULL) { |
| 592 | terminatetetgen(NULL, 1); |
| 593 | } |
| 594 | |
| 595 | // Read the list of volume constraints. |
| 596 | for (i = 0; i < volelements; i++) { |
| 597 | stringptr = readnumberline(inputline, infile, infilename); |
| 598 | stringptr = findnextnumber(stringptr); |
| 599 | if (*stringptr == '\0') { |
| 600 | volume = -1.0; // No constraint on this tetrahedron. |
| 601 | } else { |
| 602 | volume = (REAL) strtod(stringptr, &stringptr); |
| 603 | } |
| 604 | tetrahedronvolumelist[i] = volume; |
| 605 | } |
| 606 | |
| 607 | fclose(infile); |
| 608 | |
| 609 | return true; |
| 610 | } |
| 611 | |
| 612 | /////////////////////////////////////////////////////////////////////////////// |
| 613 | // // |
| 614 | // load_var() Load constraints applied on facets, segments, and nodes // |
| 615 | // from a .var file. // |
| 616 | // // |
| 617 | /////////////////////////////////////////////////////////////////////////////// |
| 618 | |
| 619 | bool tetgenio::load_var(char* filebasename) |
| 620 | { |
| 621 | FILE *infile; |
| 622 | char varfilename[FILENAMESIZE]; |
| 623 | char inputline[INPUTLINESIZE]; |
| 624 | char *stringptr; |
| 625 | int index; |
| 626 | int i; |
| 627 | |
| 628 | // Variant constraints are saved in file "filename.var". |
| 629 | strcpy(varfilename, filebasename); |
| 630 | strcat(varfilename, ".var" ); |
| 631 | infile = fopen(varfilename, "r" ); |
| 632 | if (infile != (FILE *) NULL) { |
| 633 | printf("Opening %s.\n" , varfilename); |
| 634 | } else { |
| 635 | return false; |
| 636 | } |
| 637 | |
| 638 | // Read the facet constraint section. |
| 639 | stringptr = readnumberline(inputline, infile, varfilename); |
| 640 | if (*stringptr != '\0') { |
| 641 | numberoffacetconstraints = (int) strtol (stringptr, &stringptr, 0); |
| 642 | } else { |
| 643 | numberoffacetconstraints = 0; |
| 644 | } |
| 645 | if (numberoffacetconstraints > 0) { |
| 646 | // Initialize 'facetconstraintlist'. |
| 647 | facetconstraintlist = new REAL[numberoffacetconstraints * 2]; |
| 648 | index = 0; |
| 649 | for (i = 0; i < numberoffacetconstraints; i++) { |
| 650 | stringptr = readnumberline(inputline, infile, varfilename); |
| 651 | stringptr = findnextnumber(stringptr); |
| 652 | if (*stringptr == '\0') { |
| 653 | printf("Error: facet constraint %d has no facet marker.\n" , |
| 654 | firstnumber + i); |
| 655 | break; |
| 656 | } else { |
| 657 | facetconstraintlist[index++] = (REAL) strtod(stringptr, &stringptr); |
| 658 | } |
| 659 | stringptr = findnextnumber(stringptr); |
| 660 | if (*stringptr == '\0') { |
| 661 | printf("Error: facet constraint %d has no maximum area bound.\n" , |
| 662 | firstnumber + i); |
| 663 | break; |
| 664 | } else { |
| 665 | facetconstraintlist[index++] = (REAL) strtod(stringptr, &stringptr); |
| 666 | } |
| 667 | } |
| 668 | if (i < numberoffacetconstraints) { |
| 669 | // This must be caused by an error. |
| 670 | fclose(infile); |
| 671 | return false; |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | // Read the segment constraint section. |
| 676 | stringptr = readnumberline(inputline, infile, varfilename); |
| 677 | if (*stringptr != '\0') { |
| 678 | numberofsegmentconstraints = (int) strtol (stringptr, &stringptr, 0); |
| 679 | } else { |
| 680 | numberofsegmentconstraints = 0; |
| 681 | } |
| 682 | if (numberofsegmentconstraints > 0) { |
| 683 | // Initialize 'segmentconstraintlist'. |
| 684 | segmentconstraintlist = new REAL[numberofsegmentconstraints * 3]; |
| 685 | index = 0; |
| 686 | for (i = 0; i < numberofsegmentconstraints; i++) { |
| 687 | stringptr = readnumberline(inputline, infile, varfilename); |
| 688 | stringptr = findnextnumber(stringptr); |
| 689 | if (*stringptr == '\0') { |
| 690 | printf("Error: segment constraint %d has no frist endpoint.\n" , |
| 691 | firstnumber + i); |
| 692 | break; |
| 693 | } else { |
| 694 | segmentconstraintlist[index++] = (REAL) strtod(stringptr, &stringptr); |
| 695 | } |
| 696 | stringptr = findnextnumber(stringptr); |
| 697 | if (*stringptr == '\0') { |
| 698 | printf("Error: segment constraint %d has no second endpoint.\n" , |
| 699 | firstnumber + i); |
| 700 | break; |
| 701 | } else { |
| 702 | segmentconstraintlist[index++] = (REAL) strtod(stringptr, &stringptr); |
| 703 | } |
| 704 | stringptr = findnextnumber(stringptr); |
| 705 | if (*stringptr == '\0') { |
| 706 | printf("Error: segment constraint %d has no maximum length bound.\n" , |
| 707 | firstnumber + i); |
| 708 | break; |
| 709 | } else { |
| 710 | segmentconstraintlist[index++] = (REAL) strtod(stringptr, &stringptr); |
| 711 | } |
| 712 | } |
| 713 | if (i < numberofsegmentconstraints) { |
| 714 | // This must be caused by an error. |
| 715 | fclose(infile); |
| 716 | return false; |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | fclose(infile); |
| 721 | return true; |
| 722 | } |
| 723 | |
| 724 | /////////////////////////////////////////////////////////////////////////////// |
| 725 | // // |
| 726 | // load_mtr() Load a size specification map from a .mtr file. // |
| 727 | // // |
| 728 | /////////////////////////////////////////////////////////////////////////////// |
| 729 | |
| 730 | bool tetgenio::load_mtr(char* filebasename) |
| 731 | { |
| 732 | FILE *infile; |
| 733 | char mtrfilename[FILENAMESIZE]; |
| 734 | char inputline[INPUTLINESIZE]; |
| 735 | char *stringptr; |
| 736 | REAL mtr; |
| 737 | int ptnum; |
| 738 | int mtrindex; |
| 739 | int i, j; |
| 740 | |
| 741 | strcpy(mtrfilename, filebasename); |
| 742 | strcat(mtrfilename, ".mtr" ); |
| 743 | infile = fopen(mtrfilename, "r" ); |
| 744 | if (infile != (FILE *) NULL) { |
| 745 | printf("Opening %s.\n" , mtrfilename); |
| 746 | } else { |
| 747 | return false; |
| 748 | } |
| 749 | |
| 750 | // Read the number of points. |
| 751 | stringptr = readnumberline(inputline, infile, mtrfilename); |
| 752 | ptnum = (int) strtol (stringptr, &stringptr, 0); |
| 753 | if (ptnum != numberofpoints) { |
| 754 | printf(" !! Point numbers are not equal. Ignored.\n" ); |
| 755 | fclose(infile); |
| 756 | return false; |
| 757 | } |
| 758 | // Read the number of columns (1, 3, or 6). |
| 759 | stringptr = findnextnumber(stringptr); // Skip number of points. |
| 760 | if (*stringptr != '\0') { |
| 761 | numberofpointmtrs = (int) strtol (stringptr, &stringptr, 0); |
| 762 | } |
| 763 | if (numberofpointmtrs == 0) { |
| 764 | // Column number doesn't match. Set a default number (1). |
| 765 | numberofpointmtrs = 1; |
| 766 | } |
| 767 | |
| 768 | // Allocate space for pointmtrlist. |
| 769 | pointmtrlist = new REAL[numberofpoints * numberofpointmtrs]; |
| 770 | if (pointmtrlist == (REAL *) NULL) { |
| 771 | terminatetetgen(NULL, 1); |
| 772 | } |
| 773 | mtrindex = 0; |
| 774 | for (i = 0; i < numberofpoints; i++) { |
| 775 | // Read metrics. |
| 776 | stringptr = readnumberline(inputline, infile, mtrfilename); |
| 777 | for (j = 0; j < numberofpointmtrs; j++) { |
| 778 | if (*stringptr == '\0') { |
| 779 | printf("Error: Metric %d is missing value #%d in %s.\n" , |
| 780 | i + firstnumber, j + 1, mtrfilename); |
| 781 | terminatetetgen(NULL, 1); |
| 782 | } |
| 783 | mtr = (REAL) strtod(stringptr, &stringptr); |
| 784 | pointmtrlist[mtrindex++] = mtr; |
| 785 | stringptr = findnextnumber(stringptr); |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | fclose(infile); |
| 790 | return true; |
| 791 | } |
| 792 | |
| 793 | /////////////////////////////////////////////////////////////////////////////// |
| 794 | // // |
| 795 | // load_poly() Load a PL complex from a .poly or a .smesh file. // |
| 796 | // // |
| 797 | /////////////////////////////////////////////////////////////////////////////// |
| 798 | |
| 799 | bool tetgenio::load_poly(char* filebasename) |
| 800 | { |
| 801 | FILE *infile; |
| 802 | char inpolyfilename[FILENAMESIZE]; |
| 803 | char insmeshfilename[FILENAMESIZE]; |
| 804 | char inputline[INPUTLINESIZE]; |
| 805 | char *stringptr, *infilename; |
| 806 | int smesh, markers, uvflag, currentmarker; |
| 807 | int index; |
| 808 | int i, j, k; |
| 809 | |
| 810 | // Assembling the actual file names we want to open. |
| 811 | strcpy(inpolyfilename, filebasename); |
| 812 | strcpy(insmeshfilename, filebasename); |
| 813 | strcat(inpolyfilename, ".poly" ); |
| 814 | strcat(insmeshfilename, ".smesh" ); |
| 815 | |
| 816 | // First assume it is a .poly file. |
| 817 | smesh = 0; |
| 818 | // Try to open a .poly file. |
| 819 | infile = fopen(inpolyfilename, "r" ); |
| 820 | if (infile == (FILE *) NULL) { |
| 821 | // .poly doesn't exist! Try to open a .smesh file. |
| 822 | infile = fopen(insmeshfilename, "r" ); |
| 823 | if (infile == (FILE *) NULL) { |
| 824 | printf(" Cannot access file %s and %s.\n" , |
| 825 | inpolyfilename, insmeshfilename); |
| 826 | return false; |
| 827 | } else { |
| 828 | printf("Opening %s.\n" , insmeshfilename); |
| 829 | infilename = insmeshfilename; |
| 830 | } |
| 831 | smesh = 1; |
| 832 | } else { |
| 833 | printf("Opening %s.\n" , inpolyfilename); |
| 834 | infilename = inpolyfilename; |
| 835 | } |
| 836 | |
| 837 | // Initialize the default values. |
| 838 | mesh_dim = 3; // Three-dimensional coordinates. |
| 839 | numberofpointattributes = 0; // no point attribute. |
| 840 | markers = 0; // no boundary marker. |
| 841 | uvflag = 0; // no uv parameters (required by a PSC). |
| 842 | |
| 843 | // Read number of points, number of dimensions, number of point |
| 844 | // attributes, and number of boundary markers. |
| 845 | stringptr = readnumberline(inputline, infile, infilename); |
| 846 | numberofpoints = (int) strtol (stringptr, &stringptr, 0); |
| 847 | stringptr = findnextnumber(stringptr); |
| 848 | if (*stringptr != '\0') { |
| 849 | mesh_dim = (int) strtol (stringptr, &stringptr, 0); |
| 850 | } |
| 851 | stringptr = findnextnumber(stringptr); |
| 852 | if (*stringptr != '\0') { |
| 853 | numberofpointattributes = (int) strtol (stringptr, &stringptr, 0); |
| 854 | } |
| 855 | stringptr = findnextnumber(stringptr); |
| 856 | if (*stringptr != '\0') { |
| 857 | markers = (int) strtol (stringptr, &stringptr, 0); |
| 858 | } |
| 859 | if (*stringptr != '\0') { |
| 860 | uvflag = (int) strtol (stringptr, &stringptr, 0); |
| 861 | } |
| 862 | |
| 863 | if (numberofpoints > 0) { |
| 864 | // Load the list of nodes. |
| 865 | if (!load_node_call(infile, markers, uvflag, infilename)) { |
| 866 | fclose(infile); |
| 867 | return false; |
| 868 | } |
| 869 | } else { |
| 870 | // If the .poly or .smesh file claims there are zero points, that |
| 871 | // means the points should be read from a separate .node file. |
| 872 | if (!load_node(filebasename)) { |
| 873 | fclose(infile); |
| 874 | return false; |
| 875 | } |
| 876 | } |
| 877 | |
| 878 | if ((mesh_dim != 3) && (mesh_dim != 2)) { |
| 879 | printf("Input error: TetGen only works for 2D & 3D point sets.\n" ); |
| 880 | fclose(infile); |
| 881 | return false; |
| 882 | } |
| 883 | if (numberofpoints < (mesh_dim + 1)) { |
| 884 | printf("Input error: TetGen needs at least %d points.\n" , mesh_dim + 1); |
| 885 | fclose(infile); |
| 886 | return false; |
| 887 | } |
| 888 | |
| 889 | facet *f; |
| 890 | polygon *p; |
| 891 | |
| 892 | if (mesh_dim == 3) { |
| 893 | |
| 894 | // Read number of facets and number of boundary markers. |
| 895 | stringptr = readnumberline(inputline, infile, infilename); |
| 896 | if (stringptr == NULL) { |
| 897 | // No facet list, return. |
| 898 | fclose(infile); |
| 899 | return true; |
| 900 | } |
| 901 | numberoffacets = (int) strtol (stringptr, &stringptr, 0); |
| 902 | if (numberoffacets <= 0) { |
| 903 | // No facet list, return. |
| 904 | fclose(infile); |
| 905 | return true; |
| 906 | } |
| 907 | stringptr = findnextnumber(stringptr); |
| 908 | if (*stringptr == '\0') { |
| 909 | markers = 0; // no boundary marker. |
| 910 | } else { |
| 911 | markers = (int) strtol (stringptr, &stringptr, 0); |
| 912 | } |
| 913 | |
| 914 | // Initialize the 'facetlist', 'facetmarkerlist'. |
| 915 | facetlist = new facet[numberoffacets]; |
| 916 | if (markers == 1) { |
| 917 | facetmarkerlist = new int[numberoffacets]; |
| 918 | } |
| 919 | |
| 920 | // Read data into 'facetlist', 'facetmarkerlist'. |
| 921 | if (smesh == 0) { |
| 922 | // Facets are in .poly file format. |
| 923 | for (i = 1; i <= numberoffacets; i++) { |
| 924 | f = &(facetlist[i - 1]); |
| 925 | init(f); |
| 926 | f->numberofholes = 0; |
| 927 | currentmarker = 0; |
| 928 | // Read number of polygons, number of holes, and a boundary marker. |
| 929 | stringptr = readnumberline(inputline, infile, infilename); |
| 930 | f->numberofpolygons = (int) strtol (stringptr, &stringptr, 0); |
| 931 | stringptr = findnextnumber(stringptr); |
| 932 | if (*stringptr != '\0') { |
| 933 | f->numberofholes = (int) strtol (stringptr, &stringptr, 0); |
| 934 | if (markers == 1) { |
| 935 | stringptr = findnextnumber(stringptr); |
| 936 | if (*stringptr != '\0') { |
| 937 | currentmarker = (int) strtol(stringptr, &stringptr, 0); |
| 938 | } |
| 939 | } |
| 940 | } |
| 941 | // Initialize facetmarker if it needs. |
| 942 | if (markers == 1) { |
| 943 | facetmarkerlist[i - 1] = currentmarker; |
| 944 | } |
| 945 | // Each facet should has at least one polygon. |
| 946 | if (f->numberofpolygons <= 0) { |
| 947 | printf("Error: Wrong number of polygon in %d facet.\n" , i); |
| 948 | break; |
| 949 | } |
| 950 | // Initialize the 'f->polygonlist'. |
| 951 | f->polygonlist = new polygon[f->numberofpolygons]; |
| 952 | // Go through all polygons, read in their vertices. |
| 953 | for (j = 1; j <= f->numberofpolygons; j++) { |
| 954 | p = &(f->polygonlist[j - 1]); |
| 955 | init(p); |
| 956 | // Read number of vertices of this polygon. |
| 957 | stringptr = readnumberline(inputline, infile, infilename); |
| 958 | p->numberofvertices = (int) strtol(stringptr, &stringptr, 0); |
| 959 | if (p->numberofvertices < 1) { |
| 960 | printf("Error: Wrong polygon %d in facet %d\n" , j, i); |
| 961 | break; |
| 962 | } |
| 963 | // Initialize 'p->vertexlist'. |
| 964 | p->vertexlist = new int[p->numberofvertices]; |
| 965 | // Read all vertices of this polygon. |
| 966 | for (k = 1; k <= p->numberofvertices; k++) { |
| 967 | stringptr = findnextnumber(stringptr); |
| 968 | if (*stringptr == '\0') { |
| 969 | // Try to load another non-empty line and continue to read the |
| 970 | // rest of vertices. |
| 971 | stringptr = readnumberline(inputline, infile, infilename); |
| 972 | if (*stringptr == '\0') { |
| 973 | printf("Error: Missing %d endpoints of polygon %d in facet %d" , |
| 974 | p->numberofvertices - k, j, i); |
| 975 | break; |
| 976 | } |
| 977 | } |
| 978 | p->vertexlist[k - 1] = (int) strtol (stringptr, &stringptr, 0); |
| 979 | } |
| 980 | } |
| 981 | if (j <= f->numberofpolygons) { |
| 982 | // This must be caused by an error. However, there're j - 1 |
| 983 | // polygons have been read. Reset the 'f->numberofpolygon'. |
| 984 | if (j == 1) { |
| 985 | // This is the first polygon. |
| 986 | delete [] f->polygonlist; |
| 987 | } |
| 988 | f->numberofpolygons = j - 1; |
| 989 | // No hole will be read even it exists. |
| 990 | f->numberofholes = 0; |
| 991 | break; |
| 992 | } |
| 993 | // If this facet has hole pints defined, read them. |
| 994 | if (f->numberofholes > 0) { |
| 995 | // Initialize 'f->holelist'. |
| 996 | f->holelist = new REAL[f->numberofholes * 3]; |
| 997 | // Read the holes' coordinates. |
| 998 | index = 0; |
| 999 | for (j = 1; j <= f->numberofholes; j++) { |
| 1000 | stringptr = readnumberline(inputline, infile, infilename); |
| 1001 | for (k = 1; k <= 3; k++) { |
| 1002 | stringptr = findnextnumber(stringptr); |
| 1003 | if (*stringptr == '\0') { |
| 1004 | printf("Error: Hole %d in facet %d has no coordinates" , j, i); |
| 1005 | break; |
| 1006 | } |
| 1007 | f->holelist[index++] = (REAL) strtod (stringptr, &stringptr); |
| 1008 | } |
| 1009 | if (k <= 3) { |
| 1010 | // This must be caused by an error. |
| 1011 | break; |
| 1012 | } |
| 1013 | } |
| 1014 | if (j <= f->numberofholes) { |
| 1015 | // This must be caused by an error. |
| 1016 | break; |
| 1017 | } |
| 1018 | } |
| 1019 | } |
| 1020 | if (i <= numberoffacets) { |
| 1021 | // This must be caused by an error. |
| 1022 | numberoffacets = i - 1; |
| 1023 | fclose(infile); |
| 1024 | return false; |
| 1025 | } |
| 1026 | } else { // poly == 0 |
| 1027 | // Read the facets from a .smesh file. |
| 1028 | for (i = 1; i <= numberoffacets; i++) { |
| 1029 | f = &(facetlist[i - 1]); |
| 1030 | init(f); |
| 1031 | // Initialize 'f->facetlist'. In a .smesh file, each facetlist only |
| 1032 | // contains exactly one polygon, no hole. |
| 1033 | f->numberofpolygons = 1; |
| 1034 | f->polygonlist = new polygon[f->numberofpolygons]; |
| 1035 | p = &(f->polygonlist[0]); |
| 1036 | init(p); |
| 1037 | // Read number of vertices of this polygon. |
| 1038 | stringptr = readnumberline(inputline, infile, insmeshfilename); |
| 1039 | p->numberofvertices = (int) strtol (stringptr, &stringptr, 0); |
| 1040 | if (p->numberofvertices < 1) { |
| 1041 | printf("Error: Wrong number of vertex in facet %d\n" , i); |
| 1042 | break; |
| 1043 | } |
| 1044 | // Initialize 'p->vertexlist'. |
| 1045 | p->vertexlist = new int[p->numberofvertices]; |
| 1046 | for (k = 1; k <= p->numberofvertices; k++) { |
| 1047 | stringptr = findnextnumber(stringptr); |
| 1048 | if (*stringptr == '\0') { |
| 1049 | // Try to load another non-empty line and continue to read the |
| 1050 | // rest of vertices. |
| 1051 | stringptr = readnumberline(inputline, infile, infilename); |
| 1052 | if (*stringptr == '\0') { |
| 1053 | printf("Error: Missing %d endpoints in facet %d" , |
| 1054 | p->numberofvertices - k, i); |
| 1055 | break; |
| 1056 | } |
| 1057 | } |
| 1058 | p->vertexlist[k - 1] = (int) strtol (stringptr, &stringptr, 0); |
| 1059 | } |
| 1060 | if (k <= p->numberofvertices) { |
| 1061 | // This must be caused by an error. |
| 1062 | break; |
| 1063 | } |
| 1064 | // Read facet's boundary marker at last. |
| 1065 | if (markers == 1) { |
| 1066 | stringptr = findnextnumber(stringptr); |
| 1067 | if (*stringptr == '\0') { |
| 1068 | currentmarker = 0; |
| 1069 | } else { |
| 1070 | currentmarker = (int) strtol(stringptr, &stringptr, 0); |
| 1071 | } |
| 1072 | facetmarkerlist[i - 1] = currentmarker; |
| 1073 | } |
| 1074 | } |
| 1075 | if (i <= numberoffacets) { |
| 1076 | // This must be caused by an error. |
| 1077 | numberoffacets = i - 1; |
| 1078 | fclose(infile); |
| 1079 | return false; |
| 1080 | } |
| 1081 | } |
| 1082 | |
| 1083 | // Read the hole section. |
| 1084 | stringptr = readnumberline(inputline, infile, infilename); |
| 1085 | if (stringptr == NULL) { |
| 1086 | // No hole list, return. |
| 1087 | fclose(infile); |
| 1088 | return true; |
| 1089 | } |
| 1090 | if (*stringptr != '\0') { |
| 1091 | numberofholes = (int) strtol (stringptr, &stringptr, 0); |
| 1092 | } else { |
| 1093 | numberofholes = 0; |
| 1094 | } |
| 1095 | if (numberofholes > 0) { |
| 1096 | // Initialize 'holelist'. |
| 1097 | holelist = new REAL[numberofholes * 3]; |
| 1098 | for (i = 0; i < 3 * numberofholes; i += 3) { |
| 1099 | stringptr = readnumberline(inputline, infile, infilename); |
| 1100 | stringptr = findnextnumber(stringptr); |
| 1101 | if (*stringptr == '\0') { |
| 1102 | printf("Error: Hole %d has no x coord.\n" , firstnumber + (i / 3)); |
| 1103 | break; |
| 1104 | } else { |
| 1105 | holelist[i] = (REAL) strtod(stringptr, &stringptr); |
| 1106 | } |
| 1107 | stringptr = findnextnumber(stringptr); |
| 1108 | if (*stringptr == '\0') { |
| 1109 | printf("Error: Hole %d has no y coord.\n" , firstnumber + (i / 3)); |
| 1110 | break; |
| 1111 | } else { |
| 1112 | holelist[i + 1] = (REAL) strtod(stringptr, &stringptr); |
| 1113 | } |
| 1114 | stringptr = findnextnumber(stringptr); |
| 1115 | if (*stringptr == '\0') { |
| 1116 | printf("Error: Hole %d has no z coord.\n" , firstnumber + (i / 3)); |
| 1117 | break; |
| 1118 | } else { |
| 1119 | holelist[i + 2] = (REAL) strtod(stringptr, &stringptr); |
| 1120 | } |
| 1121 | } |
| 1122 | if (i < 3 * numberofholes) { |
| 1123 | // This must be caused by an error. |
| 1124 | fclose(infile); |
| 1125 | return false; |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | // Read the region section. The 'region' section is optional, if we |
| 1130 | // don't reach the end-of-file, try read it in. |
| 1131 | stringptr = readnumberline(inputline, infile, NULL); |
| 1132 | if (stringptr != (char *) NULL && *stringptr != '\0') { |
| 1133 | numberofregions = (int) strtol (stringptr, &stringptr, 0); |
| 1134 | } else { |
| 1135 | numberofregions = 0; |
| 1136 | } |
| 1137 | if (numberofregions > 0) { |
| 1138 | // Initialize 'regionlist'. |
| 1139 | regionlist = new REAL[numberofregions * 5]; |
| 1140 | index = 0; |
| 1141 | for (i = 0; i < numberofregions; i++) { |
| 1142 | stringptr = readnumberline(inputline, infile, infilename); |
| 1143 | stringptr = findnextnumber(stringptr); |
| 1144 | if (*stringptr == '\0') { |
| 1145 | printf("Error: Region %d has no x coordinate.\n" , firstnumber + i); |
| 1146 | break; |
| 1147 | } else { |
| 1148 | regionlist[index++] = (REAL) strtod(stringptr, &stringptr); |
| 1149 | } |
| 1150 | stringptr = findnextnumber(stringptr); |
| 1151 | if (*stringptr == '\0') { |
| 1152 | printf("Error: Region %d has no y coordinate.\n" , firstnumber + i); |
| 1153 | break; |
| 1154 | } else { |
| 1155 | regionlist[index++] = (REAL) strtod(stringptr, &stringptr); |
| 1156 | } |
| 1157 | stringptr = findnextnumber(stringptr); |
| 1158 | if (*stringptr == '\0') { |
| 1159 | printf("Error: Region %d has no z coordinate.\n" , firstnumber + i); |
| 1160 | break; |
| 1161 | } else { |
| 1162 | regionlist[index++] = (REAL) strtod(stringptr, &stringptr); |
| 1163 | } |
| 1164 | stringptr = findnextnumber(stringptr); |
| 1165 | if (*stringptr == '\0') { |
| 1166 | printf("Error: Region %d has no region attrib.\n" , firstnumber + i); |
| 1167 | break; |
| 1168 | } else { |
| 1169 | regionlist[index++] = (REAL) strtod(stringptr, &stringptr); |
| 1170 | } |
| 1171 | stringptr = findnextnumber(stringptr); |
| 1172 | if (*stringptr == '\0') { |
| 1173 | regionlist[index] = regionlist[index - 1]; |
| 1174 | } else { |
| 1175 | regionlist[index] = (REAL) strtod(stringptr, &stringptr); |
| 1176 | } |
| 1177 | index++; |
| 1178 | } |
| 1179 | if (i < numberofregions) { |
| 1180 | // This must be caused by an error. |
| 1181 | fclose(infile); |
| 1182 | return false; |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | } else { |
| 1187 | |
| 1188 | // Read a PSLG from Triangle's poly file. |
| 1189 | assert(mesh_dim == 2); |
| 1190 | // A PSLG is a facet of a PLC. |
| 1191 | numberoffacets = 1; |
| 1192 | // Initialize the 'facetlist'. |
| 1193 | facetlist = new facet[numberoffacets]; |
| 1194 | facetmarkerlist = (int *) NULL; // No facet markers. |
| 1195 | f = &(facetlist[0]); |
| 1196 | init(f); |
| 1197 | // Read number of segments. |
| 1198 | stringptr = readnumberline(inputline, infile, infilename); |
| 1199 | // Segments are degenerate polygons. |
| 1200 | f->numberofpolygons = (int) strtol (stringptr, &stringptr, 0); |
| 1201 | if (f->numberofpolygons > 0) { |
| 1202 | f->polygonlist = new polygon[f->numberofpolygons]; |
| 1203 | } |
| 1204 | // Go through all segments, read in their vertices. |
| 1205 | for (j = 0; j < f->numberofpolygons; j++) { |
| 1206 | p = &(f->polygonlist[j]); |
| 1207 | init(p); |
| 1208 | // Read in a segment. |
| 1209 | stringptr = readnumberline(inputline, infile, infilename); |
| 1210 | stringptr = findnextnumber(stringptr); // Skip its index. |
| 1211 | p->numberofvertices = 2; // A segment always has two vertices. |
| 1212 | p->vertexlist = new int[p->numberofvertices]; |
| 1213 | p->vertexlist[0] = (int) strtol (stringptr, &stringptr, 0); |
| 1214 | stringptr = findnextnumber(stringptr); |
| 1215 | p->vertexlist[1] = (int) strtol (stringptr, &stringptr, 0); |
| 1216 | } |
| 1217 | // Read number of holes. |
| 1218 | stringptr = readnumberline(inputline, infile, infilename); |
| 1219 | f->numberofholes = (int) strtol (stringptr, &stringptr, 0); |
| 1220 | if (f->numberofholes > 0) { |
| 1221 | // Initialize 'f->holelist'. |
| 1222 | f->holelist = new REAL[f->numberofholes * 3]; |
| 1223 | // Read the holes' coordinates. |
| 1224 | for (j = 0; j < f->numberofholes; j++) { |
| 1225 | // Read a 2D hole point. |
| 1226 | stringptr = readnumberline(inputline, infile, infilename); |
| 1227 | stringptr = findnextnumber(stringptr); // Skip its index. |
| 1228 | f->holelist[j * 3] = (REAL) strtod (stringptr, &stringptr); |
| 1229 | stringptr = findnextnumber(stringptr); |
| 1230 | f->holelist[j * 3 + 1] = (REAL) strtod (stringptr, &stringptr); |
| 1231 | f->holelist[j * 3 + 2] = 0.0; // The z-coord. |
| 1232 | } |
| 1233 | } |
| 1234 | // The regions are skipped. |
| 1235 | |
| 1236 | } |
| 1237 | |
| 1238 | // End of reading poly/smesh file. |
| 1239 | fclose(infile); |
| 1240 | return true; |
| 1241 | } |
| 1242 | |
| 1243 | /////////////////////////////////////////////////////////////////////////////// |
| 1244 | // // |
| 1245 | // load_off() Load a polyhedron from a .off file. // |
| 1246 | // // |
| 1247 | // The .off format is one of file formats of the Geomview, an interactive // |
| 1248 | // program for viewing and manipulating geometric objects. More information // |
| 1249 | // is available form: http://www.geomview.org. // |
| 1250 | // // |
| 1251 | /////////////////////////////////////////////////////////////////////////////// |
| 1252 | |
| 1253 | bool tetgenio::load_off(char* filebasename) |
| 1254 | { |
| 1255 | FILE *fp; |
| 1256 | tetgenio::facet *f; |
| 1257 | tetgenio::polygon *p; |
| 1258 | char infilename[FILENAMESIZE]; |
| 1259 | char buffer[INPUTLINESIZE]; |
| 1260 | char *bufferp; |
| 1261 | double *coord; |
| 1262 | int nverts = 0, iverts = 0; |
| 1263 | int nfaces = 0, ifaces = 0; |
| 1264 | int nedges = 0; |
| 1265 | int line_count = 0, i; |
| 1266 | |
| 1267 | // Default, the off file's index is from '0'. We check it by remembering the |
| 1268 | // smallest index we found in the file. It should be either 0 or 1. |
| 1269 | int smallestidx = 0; |
| 1270 | |
| 1271 | strncpy(infilename, filebasename, 1024 - 1); |
| 1272 | infilename[FILENAMESIZE - 1] = '\0'; |
| 1273 | if (infilename[0] == '\0') { |
| 1274 | printf("Error: No filename.\n" ); |
| 1275 | return false; |
| 1276 | } |
| 1277 | if (strcmp(&infilename[strlen(infilename) - 4], ".off" ) != 0) { |
| 1278 | strcat(infilename, ".off" ); |
| 1279 | } |
| 1280 | |
| 1281 | if (!(fp = fopen(infilename, "r" ))) { |
| 1282 | printf(" Unable to open file %s\n" , infilename); |
| 1283 | return false; |
| 1284 | } |
| 1285 | printf("Opening %s.\n" , infilename); |
| 1286 | |
| 1287 | while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { |
| 1288 | // Check section |
| 1289 | if (nverts == 0) { |
| 1290 | // Read header |
| 1291 | bufferp = strstr(bufferp, "OFF" ); |
| 1292 | if (bufferp != NULL) { |
| 1293 | // Read mesh counts |
| 1294 | bufferp = findnextnumber(bufferp); // Skip field "OFF". |
| 1295 | if (*bufferp == '\0') { |
| 1296 | // Read a non-empty line. |
| 1297 | bufferp = readline(buffer, fp, &line_count); |
| 1298 | } |
| 1299 | if ((sscanf(bufferp, "%d%d%d" , &nverts, &nfaces, &nedges) != 3) |
| 1300 | || (nverts == 0)) { |
| 1301 | printf("Syntax error reading header on line %d in file %s\n" , |
| 1302 | line_count, infilename); |
| 1303 | fclose(fp); |
| 1304 | return false; |
| 1305 | } |
| 1306 | // Allocate memory for 'tetgenio' |
| 1307 | if (nverts > 0) { |
| 1308 | numberofpoints = nverts; |
| 1309 | pointlist = new REAL[nverts * 3]; |
| 1310 | smallestidx = nverts + 1; // A bigger enough number. |
| 1311 | } |
| 1312 | if (nfaces > 0) { |
| 1313 | numberoffacets = nfaces; |
| 1314 | facetlist = new tetgenio::facet[nfaces]; |
| 1315 | } |
| 1316 | } |
| 1317 | } else if (iverts < nverts) { |
| 1318 | // Read vertex coordinates |
| 1319 | coord = &pointlist[iverts * 3]; |
| 1320 | for (i = 0; i < 3; i++) { |
| 1321 | if (*bufferp == '\0') { |
| 1322 | printf("Syntax error reading vertex coords on line %d in file %s\n" , |
| 1323 | line_count, infilename); |
| 1324 | fclose(fp); |
| 1325 | return false; |
| 1326 | } |
| 1327 | coord[i] = (REAL) strtod(bufferp, &bufferp); |
| 1328 | bufferp = findnextnumber(bufferp); |
| 1329 | } |
| 1330 | iverts++; |
| 1331 | } else if (ifaces < nfaces) { |
| 1332 | // Get next face |
| 1333 | f = &facetlist[ifaces]; |
| 1334 | init(f); |
| 1335 | // In .off format, each facet has one polygon, no hole. |
| 1336 | f->numberofpolygons = 1; |
| 1337 | f->polygonlist = new tetgenio::polygon[1]; |
| 1338 | p = &f->polygonlist[0]; |
| 1339 | init(p); |
| 1340 | // Read the number of vertices, it should be greater than 0. |
| 1341 | p->numberofvertices = (int) strtol(bufferp, &bufferp, 0); |
| 1342 | if (p->numberofvertices == 0) { |
| 1343 | printf("Syntax error reading polygon on line %d in file %s\n" , |
| 1344 | line_count, infilename); |
| 1345 | fclose(fp); |
| 1346 | return false; |
| 1347 | } |
| 1348 | // Allocate memory for face vertices |
| 1349 | p->vertexlist = new int[p->numberofvertices]; |
| 1350 | for (i = 0; i < p->numberofvertices; i++) { |
| 1351 | bufferp = findnextnumber(bufferp); |
| 1352 | if (*bufferp == '\0') { |
| 1353 | printf("Syntax error reading polygon on line %d in file %s\n" , |
| 1354 | line_count, infilename); |
| 1355 | fclose(fp); |
| 1356 | return false; |
| 1357 | } |
| 1358 | p->vertexlist[i] = (int) strtol(bufferp, &bufferp, 0); |
| 1359 | // Detect the smallest index. |
| 1360 | if (p->vertexlist[i] < smallestidx) { |
| 1361 | smallestidx = p->vertexlist[i]; |
| 1362 | } |
| 1363 | } |
| 1364 | ifaces++; |
| 1365 | } else { |
| 1366 | // Should never get here |
| 1367 | printf("Found extra text starting at line %d in file %s\n" , line_count, |
| 1368 | infilename); |
| 1369 | break; |
| 1370 | } |
| 1371 | } |
| 1372 | |
| 1373 | // Close file |
| 1374 | fclose(fp); |
| 1375 | |
| 1376 | // Decide the firstnumber of the index. |
| 1377 | if (smallestidx == 0) { |
| 1378 | firstnumber = 0; |
| 1379 | } else if (smallestidx == 1) { |
| 1380 | firstnumber = 1; |
| 1381 | } else { |
| 1382 | printf("A wrong smallest index (%d) was detected in file %s\n" , |
| 1383 | smallestidx, infilename); |
| 1384 | return false; |
| 1385 | } |
| 1386 | |
| 1387 | if (iverts != nverts) { |
| 1388 | printf("Expected %d vertices, but read only %d vertices in file %s\n" , |
| 1389 | nverts, iverts, infilename); |
| 1390 | return false; |
| 1391 | } |
| 1392 | if (ifaces != nfaces) { |
| 1393 | printf("Expected %d faces, but read only %d faces in file %s\n" , |
| 1394 | nfaces, ifaces, infilename); |
| 1395 | return false; |
| 1396 | } |
| 1397 | |
| 1398 | return true; |
| 1399 | } |
| 1400 | |
| 1401 | /////////////////////////////////////////////////////////////////////////////// |
| 1402 | // // |
| 1403 | // load_ply() Load a polyhedron from a .ply file. // |
| 1404 | // // |
| 1405 | // This is a simplified version of reading .ply files, which only reads the // |
| 1406 | // set of vertices and the set of faces. Other informations (such as color, // |
| 1407 | // material, texture, etc) in .ply file are ignored. Complete routines for // |
| 1408 | // reading and writing ,ply files are available from: http://www.cc.gatech. // |
| 1409 | // edu/projects/large_models/ply.html. Except the header section, ply file // |
| 1410 | // format has exactly the same format for listing vertices and polygons as // |
| 1411 | // off file format. // |
| 1412 | // // |
| 1413 | /////////////////////////////////////////////////////////////////////////////// |
| 1414 | |
| 1415 | bool tetgenio::load_ply(char* filebasename) |
| 1416 | { |
| 1417 | FILE *fp; |
| 1418 | tetgenio::facet *f; |
| 1419 | tetgenio::polygon *p; |
| 1420 | char infilename[FILENAMESIZE]; |
| 1421 | char buffer[INPUTLINESIZE]; |
| 1422 | char *bufferp, *str; |
| 1423 | double *coord; |
| 1424 | int = 0, format = 0; |
| 1425 | int nverts = 0, iverts = 0; |
| 1426 | int nfaces = 0, ifaces = 0; |
| 1427 | int line_count = 0, i; |
| 1428 | |
| 1429 | // Default, the ply file's index is from '0'. We check it by remembering the |
| 1430 | // smallest index we found in the file. It should be either 0 or 1. |
| 1431 | int smallestidx = 0; |
| 1432 | |
| 1433 | strncpy(infilename, filebasename, FILENAMESIZE - 1); |
| 1434 | infilename[FILENAMESIZE - 1] = '\0'; |
| 1435 | if (infilename[0] == '\0') { |
| 1436 | printf("Error: No filename.\n" ); |
| 1437 | return false; |
| 1438 | } |
| 1439 | if (strcmp(&infilename[strlen(infilename) - 4], ".ply" ) != 0) { |
| 1440 | strcat(infilename, ".ply" ); |
| 1441 | } |
| 1442 | |
| 1443 | if (!(fp = fopen(infilename, "r" ))) { |
| 1444 | printf("Error: Unable to open file %s\n" , infilename); |
| 1445 | return false; |
| 1446 | } |
| 1447 | printf("Opening %s.\n" , infilename); |
| 1448 | |
| 1449 | while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { |
| 1450 | if (!endheader) { |
| 1451 | // Find if it is the keyword "end_header". |
| 1452 | str = strstr(bufferp, "end_header" ); |
| 1453 | // strstr() is case sensitive. |
| 1454 | if (!str) str = strstr(bufferp, "End_header" ); |
| 1455 | if (!str) str = strstr(bufferp, "End_Header" ); |
| 1456 | if (str) { |
| 1457 | // This is the end of the header section. |
| 1458 | endheader = 1; |
| 1459 | continue; |
| 1460 | } |
| 1461 | // Parse the number of vertices and the number of faces. |
| 1462 | if (nverts == 0 || nfaces == 0) { |
| 1463 | // Find if it si the keyword "element". |
| 1464 | str = strstr(bufferp, "element" ); |
| 1465 | if (!str) str = strstr(bufferp, "Element" ); |
| 1466 | if (str) { |
| 1467 | bufferp = findnextfield(str); |
| 1468 | if (*bufferp == '\0') { |
| 1469 | printf("Syntax error reading element type on line%d in file %s\n" , |
| 1470 | line_count, infilename); |
| 1471 | fclose(fp); |
| 1472 | return false; |
| 1473 | } |
| 1474 | if (nverts == 0) { |
| 1475 | // Find if it is the keyword "vertex". |
| 1476 | str = strstr(bufferp, "vertex" ); |
| 1477 | if (!str) str = strstr(bufferp, "Vertex" ); |
| 1478 | if (str) { |
| 1479 | bufferp = findnextnumber(str); |
| 1480 | if (*bufferp == '\0') { |
| 1481 | printf("Syntax error reading vertex number on line" ); |
| 1482 | printf(" %d in file %s\n" , line_count, infilename); |
| 1483 | fclose(fp); |
| 1484 | return false; |
| 1485 | } |
| 1486 | nverts = (int) strtol(bufferp, &bufferp, 0); |
| 1487 | // Allocate memory for 'tetgenio' |
| 1488 | if (nverts > 0) { |
| 1489 | numberofpoints = nverts; |
| 1490 | pointlist = new REAL[nverts * 3]; |
| 1491 | smallestidx = nverts + 1; // A big enough index. |
| 1492 | } |
| 1493 | } |
| 1494 | } |
| 1495 | if (nfaces == 0) { |
| 1496 | // Find if it is the keyword "face". |
| 1497 | str = strstr(bufferp, "face" ); |
| 1498 | if (!str) str = strstr(bufferp, "Face" ); |
| 1499 | if (str) { |
| 1500 | bufferp = findnextnumber(str); |
| 1501 | if (*bufferp == '\0') { |
| 1502 | printf("Syntax error reading face number on line" ); |
| 1503 | printf(" %d in file %s\n" , line_count, infilename); |
| 1504 | fclose(fp); |
| 1505 | return false; |
| 1506 | } |
| 1507 | nfaces = (int) strtol(bufferp, &bufferp, 0); |
| 1508 | // Allocate memory for 'tetgenio' |
| 1509 | if (nfaces > 0) { |
| 1510 | numberoffacets = nfaces; |
| 1511 | facetlist = new tetgenio::facet[nfaces]; |
| 1512 | } |
| 1513 | } |
| 1514 | } |
| 1515 | } // It is not the string "element". |
| 1516 | } |
| 1517 | if (format == 0) { |
| 1518 | // Find the keyword "format". |
| 1519 | str = strstr(bufferp, "format" ); |
| 1520 | if (!str) str = strstr(bufferp, "Format" ); |
| 1521 | if (str) { |
| 1522 | format = 1; |
| 1523 | bufferp = findnextfield(str); |
| 1524 | // Find if it is the string "ascii". |
| 1525 | str = strstr(bufferp, "ascii" ); |
| 1526 | if (!str) str = strstr(bufferp, "ASCII" ); |
| 1527 | if (!str) { |
| 1528 | printf("This routine only reads ascii format of ply files.\n" ); |
| 1529 | printf("Hint: You can convert the binary to ascii format by\n" ); |
| 1530 | printf(" using the provided ply tools:\n" ); |
| 1531 | printf(" ply2ascii < %s > ascii_%s\n" , infilename, infilename); |
| 1532 | fclose(fp); |
| 1533 | return false; |
| 1534 | } |
| 1535 | } |
| 1536 | } |
| 1537 | } else if (iverts < nverts) { |
| 1538 | // Read vertex coordinates |
| 1539 | coord = &pointlist[iverts * 3]; |
| 1540 | for (i = 0; i < 3; i++) { |
| 1541 | if (*bufferp == '\0') { |
| 1542 | printf("Syntax error reading vertex coords on line %d in file %s\n" , |
| 1543 | line_count, infilename); |
| 1544 | fclose(fp); |
| 1545 | return false; |
| 1546 | } |
| 1547 | coord[i] = (REAL) strtod(bufferp, &bufferp); |
| 1548 | bufferp = findnextnumber(bufferp); |
| 1549 | } |
| 1550 | iverts++; |
| 1551 | } else if (ifaces < nfaces) { |
| 1552 | // Get next face |
| 1553 | f = &facetlist[ifaces]; |
| 1554 | init(f); |
| 1555 | // In .off format, each facet has one polygon, no hole. |
| 1556 | f->numberofpolygons = 1; |
| 1557 | f->polygonlist = new tetgenio::polygon[1]; |
| 1558 | p = &f->polygonlist[0]; |
| 1559 | init(p); |
| 1560 | // Read the number of vertices, it should be greater than 0. |
| 1561 | p->numberofvertices = (int) strtol(bufferp, &bufferp, 0); |
| 1562 | if (p->numberofvertices == 0) { |
| 1563 | printf("Syntax error reading polygon on line %d in file %s\n" , |
| 1564 | line_count, infilename); |
| 1565 | fclose(fp); |
| 1566 | return false; |
| 1567 | } |
| 1568 | // Allocate memory for face vertices |
| 1569 | p->vertexlist = new int[p->numberofvertices]; |
| 1570 | for (i = 0; i < p->numberofvertices; i++) { |
| 1571 | bufferp = findnextnumber(bufferp); |
| 1572 | if (*bufferp == '\0') { |
| 1573 | printf("Syntax error reading polygon on line %d in file %s\n" , |
| 1574 | line_count, infilename); |
| 1575 | fclose(fp); |
| 1576 | return false; |
| 1577 | } |
| 1578 | p->vertexlist[i] = (int) strtol(bufferp, &bufferp, 0); |
| 1579 | if (p->vertexlist[i] < smallestidx) { |
| 1580 | smallestidx = p->vertexlist[i]; |
| 1581 | } |
| 1582 | } |
| 1583 | ifaces++; |
| 1584 | } else { |
| 1585 | // Should never get here |
| 1586 | printf("Found extra text starting at line %d in file %s\n" , line_count, |
| 1587 | infilename); |
| 1588 | break; |
| 1589 | } |
| 1590 | } |
| 1591 | |
| 1592 | // Close file |
| 1593 | fclose(fp); |
| 1594 | |
| 1595 | // Decide the firstnumber of the index. |
| 1596 | if (smallestidx == 0) { |
| 1597 | firstnumber = 0; |
| 1598 | } else if (smallestidx == 1) { |
| 1599 | firstnumber = 1; |
| 1600 | } else { |
| 1601 | printf("A wrong smallest index (%d) was detected in file %s\n" , |
| 1602 | smallestidx, infilename); |
| 1603 | return false; |
| 1604 | } |
| 1605 | |
| 1606 | if (iverts != nverts) { |
| 1607 | printf("Expected %d vertices, but read only %d vertices in file %s\n" , |
| 1608 | nverts, iverts, infilename); |
| 1609 | return false; |
| 1610 | } |
| 1611 | if (ifaces != nfaces) { |
| 1612 | printf("Expected %d faces, but read only %d faces in file %s\n" , |
| 1613 | nfaces, ifaces, infilename); |
| 1614 | return false; |
| 1615 | } |
| 1616 | |
| 1617 | return true; |
| 1618 | } |
| 1619 | |
| 1620 | /////////////////////////////////////////////////////////////////////////////// |
| 1621 | // // |
| 1622 | // load_stl() Load a surface mesh from a .stl file. // |
| 1623 | // // |
| 1624 | // The .stl or stereolithography format is an ASCII or binary file used in // |
| 1625 | // manufacturing. It is a list of the triangular surfaces that describe a // |
| 1626 | // computer generated solid model. This is the standard input for most rapid // |
| 1627 | // prototyping machines. // |
| 1628 | // // |
| 1629 | // Comment: A .stl file many contain many duplicated points. They will be // |
| 1630 | // unified during the Delaunay tetrahedralization process. // |
| 1631 | // // |
| 1632 | /////////////////////////////////////////////////////////////////////////////// |
| 1633 | |
| 1634 | bool tetgenio::load_stl(char* filebasename) |
| 1635 | { |
| 1636 | FILE *fp; |
| 1637 | tetgenmesh::arraypool *plist; |
| 1638 | tetgenio::facet *f; |
| 1639 | tetgenio::polygon *p; |
| 1640 | char infilename[FILENAMESIZE]; |
| 1641 | char buffer[INPUTLINESIZE]; |
| 1642 | char *bufferp, *str; |
| 1643 | double *coord; |
| 1644 | int solid = 0; |
| 1645 | int nverts = 0, iverts = 0; |
| 1646 | int nfaces = 0; |
| 1647 | int line_count = 0, i; |
| 1648 | |
| 1649 | strncpy(infilename, filebasename, FILENAMESIZE - 1); |
| 1650 | infilename[FILENAMESIZE - 1] = '\0'; |
| 1651 | if (infilename[0] == '\0') { |
| 1652 | printf("Error: No filename.\n" ); |
| 1653 | return false; |
| 1654 | } |
| 1655 | if (strcmp(&infilename[strlen(infilename) - 4], ".stl" ) != 0) { |
| 1656 | strcat(infilename, ".stl" ); |
| 1657 | } |
| 1658 | |
| 1659 | if (!(fp = fopen(infilename, "r" ))) { |
| 1660 | printf("Error: Unable to open file %s\n" , infilename); |
| 1661 | return false; |
| 1662 | } |
| 1663 | printf("Opening %s.\n" , infilename); |
| 1664 | |
| 1665 | // STL file has no number of points available. Use a list to read points. |
| 1666 | plist = new tetgenmesh::arraypool(sizeof(double) * 3, 10); |
| 1667 | |
| 1668 | while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { |
| 1669 | // The ASCII .stl file must start with the lower case keyword solid and |
| 1670 | // end with endsolid. |
| 1671 | if (solid == 0) { |
| 1672 | // Read header |
| 1673 | bufferp = strstr(bufferp, "solid" ); |
| 1674 | if (bufferp != NULL) { |
| 1675 | solid = 1; |
| 1676 | } |
| 1677 | } else { |
| 1678 | // We're inside the block of the solid. |
| 1679 | str = bufferp; |
| 1680 | // Is this the end of the solid. |
| 1681 | bufferp = strstr(bufferp, "endsolid" ); |
| 1682 | if (bufferp != NULL) { |
| 1683 | solid = 0; |
| 1684 | } else { |
| 1685 | // Read the XYZ coordinates if it is a vertex. |
| 1686 | bufferp = str; |
| 1687 | bufferp = strstr(bufferp, "vertex" ); |
| 1688 | if (bufferp != NULL) { |
| 1689 | plist->newindex((void **) &coord); |
| 1690 | for (i = 0; i < 3; i++) { |
| 1691 | bufferp = findnextnumber(bufferp); |
| 1692 | if (*bufferp == '\0') { |
| 1693 | printf("Syntax error reading vertex coords on line %d\n" , |
| 1694 | line_count); |
| 1695 | delete plist; |
| 1696 | fclose(fp); |
| 1697 | return false; |
| 1698 | } |
| 1699 | coord[i] = (REAL) strtod(bufferp, &bufferp); |
| 1700 | } |
| 1701 | } |
| 1702 | } |
| 1703 | } |
| 1704 | } |
| 1705 | fclose(fp); |
| 1706 | |
| 1707 | nverts = (int) plist->objects; |
| 1708 | // nverts should be an integer times 3 (every 3 vertices denote a face). |
| 1709 | if (nverts == 0 || (nverts % 3 != 0)) { |
| 1710 | printf("Error: Wrong number of vertices in file %s.\n" , infilename); |
| 1711 | delete plist; |
| 1712 | return false; |
| 1713 | } |
| 1714 | numberofpoints = nverts; |
| 1715 | pointlist = new REAL[nverts * 3]; |
| 1716 | for (i = 0; i < nverts; i++) { |
| 1717 | coord = (double *) fastlookup(plist, i); |
| 1718 | iverts = i * 3; |
| 1719 | pointlist[iverts] = (REAL) coord[0]; |
| 1720 | pointlist[iverts + 1] = (REAL) coord[1]; |
| 1721 | pointlist[iverts + 2] = (REAL) coord[2]; |
| 1722 | } |
| 1723 | |
| 1724 | nfaces = (int) (nverts / 3); |
| 1725 | numberoffacets = nfaces; |
| 1726 | facetlist = new tetgenio::facet[nfaces]; |
| 1727 | |
| 1728 | // Default use '1' as the array starting index. |
| 1729 | firstnumber = 1; |
| 1730 | iverts = firstnumber; |
| 1731 | for (i = 0; i < nfaces; i++) { |
| 1732 | f = &facetlist[i]; |
| 1733 | init(f); |
| 1734 | // In .stl format, each facet has one polygon, no hole. |
| 1735 | f->numberofpolygons = 1; |
| 1736 | f->polygonlist = new tetgenio::polygon[1]; |
| 1737 | p = &f->polygonlist[0]; |
| 1738 | init(p); |
| 1739 | // Each polygon has three vertices. |
| 1740 | p->numberofvertices = 3; |
| 1741 | p->vertexlist = new int[p->numberofvertices]; |
| 1742 | p->vertexlist[0] = iverts; |
| 1743 | p->vertexlist[1] = iverts + 1; |
| 1744 | p->vertexlist[2] = iverts + 2; |
| 1745 | iverts += 3; |
| 1746 | } |
| 1747 | |
| 1748 | delete plist; |
| 1749 | return true; |
| 1750 | } |
| 1751 | |
| 1752 | /////////////////////////////////////////////////////////////////////////////// |
| 1753 | // // |
| 1754 | // load_medit() Load a surface mesh from a .mesh file. // |
| 1755 | // // |
| 1756 | // The .mesh format is the file format of Medit, a user-friendly interactive // |
| 1757 | // mesh viewer program. // |
| 1758 | // // |
| 1759 | /////////////////////////////////////////////////////////////////////////////// |
| 1760 | |
| 1761 | bool tetgenio::load_medit(char* filebasename, int istetmesh) |
| 1762 | { |
| 1763 | FILE *fp; |
| 1764 | tetgenio::facet *tmpflist, *f; |
| 1765 | tetgenio::polygon *p; |
| 1766 | char infilename[FILENAMESIZE]; |
| 1767 | char buffer[INPUTLINESIZE]; |
| 1768 | char *bufferp, *str; |
| 1769 | double *coord; |
| 1770 | int *tmpfmlist; |
| 1771 | int dimension = 0; |
| 1772 | int nverts = 0; |
| 1773 | int nfaces = 0; |
| 1774 | int ntets = 0; |
| 1775 | int line_count = 0; |
| 1776 | int corners = 0; // 3 (triangle) or 4 (quad). |
| 1777 | int *plist; |
| 1778 | int i, j; |
| 1779 | |
| 1780 | int smallestidx = 0; |
| 1781 | |
| 1782 | strncpy(infilename, filebasename, FILENAMESIZE - 1); |
| 1783 | infilename[FILENAMESIZE - 1] = '\0'; |
| 1784 | if (infilename[0] == '\0') { |
| 1785 | printf("Error: No filename.\n" ); |
| 1786 | return false; |
| 1787 | } |
| 1788 | if (strcmp(&infilename[strlen(infilename) - 5], ".mesh" ) != 0) { |
| 1789 | strcat(infilename, ".mesh" ); |
| 1790 | } |
| 1791 | |
| 1792 | if (!(fp = fopen(infilename, "r" ))) { |
| 1793 | printf("Error: Unable to open file %s\n" , infilename); |
| 1794 | return false; |
| 1795 | } |
| 1796 | printf("Opening %s.\n" , infilename); |
| 1797 | |
| 1798 | while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { |
| 1799 | if (*bufferp == '#') continue; // A comment line is skipped. |
| 1800 | if (dimension == 0) { |
| 1801 | // Find if it is the keyword "Dimension". |
| 1802 | str = strstr(bufferp, "Dimension" ); |
| 1803 | if (!str) str = strstr(bufferp, "dimension" ); |
| 1804 | if (!str) str = strstr(bufferp, "DIMENSION" ); |
| 1805 | if (str) { |
| 1806 | // Read the dimensions |
| 1807 | bufferp = findnextnumber(str); // Skip field "Dimension". |
| 1808 | if (*bufferp == '\0') { |
| 1809 | // Read a non-empty line. |
| 1810 | bufferp = readline(buffer, fp, &line_count); |
| 1811 | } |
| 1812 | dimension = (int) strtol(bufferp, &bufferp, 0); |
| 1813 | if (dimension != 2 && dimension != 3) { |
| 1814 | printf("Unknown dimension in file on line %d in file %s\n" , |
| 1815 | line_count, infilename); |
| 1816 | fclose(fp); |
| 1817 | return false; |
| 1818 | } |
| 1819 | mesh_dim = dimension; |
| 1820 | } |
| 1821 | } |
| 1822 | if (nverts == 0) { |
| 1823 | // Find if it is the keyword "Vertices". |
| 1824 | str = strstr(bufferp, "Vertices" ); |
| 1825 | if (!str) str = strstr(bufferp, "vertices" ); |
| 1826 | if (!str) str = strstr(bufferp, "VERTICES" ); |
| 1827 | if (str) { |
| 1828 | // Read the number of vertices. |
| 1829 | bufferp = findnextnumber(str); // Skip field "Vertices". |
| 1830 | if (*bufferp == '\0') { |
| 1831 | // Read a non-empty line. |
| 1832 | bufferp = readline(buffer, fp, &line_count); |
| 1833 | } |
| 1834 | nverts = (int) strtol(bufferp, &bufferp, 0); |
| 1835 | // Initialize the smallest index. |
| 1836 | smallestidx = nverts + 1; |
| 1837 | // Allocate memory for 'tetgenio' |
| 1838 | if (nverts > 0) { |
| 1839 | numberofpoints = nverts; |
| 1840 | pointlist = new REAL[nverts * 3]; |
| 1841 | } |
| 1842 | // Read the follwoing node list. |
| 1843 | for (i = 0; i < nverts; i++) { |
| 1844 | bufferp = readline(buffer, fp, &line_count); |
| 1845 | if (bufferp == NULL) { |
| 1846 | printf("Unexpected end of file on line %d in file %s\n" , |
| 1847 | line_count, infilename); |
| 1848 | fclose(fp); |
| 1849 | return false; |
| 1850 | } |
| 1851 | // Read vertex coordinates |
| 1852 | coord = &pointlist[i * 3]; |
| 1853 | for (j = 0; j < 3; j++) { |
| 1854 | if (*bufferp == '\0') { |
| 1855 | printf("Syntax error reading vertex coords on line" ); |
| 1856 | printf(" %d in file %s\n" , line_count, infilename); |
| 1857 | fclose(fp); |
| 1858 | return false; |
| 1859 | } |
| 1860 | if ((j < 2) || (dimension == 3)) { |
| 1861 | coord[j] = (REAL) strtod(bufferp, &bufferp); |
| 1862 | } else { |
| 1863 | assert((j == 2) && (dimension == 2)); |
| 1864 | coord[j] = 0.0; |
| 1865 | } |
| 1866 | bufferp = findnextnumber(bufferp); |
| 1867 | } |
| 1868 | } |
| 1869 | continue; |
| 1870 | } |
| 1871 | } |
| 1872 | if (ntets == 0) { |
| 1873 | // Find if it is the keyword "Tetrahedra" |
| 1874 | corners = 0; |
| 1875 | str = strstr(bufferp, "Tetrahedra" ); |
| 1876 | if (!str) str = strstr(bufferp, "tetrahedra" ); |
| 1877 | if (!str) str = strstr(bufferp, "TETRAHEDRA" ); |
| 1878 | if (str) { |
| 1879 | corners = 4; |
| 1880 | } |
| 1881 | if (corners == 4) { |
| 1882 | // Read the number of tetrahedra |
| 1883 | bufferp = findnextnumber(str); // Skip field "Tetrahedra". |
| 1884 | if (*bufferp == '\0') { |
| 1885 | // Read a non-empty line. |
| 1886 | bufferp = readline(buffer, fp, &line_count); |
| 1887 | } |
| 1888 | ntets = strtol(bufferp, &bufferp, 0); |
| 1889 | if (ntets > 0) { |
| 1890 | // It is a tetrahedral mesh. |
| 1891 | numberoftetrahedra = ntets; |
| 1892 | numberofcorners = 4; |
| 1893 | numberoftetrahedronattributes = 1; |
| 1894 | tetrahedronlist = new int[ntets * 4]; |
| 1895 | tetrahedronattributelist = new REAL[ntets]; |
| 1896 | } |
| 1897 | } // if (corners == 4) |
| 1898 | // Read the list of tetrahedra. |
| 1899 | for (i = 0; i < numberoftetrahedra; i++) { |
| 1900 | plist = &(tetrahedronlist[i * 4]); |
| 1901 | bufferp = readline(buffer, fp, &line_count); |
| 1902 | if (bufferp == NULL) { |
| 1903 | printf("Unexpected end of file on line %d in file %s\n" , |
| 1904 | line_count, infilename); |
| 1905 | fclose(fp); |
| 1906 | return false; |
| 1907 | } |
| 1908 | // Read the vertices of the tet. |
| 1909 | for (j = 0; j < corners; j++) { |
| 1910 | if (*bufferp == '\0') { |
| 1911 | printf("Syntax error reading face on line %d in file %s\n" , |
| 1912 | line_count, infilename); |
| 1913 | fclose(fp); |
| 1914 | return false; |
| 1915 | } |
| 1916 | plist[j] = (int) strtol(bufferp, &bufferp, 0); |
| 1917 | // Remember the smallest index. |
| 1918 | if (plist[j] < smallestidx) smallestidx = plist[j]; |
| 1919 | bufferp = findnextnumber(bufferp); |
| 1920 | } |
| 1921 | // Read the attribute of the tet if it exists. |
| 1922 | tetrahedronattributelist[i] = 0; |
| 1923 | if (*bufferp != '\0') { |
| 1924 | tetrahedronattributelist[i] = (REAL) strtol(bufferp, &bufferp, 0); |
| 1925 | } |
| 1926 | } // i |
| 1927 | } // Tetrahedra |
| 1928 | if (nfaces == 0) { |
| 1929 | // Find if it is the keyword "Triangles" or "Quadrilaterals". |
| 1930 | corners = 0; |
| 1931 | str = strstr(bufferp, "Triangles" ); |
| 1932 | if (!str) str = strstr(bufferp, "triangles" ); |
| 1933 | if (!str) str = strstr(bufferp, "TRIANGLES" ); |
| 1934 | if (str) { |
| 1935 | corners = 3; |
| 1936 | } else { |
| 1937 | str = strstr(bufferp, "Quadrilaterals" ); |
| 1938 | if (!str) str = strstr(bufferp, "quadrilaterals" ); |
| 1939 | if (!str) str = strstr(bufferp, "QUADRILATERALS" ); |
| 1940 | if (str) { |
| 1941 | corners = 4; |
| 1942 | } |
| 1943 | } |
| 1944 | if (corners == 3 || corners == 4) { |
| 1945 | // Read the number of triangles (or quadrilaterals). |
| 1946 | bufferp = findnextnumber(str); // Skip field "Triangles". |
| 1947 | if (*bufferp == '\0') { |
| 1948 | // Read a non-empty line. |
| 1949 | bufferp = readline(buffer, fp, &line_count); |
| 1950 | } |
| 1951 | nfaces = strtol(bufferp, &bufferp, 0); |
| 1952 | // Allocate memory for 'tetgenio' |
| 1953 | if (nfaces > 0) { |
| 1954 | if (!istetmesh) { |
| 1955 | // It is a PLC surface mesh. |
| 1956 | if (numberoffacets > 0) { |
| 1957 | // facetlist has already been allocated. Enlarge arrays. |
| 1958 | // This happens when the surface mesh contains mixed cells. |
| 1959 | tmpflist = new tetgenio::facet[numberoffacets + nfaces]; |
| 1960 | tmpfmlist = new int[numberoffacets + nfaces]; |
| 1961 | // Copy the data of old arrays into new arrays. |
| 1962 | for (i = 0; i < numberoffacets; i++) { |
| 1963 | f = &(tmpflist[i]); |
| 1964 | tetgenio::init(f); |
| 1965 | *f = facetlist[i]; |
| 1966 | tmpfmlist[i] = facetmarkerlist[i]; |
| 1967 | } |
| 1968 | // Release old arrays. |
| 1969 | delete [] facetlist; |
| 1970 | delete [] facetmarkerlist; |
| 1971 | // Remember the new arrays. |
| 1972 | facetlist = tmpflist; |
| 1973 | facetmarkerlist = tmpfmlist; |
| 1974 | } else { |
| 1975 | // This is the first time to allocate facetlist. |
| 1976 | facetlist = new tetgenio::facet[nfaces]; |
| 1977 | facetmarkerlist = new int[nfaces]; |
| 1978 | } |
| 1979 | } else { |
| 1980 | if (corners == 3) { |
| 1981 | // It is a surface mesh of a tetrahedral mesh. |
| 1982 | numberoftrifaces = nfaces; |
| 1983 | trifacelist = new int[nfaces * 3]; |
| 1984 | trifacemarkerlist = new int[nfaces]; |
| 1985 | } |
| 1986 | } |
| 1987 | } // if (nfaces > 0) |
| 1988 | // Read the following list of faces. |
| 1989 | if (!istetmesh) { |
| 1990 | for (i = numberoffacets; i < numberoffacets + nfaces; i++) { |
| 1991 | bufferp = readline(buffer, fp, &line_count); |
| 1992 | if (bufferp == NULL) { |
| 1993 | printf("Unexpected end of file on line %d in file %s\n" , |
| 1994 | line_count, infilename); |
| 1995 | fclose(fp); |
| 1996 | return false; |
| 1997 | } |
| 1998 | f = &facetlist[i]; |
| 1999 | tetgenio::init(f); |
| 2000 | // In .mesh format, each facet has one polygon, no hole. |
| 2001 | f->numberofpolygons = 1; |
| 2002 | f->polygonlist = new tetgenio::polygon[1]; |
| 2003 | p = &f->polygonlist[0]; |
| 2004 | tetgenio::init(p); |
| 2005 | p->numberofvertices = corners; |
| 2006 | // Allocate memory for face vertices |
| 2007 | p->vertexlist = new int[p->numberofvertices]; |
| 2008 | // Read the vertices of the face. |
| 2009 | for (j = 0; j < corners; j++) { |
| 2010 | if (*bufferp == '\0') { |
| 2011 | printf("Syntax error reading face on line %d in file %s\n" , |
| 2012 | line_count, infilename); |
| 2013 | fclose(fp); |
| 2014 | return false; |
| 2015 | } |
| 2016 | p->vertexlist[j] = (int) strtol(bufferp, &bufferp, 0); |
| 2017 | // Remember the smallest index. |
| 2018 | if (p->vertexlist[j] < smallestidx) { |
| 2019 | smallestidx = p->vertexlist[j]; |
| 2020 | } |
| 2021 | bufferp = findnextnumber(bufferp); |
| 2022 | } |
| 2023 | // Read the marker of the face if it exists. |
| 2024 | facetmarkerlist[i] = 0; |
| 2025 | if (*bufferp != '\0') { |
| 2026 | facetmarkerlist[i] = (int) strtol(bufferp, &bufferp, 0); |
| 2027 | } |
| 2028 | } |
| 2029 | // Have read in a list of triangles/quads. |
| 2030 | numberoffacets += nfaces; |
| 2031 | nfaces = 0; |
| 2032 | } else { |
| 2033 | // It is a surface mesh of a tetrahedral mesh. |
| 2034 | if (corners == 3) { |
| 2035 | for (i = 0; i < numberoftrifaces; i++) { |
| 2036 | plist = &(trifacelist[i * 3]); |
| 2037 | bufferp = readline(buffer, fp, &line_count); |
| 2038 | if (bufferp == NULL) { |
| 2039 | printf("Unexpected end of file on line %d in file %s\n" , |
| 2040 | line_count, infilename); |
| 2041 | fclose(fp); |
| 2042 | return false; |
| 2043 | } |
| 2044 | // Read the vertices of the face. |
| 2045 | for (j = 0; j < corners; j++) { |
| 2046 | if (*bufferp == '\0') { |
| 2047 | printf("Syntax error reading face on line %d in file %s\n" , |
| 2048 | line_count, infilename); |
| 2049 | fclose(fp); |
| 2050 | return false; |
| 2051 | } |
| 2052 | plist[j] = (int) strtol(bufferp, &bufferp, 0); |
| 2053 | // Remember the smallest index. |
| 2054 | if (plist[j] < smallestidx) { |
| 2055 | smallestidx = plist[j]; |
| 2056 | } |
| 2057 | bufferp = findnextnumber(bufferp); |
| 2058 | } |
| 2059 | // Read the marker of the face if it exists. |
| 2060 | trifacemarkerlist[i] = 0; |
| 2061 | if (*bufferp != '\0') { |
| 2062 | trifacemarkerlist[i] = (int) strtol(bufferp, &bufferp, 0); |
| 2063 | } |
| 2064 | } // i |
| 2065 | } // if (corners == 3) |
| 2066 | } // if (b->refine) |
| 2067 | } // if (corners == 3 || corners == 4) |
| 2068 | } |
| 2069 | } |
| 2070 | |
| 2071 | // Close file |
| 2072 | fclose(fp); |
| 2073 | |
| 2074 | // Decide the firstnumber of the index. |
| 2075 | if (smallestidx == 0) { |
| 2076 | firstnumber = 0; |
| 2077 | } else if (smallestidx == 1) { |
| 2078 | firstnumber = 1; |
| 2079 | } else { |
| 2080 | printf("A wrong smallest index (%d) was detected in file %s\n" , |
| 2081 | smallestidx, infilename); |
| 2082 | return false; |
| 2083 | } |
| 2084 | |
| 2085 | return true; |
| 2086 | } |
| 2087 | |
| 2088 | /////////////////////////////////////////////////////////////////////////////// |
| 2089 | // // |
| 2090 | // load_vtk() Load VTK surface mesh from file (.vtk ascii or binary). // |
| 2091 | // // |
| 2092 | // This function is contributed by: Bryn Lloyd, Computer Vision Laboratory, // |
| 2093 | // ETH, Zuerich. May 7, 2007. // |
| 2094 | // // |
| 2095 | /////////////////////////////////////////////////////////////////////////////// |
| 2096 | |
| 2097 | // Two inline functions used in read/write VTK files. |
| 2098 | |
| 2099 | void swapBytes(unsigned char* var, int size) |
| 2100 | { |
| 2101 | int i = 0; |
| 2102 | int j = size - 1; |
| 2103 | char c; |
| 2104 | |
| 2105 | while (i < j) { |
| 2106 | c = var[i]; var[i] = var[j]; var[j] = c; |
| 2107 | i++, j--; |
| 2108 | } |
| 2109 | } |
| 2110 | |
| 2111 | bool testIsBigEndian() |
| 2112 | { |
| 2113 | short word = 0x4321; |
| 2114 | if((*(char *)& word) != 0x21) |
| 2115 | return true; |
| 2116 | else |
| 2117 | return false; |
| 2118 | } |
| 2119 | |
| 2120 | |
| 2121 | bool tetgenio::load_vtk(char* filebasename) |
| 2122 | { |
| 2123 | FILE *fp; |
| 2124 | tetgenio::facet *f; |
| 2125 | tetgenio::polygon *p; |
| 2126 | char infilename[FILENAMESIZE]; |
| 2127 | char line[INPUTLINESIZE]; |
| 2128 | char mode[128], id[256], fmt[64]; |
| 2129 | char *bufferp; |
| 2130 | double *coord; |
| 2131 | float _x, _y, _z; |
| 2132 | int nverts = 0; |
| 2133 | int nfaces = 0; |
| 2134 | int line_count = 0; |
| 2135 | int dummy; |
| 2136 | int id1, id2, id3; |
| 2137 | int nn = -1; |
| 2138 | int nn_old = -1; |
| 2139 | int i, j; |
| 2140 | bool ImALittleEndian = !testIsBigEndian(); |
| 2141 | |
| 2142 | int smallestidx = 0; |
| 2143 | |
| 2144 | strncpy(infilename, filebasename, FILENAMESIZE - 1); |
| 2145 | infilename[FILENAMESIZE - 1] = '\0'; |
| 2146 | if (infilename[0] == '\0') { |
| 2147 | printf("Error: No filename.\n" ); |
| 2148 | return false; |
| 2149 | } |
| 2150 | if (strcmp(&infilename[strlen(infilename) - 4], ".vtk" ) != 0) { |
| 2151 | strcat(infilename, ".vtk" ); |
| 2152 | } |
| 2153 | if (!(fp = fopen(infilename, "r" ))) { |
| 2154 | printf("Error: Unable to open file %s\n" , infilename); |
| 2155 | return false; |
| 2156 | } |
| 2157 | printf("Opening %s.\n" , infilename); |
| 2158 | |
| 2159 | // Default uses the index starts from '0'. |
| 2160 | firstnumber = 0; |
| 2161 | strcpy(mode, "BINARY" ); |
| 2162 | |
| 2163 | while((bufferp = readline(line, fp, &line_count)) != NULL) { |
| 2164 | if(strlen(line) == 0) continue; |
| 2165 | //swallow lines beginning with a comment sign or white space |
| 2166 | if(line[0] == '#' || line[0]=='\n' || line[0] == 10 || line[0] == 13 || |
| 2167 | line[0] == 32) continue; |
| 2168 | |
| 2169 | sscanf(line, "%s" , id); |
| 2170 | if(!strcmp(id, "ASCII" )) { |
| 2171 | strcpy(mode, "ASCII" ); |
| 2172 | } |
| 2173 | |
| 2174 | if(!strcmp(id, "POINTS" )) { |
| 2175 | sscanf(line, "%s %d %s" , id, &nverts, fmt); |
| 2176 | if (nverts > 0) { |
| 2177 | numberofpoints = nverts; |
| 2178 | pointlist = new REAL[nverts * 3]; |
| 2179 | smallestidx = nverts + 1; |
| 2180 | } |
| 2181 | |
| 2182 | if(!strcmp(mode, "BINARY" )) { |
| 2183 | for(i = 0; i < nverts; i++) { |
| 2184 | coord = &pointlist[i * 3]; |
| 2185 | if(!strcmp(fmt, "double" )) { |
| 2186 | if(fread((char*)(&(coord[0])), sizeof(double), 1, fp)){}; |
| 2187 | if(fread((char*)(&(coord[1])), sizeof(double), 1, fp)){}; |
| 2188 | if(fread((char*)(&(coord[2])), sizeof(double), 1, fp)){}; |
| 2189 | if(ImALittleEndian){ |
| 2190 | swapBytes((unsigned char *) &(coord[0]), sizeof(coord[0])); |
| 2191 | swapBytes((unsigned char *) &(coord[1]), sizeof(coord[1])); |
| 2192 | swapBytes((unsigned char *) &(coord[2]), sizeof(coord[2])); |
| 2193 | } |
| 2194 | } else if(!strcmp(fmt, "float" )) { |
| 2195 | if(fread((char*)(&_x), sizeof(float), 1, fp)){}; |
| 2196 | if(fread((char*)(&_y), sizeof(float), 1, fp)){}; |
| 2197 | if(fread((char*)(&_z), sizeof(float), 1, fp)){}; |
| 2198 | if(ImALittleEndian){ |
| 2199 | swapBytes((unsigned char *) &_x, sizeof(_x)); |
| 2200 | swapBytes((unsigned char *) &_y, sizeof(_y)); |
| 2201 | swapBytes((unsigned char *) &_z, sizeof(_z)); |
| 2202 | } |
| 2203 | coord[0] = double(_x); |
| 2204 | coord[1] = double(_y); |
| 2205 | coord[2] = double(_z); |
| 2206 | } else { |
| 2207 | printf("Error: Only float or double formats are supported!\n" ); |
| 2208 | return false; |
| 2209 | } |
| 2210 | } |
| 2211 | } else if(!strcmp(mode, "ASCII" )) { |
| 2212 | for(i = 0; i < nverts; i++){ |
| 2213 | bufferp = readline(line, fp, &line_count); |
| 2214 | if (bufferp == NULL) { |
| 2215 | printf("Unexpected end of file on line %d in file %s\n" , |
| 2216 | line_count, infilename); |
| 2217 | fclose(fp); |
| 2218 | return false; |
| 2219 | } |
| 2220 | // Read vertex coordinates |
| 2221 | coord = &pointlist[i * 3]; |
| 2222 | for (j = 0; j < 3; j++) { |
| 2223 | if (*bufferp == '\0') { |
| 2224 | printf("Syntax error reading vertex coords on line" ); |
| 2225 | printf(" %d in file %s\n" , line_count, infilename); |
| 2226 | fclose(fp); |
| 2227 | return false; |
| 2228 | } |
| 2229 | coord[j] = (REAL) strtod(bufferp, &bufferp); |
| 2230 | bufferp = findnextnumber(bufferp); |
| 2231 | } |
| 2232 | } |
| 2233 | } |
| 2234 | continue; |
| 2235 | } |
| 2236 | |
| 2237 | if(!strcmp(id, "POLYGONS" )) { |
| 2238 | sscanf(line, "%s %d %d" , id, &nfaces, &dummy); |
| 2239 | if (nfaces > 0) { |
| 2240 | numberoffacets = nfaces; |
| 2241 | facetlist = new tetgenio::facet[nfaces]; |
| 2242 | } |
| 2243 | |
| 2244 | if(!strcmp(mode, "BINARY" )) { |
| 2245 | for(i = 0; i < nfaces; i++){ |
| 2246 | if(fread((char*)(&nn), sizeof(int), 1, fp)){}; |
| 2247 | if(ImALittleEndian){ |
| 2248 | swapBytes((unsigned char *) &nn, sizeof(nn)); |
| 2249 | } |
| 2250 | if (i == 0) |
| 2251 | nn_old = nn; |
| 2252 | if (nn != nn_old) { |
| 2253 | printf("Error: No mixed cells are allowed.\n" ); |
| 2254 | return false; |
| 2255 | } |
| 2256 | |
| 2257 | if(nn == 3){ |
| 2258 | if(fread((char*)(&id1), sizeof(int), 1, fp)){}; |
| 2259 | if(fread((char*)(&id2), sizeof(int), 1, fp)){}; |
| 2260 | if(fread((char*)(&id3), sizeof(int), 1, fp)){}; |
| 2261 | if(ImALittleEndian){ |
| 2262 | swapBytes((unsigned char *) &id1, sizeof(id1)); |
| 2263 | swapBytes((unsigned char *) &id2, sizeof(id2)); |
| 2264 | swapBytes((unsigned char *) &id3, sizeof(id3)); |
| 2265 | } |
| 2266 | f = &facetlist[i]; |
| 2267 | init(f); |
| 2268 | // In .off format, each facet has one polygon, no hole. |
| 2269 | f->numberofpolygons = 1; |
| 2270 | f->polygonlist = new tetgenio::polygon[1]; |
| 2271 | p = &f->polygonlist[0]; |
| 2272 | init(p); |
| 2273 | // Set number of vertices |
| 2274 | p->numberofvertices = 3; |
| 2275 | // Allocate memory for face vertices |
| 2276 | p->vertexlist = new int[p->numberofvertices]; |
| 2277 | p->vertexlist[0] = id1; |
| 2278 | p->vertexlist[1] = id2; |
| 2279 | p->vertexlist[2] = id3; |
| 2280 | // Detect the smallest index. |
| 2281 | for (j = 0; j < 3; j++) { |
| 2282 | if (p->vertexlist[j] < smallestidx) { |
| 2283 | smallestidx = p->vertexlist[j]; |
| 2284 | } |
| 2285 | } |
| 2286 | } else { |
| 2287 | printf("Error: Only triangles are supported\n" ); |
| 2288 | return false; |
| 2289 | } |
| 2290 | } |
| 2291 | } else if(!strcmp(mode, "ASCII" )) { |
| 2292 | for(i = 0; i < nfaces; i++) { |
| 2293 | bufferp = readline(line, fp, &line_count); |
| 2294 | nn = (int) strtol(bufferp, &bufferp, 0); |
| 2295 | if (i == 0) |
| 2296 | nn_old = nn; |
| 2297 | if (nn != nn_old) { |
| 2298 | printf("Error: No mixed cells are allowed.\n" ); |
| 2299 | return false; |
| 2300 | } |
| 2301 | |
| 2302 | if (nn == 3) { |
| 2303 | bufferp = findnextnumber(bufferp); // Skip the first field. |
| 2304 | id1 = (int) strtol(bufferp, &bufferp, 0); |
| 2305 | bufferp = findnextnumber(bufferp); |
| 2306 | id2 = (int) strtol(bufferp, &bufferp, 0); |
| 2307 | bufferp = findnextnumber(bufferp); |
| 2308 | id3 = (int) strtol(bufferp, &bufferp, 0); |
| 2309 | f = &facetlist[i]; |
| 2310 | init(f); |
| 2311 | // In .off format, each facet has one polygon, no hole. |
| 2312 | f->numberofpolygons = 1; |
| 2313 | f->polygonlist = new tetgenio::polygon[1]; |
| 2314 | p = &f->polygonlist[0]; |
| 2315 | init(p); |
| 2316 | // Set number of vertices |
| 2317 | p->numberofvertices = 3; |
| 2318 | // Allocate memory for face vertices |
| 2319 | p->vertexlist = new int[p->numberofvertices]; |
| 2320 | p->vertexlist[0] = id1; |
| 2321 | p->vertexlist[1] = id2; |
| 2322 | p->vertexlist[2] = id3; |
| 2323 | // Detect the smallest index. |
| 2324 | for (j = 0; j < 3; j++) { |
| 2325 | if (p->vertexlist[j] < smallestidx) { |
| 2326 | smallestidx = p->vertexlist[j]; |
| 2327 | } |
| 2328 | } |
| 2329 | } else { |
| 2330 | printf("Error: Only triangles are supported.\n" ); |
| 2331 | return false; |
| 2332 | } |
| 2333 | } |
| 2334 | } |
| 2335 | |
| 2336 | fclose(fp); |
| 2337 | |
| 2338 | // Decide the firstnumber of the index. |
| 2339 | if (smallestidx == 0) { |
| 2340 | firstnumber = 0; |
| 2341 | } else if (smallestidx == 1) { |
| 2342 | firstnumber = 1; |
| 2343 | } else { |
| 2344 | printf("A wrong smallest index (%d) was detected in file %s\n" , |
| 2345 | smallestidx, infilename); |
| 2346 | return false; |
| 2347 | } |
| 2348 | |
| 2349 | return true; |
| 2350 | } |
| 2351 | |
| 2352 | if(!strcmp(id,"LINES" ) || !strcmp(id,"CELLS" )){ |
| 2353 | printf("Warning: load_vtk(): cannot read formats LINES, CELLS.\n" ); |
| 2354 | } |
| 2355 | } // while () |
| 2356 | |
| 2357 | return true; |
| 2358 | } |
| 2359 | |
| 2360 | /////////////////////////////////////////////////////////////////////////////// |
| 2361 | // // |
| 2362 | // load_plc() Load a piecewise linear complex from file(s). // |
| 2363 | // // |
| 2364 | /////////////////////////////////////////////////////////////////////////////// |
| 2365 | |
| 2366 | bool tetgenio::load_plc(char* filebasename, int object) |
| 2367 | { |
| 2368 | bool success; |
| 2369 | |
| 2370 | if (object == (int) tetgenbehavior::NODES) { |
| 2371 | success = load_node(filebasename); |
| 2372 | } else if (object == (int) tetgenbehavior::POLY) { |
| 2373 | success = load_poly(filebasename); |
| 2374 | } else if (object == (int) tetgenbehavior::OFF) { |
| 2375 | success = load_off(filebasename); |
| 2376 | } else if (object == (int) tetgenbehavior::PLY) { |
| 2377 | success = load_ply(filebasename); |
| 2378 | } else if (object == (int) tetgenbehavior::STL) { |
| 2379 | success = load_stl(filebasename); |
| 2380 | } else if (object == (int) tetgenbehavior::MEDIT) { |
| 2381 | success = load_medit(filebasename, 0); |
| 2382 | } else if (object == (int) tetgenbehavior::VTK) { |
| 2383 | success = load_vtk(filebasename); |
| 2384 | } else { |
| 2385 | success = load_poly(filebasename); |
| 2386 | } |
| 2387 | |
| 2388 | if (success) { |
| 2389 | // Try to load the following files (.edge, .var, .mtr). |
| 2390 | load_edge(filebasename); |
| 2391 | load_var(filebasename); |
| 2392 | load_mtr(filebasename); |
| 2393 | } |
| 2394 | |
| 2395 | return success; |
| 2396 | } |
| 2397 | |
| 2398 | /////////////////////////////////////////////////////////////////////////////// |
| 2399 | // // |
| 2400 | // load_mesh() Load a tetrahedral mesh from file(s). // |
| 2401 | // // |
| 2402 | /////////////////////////////////////////////////////////////////////////////// |
| 2403 | |
| 2404 | bool tetgenio::load_tetmesh(char* filebasename, int object) |
| 2405 | { |
| 2406 | bool success; |
| 2407 | |
| 2408 | if (object == (int) tetgenbehavior::MEDIT) { |
| 2409 | success = load_medit(filebasename, 1); |
| 2410 | } else { |
| 2411 | success = load_node(filebasename); |
| 2412 | if (success) { |
| 2413 | success = load_tet(filebasename); |
| 2414 | } |
| 2415 | if (success) { |
| 2416 | // Try to load the following files (.face, .edge, .vol). |
| 2417 | load_face(filebasename); |
| 2418 | load_edge(filebasename); |
| 2419 | load_vol(filebasename); |
| 2420 | } |
| 2421 | } |
| 2422 | |
| 2423 | if (success) { |
| 2424 | // Try to load the following files (.var, .mtr). |
| 2425 | load_var(filebasename); |
| 2426 | load_mtr(filebasename); |
| 2427 | } |
| 2428 | |
| 2429 | return success; |
| 2430 | } |
| 2431 | |
| 2432 | /////////////////////////////////////////////////////////////////////////////// |
| 2433 | // // |
| 2434 | // save_nodes() Save points to a .node file. // |
| 2435 | // // |
| 2436 | /////////////////////////////////////////////////////////////////////////////// |
| 2437 | |
| 2438 | void tetgenio::save_nodes(char* filebasename) |
| 2439 | { |
| 2440 | FILE *fout; |
| 2441 | char outnodefilename[FILENAMESIZE]; |
| 2442 | char outmtrfilename[FILENAMESIZE]; |
| 2443 | int i, j; |
| 2444 | |
| 2445 | sprintf(outnodefilename, "%s.node" , filebasename); |
| 2446 | printf("Saving nodes to %s\n" , outnodefilename); |
| 2447 | fout = fopen(outnodefilename, "w" ); |
| 2448 | fprintf(fout, "%d %d %d %d\n" , numberofpoints, mesh_dim, |
| 2449 | numberofpointattributes, pointmarkerlist != NULL ? 1 : 0); |
| 2450 | for (i = 0; i < numberofpoints; i++) { |
| 2451 | if (mesh_dim == 2) { |
| 2452 | fprintf(fout, "%d %.16g %.16g" , i + firstnumber, pointlist[i * 3], |
| 2453 | pointlist[i * 3 + 1]); |
| 2454 | } else { |
| 2455 | fprintf(fout, "%d %.16g %.16g %.16g" , i + firstnumber, |
| 2456 | pointlist[i * 3], pointlist[i * 3 + 1], pointlist[i * 3 + 2]); |
| 2457 | } |
| 2458 | for (j = 0; j < numberofpointattributes; j++) { |
| 2459 | fprintf(fout, " %.16g" , |
| 2460 | pointattributelist[i * numberofpointattributes + j]); |
| 2461 | } |
| 2462 | if (pointmarkerlist != NULL) { |
| 2463 | fprintf(fout, " %d" , pointmarkerlist[i]); |
| 2464 | } |
| 2465 | fprintf(fout, "\n" ); |
| 2466 | } |
| 2467 | fclose(fout); |
| 2468 | |
| 2469 | // If the point metrics exist, output them to a .mtr file. |
| 2470 | if ((numberofpointmtrs > 0) && (pointmtrlist != (REAL *) NULL)) { |
| 2471 | sprintf(outmtrfilename, "%s.mtr" , filebasename); |
| 2472 | printf("Saving metrics to %s\n" , outmtrfilename); |
| 2473 | fout = fopen(outmtrfilename, "w" ); |
| 2474 | fprintf(fout, "%d %d\n" , numberofpoints, numberofpointmtrs); |
| 2475 | for (i = 0; i < numberofpoints; i++) { |
| 2476 | for (j = 0; j < numberofpointmtrs; j++) { |
| 2477 | fprintf(fout, "%.16g " , pointmtrlist[i * numberofpointmtrs + j]); |
| 2478 | } |
| 2479 | fprintf(fout, "\n" ); |
| 2480 | } |
| 2481 | fclose(fout); |
| 2482 | } |
| 2483 | } |
| 2484 | |
| 2485 | /////////////////////////////////////////////////////////////////////////////// |
| 2486 | // // |
| 2487 | // save_elements() Save elements to a .ele file. // |
| 2488 | // // |
| 2489 | /////////////////////////////////////////////////////////////////////////////// |
| 2490 | |
| 2491 | void tetgenio::save_elements(char* filebasename) |
| 2492 | { |
| 2493 | FILE *fout; |
| 2494 | char outelefilename[FILENAMESIZE]; |
| 2495 | int i, j; |
| 2496 | |
| 2497 | sprintf(outelefilename, "%s.ele" , filebasename); |
| 2498 | printf("Saving elements to %s\n" , outelefilename); |
| 2499 | fout = fopen(outelefilename, "w" ); |
| 2500 | if (mesh_dim == 3) { |
| 2501 | fprintf(fout, "%d %d %d\n" , numberoftetrahedra, numberofcorners, |
| 2502 | numberoftetrahedronattributes); |
| 2503 | for (i = 0; i < numberoftetrahedra; i++) { |
| 2504 | fprintf(fout, "%d" , i + firstnumber); |
| 2505 | for (j = 0; j < numberofcorners; j++) { |
| 2506 | fprintf(fout, " %5d" , tetrahedronlist[i * numberofcorners + j]); |
| 2507 | } |
| 2508 | for (j = 0; j < numberoftetrahedronattributes; j++) { |
| 2509 | fprintf(fout, " %g" , |
| 2510 | tetrahedronattributelist[i * numberoftetrahedronattributes + j]); |
| 2511 | } |
| 2512 | fprintf(fout, "\n" ); |
| 2513 | } |
| 2514 | } else { |
| 2515 | // Save a two-dimensional mesh. |
| 2516 | fprintf(fout, "%d %d %d\n" ,numberoftrifaces,3,trifacemarkerlist ? 1 : 0); |
| 2517 | for (i = 0; i < numberoftrifaces; i++) { |
| 2518 | fprintf(fout, "%d" , i + firstnumber); |
| 2519 | for (j = 0; j < 3; j++) { |
| 2520 | fprintf(fout, " %5d" , trifacelist[i * 3 + j]); |
| 2521 | } |
| 2522 | if (trifacemarkerlist != NULL) { |
| 2523 | fprintf(fout, " %d" , trifacemarkerlist[i]); |
| 2524 | } |
| 2525 | fprintf(fout, "\n" ); |
| 2526 | } |
| 2527 | } |
| 2528 | |
| 2529 | fclose(fout); |
| 2530 | } |
| 2531 | |
| 2532 | /////////////////////////////////////////////////////////////////////////////// |
| 2533 | // // |
| 2534 | // save_faces() Save faces to a .face file. // |
| 2535 | // // |
| 2536 | /////////////////////////////////////////////////////////////////////////////// |
| 2537 | |
| 2538 | void tetgenio::save_faces(char* filebasename) |
| 2539 | { |
| 2540 | FILE *fout; |
| 2541 | char outfacefilename[FILENAMESIZE]; |
| 2542 | int i; |
| 2543 | |
| 2544 | sprintf(outfacefilename, "%s.face" , filebasename); |
| 2545 | printf("Saving faces to %s\n" , outfacefilename); |
| 2546 | fout = fopen(outfacefilename, "w" ); |
| 2547 | fprintf(fout, "%d %d\n" , numberoftrifaces, |
| 2548 | trifacemarkerlist != NULL ? 1 : 0); |
| 2549 | for (i = 0; i < numberoftrifaces; i++) { |
| 2550 | fprintf(fout, "%d %5d %5d %5d" , i + firstnumber, trifacelist[i * 3], |
| 2551 | trifacelist[i * 3 + 1], trifacelist[i * 3 + 2]); |
| 2552 | if (trifacemarkerlist != NULL) { |
| 2553 | fprintf(fout, " %d" , trifacemarkerlist[i]); |
| 2554 | } |
| 2555 | fprintf(fout, "\n" ); |
| 2556 | } |
| 2557 | |
| 2558 | fclose(fout); |
| 2559 | } |
| 2560 | |
| 2561 | /////////////////////////////////////////////////////////////////////////////// |
| 2562 | // // |
| 2563 | // save_edges() Save egdes to a .edge file. // |
| 2564 | // // |
| 2565 | /////////////////////////////////////////////////////////////////////////////// |
| 2566 | |
| 2567 | void tetgenio::save_edges(char* filebasename) |
| 2568 | { |
| 2569 | FILE *fout; |
| 2570 | char outedgefilename[FILENAMESIZE]; |
| 2571 | int i; |
| 2572 | |
| 2573 | sprintf(outedgefilename, "%s.edge" , filebasename); |
| 2574 | printf("Saving edges to %s\n" , outedgefilename); |
| 2575 | fout = fopen(outedgefilename, "w" ); |
| 2576 | fprintf(fout, "%d %d\n" , numberofedges, edgemarkerlist != NULL ? 1 : 0); |
| 2577 | for (i = 0; i < numberofedges; i++) { |
| 2578 | fprintf(fout, "%d %4d %4d" , i + firstnumber, edgelist[i * 2], |
| 2579 | edgelist[i * 2 + 1]); |
| 2580 | if (edgemarkerlist != NULL) { |
| 2581 | fprintf(fout, " %d" , edgemarkerlist[i]); |
| 2582 | } |
| 2583 | fprintf(fout, "\n" ); |
| 2584 | } |
| 2585 | |
| 2586 | fclose(fout); |
| 2587 | } |
| 2588 | |
| 2589 | /////////////////////////////////////////////////////////////////////////////// |
| 2590 | // // |
| 2591 | // save_neighbors() Save egdes to a .neigh file. // |
| 2592 | // // |
| 2593 | /////////////////////////////////////////////////////////////////////////////// |
| 2594 | |
| 2595 | void tetgenio::save_neighbors(char* filebasename) |
| 2596 | { |
| 2597 | FILE *fout; |
| 2598 | char outneighborfilename[FILENAMESIZE]; |
| 2599 | int i; |
| 2600 | |
| 2601 | sprintf(outneighborfilename, "%s.neigh" , filebasename); |
| 2602 | printf("Saving neighbors to %s\n" , outneighborfilename); |
| 2603 | fout = fopen(outneighborfilename, "w" ); |
| 2604 | fprintf(fout, "%d %d\n" , numberoftetrahedra, mesh_dim + 1); |
| 2605 | for (i = 0; i < numberoftetrahedra; i++) { |
| 2606 | if (mesh_dim == 2) { |
| 2607 | fprintf(fout, "%d %5d %5d %5d" , i + firstnumber, neighborlist[i * 3], |
| 2608 | neighborlist[i * 3 + 1], neighborlist[i * 3 + 2]); |
| 2609 | } else { |
| 2610 | fprintf(fout, "%d %5d %5d %5d %5d" , i + firstnumber, |
| 2611 | neighborlist[i * 4], neighborlist[i * 4 + 1], |
| 2612 | neighborlist[i * 4 + 2], neighborlist[i * 4 + 3]); |
| 2613 | } |
| 2614 | fprintf(fout, "\n" ); |
| 2615 | } |
| 2616 | |
| 2617 | fclose(fout); |
| 2618 | } |
| 2619 | |
| 2620 | /////////////////////////////////////////////////////////////////////////////// |
| 2621 | // // |
| 2622 | // save_poly() Save segments or facets to a .poly file. // |
| 2623 | // // |
| 2624 | // It only save the facets, holes and regions. No .node file is saved. // |
| 2625 | // // |
| 2626 | /////////////////////////////////////////////////////////////////////////////// |
| 2627 | |
| 2628 | void tetgenio::save_poly(char* filebasename) |
| 2629 | { |
| 2630 | FILE *fout; |
| 2631 | facet *f; |
| 2632 | polygon *p; |
| 2633 | char outpolyfilename[FILENAMESIZE]; |
| 2634 | int i, j, k; |
| 2635 | |
| 2636 | sprintf(outpolyfilename, "%s.poly" , filebasename); |
| 2637 | printf("Saving poly to %s\n" , outpolyfilename); |
| 2638 | fout = fopen(outpolyfilename, "w" ); |
| 2639 | |
| 2640 | // The zero indicates that the vertices are in a separate .node file. |
| 2641 | // Followed by number of dimensions, number of vertex attributes, |
| 2642 | // and number of boundary markers (zero or one). |
| 2643 | fprintf(fout, "%d %d %d %d\n" , 0, mesh_dim, numberofpointattributes, |
| 2644 | pointmarkerlist != NULL ? 1 : 0); |
| 2645 | |
| 2646 | // Save segments or facets. |
| 2647 | if (mesh_dim == 2) { |
| 2648 | // Number of segments, number of boundary markers (zero or one). |
| 2649 | fprintf(fout, "%d %d\n" , numberofedges, edgemarkerlist != NULL ? 1 : 0); |
| 2650 | for (i = 0; i < numberofedges; i++) { |
| 2651 | fprintf(fout, "%d %4d %4d" , i + firstnumber, edgelist[i * 2], |
| 2652 | edgelist[i * 2 + 1]); |
| 2653 | if (edgemarkerlist != NULL) { |
| 2654 | fprintf(fout, " %d" , edgemarkerlist[i]); |
| 2655 | } |
| 2656 | fprintf(fout, "\n" ); |
| 2657 | } |
| 2658 | } else { |
| 2659 | // Number of facets, number of boundary markers (zero or one). |
| 2660 | fprintf(fout, "%d %d\n" , numberoffacets, facetmarkerlist != NULL ? 1 : 0); |
| 2661 | for (i = 0; i < numberoffacets; i++) { |
| 2662 | f = &(facetlist[i]); |
| 2663 | fprintf(fout, "%d %d %d # %d\n" , f->numberofpolygons,f->numberofholes, |
| 2664 | facetmarkerlist != NULL ? facetmarkerlist[i] : 0, i + firstnumber); |
| 2665 | // Output polygons of this facet. |
| 2666 | for (j = 0; j < f->numberofpolygons; j++) { |
| 2667 | p = &(f->polygonlist[j]); |
| 2668 | fprintf(fout, "%d " , p->numberofvertices); |
| 2669 | for (k = 0; k < p->numberofvertices; k++) { |
| 2670 | if (((k + 1) % 10) == 0) { |
| 2671 | fprintf(fout, "\n " ); |
| 2672 | } |
| 2673 | fprintf(fout, " %d" , p->vertexlist[k]); |
| 2674 | } |
| 2675 | fprintf(fout, "\n" ); |
| 2676 | } |
| 2677 | // Output holes of this facet. |
| 2678 | for (j = 0; j < f->numberofholes; j++) { |
| 2679 | fprintf(fout, "%d %.12g %.12g %.12g\n" , j + firstnumber, |
| 2680 | f->holelist[j * 3], f->holelist[j * 3 + 1], f->holelist[j * 3 + 2]); |
| 2681 | } |
| 2682 | } |
| 2683 | } |
| 2684 | |
| 2685 | // Save holes. |
| 2686 | fprintf(fout, "%d\n" , numberofholes); |
| 2687 | for (i = 0; i < numberofholes; i++) { |
| 2688 | // Output x, y coordinates. |
| 2689 | fprintf(fout, "%d %.12g %.12g" , i + firstnumber, holelist[i * mesh_dim], |
| 2690 | holelist[i * mesh_dim + 1]); |
| 2691 | if (mesh_dim == 3) { |
| 2692 | // Output z coordinate. |
| 2693 | fprintf(fout, " %.12g" , holelist[i * mesh_dim + 2]); |
| 2694 | } |
| 2695 | fprintf(fout, "\n" ); |
| 2696 | } |
| 2697 | |
| 2698 | // Save regions. |
| 2699 | fprintf(fout, "%d\n" , numberofregions); |
| 2700 | for (i = 0; i < numberofregions; i++) { |
| 2701 | if (mesh_dim == 2) { |
| 2702 | // Output the index, x, y coordinates, attribute (region number) |
| 2703 | // and maximum area constraint (maybe -1). |
| 2704 | fprintf(fout, "%d %.12g %.12g %.12g %.12g\n" , i + firstnumber, |
| 2705 | regionlist[i * 4], regionlist[i * 4 + 1], |
| 2706 | regionlist[i * 4 + 2], regionlist[i * 4 + 3]); |
| 2707 | } else { |
| 2708 | // Output the index, x, y, z coordinates, attribute (region number) |
| 2709 | // and maximum volume constraint (maybe -1). |
| 2710 | fprintf(fout, "%d %.12g %.12g %.12g %.12g %.12g\n" , i + firstnumber, |
| 2711 | regionlist[i * 5], regionlist[i * 5 + 1], |
| 2712 | regionlist[i * 5 + 2], regionlist[i * 5 + 3], |
| 2713 | regionlist[i * 5 + 4]); |
| 2714 | } |
| 2715 | } |
| 2716 | |
| 2717 | fclose(fout); |
| 2718 | } |
| 2719 | |
| 2720 | /////////////////////////////////////////////////////////////////////////////// |
| 2721 | // // |
| 2722 | // save_faces2smesh() Save triangular faces to a .smesh file. // |
| 2723 | // // |
| 2724 | // It only save the facets. No holes and regions. No .node file. // |
| 2725 | // // |
| 2726 | /////////////////////////////////////////////////////////////////////////////// |
| 2727 | |
| 2728 | void tetgenio::save_faces2smesh(char* filebasename) |
| 2729 | { |
| 2730 | FILE *fout; |
| 2731 | char outsmeshfilename[FILENAMESIZE]; |
| 2732 | int i, j; |
| 2733 | |
| 2734 | sprintf(outsmeshfilename, "%s.smesh" , filebasename); |
| 2735 | printf("Saving faces to %s\n" , outsmeshfilename); |
| 2736 | fout = fopen(outsmeshfilename, "w" ); |
| 2737 | |
| 2738 | // The zero indicates that the vertices are in a separate .node file. |
| 2739 | // Followed by number of dimensions, number of vertex attributes, |
| 2740 | // and number of boundary markers (zero or one). |
| 2741 | fprintf(fout, "%d %d %d %d\n" , 0, mesh_dim, numberofpointattributes, |
| 2742 | pointmarkerlist != NULL ? 1 : 0); |
| 2743 | |
| 2744 | // Number of facets, number of boundary markers (zero or one). |
| 2745 | fprintf(fout, "%d %d\n" , numberoftrifaces, |
| 2746 | trifacemarkerlist != NULL ? 1 : 0); |
| 2747 | |
| 2748 | // Output triangular facets. |
| 2749 | for (i = 0; i < numberoftrifaces; i++) { |
| 2750 | j = i * 3; |
| 2751 | fprintf(fout, "3 %d %d %d" , trifacelist[j], trifacelist[j + 1], |
| 2752 | trifacelist[j + 2]); |
| 2753 | if (trifacemarkerlist != NULL) { |
| 2754 | fprintf(fout, " %d" , trifacemarkerlist[i]); |
| 2755 | } |
| 2756 | fprintf(fout, "\n" ); |
| 2757 | } |
| 2758 | |
| 2759 | // No holes and regions. |
| 2760 | fprintf(fout, "0\n" ); |
| 2761 | fprintf(fout, "0\n" ); |
| 2762 | |
| 2763 | fclose(fout); |
| 2764 | } |
| 2765 | |
| 2766 | /////////////////////////////////////////////////////////////////////////////// |
| 2767 | // // |
| 2768 | // readline() Read a nonempty line from a file. // |
| 2769 | // // |
| 2770 | // A line is considered "nonempty" if it contains something more than white // |
| 2771 | // spaces. If a line is considered empty, it will be dropped and the next // |
| 2772 | // line will be read, this process ends until reaching the end-of-file or a // |
| 2773 | // non-empty line. Return NULL if it is the end-of-file, otherwise, return // |
| 2774 | // a pointer to the first non-whitespace character of the line. // |
| 2775 | // // |
| 2776 | /////////////////////////////////////////////////////////////////////////////// |
| 2777 | |
| 2778 | char* tetgenio::readline(char *string, FILE *infile, int *linenumber) |
| 2779 | { |
| 2780 | char *result; |
| 2781 | |
| 2782 | // Search for a non-empty line. |
| 2783 | do { |
| 2784 | result = fgets(string, INPUTLINESIZE - 1, infile); |
| 2785 | if (linenumber) (*linenumber)++; |
| 2786 | if (result == (char *) NULL) { |
| 2787 | return (char *) NULL; |
| 2788 | } |
| 2789 | // Skip white spaces. |
| 2790 | while ((*result == ' ') || (*result == '\t')) result++; |
| 2791 | // If it's end of line, read another line and try again. |
| 2792 | } while ((*result == '\0') || (*result == '\r') || (*result == '\n')); |
| 2793 | return result; |
| 2794 | } |
| 2795 | |
| 2796 | /////////////////////////////////////////////////////////////////////////////// |
| 2797 | // // |
| 2798 | // findnextfield() Find the next field of a string. // |
| 2799 | // // |
| 2800 | // Jumps past the current field by searching for whitespace or a comma, then // |
| 2801 | // jumps past the whitespace or the comma to find the next field. // |
| 2802 | // // |
| 2803 | /////////////////////////////////////////////////////////////////////////////// |
| 2804 | |
| 2805 | char* tetgenio::findnextfield(char *string) |
| 2806 | { |
| 2807 | char *result; |
| 2808 | |
| 2809 | result = string; |
| 2810 | // Skip the current field. Stop upon reaching whitespace or a comma. |
| 2811 | while ((*result != '\0') && (*result != ' ') && (*result != '\t') && |
| 2812 | (*result != ',') && (*result != ';')) { |
| 2813 | result++; |
| 2814 | } |
| 2815 | // Now skip the whitespace or the comma, stop at anything else that looks |
| 2816 | // like a character, or the end of a line. |
| 2817 | while ((*result == ' ') || (*result == '\t') || (*result == ',') || |
| 2818 | (*result == ';')) { |
| 2819 | result++; |
| 2820 | } |
| 2821 | return result; |
| 2822 | } |
| 2823 | |
| 2824 | /////////////////////////////////////////////////////////////////////////////// |
| 2825 | // // |
| 2826 | // readnumberline() Read a nonempty number line from a file. // |
| 2827 | // // |
| 2828 | // A line is considered "nonempty" if it contains something that looks like // |
| 2829 | // a number. Comments (prefaced by `#') are ignored. // |
| 2830 | // // |
| 2831 | /////////////////////////////////////////////////////////////////////////////// |
| 2832 | |
| 2833 | char* tetgenio::readnumberline(char *string, FILE *infile, char *infilename) |
| 2834 | { |
| 2835 | char *result; |
| 2836 | |
| 2837 | // Search for something that looks like a number. |
| 2838 | do { |
| 2839 | result = fgets(string, INPUTLINESIZE, infile); |
| 2840 | if (result == (char *) NULL) { |
| 2841 | return result; |
| 2842 | } |
| 2843 | // Skip anything that doesn't look like a number, a comment, |
| 2844 | // or the end of a line. |
| 2845 | while ((*result != '\0') && (*result != '#') |
| 2846 | && (*result != '.') && (*result != '+') && (*result != '-') |
| 2847 | && ((*result < '0') || (*result > '9'))) { |
| 2848 | result++; |
| 2849 | } |
| 2850 | // If it's a comment or end of line, read another line and try again. |
| 2851 | } while ((*result == '#') || (*result == '\0')); |
| 2852 | return result; |
| 2853 | } |
| 2854 | |
| 2855 | /////////////////////////////////////////////////////////////////////////////// |
| 2856 | // // |
| 2857 | // findnextnumber() Find the next field of a number string. // |
| 2858 | // // |
| 2859 | // Jumps past the current field by searching for whitespace or a comma, then // |
| 2860 | // jumps past the whitespace or the comma to find the next field that looks // |
| 2861 | // like a number. // |
| 2862 | // // |
| 2863 | /////////////////////////////////////////////////////////////////////////////// |
| 2864 | |
| 2865 | char* tetgenio::findnextnumber(char *string) |
| 2866 | { |
| 2867 | char *result; |
| 2868 | |
| 2869 | result = string; |
| 2870 | // Skip the current field. Stop upon reaching whitespace or a comma. |
| 2871 | while ((*result != '\0') && (*result != '#') && (*result != ' ') && |
| 2872 | (*result != '\t') && (*result != ',')) { |
| 2873 | result++; |
| 2874 | } |
| 2875 | // Now skip the whitespace and anything else that doesn't look like a |
| 2876 | // number, a comment, or the end of a line. |
| 2877 | while ((*result != '\0') && (*result != '#') |
| 2878 | && (*result != '.') && (*result != '+') && (*result != '-') |
| 2879 | && ((*result < '0') || (*result > '9'))) { |
| 2880 | result++; |
| 2881 | } |
| 2882 | // Check for a comment (prefixed with `#'). |
| 2883 | if (*result == '#') { |
| 2884 | *result = '\0'; |
| 2885 | } |
| 2886 | return result; |
| 2887 | } |
| 2888 | |
| 2889 | //// //// |
| 2890 | //// //// |
| 2891 | //// io_cxx /////////////////////////////////////////////////////////////////// |
| 2892 | |
| 2893 | //// behavior_cxx ///////////////////////////////////////////////////////////// |
| 2894 | //// //// |
| 2895 | //// //// |
| 2896 | |
| 2897 | /////////////////////////////////////////////////////////////////////////////// |
| 2898 | // // |
| 2899 | // syntax() Print list of command line switches. // |
| 2900 | // // |
| 2901 | /////////////////////////////////////////////////////////////////////////////// |
| 2902 | |
| 2903 | void tetgenbehavior::syntax() |
| 2904 | { |
| 2905 | printf(" tetgen [-pYrq_Aa_miO_S_T_XMwcdzfenvgkJBNEFICQVh] input_file\n" ); |
| 2906 | printf(" -p Tetrahedralizes a piecewise linear complex (PLC).\n" ); |
| 2907 | printf(" -Y Preserves the input surface mesh (does not modify it).\n" ); |
| 2908 | printf(" -r Reconstructs a previously generated mesh.\n" ); |
| 2909 | printf(" -q Refines mesh (to improve mesh quality).\n" ); |
| 2910 | printf(" -R Mesh coarsening (to reduce the mesh elements).\n" ); |
| 2911 | printf(" -A Assigns attributes to tetrahedra in different regions.\n" ); |
| 2912 | printf(" -a Applies a maximum tetrahedron volume constraint.\n" ); |
| 2913 | printf(" -m Applies a mesh sizing function.\n" ); |
| 2914 | printf(" -i Inserts a list of additional points.\n" ); |
| 2915 | printf(" -O Specifies the level of mesh optimization.\n" ); |
| 2916 | printf(" -S Specifies maximum number of added points.\n" ); |
| 2917 | printf(" -T Sets a tolerance for coplanar test (default 1e-8).\n" ); |
| 2918 | printf(" -X Suppresses use of exact arithmetic.\n" ); |
| 2919 | printf(" -M No merge of coplanar facets or very close vertices.\n" ); |
| 2920 | printf(" -w Generates weighted Delaunay (regular) triangulation.\n" ); |
| 2921 | printf(" -c Retains the convex hull of the PLC.\n" ); |
| 2922 | printf(" -d Detects self-intersections of facets of the PLC.\n" ); |
| 2923 | printf(" -z Numbers all output items starting from zero.\n" ); |
| 2924 | printf(" -f Outputs all faces to .face file.\n" ); |
| 2925 | printf(" -e Outputs all edges to .edge file.\n" ); |
| 2926 | printf(" -n Outputs tetrahedra neighbors to .neigh file.\n" ); |
| 2927 | printf(" -v Outputs Voronoi diagram to files.\n" ); |
| 2928 | printf(" -g Outputs mesh to .mesh file for viewing by Medit.\n" ); |
| 2929 | printf(" -k Outputs mesh to .vtk file for viewing by Paraview.\n" ); |
| 2930 | printf(" -J No jettison of unused vertices from output .node file.\n" ); |
| 2931 | printf(" -B Suppresses output of boundary information.\n" ); |
| 2932 | printf(" -N Suppresses output of .node file.\n" ); |
| 2933 | printf(" -E Suppresses output of .ele file.\n" ); |
| 2934 | printf(" -F Suppresses output of .face and .edge file.\n" ); |
| 2935 | printf(" -I Suppresses mesh iteration numbers.\n" ); |
| 2936 | printf(" -C Checks the consistency of the final mesh.\n" ); |
| 2937 | printf(" -Q Quiet: No terminal output except errors.\n" ); |
| 2938 | printf(" -V Verbose: Detailed information, more terminal output.\n" ); |
| 2939 | printf(" -h Help: A brief instruction for using TetGen.\n" ); |
| 2940 | } |
| 2941 | |
| 2942 | /////////////////////////////////////////////////////////////////////////////// |
| 2943 | // // |
| 2944 | // usage() Print a brief instruction for using TetGen. // |
| 2945 | // // |
| 2946 | /////////////////////////////////////////////////////////////////////////////// |
| 2947 | |
| 2948 | void tetgenbehavior::usage() |
| 2949 | { |
| 2950 | printf("TetGen\n" ); |
| 2951 | printf("A Quality Tetrahedral Mesh Generator and 3D Delaunay " ); |
| 2952 | printf("Triangulator\n" ); |
| 2953 | printf("Version 1.5\n" ); |
| 2954 | printf("November 4, 2013\n" ); |
| 2955 | printf("\n" ); |
| 2956 | printf("What Can TetGen Do?\n" ); |
| 2957 | printf("\n" ); |
| 2958 | printf(" TetGen generates Delaunay tetrahedralizations, constrained\n" ); |
| 2959 | printf(" Delaunay tetrahedralizations, and quality tetrahedral meshes.\n" ); |
| 2960 | printf("\n" ); |
| 2961 | printf("Command Line Syntax:\n" ); |
| 2962 | printf("\n" ); |
| 2963 | printf(" Below is the basic command line syntax of TetGen with a list of " ); |
| 2964 | printf("short\n" ); |
| 2965 | printf(" descriptions. Underscores indicate that numbers may optionally\n" ); |
| 2966 | printf(" follow certain switches. Do not leave any space between a " ); |
| 2967 | printf("switch\n" ); |
| 2968 | printf(" and its numeric parameter. \'input_file\' contains input data\n" ); |
| 2969 | printf(" depending on the switches you supplied which may be a " ); |
| 2970 | printf(" piecewise\n" ); |
| 2971 | printf(" linear complex or a list of nodes. File formats and detailed\n" ); |
| 2972 | printf(" description of command line switches are found in user's " ); |
| 2973 | printf("manual.\n" ); |
| 2974 | printf("\n" ); |
| 2975 | syntax(); |
| 2976 | printf("\n" ); |
| 2977 | printf("Examples of How to Use TetGen:\n" ); |
| 2978 | printf("\n" ); |
| 2979 | printf(" \'tetgen object\' reads vertices from object.node, and writes " ); |
| 2980 | printf("their\n Delaunay tetrahedralization to object.1.node, " ); |
| 2981 | printf("object.1.ele\n (tetrahedra), and object.1.face" ); |
| 2982 | printf(" (convex hull faces).\n" ); |
| 2983 | printf("\n" ); |
| 2984 | printf(" \'tetgen -p object\' reads a PLC from object.poly or object." ); |
| 2985 | printf("smesh (and\n possibly object.node) and writes its constrained " ); |
| 2986 | printf("Delaunay\n tetrahedralization to object.1.node, object.1.ele, " ); |
| 2987 | printf("object.1.face,\n" ); |
| 2988 | printf(" (boundary faces) and object.1.edge (boundary edges).\n" ); |
| 2989 | printf("\n" ); |
| 2990 | printf(" \'tetgen -pq1.414a.1 object\' reads a PLC from object.poly or\n" ); |
| 2991 | printf(" object.smesh (and possibly object.node), generates a mesh " ); |
| 2992 | printf("whose\n tetrahedra have radius-edge ratio smaller than 1.414 and " ); |
| 2993 | printf("have volume\n of 0.1 or less, and writes the mesh to " ); |
| 2994 | printf("object.1.node, object.1.ele,\n object.1.face, and object.1.edge\n" ); |
| 2995 | printf("\n" ); |
| 2996 | printf("Please send bugs/comments to Hang Si <si@wias-berlin.de>\n" ); |
| 2997 | terminatetetgen(NULL, 0); |
| 2998 | } |
| 2999 | |
| 3000 | /////////////////////////////////////////////////////////////////////////////// |
| 3001 | // // |
| 3002 | // parse_commandline() Read the command line, identify switches, and set // |
| 3003 | // up options and file names. // |
| 3004 | // // |
| 3005 | // 'argc' and 'argv' are the same parameters passed to the function main() // |
| 3006 | // of a C/C++ program. They together represent the command line user invoked // |
| 3007 | // from an environment in which TetGen is running. // |
| 3008 | // // |
| 3009 | /////////////////////////////////////////////////////////////////////////////// |
| 3010 | |
| 3011 | bool tetgenbehavior::parse_commandline(int argc, char **argv) |
| 3012 | { |
| 3013 | int startindex; |
| 3014 | int increment; |
| 3015 | int meshnumber; |
| 3016 | int i, j, k; |
| 3017 | char workstring[1024]; |
| 3018 | |
| 3019 | // First determine the input style of the switches. |
| 3020 | if (argc == 0) { |
| 3021 | startindex = 0; // Switches are given without a dash. |
| 3022 | argc = 1; // For running the following for-loop once. |
| 3023 | commandline[0] = '\0'; |
| 3024 | } else { |
| 3025 | startindex = 1; |
| 3026 | strcpy(commandline, argv[0]); |
| 3027 | strcat(commandline, " " ); |
| 3028 | } |
| 3029 | |
| 3030 | for (i = startindex; i < argc; i++) { |
| 3031 | // Remember the command line for output. |
| 3032 | strcat(commandline, argv[i]); |
| 3033 | strcat(commandline, " " ); |
| 3034 | if (startindex == 1) { |
| 3035 | // Is this string a filename? |
| 3036 | if (argv[i][0] != '-') { |
| 3037 | strncpy(infilename, argv[i], 1024 - 1); |
| 3038 | infilename[1024 - 1] = '\0'; |
| 3039 | continue; |
| 3040 | } |
| 3041 | } |
| 3042 | // Parse the individual switch from the string. |
| 3043 | for (j = startindex; argv[i][j] != '\0'; j++) { |
| 3044 | if (argv[i][j] == 'p') { |
| 3045 | plc = 1; |
| 3046 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3047 | (argv[i][j + 1] == '.')) { |
| 3048 | k = 0; |
| 3049 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3050 | (argv[i][j + 1] == '.')) { |
| 3051 | j++; |
| 3052 | workstring[k] = argv[i][j]; |
| 3053 | k++; |
| 3054 | } |
| 3055 | workstring[k] = '\0'; |
| 3056 | facet_ang_tol = (REAL) strtod(workstring, (char **) NULL); |
| 3057 | } |
| 3058 | } else if (argv[i][j] == 's') { |
| 3059 | psc = 1; |
| 3060 | } else if (argv[i][j] == 'Y') { |
| 3061 | nobisect = 1; |
| 3062 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
| 3063 | nobisect_param = (argv[i][j + 1] - '0'); |
| 3064 | j++; |
| 3065 | } |
| 3066 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
| 3067 | j++; |
| 3068 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
| 3069 | addsteiner_algo = (argv[i][j + 1] - '0'); |
| 3070 | j++; |
| 3071 | } |
| 3072 | } |
| 3073 | } else if (argv[i][j] == 'r') { |
| 3074 | refine = 1; |
| 3075 | } else if (argv[i][j] == 'q') { |
| 3076 | quality = 1; |
| 3077 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3078 | (argv[i][j + 1] == '.')) { |
| 3079 | k = 0; |
| 3080 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3081 | (argv[i][j + 1] == '.')) { |
| 3082 | j++; |
| 3083 | workstring[k] = argv[i][j]; |
| 3084 | k++; |
| 3085 | } |
| 3086 | workstring[k] = '\0'; |
| 3087 | minratio = (REAL) strtod(workstring, (char **) NULL); |
| 3088 | } |
| 3089 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
| 3090 | j++; |
| 3091 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3092 | (argv[i][j + 1] == '.')) { |
| 3093 | k = 0; |
| 3094 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3095 | (argv[i][j + 1] == '.')) { |
| 3096 | j++; |
| 3097 | workstring[k] = argv[i][j]; |
| 3098 | k++; |
| 3099 | } |
| 3100 | workstring[k] = '\0'; |
| 3101 | mindihedral = (REAL) strtod(workstring, (char **) NULL); |
| 3102 | } |
| 3103 | } |
| 3104 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
| 3105 | j++; |
| 3106 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3107 | (argv[i][j + 1] == '.')) { |
| 3108 | k = 0; |
| 3109 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3110 | (argv[i][j + 1] == '.')) { |
| 3111 | j++; |
| 3112 | workstring[k] = argv[i][j]; |
| 3113 | k++; |
| 3114 | } |
| 3115 | workstring[k] = '\0'; |
| 3116 | optmaxdihedral = (REAL) strtod(workstring, (char **) NULL); |
| 3117 | } |
| 3118 | } |
| 3119 | } else if (argv[i][j] == 'R') { |
| 3120 | coarsen = 1; |
| 3121 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
| 3122 | coarsen_param = (argv[i][j + 1] - '0'); |
| 3123 | j++; |
| 3124 | } |
| 3125 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
| 3126 | j++; |
| 3127 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3128 | (argv[i][j + 1] == '.')) { |
| 3129 | k = 0; |
| 3130 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3131 | (argv[i][j + 1] == '.')) { |
| 3132 | j++; |
| 3133 | workstring[k] = argv[i][j]; |
| 3134 | k++; |
| 3135 | } |
| 3136 | workstring[k] = '\0'; |
| 3137 | coarsen_percent = (REAL) strtod(workstring, (char **) NULL); |
| 3138 | } |
| 3139 | } |
| 3140 | } else if (argv[i][j] == 'w') { |
| 3141 | weighted = 1; |
| 3142 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
| 3143 | weighted_param = (argv[i][j + 1] - '0'); |
| 3144 | j++; |
| 3145 | } |
| 3146 | } else if (argv[i][j] == 'b') { |
| 3147 | // -b(brio_threshold/brio_ratio/hilbert_limit/hilbert_order) |
| 3148 | brio_hilbert = 1; |
| 3149 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3150 | (argv[i][j + 1] == '.')) { |
| 3151 | k = 0; |
| 3152 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3153 | (argv[i][j + 1] == '.')) { |
| 3154 | j++; |
| 3155 | workstring[k] = argv[i][j]; |
| 3156 | k++; |
| 3157 | } |
| 3158 | workstring[k] = '\0'; |
| 3159 | brio_threshold = (int) strtol(workstring, (char **) &workstring, 0); |
| 3160 | } |
| 3161 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
| 3162 | j++; |
| 3163 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3164 | (argv[i][j + 1] == '.')) { |
| 3165 | k = 0; |
| 3166 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3167 | (argv[i][j + 1] == '.')) { |
| 3168 | j++; |
| 3169 | workstring[k] = argv[i][j]; |
| 3170 | k++; |
| 3171 | } |
| 3172 | workstring[k] = '\0'; |
| 3173 | brio_ratio = (REAL) strtod(workstring, (char **) NULL); |
| 3174 | } |
| 3175 | } |
| 3176 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
| 3177 | j++; |
| 3178 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3179 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == '-')) { |
| 3180 | k = 0; |
| 3181 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3182 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == '-')) { |
| 3183 | j++; |
| 3184 | workstring[k] = argv[i][j]; |
| 3185 | k++; |
| 3186 | } |
| 3187 | workstring[k] = '\0'; |
| 3188 | hilbert_limit = (int) strtol(workstring, (char **) &workstring, 0); |
| 3189 | } |
| 3190 | } |
| 3191 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
| 3192 | j++; |
| 3193 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3194 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == '-')) { |
| 3195 | k = 0; |
| 3196 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3197 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == '-')) { |
| 3198 | j++; |
| 3199 | workstring[k] = argv[i][j]; |
| 3200 | k++; |
| 3201 | } |
| 3202 | workstring[k] = '\0'; |
| 3203 | hilbert_order = (int)(REAL) strtod(workstring, (char **) NULL); |
| 3204 | } |
| 3205 | } |
| 3206 | if (brio_threshold == 0) { // -b0 |
| 3207 | brio_hilbert = 0; // Turn off BRIO-Hilbert sorting. |
| 3208 | } |
| 3209 | if (brio_ratio >= 1.0) { // -b/1 |
| 3210 | no_sort = 1; |
| 3211 | brio_hilbert = 0; // Turn off BRIO-Hilbert sorting. |
| 3212 | } |
| 3213 | } else if (argv[i][j] == 'l') { |
| 3214 | incrflip = 1; |
| 3215 | } else if (argv[i][j] == 'L') { |
| 3216 | flipinsert = 1; |
| 3217 | } else if (argv[i][j] == 'm') { |
| 3218 | metric = 1; |
| 3219 | } else if (argv[i][j] == 'a') { |
| 3220 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3221 | (argv[i][j + 1] == '.')) { |
| 3222 | fixedvolume = 1; |
| 3223 | k = 0; |
| 3224 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3225 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
| 3226 | (argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
| 3227 | j++; |
| 3228 | workstring[k] = argv[i][j]; |
| 3229 | k++; |
| 3230 | } |
| 3231 | workstring[k] = '\0'; |
| 3232 | maxvolume = (REAL) strtod(workstring, (char **) NULL); |
| 3233 | } else { |
| 3234 | varvolume = 1; |
| 3235 | } |
| 3236 | } else if (argv[i][j] == 'A') { |
| 3237 | regionattrib = 1; |
| 3238 | } else if (argv[i][j] == 'D') { |
| 3239 | conforming = 1; |
| 3240 | if ((argv[i][j + 1] >= '1') && (argv[i][j + 1] <= '3')) { |
| 3241 | reflevel = (argv[i][j + 1] - '1') + 1; |
| 3242 | j++; |
| 3243 | } |
| 3244 | } else if (argv[i][j] == 'i') { |
| 3245 | insertaddpoints = 1; |
| 3246 | } else if (argv[i][j] == 'd') { |
| 3247 | diagnose = 1; |
| 3248 | } else if (argv[i][j] == 'c') { |
| 3249 | convex = 1; |
| 3250 | } else if (argv[i][j] == 'M') { |
| 3251 | nomergefacet = 1; |
| 3252 | nomergevertex = 1; |
| 3253 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '1')) { |
| 3254 | nomergefacet = (argv[i][j + 1] - '0'); |
| 3255 | j++; |
| 3256 | } |
| 3257 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
| 3258 | j++; |
| 3259 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '1')) { |
| 3260 | nomergevertex = (argv[i][j + 1] - '0'); |
| 3261 | j++; |
| 3262 | } |
| 3263 | } |
| 3264 | } else if (argv[i][j] == 'X') { |
| 3265 | if (argv[i][j + 1] == '1') { |
| 3266 | nostaticfilter = 1; |
| 3267 | j++; |
| 3268 | } else { |
| 3269 | noexact = 1; |
| 3270 | } |
| 3271 | } else if (argv[i][j] == 'z') { |
| 3272 | zeroindex = 1; |
| 3273 | } else if (argv[i][j] == 'f') { |
| 3274 | facesout++; |
| 3275 | } else if (argv[i][j] == 'e') { |
| 3276 | edgesout++; |
| 3277 | } else if (argv[i][j] == 'n') { |
| 3278 | neighout++; |
| 3279 | } else if (argv[i][j] == 'v') { |
| 3280 | voroout = 1; |
| 3281 | } else if (argv[i][j] == 'g') { |
| 3282 | meditview = 1; |
| 3283 | } else if (argv[i][j] == 'k') { |
| 3284 | vtkview = 1; |
| 3285 | } else if (argv[i][j] == 'J') { |
| 3286 | nojettison = 1; |
| 3287 | } else if (argv[i][j] == 'B') { |
| 3288 | nobound = 1; |
| 3289 | } else if (argv[i][j] == 'N') { |
| 3290 | nonodewritten = 1; |
| 3291 | } else if (argv[i][j] == 'E') { |
| 3292 | noelewritten = 1; |
| 3293 | } else if (argv[i][j] == 'F') { |
| 3294 | nofacewritten = 1; |
| 3295 | } else if (argv[i][j] == 'I') { |
| 3296 | noiterationnum = 1; |
| 3297 | } else if (argv[i][j] == 'S') { |
| 3298 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3299 | (argv[i][j + 1] == '.')) { |
| 3300 | k = 0; |
| 3301 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3302 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
| 3303 | (argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
| 3304 | j++; |
| 3305 | workstring[k] = argv[i][j]; |
| 3306 | k++; |
| 3307 | } |
| 3308 | workstring[k] = '\0'; |
| 3309 | steinerleft = (int) strtol(workstring, (char **) NULL, 0); |
| 3310 | } |
| 3311 | } else if (argv[i][j] == 'o') { |
| 3312 | if (argv[i][j + 1] == '2') { |
| 3313 | order = 2; |
| 3314 | j++; |
| 3315 | } |
| 3316 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
| 3317 | j++; |
| 3318 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3319 | (argv[i][j + 1] == '.')) { |
| 3320 | k = 0; |
| 3321 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3322 | (argv[i][j + 1] == '.')) { |
| 3323 | j++; |
| 3324 | workstring[k] = argv[i][j]; |
| 3325 | k++; |
| 3326 | } |
| 3327 | workstring[k] = '\0'; |
| 3328 | optmaxdihedral = (REAL) strtod(workstring, (char **) NULL); |
| 3329 | } |
| 3330 | } |
| 3331 | } else if (argv[i][j] == 'O') { |
| 3332 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
| 3333 | optlevel = (argv[i][j + 1] - '0'); |
| 3334 | j++; |
| 3335 | } |
| 3336 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
| 3337 | j++; |
| 3338 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '7')) { |
| 3339 | optscheme = (argv[i][j + 1] - '0'); |
| 3340 | j++; |
| 3341 | } |
| 3342 | } |
| 3343 | } else if (argv[i][j] == 'T') { |
| 3344 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3345 | (argv[i][j + 1] == '.')) { |
| 3346 | k = 0; |
| 3347 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3348 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
| 3349 | (argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
| 3350 | j++; |
| 3351 | workstring[k] = argv[i][j]; |
| 3352 | k++; |
| 3353 | } |
| 3354 | workstring[k] = '\0'; |
| 3355 | epsilon = (REAL) strtod(workstring, (char **) NULL); |
| 3356 | } |
| 3357 | } else if (argv[i][j] == 'R') { |
| 3358 | reversetetori = 1; |
| 3359 | } else if (argv[i][j] == 'C') { |
| 3360 | docheck++; |
| 3361 | } else if (argv[i][j] == 'Q') { |
| 3362 | quiet = 1; |
| 3363 | } else if (argv[i][j] == 'V') { |
| 3364 | verbose++; |
| 3365 | } else if (argv[i][j] == 'x') { |
| 3366 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3367 | (argv[i][j + 1] == '.')) { |
| 3368 | k = 0; |
| 3369 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
| 3370 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
| 3371 | (argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
| 3372 | j++; |
| 3373 | workstring[k] = argv[i][j]; |
| 3374 | k++; |
| 3375 | } |
| 3376 | workstring[k] = '\0'; |
| 3377 | tetrahedraperblock = (int) strtol(workstring, (char **) NULL, 0); |
| 3378 | if (tetrahedraperblock > 8188) { |
| 3379 | vertexperblock = tetrahedraperblock / 2; |
| 3380 | shellfaceperblock = vertexperblock / 2; |
| 3381 | } else { |
| 3382 | tetrahedraperblock = 8188; |
| 3383 | } |
| 3384 | } |
| 3385 | } else if ((argv[i][j] == 'h') || (argv[i][j] == 'H') || |
| 3386 | (argv[i][j] == '?')) { |
| 3387 | usage(); |
| 3388 | } else { |
| 3389 | printf("Warning: Unknown switch -%c.\n" , argv[i][j]); |
| 3390 | } |
| 3391 | } |
| 3392 | } |
| 3393 | |
| 3394 | if (startindex == 0) { |
| 3395 | // Set a temporary filename for debugging output. |
| 3396 | strcpy(infilename, "tetgen-tmpfile" ); |
| 3397 | } else { |
| 3398 | if (infilename[0] == '\0') { |
| 3399 | // No input file name. Print the syntax and exit. |
| 3400 | syntax(); |
| 3401 | terminatetetgen(NULL, 0); |
| 3402 | } |
| 3403 | // Recognize the object from file extension if it is available. |
| 3404 | if (!strcmp(&infilename[strlen(infilename) - 5], ".node" )) { |
| 3405 | infilename[strlen(infilename) - 5] = '\0'; |
| 3406 | object = NODES; |
| 3407 | } else if (!strcmp(&infilename[strlen(infilename) - 5], ".poly" )) { |
| 3408 | infilename[strlen(infilename) - 5] = '\0'; |
| 3409 | object = POLY; |
| 3410 | plc = 1; |
| 3411 | } else if (!strcmp(&infilename[strlen(infilename) - 6], ".smesh" )) { |
| 3412 | infilename[strlen(infilename) - 6] = '\0'; |
| 3413 | object = POLY; |
| 3414 | plc = 1; |
| 3415 | } else if (!strcmp(&infilename[strlen(infilename) - 4], ".off" )) { |
| 3416 | infilename[strlen(infilename) - 4] = '\0'; |
| 3417 | object = OFF; |
| 3418 | plc = 1; |
| 3419 | } else if (!strcmp(&infilename[strlen(infilename) - 4], ".ply" )) { |
| 3420 | infilename[strlen(infilename) - 4] = '\0'; |
| 3421 | object = PLY; |
| 3422 | plc = 1; |
| 3423 | } else if (!strcmp(&infilename[strlen(infilename) - 4], ".stl" )) { |
| 3424 | infilename[strlen(infilename) - 4] = '\0'; |
| 3425 | object = STL; |
| 3426 | plc = 1; |
| 3427 | } else if (!strcmp(&infilename[strlen(infilename) - 5], ".mesh" )) { |
| 3428 | infilename[strlen(infilename) - 5] = '\0'; |
| 3429 | object = MEDIT; |
| 3430 | if (!refine) plc = 1; |
| 3431 | } else if (!strcmp(&infilename[strlen(infilename) - 4], ".vtk" )) { |
| 3432 | infilename[strlen(infilename) - 4] = '\0'; |
| 3433 | object = VTK; |
| 3434 | plc = 1; |
| 3435 | } else if (!strcmp(&infilename[strlen(infilename) - 4], ".ele" )) { |
| 3436 | infilename[strlen(infilename) - 4] = '\0'; |
| 3437 | object = MESH; |
| 3438 | refine = 1; |
| 3439 | } |
| 3440 | } |
| 3441 | |
| 3442 | if (nobisect && (!plc && !refine)) { // -Y |
| 3443 | plc = 1; // Default -p option. |
| 3444 | } |
| 3445 | if (quality && (!plc && !refine)) { // -q |
| 3446 | plc = 1; // Default -p option. |
| 3447 | } |
| 3448 | if (diagnose && !plc) { // -d |
| 3449 | plc = 1; |
| 3450 | } |
| 3451 | if (refine && !quality) { // -r only |
| 3452 | // Reconstruct a mesh, no mesh optimization. |
| 3453 | optlevel = 0; |
| 3454 | } |
| 3455 | if (insertaddpoints && (optlevel == 0)) { // with -i option |
| 3456 | optlevel = 2; |
| 3457 | } |
| 3458 | if (coarsen && (optlevel == 0)) { // with -R option |
| 3459 | optlevel = 2; |
| 3460 | } |
| 3461 | |
| 3462 | // Detect improper combinations of switches. |
| 3463 | if ((refine || plc) && weighted) { |
| 3464 | printf("Error: Switches -w cannot use together with -p or -r.\n" ); |
| 3465 | return false; |
| 3466 | } |
| 3467 | |
| 3468 | if (convex) { // -c |
| 3469 | if (plc && !regionattrib) { |
| 3470 | // -A (region attribute) is needed for marking exterior tets (-1). |
| 3471 | regionattrib = 1; |
| 3472 | } |
| 3473 | } |
| 3474 | |
| 3475 | // Note: -A must not used together with -r option. |
| 3476 | // Be careful not to add an extra attribute to each element unless the |
| 3477 | // input supports it (PLC in, but not refining a preexisting mesh). |
| 3478 | if (refine || !plc) { |
| 3479 | regionattrib = 0; |
| 3480 | } |
| 3481 | // Be careful not to allocate space for element area constraints that |
| 3482 | // will never be assigned any value (other than the default -1.0). |
| 3483 | if (!refine && !plc) { |
| 3484 | varvolume = 0; |
| 3485 | } |
| 3486 | // If '-a' or '-aa' is in use, enable '-q' option too. |
| 3487 | if (fixedvolume || varvolume) { |
| 3488 | if (quality == 0) { |
| 3489 | quality = 1; |
| 3490 | if (!plc && !refine) { |
| 3491 | plc = 1; // enable -p. |
| 3492 | } |
| 3493 | } |
| 3494 | } |
| 3495 | // No user-specified dihedral angle bound. Use default ones. |
| 3496 | if (!quality) { |
| 3497 | if (optmaxdihedral < 179.0) { |
| 3498 | if (nobisect) { // with -Y option |
| 3499 | optmaxdihedral = 179.0; |
| 3500 | } else { // -p only |
| 3501 | optmaxdihedral = 179.999; |
| 3502 | } |
| 3503 | } |
| 3504 | if (optminsmtdihed < 179.999) { |
| 3505 | optminsmtdihed = 179.999; |
| 3506 | } |
| 3507 | if (optminslidihed < 179.999) { |
| 3508 | optminslidihed = 179.999; |
| 3509 | } |
| 3510 | } |
| 3511 | |
| 3512 | increment = 0; |
| 3513 | strcpy(workstring, infilename); |
| 3514 | j = 1; |
| 3515 | while (workstring[j] != '\0') { |
| 3516 | if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) { |
| 3517 | increment = j + 1; |
| 3518 | } |
| 3519 | j++; |
| 3520 | } |
| 3521 | meshnumber = 0; |
| 3522 | if (increment > 0) { |
| 3523 | j = increment; |
| 3524 | do { |
| 3525 | if ((workstring[j] >= '0') && (workstring[j] <= '9')) { |
| 3526 | meshnumber = meshnumber * 10 + (int) (workstring[j] - '0'); |
| 3527 | } else { |
| 3528 | increment = 0; |
| 3529 | } |
| 3530 | j++; |
| 3531 | } while (workstring[j] != '\0'); |
| 3532 | } |
| 3533 | if (noiterationnum) { |
| 3534 | strcpy(outfilename, infilename); |
| 3535 | } else if (increment == 0) { |
| 3536 | strcpy(outfilename, infilename); |
| 3537 | strcat(outfilename, ".1" ); |
| 3538 | } else { |
| 3539 | workstring[increment] = '%'; |
| 3540 | workstring[increment + 1] = 'd'; |
| 3541 | workstring[increment + 2] = '\0'; |
| 3542 | sprintf(outfilename, workstring, meshnumber + 1); |
| 3543 | } |
| 3544 | // Additional input file name has the end ".a". |
| 3545 | strcpy(addinfilename, infilename); |
| 3546 | strcat(addinfilename, ".a" ); |
| 3547 | // Background filename has the form "*.b.ele", "*.b.node", ... |
| 3548 | strcpy(bgmeshfilename, infilename); |
| 3549 | strcat(bgmeshfilename, ".b" ); |
| 3550 | |
| 3551 | return true; |
| 3552 | } |
| 3553 | |
| 3554 | //// //// |
| 3555 | //// //// |
| 3556 | //// behavior_cxx ///////////////////////////////////////////////////////////// |
| 3557 | |
| 3558 | //// mempool_cxx ////////////////////////////////////////////////////////////// |
| 3559 | //// //// |
| 3560 | //// //// |
| 3561 | |
| 3562 | // Initialize fast lookup tables for mesh maniplulation primitives. |
| 3563 | |
| 3564 | int tetgenmesh::bondtbl[12][12] = {{0,},}; |
| 3565 | int tetgenmesh::enexttbl[12] = {0,}; |
| 3566 | int tetgenmesh::eprevtbl[12] = {0,}; |
| 3567 | int tetgenmesh::enextesymtbl[12] = {0,}; |
| 3568 | int tetgenmesh::eprevesymtbl[12] = {0,}; |
| 3569 | int tetgenmesh::eorgoppotbl[12] = {0,}; |
| 3570 | int tetgenmesh::edestoppotbl[12] = {0,}; |
| 3571 | int tetgenmesh::fsymtbl[12][12] = {{0,},}; |
| 3572 | int tetgenmesh::facepivot1[12] = {0,}; |
| 3573 | int tetgenmesh::facepivot2[12][12] = {{0,},}; |
| 3574 | int tetgenmesh::tsbondtbl[12][6] = {{0,},}; |
| 3575 | int tetgenmesh::stbondtbl[12][6] = {{0,},}; |
| 3576 | int tetgenmesh::tspivottbl[12][6] = {{0,},}; |
| 3577 | int tetgenmesh::stpivottbl[12][6] = {{0,},}; |
| 3578 | |
| 3579 | // Table 'esymtbl' takes an directed edge (version) as input, returns the |
| 3580 | // inversed edge (version) of it. |
| 3581 | |
| 3582 | int tetgenmesh::esymtbl[12] = {9, 6, 11, 4, 3, 7, 1, 5, 10, 0, 8, 2}; |
| 3583 | |
| 3584 | // The following four tables give the 12 permutations of the set {0,1,2,3}. |
| 3585 | // An offset 4 is added to each element for a direct access of the points |
| 3586 | // in the tetrahedron data structure. |
| 3587 | |
| 3588 | int tetgenmesh:: orgpivot[12] = {7, 7, 5, 5, 6, 4, 4, 6, 5, 6, 7, 4}; |
| 3589 | int tetgenmesh::destpivot[12] = {6, 4, 4, 6, 5, 6, 7, 4, 7, 7, 5, 5}; |
| 3590 | int tetgenmesh::apexpivot[12] = {5, 6, 7, 4, 7, 7, 5, 5, 6, 4, 4, 6}; |
| 3591 | int tetgenmesh::oppopivot[12] = {4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}; |
| 3592 | |
| 3593 | // The twelve versions correspond to six undirected edges. The following two |
| 3594 | // tables map a version to an undirected edge and vice versa. |
| 3595 | |
| 3596 | int tetgenmesh::ver2edge[12] = {0, 1, 2, 3, 3, 5, 1, 5, 4, 0, 4, 2}; |
| 3597 | int tetgenmesh::edge2ver[ 6] = {0, 1, 2, 3, 8, 5}; |
| 3598 | |
| 3599 | // Edge versions whose apex or opposite may be dummypoint. |
| 3600 | |
| 3601 | int tetgenmesh::epivot[12] = {4, 5, 2, 11, 4, 5, 2, 11, 4, 5, 2, 11}; |
| 3602 | |
| 3603 | |
| 3604 | // Table 'snextpivot' takes an edge version as input, returns the next edge |
| 3605 | // version in the same edge ring. |
| 3606 | |
| 3607 | int tetgenmesh::snextpivot[6] = {2, 5, 4, 1, 0, 3}; |
| 3608 | |
| 3609 | // The following three tables give the 6 permutations of the set {0,1,2}. |
| 3610 | // An offset 3 is added to each element for a direct access of the points |
| 3611 | // in the triangle data structure. |
| 3612 | |
| 3613 | int tetgenmesh::sorgpivot [6] = {3, 4, 4, 5, 5, 3}; |
| 3614 | int tetgenmesh::sdestpivot[6] = {4, 3, 5, 4, 3, 5}; |
| 3615 | int tetgenmesh::sapexpivot[6] = {5, 5, 3, 3, 4, 4}; |
| 3616 | |
| 3617 | /////////////////////////////////////////////////////////////////////////////// |
| 3618 | // // |
| 3619 | // inittable() Initialize the look-up tables. // |
| 3620 | // // |
| 3621 | /////////////////////////////////////////////////////////////////////////////// |
| 3622 | |
| 3623 | void tetgenmesh::inittables() |
| 3624 | { |
| 3625 | int i, j; |
| 3626 | |
| 3627 | |
| 3628 | // i = t1.ver; j = t2.ver; |
| 3629 | for (i = 0; i < 12; i++) { |
| 3630 | for (j = 0; j < 12; j++) { |
| 3631 | bondtbl[i][j] = (j & 3) + (((i & 12) + (j & 12)) % 12); |
| 3632 | } |
| 3633 | } |
| 3634 | |
| 3635 | |
| 3636 | // i = t1.ver; j = t2.ver |
| 3637 | for (i = 0; i < 12; i++) { |
| 3638 | for (j = 0; j < 12; j++) { |
| 3639 | fsymtbl[i][j] = (j + 12 - (i & 12)) % 12; |
| 3640 | } |
| 3641 | } |
| 3642 | |
| 3643 | |
| 3644 | for (i = 0; i < 12; i++) { |
| 3645 | facepivot1[i] = (esymtbl[i] & 3); |
| 3646 | } |
| 3647 | |
| 3648 | for (i = 0; i < 12; i++) { |
| 3649 | for (j = 0; j < 12; j++) { |
| 3650 | facepivot2[i][j] = fsymtbl[esymtbl[i]][j]; |
| 3651 | } |
| 3652 | } |
| 3653 | |
| 3654 | for (i = 0; i < 12; i++) { |
| 3655 | enexttbl[i] = (i + 4) % 12; |
| 3656 | eprevtbl[i] = (i + 8) % 12; |
| 3657 | } |
| 3658 | |
| 3659 | for (i = 0; i < 12; i++) { |
| 3660 | enextesymtbl[i] = esymtbl[enexttbl[i]]; |
| 3661 | eprevesymtbl[i] = esymtbl[eprevtbl[i]]; |
| 3662 | } |
| 3663 | |
| 3664 | for (i = 0; i < 12; i++) { |
| 3665 | eorgoppotbl [i] = eprevtbl[esymtbl[enexttbl[i]]]; |
| 3666 | edestoppotbl[i] = enexttbl[esymtbl[eprevtbl[i]]]; |
| 3667 | } |
| 3668 | |
| 3669 | int soffset, toffset; |
| 3670 | |
| 3671 | // i = t.ver, j = s.shver |
| 3672 | for (i = 0; i < 12; i++) { |
| 3673 | for (j = 0; j < 6; j++) { |
| 3674 | if ((j & 1) == 0) { |
| 3675 | soffset = (6 - ((i & 12) >> 1)) % 6; |
| 3676 | toffset = (12 - ((j & 6) << 1)) % 12; |
| 3677 | } else { |
| 3678 | soffset = (i & 12) >> 1; |
| 3679 | toffset = (j & 6) << 1; |
| 3680 | } |
| 3681 | tsbondtbl[i][j] = (j & 1) + (((j & 6) + soffset) % 6); |
| 3682 | stbondtbl[i][j] = (i & 3) + (((i & 12) + toffset) % 12); |
| 3683 | } |
| 3684 | } |
| 3685 | |
| 3686 | |
| 3687 | // i = t.ver, j = s.shver |
| 3688 | for (i = 0; i < 12; i++) { |
| 3689 | for (j = 0; j < 6; j++) { |
| 3690 | if ((j & 1) == 0) { |
| 3691 | soffset = (i & 12) >> 1; |
| 3692 | toffset = (j & 6) << 1; |
| 3693 | } else { |
| 3694 | soffset = (6 - ((i & 12) >> 1)) % 6; |
| 3695 | toffset = (12 - ((j & 6) << 1)) % 12; |
| 3696 | } |
| 3697 | tspivottbl[i][j] = (j & 1) + (((j & 6) + soffset) % 6); |
| 3698 | stpivottbl[i][j] = (i & 3) + (((i & 12) + toffset) % 12); |
| 3699 | } |
| 3700 | } |
| 3701 | } |
| 3702 | |
| 3703 | /////////////////////////////////////////////////////////////////////////////// |
| 3704 | // // |
| 3705 | // restart() Deallocate all objects in this pool. // |
| 3706 | // // |
| 3707 | // The pool returns to a fresh state, like after it was initialized, except // |
| 3708 | // that no memory is freed to the operating system. Rather, the previously // |
| 3709 | // allocated blocks are ready to be used. // |
| 3710 | // // |
| 3711 | /////////////////////////////////////////////////////////////////////////////// |
| 3712 | |
| 3713 | void tetgenmesh::arraypool::restart() |
| 3714 | { |
| 3715 | objects = 0l; |
| 3716 | } |
| 3717 | |
| 3718 | /////////////////////////////////////////////////////////////////////////////// |
| 3719 | // // |
| 3720 | // poolinit() Initialize an arraypool for allocation of objects. // |
| 3721 | // // |
| 3722 | // Before the pool may be used, it must be initialized by this procedure. // |
| 3723 | // After initialization, memory can be allocated and freed in this pool. // |
| 3724 | // // |
| 3725 | /////////////////////////////////////////////////////////////////////////////// |
| 3726 | |
| 3727 | void tetgenmesh::arraypool::poolinit(int sizeofobject, int log2objperblk) |
| 3728 | { |
| 3729 | // Each object must be at least one byte long. |
| 3730 | objectbytes = sizeofobject > 1 ? sizeofobject : 1; |
| 3731 | |
| 3732 | log2objectsperblock = log2objperblk; |
| 3733 | // Compute the number of objects in each block. |
| 3734 | objectsperblock = ((int) 1) << log2objectsperblock; |
| 3735 | objectsperblockmark = objectsperblock - 1; |
| 3736 | |
| 3737 | // No memory has been allocated. |
| 3738 | totalmemory = 0l; |
| 3739 | // The top array has not been allocated yet. |
| 3740 | toparray = (char **) NULL; |
| 3741 | toparraylen = 0; |
| 3742 | |
| 3743 | // Ready all indices to be allocated. |
| 3744 | restart(); |
| 3745 | } |
| 3746 | |
| 3747 | /////////////////////////////////////////////////////////////////////////////// |
| 3748 | // // |
| 3749 | // arraypool() The constructor and destructor. // |
| 3750 | // // |
| 3751 | /////////////////////////////////////////////////////////////////////////////// |
| 3752 | |
| 3753 | tetgenmesh::arraypool::arraypool(int sizeofobject, int log2objperblk) |
| 3754 | { |
| 3755 | poolinit(sizeofobject, log2objperblk); |
| 3756 | } |
| 3757 | |
| 3758 | tetgenmesh::arraypool::~arraypool() |
| 3759 | { |
| 3760 | int i; |
| 3761 | |
| 3762 | // Has anything been allocated at all? |
| 3763 | if (toparray != (char **) NULL) { |
| 3764 | // Walk through the top array. |
| 3765 | for (i = 0; i < toparraylen; i++) { |
| 3766 | // Check every pointer; NULLs may be scattered randomly. |
| 3767 | if (toparray[i] != (char *) NULL) { |
| 3768 | // Free an allocated block. |
| 3769 | free((void *) toparray[i]); |
| 3770 | } |
| 3771 | } |
| 3772 | // Free the top array. |
| 3773 | free((void *) toparray); |
| 3774 | } |
| 3775 | |
| 3776 | // The top array is no longer allocated. |
| 3777 | toparray = (char **) NULL; |
| 3778 | toparraylen = 0; |
| 3779 | objects = 0; |
| 3780 | totalmemory = 0; |
| 3781 | } |
| 3782 | |
| 3783 | /////////////////////////////////////////////////////////////////////////////// |
| 3784 | // // |
| 3785 | // getblock() Return (and perhaps create) the block containing the object // |
| 3786 | // with a given index. // |
| 3787 | // // |
| 3788 | // This function takes care of allocating or resizing the top array if nece- // |
| 3789 | // ssary, and of allocating the block if it hasn't yet been allocated. // |
| 3790 | // // |
| 3791 | // Return a pointer to the beginning of the block (NOT the object). // |
| 3792 | // // |
| 3793 | /////////////////////////////////////////////////////////////////////////////// |
| 3794 | |
| 3795 | char* tetgenmesh::arraypool::getblock(int objectindex) |
| 3796 | { |
| 3797 | char **newarray; |
| 3798 | char *block; |
| 3799 | int newsize; |
| 3800 | int topindex; |
| 3801 | int i; |
| 3802 | |
| 3803 | // Compute the index in the top array (upper bits). |
| 3804 | topindex = objectindex >> log2objectsperblock; |
| 3805 | // Does the top array need to be allocated or resized? |
| 3806 | if (toparray == (char **) NULL) { |
| 3807 | // Allocate the top array big enough to hold 'topindex', and NULL out |
| 3808 | // its contents. |
| 3809 | newsize = topindex + 128; |
| 3810 | toparray = (char **) malloc((size_t) (newsize * sizeof(char *))); |
| 3811 | toparraylen = newsize; |
| 3812 | for (i = 0; i < newsize; i++) { |
| 3813 | toparray[i] = (char *) NULL; |
| 3814 | } |
| 3815 | // Account for the memory. |
| 3816 | totalmemory = newsize * (uintptr_t) sizeof(char *); |
| 3817 | } else if (topindex >= toparraylen) { |
| 3818 | // Resize the top array, making sure it holds 'topindex'. |
| 3819 | newsize = 3 * toparraylen; |
| 3820 | if (topindex >= newsize) { |
| 3821 | newsize = topindex + 128; |
| 3822 | } |
| 3823 | // Allocate the new array, copy the contents, NULL out the rest, and |
| 3824 | // free the old array. |
| 3825 | newarray = (char **) malloc((size_t) (newsize * sizeof(char *))); |
| 3826 | for (i = 0; i < toparraylen; i++) { |
| 3827 | newarray[i] = toparray[i]; |
| 3828 | } |
| 3829 | for (i = toparraylen; i < newsize; i++) { |
| 3830 | newarray[i] = (char *) NULL; |
| 3831 | } |
| 3832 | free(toparray); |
| 3833 | // Account for the memory. |
| 3834 | totalmemory += (newsize - toparraylen) * sizeof(char *); |
| 3835 | toparray = newarray; |
| 3836 | toparraylen = newsize; |
| 3837 | } |
| 3838 | |
| 3839 | // Find the block, or learn that it hasn't been allocated yet. |
| 3840 | block = toparray[topindex]; |
| 3841 | if (block == (char *) NULL) { |
| 3842 | // Allocate a block at this index. |
| 3843 | block = (char *) malloc((size_t) (objectsperblock * objectbytes)); |
| 3844 | toparray[topindex] = block; |
| 3845 | // Account for the memory. |
| 3846 | totalmemory += objectsperblock * objectbytes; |
| 3847 | } |
| 3848 | |
| 3849 | // Return a pointer to the block. |
| 3850 | return block; |
| 3851 | } |
| 3852 | |
| 3853 | /////////////////////////////////////////////////////////////////////////////// |
| 3854 | // // |
| 3855 | // lookup() Return the pointer to the object with a given index, or NULL // |
| 3856 | // if the object's block doesn't exist yet. // |
| 3857 | // // |
| 3858 | /////////////////////////////////////////////////////////////////////////////// |
| 3859 | |
| 3860 | void* tetgenmesh::arraypool::lookup(int objectindex) |
| 3861 | { |
| 3862 | char *block; |
| 3863 | int topindex; |
| 3864 | |
| 3865 | // Has the top array been allocated yet? |
| 3866 | if (toparray == (char **) NULL) { |
| 3867 | return (void *) NULL; |
| 3868 | } |
| 3869 | |
| 3870 | // Compute the index in the top array (upper bits). |
| 3871 | topindex = objectindex >> log2objectsperblock; |
| 3872 | // Does the top index fit in the top array? |
| 3873 | if (topindex >= toparraylen) { |
| 3874 | return (void *) NULL; |
| 3875 | } |
| 3876 | |
| 3877 | // Find the block, or learn that it hasn't been allocated yet. |
| 3878 | block = toparray[topindex]; |
| 3879 | if (block == (char *) NULL) { |
| 3880 | return (void *) NULL; |
| 3881 | } |
| 3882 | |
| 3883 | // Compute a pointer to the object with the given index. Note that |
| 3884 | // 'objectsperblock' is a power of two, so the & operation is a bit mask |
| 3885 | // that preserves the lower bits. |
| 3886 | return (void *)(block + (objectindex & (objectsperblock - 1)) * objectbytes); |
| 3887 | } |
| 3888 | |
| 3889 | /////////////////////////////////////////////////////////////////////////////// |
| 3890 | // // |
| 3891 | // newindex() Allocate space for a fresh object from the pool. // |
| 3892 | // // |
| 3893 | // 'newptr' returns a pointer to the new object (it must not be a NULL). // |
| 3894 | // // |
| 3895 | /////////////////////////////////////////////////////////////////////////////// |
| 3896 | |
| 3897 | int tetgenmesh::arraypool::newindex(void **newptr) |
| 3898 | { |
| 3899 | // Allocate an object at index 'firstvirgin'. |
| 3900 | int newindex = objects; |
| 3901 | *newptr = (void *) (getblock(objects) + |
| 3902 | (objects & (objectsperblock - 1)) * objectbytes); |
| 3903 | objects++; |
| 3904 | |
| 3905 | return newindex; |
| 3906 | } |
| 3907 | |
| 3908 | |
| 3909 | /////////////////////////////////////////////////////////////////////////////// |
| 3910 | // // |
| 3911 | // memorypool() The constructors of memorypool. // |
| 3912 | // // |
| 3913 | /////////////////////////////////////////////////////////////////////////////// |
| 3914 | |
| 3915 | tetgenmesh::memorypool::memorypool() |
| 3916 | { |
| 3917 | firstblock = nowblock = (void **) NULL; |
| 3918 | nextitem = (void *) NULL; |
| 3919 | deaditemstack = (void *) NULL; |
| 3920 | pathblock = (void **) NULL; |
| 3921 | pathitem = (void *) NULL; |
| 3922 | alignbytes = 0; |
| 3923 | itembytes = itemwords = 0; |
| 3924 | itemsperblock = 0; |
| 3925 | items = maxitems = 0l; |
| 3926 | unallocateditems = 0; |
| 3927 | pathitemsleft = 0; |
| 3928 | } |
| 3929 | |
| 3930 | tetgenmesh::memorypool::memorypool(int bytecount, int itemcount, int wsize, |
| 3931 | int alignment) |
| 3932 | { |
| 3933 | poolinit(bytecount, itemcount, wsize, alignment); |
| 3934 | } |
| 3935 | |
| 3936 | /////////////////////////////////////////////////////////////////////////////// |
| 3937 | // // |
| 3938 | // ~memorypool() Free to the operating system all memory taken by a pool. // |
| 3939 | // // |
| 3940 | /////////////////////////////////////////////////////////////////////////////// |
| 3941 | |
| 3942 | tetgenmesh::memorypool::~memorypool() |
| 3943 | { |
| 3944 | while (firstblock != (void **) NULL) { |
| 3945 | nowblock = (void **) *(firstblock); |
| 3946 | free(firstblock); |
| 3947 | firstblock = nowblock; |
| 3948 | } |
| 3949 | } |
| 3950 | |
| 3951 | /////////////////////////////////////////////////////////////////////////////// |
| 3952 | // // |
| 3953 | // poolinit() Initialize a pool of memory for allocation of items. // |
| 3954 | // // |
| 3955 | // A `pool' is created whose records have size at least `bytecount'. Items // |
| 3956 | // will be allocated in `itemcount'-item blocks. Each item is assumed to be // |
| 3957 | // a collection of words, and either pointers or floating-point values are // |
| 3958 | // assumed to be the "primary" word type. (The "primary" word type is used // |
| 3959 | // to determine alignment of items.) If `alignment' isn't zero, all items // |
| 3960 | // will be `alignment'-byte aligned in memory. `alignment' must be either a // |
| 3961 | // multiple or a factor of the primary word size; powers of two are safe. // |
| 3962 | // `alignment' is normally used to create a few unused bits at the bottom of // |
| 3963 | // each item's pointer, in which information may be stored. // |
| 3964 | // // |
| 3965 | /////////////////////////////////////////////////////////////////////////////// |
| 3966 | |
| 3967 | void tetgenmesh::memorypool::poolinit(int bytecount,int itemcount,int wordsize, |
| 3968 | int alignment) |
| 3969 | { |
| 3970 | // Find the proper alignment, which must be at least as large as: |
| 3971 | // - The parameter `alignment'. |
| 3972 | // - The primary word type, to avoid unaligned accesses. |
| 3973 | // - sizeof(void *), so the stack of dead items can be maintained |
| 3974 | // without unaligned accesses. |
| 3975 | if (alignment > wordsize) { |
| 3976 | alignbytes = alignment; |
| 3977 | } else { |
| 3978 | alignbytes = wordsize; |
| 3979 | } |
| 3980 | if ((int) sizeof(void *) > alignbytes) { |
| 3981 | alignbytes = (int) sizeof(void *); |
| 3982 | } |
| 3983 | itemwords = ((bytecount + alignbytes - 1) / alignbytes) |
| 3984 | * (alignbytes / wordsize); |
| 3985 | itembytes = itemwords * wordsize; |
| 3986 | itemsperblock = itemcount; |
| 3987 | |
| 3988 | // Allocate a block of items. Space for `itemsperblock' items and one |
| 3989 | // pointer (to point to the next block) are allocated, as well as space |
| 3990 | // to ensure alignment of the items. |
| 3991 | firstblock = (void **) malloc(itemsperblock * itembytes + sizeof(void *) |
| 3992 | + alignbytes); |
| 3993 | if (firstblock == (void **) NULL) { |
| 3994 | terminatetetgen(NULL, 1); |
| 3995 | } |
| 3996 | // Set the next block pointer to NULL. |
| 3997 | *(firstblock) = (void *) NULL; |
| 3998 | restart(); |
| 3999 | } |
| 4000 | |
| 4001 | /////////////////////////////////////////////////////////////////////////////// |
| 4002 | // // |
| 4003 | // restart() Deallocate all items in this pool. // |
| 4004 | // // |
| 4005 | // The pool is returned to its starting state, except that no memory is // |
| 4006 | // freed to the operating system. Rather, the previously allocated blocks // |
| 4007 | // are ready to be reused. // |
| 4008 | // // |
| 4009 | /////////////////////////////////////////////////////////////////////////////// |
| 4010 | |
| 4011 | void tetgenmesh::memorypool::restart() |
| 4012 | { |
| 4013 | uintptr_t alignptr; |
| 4014 | |
| 4015 | items = 0; |
| 4016 | maxitems = 0; |
| 4017 | |
| 4018 | // Set the currently active block. |
| 4019 | nowblock = firstblock; |
| 4020 | // Find the first item in the pool. Increment by the size of (void *). |
| 4021 | alignptr = (uintptr_t) (nowblock + 1); |
| 4022 | // Align the item on an `alignbytes'-byte boundary. |
| 4023 | nextitem = (void *) |
| 4024 | (alignptr + (uintptr_t) alignbytes - |
| 4025 | (alignptr % (uintptr_t) alignbytes)); |
| 4026 | // There are lots of unallocated items left in this block. |
| 4027 | unallocateditems = itemsperblock; |
| 4028 | // The stack of deallocated items is empty. |
| 4029 | deaditemstack = (void *) NULL; |
| 4030 | } |
| 4031 | |
| 4032 | /////////////////////////////////////////////////////////////////////////////// |
| 4033 | // // |
| 4034 | // alloc() Allocate space for an item. // |
| 4035 | // // |
| 4036 | /////////////////////////////////////////////////////////////////////////////// |
| 4037 | |
| 4038 | void* tetgenmesh::memorypool::alloc() |
| 4039 | { |
| 4040 | void *newitem; |
| 4041 | void **newblock; |
| 4042 | uintptr_t alignptr; |
| 4043 | |
| 4044 | // First check the linked list of dead items. If the list is not |
| 4045 | // empty, allocate an item from the list rather than a fresh one. |
| 4046 | if (deaditemstack != (void *) NULL) { |
| 4047 | newitem = deaditemstack; // Take first item in list. |
| 4048 | deaditemstack = * (void **) deaditemstack; |
| 4049 | } else { |
| 4050 | // Check if there are any free items left in the current block. |
| 4051 | if (unallocateditems == 0) { |
| 4052 | // Check if another block must be allocated. |
| 4053 | if (*nowblock == (void *) NULL) { |
| 4054 | // Allocate a new block of items, pointed to by the previous block. |
| 4055 | newblock = (void **) malloc(itemsperblock * itembytes + sizeof(void *) |
| 4056 | + alignbytes); |
| 4057 | if (newblock == (void **) NULL) { |
| 4058 | terminatetetgen(NULL, 1); |
| 4059 | } |
| 4060 | *nowblock = (void *) newblock; |
| 4061 | // The next block pointer is NULL. |
| 4062 | *newblock = (void *) NULL; |
| 4063 | } |
| 4064 | // Move to the new block. |
| 4065 | nowblock = (void **) *nowblock; |
| 4066 | // Find the first item in the block. |
| 4067 | // Increment by the size of (void *). |
| 4068 | alignptr = (uintptr_t) (nowblock + 1); |
| 4069 | // Align the item on an `alignbytes'-byte boundary. |
| 4070 | nextitem = (void *) |
| 4071 | (alignptr + (uintptr_t) alignbytes - |
| 4072 | (alignptr % (uintptr_t) alignbytes)); |
| 4073 | // There are lots of unallocated items left in this block. |
| 4074 | unallocateditems = itemsperblock; |
| 4075 | } |
| 4076 | // Allocate a new item. |
| 4077 | newitem = nextitem; |
| 4078 | // Advance `nextitem' pointer to next free item in block. |
| 4079 | nextitem = (void *) ((uintptr_t) nextitem + itembytes); |
| 4080 | unallocateditems--; |
| 4081 | maxitems++; |
| 4082 | } |
| 4083 | items++; |
| 4084 | return newitem; |
| 4085 | } |
| 4086 | |
| 4087 | /////////////////////////////////////////////////////////////////////////////// |
| 4088 | // // |
| 4089 | // dealloc() Deallocate space for an item. // |
| 4090 | // // |
| 4091 | // The deallocated space is stored in a queue for later reuse. // |
| 4092 | // // |
| 4093 | /////////////////////////////////////////////////////////////////////////////// |
| 4094 | |
| 4095 | void tetgenmesh::memorypool::dealloc(void *dyingitem) |
| 4096 | { |
| 4097 | // Push freshly killed item onto stack. |
| 4098 | *((void **) dyingitem) = deaditemstack; |
| 4099 | deaditemstack = dyingitem; |
| 4100 | items--; |
| 4101 | } |
| 4102 | |
| 4103 | /////////////////////////////////////////////////////////////////////////////// |
| 4104 | // // |
| 4105 | // traversalinit() Prepare to traverse the entire list of items. // |
| 4106 | // // |
| 4107 | // This routine is used in conjunction with traverse(). // |
| 4108 | // // |
| 4109 | /////////////////////////////////////////////////////////////////////////////// |
| 4110 | |
| 4111 | void tetgenmesh::memorypool::traversalinit() |
| 4112 | { |
| 4113 | uintptr_t alignptr; |
| 4114 | |
| 4115 | // Begin the traversal in the first block. |
| 4116 | pathblock = firstblock; |
| 4117 | // Find the first item in the block. Increment by the size of (void *). |
| 4118 | alignptr = (uintptr_t) (pathblock + 1); |
| 4119 | // Align with item on an `alignbytes'-byte boundary. |
| 4120 | pathitem = (void *) |
| 4121 | (alignptr + (uintptr_t) alignbytes - |
| 4122 | (alignptr % (uintptr_t) alignbytes)); |
| 4123 | // Set the number of items left in the current block. |
| 4124 | pathitemsleft = itemsperblock; |
| 4125 | } |
| 4126 | |
| 4127 | /////////////////////////////////////////////////////////////////////////////// |
| 4128 | // // |
| 4129 | // traverse() Find the next item in the list. // |
| 4130 | // // |
| 4131 | // This routine is used in conjunction with traversalinit(). Be forewarned // |
| 4132 | // that this routine successively returns all items in the list, including // |
| 4133 | // deallocated ones on the deaditemqueue. It's up to you to figure out which // |
| 4134 | // ones are actually dead. It can usually be done more space-efficiently by // |
| 4135 | // a routine that knows something about the structure of the item. // |
| 4136 | // // |
| 4137 | /////////////////////////////////////////////////////////////////////////////// |
| 4138 | |
| 4139 | void* tetgenmesh::memorypool::traverse() |
| 4140 | { |
| 4141 | void *newitem; |
| 4142 | uintptr_t alignptr; |
| 4143 | |
| 4144 | // Stop upon exhausting the list of items. |
| 4145 | if (pathitem == nextitem) { |
| 4146 | return (void *) NULL; |
| 4147 | } |
| 4148 | // Check whether any untraversed items remain in the current block. |
| 4149 | if (pathitemsleft == 0) { |
| 4150 | // Find the next block. |
| 4151 | pathblock = (void **) *pathblock; |
| 4152 | // Find the first item in the block. Increment by the size of (void *). |
| 4153 | alignptr = (uintptr_t) (pathblock + 1); |
| 4154 | // Align with item on an `alignbytes'-byte boundary. |
| 4155 | pathitem = (void *) |
| 4156 | (alignptr + (uintptr_t) alignbytes - |
| 4157 | (alignptr % (uintptr_t) alignbytes)); |
| 4158 | // Set the number of items left in the current block. |
| 4159 | pathitemsleft = itemsperblock; |
| 4160 | } |
| 4161 | newitem = pathitem; |
| 4162 | // Find the next item in the block. |
| 4163 | pathitem = (void *) ((uintptr_t) pathitem + itembytes); |
| 4164 | pathitemsleft--; |
| 4165 | return newitem; |
| 4166 | } |
| 4167 | |
| 4168 | /////////////////////////////////////////////////////////////////////////////// |
| 4169 | // // |
| 4170 | // makeindex2pointmap() Create a map from index to vertices. // |
| 4171 | // // |
| 4172 | // 'idx2verlist' returns the created map. Traverse all vertices, a pointer // |
| 4173 | // to each vertex is set into the array. The pointer to the first vertex is // |
| 4174 | // saved in 'idx2verlist[in->firstnumber]'. // |
| 4175 | // // |
| 4176 | /////////////////////////////////////////////////////////////////////////////// |
| 4177 | |
| 4178 | void tetgenmesh::makeindex2pointmap(point*& idx2verlist) |
| 4179 | { |
| 4180 | point pointloop; |
| 4181 | int idx; |
| 4182 | |
| 4183 | if (b->verbose > 1) { |
| 4184 | printf(" Constructing mapping from indices to points.\n" ); |
| 4185 | } |
| 4186 | |
| 4187 | idx2verlist = new point[points->items + 1]; |
| 4188 | |
| 4189 | points->traversalinit(); |
| 4190 | pointloop = pointtraverse(); |
| 4191 | idx = in->firstnumber; |
| 4192 | while (pointloop != (point) NULL) { |
| 4193 | idx2verlist[idx++] = pointloop; |
| 4194 | pointloop = pointtraverse(); |
| 4195 | } |
| 4196 | } |
| 4197 | |
| 4198 | /////////////////////////////////////////////////////////////////////////////// |
| 4199 | // // |
| 4200 | // makesubfacemap() Create a map from vertex to subfaces incident at it. // |
| 4201 | // // |
| 4202 | // The map is returned in two arrays 'idx2faclist' and 'facperverlist'. All // |
| 4203 | // subfaces incident at i-th vertex (i is counted from 0) are found in the // |
| 4204 | // array facperverlist[j], where idx2faclist[i] <= j < idx2faclist[i + 1]. // |
| 4205 | // Each entry in facperverlist[j] is a subface whose origin is the vertex. // |
| 4206 | // // |
| 4207 | // NOTE: These two arrays will be created inside this routine, don't forget // |
| 4208 | // to free them after using. // |
| 4209 | // // |
| 4210 | /////////////////////////////////////////////////////////////////////////////// |
| 4211 | |
| 4212 | void tetgenmesh::makepoint2submap(memorypool* pool, int*& idx2faclist, |
| 4213 | face*& facperverlist) |
| 4214 | { |
| 4215 | face shloop; |
| 4216 | int i, j, k; |
| 4217 | |
| 4218 | if (b->verbose > 1) { |
| 4219 | printf(" Making a map from points to subfaces.\n" ); |
| 4220 | } |
| 4221 | |
| 4222 | // Initialize 'idx2faclist'. |
| 4223 | idx2faclist = new int[points->items + 1]; |
| 4224 | for (i = 0; i < points->items + 1; i++) idx2faclist[i] = 0; |
| 4225 | |
| 4226 | // Loop all subfaces, counter the number of subfaces incident at a vertex. |
| 4227 | pool->traversalinit(); |
| 4228 | shloop.sh = shellfacetraverse(pool); |
| 4229 | while (shloop.sh != (shellface *) NULL) { |
| 4230 | // Increment the number of incident subfaces for each vertex. |
| 4231 | j = pointmark((point) shloop.sh[3]) - in->firstnumber; |
| 4232 | idx2faclist[j]++; |
| 4233 | j = pointmark((point) shloop.sh[4]) - in->firstnumber; |
| 4234 | idx2faclist[j]++; |
| 4235 | // Skip the third corner if it is a segment. |
| 4236 | if (shloop.sh[5] != NULL) { |
| 4237 | j = pointmark((point) shloop.sh[5]) - in->firstnumber; |
| 4238 | idx2faclist[j]++; |
| 4239 | } |
| 4240 | shloop.sh = shellfacetraverse(pool); |
| 4241 | } |
| 4242 | |
| 4243 | // Calculate the total length of array 'facperverlist'. |
| 4244 | j = idx2faclist[0]; |
| 4245 | idx2faclist[0] = 0; // Array starts from 0 element. |
| 4246 | for (i = 0; i < points->items; i++) { |
| 4247 | k = idx2faclist[i + 1]; |
| 4248 | idx2faclist[i + 1] = idx2faclist[i] + j; |
| 4249 | j = k; |
| 4250 | } |
| 4251 | |
| 4252 | // The total length is in the last unit of idx2faclist. |
| 4253 | facperverlist = new face[idx2faclist[i]]; |
| 4254 | |
| 4255 | // Loop all subfaces again, remember the subfaces at each vertex. |
| 4256 | pool->traversalinit(); |
| 4257 | shloop.sh = shellfacetraverse(pool); |
| 4258 | while (shloop.sh != (shellface *) NULL) { |
| 4259 | j = pointmark((point) shloop.sh[3]) - in->firstnumber; |
| 4260 | shloop.shver = 0; // save the origin. |
| 4261 | facperverlist[idx2faclist[j]] = shloop; |
| 4262 | idx2faclist[j]++; |
| 4263 | // Is it a subface or a subsegment? |
| 4264 | if (shloop.sh[5] != NULL) { |
| 4265 | j = pointmark((point) shloop.sh[4]) - in->firstnumber; |
| 4266 | shloop.shver = 2; // save the origin. |
| 4267 | facperverlist[idx2faclist[j]] = shloop; |
| 4268 | idx2faclist[j]++; |
| 4269 | j = pointmark((point) shloop.sh[5]) - in->firstnumber; |
| 4270 | shloop.shver = 4; // save the origin. |
| 4271 | facperverlist[idx2faclist[j]] = shloop; |
| 4272 | idx2faclist[j]++; |
| 4273 | } else { |
| 4274 | j = pointmark((point) shloop.sh[4]) - in->firstnumber; |
| 4275 | shloop.shver = 1; // save the origin. |
| 4276 | facperverlist[idx2faclist[j]] = shloop; |
| 4277 | idx2faclist[j]++; |
| 4278 | } |
| 4279 | shloop.sh = shellfacetraverse(pool); |
| 4280 | } |
| 4281 | |
| 4282 | // Contents in 'idx2faclist' are shifted, now shift them back. |
| 4283 | for (i = points->items - 1; i >= 0; i--) { |
| 4284 | idx2faclist[i + 1] = idx2faclist[i]; |
| 4285 | } |
| 4286 | idx2faclist[0] = 0; |
| 4287 | } |
| 4288 | |
| 4289 | /////////////////////////////////////////////////////////////////////////////// |
| 4290 | // // |
| 4291 | // tetrahedrondealloc() Deallocate space for a tet., marking it dead. // |
| 4292 | // // |
| 4293 | /////////////////////////////////////////////////////////////////////////////// |
| 4294 | |
| 4295 | void tetgenmesh::tetrahedrondealloc(tetrahedron *dyingtetrahedron) |
| 4296 | { |
| 4297 | // Set tetrahedron's vertices to NULL. This makes it possible to detect |
| 4298 | // dead tetrahedra when traversing the list of all tetrahedra. |
| 4299 | dyingtetrahedron[4] = (tetrahedron) NULL; |
| 4300 | |
| 4301 | // Dealloc the space to subfaces/subsegments. |
| 4302 | if (dyingtetrahedron[8] != NULL) { |
| 4303 | tet2segpool->dealloc((shellface *) dyingtetrahedron[8]); |
| 4304 | } |
| 4305 | if (dyingtetrahedron[9] != NULL) { |
| 4306 | tet2subpool->dealloc((shellface *) dyingtetrahedron[9]); |
| 4307 | } |
| 4308 | |
| 4309 | tetrahedrons->dealloc((void *) dyingtetrahedron); |
| 4310 | } |
| 4311 | |
| 4312 | /////////////////////////////////////////////////////////////////////////////// |
| 4313 | // // |
| 4314 | // tetrahedrontraverse() Traverse the tetrahedra, skipping dead ones. // |
| 4315 | // // |
| 4316 | /////////////////////////////////////////////////////////////////////////////// |
| 4317 | |
| 4318 | tetgenmesh::tetrahedron* tetgenmesh::tetrahedrontraverse() |
| 4319 | { |
| 4320 | tetrahedron *newtetrahedron; |
| 4321 | |
| 4322 | do { |
| 4323 | newtetrahedron = (tetrahedron *) tetrahedrons->traverse(); |
| 4324 | if (newtetrahedron == (tetrahedron *) NULL) { |
| 4325 | return (tetrahedron *) NULL; |
| 4326 | } |
| 4327 | } while ((newtetrahedron[4] == (tetrahedron) NULL) || |
| 4328 | ((point) newtetrahedron[7] == dummypoint)); |
| 4329 | return newtetrahedron; |
| 4330 | } |
| 4331 | |
| 4332 | tetgenmesh::tetrahedron* tetgenmesh::alltetrahedrontraverse() |
| 4333 | { |
| 4334 | tetrahedron *newtetrahedron; |
| 4335 | |
| 4336 | do { |
| 4337 | newtetrahedron = (tetrahedron *) tetrahedrons->traverse(); |
| 4338 | if (newtetrahedron == (tetrahedron *) NULL) { |
| 4339 | return (tetrahedron *) NULL; |
| 4340 | } |
| 4341 | } while (newtetrahedron[4] == (tetrahedron) NULL); // Skip dead ones. |
| 4342 | return newtetrahedron; |
| 4343 | } |
| 4344 | |
| 4345 | /////////////////////////////////////////////////////////////////////////////// |
| 4346 | // // |
| 4347 | // shellfacedealloc() Deallocate space for a shellface, marking it dead. // |
| 4348 | // Used both for dealloc a subface and subsegment. // |
| 4349 | // // |
| 4350 | /////////////////////////////////////////////////////////////////////////////// |
| 4351 | |
| 4352 | void tetgenmesh::shellfacedealloc(memorypool *pool, shellface *dyingsh) |
| 4353 | { |
| 4354 | // Set shellface's vertices to NULL. This makes it possible to detect dead |
| 4355 | // shellfaces when traversing the list of all shellfaces. |
| 4356 | dyingsh[3] = (shellface) NULL; |
| 4357 | pool->dealloc((void *) dyingsh); |
| 4358 | } |
| 4359 | |
| 4360 | /////////////////////////////////////////////////////////////////////////////// |
| 4361 | // // |
| 4362 | // shellfacetraverse() Traverse the subfaces, skipping dead ones. Used // |
| 4363 | // for both subfaces and subsegments pool traverse. // |
| 4364 | // // |
| 4365 | /////////////////////////////////////////////////////////////////////////////// |
| 4366 | |
| 4367 | tetgenmesh::shellface* tetgenmesh::shellfacetraverse(memorypool *pool) |
| 4368 | { |
| 4369 | shellface *newshellface; |
| 4370 | |
| 4371 | do { |
| 4372 | newshellface = (shellface *) pool->traverse(); |
| 4373 | if (newshellface == (shellface *) NULL) { |
| 4374 | return (shellface *) NULL; |
| 4375 | } |
| 4376 | } while (newshellface[3] == (shellface) NULL); // Skip dead ones. |
| 4377 | return newshellface; |
| 4378 | } |
| 4379 | |
| 4380 | |
| 4381 | /////////////////////////////////////////////////////////////////////////////// |
| 4382 | // // |
| 4383 | // pointdealloc() Deallocate space for a point, marking it dead. // |
| 4384 | // // |
| 4385 | /////////////////////////////////////////////////////////////////////////////// |
| 4386 | |
| 4387 | void tetgenmesh::pointdealloc(point dyingpoint) |
| 4388 | { |
| 4389 | // Mark the point as dead. This makes it possible to detect dead points |
| 4390 | // when traversing the list of all points. |
| 4391 | setpointtype(dyingpoint, DEADVERTEX); |
| 4392 | points->dealloc((void *) dyingpoint); |
| 4393 | } |
| 4394 | |
| 4395 | /////////////////////////////////////////////////////////////////////////////// |
| 4396 | // // |
| 4397 | // pointtraverse() Traverse the points, skipping dead ones. // |
| 4398 | // // |
| 4399 | /////////////////////////////////////////////////////////////////////////////// |
| 4400 | |
| 4401 | tetgenmesh::point tetgenmesh::pointtraverse() |
| 4402 | { |
| 4403 | point newpoint; |
| 4404 | |
| 4405 | do { |
| 4406 | newpoint = (point) points->traverse(); |
| 4407 | if (newpoint == (point) NULL) { |
| 4408 | return (point) NULL; |
| 4409 | } |
| 4410 | } while (pointtype(newpoint) == DEADVERTEX); // Skip dead ones. |
| 4411 | return newpoint; |
| 4412 | } |
| 4413 | |
| 4414 | /////////////////////////////////////////////////////////////////////////////// |
| 4415 | // // |
| 4416 | // maketetrahedron() Create a new tetrahedron. // |
| 4417 | // // |
| 4418 | /////////////////////////////////////////////////////////////////////////////// |
| 4419 | |
| 4420 | void tetgenmesh::maketetrahedron(triface *newtet) |
| 4421 | { |
| 4422 | newtet->tet = (tetrahedron *) tetrahedrons->alloc(); |
| 4423 | |
| 4424 | // Initialize the four adjoining tetrahedra to be "outer space". |
| 4425 | newtet->tet[0] = NULL; |
| 4426 | newtet->tet[1] = NULL; |
| 4427 | newtet->tet[2] = NULL; |
| 4428 | newtet->tet[3] = NULL; |
| 4429 | // Four NULL vertices. |
| 4430 | newtet->tet[4] = NULL; |
| 4431 | newtet->tet[5] = NULL; |
| 4432 | newtet->tet[6] = NULL; |
| 4433 | newtet->tet[7] = NULL; |
| 4434 | // No attached segments and subfaces yet. |
| 4435 | newtet->tet[8] = NULL; |
| 4436 | newtet->tet[9] = NULL; |
| 4437 | // Initialize the marker (clear all flags). |
| 4438 | setelemmarker(newtet->tet, 0); |
| 4439 | for (int i = 0; i < numelemattrib; i++) { |
| 4440 | setelemattribute(newtet->tet, i, 0.0); |
| 4441 | } |
| 4442 | if (b->varvolume) { |
| 4443 | setvolumebound(newtet->tet, -1.0); |
| 4444 | } |
| 4445 | |
| 4446 | // Initialize the version to be Zero. |
| 4447 | newtet->ver = 11; |
| 4448 | } |
| 4449 | |
| 4450 | /////////////////////////////////////////////////////////////////////////////// |
| 4451 | // // |
| 4452 | // makeshellface() Create a new shellface with version zero. Used for // |
| 4453 | // both subfaces and subsegments. // |
| 4454 | // // |
| 4455 | /////////////////////////////////////////////////////////////////////////////// |
| 4456 | |
| 4457 | void tetgenmesh::makeshellface(memorypool *pool, face *newface) |
| 4458 | { |
| 4459 | newface->sh = (shellface *) pool->alloc(); |
| 4460 | |
| 4461 | // No adjointing subfaces. |
| 4462 | newface->sh[0] = NULL; |
| 4463 | newface->sh[1] = NULL; |
| 4464 | newface->sh[2] = NULL; |
| 4465 | // Three NULL vertices. |
| 4466 | newface->sh[3] = NULL; |
| 4467 | newface->sh[4] = NULL; |
| 4468 | newface->sh[5] = NULL; |
| 4469 | // No adjoining subsegments. |
| 4470 | newface->sh[6] = NULL; |
| 4471 | newface->sh[7] = NULL; |
| 4472 | newface->sh[8] = NULL; |
| 4473 | // No adjoining tetrahedra. |
| 4474 | newface->sh[9] = NULL; |
| 4475 | newface->sh[10] = NULL; |
| 4476 | if (checkconstraints) { |
| 4477 | // Initialize the maximum area bound. |
| 4478 | setareabound(*newface, 0.0); |
| 4479 | } |
| 4480 | // Clear the infection and marktest bits. |
| 4481 | ((int *) (newface->sh))[shmarkindex + 1] = 0; |
| 4482 | if (useinsertradius) { |
| 4483 | setfacetindex(*newface, 0); |
| 4484 | } |
| 4485 | // Set the boundary marker to zero. |
| 4486 | setshellmark(*newface, 0); |
| 4487 | |
| 4488 | newface->shver = 0; |
| 4489 | } |
| 4490 | |
| 4491 | /////////////////////////////////////////////////////////////////////////////// |
| 4492 | // // |
| 4493 | // makepoint() Create a new point. // |
| 4494 | // // |
| 4495 | /////////////////////////////////////////////////////////////////////////////// |
| 4496 | |
| 4497 | void tetgenmesh::makepoint(point* pnewpoint, enum verttype vtype) |
| 4498 | { |
| 4499 | int i; |
| 4500 | |
| 4501 | *pnewpoint = (point) points->alloc(); |
| 4502 | |
| 4503 | // Initialize the point attributes. |
| 4504 | for (i = 0; i < numpointattrib; i++) { |
| 4505 | (*pnewpoint)[3 + i] = 0.0; |
| 4506 | } |
| 4507 | // Initialize the metric tensor. |
| 4508 | for (i = 0; i < sizeoftensor; i++) { |
| 4509 | (*pnewpoint)[pointmtrindex + i] = 0.0; |
| 4510 | } |
| 4511 | setpoint2tet(*pnewpoint, NULL); |
| 4512 | setpoint2ppt(*pnewpoint, NULL); |
| 4513 | if (b->plc || b->refine) { |
| 4514 | // Initialize the point-to-simplex field. |
| 4515 | setpoint2sh(*pnewpoint, NULL); |
| 4516 | if (b->metric && (bgm != NULL)) { |
| 4517 | setpoint2bgmtet(*pnewpoint, NULL); |
| 4518 | } |
| 4519 | } |
| 4520 | // Initialize the point marker (starting from in->firstnumber). |
| 4521 | setpointmark(*pnewpoint, (int) (points->items) - (!in->firstnumber)); |
| 4522 | // Clear all flags. |
| 4523 | ((int *) (*pnewpoint))[pointmarkindex + 1] = 0; |
| 4524 | // Initialize (set) the point type. |
| 4525 | setpointtype(*pnewpoint, vtype); |
| 4526 | } |
| 4527 | |
| 4528 | /////////////////////////////////////////////////////////////////////////////// |
| 4529 | // // |
| 4530 | // initializepools() Calculate the sizes of the point, tetrahedron, and // |
| 4531 | // subface. Initialize their memory pools. // |
| 4532 | // // |
| 4533 | // This routine also computes the indices 'pointmarkindex', 'point2simindex',// |
| 4534 | // 'point2pbcptindex', 'elemattribindex', and 'volumeboundindex'. They are // |
| 4535 | // used to find values within each point and tetrahedron, respectively. // |
| 4536 | // // |
| 4537 | /////////////////////////////////////////////////////////////////////////////// |
| 4538 | |
| 4539 | void tetgenmesh::initializepools() |
| 4540 | { |
| 4541 | int pointsize = 0, elesize = 0, shsize = 0; |
| 4542 | int i; |
| 4543 | |
| 4544 | if (b->verbose) { |
| 4545 | printf(" Initializing memorypools.\n" ); |
| 4546 | printf(" tetrahedron per block: %d.\n" , b->tetrahedraperblock); |
| 4547 | } |
| 4548 | |
| 4549 | inittables(); |
| 4550 | |
| 4551 | // There are three input point lists available, which are in, addin, |
| 4552 | // and bgm->in. These point lists may have different number of |
| 4553 | // attributes. Decide the maximum number. |
| 4554 | numpointattrib = in->numberofpointattributes; |
| 4555 | if (bgm != NULL) { |
| 4556 | if (bgm->in->numberofpointattributes > numpointattrib) { |
| 4557 | numpointattrib = bgm->in->numberofpointattributes; |
| 4558 | } |
| 4559 | } |
| 4560 | if (addin != NULL) { |
| 4561 | if (addin->numberofpointattributes > numpointattrib) { |
| 4562 | numpointattrib = addin->numberofpointattributes; |
| 4563 | } |
| 4564 | } |
| 4565 | if (b->weighted || b->flipinsert) { // -w or -L. |
| 4566 | // The internal number of point attribute needs to be at least 1 |
| 4567 | // (for storing point weights). |
| 4568 | if (numpointattrib == 0) { |
| 4569 | numpointattrib = 1; |
| 4570 | } |
| 4571 | } |
| 4572 | |
| 4573 | // Default varconstraint = 0; |
| 4574 | if (in->segmentconstraintlist || in->facetconstraintlist) { |
| 4575 | checkconstraints = 1; |
| 4576 | } |
| 4577 | if (b->plc || b->refine) { |
| 4578 | // Save the insertion radius for Steiner points if boundaries |
| 4579 | // are allowed be split. |
| 4580 | if (!b->nobisect || checkconstraints) { |
| 4581 | useinsertradius = 1; |
| 4582 | } |
| 4583 | } |
| 4584 | |
| 4585 | // The index within each point at which its metric tensor is found. |
| 4586 | // Each vertex has three coordinates. |
| 4587 | if (b->psc) { |
| 4588 | // '-s' option (PSC), the u,v coordinates are provided. |
| 4589 | pointmtrindex = 5 + numpointattrib; |
| 4590 | // The index within each point at which its u, v coordinates are found. |
| 4591 | // Comment: They are saved after the list of point attributes. |
| 4592 | pointparamindex = pointmtrindex - 2; |
| 4593 | } else { |
| 4594 | pointmtrindex = 3 + numpointattrib; |
| 4595 | } |
| 4596 | // For '-m' option. A tensor field is provided (*.mtr or *.b.mtr file). |
| 4597 | if (b->metric) { |
| 4598 | // Decide the size (1, 3, or 6) of the metric tensor. |
| 4599 | if (bgm != (tetgenmesh *) NULL) { |
| 4600 | // A background mesh is allocated. It may not exist though. |
| 4601 | sizeoftensor = (bgm->in != (tetgenio *) NULL) ? |
| 4602 | bgm->in->numberofpointmtrs : in->numberofpointmtrs; |
| 4603 | } else { |
| 4604 | // No given background mesh - Itself is a background mesh. |
| 4605 | sizeoftensor = in->numberofpointmtrs; |
| 4606 | } |
| 4607 | // Make sure sizeoftensor is at least 1. |
| 4608 | sizeoftensor = (sizeoftensor > 0) ? sizeoftensor : 1; |
| 4609 | } else { |
| 4610 | // For '-q' option. Make sure to have space for saving a scalar value. |
| 4611 | sizeoftensor = b->quality ? 1 : 0; |
| 4612 | } |
| 4613 | if (useinsertradius) { |
| 4614 | // Increase a space (REAL) for saving point insertion radius, it is |
| 4615 | // saved directly after the metric. |
| 4616 | sizeoftensor++; |
| 4617 | } |
| 4618 | // The index within each point at which an element pointer is found, where |
| 4619 | // the index is measured in pointers. Ensure the index is aligned to a |
| 4620 | // sizeof(tetrahedron)-byte address. |
| 4621 | point2simindex = ((pointmtrindex + sizeoftensor) * sizeof(REAL) |
| 4622 | + sizeof(tetrahedron) - 1) / sizeof(tetrahedron); |
| 4623 | if (b->plc || b->refine || b->voroout) { |
| 4624 | // Increase the point size by three pointers, which are: |
| 4625 | // - a pointer to a tet, read by point2tet(); |
| 4626 | // - a pointer to a parent point, read by point2ppt()). |
| 4627 | // - a pointer to a subface or segment, read by point2sh(); |
| 4628 | if (b->metric && (bgm != (tetgenmesh *) NULL)) { |
| 4629 | // Increase one pointer into the background mesh, point2bgmtet(). |
| 4630 | pointsize = (point2simindex + 4) * sizeof(tetrahedron); |
| 4631 | } else { |
| 4632 | pointsize = (point2simindex + 3) * sizeof(tetrahedron); |
| 4633 | } |
| 4634 | } else { |
| 4635 | // Increase the point size by two pointer, which are: |
| 4636 | // - a pointer to a tet, read by point2tet(); |
| 4637 | // - a pointer to a parent point, read by point2ppt()). -- Used by btree. |
| 4638 | pointsize = (point2simindex + 2) * sizeof(tetrahedron); |
| 4639 | } |
| 4640 | // The index within each point at which the boundary marker is found, |
| 4641 | // Ensure the point marker is aligned to a sizeof(int)-byte address. |
| 4642 | pointmarkindex = (pointsize + sizeof(int) - 1) / sizeof(int); |
| 4643 | // Now point size is the ints (indicated by pointmarkindex) plus: |
| 4644 | // - an integer for boundary marker; |
| 4645 | // - an integer for vertex type; |
| 4646 | // - an integer for geometry tag (optional, -s option). |
| 4647 | pointsize = (pointmarkindex + 2 + (b->psc ? 1 : 0)) * sizeof(tetrahedron); |
| 4648 | |
| 4649 | // Initialize the pool of vertices. |
| 4650 | points = new memorypool(pointsize, b->vertexperblock, sizeof(REAL), 0); |
| 4651 | |
| 4652 | if (b->verbose) { |
| 4653 | printf(" Size of a point: %d bytes.\n" , points->itembytes); |
| 4654 | } |
| 4655 | |
| 4656 | // Initialize the infinite vertex. |
| 4657 | dummypoint = (point) new char[pointsize]; |
| 4658 | // Initialize all fields of this point. |
| 4659 | dummypoint[0] = 0.0; |
| 4660 | dummypoint[1] = 0.0; |
| 4661 | dummypoint[2] = 0.0; |
| 4662 | for (i = 0; i < numpointattrib; i++) { |
| 4663 | dummypoint[3 + i] = 0.0; |
| 4664 | } |
| 4665 | // Initialize the metric tensor. |
| 4666 | for (i = 0; i < sizeoftensor; i++) { |
| 4667 | dummypoint[pointmtrindex + i] = 0.0; |
| 4668 | } |
| 4669 | setpoint2tet(dummypoint, NULL); |
| 4670 | setpoint2ppt(dummypoint, NULL); |
| 4671 | if (b->plc || b->psc || b->refine) { |
| 4672 | // Initialize the point-to-simplex field. |
| 4673 | setpoint2sh(dummypoint, NULL); |
| 4674 | if (b->metric && (bgm != NULL)) { |
| 4675 | setpoint2bgmtet(dummypoint, NULL); |
| 4676 | } |
| 4677 | } |
| 4678 | // Initialize the point marker (starting from in->firstnumber). |
| 4679 | setpointmark(dummypoint, -1); // The unique marker for dummypoint. |
| 4680 | // Clear all flags. |
| 4681 | ((int *) (dummypoint))[pointmarkindex + 1] = 0; |
| 4682 | // Initialize (set) the point type. |
| 4683 | setpointtype(dummypoint, UNUSEDVERTEX); // Does not matter. |
| 4684 | |
| 4685 | // The number of bytes occupied by a tetrahedron is varying by the user- |
| 4686 | // specified options. The contents of the first 12 pointers are listed |
| 4687 | // in the following table: |
| 4688 | // [0] |__ neighbor at f0 __| |
| 4689 | // [1] |__ neighbor at f1 __| |
| 4690 | // [2] |__ neighbor at f2 __| |
| 4691 | // [3] |__ neighbor at f3 __| |
| 4692 | // [4] |_____ vertex p0 ____| |
| 4693 | // [5] |_____ vertex p1 ____| |
| 4694 | // [6] |_____ vertex p2 ____| |
| 4695 | // [7] |_____ vertex p3 ____| |
| 4696 | // [8] |__ segments array __| (used by -p) |
| 4697 | // [9] |__ subfaces array __| (used by -p) |
| 4698 | // [10] |_____ reserved _____| |
| 4699 | // [11] |___ elem marker ____| (used as an integer) |
| 4700 | |
| 4701 | elesize = 12 * sizeof(tetrahedron); |
| 4702 | |
| 4703 | // The index to find the element markers. An integer containing varies |
| 4704 | // flags and element counter. |
| 4705 | assert(sizeof(int) <= sizeof(tetrahedron)); |
| 4706 | assert((sizeof(tetrahedron) % sizeof(int)) == 0); |
| 4707 | elemmarkerindex = (elesize - sizeof(tetrahedron)) / sizeof(int); |
| 4708 | |
| 4709 | // The actual number of element attributes. Note that if the |
| 4710 | // `b->regionattrib' flag is set, an additional attribute will be added. |
| 4711 | numelemattrib = in->numberoftetrahedronattributes + (b->regionattrib > 0); |
| 4712 | |
| 4713 | // The index within each element at which its attributes are found, where |
| 4714 | // the index is measured in REALs. |
| 4715 | elemattribindex = (elesize + sizeof(REAL) - 1) / sizeof(REAL); |
| 4716 | // The index within each element at which the maximum volume bound is |
| 4717 | // found, where the index is measured in REALs. |
| 4718 | volumeboundindex = elemattribindex + numelemattrib; |
| 4719 | // If element attributes or an constraint are needed, increase the number |
| 4720 | // of bytes occupied by an element. |
| 4721 | if (b->varvolume) { |
| 4722 | elesize = (volumeboundindex + 1) * sizeof(REAL); |
| 4723 | } else if (numelemattrib > 0) { |
| 4724 | elesize = volumeboundindex * sizeof(REAL); |
| 4725 | } |
| 4726 | |
| 4727 | |
| 4728 | // Having determined the memory size of an element, initialize the pool. |
| 4729 | tetrahedrons = new memorypool(elesize, b->tetrahedraperblock, sizeof(void *), |
| 4730 | 16); |
| 4731 | |
| 4732 | if (b->verbose) { |
| 4733 | printf(" Size of a tetrahedron: %d (%d) bytes.\n" , elesize, |
| 4734 | tetrahedrons->itembytes); |
| 4735 | } |
| 4736 | |
| 4737 | if (b->plc || b->refine) { // if (b->useshelles) { |
| 4738 | // The number of bytes occupied by a subface. The list of pointers |
| 4739 | // stored in a subface are: three to other subfaces, three to corners, |
| 4740 | // three to subsegments, two to tetrahedra. |
| 4741 | shsize = 11 * sizeof(shellface); |
| 4742 | // The index within each subface at which the maximum area bound is |
| 4743 | // found, where the index is measured in REALs. |
| 4744 | areaboundindex = (shsize + sizeof(REAL) - 1) / sizeof(REAL); |
| 4745 | // If -q switch is in use, increase the number of bytes occupied by |
| 4746 | // a subface for saving maximum area bound. |
| 4747 | if (checkconstraints) { |
| 4748 | shsize = (areaboundindex + 1) * sizeof(REAL); |
| 4749 | } else { |
| 4750 | shsize = areaboundindex * sizeof(REAL); |
| 4751 | } |
| 4752 | // The index within subface at which the facet marker is found. Ensure |
| 4753 | // the marker is aligned to a sizeof(int)-byte address. |
| 4754 | shmarkindex = (shsize + sizeof(int) - 1) / sizeof(int); |
| 4755 | // Increase the number of bytes by two or three integers, one for facet |
| 4756 | // marker, one for shellface type, and optionally one for pbc group. |
| 4757 | shsize = (shmarkindex + 2) * sizeof(shellface); |
| 4758 | if (useinsertradius) { |
| 4759 | // Increase the number of byte by one integer for storing facet index. |
| 4760 | // set/read by setfacetindex() and getfacetindex. |
| 4761 | shsize = (shmarkindex + 3) * sizeof(shellface); |
| 4762 | } |
| 4763 | |
| 4764 | // Initialize the pool of subfaces. Each subface record is eight-byte |
| 4765 | // aligned so it has room to store an edge version (from 0 to 5) in |
| 4766 | // the least three bits. |
| 4767 | subfaces = new memorypool(shsize, b->shellfaceperblock, sizeof(void *), 8); |
| 4768 | |
| 4769 | if (b->verbose) { |
| 4770 | printf(" Size of a shellface: %d (%d) bytes.\n" , shsize, |
| 4771 | subfaces->itembytes); |
| 4772 | } |
| 4773 | |
| 4774 | // Initialize the pool of subsegments. The subsegment's record is same |
| 4775 | // with subface. |
| 4776 | subsegs = new memorypool(shsize, b->shellfaceperblock, sizeof(void *), 8); |
| 4777 | |
| 4778 | // Initialize the pool for tet-subseg connections. |
| 4779 | tet2segpool = new memorypool(6 * sizeof(shellface), b->shellfaceperblock, |
| 4780 | sizeof(void *), 0); |
| 4781 | // Initialize the pool for tet-subface connections. |
| 4782 | tet2subpool = new memorypool(4 * sizeof(shellface), b->shellfaceperblock, |
| 4783 | sizeof(void *), 0); |
| 4784 | |
| 4785 | // Initialize arraypools for segment & facet recovery. |
| 4786 | subsegstack = new arraypool(sizeof(face), 10); |
| 4787 | subfacstack = new arraypool(sizeof(face), 10); |
| 4788 | subvertstack = new arraypool(sizeof(point), 8); |
| 4789 | |
| 4790 | // Initialize arraypools for surface point insertion/deletion. |
| 4791 | caveshlist = new arraypool(sizeof(face), 8); |
| 4792 | caveshbdlist = new arraypool(sizeof(face), 8); |
| 4793 | cavesegshlist = new arraypool(sizeof(face), 4); |
| 4794 | |
| 4795 | cavetetshlist = new arraypool(sizeof(face), 8); |
| 4796 | cavetetseglist = new arraypool(sizeof(face), 8); |
| 4797 | caveencshlist = new arraypool(sizeof(face), 8); |
| 4798 | caveencseglist = new arraypool(sizeof(face), 8); |
| 4799 | } |
| 4800 | |
| 4801 | // Initialize the pools for flips. |
| 4802 | flippool = new memorypool(sizeof(badface), 1024, sizeof(void *), 0); |
| 4803 | unflipqueue = new arraypool(sizeof(badface), 10); |
| 4804 | |
| 4805 | // Initialize the arraypools for point insertion. |
| 4806 | cavetetlist = new arraypool(sizeof(triface), 10); |
| 4807 | cavebdrylist = new arraypool(sizeof(triface), 10); |
| 4808 | caveoldtetlist = new arraypool(sizeof(triface), 10); |
| 4809 | cavetetvertlist = new arraypool(sizeof(point), 10); |
| 4810 | } |
| 4811 | |
| 4812 | //// //// |
| 4813 | //// //// |
| 4814 | //// mempool_cxx ////////////////////////////////////////////////////////////// |
| 4815 | |
| 4816 | //// geom_cxx ///////////////////////////////////////////////////////////////// |
| 4817 | //// //// |
| 4818 | //// //// |
| 4819 | |
| 4820 | // PI is the ratio of a circle's circumference to its diameter. |
| 4821 | REAL tetgenmesh::PI = 3.14159265358979323846264338327950288419716939937510582; |
| 4822 | |
| 4823 | /////////////////////////////////////////////////////////////////////////////// |
| 4824 | // // |
| 4825 | // insphere_s() Insphere test with symbolic perturbation. // |
| 4826 | // // |
| 4827 | // Given four points pa, pb, pc, and pd, test if the point pe lies inside or // |
| 4828 | // outside the circumscribed sphere of the four points. // |
| 4829 | // // |
| 4830 | // Here we assume that the 3d orientation of the point sequence {pa, pb, pc, // |
| 4831 | // pd} is positive (NOT zero), i.e., pd lies above the plane passing through // |
| 4832 | // points pa, pb, and pc. Otherwise, the returned sign is flipped. // |
| 4833 | // // |
| 4834 | // Return a positive value (> 0) if pe lies inside, a negative value (< 0) // |
| 4835 | // if pe lies outside the sphere, the returned value will not be zero. // |
| 4836 | // // |
| 4837 | /////////////////////////////////////////////////////////////////////////////// |
| 4838 | |
| 4839 | REAL tetgenmesh::insphere_s(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL* pe) |
| 4840 | { |
| 4841 | REAL sign; |
| 4842 | |
| 4843 | sign = insphere(pa, pb, pc, pd, pe); |
| 4844 | if (sign != 0.0) { |
| 4845 | return sign; |
| 4846 | } |
| 4847 | |
| 4848 | // Symbolic perturbation. |
| 4849 | point pt[5], swappt; |
| 4850 | REAL oriA, oriB; |
| 4851 | int swaps, count; |
| 4852 | int n, i; |
| 4853 | |
| 4854 | pt[0] = pa; |
| 4855 | pt[1] = pb; |
| 4856 | pt[2] = pc; |
| 4857 | pt[3] = pd; |
| 4858 | pt[4] = pe; |
| 4859 | |
| 4860 | // Sort the five points such that their indices are in the increasing |
| 4861 | // order. An optimized bubble sort algorithm is used, i.e., it has |
| 4862 | // the worst case O(n^2) runtime, but it is usually much faster. |
| 4863 | swaps = 0; // Record the total number of swaps. |
| 4864 | n = 5; |
| 4865 | do { |
| 4866 | count = 0; |
| 4867 | n = n - 1; |
| 4868 | for (i = 0; i < n; i++) { |
| 4869 | if (pointmark(pt[i]) > pointmark(pt[i+1])) { |
| 4870 | swappt = pt[i]; pt[i] = pt[i+1]; pt[i+1] = swappt; |
| 4871 | count++; |
| 4872 | } |
| 4873 | } |
| 4874 | swaps += count; |
| 4875 | } while (count > 0); // Continue if some points are swapped. |
| 4876 | |
| 4877 | oriA = orient3d(pt[1], pt[2], pt[3], pt[4]); |
| 4878 | if (oriA != 0.0) { |
| 4879 | // Flip the sign if there are odd number of swaps. |
| 4880 | if ((swaps % 2) != 0) oriA = -oriA; |
| 4881 | return oriA; |
| 4882 | } |
| 4883 | |
| 4884 | oriB = -orient3d(pt[0], pt[2], pt[3], pt[4]); |
| 4885 | assert(oriB != 0.0); // SELF_CHECK |
| 4886 | // Flip the sign if there are odd number of swaps. |
| 4887 | if ((swaps % 2) != 0) oriB = -oriB; |
| 4888 | return oriB; |
| 4889 | } |
| 4890 | |
| 4891 | /////////////////////////////////////////////////////////////////////////////// |
| 4892 | // // |
| 4893 | // orient4d_s() 4d orientation test with symbolic perturbation. // |
| 4894 | // // |
| 4895 | // Given four lifted points pa', pb', pc', and pd' in R^4,test if the lifted // |
| 4896 | // point pe' in R^4 lies below or above the hyperplane passing through the // |
| 4897 | // four points pa', pb', pc', and pd'. // |
| 4898 | // // |
| 4899 | // Here we assume that the 3d orientation of the point sequence {pa, pb, pc, // |
| 4900 | // pd} is positive (NOT zero), i.e., pd lies above the plane passing through // |
| 4901 | // the points pa, pb, and pc. Otherwise, the returned sign is flipped. // |
| 4902 | // // |
| 4903 | // Return a positive value (> 0) if pe' lies below, a negative value (< 0) // |
| 4904 | // if pe' lies above the hyperplane, the returned value should not be zero. // |
| 4905 | // // |
| 4906 | /////////////////////////////////////////////////////////////////////////////// |
| 4907 | |
| 4908 | REAL tetgenmesh::orient4d_s(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL* pe, |
| 4909 | REAL aheight, REAL bheight, REAL cheight, |
| 4910 | REAL dheight, REAL eheight) |
| 4911 | { |
| 4912 | REAL sign; |
| 4913 | |
| 4914 | sign = orient4d(pa, pb, pc, pd, pe, |
| 4915 | aheight, bheight, cheight, dheight, eheight); |
| 4916 | if (sign != 0.0) { |
| 4917 | return sign; |
| 4918 | } |
| 4919 | |
| 4920 | // Symbolic perturbation. |
| 4921 | point pt[5], swappt; |
| 4922 | REAL oriA, oriB; |
| 4923 | int swaps, count; |
| 4924 | int n, i; |
| 4925 | |
| 4926 | pt[0] = pa; |
| 4927 | pt[1] = pb; |
| 4928 | pt[2] = pc; |
| 4929 | pt[3] = pd; |
| 4930 | pt[4] = pe; |
| 4931 | |
| 4932 | // Sort the five points such that their indices are in the increasing |
| 4933 | // order. An optimized bubble sort algorithm is used, i.e., it has |
| 4934 | // the worst case O(n^2) runtime, but it is usually much faster. |
| 4935 | swaps = 0; // Record the total number of swaps. |
| 4936 | n = 5; |
| 4937 | do { |
| 4938 | count = 0; |
| 4939 | n = n - 1; |
| 4940 | for (i = 0; i < n; i++) { |
| 4941 | if (pointmark(pt[i]) > pointmark(pt[i+1])) { |
| 4942 | swappt = pt[i]; pt[i] = pt[i+1]; pt[i+1] = swappt; |
| 4943 | count++; |
| 4944 | } |
| 4945 | } |
| 4946 | swaps += count; |
| 4947 | } while (count > 0); // Continue if some points are swapped. |
| 4948 | |
| 4949 | oriA = orient3d(pt[1], pt[2], pt[3], pt[4]); |
| 4950 | if (oriA != 0.0) { |
| 4951 | // Flip the sign if there are odd number of swaps. |
| 4952 | if ((swaps % 2) != 0) oriA = -oriA; |
| 4953 | return oriA; |
| 4954 | } |
| 4955 | |
| 4956 | oriB = -orient3d(pt[0], pt[2], pt[3], pt[4]); |
| 4957 | assert(oriB != 0.0); // SELF_CHECK |
| 4958 | // Flip the sign if there are odd number of swaps. |
| 4959 | if ((swaps % 2) != 0) oriB = -oriB; |
| 4960 | return oriB; |
| 4961 | } |
| 4962 | |
| 4963 | /////////////////////////////////////////////////////////////////////////////// |
| 4964 | // // |
| 4965 | // tri_edge_test() Triangle-edge intersection test. // |
| 4966 | // // |
| 4967 | // This routine takes a triangle T (with vertices A, B, C) and an edge E (P, // |
| 4968 | // Q) in 3D, and tests if they intersect each other. // |
| 4969 | // // |
| 4970 | // If the point 'R' is not NULL, it lies strictly above the plane defined by // |
| 4971 | // A, B, C. It is used in test when T and E are coplanar. // |
| 4972 | // // |
| 4973 | // If T and E intersect each other, they may intersect in different ways. If // |
| 4974 | // 'level' > 0, their intersection type will be reported 'types' and 'pos'. // |
| 4975 | // // |
| 4976 | // The return value indicates one of the following cases: // |
| 4977 | // - 0, T and E are disjoint. // |
| 4978 | // - 1, T and E intersect each other. // |
| 4979 | // - 2, T and E are not coplanar. They intersect at a single point. // |
| 4980 | // - 4, T and E are coplanar. They intersect at a single point or a line // |
| 4981 | // segment (if types[1] != DISJOINT). // |
| 4982 | // // |
| 4983 | /////////////////////////////////////////////////////////////////////////////// |
| 4984 | |
| 4985 | #define SETVECTOR3(V, a0, a1, a2) (V)[0] = (a0); (V)[1] = (a1); (V)[2] = (a2) |
| 4986 | |
| 4987 | #define SWAP2(a0, a1, tmp) (tmp) = (a0); (a0) = (a1); (a1) = (tmp) |
| 4988 | |
| 4989 | int tetgenmesh::tri_edge_2d(point A, point B, point C, point P, point Q, |
| 4990 | point R, int level, int *types, int *pos) |
| 4991 | { |
| 4992 | point U[3], V[3]; // The permuted vectors of points. |
| 4993 | int pu[3], pv[3]; // The original positions of points. |
| 4994 | REAL abovept[3]; |
| 4995 | REAL sA, sB, sC; |
| 4996 | REAL s1, s2, s3, s4; |
| 4997 | int z1; |
| 4998 | |
| 4999 | if (R == NULL) { |
| 5000 | // Calculate a lift point. |
| 5001 | if (1) { |
| 5002 | REAL n[3], len; |
| 5003 | // Calculate a lift point, saved in dummypoint. |
| 5004 | facenormal(A, B, C, n, 1, NULL); |
| 5005 | len = sqrt(dot(n, n)); |
| 5006 | if (len != 0) { |
| 5007 | n[0] /= len; |
| 5008 | n[1] /= len; |
| 5009 | n[2] /= len; |
| 5010 | len = distance(A, B); |
| 5011 | len += distance(B, C); |
| 5012 | len += distance(C, A); |
| 5013 | len /= 3.0; |
| 5014 | R = abovept; //dummypoint; |
| 5015 | R[0] = A[0] + len * n[0]; |
| 5016 | R[1] = A[1] + len * n[1]; |
| 5017 | R[2] = A[2] + len * n[2]; |
| 5018 | } else { |
| 5019 | // The triangle [A,B,C] is (nearly) degenerate, i.e., it is (close) |
| 5020 | // to a line. We need a line-line intersection test. |
| 5021 | //assert(0); |
| 5022 | // !!! A non-save return value.!!! |
| 5023 | return 0; // DISJOINT |
| 5024 | } |
| 5025 | } |
| 5026 | } |
| 5027 | |
| 5028 | // Test A's, B's, and C's orientations wrt plane PQR. |
| 5029 | sA = orient3d(P, Q, R, A); |
| 5030 | sB = orient3d(P, Q, R, B); |
| 5031 | sC = orient3d(P, Q, R, C); |
| 5032 | |
| 5033 | |
| 5034 | if (sA < 0) { |
| 5035 | if (sB < 0) { |
| 5036 | if (sC < 0) { // (---). |
| 5037 | return 0; |
| 5038 | } else { |
| 5039 | if (sC > 0) { // (--+). |
| 5040 | // All points are in the right positions. |
| 5041 | SETVECTOR3(U, A, B, C); // I3 |
| 5042 | SETVECTOR3(V, P, Q, R); // I2 |
| 5043 | SETVECTOR3(pu, 0, 1, 2); |
| 5044 | SETVECTOR3(pv, 0, 1, 2); |
| 5045 | z1 = 0; |
| 5046 | } else { // (--0). |
| 5047 | SETVECTOR3(U, A, B, C); // I3 |
| 5048 | SETVECTOR3(V, P, Q, R); // I2 |
| 5049 | SETVECTOR3(pu, 0, 1, 2); |
| 5050 | SETVECTOR3(pv, 0, 1, 2); |
| 5051 | z1 = 1; |
| 5052 | } |
| 5053 | } |
| 5054 | } else { |
| 5055 | if (sB > 0) { |
| 5056 | if (sC < 0) { // (-+-). |
| 5057 | SETVECTOR3(U, C, A, B); // PT = ST |
| 5058 | SETVECTOR3(V, P, Q, R); // I2 |
| 5059 | SETVECTOR3(pu, 2, 0, 1); |
| 5060 | SETVECTOR3(pv, 0, 1, 2); |
| 5061 | z1 = 0; |
| 5062 | } else { |
| 5063 | if (sC > 0) { // (-++). |
| 5064 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
| 5065 | SETVECTOR3(V, Q, P, R); // PL = SL |
| 5066 | SETVECTOR3(pu, 1, 2, 0); |
| 5067 | SETVECTOR3(pv, 1, 0, 2); |
| 5068 | z1 = 0; |
| 5069 | } else { // (-+0). |
| 5070 | SETVECTOR3(U, C, A, B); // PT = ST |
| 5071 | SETVECTOR3(V, P, Q, R); // I2 |
| 5072 | SETVECTOR3(pu, 2, 0, 1); |
| 5073 | SETVECTOR3(pv, 0, 1, 2); |
| 5074 | z1 = 2; |
| 5075 | } |
| 5076 | } |
| 5077 | } else { |
| 5078 | if (sC < 0) { // (-0-). |
| 5079 | SETVECTOR3(U, C, A, B); // PT = ST |
| 5080 | SETVECTOR3(V, P, Q, R); // I2 |
| 5081 | SETVECTOR3(pu, 2, 0, 1); |
| 5082 | SETVECTOR3(pv, 0, 1, 2); |
| 5083 | z1 = 1; |
| 5084 | } else { |
| 5085 | if (sC > 0) { // (-0+). |
| 5086 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
| 5087 | SETVECTOR3(V, Q, P, R); // PL = SL |
| 5088 | SETVECTOR3(pu, 1, 2, 0); |
| 5089 | SETVECTOR3(pv, 1, 0, 2); |
| 5090 | z1 = 2; |
| 5091 | } else { // (-00). |
| 5092 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
| 5093 | SETVECTOR3(V, Q, P, R); // PL = SL |
| 5094 | SETVECTOR3(pu, 1, 2, 0); |
| 5095 | SETVECTOR3(pv, 1, 0, 2); |
| 5096 | z1 = 3; |
| 5097 | } |
| 5098 | } |
| 5099 | } |
| 5100 | } |
| 5101 | } else { |
| 5102 | if (sA > 0) { |
| 5103 | if (sB < 0) { |
| 5104 | if (sC < 0) { // (+--). |
| 5105 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
| 5106 | SETVECTOR3(V, P, Q, R); // I2 |
| 5107 | SETVECTOR3(pu, 1, 2, 0); |
| 5108 | SETVECTOR3(pv, 0, 1, 2); |
| 5109 | z1 = 0; |
| 5110 | } else { |
| 5111 | if (sC > 0) { // (+-+). |
| 5112 | SETVECTOR3(U, C, A, B); // PT = ST |
| 5113 | SETVECTOR3(V, Q, P, R); // PL = SL |
| 5114 | SETVECTOR3(pu, 2, 0, 1); |
| 5115 | SETVECTOR3(pv, 1, 0, 2); |
| 5116 | z1 = 0; |
| 5117 | } else { // (+-0). |
| 5118 | SETVECTOR3(U, C, A, B); // PT = ST |
| 5119 | SETVECTOR3(V, Q, P, R); // PL = SL |
| 5120 | SETVECTOR3(pu, 2, 0, 1); |
| 5121 | SETVECTOR3(pv, 1, 0, 2); |
| 5122 | z1 = 2; |
| 5123 | } |
| 5124 | } |
| 5125 | } else { |
| 5126 | if (sB > 0) { |
| 5127 | if (sC < 0) { // (++-). |
| 5128 | SETVECTOR3(U, A, B, C); // I3 |
| 5129 | SETVECTOR3(V, Q, P, R); // PL = SL |
| 5130 | SETVECTOR3(pu, 0, 1, 2); |
| 5131 | SETVECTOR3(pv, 1, 0, 2); |
| 5132 | z1 = 0; |
| 5133 | } else { |
| 5134 | if (sC > 0) { // (+++). |
| 5135 | return 0; |
| 5136 | } else { // (++0). |
| 5137 | SETVECTOR3(U, A, B, C); // I3 |
| 5138 | SETVECTOR3(V, Q, P, R); // PL = SL |
| 5139 | SETVECTOR3(pu, 0, 1, 2); |
| 5140 | SETVECTOR3(pv, 1, 0, 2); |
| 5141 | z1 = 1; |
| 5142 | } |
| 5143 | } |
| 5144 | } else { // (+0#) |
| 5145 | if (sC < 0) { // (+0-). |
| 5146 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
| 5147 | SETVECTOR3(V, P, Q, R); // I2 |
| 5148 | SETVECTOR3(pu, 1, 2, 0); |
| 5149 | SETVECTOR3(pv, 0, 1, 2); |
| 5150 | z1 = 2; |
| 5151 | } else { |
| 5152 | if (sC > 0) { // (+0+). |
| 5153 | SETVECTOR3(U, C, A, B); // PT = ST |
| 5154 | SETVECTOR3(V, Q, P, R); // PL = SL |
| 5155 | SETVECTOR3(pu, 2, 0, 1); |
| 5156 | SETVECTOR3(pv, 1, 0, 2); |
| 5157 | z1 = 1; |
| 5158 | } else { // (+00). |
| 5159 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
| 5160 | SETVECTOR3(V, P, Q, R); // I2 |
| 5161 | SETVECTOR3(pu, 1, 2, 0); |
| 5162 | SETVECTOR3(pv, 0, 1, 2); |
| 5163 | z1 = 3; |
| 5164 | } |
| 5165 | } |
| 5166 | } |
| 5167 | } |
| 5168 | } else { |
| 5169 | if (sB < 0) { |
| 5170 | if (sC < 0) { // (0--). |
| 5171 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
| 5172 | SETVECTOR3(V, P, Q, R); // I2 |
| 5173 | SETVECTOR3(pu, 1, 2, 0); |
| 5174 | SETVECTOR3(pv, 0, 1, 2); |
| 5175 | z1 = 1; |
| 5176 | } else { |
| 5177 | if (sC > 0) { // (0-+). |
| 5178 | SETVECTOR3(U, A, B, C); // I3 |
| 5179 | SETVECTOR3(V, P, Q, R); // I2 |
| 5180 | SETVECTOR3(pu, 0, 1, 2); |
| 5181 | SETVECTOR3(pv, 0, 1, 2); |
| 5182 | z1 = 2; |
| 5183 | } else { // (0-0). |
| 5184 | SETVECTOR3(U, C, A, B); // PT = ST |
| 5185 | SETVECTOR3(V, Q, P, R); // PL = SL |
| 5186 | SETVECTOR3(pu, 2, 0, 1); |
| 5187 | SETVECTOR3(pv, 1, 0, 2); |
| 5188 | z1 = 3; |
| 5189 | } |
| 5190 | } |
| 5191 | } else { |
| 5192 | if (sB > 0) { |
| 5193 | if (sC < 0) { // (0+-). |
| 5194 | SETVECTOR3(U, A, B, C); // I3 |
| 5195 | SETVECTOR3(V, Q, P, R); // PL = SL |
| 5196 | SETVECTOR3(pu, 0, 1, 2); |
| 5197 | SETVECTOR3(pv, 1, 0, 2); |
| 5198 | z1 = 2; |
| 5199 | } else { |
| 5200 | if (sC > 0) { // (0++). |
| 5201 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
| 5202 | SETVECTOR3(V, Q, P, R); // PL = SL |
| 5203 | SETVECTOR3(pu, 1, 2, 0); |
| 5204 | SETVECTOR3(pv, 1, 0, 2); |
| 5205 | z1 = 1; |
| 5206 | } else { // (0+0). |
| 5207 | SETVECTOR3(U, C, A, B); // PT = ST |
| 5208 | SETVECTOR3(V, P, Q, R); // I2 |
| 5209 | SETVECTOR3(pu, 2, 0, 1); |
| 5210 | SETVECTOR3(pv, 0, 1, 2); |
| 5211 | z1 = 3; |
| 5212 | } |
| 5213 | } |
| 5214 | } else { // (00#) |
| 5215 | if (sC < 0) { // (00-). |
| 5216 | SETVECTOR3(U, A, B, C); // I3 |
| 5217 | SETVECTOR3(V, Q, P, R); // PL = SL |
| 5218 | SETVECTOR3(pu, 0, 1, 2); |
| 5219 | SETVECTOR3(pv, 1, 0, 2); |
| 5220 | z1 = 3; |
| 5221 | } else { |
| 5222 | if (sC > 0) { // (00+). |
| 5223 | SETVECTOR3(U, A, B, C); // I3 |
| 5224 | SETVECTOR3(V, P, Q, R); // I2 |
| 5225 | SETVECTOR3(pu, 0, 1, 2); |
| 5226 | SETVECTOR3(pv, 0, 1, 2); |
| 5227 | z1 = 3; |
| 5228 | } else { // (000) |
| 5229 | // Not possible unless ABC is degenerate. |
| 5230 | // Avoiding compiler warnings. |
| 5231 | SETVECTOR3(U, A, B, C); // I3 |
| 5232 | SETVECTOR3(V, P, Q, R); // I2 |
| 5233 | SETVECTOR3(pu, 0, 1, 2); |
| 5234 | SETVECTOR3(pv, 0, 1, 2); |
| 5235 | z1 = 4; |
| 5236 | } |
| 5237 | } |
| 5238 | } |
| 5239 | } |
| 5240 | } |
| 5241 | } |
| 5242 | |
| 5243 | s1 = orient3d(U[0], U[2], R, V[1]); // A, C, R, Q |
| 5244 | s2 = orient3d(U[1], U[2], R, V[0]); // B, C, R, P |
| 5245 | |
| 5246 | if (s1 > 0) { |
| 5247 | return 0; |
| 5248 | } |
| 5249 | if (s2 < 0) { |
| 5250 | return 0; |
| 5251 | } |
| 5252 | |
| 5253 | if (level == 0) { |
| 5254 | return 1; // They are intersected. |
| 5255 | } |
| 5256 | |
| 5257 | assert(z1 != 4); // SELF_CHECK |
| 5258 | |
| 5259 | if (z1 == 1) { |
| 5260 | if (s1 == 0) { // (0###) |
| 5261 | // C = Q. |
| 5262 | types[0] = (int) SHAREVERT; |
| 5263 | pos[0] = pu[2]; // C |
| 5264 | pos[1] = pv[1]; // Q |
| 5265 | types[1] = (int) DISJOINT; |
| 5266 | } else { |
| 5267 | if (s2 == 0) { // (#0##) |
| 5268 | // C = P. |
| 5269 | types[0] = (int) SHAREVERT; |
| 5270 | pos[0] = pu[2]; // C |
| 5271 | pos[1] = pv[0]; // P |
| 5272 | types[1] = (int) DISJOINT; |
| 5273 | } else { // (-+##) |
| 5274 | // C in [P, Q]. |
| 5275 | types[0] = (int) ACROSSVERT; |
| 5276 | pos[0] = pu[2]; // C |
| 5277 | pos[1] = pv[0]; // [P, Q] |
| 5278 | types[1] = (int) DISJOINT; |
| 5279 | } |
| 5280 | } |
| 5281 | return 4; |
| 5282 | } |
| 5283 | |
| 5284 | s3 = orient3d(U[0], U[2], R, V[0]); // A, C, R, P |
| 5285 | s4 = orient3d(U[1], U[2], R, V[1]); // B, C, R, Q |
| 5286 | |
| 5287 | if (z1 == 0) { // (tritri-03) |
| 5288 | if (s1 < 0) { |
| 5289 | if (s3 > 0) { |
| 5290 | assert(s2 > 0); // SELF_CHECK |
| 5291 | if (s4 > 0) { |
| 5292 | // [P, Q] overlaps [k, l] (-+++). |
| 5293 | types[0] = (int) ACROSSEDGE; |
| 5294 | pos[0] = pu[2]; // [C, A] |
| 5295 | pos[1] = pv[0]; // [P, Q] |
| 5296 | types[1] = (int) TOUCHFACE; |
| 5297 | pos[2] = 3; // [A, B, C] |
| 5298 | pos[3] = pv[1]; // Q |
| 5299 | } else { |
| 5300 | if (s4 == 0) { |
| 5301 | // Q = l, [P, Q] contains [k, l] (-++0). |
| 5302 | types[0] = (int) ACROSSEDGE; |
| 5303 | pos[0] = pu[2]; // [C, A] |
| 5304 | pos[1] = pv[0]; // [P, Q] |
| 5305 | types[1] = (int) TOUCHEDGE; |
| 5306 | pos[2] = pu[1]; // [B, C] |
| 5307 | pos[3] = pv[1]; // Q |
| 5308 | } else { // s4 < 0 |
| 5309 | // [P, Q] contains [k, l] (-++-). |
| 5310 | types[0] = (int) ACROSSEDGE; |
| 5311 | pos[0] = pu[2]; // [C, A] |
| 5312 | pos[1] = pv[0]; // [P, Q] |
| 5313 | types[1] = (int) ACROSSEDGE; |
| 5314 | pos[2] = pu[1]; // [B, C] |
| 5315 | pos[3] = pv[0]; // [P, Q] |
| 5316 | } |
| 5317 | } |
| 5318 | } else { |
| 5319 | if (s3 == 0) { |
| 5320 | assert(s2 > 0); // SELF_CHECK |
| 5321 | if (s4 > 0) { |
| 5322 | // P = k, [P, Q] in [k, l] (-+0+). |
| 5323 | types[0] = (int) TOUCHEDGE; |
| 5324 | pos[0] = pu[2]; // [C, A] |
| 5325 | pos[1] = pv[0]; // P |
| 5326 | types[1] = (int) TOUCHFACE; |
| 5327 | pos[2] = 3; // [A, B, C] |
| 5328 | pos[3] = pv[1]; // Q |
| 5329 | } else { |
| 5330 | if (s4 == 0) { |
| 5331 | // [P, Q] = [k, l] (-+00). |
| 5332 | types[0] = (int) TOUCHEDGE; |
| 5333 | pos[0] = pu[2]; // [C, A] |
| 5334 | pos[1] = pv[0]; // P |
| 5335 | types[1] = (int) TOUCHEDGE; |
| 5336 | pos[2] = pu[1]; // [B, C] |
| 5337 | pos[3] = pv[1]; // Q |
| 5338 | } else { |
| 5339 | // P = k, [P, Q] contains [k, l] (-+0-). |
| 5340 | types[0] = (int) TOUCHEDGE; |
| 5341 | pos[0] = pu[2]; // [C, A] |
| 5342 | pos[1] = pv[0]; // P |
| 5343 | types[1] = (int) ACROSSEDGE; |
| 5344 | pos[2] = pu[1]; // [B, C] |
| 5345 | pos[3] = pv[0]; // [P, Q] |
| 5346 | } |
| 5347 | } |
| 5348 | } else { // s3 < 0 |
| 5349 | if (s2 > 0) { |
| 5350 | if (s4 > 0) { |
| 5351 | // [P, Q] in [k, l] (-+-+). |
| 5352 | types[0] = (int) TOUCHFACE; |
| 5353 | pos[0] = 3; // [A, B, C] |
| 5354 | pos[1] = pv[0]; // P |
| 5355 | types[1] = (int) TOUCHFACE; |
| 5356 | pos[2] = 3; // [A, B, C] |
| 5357 | pos[3] = pv[1]; // Q |
| 5358 | } else { |
| 5359 | if (s4 == 0) { |
| 5360 | // Q = l, [P, Q] in [k, l] (-+-0). |
| 5361 | types[0] = (int) TOUCHFACE; |
| 5362 | pos[0] = 3; // [A, B, C] |
| 5363 | pos[1] = pv[0]; // P |
| 5364 | types[1] = (int) TOUCHEDGE; |
| 5365 | pos[2] = pu[1]; // [B, C] |
| 5366 | pos[3] = pv[1]; // Q |
| 5367 | } else { // s4 < 0 |
| 5368 | // [P, Q] overlaps [k, l] (-+--). |
| 5369 | types[0] = (int) TOUCHFACE; |
| 5370 | pos[0] = 3; // [A, B, C] |
| 5371 | pos[1] = pv[0]; // P |
| 5372 | types[1] = (int) ACROSSEDGE; |
| 5373 | pos[2] = pu[1]; // [B, C] |
| 5374 | pos[3] = pv[0]; // [P, Q] |
| 5375 | } |
| 5376 | } |
| 5377 | } else { // s2 == 0 |
| 5378 | // P = l (#0##). |
| 5379 | types[0] = (int) TOUCHEDGE; |
| 5380 | pos[0] = pu[1]; // [B, C] |
| 5381 | pos[1] = pv[0]; // P |
| 5382 | types[1] = (int) DISJOINT; |
| 5383 | } |
| 5384 | } |
| 5385 | } |
| 5386 | } else { // s1 == 0 |
| 5387 | // Q = k (0####) |
| 5388 | types[0] = (int) TOUCHEDGE; |
| 5389 | pos[0] = pu[2]; // [C, A] |
| 5390 | pos[1] = pv[1]; // Q |
| 5391 | types[1] = (int) DISJOINT; |
| 5392 | } |
| 5393 | } else if (z1 == 2) { // (tritri-23) |
| 5394 | if (s1 < 0) { |
| 5395 | if (s3 > 0) { |
| 5396 | assert(s2 > 0); // SELF_CHECK |
| 5397 | if (s4 > 0) { |
| 5398 | // [P, Q] overlaps [A, l] (-+++). |
| 5399 | types[0] = (int) ACROSSVERT; |
| 5400 | pos[0] = pu[0]; // A |
| 5401 | pos[1] = pv[0]; // [P, Q] |
| 5402 | types[1] = (int) TOUCHFACE; |
| 5403 | pos[2] = 3; // [A, B, C] |
| 5404 | pos[3] = pv[1]; // Q |
| 5405 | } else { |
| 5406 | if (s4 == 0) { |
| 5407 | // Q = l, [P, Q] contains [A, l] (-++0). |
| 5408 | types[0] = (int) ACROSSVERT; |
| 5409 | pos[0] = pu[0]; // A |
| 5410 | pos[1] = pv[0]; // [P, Q] |
| 5411 | types[1] = (int) TOUCHEDGE; |
| 5412 | pos[2] = pu[1]; // [B, C] |
| 5413 | pos[3] = pv[1]; // Q |
| 5414 | } else { // s4 < 0 |
| 5415 | // [P, Q] contains [A, l] (-++-). |
| 5416 | types[0] = (int) ACROSSVERT; |
| 5417 | pos[0] = pu[0]; // A |
| 5418 | pos[1] = pv[0]; // [P, Q] |
| 5419 | types[1] = (int) ACROSSEDGE; |
| 5420 | pos[2] = pu[1]; // [B, C] |
| 5421 | pos[3] = pv[0]; // [P, Q] |
| 5422 | } |
| 5423 | } |
| 5424 | } else { |
| 5425 | if (s3 == 0) { |
| 5426 | assert(s2 > 0); // SELF_CHECK |
| 5427 | if (s4 > 0) { |
| 5428 | // P = A, [P, Q] in [A, l] (-+0+). |
| 5429 | types[0] = (int) SHAREVERT; |
| 5430 | pos[0] = pu[0]; // A |
| 5431 | pos[1] = pv[0]; // P |
| 5432 | types[1] = (int) TOUCHFACE; |
| 5433 | pos[2] = 3; // [A, B, C] |
| 5434 | pos[3] = pv[1]; // Q |
| 5435 | } else { |
| 5436 | if (s4 == 0) { |
| 5437 | // [P, Q] = [A, l] (-+00). |
| 5438 | types[0] = (int) SHAREVERT; |
| 5439 | pos[0] = pu[0]; // A |
| 5440 | pos[1] = pv[0]; // P |
| 5441 | types[1] = (int) TOUCHEDGE; |
| 5442 | pos[2] = pu[1]; // [B, C] |
| 5443 | pos[3] = pv[1]; // Q |
| 5444 | } else { // s4 < 0 |
| 5445 | // Q = l, [P, Q] in [A, l] (-+0-). |
| 5446 | types[0] = (int) SHAREVERT; |
| 5447 | pos[0] = pu[0]; // A |
| 5448 | pos[1] = pv[0]; // P |
| 5449 | types[1] = (int) ACROSSEDGE; |
| 5450 | pos[2] = pu[1]; // [B, C] |
| 5451 | pos[3] = pv[0]; // [P, Q] |
| 5452 | } |
| 5453 | } |
| 5454 | } else { // s3 < 0 |
| 5455 | if (s2 > 0) { |
| 5456 | if (s4 > 0) { |
| 5457 | // [P, Q] in [A, l] (-+-+). |
| 5458 | types[0] = (int) TOUCHFACE; |
| 5459 | pos[0] = 3; // [A, B, C] |
| 5460 | pos[1] = pv[0]; // P |
| 5461 | types[0] = (int) TOUCHFACE; |
| 5462 | pos[0] = 3; // [A, B, C] |
| 5463 | pos[1] = pv[1]; // Q |
| 5464 | } else { |
| 5465 | if (s4 == 0) { |
| 5466 | // Q = l, [P, Q] in [A, l] (-+-0). |
| 5467 | types[0] = (int) TOUCHFACE; |
| 5468 | pos[0] = 3; // [A, B, C] |
| 5469 | pos[1] = pv[0]; // P |
| 5470 | types[0] = (int) TOUCHEDGE; |
| 5471 | pos[0] = pu[1]; // [B, C] |
| 5472 | pos[1] = pv[1]; // Q |
| 5473 | } else { // s4 < 0 |
| 5474 | // [P, Q] overlaps [A, l] (-+--). |
| 5475 | types[0] = (int) TOUCHFACE; |
| 5476 | pos[0] = 3; // [A, B, C] |
| 5477 | pos[1] = pv[0]; // P |
| 5478 | types[0] = (int) ACROSSEDGE; |
| 5479 | pos[0] = pu[1]; // [B, C] |
| 5480 | pos[1] = pv[0]; // [P, Q] |
| 5481 | } |
| 5482 | } |
| 5483 | } else { // s2 == 0 |
| 5484 | // P = l (#0##). |
| 5485 | types[0] = (int) TOUCHEDGE; |
| 5486 | pos[0] = pu[1]; // [B, C] |
| 5487 | pos[1] = pv[0]; // P |
| 5488 | types[1] = (int) DISJOINT; |
| 5489 | } |
| 5490 | } |
| 5491 | } |
| 5492 | } else { // s1 == 0 |
| 5493 | // Q = A (0###). |
| 5494 | types[0] = (int) SHAREVERT; |
| 5495 | pos[0] = pu[0]; // A |
| 5496 | pos[1] = pv[1]; // Q |
| 5497 | types[1] = (int) DISJOINT; |
| 5498 | } |
| 5499 | } else if (z1 == 3) { // (tritri-33) |
| 5500 | if (s1 < 0) { |
| 5501 | if (s3 > 0) { |
| 5502 | assert(s2 > 0); // SELF_CHECK |
| 5503 | if (s4 > 0) { |
| 5504 | // [P, Q] overlaps [A, B] (-+++). |
| 5505 | types[0] = (int) ACROSSVERT; |
| 5506 | pos[0] = pu[0]; // A |
| 5507 | pos[1] = pv[0]; // [P, Q] |
| 5508 | types[1] = (int) TOUCHEDGE; |
| 5509 | pos[2] = pu[0]; // [A, B] |
| 5510 | pos[3] = pv[1]; // Q |
| 5511 | } else { |
| 5512 | if (s4 == 0) { |
| 5513 | // Q = B, [P, Q] contains [A, B] (-++0). |
| 5514 | types[0] = (int) ACROSSVERT; |
| 5515 | pos[0] = pu[0]; // A |
| 5516 | pos[1] = pv[0]; // [P, Q] |
| 5517 | types[1] = (int) SHAREVERT; |
| 5518 | pos[2] = pu[1]; // B |
| 5519 | pos[3] = pv[1]; // Q |
| 5520 | } else { // s4 < 0 |
| 5521 | // [P, Q] contains [A, B] (-++-). |
| 5522 | types[0] = (int) ACROSSVERT; |
| 5523 | pos[0] = pu[0]; // A |
| 5524 | pos[1] = pv[0]; // [P, Q] |
| 5525 | types[1] = (int) ACROSSVERT; |
| 5526 | pos[2] = pu[1]; // B |
| 5527 | pos[3] = pv[0]; // [P, Q] |
| 5528 | } |
| 5529 | } |
| 5530 | } else { |
| 5531 | if (s3 == 0) { |
| 5532 | assert(s2 > 0); // SELF_CHECK |
| 5533 | if (s4 > 0) { |
| 5534 | // P = A, [P, Q] in [A, B] (-+0+). |
| 5535 | types[0] = (int) SHAREVERT; |
| 5536 | pos[0] = pu[0]; // A |
| 5537 | pos[1] = pv[0]; // P |
| 5538 | types[1] = (int) TOUCHEDGE; |
| 5539 | pos[2] = pu[0]; // [A, B] |
| 5540 | pos[3] = pv[1]; // Q |
| 5541 | } else { |
| 5542 | if (s4 == 0) { |
| 5543 | // [P, Q] = [A, B] (-+00). |
| 5544 | types[0] = (int) SHAREEDGE; |
| 5545 | pos[0] = pu[0]; // [A, B] |
| 5546 | pos[1] = pv[0]; // [P, Q] |
| 5547 | types[1] = (int) DISJOINT; |
| 5548 | } else { // s4 < 0 |
| 5549 | // P= A, [P, Q] in [A, B] (-+0-). |
| 5550 | types[0] = (int) SHAREVERT; |
| 5551 | pos[0] = pu[0]; // A |
| 5552 | pos[1] = pv[0]; // P |
| 5553 | types[1] = (int) ACROSSVERT; |
| 5554 | pos[2] = pu[1]; // B |
| 5555 | pos[3] = pv[0]; // [P, Q] |
| 5556 | } |
| 5557 | } |
| 5558 | } else { // s3 < 0 |
| 5559 | if (s2 > 0) { |
| 5560 | if (s4 > 0) { |
| 5561 | // [P, Q] in [A, B] (-+-+). |
| 5562 | types[0] = (int) TOUCHEDGE; |
| 5563 | pos[0] = pu[0]; // [A, B] |
| 5564 | pos[1] = pv[0]; // P |
| 5565 | types[1] = (int) TOUCHEDGE; |
| 5566 | pos[2] = pu[0]; // [A, B] |
| 5567 | pos[3] = pv[1]; // Q |
| 5568 | } else { |
| 5569 | if (s4 == 0) { |
| 5570 | // Q = B, [P, Q] in [A, B] (-+-0). |
| 5571 | types[0] = (int) TOUCHEDGE; |
| 5572 | pos[0] = pu[0]; // [A, B] |
| 5573 | pos[1] = pv[0]; // P |
| 5574 | types[1] = (int) SHAREVERT; |
| 5575 | pos[2] = pu[1]; // B |
| 5576 | pos[3] = pv[1]; // Q |
| 5577 | } else { // s4 < 0 |
| 5578 | // [P, Q] overlaps [A, B] (-+--). |
| 5579 | types[0] = (int) TOUCHEDGE; |
| 5580 | pos[0] = pu[0]; // [A, B] |
| 5581 | pos[1] = pv[0]; // P |
| 5582 | types[1] = (int) ACROSSVERT; |
| 5583 | pos[2] = pu[1]; // B |
| 5584 | pos[3] = pv[0]; // [P, Q] |
| 5585 | } |
| 5586 | } |
| 5587 | } else { // s2 == 0 |
| 5588 | // P = B (#0##). |
| 5589 | types[0] = (int) SHAREVERT; |
| 5590 | pos[0] = pu[1]; // B |
| 5591 | pos[1] = pv[0]; // P |
| 5592 | types[1] = (int) DISJOINT; |
| 5593 | } |
| 5594 | } |
| 5595 | } |
| 5596 | } else { // s1 == 0 |
| 5597 | // Q = A (0###). |
| 5598 | types[0] = (int) SHAREVERT; |
| 5599 | pos[0] = pu[0]; // A |
| 5600 | pos[1] = pv[1]; // Q |
| 5601 | types[1] = (int) DISJOINT; |
| 5602 | } |
| 5603 | } |
| 5604 | |
| 5605 | return 4; |
| 5606 | } |
| 5607 | |
| 5608 | int tetgenmesh::tri_edge_tail(point A,point B,point C,point P,point Q,point R, |
| 5609 | REAL sP,REAL sQ,int level,int *types,int *pos) |
| 5610 | { |
| 5611 | point U[3], V[3]; //, Ptmp; |
| 5612 | int pu[3], pv[3]; //, itmp; |
| 5613 | REAL s1, s2, s3; |
| 5614 | int z1; |
| 5615 | |
| 5616 | |
| 5617 | if (sP < 0) { |
| 5618 | if (sQ < 0) { // (--) disjoint |
| 5619 | return 0; |
| 5620 | } else { |
| 5621 | if (sQ > 0) { // (-+) |
| 5622 | SETVECTOR3(U, A, B, C); |
| 5623 | SETVECTOR3(V, P, Q, R); |
| 5624 | SETVECTOR3(pu, 0, 1, 2); |
| 5625 | SETVECTOR3(pv, 0, 1, 2); |
| 5626 | z1 = 0; |
| 5627 | } else { // (-0) |
| 5628 | SETVECTOR3(U, A, B, C); |
| 5629 | SETVECTOR3(V, P, Q, R); |
| 5630 | SETVECTOR3(pu, 0, 1, 2); |
| 5631 | SETVECTOR3(pv, 0, 1, 2); |
| 5632 | z1 = 1; |
| 5633 | } |
| 5634 | } |
| 5635 | } else { |
| 5636 | if (sP > 0) { // (+-) |
| 5637 | if (sQ < 0) { |
| 5638 | SETVECTOR3(U, A, B, C); |
| 5639 | SETVECTOR3(V, Q, P, R); // P and Q are flipped. |
| 5640 | SETVECTOR3(pu, 0, 1, 2); |
| 5641 | SETVECTOR3(pv, 1, 0, 2); |
| 5642 | z1 = 0; |
| 5643 | } else { |
| 5644 | if (sQ > 0) { // (++) disjoint |
| 5645 | return 0; |
| 5646 | } else { // (+0) |
| 5647 | SETVECTOR3(U, B, A, C); // A and B are flipped. |
| 5648 | SETVECTOR3(V, P, Q, R); |
| 5649 | SETVECTOR3(pu, 1, 0, 2); |
| 5650 | SETVECTOR3(pv, 0, 1, 2); |
| 5651 | z1 = 1; |
| 5652 | } |
| 5653 | } |
| 5654 | } else { // sP == 0 |
| 5655 | if (sQ < 0) { // (0-) |
| 5656 | SETVECTOR3(U, A, B, C); |
| 5657 | SETVECTOR3(V, Q, P, R); // P and Q are flipped. |
| 5658 | SETVECTOR3(pu, 0, 1, 2); |
| 5659 | SETVECTOR3(pv, 1, 0, 2); |
| 5660 | z1 = 1; |
| 5661 | } else { |
| 5662 | if (sQ > 0) { // (0+) |
| 5663 | SETVECTOR3(U, B, A, C); // A and B are flipped. |
| 5664 | SETVECTOR3(V, Q, P, R); // P and Q are flipped. |
| 5665 | SETVECTOR3(pu, 1, 0, 2); |
| 5666 | SETVECTOR3(pv, 1, 0, 2); |
| 5667 | z1 = 1; |
| 5668 | } else { // (00) |
| 5669 | // A, B, C, P, and Q are coplanar. |
| 5670 | z1 = 2; |
| 5671 | } |
| 5672 | } |
| 5673 | } |
| 5674 | } |
| 5675 | |
| 5676 | if (z1 == 2) { |
| 5677 | // The triangle and the edge are coplanar. |
| 5678 | return tri_edge_2d(A, B, C, P, Q, R, level, types, pos); |
| 5679 | } |
| 5680 | |
| 5681 | s1 = orient3d(U[0], U[1], V[0], V[1]); |
| 5682 | if (s1 < 0) { |
| 5683 | return 0; |
| 5684 | } |
| 5685 | |
| 5686 | s2 = orient3d(U[1], U[2], V[0], V[1]); |
| 5687 | if (s2 < 0) { |
| 5688 | return 0; |
| 5689 | } |
| 5690 | |
| 5691 | s3 = orient3d(U[2], U[0], V[0], V[1]); |
| 5692 | if (s3 < 0) { |
| 5693 | return 0; |
| 5694 | } |
| 5695 | |
| 5696 | if (level == 0) { |
| 5697 | return 1; // The are intersected. |
| 5698 | } |
| 5699 | |
| 5700 | types[1] = (int) DISJOINT; // No second intersection point. |
| 5701 | |
| 5702 | if (z1 == 0) { |
| 5703 | if (s1 > 0) { |
| 5704 | if (s2 > 0) { |
| 5705 | if (s3 > 0) { // (+++) |
| 5706 | // [P, Q] passes interior of [A, B, C]. |
| 5707 | types[0] = (int) ACROSSFACE; |
| 5708 | pos[0] = 3; // interior of [A, B, C] |
| 5709 | pos[1] = 0; // [P, Q] |
| 5710 | } else { // s3 == 0 (++0) |
| 5711 | // [P, Q] intersects [C, A]. |
| 5712 | types[0] = (int) ACROSSEDGE; |
| 5713 | pos[0] = pu[2]; // [C, A] |
| 5714 | pos[1] = 0; // [P, Q] |
| 5715 | } |
| 5716 | } else { // s2 == 0 |
| 5717 | if (s3 > 0) { // (+0+) |
| 5718 | // [P, Q] intersects [B, C]. |
| 5719 | types[0] = (int) ACROSSEDGE; |
| 5720 | pos[0] = pu[1]; // [B, C] |
| 5721 | pos[1] = 0; // [P, Q] |
| 5722 | } else { // s3 == 0 (+00) |
| 5723 | // [P, Q] passes C. |
| 5724 | types[0] = (int) ACROSSVERT; |
| 5725 | pos[0] = pu[2]; // C |
| 5726 | pos[1] = 0; // [P, Q] |
| 5727 | } |
| 5728 | } |
| 5729 | } else { // s1 == 0 |
| 5730 | if (s2 > 0) { |
| 5731 | if (s3 > 0) { // (0++) |
| 5732 | // [P, Q] intersects [A, B]. |
| 5733 | types[0] = (int) ACROSSEDGE; |
| 5734 | pos[0] = pu[0]; // [A, B] |
| 5735 | pos[1] = 0; // [P, Q] |
| 5736 | } else { // s3 == 0 (0+0) |
| 5737 | // [P, Q] passes A. |
| 5738 | types[0] = (int) ACROSSVERT; |
| 5739 | pos[0] = pu[0]; // A |
| 5740 | pos[1] = 0; // [P, Q] |
| 5741 | } |
| 5742 | } else { // s2 == 0 |
| 5743 | if (s3 > 0) { // (00+) |
| 5744 | // [P, Q] passes B. |
| 5745 | types[0] = (int) ACROSSVERT; |
| 5746 | pos[0] = pu[1]; // B |
| 5747 | pos[1] = 0; // [P, Q] |
| 5748 | } else { // s3 == 0 (000) |
| 5749 | // Impossible. |
| 5750 | assert(0); |
| 5751 | } |
| 5752 | } |
| 5753 | } |
| 5754 | } else { // z1 == 1 |
| 5755 | if (s1 > 0) { |
| 5756 | if (s2 > 0) { |
| 5757 | if (s3 > 0) { // (+++) |
| 5758 | // Q lies in [A, B, C]. |
| 5759 | types[0] = (int) TOUCHFACE; |
| 5760 | pos[0] = 0; // [A, B, C] |
| 5761 | pos[1] = pv[1]; // Q |
| 5762 | } else { // s3 == 0 (++0) |
| 5763 | // Q lies on [C, A]. |
| 5764 | types[0] = (int) TOUCHEDGE; |
| 5765 | pos[0] = pu[2]; // [C, A] |
| 5766 | pos[1] = pv[1]; // Q |
| 5767 | } |
| 5768 | } else { // s2 == 0 |
| 5769 | if (s3 > 0) { // (+0+) |
| 5770 | // Q lies on [B, C]. |
| 5771 | types[0] = (int) TOUCHEDGE; |
| 5772 | pos[0] = pu[1]; // [B, C] |
| 5773 | pos[1] = pv[1]; // Q |
| 5774 | } else { // s3 == 0 (+00) |
| 5775 | // Q = C. |
| 5776 | types[0] = (int) SHAREVERT; |
| 5777 | pos[0] = pu[2]; // C |
| 5778 | pos[1] = pv[1]; // Q |
| 5779 | } |
| 5780 | } |
| 5781 | } else { // s1 == 0 |
| 5782 | if (s2 > 0) { |
| 5783 | if (s3 > 0) { // (0++) |
| 5784 | // Q lies on [A, B]. |
| 5785 | types[0] = (int) TOUCHEDGE; |
| 5786 | pos[0] = pu[0]; // [A, B] |
| 5787 | pos[1] = pv[1]; // Q |
| 5788 | } else { // s3 == 0 (0+0) |
| 5789 | // Q = A. |
| 5790 | types[0] = (int) SHAREVERT; |
| 5791 | pos[0] = pu[0]; // A |
| 5792 | pos[1] = pv[1]; // Q |
| 5793 | } |
| 5794 | } else { // s2 == 0 |
| 5795 | if (s3 > 0) { // (00+) |
| 5796 | // Q = B. |
| 5797 | types[0] = (int) SHAREVERT; |
| 5798 | pos[0] = pu[1]; // B |
| 5799 | pos[1] = pv[1]; // Q |
| 5800 | } else { // s3 == 0 (000) |
| 5801 | // Impossible. |
| 5802 | assert(0); |
| 5803 | } |
| 5804 | } |
| 5805 | } |
| 5806 | } |
| 5807 | |
| 5808 | // T and E intersect in a single point. |
| 5809 | return 2; |
| 5810 | } |
| 5811 | |
| 5812 | int tetgenmesh::tri_edge_test(point A, point B, point C, point P, point Q, |
| 5813 | point R, int level, int *types, int *pos) |
| 5814 | { |
| 5815 | REAL sP, sQ; |
| 5816 | |
| 5817 | // Test the locations of P and Q with respect to ABC. |
| 5818 | sP = orient3d(A, B, C, P); |
| 5819 | sQ = orient3d(A, B, C, Q); |
| 5820 | |
| 5821 | return tri_edge_tail(A, B, C, P, Q, R, sP, sQ, level, types, pos); |
| 5822 | } |
| 5823 | |
| 5824 | /////////////////////////////////////////////////////////////////////////////// |
| 5825 | // // |
| 5826 | // tri_tri_inter() Test whether two triangle (abc) and (opq) are // |
| 5827 | // intersecting or not. // |
| 5828 | // // |
| 5829 | // Return 0 if they are disjoint. Otherwise, return 1. 'type' returns one of // |
| 5830 | // the four cases: SHAREVERTEX, SHAREEDGE, SHAREFACE, and INTERSECT. // |
| 5831 | // // |
| 5832 | /////////////////////////////////////////////////////////////////////////////// |
| 5833 | |
| 5834 | int tetgenmesh::tri_edge_inter_tail(REAL* A, REAL* B, REAL* C, REAL* P, |
| 5835 | REAL* Q, REAL s_p, REAL s_q) |
| 5836 | { |
| 5837 | int types[2], pos[4]; |
| 5838 | int ni; // =0, 2, 4 |
| 5839 | |
| 5840 | ni = tri_edge_tail(A, B, C, P, Q, NULL, s_p, s_q, 1, types, pos); |
| 5841 | |
| 5842 | if (ni > 0) { |
| 5843 | if (ni == 2) { |
| 5844 | // Get the intersection type. |
| 5845 | if (types[0] == (int) SHAREVERT) { |
| 5846 | return (int) SHAREVERT; |
| 5847 | } else { |
| 5848 | return (int) INTERSECT; |
| 5849 | } |
| 5850 | } else if (ni == 4) { |
| 5851 | // There may be two intersections. |
| 5852 | if (types[0] == (int) SHAREVERT) { |
| 5853 | if (types[1] == (int) DISJOINT) { |
| 5854 | return (int) SHAREVERT; |
| 5855 | } else { |
| 5856 | assert(types[1] != (int) SHAREVERT); |
| 5857 | return (int) INTERSECT; |
| 5858 | } |
| 5859 | } else { |
| 5860 | if (types[0] == (int) SHAREEDGE) { |
| 5861 | return (int) SHAREEDGE; |
| 5862 | } else { |
| 5863 | return (int) INTERSECT; |
| 5864 | } |
| 5865 | } |
| 5866 | } else { |
| 5867 | assert(0); |
| 5868 | } |
| 5869 | } |
| 5870 | |
| 5871 | return (int) DISJOINT; |
| 5872 | } |
| 5873 | |
| 5874 | int tetgenmesh::tri_tri_inter(REAL* A,REAL* B,REAL* C,REAL* O,REAL* P,REAL* Q) |
| 5875 | { |
| 5876 | REAL s_o, s_p, s_q; |
| 5877 | REAL s_a, s_b, s_c; |
| 5878 | |
| 5879 | s_o = orient3d(A, B, C, O); |
| 5880 | s_p = orient3d(A, B, C, P); |
| 5881 | s_q = orient3d(A, B, C, Q); |
| 5882 | if ((s_o * s_p > 0.0) && (s_o * s_q > 0.0)) { |
| 5883 | // o, p, q are all in the same halfspace of ABC. |
| 5884 | return 0; // DISJOINT; |
| 5885 | } |
| 5886 | |
| 5887 | s_a = orient3d(O, P, Q, A); |
| 5888 | s_b = orient3d(O, P, Q, B); |
| 5889 | s_c = orient3d(O, P, Q, C); |
| 5890 | if ((s_a * s_b > 0.0) && (s_a * s_c > 0.0)) { |
| 5891 | // a, b, c are all in the same halfspace of OPQ. |
| 5892 | return 0; // DISJOINT; |
| 5893 | } |
| 5894 | |
| 5895 | int abcop, abcpq, abcqo; |
| 5896 | int shareedge = 0; |
| 5897 | |
| 5898 | abcop = tri_edge_inter_tail(A, B, C, O, P, s_o, s_p); |
| 5899 | if (abcop == (int) INTERSECT) { |
| 5900 | return (int) INTERSECT; |
| 5901 | } else if (abcop == (int) SHAREEDGE) { |
| 5902 | shareedge++; |
| 5903 | } |
| 5904 | abcpq = tri_edge_inter_tail(A, B, C, P, Q, s_p, s_q); |
| 5905 | if (abcpq == (int) INTERSECT) { |
| 5906 | return (int) INTERSECT; |
| 5907 | } else if (abcpq == (int) SHAREEDGE) { |
| 5908 | shareedge++; |
| 5909 | } |
| 5910 | abcqo = tri_edge_inter_tail(A, B, C, Q, O, s_q, s_o); |
| 5911 | if (abcqo == (int) INTERSECT) { |
| 5912 | return (int) INTERSECT; |
| 5913 | } else if (abcqo == (int) SHAREEDGE) { |
| 5914 | shareedge++; |
| 5915 | } |
| 5916 | if (shareedge == 3) { |
| 5917 | // opq are coincident with abc. |
| 5918 | return (int) SHAREFACE; |
| 5919 | } |
| 5920 | |
| 5921 | // It is only possible either no share edge or one. |
| 5922 | assert(shareedge == 0 || shareedge == 1); |
| 5923 | |
| 5924 | // Continue to detect whether opq and abc are intersecting or not. |
| 5925 | int opqab, opqbc, opqca; |
| 5926 | |
| 5927 | opqab = tri_edge_inter_tail(O, P, Q, A, B, s_a, s_b); |
| 5928 | if (opqab == (int) INTERSECT) { |
| 5929 | return (int) INTERSECT; |
| 5930 | } |
| 5931 | opqbc = tri_edge_inter_tail(O, P, Q, B, C, s_b, s_c); |
| 5932 | if (opqbc == (int) INTERSECT) { |
| 5933 | return (int) INTERSECT; |
| 5934 | } |
| 5935 | opqca = tri_edge_inter_tail(O, P, Q, C, A, s_c, s_a); |
| 5936 | if (opqca == (int) INTERSECT) { |
| 5937 | return (int) INTERSECT; |
| 5938 | } |
| 5939 | |
| 5940 | // At this point, two triangles are not intersecting and not coincident. |
| 5941 | // They may be share an edge, or share a vertex, or disjoint. |
| 5942 | if (abcop == (int) SHAREEDGE) { |
| 5943 | assert((abcpq == (int) SHAREVERT) && (abcqo == (int) SHAREVERT)); |
| 5944 | // op is coincident with an edge of abc. |
| 5945 | return (int) SHAREEDGE; |
| 5946 | } |
| 5947 | if (abcpq == (int) SHAREEDGE) { |
| 5948 | assert((abcop == (int) SHAREVERT) && (abcqo == (int) SHAREVERT)); |
| 5949 | // pq is coincident with an edge of abc. |
| 5950 | return (int) SHAREEDGE; |
| 5951 | } |
| 5952 | if (abcqo == (int) SHAREEDGE) { |
| 5953 | assert((abcop == (int) SHAREVERT) && (abcpq == (int) SHAREVERT)); |
| 5954 | // qo is coincident with an edge of abc. |
| 5955 | return (int) SHAREEDGE; |
| 5956 | } |
| 5957 | |
| 5958 | // They may share a vertex or disjoint. |
| 5959 | if (abcop == (int) SHAREVERT) { |
| 5960 | // o or p is coincident with a vertex of abc. |
| 5961 | if (abcpq == (int) SHAREVERT) { |
| 5962 | // p is the coincident vertex. |
| 5963 | assert(abcqo != (int) SHAREVERT); |
| 5964 | } else { |
| 5965 | // o is the coincident vertex. |
| 5966 | assert(abcqo == (int) SHAREVERT); |
| 5967 | } |
| 5968 | return (int) SHAREVERT; |
| 5969 | } |
| 5970 | if (abcpq == (int) SHAREVERT) { |
| 5971 | // q is the coincident vertex. |
| 5972 | assert(abcqo == (int) SHAREVERT); |
| 5973 | return (int) SHAREVERT; |
| 5974 | } |
| 5975 | |
| 5976 | // They are disjoint. |
| 5977 | return (int) DISJOINT; |
| 5978 | } |
| 5979 | |
| 5980 | /////////////////////////////////////////////////////////////////////////////// |
| 5981 | // // |
| 5982 | // lu_decmp() Compute the LU decomposition of a matrix. // |
| 5983 | // // |
| 5984 | // Compute the LU decomposition of a (non-singular) square matrix A using // |
| 5985 | // partial pivoting and implicit row exchanges. The result is: // |
| 5986 | // A = P * L * U, // |
| 5987 | // where P is a permutation matrix, L is unit lower triangular, and U is // |
| 5988 | // upper triangular. The factored form of A is used in combination with // |
| 5989 | // 'lu_solve()' to solve linear equations: Ax = b, or invert a matrix. // |
| 5990 | // // |
| 5991 | // The inputs are a square matrix 'lu[N..n+N-1][N..n+N-1]', it's size is 'n'.// |
| 5992 | // On output, 'lu' is replaced by the LU decomposition of a rowwise permuta- // |
| 5993 | // tion of itself, 'ps[N..n+N-1]' is an output vector that records the row // |
| 5994 | // permutation effected by the partial pivoting, effectively, 'ps' array // |
| 5995 | // tells the user what the permutation matrix P is; 'd' is output as +1/-1 // |
| 5996 | // depending on whether the number of row interchanges was even or odd, // |
| 5997 | // respectively. // |
| 5998 | // // |
| 5999 | // Return true if the LU decomposition is successfully computed, otherwise, // |
| 6000 | // return false in case that A is a singular matrix. // |
| 6001 | // // |
| 6002 | /////////////////////////////////////////////////////////////////////////////// |
| 6003 | |
| 6004 | bool tetgenmesh::lu_decmp(REAL lu[4][4], int n, int* ps, REAL* d, int N) |
| 6005 | { |
| 6006 | REAL scales[4]; |
| 6007 | REAL pivot, biggest, mult, tempf; |
| 6008 | int pivotindex = 0; |
| 6009 | int i, j, k; |
| 6010 | |
| 6011 | *d = 1.0; // No row interchanges yet. |
| 6012 | |
| 6013 | for (i = N; i < n + N; i++) { // For each row. |
| 6014 | // Find the largest element in each row for row equilibration |
| 6015 | biggest = 0.0; |
| 6016 | for (j = N; j < n + N; j++) |
| 6017 | if (biggest < (tempf = fabs(lu[i][j]))) |
| 6018 | biggest = tempf; |
| 6019 | if (biggest != 0.0) |
| 6020 | scales[i] = 1.0 / biggest; |
| 6021 | else { |
| 6022 | scales[i] = 0.0; |
| 6023 | return false; // Zero row: singular matrix. |
| 6024 | } |
| 6025 | ps[i] = i; // Initialize pivot sequence. |
| 6026 | } |
| 6027 | |
| 6028 | for (k = N; k < n + N - 1; k++) { // For each column. |
| 6029 | // Find the largest element in each column to pivot around. |
| 6030 | biggest = 0.0; |
| 6031 | for (i = k; i < n + N; i++) { |
| 6032 | if (biggest < (tempf = fabs(lu[ps[i]][k]) * scales[ps[i]])) { |
| 6033 | biggest = tempf; |
| 6034 | pivotindex = i; |
| 6035 | } |
| 6036 | } |
| 6037 | if (biggest == 0.0) { |
| 6038 | return false; // Zero column: singular matrix. |
| 6039 | } |
| 6040 | if (pivotindex != k) { // Update pivot sequence. |
| 6041 | j = ps[k]; |
| 6042 | ps[k] = ps[pivotindex]; |
| 6043 | ps[pivotindex] = j; |
| 6044 | *d = -(*d); // ...and change the parity of d. |
| 6045 | } |
| 6046 | |
| 6047 | // Pivot, eliminating an extra variable each time |
| 6048 | pivot = lu[ps[k]][k]; |
| 6049 | for (i = k + 1; i < n + N; i++) { |
| 6050 | lu[ps[i]][k] = mult = lu[ps[i]][k] / pivot; |
| 6051 | if (mult != 0.0) { |
| 6052 | for (j = k + 1; j < n + N; j++) |
| 6053 | lu[ps[i]][j] -= mult * lu[ps[k]][j]; |
| 6054 | } |
| 6055 | } |
| 6056 | } |
| 6057 | |
| 6058 | // (lu[ps[n + N - 1]][n + N - 1] == 0.0) ==> A is singular. |
| 6059 | return lu[ps[n + N - 1]][n + N - 1] != 0.0; |
| 6060 | } |
| 6061 | |
| 6062 | /////////////////////////////////////////////////////////////////////////////// |
| 6063 | // // |
| 6064 | // lu_solve() Solves the linear equation: Ax = b, after the matrix A // |
| 6065 | // has been decomposed into the lower and upper triangular // |
| 6066 | // matrices L and U, where A = LU. // |
| 6067 | // // |
| 6068 | // 'lu[N..n+N-1][N..n+N-1]' is input, not as the matrix 'A' but rather as // |
| 6069 | // its LU decomposition, computed by the routine 'lu_decmp'; 'ps[N..n+N-1]' // |
| 6070 | // is input as the permutation vector returned by 'lu_decmp'; 'b[N..n+N-1]' // |
| 6071 | // is input as the right-hand side vector, and returns with the solution // |
| 6072 | // vector. 'lu', 'n', and 'ps' are not modified by this routine and can be // |
| 6073 | // left in place for successive calls with different right-hand sides 'b'. // |
| 6074 | // // |
| 6075 | /////////////////////////////////////////////////////////////////////////////// |
| 6076 | |
| 6077 | void tetgenmesh::lu_solve(REAL lu[4][4], int n, int* ps, REAL* b, int N) |
| 6078 | { |
| 6079 | int i, j; |
| 6080 | REAL X[4], dot; |
| 6081 | |
| 6082 | for (i = N; i < n + N; i++) X[i] = 0.0; |
| 6083 | |
| 6084 | // Vector reduction using U triangular matrix. |
| 6085 | for (i = N; i < n + N; i++) { |
| 6086 | dot = 0.0; |
| 6087 | for (j = N; j < i + N; j++) |
| 6088 | dot += lu[ps[i]][j] * X[j]; |
| 6089 | X[i] = b[ps[i]] - dot; |
| 6090 | } |
| 6091 | |
| 6092 | // Back substitution, in L triangular matrix. |
| 6093 | for (i = n + N - 1; i >= N; i--) { |
| 6094 | dot = 0.0; |
| 6095 | for (j = i + 1; j < n + N; j++) |
| 6096 | dot += lu[ps[i]][j] * X[j]; |
| 6097 | X[i] = (X[i] - dot) / lu[ps[i]][i]; |
| 6098 | } |
| 6099 | |
| 6100 | for (i = N; i < n + N; i++) b[i] = X[i]; |
| 6101 | } |
| 6102 | |
| 6103 | /////////////////////////////////////////////////////////////////////////////// |
| 6104 | // // |
| 6105 | // incircle3d() 3D in-circle test. // |
| 6106 | // // |
| 6107 | // Return a negative value if pd is inside the circumcircle of the triangle // |
| 6108 | // pa, pb, and pc. // |
| 6109 | // // |
| 6110 | // IMPORTANT: It assumes that [a,b] is the common edge, i.e., the two input // |
| 6111 | // triangles are [a,b,c] and [b,a,d]. // |
| 6112 | // // |
| 6113 | /////////////////////////////////////////////////////////////////////////////// |
| 6114 | |
| 6115 | REAL tetgenmesh::incircle3d(point pa, point pb, point pc, point pd) |
| 6116 | { |
| 6117 | REAL area2[2], n1[3], n2[3], c[3]; |
| 6118 | REAL sign, r, d; |
| 6119 | |
| 6120 | // Calculate the areas of the two triangles [a, b, c] and [b, a, d]. |
| 6121 | facenormal(pa, pb, pc, n1, 1, NULL); |
| 6122 | area2[0] = dot(n1, n1); |
| 6123 | facenormal(pb, pa, pd, n2, 1, NULL); |
| 6124 | area2[1] = dot(n2, n2); |
| 6125 | |
| 6126 | if (area2[0] > area2[1]) { |
| 6127 | // Choose [a, b, c] as the base triangle. |
| 6128 | circumsphere(pa, pb, pc, NULL, c, &r); |
| 6129 | d = distance(c, pd); |
| 6130 | } else { |
| 6131 | // Choose [b, a, d] as the base triangle. |
| 6132 | if (area2[1] > 0) { |
| 6133 | circumsphere(pb, pa, pd, NULL, c, &r); |
| 6134 | d = distance(c, pc); |
| 6135 | } else { |
| 6136 | // The four points are collinear. This case only happens on the boundary. |
| 6137 | return 0; // Return "not inside". |
| 6138 | } |
| 6139 | } |
| 6140 | |
| 6141 | sign = d - r; |
| 6142 | if (fabs(sign) / r < b->epsilon) { |
| 6143 | sign = 0; |
| 6144 | } |
| 6145 | |
| 6146 | return sign; |
| 6147 | } |
| 6148 | |
| 6149 | /////////////////////////////////////////////////////////////////////////////// |
| 6150 | // // |
| 6151 | // facenormal() Calculate the normal of the face. // |
| 6152 | // // |
| 6153 | // The normal of the face abc can be calculated by the cross product of 2 of // |
| 6154 | // its 3 edge vectors. A better choice of two edge vectors will reduce the // |
| 6155 | // numerical error during the calculation. Burdakov proved that the optimal // |
| 6156 | // basis problem is equivalent to the minimum spanning tree problem with the // |
| 6157 | // edge length be the functional, see Burdakov, "A greedy algorithm for the // |
| 6158 | // optimal basis problem", BIT 37:3 (1997), 591-599. If 'pivot' > 0, the two // |
| 6159 | // short edges in abc are chosen for the calculation. // |
| 6160 | // // |
| 6161 | // If 'lav' is not NULL and if 'pivot' is set, the average edge length of // |
| 6162 | // the edges of the face [a,b,c] is returned. // |
| 6163 | // // |
| 6164 | /////////////////////////////////////////////////////////////////////////////// |
| 6165 | |
| 6166 | void tetgenmesh::facenormal(point pa, point pb, point pc, REAL *n, int pivot, |
| 6167 | REAL* lav) |
| 6168 | { |
| 6169 | REAL v1[3], v2[3], v3[3], *pv1, *pv2; |
| 6170 | REAL L1, L2, L3; |
| 6171 | |
| 6172 | v1[0] = pb[0] - pa[0]; // edge vector v1: a->b |
| 6173 | v1[1] = pb[1] - pa[1]; |
| 6174 | v1[2] = pb[2] - pa[2]; |
| 6175 | v2[0] = pa[0] - pc[0]; // edge vector v2: c->a |
| 6176 | v2[1] = pa[1] - pc[1]; |
| 6177 | v2[2] = pa[2] - pc[2]; |
| 6178 | |
| 6179 | // Default, normal is calculated by: v1 x (-v2) (see Fig. fnormal). |
| 6180 | if (pivot > 0) { |
| 6181 | // Choose edge vectors by Burdakov's algorithm. |
| 6182 | v3[0] = pc[0] - pb[0]; // edge vector v3: b->c |
| 6183 | v3[1] = pc[1] - pb[1]; |
| 6184 | v3[2] = pc[2] - pb[2]; |
| 6185 | L1 = dot(v1, v1); |
| 6186 | L2 = dot(v2, v2); |
| 6187 | L3 = dot(v3, v3); |
| 6188 | // Sort the three edge lengths. |
| 6189 | if (L1 < L2) { |
| 6190 | if (L2 < L3) { |
| 6191 | pv1 = v1; pv2 = v2; // n = v1 x (-v2). |
| 6192 | } else { |
| 6193 | pv1 = v3; pv2 = v1; // n = v3 x (-v1). |
| 6194 | } |
| 6195 | } else { |
| 6196 | if (L1 < L3) { |
| 6197 | pv1 = v1; pv2 = v2; // n = v1 x (-v2). |
| 6198 | } else { |
| 6199 | pv1 = v2; pv2 = v3; // n = v2 x (-v3). |
| 6200 | } |
| 6201 | } |
| 6202 | if (lav) { |
| 6203 | // return the average edge length. |
| 6204 | *lav = (sqrt(L1) + sqrt(L2) + sqrt(L3)) / 3.0; |
| 6205 | } |
| 6206 | } else { |
| 6207 | pv1 = v1; pv2 = v2; // n = v1 x (-v2). |
| 6208 | } |
| 6209 | |
| 6210 | // Calculate the face normal. |
| 6211 | cross(pv1, pv2, n); |
| 6212 | // Inverse the direction; |
| 6213 | n[0] = -n[0]; |
| 6214 | n[1] = -n[1]; |
| 6215 | n[2] = -n[2]; |
| 6216 | } |
| 6217 | |
| 6218 | /////////////////////////////////////////////////////////////////////////////// |
| 6219 | // // |
| 6220 | // shortdistance() Returns the shortest distance from point p to a line // |
| 6221 | // defined by two points e1 and e2. // |
| 6222 | // // |
| 6223 | // First compute the projection length l_p of the vector v1 = p - e1 along // |
| 6224 | // the vector v2 = e2 - e1. Then Pythagoras' Theorem is used to compute the // |
| 6225 | // shortest distance. // |
| 6226 | // // |
| 6227 | // This routine allows that p is collinear with the line. In this case, the // |
| 6228 | // return value is zero. The two points e1 and e2 should not be identical. // |
| 6229 | // // |
| 6230 | /////////////////////////////////////////////////////////////////////////////// |
| 6231 | |
| 6232 | REAL tetgenmesh::shortdistance(REAL* p, REAL* e1, REAL* e2) |
| 6233 | { |
| 6234 | REAL v1[3], v2[3]; |
| 6235 | REAL len, l_p; |
| 6236 | |
| 6237 | v1[0] = e2[0] - e1[0]; |
| 6238 | v1[1] = e2[1] - e1[1]; |
| 6239 | v1[2] = e2[2] - e1[2]; |
| 6240 | v2[0] = p[0] - e1[0]; |
| 6241 | v2[1] = p[1] - e1[1]; |
| 6242 | v2[2] = p[2] - e1[2]; |
| 6243 | |
| 6244 | len = sqrt(dot(v1, v1)); |
| 6245 | assert(len != 0.0); |
| 6246 | |
| 6247 | v1[0] /= len; |
| 6248 | v1[1] /= len; |
| 6249 | v1[2] /= len; |
| 6250 | l_p = dot(v1, v2); |
| 6251 | |
| 6252 | return sqrt(dot(v2, v2) - l_p * l_p); |
| 6253 | } |
| 6254 | |
| 6255 | /////////////////////////////////////////////////////////////////////////////// |
| 6256 | // // |
| 6257 | // triarea() Return the area of a triangle. // |
| 6258 | // // |
| 6259 | /////////////////////////////////////////////////////////////////////////////// |
| 6260 | |
| 6261 | REAL tetgenmesh::triarea(REAL* pa, REAL* pb, REAL* pc) |
| 6262 | { |
| 6263 | REAL A[4][4]; |
| 6264 | |
| 6265 | // Compute the coefficient matrix A (3x3). |
| 6266 | A[0][0] = pb[0] - pa[0]; |
| 6267 | A[0][1] = pb[1] - pa[1]; |
| 6268 | A[0][2] = pb[2] - pa[2]; // vector V1 (pa->pb) |
| 6269 | A[1][0] = pc[0] - pa[0]; |
| 6270 | A[1][1] = pc[1] - pa[1]; |
| 6271 | A[1][2] = pc[2] - pa[2]; // vector V2 (pa->pc) |
| 6272 | |
| 6273 | cross(A[0], A[1], A[2]); // vector V3 (V1 X V2) |
| 6274 | |
| 6275 | return 0.5 * sqrt(dot(A[2], A[2])); // The area of [a,b,c]. |
| 6276 | } |
| 6277 | |
| 6278 | REAL tetgenmesh::orient3dfast(REAL *pa, REAL *pb, REAL *pc, REAL *pd) |
| 6279 | { |
| 6280 | REAL adx, bdx, cdx; |
| 6281 | REAL ady, bdy, cdy; |
| 6282 | REAL adz, bdz, cdz; |
| 6283 | |
| 6284 | adx = pa[0] - pd[0]; |
| 6285 | bdx = pb[0] - pd[0]; |
| 6286 | cdx = pc[0] - pd[0]; |
| 6287 | ady = pa[1] - pd[1]; |
| 6288 | bdy = pb[1] - pd[1]; |
| 6289 | cdy = pc[1] - pd[1]; |
| 6290 | adz = pa[2] - pd[2]; |
| 6291 | bdz = pb[2] - pd[2]; |
| 6292 | cdz = pc[2] - pd[2]; |
| 6293 | |
| 6294 | return adx * (bdy * cdz - bdz * cdy) |
| 6295 | + bdx * (cdy * adz - cdz * ady) |
| 6296 | + cdx * (ady * bdz - adz * bdy); |
| 6297 | } |
| 6298 | |
| 6299 | /////////////////////////////////////////////////////////////////////////////// |
| 6300 | // // |
| 6301 | // interiorangle() Return the interior angle (0 - 2 * PI) between vectors // |
| 6302 | // o->p1 and o->p2. // |
| 6303 | // // |
| 6304 | // 'n' is the normal of the plane containing face (o, p1, p2). The interior // |
| 6305 | // angle is the total angle rotating from o->p1 around n to o->p2. Exchange // |
| 6306 | // the position of p1 and p2 will get the complement angle of the other one. // |
| 6307 | // i.e., interiorangle(o, p1, p2) = 2 * PI - interiorangle(o, p2, p1). Set // |
| 6308 | // 'n' be NULL if you only want the interior angle between 0 - PI. // |
| 6309 | // // |
| 6310 | /////////////////////////////////////////////////////////////////////////////// |
| 6311 | |
| 6312 | REAL tetgenmesh::interiorangle(REAL* o, REAL* p1, REAL* p2, REAL* n) |
| 6313 | { |
| 6314 | REAL v1[3], v2[3], np[3]; |
| 6315 | REAL theta, costheta, lenlen; |
| 6316 | REAL ori, len1, len2; |
| 6317 | |
| 6318 | // Get the interior angle (0 - PI) between o->p1, and o->p2. |
| 6319 | v1[0] = p1[0] - o[0]; |
| 6320 | v1[1] = p1[1] - o[1]; |
| 6321 | v1[2] = p1[2] - o[2]; |
| 6322 | v2[0] = p2[0] - o[0]; |
| 6323 | v2[1] = p2[1] - o[1]; |
| 6324 | v2[2] = p2[2] - o[2]; |
| 6325 | len1 = sqrt(dot(v1, v1)); |
| 6326 | len2 = sqrt(dot(v2, v2)); |
| 6327 | lenlen = len1 * len2; |
| 6328 | assert(lenlen != 0.0); |
| 6329 | |
| 6330 | costheta = dot(v1, v2) / lenlen; |
| 6331 | if (costheta > 1.0) { |
| 6332 | costheta = 1.0; // Roundoff. |
| 6333 | } else if (costheta < -1.0) { |
| 6334 | costheta = -1.0; // Roundoff. |
| 6335 | } |
| 6336 | theta = acos(costheta); |
| 6337 | if (n != NULL) { |
| 6338 | // Get a point above the face (o, p1, p2); |
| 6339 | np[0] = o[0] + n[0]; |
| 6340 | np[1] = o[1] + n[1]; |
| 6341 | np[2] = o[2] + n[2]; |
| 6342 | // Adjust theta (0 - 2 * PI). |
| 6343 | ori = orient3d(p1, o, np, p2); |
| 6344 | if (ori > 0.0) { |
| 6345 | theta = 2 * PI - theta; |
| 6346 | } |
| 6347 | } |
| 6348 | |
| 6349 | return theta; |
| 6350 | } |
| 6351 | |
| 6352 | /////////////////////////////////////////////////////////////////////////////// |
| 6353 | // // |
| 6354 | // projpt2edge() Return the projection point from a point to an edge. // |
| 6355 | // // |
| 6356 | /////////////////////////////////////////////////////////////////////////////// |
| 6357 | |
| 6358 | void tetgenmesh::projpt2edge(REAL* p, REAL* e1, REAL* e2, REAL* prj) |
| 6359 | { |
| 6360 | REAL v1[3], v2[3]; |
| 6361 | REAL len, l_p; |
| 6362 | |
| 6363 | v1[0] = e2[0] - e1[0]; |
| 6364 | v1[1] = e2[1] - e1[1]; |
| 6365 | v1[2] = e2[2] - e1[2]; |
| 6366 | v2[0] = p[0] - e1[0]; |
| 6367 | v2[1] = p[1] - e1[1]; |
| 6368 | v2[2] = p[2] - e1[2]; |
| 6369 | |
| 6370 | len = sqrt(dot(v1, v1)); |
| 6371 | assert(len != 0.0); |
| 6372 | v1[0] /= len; |
| 6373 | v1[1] /= len; |
| 6374 | v1[2] /= len; |
| 6375 | l_p = dot(v1, v2); |
| 6376 | |
| 6377 | prj[0] = e1[0] + l_p * v1[0]; |
| 6378 | prj[1] = e1[1] + l_p * v1[1]; |
| 6379 | prj[2] = e1[2] + l_p * v1[2]; |
| 6380 | } |
| 6381 | |
| 6382 | /////////////////////////////////////////////////////////////////////////////// |
| 6383 | // // |
| 6384 | // projpt2face() Return the projection point from a point to a face. // |
| 6385 | // // |
| 6386 | /////////////////////////////////////////////////////////////////////////////// |
| 6387 | |
| 6388 | void tetgenmesh::projpt2face(REAL* p, REAL* f1, REAL* f2, REAL* f3, REAL* prj) |
| 6389 | { |
| 6390 | REAL fnormal[3], v1[3]; |
| 6391 | REAL len, dist; |
| 6392 | |
| 6393 | // Get the unit face normal. |
| 6394 | facenormal(f1, f2, f3, fnormal, 1, NULL); |
| 6395 | len = sqrt(fnormal[0]*fnormal[0] + fnormal[1]*fnormal[1] + |
| 6396 | fnormal[2]*fnormal[2]); |
| 6397 | fnormal[0] /= len; |
| 6398 | fnormal[1] /= len; |
| 6399 | fnormal[2] /= len; |
| 6400 | // Get the vector v1 = |p - f1|. |
| 6401 | v1[0] = p[0] - f1[0]; |
| 6402 | v1[1] = p[1] - f1[1]; |
| 6403 | v1[2] = p[2] - f1[2]; |
| 6404 | // Get the project distance. |
| 6405 | dist = dot(fnormal, v1); |
| 6406 | |
| 6407 | // Get the project point. |
| 6408 | prj[0] = p[0] - dist * fnormal[0]; |
| 6409 | prj[1] = p[1] - dist * fnormal[1]; |
| 6410 | prj[2] = p[2] - dist * fnormal[2]; |
| 6411 | } |
| 6412 | |
| 6413 | /////////////////////////////////////////////////////////////////////////////// |
| 6414 | // // |
| 6415 | // facedihedral() Return the dihedral angle (in radian) between two // |
| 6416 | // adjoining faces. // |
| 6417 | // // |
| 6418 | // 'pa', 'pb' are the shared edge of these two faces, 'pc1', and 'pc2' are // |
| 6419 | // apexes of these two faces. Return the angle (between 0 to 2*pi) between // |
| 6420 | // the normal of face (pa, pb, pc1) and normal of face (pa, pb, pc2). // |
| 6421 | // // |
| 6422 | /////////////////////////////////////////////////////////////////////////////// |
| 6423 | |
| 6424 | REAL tetgenmesh::facedihedral(REAL* pa, REAL* pb, REAL* pc1, REAL* pc2) |
| 6425 | { |
| 6426 | REAL n1[3], n2[3]; |
| 6427 | REAL n1len, n2len; |
| 6428 | REAL costheta, ori; |
| 6429 | REAL theta; |
| 6430 | |
| 6431 | facenormal(pa, pb, pc1, n1, 1, NULL); |
| 6432 | facenormal(pa, pb, pc2, n2, 1, NULL); |
| 6433 | n1len = sqrt(dot(n1, n1)); |
| 6434 | n2len = sqrt(dot(n2, n2)); |
| 6435 | costheta = dot(n1, n2) / (n1len * n2len); |
| 6436 | // Be careful rounding error! |
| 6437 | if (costheta > 1.0) { |
| 6438 | costheta = 1.0; |
| 6439 | } else if (costheta < -1.0) { |
| 6440 | costheta = -1.0; |
| 6441 | } |
| 6442 | theta = acos(costheta); |
| 6443 | ori = orient3d(pa, pb, pc1, pc2); |
| 6444 | if (ori > 0.0) { |
| 6445 | theta = 2 * PI - theta; |
| 6446 | } |
| 6447 | |
| 6448 | return theta; |
| 6449 | } |
| 6450 | |
| 6451 | /////////////////////////////////////////////////////////////////////////////// |
| 6452 | // // |
| 6453 | // tetalldihedral() Get all (six) dihedral angles of a tet. // |
| 6454 | // // |
| 6455 | // If 'cosdd' is not NULL, it returns the cosines of the 6 dihedral angles, // |
| 6456 | // the edge indices are given in the global array 'edge2ver'. If 'cosmaxd' // |
| 6457 | // (or 'cosmind') is not NULL, it returns the cosine of the maximal (or // |
| 6458 | // minimal) dihedral angle. // |
| 6459 | // // |
| 6460 | /////////////////////////////////////////////////////////////////////////////// |
| 6461 | |
| 6462 | bool tetgenmesh::tetalldihedral(point pa, point pb, point pc, point pd, |
| 6463 | REAL* cosdd, REAL* cosmaxd, REAL* cosmind) |
| 6464 | { |
| 6465 | REAL N[4][3], vol, cosd, len; |
| 6466 | int f1 = 0, f2 = 0, i, j; |
| 6467 | |
| 6468 | vol = 0; // Check if the tet is valid or not. |
| 6469 | |
| 6470 | // Get four normals of faces of the tet. |
| 6471 | tetallnormal(pa, pb, pc, pd, N, &vol); |
| 6472 | |
| 6473 | if (vol > 0) { |
| 6474 | // Normalize the normals. |
| 6475 | for (i = 0; i < 4; i++) { |
| 6476 | len = sqrt(dot(N[i], N[i])); |
| 6477 | if (len != 0.0) { |
| 6478 | for (j = 0; j < 3; j++) N[i][j] /= len; |
| 6479 | } else { |
| 6480 | // There are degeneracies, such as duplicated vertices. |
| 6481 | vol = 0; //assert(0); |
| 6482 | } |
| 6483 | } |
| 6484 | } |
| 6485 | |
| 6486 | if (vol <= 0) { // if (vol == 0.0) { |
| 6487 | // A degenerated tet or an inverted tet. |
| 6488 | facenormal(pc, pb, pd, N[0], 1, NULL); |
| 6489 | facenormal(pa, pc, pd, N[1], 1, NULL); |
| 6490 | facenormal(pb, pa, pd, N[2], 1, NULL); |
| 6491 | facenormal(pa, pb, pc, N[3], 1, NULL); |
| 6492 | // Normalize the normals. |
| 6493 | for (i = 0; i < 4; i++) { |
| 6494 | len = sqrt(dot(N[i], N[i])); |
| 6495 | if (len != 0.0) { |
| 6496 | for (j = 0; j < 3; j++) N[i][j] /= len; |
| 6497 | } else { |
| 6498 | // There are degeneracies, such as duplicated vertices. |
| 6499 | break; // Not a valid normal. |
| 6500 | } |
| 6501 | } |
| 6502 | if (i < 4) { |
| 6503 | // Do not calculate dihedral angles. |
| 6504 | // Set all angles be 0 degree. There will be no quality optimization for |
| 6505 | // this tet! Use volume optimization to correct it. |
| 6506 | if (cosdd != NULL) { |
| 6507 | for (i = 0; i < 6; i++) { |
| 6508 | cosdd[i] = -1.0; // 180 degree. |
| 6509 | } |
| 6510 | } |
| 6511 | // This tet has zero volume. |
| 6512 | if (cosmaxd != NULL) { |
| 6513 | *cosmaxd = -1.0; // 180 degree. |
| 6514 | } |
| 6515 | if (cosmind != NULL) { |
| 6516 | *cosmind = -1.0; // 180 degree. |
| 6517 | } |
| 6518 | return false; |
| 6519 | } |
| 6520 | } |
| 6521 | |
| 6522 | // Calculate the cosine of the dihedral angles of the edges. |
| 6523 | for (i = 0; i < 6; i++) { |
| 6524 | switch (i) { |
| 6525 | case 0: f1 = 0; f2 = 1; break; // [c,d]. |
| 6526 | case 1: f1 = 1; f2 = 2; break; // [a,d]. |
| 6527 | case 2: f1 = 2; f2 = 3; break; // [a,b]. |
| 6528 | case 3: f1 = 0; f2 = 3; break; // [b,c]. |
| 6529 | case 4: f1 = 2; f2 = 0; break; // [b,d]. |
| 6530 | case 5: f1 = 1; f2 = 3; break; // [a,c]. |
| 6531 | } |
| 6532 | cosd = -dot(N[f1], N[f2]); |
| 6533 | if (cosd < -1.0) cosd = -1.0; // Rounding. |
| 6534 | if (cosd > 1.0) cosd = 1.0; // Rounding. |
| 6535 | if (cosdd) cosdd[i] = cosd; |
| 6536 | if (cosmaxd || cosmind) { |
| 6537 | if (i == 0) { |
| 6538 | if (cosmaxd) *cosmaxd = cosd; |
| 6539 | if (cosmind) *cosmind = cosd; |
| 6540 | } else { |
| 6541 | if (cosmaxd) *cosmaxd = cosd < *cosmaxd ? cosd : *cosmaxd; |
| 6542 | if (cosmind) *cosmind = cosd > *cosmind ? cosd : *cosmind; |
| 6543 | } |
| 6544 | } |
| 6545 | } |
| 6546 | |
| 6547 | return true; |
| 6548 | } |
| 6549 | |
| 6550 | /////////////////////////////////////////////////////////////////////////////// |
| 6551 | // // |
| 6552 | // tetallnormal() Get the in-normals of the four faces of a given tet. // |
| 6553 | // // |
| 6554 | // Let tet be abcd. N[4][3] returns the four normals, which are: N[0] cbd, // |
| 6555 | // N[1] acd, N[2] bad, N[3] abc (exactly corresponding to the face indices // |
| 6556 | // of the mesh data structure). These normals are unnormalized. // |
| 6557 | // // |
| 6558 | /////////////////////////////////////////////////////////////////////////////// |
| 6559 | |
| 6560 | void tetgenmesh::tetallnormal(point pa, point pb, point pc, point pd, |
| 6561 | REAL N[4][3], REAL* volume) |
| 6562 | { |
| 6563 | REAL A[4][4], rhs[4], D; |
| 6564 | int indx[4]; |
| 6565 | int i, j; |
| 6566 | |
| 6567 | // get the entries of A[3][3]. |
| 6568 | for (i = 0; i < 3; i++) A[0][i] = pa[i] - pd[i]; // d->a vec |
| 6569 | for (i = 0; i < 3; i++) A[1][i] = pb[i] - pd[i]; // d->b vec |
| 6570 | for (i = 0; i < 3; i++) A[2][i] = pc[i] - pd[i]; // d->c vec |
| 6571 | |
| 6572 | // Compute the inverse of matrix A, to get 3 normals of the 4 faces. |
| 6573 | if (lu_decmp(A, 3, indx, &D, 0)) { // Decompose the matrix just once. |
| 6574 | if (volume != NULL) { |
| 6575 | // Get the volume of the tet. |
| 6576 | *volume = fabs((A[indx[0]][0] * A[indx[1]][1] * A[indx[2]][2])) / 6.0; |
| 6577 | } |
| 6578 | for (j = 0; j < 3; j++) { |
| 6579 | for (i = 0; i < 3; i++) rhs[i] = 0.0; |
| 6580 | rhs[j] = 1.0; // Positive means the inside direction |
| 6581 | lu_solve(A, 3, indx, rhs, 0); |
| 6582 | for (i = 0; i < 3; i++) N[j][i] = rhs[i]; |
| 6583 | } |
| 6584 | // Get the fourth normal by summing up the first three. |
| 6585 | for (i = 0; i < 3; i++) N[3][i] = - N[0][i] - N[1][i] - N[2][i]; |
| 6586 | } else { |
| 6587 | // The tet is degenerated. |
| 6588 | if (volume != NULL) { |
| 6589 | *volume = 0; |
| 6590 | } |
| 6591 | } |
| 6592 | } |
| 6593 | |
| 6594 | /////////////////////////////////////////////////////////////////////////////// |
| 6595 | // // |
| 6596 | // tetaspectratio() Calculate the aspect ratio of the tetrahedron. // |
| 6597 | // // |
| 6598 | // The aspect ratio of a tet is R/h, where R is the circumradius and h is // |
| 6599 | // the shortest height of the tet. // |
| 6600 | // // |
| 6601 | /////////////////////////////////////////////////////////////////////////////// |
| 6602 | |
| 6603 | REAL tetgenmesh::tetaspectratio(point pa, point pb, point pc, point pd) |
| 6604 | { |
| 6605 | REAL vda[3], vdb[3], vdc[3]; |
| 6606 | REAL N[4][3], A[4][4], rhs[4], D; |
| 6607 | REAL H[4], volume, radius2, minheightinv; |
| 6608 | int indx[4]; |
| 6609 | int i, j; |
| 6610 | |
| 6611 | // Set the matrix A = [vda, vdb, vdc]^T. |
| 6612 | for (i = 0; i < 3; i++) A[0][i] = vda[i] = pa[i] - pd[i]; |
| 6613 | for (i = 0; i < 3; i++) A[1][i] = vdb[i] = pb[i] - pd[i]; |
| 6614 | for (i = 0; i < 3; i++) A[2][i] = vdc[i] = pc[i] - pd[i]; |
| 6615 | // Lu-decompose the matrix A. |
| 6616 | lu_decmp(A, 3, indx, &D, 0); |
| 6617 | // Get the volume of abcd. |
| 6618 | volume = (A[indx[0]][0] * A[indx[1]][1] * A[indx[2]][2]) / 6.0; |
| 6619 | // Check if it is zero. |
| 6620 | if (volume == 0.0) return 1.0e+200; // A degenerate tet. |
| 6621 | // if (volume < 0.0) volume = -volume; |
| 6622 | // Check the radiu-edge ratio of the tet. |
| 6623 | rhs[0] = 0.5 * dot(vda, vda); |
| 6624 | rhs[1] = 0.5 * dot(vdb, vdb); |
| 6625 | rhs[2] = 0.5 * dot(vdc, vdc); |
| 6626 | lu_solve(A, 3, indx, rhs, 0); |
| 6627 | // Get the circumcenter. |
| 6628 | // for (i = 0; i < 3; i++) circumcent[i] = pd[i] + rhs[i]; |
| 6629 | // Get the square of the circumradius. |
| 6630 | radius2 = dot(rhs, rhs); |
| 6631 | |
| 6632 | // Compute the 4 face normals (N[0], ..., N[3]). |
| 6633 | for (j = 0; j < 3; j++) { |
| 6634 | for (i = 0; i < 3; i++) rhs[i] = 0.0; |
| 6635 | rhs[j] = 1.0; // Positive means the inside direction |
| 6636 | lu_solve(A, 3, indx, rhs, 0); |
| 6637 | for (i = 0; i < 3; i++) N[j][i] = rhs[i]; |
| 6638 | } |
| 6639 | // Get the fourth normal by summing up the first three. |
| 6640 | for (i = 0; i < 3; i++) N[3][i] = - N[0][i] - N[1][i] - N[2][i]; |
| 6641 | // Normalized the normals. |
| 6642 | for (i = 0; i < 4; i++) { |
| 6643 | // H[i] is the inverse of the height of its corresponding face. |
| 6644 | H[i] = sqrt(dot(N[i], N[i])); |
| 6645 | // if (H[i] > 0.0) { |
| 6646 | // for (j = 0; j < 3; j++) N[i][j] /= H[i]; |
| 6647 | // } |
| 6648 | } |
| 6649 | // Get the radius of the inscribed sphere. |
| 6650 | // insradius = 1.0 / (H[0] + H[1] + H[2] + H[3]); |
| 6651 | // Get the biggest H[i] (corresponding to the smallest height). |
| 6652 | minheightinv = H[0]; |
| 6653 | for (i = 1; i < 3; i++) { |
| 6654 | if (H[i] > minheightinv) minheightinv = H[i]; |
| 6655 | } |
| 6656 | |
| 6657 | return sqrt(radius2) * minheightinv; |
| 6658 | } |
| 6659 | |
| 6660 | /////////////////////////////////////////////////////////////////////////////// |
| 6661 | // // |
| 6662 | // circumsphere() Calculate the smallest circumsphere (center and radius) // |
| 6663 | // of the given three or four points. // |
| 6664 | // // |
| 6665 | // The circumsphere of four points (a tetrahedron) is unique if they are not // |
| 6666 | // degenerate. If 'pd = NULL', the smallest circumsphere of three points is // |
| 6667 | // the diametral sphere of the triangle if they are not degenerate. // |
| 6668 | // // |
| 6669 | // Return TRUE if the input points are not degenerate and the circumcenter // |
| 6670 | // and circumradius are returned in 'cent' and 'radius' respectively if they // |
| 6671 | // are not NULLs. Otherwise, return FALSE, the four points are co-planar. // |
| 6672 | // // |
| 6673 | /////////////////////////////////////////////////////////////////////////////// |
| 6674 | |
| 6675 | bool tetgenmesh::circumsphere(REAL* pa, REAL* pb, REAL* pc, REAL* pd, |
| 6676 | REAL* cent, REAL* radius) |
| 6677 | { |
| 6678 | REAL A[4][4], rhs[4], D; |
| 6679 | int indx[4]; |
| 6680 | |
| 6681 | // Compute the coefficient matrix A (3x3). |
| 6682 | A[0][0] = pb[0] - pa[0]; |
| 6683 | A[0][1] = pb[1] - pa[1]; |
| 6684 | A[0][2] = pb[2] - pa[2]; |
| 6685 | A[1][0] = pc[0] - pa[0]; |
| 6686 | A[1][1] = pc[1] - pa[1]; |
| 6687 | A[1][2] = pc[2] - pa[2]; |
| 6688 | if (pd != NULL) { |
| 6689 | A[2][0] = pd[0] - pa[0]; |
| 6690 | A[2][1] = pd[1] - pa[1]; |
| 6691 | A[2][2] = pd[2] - pa[2]; |
| 6692 | } else { |
| 6693 | cross(A[0], A[1], A[2]); |
| 6694 | } |
| 6695 | |
| 6696 | // Compute the right hand side vector b (3x1). |
| 6697 | rhs[0] = 0.5 * dot(A[0], A[0]); |
| 6698 | rhs[1] = 0.5 * dot(A[1], A[1]); |
| 6699 | if (pd != NULL) { |
| 6700 | rhs[2] = 0.5 * dot(A[2], A[2]); |
| 6701 | } else { |
| 6702 | rhs[2] = 0.0; |
| 6703 | } |
| 6704 | |
| 6705 | // Solve the 3 by 3 equations use LU decomposition with partial pivoting |
| 6706 | // and backward and forward substitute.. |
| 6707 | if (!lu_decmp(A, 3, indx, &D, 0)) { |
| 6708 | if (radius != (REAL *) NULL) *radius = 0.0; |
| 6709 | return false; |
| 6710 | } |
| 6711 | lu_solve(A, 3, indx, rhs, 0); |
| 6712 | if (cent != (REAL *) NULL) { |
| 6713 | cent[0] = pa[0] + rhs[0]; |
| 6714 | cent[1] = pa[1] + rhs[1]; |
| 6715 | cent[2] = pa[2] + rhs[2]; |
| 6716 | } |
| 6717 | if (radius != (REAL *) NULL) { |
| 6718 | *radius = sqrt(rhs[0] * rhs[0] + rhs[1] * rhs[1] + rhs[2] * rhs[2]); |
| 6719 | } |
| 6720 | return true; |
| 6721 | } |
| 6722 | |
| 6723 | /////////////////////////////////////////////////////////////////////////////// |
| 6724 | // // |
| 6725 | // orthosphere() Calulcate the orthosphere of four weighted points. // |
| 6726 | // // |
| 6727 | // A weighted point (p, P^2) can be interpreted as a sphere centered at the // |
| 6728 | // point 'p' with a radius 'P'. The 'height' of 'p' is pheight = p[0]^2 + // |
| 6729 | // p[1]^2 + p[2]^2 - P^2. // |
| 6730 | // // |
| 6731 | /////////////////////////////////////////////////////////////////////////////// |
| 6732 | |
| 6733 | bool tetgenmesh::orthosphere(REAL* pa, REAL* pb, REAL* pc, REAL* pd, |
| 6734 | REAL aheight, REAL bheight, REAL cheight, |
| 6735 | REAL dheight, REAL* orthocent, REAL* radius) |
| 6736 | { |
| 6737 | REAL A[4][4], rhs[4], D; |
| 6738 | int indx[4]; |
| 6739 | |
| 6740 | // Set the coefficient matrix A (4 x 4). |
| 6741 | A[0][0] = 1.0; A[0][1] = pa[0]; A[0][2] = pa[1]; A[0][3] = pa[2]; |
| 6742 | A[1][0] = 1.0; A[1][1] = pb[0]; A[1][2] = pb[1]; A[1][3] = pb[2]; |
| 6743 | A[2][0] = 1.0; A[2][1] = pc[0]; A[2][2] = pc[1]; A[2][3] = pc[2]; |
| 6744 | A[3][0] = 1.0; A[3][1] = pd[0]; A[3][2] = pd[1]; A[3][3] = pd[2]; |
| 6745 | |
| 6746 | // Set the right hand side vector (4 x 1). |
| 6747 | rhs[0] = 0.5 * aheight; |
| 6748 | rhs[1] = 0.5 * bheight; |
| 6749 | rhs[2] = 0.5 * cheight; |
| 6750 | rhs[3] = 0.5 * dheight; |
| 6751 | |
| 6752 | // Solve the 4 by 4 equations use LU decomposition with partial pivoting |
| 6753 | // and backward and forward substitute.. |
| 6754 | if (!lu_decmp(A, 4, indx, &D, 0)) { |
| 6755 | if (radius != (REAL *) NULL) *radius = 0.0; |
| 6756 | return false; |
| 6757 | } |
| 6758 | lu_solve(A, 4, indx, rhs, 0); |
| 6759 | |
| 6760 | if (orthocent != (REAL *) NULL) { |
| 6761 | orthocent[0] = rhs[1]; |
| 6762 | orthocent[1] = rhs[2]; |
| 6763 | orthocent[2] = rhs[3]; |
| 6764 | } |
| 6765 | if (radius != (REAL *) NULL) { |
| 6766 | // rhs[0] = - rheight / 2; |
| 6767 | // rheight = - 2 * rhs[0]; |
| 6768 | // = r[0]^2 + r[1]^2 + r[2]^2 - radius^2 |
| 6769 | // radius^2 = r[0]^2 + r[1]^2 + r[2]^2 -rheight |
| 6770 | // = r[0]^2 + r[1]^2 + r[2]^2 + 2 * rhs[0] |
| 6771 | *radius = sqrt(rhs[1] * rhs[1] + rhs[2] * rhs[2] + rhs[3] * rhs[3] |
| 6772 | + 2.0 * rhs[0]); |
| 6773 | } |
| 6774 | return true; |
| 6775 | } |
| 6776 | |
| 6777 | /////////////////////////////////////////////////////////////////////////////// |
| 6778 | // // |
| 6779 | // planelineint() Calculate the intersection of a line and a plane. // |
| 6780 | // // |
| 6781 | // The equation of a plane (points P are on the plane with normal N and P3 // |
| 6782 | // on the plane) can be written as: N dot (P - P3) = 0. The equation of the // |
| 6783 | // line (points P on the line passing through P1 and P2) can be written as: // |
| 6784 | // P = P1 + u (P2 - P1). The intersection of these two occurs when: // |
| 6785 | // N dot (P1 + u (P2 - P1)) = N dot P3. // |
| 6786 | // Solving for u gives: // |
| 6787 | // N dot (P3 - P1) // |
| 6788 | // u = ------------------. // |
| 6789 | // N dot (P2 - P1) // |
| 6790 | // If the denominator is 0 then N (the normal to the plane) is perpendicular // |
| 6791 | // to the line. Thus the line is either parallel to the plane and there are // |
| 6792 | // no solutions or the line is on the plane in which case there are an infi- // |
| 6793 | // nite number of solutions. // |
| 6794 | // // |
| 6795 | // The plane is given by three points pa, pb, and pc, e1 and e2 defines the // |
| 6796 | // line. If u is non-zero, The intersection point (if exists) returns in ip. // |
| 6797 | // // |
| 6798 | /////////////////////////////////////////////////////////////////////////////// |
| 6799 | |
| 6800 | void tetgenmesh::planelineint(REAL* pa, REAL* pb, REAL* pc, REAL* e1, REAL* e2, |
| 6801 | REAL* ip, REAL* u) |
| 6802 | { |
| 6803 | REAL n[3], det, det1; |
| 6804 | |
| 6805 | // Calculate N. |
| 6806 | facenormal(pa, pb, pc, n, 1, NULL); |
| 6807 | // Calculate N dot (e2 - e1). |
| 6808 | det = n[0] * (e2[0] - e1[0]) + n[1] * (e2[1] - e1[1]) |
| 6809 | + n[2] * (e2[2] - e1[2]); |
| 6810 | if (det != 0.0) { |
| 6811 | // Calculate N dot (pa - e1) |
| 6812 | det1 = n[0] * (pa[0] - e1[0]) + n[1] * (pa[1] - e1[1]) |
| 6813 | + n[2] * (pa[2] - e1[2]); |
| 6814 | *u = det1 / det; |
| 6815 | ip[0] = e1[0] + *u * (e2[0] - e1[0]); |
| 6816 | ip[1] = e1[1] + *u * (e2[1] - e1[1]); |
| 6817 | ip[2] = e1[2] + *u * (e2[2] - e1[2]); |
| 6818 | } else { |
| 6819 | *u = 0.0; |
| 6820 | } |
| 6821 | } |
| 6822 | |
| 6823 | /////////////////////////////////////////////////////////////////////////////// |
| 6824 | // // |
| 6825 | // linelineint() Calculate the intersection(s) of two line segments. // |
| 6826 | // // |
| 6827 | // Calculate the line segment [P, Q] that is the shortest route between two // |
| 6828 | // lines from A to B and C to D. Calculate also the values of tp and tq // |
| 6829 | // where: P = A + tp (B - A), and Q = C + tq (D - C). // |
| 6830 | // // |
| 6831 | // Return 1 if the line segment exists. Otherwise, return 0. // |
| 6832 | // // |
| 6833 | /////////////////////////////////////////////////////////////////////////////// |
| 6834 | |
| 6835 | int tetgenmesh::linelineint(REAL* A, REAL* B, REAL* C, REAL* D, REAL* P, |
| 6836 | REAL* Q, REAL* tp, REAL* tq) |
| 6837 | { |
| 6838 | REAL vab[3], vcd[3], vca[3]; |
| 6839 | REAL vab_vab, vcd_vcd, vab_vcd; |
| 6840 | REAL vca_vab, vca_vcd; |
| 6841 | REAL det, eps; |
| 6842 | int i; |
| 6843 | |
| 6844 | for (i = 0; i < 3; i++) { |
| 6845 | vab[i] = B[i] - A[i]; |
| 6846 | vcd[i] = D[i] - C[i]; |
| 6847 | vca[i] = A[i] - C[i]; |
| 6848 | } |
| 6849 | |
| 6850 | vab_vab = dot(vab, vab); |
| 6851 | vcd_vcd = dot(vcd, vcd); |
| 6852 | vab_vcd = dot(vab, vcd); |
| 6853 | |
| 6854 | det = vab_vab * vcd_vcd - vab_vcd * vab_vcd; |
| 6855 | // Round the result. |
| 6856 | eps = det / (fabs(vab_vab * vcd_vcd) + fabs(vab_vcd * vab_vcd)); |
| 6857 | if (eps < b->epsilon) { |
| 6858 | return 0; |
| 6859 | } |
| 6860 | |
| 6861 | vca_vab = dot(vca, vab); |
| 6862 | vca_vcd = dot(vca, vcd); |
| 6863 | |
| 6864 | *tp = (vcd_vcd * (- vca_vab) + vab_vcd * vca_vcd) / det; |
| 6865 | *tq = (vab_vcd * (- vca_vab) + vab_vab * vca_vcd) / det; |
| 6866 | |
| 6867 | for (i = 0; i < 3; i++) P[i] = A[i] + (*tp) * vab[i]; |
| 6868 | for (i = 0; i < 3; i++) Q[i] = C[i] + (*tq) * vcd[i]; |
| 6869 | |
| 6870 | return 1; |
| 6871 | } |
| 6872 | |
| 6873 | /////////////////////////////////////////////////////////////////////////////// |
| 6874 | // // |
| 6875 | // tetprismvol() Calculate the volume of a tetrahedral prism in 4D. // |
| 6876 | // // |
| 6877 | // A tetrahedral prism is a convex uniform polychoron (four dimensional poly-// |
| 6878 | // tope). It has 6 polyhedral cells: 2 tetrahedra connected by 4 triangular // |
| 6879 | // prisms. It has 14 faces: 8 triangular and 6 square. It has 16 edges and 8 // |
| 6880 | // vertices. (Wikipedia). // |
| 6881 | // // |
| 6882 | // Let 'p0', ..., 'p3' be four affinely independent points in R^3. They form // |
| 6883 | // the lower tetrahedral facet of the prism. The top tetrahedral facet is // |
| 6884 | // formed by four vertices, 'p4', ..., 'p7' in R^4, which is obtained by // |
| 6885 | // lifting each vertex of the lower facet into R^4 by a weight (height). A // |
| 6886 | // canonical choice of the weights is the square of Euclidean norm of of the // |
| 6887 | // points (vectors). // |
| 6888 | // // |
| 6889 | // // |
| 6890 | // The return value is (4!) 24 times of the volume of the tetrahedral prism. // |
| 6891 | // // |
| 6892 | /////////////////////////////////////////////////////////////////////////////// |
| 6893 | |
| 6894 | REAL tetgenmesh::tetprismvol(REAL* p0, REAL* p1, REAL* p2, REAL* p3) |
| 6895 | { |
| 6896 | REAL *p4, *p5, *p6, *p7; |
| 6897 | REAL w4, w5, w6, w7; |
| 6898 | REAL vol[4]; |
| 6899 | |
| 6900 | p4 = p0; |
| 6901 | p5 = p1; |
| 6902 | p6 = p2; |
| 6903 | p7 = p3; |
| 6904 | |
| 6905 | // TO DO: these weights can be pre-calculated! |
| 6906 | w4 = dot(p0, p0); |
| 6907 | w5 = dot(p1, p1); |
| 6908 | w6 = dot(p2, p2); |
| 6909 | w7 = dot(p3, p3); |
| 6910 | |
| 6911 | // Calculate the volume of the tet-prism. |
| 6912 | vol[0] = orient4d(p5, p6, p4, p3, p7, w5, w6, w4, 0, w7); |
| 6913 | vol[1] = orient4d(p3, p6, p2, p0, p1, 0, w6, 0, 0, 0); |
| 6914 | vol[2] = orient4d(p4, p6, p3, p0, p1, w4, w6, 0, 0, 0); |
| 6915 | vol[3] = orient4d(p6, p5, p4, p3, p1, w6, w5, w4, 0, 0); |
| 6916 | |
| 6917 | return fabs(vol[0]) + fabs(vol[1]) + fabs(vol[2]) + fabs(vol[3]); |
| 6918 | } |
| 6919 | |
| 6920 | /////////////////////////////////////////////////////////////////////////////// |
| 6921 | // // |
| 6922 | // calculateabovepoint() Calculate a point above a facet in 'dummypoint'. // |
| 6923 | // // |
| 6924 | /////////////////////////////////////////////////////////////////////////////// |
| 6925 | |
| 6926 | bool tetgenmesh::calculateabovepoint(arraypool *facpoints, point *ppa, |
| 6927 | point *ppb, point *ppc) |
| 6928 | { |
| 6929 | point *ppt, pa, pb, pc; |
| 6930 | REAL v1[3], v2[3], n[3]; |
| 6931 | REAL lab, len, A, area; |
| 6932 | REAL x, y, z; |
| 6933 | int i; |
| 6934 | |
| 6935 | ppt = (point *) fastlookup(facpoints, 0); |
| 6936 | pa = *ppt; // a is the first point. |
| 6937 | pb = pc = NULL; // Avoid compiler warnings. |
| 6938 | |
| 6939 | // Get a point b s.t. the length of [a, b] is maximal. |
| 6940 | lab = 0; |
| 6941 | for (i = 1; i < facpoints->objects; i++) { |
| 6942 | ppt = (point *) fastlookup(facpoints, i); |
| 6943 | x = (*ppt)[0] - pa[0]; |
| 6944 | y = (*ppt)[1] - pa[1]; |
| 6945 | z = (*ppt)[2] - pa[2]; |
| 6946 | len = x * x + y * y + z * z; |
| 6947 | if (len > lab) { |
| 6948 | lab = len; |
| 6949 | pb = *ppt; |
| 6950 | } |
| 6951 | } |
| 6952 | lab = sqrt(lab); |
| 6953 | if (lab == 0) { |
| 6954 | if (!b->quiet) { |
| 6955 | printf("Warning: All points of a facet are coincident with %d.\n" , |
| 6956 | pointmark(pa)); |
| 6957 | } |
| 6958 | return false; |
| 6959 | } |
| 6960 | |
| 6961 | // Get a point c s.t. the area of [a, b, c] is maximal. |
| 6962 | v1[0] = pb[0] - pa[0]; |
| 6963 | v1[1] = pb[1] - pa[1]; |
| 6964 | v1[2] = pb[2] - pa[2]; |
| 6965 | A = 0; |
| 6966 | for (i = 1; i < facpoints->objects; i++) { |
| 6967 | ppt = (point *) fastlookup(facpoints, i); |
| 6968 | v2[0] = (*ppt)[0] - pa[0]; |
| 6969 | v2[1] = (*ppt)[1] - pa[1]; |
| 6970 | v2[2] = (*ppt)[2] - pa[2]; |
| 6971 | cross(v1, v2, n); |
| 6972 | area = dot(n, n); |
| 6973 | if (area > A) { |
| 6974 | A = area; |
| 6975 | pc = *ppt; |
| 6976 | } |
| 6977 | } |
| 6978 | if (A == 0) { |
| 6979 | // All points are collinear. No above point. |
| 6980 | if (!b->quiet) { |
| 6981 | printf("Warning: All points of a facet are collinaer with [%d, %d].\n" , |
| 6982 | pointmark(pa), pointmark(pb)); |
| 6983 | } |
| 6984 | return false; |
| 6985 | } |
| 6986 | |
| 6987 | // Calculate an above point of this facet. |
| 6988 | facenormal(pa, pb, pc, n, 1, NULL); |
| 6989 | len = sqrt(dot(n, n)); |
| 6990 | n[0] /= len; |
| 6991 | n[1] /= len; |
| 6992 | n[2] /= len; |
| 6993 | lab /= 2.0; // Half the maximal length. |
| 6994 | dummypoint[0] = pa[0] + lab * n[0]; |
| 6995 | dummypoint[1] = pa[1] + lab * n[1]; |
| 6996 | dummypoint[2] = pa[2] + lab * n[2]; |
| 6997 | |
| 6998 | if (ppa != NULL) { |
| 6999 | // Return the three points. |
| 7000 | *ppa = pa; |
| 7001 | *ppb = pb; |
| 7002 | *ppc = pc; |
| 7003 | } |
| 7004 | |
| 7005 | return true; |
| 7006 | } |
| 7007 | |
| 7008 | /////////////////////////////////////////////////////////////////////////////// |
| 7009 | // // |
| 7010 | // Calculate an above point. It lies above the plane containing the subface // |
| 7011 | // [a,b,c], and save it in dummypoint. Moreover, the vector pa->dummypoint // |
| 7012 | // is the normal of the plane. // |
| 7013 | // // |
| 7014 | /////////////////////////////////////////////////////////////////////////////// |
| 7015 | |
| 7016 | void tetgenmesh::calculateabovepoint4(point pa, point pb, point pc, point pd) |
| 7017 | { |
| 7018 | REAL n1[3], n2[3], *norm; |
| 7019 | REAL len, len1, len2; |
| 7020 | |
| 7021 | // Select a base. |
| 7022 | facenormal(pa, pb, pc, n1, 1, NULL); |
| 7023 | len1 = sqrt(dot(n1, n1)); |
| 7024 | facenormal(pa, pb, pd, n2, 1, NULL); |
| 7025 | len2 = sqrt(dot(n2, n2)); |
| 7026 | if (len1 > len2) { |
| 7027 | norm = n1; |
| 7028 | len = len1; |
| 7029 | } else { |
| 7030 | norm = n2; |
| 7031 | len = len2; |
| 7032 | } |
| 7033 | assert(len > 0); |
| 7034 | norm[0] /= len; |
| 7035 | norm[1] /= len; |
| 7036 | norm[2] /= len; |
| 7037 | len = distance(pa, pb); |
| 7038 | dummypoint[0] = pa[0] + len * norm[0]; |
| 7039 | dummypoint[1] = pa[1] + len * norm[1]; |
| 7040 | dummypoint[2] = pa[2] + len * norm[2]; |
| 7041 | } |
| 7042 | |
| 7043 | //// //// |
| 7044 | //// //// |
| 7045 | //// geom_cxx ///////////////////////////////////////////////////////////////// |
| 7046 | |
| 7047 | //// flip_cxx ///////////////////////////////////////////////////////////////// |
| 7048 | //// //// |
| 7049 | //// //// |
| 7050 | |
| 7051 | /////////////////////////////////////////////////////////////////////////////// |
| 7052 | // // |
| 7053 | // flip23() Perform a 2-to-3 flip (face-to-edge flip). // |
| 7054 | // // |
| 7055 | // 'fliptets' is an array of three tets (handles), where the [0] and [1] are // |
| 7056 | // [a,b,c,d] and [b,a,c,e]. The three new tets: [e,d,a,b], [e,d,b,c], and // |
| 7057 | // [e,d,c,a] are returned in [0], [1], and [2] of 'fliptets'. As a result, // |
| 7058 | // The face [a,b,c] is removed, and the edge [d,e] is created. // |
| 7059 | // // |
| 7060 | // If 'hullflag' > 0, hull tets may be involved in this flip, i.e., one of // |
| 7061 | // the five vertices may be 'dummypoint'. There are two canonical cases: // |
| 7062 | // (1) d is 'dummypoint', then all three new tets are hull tets. If e is // |
| 7063 | // 'dummypoint', we reconfigure e to d, i.e., turn it up-side down. // |
| 7064 | // (2) c is 'dummypoint', then two new tets: [e,d,b,c] and [e,d,c,a], are // |
| 7065 | // hull tets. If a or b is 'dummypoint', we reconfigure it to c, i.e., // |
| 7066 | // rotate the three input tets counterclockwisely (right-hand rule) // |
| 7067 | // until a or b is in c's position. // |
| 7068 | // // |
| 7069 | // If 'fc->enqflag' is set, convex hull faces will be queued for flipping. // |
| 7070 | // In particular, if 'fc->enqflag' is 1, it is called by incrementalflip() // |
| 7071 | // after the insertion of a new point. It is assumed that 'd' is the new // |
| 7072 | // point. IN this case, only link faces of 'd' are queued. // |
| 7073 | // // |
| 7074 | /////////////////////////////////////////////////////////////////////////////// |
| 7075 | |
| 7076 | void tetgenmesh::flip23(triface* fliptets, int hullflag, flipconstraints *fc) |
| 7077 | { |
| 7078 | triface topcastets[3], botcastets[3]; |
| 7079 | triface newface, casface; |
| 7080 | point pa, pb, pc, pd, pe; |
| 7081 | REAL attrib, volume; |
| 7082 | int dummyflag = 0; // range = {-1, 0, 1, 2}. |
| 7083 | int i; |
| 7084 | |
| 7085 | if (hullflag > 0) { |
| 7086 | // Check if e is dummypoint. |
| 7087 | if (oppo(fliptets[1]) == dummypoint) { |
| 7088 | // Swap the two old tets. |
| 7089 | newface = fliptets[0]; |
| 7090 | fliptets[0] = fliptets[1]; |
| 7091 | fliptets[1] = newface; |
| 7092 | dummyflag = -1; // d is dummypoint. |
| 7093 | } else { |
| 7094 | // Check if either a or b is dummypoint. |
| 7095 | if (org(fliptets[0]) == dummypoint) { |
| 7096 | dummyflag = 1; // a is dummypoint. |
| 7097 | enextself(fliptets[0]); |
| 7098 | eprevself(fliptets[1]); |
| 7099 | } else if (dest(fliptets[0]) == dummypoint) { |
| 7100 | dummyflag = 2; // b is dummypoint. |
| 7101 | eprevself(fliptets[0]); |
| 7102 | enextself(fliptets[1]); |
| 7103 | } else { |
| 7104 | dummyflag = 0; // either c or d may be dummypoint. |
| 7105 | } |
| 7106 | } |
| 7107 | } |
| 7108 | |
| 7109 | pa = org(fliptets[0]); |
| 7110 | pb = dest(fliptets[0]); |
| 7111 | pc = apex(fliptets[0]); |
| 7112 | pd = oppo(fliptets[0]); |
| 7113 | pe = oppo(fliptets[1]); |
| 7114 | |
| 7115 | flip23count++; |
| 7116 | |
| 7117 | // Get the outer boundary faces. |
| 7118 | for (i = 0; i < 3; i++) { |
| 7119 | fnext(fliptets[0], topcastets[i]); |
| 7120 | enextself(fliptets[0]); |
| 7121 | } |
| 7122 | for (i = 0; i < 3; i++) { |
| 7123 | fnext(fliptets[1], botcastets[i]); |
| 7124 | eprevself(fliptets[1]); |
| 7125 | } |
| 7126 | |
| 7127 | // Re-use fliptets[0] and fliptets[1]. |
| 7128 | fliptets[0].ver = 11; |
| 7129 | fliptets[1].ver = 11; |
| 7130 | setelemmarker(fliptets[0].tet, 0); // Clear all flags. |
| 7131 | setelemmarker(fliptets[1].tet, 0); |
| 7132 | // NOTE: the element attributes and volume constraint remain unchanged. |
| 7133 | if (checksubsegflag) { |
| 7134 | // Dealloc the space to subsegments. |
| 7135 | if (fliptets[0].tet[8] != NULL) { |
| 7136 | tet2segpool->dealloc((shellface *) fliptets[0].tet[8]); |
| 7137 | fliptets[0].tet[8] = NULL; |
| 7138 | } |
| 7139 | if (fliptets[1].tet[8] != NULL) { |
| 7140 | tet2segpool->dealloc((shellface *) fliptets[1].tet[8]); |
| 7141 | fliptets[1].tet[8] = NULL; |
| 7142 | } |
| 7143 | } |
| 7144 | if (checksubfaceflag) { |
| 7145 | // Dealloc the space to subfaces. |
| 7146 | if (fliptets[0].tet[9] != NULL) { |
| 7147 | tet2subpool->dealloc((shellface *) fliptets[0].tet[9]); |
| 7148 | fliptets[0].tet[9] = NULL; |
| 7149 | } |
| 7150 | if (fliptets[1].tet[9] != NULL) { |
| 7151 | tet2subpool->dealloc((shellface *) fliptets[1].tet[9]); |
| 7152 | fliptets[1].tet[9] = NULL; |
| 7153 | } |
| 7154 | } |
| 7155 | // Create a new tet. |
| 7156 | maketetrahedron(&(fliptets[2])); |
| 7157 | // The new tet have the same attributes from the old tet. |
| 7158 | for (i = 0; i < numelemattrib; i++) { |
| 7159 | attrib = elemattribute(fliptets[0].tet, i); |
| 7160 | setelemattribute(fliptets[2].tet, i, attrib); |
| 7161 | } |
| 7162 | if (b->varvolume) { |
| 7163 | volume = volumebound(fliptets[0].tet); |
| 7164 | setvolumebound(fliptets[2].tet, volume); |
| 7165 | } |
| 7166 | |
| 7167 | if (hullflag > 0) { |
| 7168 | // Check if d is dummytet. |
| 7169 | if (pd != dummypoint) { |
| 7170 | setvertices(fliptets[0], pe, pd, pa, pb); // [e,d,a,b] * |
| 7171 | setvertices(fliptets[1], pe, pd, pb, pc); // [e,d,b,c] * |
| 7172 | // Check if c is dummypoint. |
| 7173 | if (pc != dummypoint) { |
| 7174 | setvertices(fliptets[2], pe, pd, pc, pa); // [e,d,c,a] * |
| 7175 | } else { |
| 7176 | setvertices(fliptets[2], pd, pe, pa, pc); // [d,e,a,c] |
| 7177 | esymself(fliptets[2]); // [e,d,c,a] * |
| 7178 | } |
| 7179 | // The hullsize does not change. |
| 7180 | } else { |
| 7181 | // d is dummypoint. |
| 7182 | setvertices(fliptets[0], pa, pb, pe, pd); // [a,b,e,d] |
| 7183 | setvertices(fliptets[1], pb, pc, pe, pd); // [b,c,e,d] |
| 7184 | setvertices(fliptets[2], pc, pa, pe, pd); // [c,a,e,d] |
| 7185 | // Adjust the faces to [e,d,a,b], [e,d,b,c], [e,d,c,a] * |
| 7186 | for (i = 0; i < 3; i++) { |
| 7187 | eprevesymself(fliptets[i]); |
| 7188 | enextself(fliptets[i]); |
| 7189 | } |
| 7190 | // We deleted one hull tet, and created three hull tets. |
| 7191 | hullsize += 2; |
| 7192 | } |
| 7193 | } else { |
| 7194 | setvertices(fliptets[0], pe, pd, pa, pb); // [e,d,a,b] * |
| 7195 | setvertices(fliptets[1], pe, pd, pb, pc); // [e,d,b,c] * |
| 7196 | setvertices(fliptets[2], pe, pd, pc, pa); // [e,d,c,a] * |
| 7197 | } |
| 7198 | |
| 7199 | if (fc->remove_ndelaunay_edge) { // calc_tetprism_vol |
| 7200 | REAL volneg[2], volpos[3], vol_diff; |
| 7201 | if (pd != dummypoint) { |
| 7202 | if (pc != dummypoint) { |
| 7203 | volpos[0] = tetprismvol(pe, pd, pa, pb); |
| 7204 | volpos[1] = tetprismvol(pe, pd, pb, pc); |
| 7205 | volpos[2] = tetprismvol(pe, pd, pc, pa); |
| 7206 | volneg[0] = tetprismvol(pa, pb, pc, pd); |
| 7207 | volneg[1] = tetprismvol(pb, pa, pc, pe); |
| 7208 | } else { // pc == dummypoint |
| 7209 | volpos[0] = tetprismvol(pe, pd, pa, pb); |
| 7210 | volpos[1] = 0.; |
| 7211 | volpos[2] = 0.; |
| 7212 | volneg[0] = 0.; |
| 7213 | volneg[1] = 0.; |
| 7214 | } |
| 7215 | } else { // pd == dummypoint. |
| 7216 | volpos[0] = 0.; |
| 7217 | volpos[1] = 0.; |
| 7218 | volpos[2] = 0.; |
| 7219 | volneg[0] = 0.; |
| 7220 | volneg[1] = tetprismvol(pb, pa, pc, pe); |
| 7221 | } |
| 7222 | vol_diff = volpos[0] + volpos[1] + volpos[2] - volneg[0] - volneg[1]; |
| 7223 | fc->tetprism_vol_sum += vol_diff; // Update the total sum. |
| 7224 | } |
| 7225 | |
| 7226 | // Bond three new tets together. |
| 7227 | for (i = 0; i < 3; i++) { |
| 7228 | esym(fliptets[i], newface); |
| 7229 | bond(newface, fliptets[(i + 1) % 3]); |
| 7230 | } |
| 7231 | // Bond to top outer boundary faces (at [a,b,c,d]). |
| 7232 | for (i = 0; i < 3; i++) { |
| 7233 | eorgoppo(fliptets[i], newface); // At edges [b,a], [c,b], [a,c]. |
| 7234 | bond(newface, topcastets[i]); |
| 7235 | } |
| 7236 | // Bond bottom outer boundary faces (at [b,a,c,e]). |
| 7237 | for (i = 0; i < 3; i++) { |
| 7238 | edestoppo(fliptets[i], newface); // At edges [a,b], [b,c], [c,a]. |
| 7239 | bond(newface, botcastets[i]); |
| 7240 | } |
| 7241 | |
| 7242 | if (checksubsegflag) { |
| 7243 | // Bond subsegments if there are. |
| 7244 | // Each new tet has 5 edges to be checked (except the edge [e,d]). |
| 7245 | face checkseg; |
| 7246 | // The middle three: [a,b], [b,c], [c,a]. |
| 7247 | for (i = 0; i < 3; i++) { |
| 7248 | if (issubseg(topcastets[i])) { |
| 7249 | tsspivot1(topcastets[i], checkseg); |
| 7250 | eorgoppo(fliptets[i], newface); |
| 7251 | tssbond1(newface, checkseg); |
| 7252 | sstbond1(checkseg, newface); |
| 7253 | if (fc->chkencflag & 1) { |
| 7254 | enqueuesubface(badsubsegs, &checkseg); |
| 7255 | } |
| 7256 | } |
| 7257 | } |
| 7258 | // The top three: [d,a], [d,b], [d,c]. Two tets per edge. |
| 7259 | for (i = 0; i < 3; i++) { |
| 7260 | eprev(topcastets[i], casface); |
| 7261 | if (issubseg(casface)) { |
| 7262 | tsspivot1(casface, checkseg); |
| 7263 | enext(fliptets[i], newface); |
| 7264 | tssbond1(newface, checkseg); |
| 7265 | sstbond1(checkseg, newface); |
| 7266 | esym(fliptets[(i + 2) % 3], newface); |
| 7267 | eprevself(newface); |
| 7268 | tssbond1(newface, checkseg); |
| 7269 | sstbond1(checkseg, newface); |
| 7270 | if (fc->chkencflag & 1) { |
| 7271 | enqueuesubface(badsubsegs, &checkseg); |
| 7272 | } |
| 7273 | } |
| 7274 | } |
| 7275 | // The bot three: [a,e], [b,e], [c,e]. Two tets per edge. |
| 7276 | for (i = 0; i < 3; i++) { |
| 7277 | enext(botcastets[i], casface); |
| 7278 | if (issubseg(casface)) { |
| 7279 | tsspivot1(casface, checkseg); |
| 7280 | eprev(fliptets[i], newface); |
| 7281 | tssbond1(newface, checkseg); |
| 7282 | sstbond1(checkseg, newface); |
| 7283 | esym(fliptets[(i + 2) % 3], newface); |
| 7284 | enextself(newface); |
| 7285 | tssbond1(newface, checkseg); |
| 7286 | sstbond1(checkseg, newface); |
| 7287 | if (fc->chkencflag & 1) { |
| 7288 | enqueuesubface(badsubsegs, &checkseg); |
| 7289 | } |
| 7290 | } |
| 7291 | } |
| 7292 | } // if (checksubsegflag) |
| 7293 | |
| 7294 | if (checksubfaceflag) { |
| 7295 | // Bond 6 subfaces if there are. |
| 7296 | face checksh; |
| 7297 | for (i = 0; i < 3; i++) { |
| 7298 | if (issubface(topcastets[i])) { |
| 7299 | tspivot(topcastets[i], checksh); |
| 7300 | eorgoppo(fliptets[i], newface); |
| 7301 | sesymself(checksh); |
| 7302 | tsbond(newface, checksh); |
| 7303 | if (fc->chkencflag & 2) { |
| 7304 | enqueuesubface(badsubfacs, &checksh); |
| 7305 | } |
| 7306 | } |
| 7307 | } |
| 7308 | for (i = 0; i < 3; i++) { |
| 7309 | if (issubface(botcastets[i])) { |
| 7310 | tspivot(botcastets[i], checksh); |
| 7311 | edestoppo(fliptets[i], newface); |
| 7312 | sesymself(checksh); |
| 7313 | tsbond(newface, checksh); |
| 7314 | if (fc->chkencflag & 2) { |
| 7315 | enqueuesubface(badsubfacs, &checksh); |
| 7316 | } |
| 7317 | } |
| 7318 | } |
| 7319 | } // if (checksubfaceflag) |
| 7320 | |
| 7321 | if (fc->chkencflag & 4) { |
| 7322 | // Put three new tets into check list. |
| 7323 | for (i = 0; i < 3; i++) { |
| 7324 | enqueuetetrahedron(&(fliptets[i])); |
| 7325 | } |
| 7326 | } |
| 7327 | |
| 7328 | // Update the point-to-tet map. |
| 7329 | setpoint2tet(pa, (tetrahedron) fliptets[0].tet); |
| 7330 | setpoint2tet(pb, (tetrahedron) fliptets[0].tet); |
| 7331 | setpoint2tet(pc, (tetrahedron) fliptets[1].tet); |
| 7332 | setpoint2tet(pd, (tetrahedron) fliptets[0].tet); |
| 7333 | setpoint2tet(pe, (tetrahedron) fliptets[0].tet); |
| 7334 | |
| 7335 | if (hullflag > 0) { |
| 7336 | if (dummyflag != 0) { |
| 7337 | // Restore the original position of the points (for flipnm()). |
| 7338 | if (dummyflag == -1) { |
| 7339 | // Reverse the edge. |
| 7340 | for (i = 0; i < 3; i++) { |
| 7341 | esymself(fliptets[i]); |
| 7342 | } |
| 7343 | // Swap the last two new tets. |
| 7344 | newface = fliptets[1]; |
| 7345 | fliptets[1] = fliptets[2]; |
| 7346 | fliptets[2] = newface; |
| 7347 | } else { |
| 7348 | // either a or b were swapped. |
| 7349 | if (dummyflag == 1) { |
| 7350 | // a is dummypoint. |
| 7351 | newface = fliptets[0]; |
| 7352 | fliptets[0] = fliptets[2]; |
| 7353 | fliptets[2] = fliptets[1]; |
| 7354 | fliptets[1] = newface; |
| 7355 | } else { // dummyflag == 2 |
| 7356 | // b is dummypoint. |
| 7357 | newface = fliptets[0]; |
| 7358 | fliptets[0] = fliptets[1]; |
| 7359 | fliptets[1] = fliptets[2]; |
| 7360 | fliptets[2] = newface; |
| 7361 | } |
| 7362 | } |
| 7363 | } |
| 7364 | } |
| 7365 | |
| 7366 | if (fc->enqflag > 0) { |
| 7367 | // Queue faces which may be locally non-Delaunay. |
| 7368 | for (i = 0; i < 3; i++) { |
| 7369 | eprevesym(fliptets[i], newface); |
| 7370 | flippush(flipstack, &newface); |
| 7371 | } |
| 7372 | if (fc->enqflag > 1) { |
| 7373 | for (i = 0; i < 3; i++) { |
| 7374 | enextesym(fliptets[i], newface); |
| 7375 | flippush(flipstack, &newface); |
| 7376 | } |
| 7377 | } |
| 7378 | } |
| 7379 | |
| 7380 | recenttet = fliptets[0]; |
| 7381 | } |
| 7382 | |
| 7383 | /////////////////////////////////////////////////////////////////////////////// |
| 7384 | // // |
| 7385 | // flip32() Perform a 3-to-2 flip (edge-to-face flip). // |
| 7386 | // // |
| 7387 | // 'fliptets' is an array of three tets (handles), which are [e,d,a,b], // |
| 7388 | // [e,d,b,c], and [e,d,c,a]. The two new tets: [a,b,c,d] and [b,a,c,e] are // |
| 7389 | // returned in [0] and [1] of 'fliptets'. As a result, the edge [e,d] is // |
| 7390 | // replaced by the face [a,b,c]. // |
| 7391 | // // |
| 7392 | // If 'hullflag' > 0, hull tets may be involved in this flip, i.e., one of // |
| 7393 | // the five vertices may be 'dummypoint'. There are two canonical cases: // |
| 7394 | // (1) d is 'dummypoint', then [a,b,c,d] is hull tet. If e is 'dummypoint',// |
| 7395 | // we reconfigure e to d, i.e., turnover it. // |
| 7396 | // (2) c is 'dummypoint' then both [a,b,c,d] and [b,a,c,e] are hull tets. // |
| 7397 | // If a or b is 'dummypoint', we reconfigure it to c, i.e., rotate the // |
| 7398 | // three old tets counterclockwisely (right-hand rule) until a or b // |
| 7399 | // is in c's position. // |
| 7400 | // // |
| 7401 | // If 'fc->enqflag' is set, convex hull faces will be queued for flipping. // |
| 7402 | // In particular, if 'fc->enqflag' is 1, it is called by incrementalflip() // |
| 7403 | // after the insertion of a new point. It is assumed that 'a' is the new // |
| 7404 | // point. In this case, only link faces of 'a' are queued. // |
| 7405 | // // |
| 7406 | // If 'checksubfaceflag' is on (global variable), and assume [e,d] is not a // |
| 7407 | // segment. There may be two (interior) subfaces sharing at [e,d], which are // |
| 7408 | // [e,d,p] and [e,d,q], where the pair (p,q) may be either (a,b), or (b,c), // |
| 7409 | // or (c,a) In such case, a 2-to-2 flip is performed on these two subfaces // |
| 7410 | // and two new subfaces [p,q,e] and [p,q,d] are created. They are inserted // |
| 7411 | // back into the tetrahedralization. // |
| 7412 | // // |
| 7413 | /////////////////////////////////////////////////////////////////////////////// |
| 7414 | |
| 7415 | void tetgenmesh::flip32(triface* fliptets, int hullflag, flipconstraints *fc) |
| 7416 | { |
| 7417 | triface topcastets[3], botcastets[3]; |
| 7418 | triface newface, casface; |
| 7419 | face flipshs[3]; |
| 7420 | face checkseg; |
| 7421 | point pa, pb, pc, pd, pe; |
| 7422 | REAL attrib, volume; |
| 7423 | int dummyflag = 0; // Rangle = {-1, 0, 1, 2} |
| 7424 | int spivot = -1, scount = 0; // for flip22() |
| 7425 | int t1ver; |
| 7426 | int i, j; |
| 7427 | |
| 7428 | if (hullflag > 0) { |
| 7429 | // Check if e is 'dummypoint'. |
| 7430 | if (org(fliptets[0]) == dummypoint) { |
| 7431 | // Reverse the edge. |
| 7432 | for (i = 0; i < 3; i++) { |
| 7433 | esymself(fliptets[i]); |
| 7434 | } |
| 7435 | // Swap the last two tets. |
| 7436 | newface = fliptets[1]; |
| 7437 | fliptets[1] = fliptets[2]; |
| 7438 | fliptets[2] = newface; |
| 7439 | dummyflag = -1; // e is dummypoint. |
| 7440 | } else { |
| 7441 | // Check if a or b is the 'dummypoint'. |
| 7442 | if (apex(fliptets[0]) == dummypoint) { |
| 7443 | dummyflag = 1; // a is dummypoint. |
| 7444 | newface = fliptets[0]; |
| 7445 | fliptets[0] = fliptets[1]; |
| 7446 | fliptets[1] = fliptets[2]; |
| 7447 | fliptets[2] = newface; |
| 7448 | } else if (apex(fliptets[1]) == dummypoint) { |
| 7449 | dummyflag = 2; // b is dummypoint. |
| 7450 | newface = fliptets[0]; |
| 7451 | fliptets[0] = fliptets[2]; |
| 7452 | fliptets[2] = fliptets[1]; |
| 7453 | fliptets[1] = newface; |
| 7454 | } else { |
| 7455 | dummyflag = 0; // either c or d may be dummypoint. |
| 7456 | } |
| 7457 | } |
| 7458 | } |
| 7459 | |
| 7460 | pa = apex(fliptets[0]); |
| 7461 | pb = apex(fliptets[1]); |
| 7462 | pc = apex(fliptets[2]); |
| 7463 | pd = dest(fliptets[0]); |
| 7464 | pe = org(fliptets[0]); |
| 7465 | |
| 7466 | flip32count++; |
| 7467 | |
| 7468 | // Get the outer boundary faces. |
| 7469 | for (i = 0; i < 3; i++) { |
| 7470 | eorgoppo(fliptets[i], casface); |
| 7471 | fsym(casface, topcastets[i]); |
| 7472 | } |
| 7473 | for (i = 0; i < 3; i++) { |
| 7474 | edestoppo(fliptets[i], casface); |
| 7475 | fsym(casface, botcastets[i]); |
| 7476 | } |
| 7477 | |
| 7478 | if (checksubfaceflag) { |
| 7479 | // Check if there are interior subfaces at the edge [e,d]. |
| 7480 | for (i = 0; i < 3; i++) { |
| 7481 | tspivot(fliptets[i], flipshs[i]); |
| 7482 | if (flipshs[i].sh != NULL) { |
| 7483 | // Found an interior subface. |
| 7484 | stdissolve(flipshs[i]); // Disconnect the sub-tet bond. |
| 7485 | scount++; |
| 7486 | } else { |
| 7487 | spivot = i; |
| 7488 | } |
| 7489 | } |
| 7490 | } |
| 7491 | |
| 7492 | // Re-use fliptets[0] and fliptets[1]. |
| 7493 | fliptets[0].ver = 11; |
| 7494 | fliptets[1].ver = 11; |
| 7495 | setelemmarker(fliptets[0].tet, 0); // Clear all flags. |
| 7496 | setelemmarker(fliptets[1].tet, 0); |
| 7497 | if (checksubsegflag) { |
| 7498 | // Dealloc the space to subsegments. |
| 7499 | if (fliptets[0].tet[8] != NULL) { |
| 7500 | tet2segpool->dealloc((shellface *) fliptets[0].tet[8]); |
| 7501 | fliptets[0].tet[8] = NULL; |
| 7502 | } |
| 7503 | if (fliptets[1].tet[8] != NULL) { |
| 7504 | tet2segpool->dealloc((shellface *) fliptets[1].tet[8]); |
| 7505 | fliptets[1].tet[8] = NULL; |
| 7506 | } |
| 7507 | } |
| 7508 | if (checksubfaceflag) { |
| 7509 | // Dealloc the space to subfaces. |
| 7510 | if (fliptets[0].tet[9] != NULL) { |
| 7511 | tet2subpool->dealloc((shellface *) fliptets[0].tet[9]); |
| 7512 | fliptets[0].tet[9] = NULL; |
| 7513 | } |
| 7514 | if (fliptets[1].tet[9] != NULL) { |
| 7515 | tet2subpool->dealloc((shellface *) fliptets[1].tet[9]); |
| 7516 | fliptets[1].tet[9] = NULL; |
| 7517 | } |
| 7518 | } |
| 7519 | if (checksubfaceflag) { |
| 7520 | if (scount > 0) { |
| 7521 | // The element attributes and volume constraint must be set correctly. |
| 7522 | // There are two subfaces involved in this flip. The three tets are |
| 7523 | // separated into two different regions, one may be exterior. The |
| 7524 | // first region has two tets, and the second region has only one. |
| 7525 | // The two created tets must be in the same region as the first region. |
| 7526 | // The element attributes and volume constraint must be set correctly. |
| 7527 | //assert(spivot != -1); |
| 7528 | // The tet fliptets[spivot] is in the first region. |
| 7529 | for (j = 0; j < 2; j++) { |
| 7530 | for (i = 0; i < numelemattrib; i++) { |
| 7531 | attrib = elemattribute(fliptets[spivot].tet, i); |
| 7532 | setelemattribute(fliptets[j].tet, i, attrib); |
| 7533 | } |
| 7534 | if (b->varvolume) { |
| 7535 | volume = volumebound(fliptets[spivot].tet); |
| 7536 | setvolumebound(fliptets[j].tet, volume); |
| 7537 | } |
| 7538 | } |
| 7539 | } |
| 7540 | } |
| 7541 | // Delete an old tet. |
| 7542 | tetrahedrondealloc(fliptets[2].tet); |
| 7543 | |
| 7544 | if (hullflag > 0) { |
| 7545 | // Check if c is dummypointc. |
| 7546 | if (pc != dummypoint) { |
| 7547 | // Check if d is dummypoint. |
| 7548 | if (pd != dummypoint) { |
| 7549 | // No hull tet is involved. |
| 7550 | } else { |
| 7551 | // We deleted three hull tets, and created one hull tet. |
| 7552 | hullsize -= 2; |
| 7553 | } |
| 7554 | setvertices(fliptets[0], pa, pb, pc, pd); |
| 7555 | setvertices(fliptets[1], pb, pa, pc, pe); |
| 7556 | } else { |
| 7557 | // c is dummypoint. The two new tets are hull tets. |
| 7558 | setvertices(fliptets[0], pb, pa, pd, pc); |
| 7559 | setvertices(fliptets[1], pa, pb, pe, pc); |
| 7560 | // Adjust badc -> abcd. |
| 7561 | esymself(fliptets[0]); |
| 7562 | // Adjust abec -> bace. |
| 7563 | esymself(fliptets[1]); |
| 7564 | // The hullsize does not change. |
| 7565 | } |
| 7566 | } else { |
| 7567 | setvertices(fliptets[0], pa, pb, pc, pd); |
| 7568 | setvertices(fliptets[1], pb, pa, pc, pe); |
| 7569 | } |
| 7570 | |
| 7571 | if (fc->remove_ndelaunay_edge) { // calc_tetprism_vol |
| 7572 | REAL volneg[3], volpos[2], vol_diff; |
| 7573 | if (pc != dummypoint) { |
| 7574 | if (pd != dummypoint) { |
| 7575 | volneg[0] = tetprismvol(pe, pd, pa, pb); |
| 7576 | volneg[1] = tetprismvol(pe, pd, pb, pc); |
| 7577 | volneg[2] = tetprismvol(pe, pd, pc, pa); |
| 7578 | volpos[0] = tetprismvol(pa, pb, pc, pd); |
| 7579 | volpos[1] = tetprismvol(pb, pa, pc, pe); |
| 7580 | } else { // pd == dummypoint |
| 7581 | volneg[0] = 0.; |
| 7582 | volneg[1] = 0.; |
| 7583 | volneg[2] = 0.; |
| 7584 | volpos[0] = 0.; |
| 7585 | volpos[1] = tetprismvol(pb, pa, pc, pe); |
| 7586 | } |
| 7587 | } else { // pc == dummypoint. |
| 7588 | volneg[0] = tetprismvol(pe, pd, pa, pb); |
| 7589 | volneg[1] = 0.; |
| 7590 | volneg[2] = 0.; |
| 7591 | volpos[0] = 0.; |
| 7592 | volpos[1] = 0.; |
| 7593 | } |
| 7594 | vol_diff = volpos[0] + volpos[1] - volneg[0] - volneg[1] - volneg[2]; |
| 7595 | fc->tetprism_vol_sum += vol_diff; // Update the total sum. |
| 7596 | } |
| 7597 | |
| 7598 | // Bond abcd <==> bace. |
| 7599 | bond(fliptets[0], fliptets[1]); |
| 7600 | // Bond new faces to top outer boundary faces (at abcd). |
| 7601 | for (i = 0; i < 3; i++) { |
| 7602 | esym(fliptets[0], newface); |
| 7603 | bond(newface, topcastets[i]); |
| 7604 | enextself(fliptets[0]); |
| 7605 | } |
| 7606 | // Bond new faces to bottom outer boundary faces (at bace). |
| 7607 | for (i = 0; i < 3; i++) { |
| 7608 | esym(fliptets[1], newface); |
| 7609 | bond(newface, botcastets[i]); |
| 7610 | eprevself(fliptets[1]); |
| 7611 | } |
| 7612 | |
| 7613 | if (checksubsegflag) { |
| 7614 | // Bond 9 segments to new (flipped) tets. |
| 7615 | for (i = 0; i < 3; i++) { // edges a->b, b->c, c->a. |
| 7616 | if (issubseg(topcastets[i])) { |
| 7617 | tsspivot1(topcastets[i], checkseg); |
| 7618 | tssbond1(fliptets[0], checkseg); |
| 7619 | sstbond1(checkseg, fliptets[0]); |
| 7620 | tssbond1(fliptets[1], checkseg); |
| 7621 | sstbond1(checkseg, fliptets[1]); |
| 7622 | if (fc->chkencflag & 1) { |
| 7623 | enqueuesubface(badsubsegs, &checkseg); |
| 7624 | } |
| 7625 | } |
| 7626 | enextself(fliptets[0]); |
| 7627 | eprevself(fliptets[1]); |
| 7628 | } |
| 7629 | // The three top edges. |
| 7630 | for (i = 0; i < 3; i++) { // edges b->d, c->d, a->d. |
| 7631 | esym(fliptets[0], newface); |
| 7632 | eprevself(newface); |
| 7633 | enext(topcastets[i], casface); |
| 7634 | if (issubseg(casface)) { |
| 7635 | tsspivot1(casface, checkseg); |
| 7636 | tssbond1(newface, checkseg); |
| 7637 | sstbond1(checkseg, newface); |
| 7638 | if (fc->chkencflag & 1) { |
| 7639 | enqueuesubface(badsubsegs, &checkseg); |
| 7640 | } |
| 7641 | } |
| 7642 | enextself(fliptets[0]); |
| 7643 | } |
| 7644 | // The three bot edges. |
| 7645 | for (i = 0; i < 3; i++) { // edges b<-e, c<-e, a<-e. |
| 7646 | esym(fliptets[1], newface); |
| 7647 | enextself(newface); |
| 7648 | eprev(botcastets[i], casface); |
| 7649 | if (issubseg(casface)) { |
| 7650 | tsspivot1(casface, checkseg); |
| 7651 | tssbond1(newface, checkseg); |
| 7652 | sstbond1(checkseg, newface); |
| 7653 | if (fc->chkencflag & 1) { |
| 7654 | enqueuesubface(badsubsegs, &checkseg); |
| 7655 | } |
| 7656 | } |
| 7657 | eprevself(fliptets[1]); |
| 7658 | } |
| 7659 | } // if (checksubsegflag) |
| 7660 | |
| 7661 | if (checksubfaceflag) { |
| 7662 | face checksh; |
| 7663 | // Bond the top three casing subfaces. |
| 7664 | for (i = 0; i < 3; i++) { // At edges [b,a], [c,b], [a,c] |
| 7665 | if (issubface(topcastets[i])) { |
| 7666 | tspivot(topcastets[i], checksh); |
| 7667 | esym(fliptets[0], newface); |
| 7668 | sesymself(checksh); |
| 7669 | tsbond(newface, checksh); |
| 7670 | if (fc->chkencflag & 2) { |
| 7671 | enqueuesubface(badsubfacs, &checksh); |
| 7672 | } |
| 7673 | } |
| 7674 | enextself(fliptets[0]); |
| 7675 | } |
| 7676 | // Bond the bottom three casing subfaces. |
| 7677 | for (i = 0; i < 3; i++) { // At edges [a,b], [b,c], [c,a] |
| 7678 | if (issubface(botcastets[i])) { |
| 7679 | tspivot(botcastets[i], checksh); |
| 7680 | esym(fliptets[1], newface); |
| 7681 | sesymself(checksh); |
| 7682 | tsbond(newface, checksh); |
| 7683 | if (fc->chkencflag & 2) { |
| 7684 | enqueuesubface(badsubfacs, &checksh); |
| 7685 | } |
| 7686 | } |
| 7687 | eprevself(fliptets[1]); |
| 7688 | } |
| 7689 | |
| 7690 | if (scount > 0) { |
| 7691 | face flipfaces[2]; |
| 7692 | // Perform a 2-to-2 flip in subfaces. |
| 7693 | flipfaces[0] = flipshs[(spivot + 1) % 3]; |
| 7694 | flipfaces[1] = flipshs[(spivot + 2) % 3]; |
| 7695 | sesymself(flipfaces[1]); |
| 7696 | flip22(flipfaces, 0, fc->chkencflag); |
| 7697 | // Connect the flipped subfaces to flipped tets. |
| 7698 | // First go to the corresponding flipping edge. |
| 7699 | // Re-use top- and botcastets[0]. |
| 7700 | topcastets[0] = fliptets[0]; |
| 7701 | botcastets[0] = fliptets[1]; |
| 7702 | for (i = 0; i < ((spivot + 1) % 3); i++) { |
| 7703 | enextself(topcastets[0]); |
| 7704 | eprevself(botcastets[0]); |
| 7705 | } |
| 7706 | // Connect the top subface to the top tets. |
| 7707 | esymself(topcastets[0]); |
| 7708 | sesymself(flipfaces[0]); |
| 7709 | // Check if there already exists a subface. |
| 7710 | tspivot(topcastets[0], checksh); |
| 7711 | if (checksh.sh == NULL) { |
| 7712 | tsbond(topcastets[0], flipfaces[0]); |
| 7713 | fsymself(topcastets[0]); |
| 7714 | sesymself(flipfaces[0]); |
| 7715 | tsbond(topcastets[0], flipfaces[0]); |
| 7716 | } else { |
| 7717 | // An invalid 2-to-2 flip. Report a bug. |
| 7718 | terminatetetgen(this, 2); |
| 7719 | } |
| 7720 | // Connect the bot subface to the bottom tets. |
| 7721 | esymself(botcastets[0]); |
| 7722 | sesymself(flipfaces[1]); |
| 7723 | // Check if there already exists a subface. |
| 7724 | tspivot(botcastets[0], checksh); |
| 7725 | if (checksh.sh == NULL) { |
| 7726 | tsbond(botcastets[0], flipfaces[1]); |
| 7727 | fsymself(botcastets[0]); |
| 7728 | sesymself(flipfaces[1]); |
| 7729 | tsbond(botcastets[0], flipfaces[1]); |
| 7730 | } else { |
| 7731 | // An invalid 2-to-2 flip. Report a bug. |
| 7732 | terminatetetgen(this, 2); |
| 7733 | } |
| 7734 | } // if (scount > 0) |
| 7735 | } // if (checksubfaceflag) |
| 7736 | |
| 7737 | if (fc->chkencflag & 4) { |
| 7738 | // Put two new tets into check list. |
| 7739 | for (i = 0; i < 2; i++) { |
| 7740 | enqueuetetrahedron(&(fliptets[i])); |
| 7741 | } |
| 7742 | } |
| 7743 | |
| 7744 | setpoint2tet(pa, (tetrahedron) fliptets[0].tet); |
| 7745 | setpoint2tet(pb, (tetrahedron) fliptets[0].tet); |
| 7746 | setpoint2tet(pc, (tetrahedron) fliptets[0].tet); |
| 7747 | setpoint2tet(pd, (tetrahedron) fliptets[0].tet); |
| 7748 | setpoint2tet(pe, (tetrahedron) fliptets[1].tet); |
| 7749 | |
| 7750 | if (hullflag > 0) { |
| 7751 | if (dummyflag != 0) { |
| 7752 | // Restore the original position of the points (for flipnm()). |
| 7753 | if (dummyflag == -1) { |
| 7754 | // e were dummypoint. Swap the two new tets. |
| 7755 | newface = fliptets[0]; |
| 7756 | fliptets[0] = fliptets[1]; |
| 7757 | fliptets[1] = newface; |
| 7758 | } else { |
| 7759 | // a or b was dummypoint. |
| 7760 | if (dummyflag == 1) { |
| 7761 | eprevself(fliptets[0]); |
| 7762 | enextself(fliptets[1]); |
| 7763 | } else { // dummyflag == 2 |
| 7764 | enextself(fliptets[0]); |
| 7765 | eprevself(fliptets[1]); |
| 7766 | } |
| 7767 | } |
| 7768 | } |
| 7769 | } |
| 7770 | |
| 7771 | if (fc->enqflag > 0) { |
| 7772 | // Queue faces which may be locally non-Delaunay. |
| 7773 | // pa = org(fliptets[0]); // 'a' may be a new vertex. |
| 7774 | enextesym(fliptets[0], newface); |
| 7775 | flippush(flipstack, &newface); |
| 7776 | eprevesym(fliptets[1], newface); |
| 7777 | flippush(flipstack, &newface); |
| 7778 | if (fc->enqflag > 1) { |
| 7779 | //pb = dest(fliptets[0]); |
| 7780 | eprevesym(fliptets[0], newface); |
| 7781 | flippush(flipstack, &newface); |
| 7782 | enextesym(fliptets[1], newface); |
| 7783 | flippush(flipstack, &newface); |
| 7784 | //pc = apex(fliptets[0]); |
| 7785 | esym(fliptets[0], newface); |
| 7786 | flippush(flipstack, &newface); |
| 7787 | esym(fliptets[1], newface); |
| 7788 | flippush(flipstack, &newface); |
| 7789 | } |
| 7790 | } |
| 7791 | |
| 7792 | recenttet = fliptets[0]; |
| 7793 | } |
| 7794 | |
| 7795 | /////////////////////////////////////////////////////////////////////////////// |
| 7796 | // // |
| 7797 | // flip41() Perform a 4-to-1 flip (Remove a vertex). // |
| 7798 | // // |
| 7799 | // 'fliptets' is an array of four tetrahedra in the star of the removing // |
| 7800 | // vertex 'p'. Let the four vertices in the star of p be a, b, c, and d. The // |
| 7801 | // four tets in 'fliptets' are: [p,d,a,b], [p,d,b,c], [p,d,c,a], and [a,b,c, // |
| 7802 | // p]. On return, 'fliptets[0]' is the new tet [a,b,c,d]. // |
| 7803 | // // |
| 7804 | // If 'hullflag' is set (> 0), one of the five vertices may be 'dummypoint'. // |
| 7805 | // The 'hullsize' may be changed. Note that p may be dummypoint. In this // |
| 7806 | // case, four hull tets are replaced by one real tet. // |
| 7807 | // // |
| 7808 | // If 'checksubface' flag is set (>0), it is possible that there are three // |
| 7809 | // interior subfaces connecting at p. If so, a 3-to-1 flip is performed to // |
| 7810 | // to remove p from the surface triangulation. // |
| 7811 | // // |
| 7812 | // If it is called by the routine incrementalflip(), we assume that d is the // |
| 7813 | // newly inserted vertex. // |
| 7814 | // // |
| 7815 | /////////////////////////////////////////////////////////////////////////////// |
| 7816 | |
| 7817 | void tetgenmesh::flip41(triface* fliptets, int hullflag, flipconstraints *fc) |
| 7818 | { |
| 7819 | triface topcastets[3], botcastet; |
| 7820 | triface newface, neightet; |
| 7821 | face flipshs[4]; |
| 7822 | point pa, pb, pc, pd, pp; |
| 7823 | int dummyflag = 0; // in {0, 1, 2, 3, 4} |
| 7824 | int spivot = -1, scount = 0; |
| 7825 | int t1ver; |
| 7826 | int i; |
| 7827 | |
| 7828 | pa = org(fliptets[3]); |
| 7829 | pb = dest(fliptets[3]); |
| 7830 | pc = apex(fliptets[3]); |
| 7831 | pd = dest(fliptets[0]); |
| 7832 | pp = org(fliptets[0]); // The removing vertex. |
| 7833 | |
| 7834 | flip41count++; |
| 7835 | |
| 7836 | // Get the outer boundary faces. |
| 7837 | for (i = 0; i < 3; i++) { |
| 7838 | enext(fliptets[i], topcastets[i]); |
| 7839 | fnextself(topcastets[i]); // [d,a,b,#], [d,b,c,#], [d,c,a,#] |
| 7840 | enextself(topcastets[i]); // [a,b,d,#], [b,c,d,#], [c,a,d,#] |
| 7841 | } |
| 7842 | fsym(fliptets[3], botcastet); // [b,a,c,#] |
| 7843 | |
| 7844 | if (checksubfaceflag) { |
| 7845 | // Check if there are three subfaces at 'p'. |
| 7846 | // Re-use 'newface'. |
| 7847 | for (i = 0; i < 3; i++) { |
| 7848 | fnext(fliptets[3], newface); // [a,b,p,d],[b,c,p,d],[c,a,p,d]. |
| 7849 | tspivot(newface, flipshs[i]); |
| 7850 | if (flipshs[i].sh != NULL) { |
| 7851 | spivot = i; // Remember this subface. |
| 7852 | scount++; |
| 7853 | } |
| 7854 | enextself(fliptets[3]); |
| 7855 | } |
| 7856 | if (scount > 0) { |
| 7857 | // There are three subfaces connecting at p. |
| 7858 | if (scount < 3) { |
| 7859 | // The new subface is one of {[a,b,d], [b,c,d], [c,a,d]}. |
| 7860 | assert(scount == 1); // spivot >= 0 |
| 7861 | // Go to the tet containing the three subfaces. |
| 7862 | fsym(topcastets[spivot], neightet); |
| 7863 | // Get the three subfaces connecting at p. |
| 7864 | for (i = 0; i < 3; i++) { |
| 7865 | esym(neightet, newface); |
| 7866 | tspivot(newface, flipshs[i]); |
| 7867 | assert(flipshs[i].sh != NULL); |
| 7868 | eprevself(neightet); |
| 7869 | } |
| 7870 | } else { |
| 7871 | spivot = 3; // The new subface is [a,b,c]. |
| 7872 | } |
| 7873 | } |
| 7874 | } // if (checksubfaceflag) |
| 7875 | |
| 7876 | |
| 7877 | // Re-use fliptets[0] for [a,b,c,d]. |
| 7878 | fliptets[0].ver = 11; |
| 7879 | setelemmarker(fliptets[0].tet, 0); // Clean all flags. |
| 7880 | // NOTE: the element attributes and volume constraint remain unchanged. |
| 7881 | if (checksubsegflag) { |
| 7882 | // Dealloc the space to subsegments. |
| 7883 | if (fliptets[0].tet[8] != NULL) { |
| 7884 | tet2segpool->dealloc((shellface *) fliptets[0].tet[8]); |
| 7885 | fliptets[0].tet[8] = NULL; |
| 7886 | } |
| 7887 | } |
| 7888 | if (checksubfaceflag) { |
| 7889 | // Dealloc the space to subfaces. |
| 7890 | if (fliptets[0].tet[9] != NULL) { |
| 7891 | tet2subpool->dealloc((shellface *) fliptets[0].tet[9]); |
| 7892 | fliptets[0].tet[9] = NULL; |
| 7893 | } |
| 7894 | } |
| 7895 | // Delete the other three tets. |
| 7896 | for (i = 1; i < 4; i++) { |
| 7897 | tetrahedrondealloc(fliptets[i].tet); |
| 7898 | } |
| 7899 | |
| 7900 | if (pp != dummypoint) { |
| 7901 | // Mark the point pp as unused. |
| 7902 | setpointtype(pp, UNUSEDVERTEX); |
| 7903 | unuverts++; |
| 7904 | } |
| 7905 | |
| 7906 | // Create the new tet [a,b,c,d]. |
| 7907 | if (hullflag > 0) { |
| 7908 | // One of the five vertices may be 'dummypoint'. |
| 7909 | if (pa == dummypoint) { |
| 7910 | // pa is dummypoint. |
| 7911 | setvertices(fliptets[0], pc, pb, pd, pa); |
| 7912 | esymself(fliptets[0]); // [b,c,a,d] |
| 7913 | eprevself(fliptets[0]); // [a,b,c,d] |
| 7914 | dummyflag = 1; |
| 7915 | } else if (pb == dummypoint) { |
| 7916 | setvertices(fliptets[0], pa, pc, pd, pb); |
| 7917 | esymself(fliptets[0]); // [c,a,b,d] |
| 7918 | enextself(fliptets[0]); // [a,b,c,d] |
| 7919 | dummyflag = 2; |
| 7920 | } else if (pc == dummypoint) { |
| 7921 | setvertices(fliptets[0], pb, pa, pd, pc); |
| 7922 | esymself(fliptets[0]); // [a,b,c,d] |
| 7923 | dummyflag = 3; |
| 7924 | } else if (pd == dummypoint) { |
| 7925 | setvertices(fliptets[0], pa, pb, pc, pd); |
| 7926 | dummyflag = 4; |
| 7927 | } else { |
| 7928 | setvertices(fliptets[0], pa, pb, pc, pd); |
| 7929 | if (pp == dummypoint) { |
| 7930 | dummyflag = -1; |
| 7931 | } else { |
| 7932 | dummyflag = 0; |
| 7933 | } |
| 7934 | } |
| 7935 | if (dummyflag > 0) { |
| 7936 | // We deleted 3 hull tets, and create 1 hull tet. |
| 7937 | hullsize -= 2; |
| 7938 | } else if (dummyflag < 0) { |
| 7939 | // We deleted 4 hull tets. |
| 7940 | hullsize -= 4; |
| 7941 | // meshedges does not change. |
| 7942 | } |
| 7943 | } else { |
| 7944 | setvertices(fliptets[0], pa, pb, pc, pd); |
| 7945 | } |
| 7946 | |
| 7947 | if (fc->remove_ndelaunay_edge) { // calc_tetprism_vol |
| 7948 | REAL volneg[4], volpos[1], vol_diff; |
| 7949 | if (dummyflag > 0) { |
| 7950 | if (pa == dummypoint) { |
| 7951 | volneg[0] = 0.; |
| 7952 | volneg[1] = tetprismvol(pp, pd, pb, pc); |
| 7953 | volneg[2] = 0.; |
| 7954 | volneg[3] = 0.; |
| 7955 | } else if (pb == dummypoint) { |
| 7956 | volneg[0] = 0.; |
| 7957 | volneg[1] = 0.; |
| 7958 | volneg[2] = tetprismvol(pp, pd, pc, pa); |
| 7959 | volneg[3] = 0.; |
| 7960 | } else if (pc == dummypoint) { |
| 7961 | volneg[0] = tetprismvol(pp, pd, pa, pb); |
| 7962 | volneg[1] = 0.; |
| 7963 | volneg[2] = 0.; |
| 7964 | volneg[3] = 0.; |
| 7965 | } else { // pd == dummypoint |
| 7966 | volneg[0] = 0.; |
| 7967 | volneg[1] = 0.; |
| 7968 | volneg[2] = 0.; |
| 7969 | volneg[3] = tetprismvol(pa, pb, pc, pp); |
| 7970 | } |
| 7971 | volpos[0] = 0.; |
| 7972 | } else if (dummyflag < 0) { |
| 7973 | volneg[0] = 0.; |
| 7974 | volneg[1] = 0.; |
| 7975 | volneg[2] = 0.; |
| 7976 | volneg[3] = 0.; |
| 7977 | volpos[0] = tetprismvol(pa, pb, pc, pd); |
| 7978 | } else { |
| 7979 | volneg[0] = tetprismvol(pp, pd, pa, pb); |
| 7980 | volneg[1] = tetprismvol(pp, pd, pb, pc); |
| 7981 | volneg[2] = tetprismvol(pp, pd, pc, pa); |
| 7982 | volneg[3] = tetprismvol(pa, pb, pc, pp); |
| 7983 | volpos[0] = tetprismvol(pa, pb, pc, pd); |
| 7984 | } |
| 7985 | vol_diff = volpos[0] - volneg[0] - volneg[1] - volneg[2] - volneg[3]; |
| 7986 | fc->tetprism_vol_sum += vol_diff; // Update the total sum. |
| 7987 | } |
| 7988 | |
| 7989 | // Bond the new tet to adjacent tets. |
| 7990 | for (i = 0; i < 3; i++) { |
| 7991 | esym(fliptets[0], newface); // At faces [b,a,d], [c,b,d], [a,c,d]. |
| 7992 | bond(newface, topcastets[i]); |
| 7993 | enextself(fliptets[0]); |
| 7994 | } |
| 7995 | bond(fliptets[0], botcastet); |
| 7996 | |
| 7997 | if (checksubsegflag) { |
| 7998 | face checkseg; |
| 7999 | // Bond 6 segments (at edges of [a,b,c,d]) if there there are. |
| 8000 | for (i = 0; i < 3; i++) { |
| 8001 | eprev(topcastets[i], newface); // At edges [d,a],[d,b],[d,c]. |
| 8002 | if (issubseg(newface)) { |
| 8003 | tsspivot1(newface, checkseg); |
| 8004 | esym(fliptets[0], newface); |
| 8005 | enextself(newface); // At edges [a,d], [b,d], [c,d]. |
| 8006 | tssbond1(newface, checkseg); |
| 8007 | sstbond1(checkseg, newface); |
| 8008 | if (fc->chkencflag & 1) { |
| 8009 | enqueuesubface(badsubsegs, &checkseg); |
| 8010 | } |
| 8011 | } |
| 8012 | enextself(fliptets[0]); |
| 8013 | } |
| 8014 | for (i = 0; i < 3; i++) { |
| 8015 | if (issubseg(topcastets[i])) { |
| 8016 | tsspivot1(topcastets[i], checkseg); // At edges [a,b],[b,c],[c,a]. |
| 8017 | tssbond1(fliptets[0], checkseg); |
| 8018 | sstbond1(checkseg, fliptets[0]); |
| 8019 | if (fc->chkencflag & 1) { |
| 8020 | enqueuesubface(badsubsegs, &checkseg); |
| 8021 | } |
| 8022 | } |
| 8023 | enextself(fliptets[0]); |
| 8024 | } |
| 8025 | } |
| 8026 | |
| 8027 | if (checksubfaceflag) { |
| 8028 | face checksh; |
| 8029 | // Bond 4 subfaces (at faces of [a,b,c,d]) if there are. |
| 8030 | for (i = 0; i < 3; i++) { |
| 8031 | if (issubface(topcastets[i])) { |
| 8032 | tspivot(topcastets[i], checksh); // At faces [a,b,d],[b,c,d],[c,a,d] |
| 8033 | esym(fliptets[0], newface); // At faces [b,a,d],[c,b,d],[a,c,d] |
| 8034 | sesymself(checksh); |
| 8035 | tsbond(newface, checksh); |
| 8036 | if (fc->chkencflag & 2) { |
| 8037 | enqueuesubface(badsubfacs, &checksh); |
| 8038 | } |
| 8039 | } |
| 8040 | enextself(fliptets[0]); |
| 8041 | } |
| 8042 | if (issubface(botcastet)) { |
| 8043 | tspivot(botcastet, checksh); // At face [b,a,c] |
| 8044 | sesymself(checksh); |
| 8045 | tsbond(fliptets[0], checksh); |
| 8046 | if (fc->chkencflag & 2) { |
| 8047 | enqueuesubface(badsubfacs, &checksh); |
| 8048 | } |
| 8049 | } |
| 8050 | |
| 8051 | if (spivot >= 0) { |
| 8052 | // Perform a 3-to-1 flip in surface triangulation. |
| 8053 | // Depending on the value of 'spivot', the three subfaces are: |
| 8054 | // - 0: [a,b,p], [b,d,p], [d,a,p] |
| 8055 | // - 1: [b,c,p], [c,d,p], [d,b,p] |
| 8056 | // - 2: [c,a,p], [a,d,p], [d,c,p] |
| 8057 | // - 3: [a,b,p], [b,c,p], [c,a,p] |
| 8058 | // Adjust the three subfaces such that their origins are p, i.e., |
| 8059 | // - 3: [p,a,b], [p,b,c], [p,c,a]. (Required by the flip31()). |
| 8060 | for (i = 0; i < 3; i++) { |
| 8061 | senext2self(flipshs[i]); |
| 8062 | } |
| 8063 | flip31(flipshs, 0); |
| 8064 | // Delete the three old subfaces. |
| 8065 | for (i = 0; i < 3; i++) { |
| 8066 | shellfacedealloc(subfaces, flipshs[i].sh); |
| 8067 | } |
| 8068 | if (spivot < 3) { |
| 8069 | // // Bond the new subface to the new tet [a,b,c,d]. |
| 8070 | tsbond(topcastets[spivot], flipshs[3]); |
| 8071 | fsym(topcastets[spivot], newface); |
| 8072 | sesym(flipshs[3], checksh); |
| 8073 | tsbond(newface, checksh); |
| 8074 | } else { |
| 8075 | // Bound the new subface [a,b,c] to the new tet [a,b,c,d]. |
| 8076 | tsbond(fliptets[0], flipshs[3]); |
| 8077 | fsym(fliptets[0], newface); |
| 8078 | sesym(flipshs[3], checksh); |
| 8079 | tsbond(newface, checksh); |
| 8080 | } |
| 8081 | } // if (spivot > 0) |
| 8082 | } // if (checksubfaceflag) |
| 8083 | |
| 8084 | if (fc->chkencflag & 4) { |
| 8085 | enqueuetetrahedron(&(fliptets[0])); |
| 8086 | } |
| 8087 | |
| 8088 | // Update the point-to-tet map. |
| 8089 | setpoint2tet(pa, (tetrahedron) fliptets[0].tet); |
| 8090 | setpoint2tet(pb, (tetrahedron) fliptets[0].tet); |
| 8091 | setpoint2tet(pc, (tetrahedron) fliptets[0].tet); |
| 8092 | setpoint2tet(pd, (tetrahedron) fliptets[0].tet); |
| 8093 | |
| 8094 | if (fc->enqflag > 0) { |
| 8095 | // Queue faces which may be locally non-Delaunay. |
| 8096 | flippush(flipstack, &(fliptets[0])); // [a,b,c] (opposite to new point). |
| 8097 | if (fc->enqflag > 1) { |
| 8098 | for (i = 0; i < 3; i++) { |
| 8099 | esym(fliptets[0], newface); |
| 8100 | flippush(flipstack, &newface); |
| 8101 | enextself(fliptets[0]); |
| 8102 | } |
| 8103 | } |
| 8104 | } |
| 8105 | |
| 8106 | recenttet = fliptets[0]; |
| 8107 | } |
| 8108 | |
| 8109 | /////////////////////////////////////////////////////////////////////////////// |
| 8110 | // // |
| 8111 | // flipnm() Flip an edge through a sequence of elementary flips. // |
| 8112 | // // |
| 8113 | // 'abtets' is an array of 'n' tets in the star of edge [a,b].These tets are // |
| 8114 | // ordered in a counterclockwise cycle with respect to the vector a->b, i.e.,// |
| 8115 | // use the right-hand rule. // |
| 8116 | // // |
| 8117 | // 'level' (>= 0) indicates the current link level. If 'level > 0', we are // |
| 8118 | // flipping a link edge of an edge [a',b'], and 'abedgepivot' indicates // |
| 8119 | // which link edge, i.e., [c',b'] or [a',c'], is [a,b] These two parameters // |
| 8120 | // allow us to determine the new tets after a 3-to-2 flip, i.e., tets that // |
| 8121 | // do not inside the reduced star of edge [a',b']. // |
| 8122 | // // |
| 8123 | // If the flag 'fc->unflip' is set, this routine un-does the flips performed // |
| 8124 | // in flipnm([a,b]) so that the mesh is returned to its original state // |
| 8125 | // before doing the flipnm([a,b]) operation. // |
| 8126 | // // |
| 8127 | // The return value is an integer nn, where nn <= n. If nn is 2, then the // |
| 8128 | // edge is flipped. The first and the second tets in 'abtets' are new tets. // |
| 8129 | // Otherwise, nn > 2, the edge is not flipped, and nn is the number of tets // |
| 8130 | // in the current star of [a,b]. // |
| 8131 | // // |
| 8132 | // ASSUMPTIONS: // |
| 8133 | // - Neither a nor b is 'dummypoint'. // |
| 8134 | // - [a,b] must not be a segment. // |
| 8135 | // // |
| 8136 | /////////////////////////////////////////////////////////////////////////////// |
| 8137 | |
| 8138 | int tetgenmesh::flipnm(triface* abtets, int n, int level, int abedgepivot, |
| 8139 | flipconstraints* fc) |
| 8140 | { |
| 8141 | triface fliptets[3], spintet, flipedge; |
| 8142 | triface *tmpabtets, *parytet; |
| 8143 | point pa, pb, pc, pd, pe, pf; |
| 8144 | REAL ori; |
| 8145 | int hullflag, hulledgeflag; |
| 8146 | int reducflag, rejflag; |
| 8147 | int reflexlinkedgecount; |
| 8148 | int edgepivot; |
| 8149 | int n1, nn; |
| 8150 | int t1ver; |
| 8151 | int i, j; |
| 8152 | |
| 8153 | pa = org(abtets[0]); |
| 8154 | pb = dest(abtets[0]); |
| 8155 | |
| 8156 | if (n > 3) { |
| 8157 | // Try to reduce the size of the Star(ab) by flipping a face in it. |
| 8158 | reflexlinkedgecount = 0; |
| 8159 | |
| 8160 | for (i = 0; i < n; i++) { |
| 8161 | // Let the face of 'abtets[i]' be [a,b,c]. |
| 8162 | if (checksubfaceflag) { |
| 8163 | if (issubface(abtets[i])) { |
| 8164 | continue; // Skip a subface. |
| 8165 | } |
| 8166 | } |
| 8167 | // Do not flip this face if it is involved in two Stars. |
| 8168 | if ((elemcounter(abtets[i]) > 1) || |
| 8169 | (elemcounter(abtets[(i - 1 + n) % n]) > 1)) { |
| 8170 | continue; |
| 8171 | } |
| 8172 | |
| 8173 | pc = apex(abtets[i]); |
| 8174 | pd = apex(abtets[(i + 1) % n]); |
| 8175 | pe = apex(abtets[(i - 1 + n) % n]); |
| 8176 | if ((pd == dummypoint) || (pe == dummypoint)) { |
| 8177 | continue; // [a,b,c] is a hull face. |
| 8178 | } |
| 8179 | |
| 8180 | |
| 8181 | // Decide whether [a,b,c] is flippable or not. |
| 8182 | reducflag = 0; |
| 8183 | |
| 8184 | hullflag = (pc == dummypoint); // pc may be dummypoint. |
| 8185 | hulledgeflag = 0; |
| 8186 | if (hullflag == 0) { |
| 8187 | ori = orient3d(pb, pc, pd, pe); // Is [b,c] locally convex? |
| 8188 | if (ori > 0) { |
| 8189 | ori = orient3d(pc, pa, pd, pe); // Is [c,a] locally convex? |
| 8190 | if (ori > 0) { |
| 8191 | // Test if [a,b] is locally convex OR flat. |
| 8192 | ori = orient3d(pa, pb, pd, pe); |
| 8193 | if (ori > 0) { |
| 8194 | // Found a 2-to-3 flip: [a,b,c] => [e,d] |
| 8195 | reducflag = 1; |
| 8196 | } else if (ori == 0) { |
| 8197 | // [a,b] is flat. |
| 8198 | if (n == 4) { |
| 8199 | // The "flat" tet can be removed immediately by a 3-to-2 flip. |
| 8200 | reducflag = 1; |
| 8201 | // Check if [e,d] is a hull edge. |
| 8202 | pf = apex(abtets[(i + 2) % n]); |
| 8203 | hulledgeflag = (pf == dummypoint); |
| 8204 | } |
| 8205 | } |
| 8206 | } |
| 8207 | } |
| 8208 | if (!reducflag) { |
| 8209 | reflexlinkedgecount++; |
| 8210 | } |
| 8211 | } else { |
| 8212 | // 'c' is dummypoint. |
| 8213 | if (n == 4) { |
| 8214 | // Let the vertex opposite to 'c' is 'f'. |
| 8215 | // A 4-to-4 flip is possible if the two tets [d,e,f,a] and [e,d,f,b] |
| 8216 | // are valid tets. |
| 8217 | // Note: When the mesh is not convex, it is possible that [a,b] is |
| 8218 | // locally non-convex (at hull faces [a,b,e] and [b,a,d]). |
| 8219 | // In this case, an edge flip [a,b] to [e,d] is still possible. |
| 8220 | pf = apex(abtets[(i + 2) % n]); |
| 8221 | assert(pf != dummypoint); |
| 8222 | ori = orient3d(pd, pe, pf, pa); |
| 8223 | if (ori < 0) { |
| 8224 | ori = orient3d(pe, pd, pf, pb); |
| 8225 | if (ori < 0) { |
| 8226 | // Found a 4-to-4 flip: [a,b] => [e,d] |
| 8227 | reducflag = 1; |
| 8228 | ori = 0; // Signal as a 4-to-4 flip (like a co-planar case). |
| 8229 | hulledgeflag = 1; // [e,d] is a hull edge. |
| 8230 | } |
| 8231 | } |
| 8232 | } |
| 8233 | } // if (hullflag) |
| 8234 | |
| 8235 | if (reducflag) { |
| 8236 | if (nonconvex && hulledgeflag) { |
| 8237 | // We will create a hull edge [e,d]. Make sure it does not exist. |
| 8238 | if (getedge(pe, pd, &spintet)) { |
| 8239 | // The 2-to-3 flip is not a topological valid flip. |
| 8240 | reducflag = 0; |
| 8241 | } |
| 8242 | } |
| 8243 | } |
| 8244 | |
| 8245 | if (reducflag) { |
| 8246 | // [a,b,c] could be removed by a 2-to-3 flip. |
| 8247 | rejflag = 0; |
| 8248 | if (fc->checkflipeligibility) { |
| 8249 | // Check if the flip can be performed. |
| 8250 | rejflag = checkflipeligibility(1, pa, pb, pc, pd, pe, level, |
| 8251 | abedgepivot, fc); |
| 8252 | } |
| 8253 | if (!rejflag) { |
| 8254 | // Do flip: [a,b,c] => [e,d]. |
| 8255 | fliptets[0] = abtets[i]; |
| 8256 | fsym(fliptets[0], fliptets[1]); // abtets[i-1]. |
| 8257 | flip23(fliptets, hullflag, fc); |
| 8258 | |
| 8259 | // Shrink the array 'abtets', maintain the original order. |
| 8260 | // Two tets 'abtets[i-1] ([a,b,e,c])' and 'abtets[i] ([a,b,c,d])' |
| 8261 | // are flipped, i.e., they do not in Star(ab) anymore. |
| 8262 | // 'fliptets[0]' ([e,d,a,b]) is in Star(ab), it is saved in |
| 8263 | // 'abtets[i-1]' (adjust it to be [a,b,e,d]), see below: |
| 8264 | // |
| 8265 | // before after |
| 8266 | // [0] |___________| [0] |___________| |
| 8267 | // ... |___________| ... |___________| |
| 8268 | // [i-1] |_[a,b,e,c]_| [i-1] |_[a,b,e,d]_| |
| 8269 | // [i] |_[a,b,c,d]_| --> [i] |_[a,b,d,#]_| |
| 8270 | // [i+1] |_[a,b,d,#]_| [i+1] |_[a,b,#,*]_| |
| 8271 | // ... |___________| ... |___________| |
| 8272 | // [n-2] |___________| [n-2] |___________| |
| 8273 | // [n-1] |___________| [n-1] |_[i]_2-t-3_| |
| 8274 | // |
| 8275 | edestoppoself(fliptets[0]); // [a,b,e,d] |
| 8276 | // Increase the counter of this new tet (it is in Star(ab)). |
| 8277 | increaseelemcounter(fliptets[0]); |
| 8278 | abtets[(i - 1 + n) % n] = fliptets[0]; |
| 8279 | for (j = i; j < n - 1; j++) { |
| 8280 | abtets[j] = abtets[j + 1]; // Upshift |
| 8281 | } |
| 8282 | // The last entry 'abtets[n-1]' is empty. It is used in two ways: |
| 8283 | // (i) it remembers the vertex 'c' (in 'abtets[n-1].tet'), and |
| 8284 | // (ii) it remembers the position [i] where this flip took place. |
| 8285 | // These informations let us to either undo this flip or recover |
| 8286 | // the original edge link (for collecting new created tets). |
| 8287 | //abtets[n - 1] = fliptets[1]; // [e,d,b,c] is remembered. |
| 8288 | abtets[n - 1].tet = (tetrahedron *) pc; |
| 8289 | abtets[n - 1].ver = 0; // Clear it. |
| 8290 | // 'abtets[n - 1].ver' is in range [0,11] -- only uses 4 bits. |
| 8291 | // Use the 5th bit in 'abtets[n - 1].ver' to signal a 2-to-3 flip. |
| 8292 | abtets[n - 1].ver |= (1 << 4); |
| 8293 | // The poisition [i] of this flip is saved above the 7th bit. |
| 8294 | abtets[n - 1].ver |= (i << 6); |
| 8295 | |
| 8296 | if (fc->collectnewtets) { |
| 8297 | // Push the two new tets [e,d,b,c] and [e,d,c,a] into a stack. |
| 8298 | // Re-use the global array 'cavetetlist'. |
| 8299 | for (j = 1; j < 3; j++) { |
| 8300 | cavetetlist->newindex((void **) &parytet); |
| 8301 | *parytet = fliptets[j]; // fliptets[1], fliptets[2]. |
| 8302 | } |
| 8303 | } |
| 8304 | |
| 8305 | // Star(ab) is reduced. Try to flip the edge [a,b]. |
| 8306 | nn = flipnm(abtets, n - 1, level, abedgepivot, fc); |
| 8307 | |
| 8308 | if (nn == 2) { |
| 8309 | // The edge has been flipped. |
| 8310 | return nn; |
| 8311 | } else { // if (nn > 2) |
| 8312 | // The edge is not flipped. |
| 8313 | if (fc->unflip || (ori == 0)) { |
| 8314 | // Undo the previous 2-to-3 flip, i.e., do a 3-to-2 flip to |
| 8315 | // transform [e,d] => [a,b,c]. |
| 8316 | // 'ori == 0' means that the previous flip created a degenerated |
| 8317 | // tet. It must be removed. |
| 8318 | // Remember that 'abtets[i-1]' is [a,b,e,d]. We can use it to |
| 8319 | // find another two tets [e,d,b,c] and [e,d,c,a]. |
| 8320 | fliptets[0] = abtets[(i-1 + (n-1)) % (n-1)]; // [a,b,e,d] |
| 8321 | edestoppoself(fliptets[0]); // [e,d,a,b] |
| 8322 | fnext(fliptets[0], fliptets[1]); // [1] is [e,d,b,c] |
| 8323 | fnext(fliptets[1], fliptets[2]); // [2] is [e,d,c,a] |
| 8324 | assert(apex(fliptets[0]) == oppo(fliptets[2])); // SELF_CHECK |
| 8325 | // Restore the two original tets in Star(ab). |
| 8326 | flip32(fliptets, hullflag, fc); |
| 8327 | // Marktest the two restored tets in Star(ab). |
| 8328 | for (j = 0; j < 2; j++) { |
| 8329 | increaseelemcounter(fliptets[j]); |
| 8330 | } |
| 8331 | // Expand the array 'abtets', maintain the original order. |
| 8332 | for (j = n - 2; j>= i; j--) { |
| 8333 | abtets[j + 1] = abtets[j]; // Downshift |
| 8334 | } |
| 8335 | // Insert the two new tets 'fliptets[0]' [a,b,c,d] and |
| 8336 | // 'fliptets[1]' [b,a,c,e] into the (i-1)-th and i-th entries, |
| 8337 | // respectively. |
| 8338 | esym(fliptets[1], abtets[(i - 1 + n) % n]); // [a,b,e,c] |
| 8339 | abtets[i] = fliptets[0]; // [a,b,c,d] |
| 8340 | nn++; |
| 8341 | if (fc->collectnewtets) { |
| 8342 | // Pop two (flipped) tets from the stack. |
| 8343 | cavetetlist->objects -= 2; |
| 8344 | } |
| 8345 | } // if (unflip || (ori == 0)) |
| 8346 | } // if (nn > 2) |
| 8347 | |
| 8348 | if (!fc->unflip) { |
| 8349 | // The flips are not reversed. The current Star(ab) can not be |
| 8350 | // further reduced. Return its current size (# of tets). |
| 8351 | return nn; |
| 8352 | } |
| 8353 | // unflip is set. |
| 8354 | // Continue the search for flips. |
| 8355 | } |
| 8356 | } // if (reducflag) |
| 8357 | } // i |
| 8358 | |
| 8359 | // The Star(ab) is not reduced. |
| 8360 | if (reflexlinkedgecount > 0) { |
| 8361 | // There are reflex edges in the Link(ab). |
| 8362 | if (((b->fliplinklevel < 0) && (level < autofliplinklevel)) || |
| 8363 | ((b->fliplinklevel >= 0) && (level < b->fliplinklevel))) { |
| 8364 | // Try to reduce the Star(ab) by flipping a reflex edge in Link(ab). |
| 8365 | for (i = 0; i < n; i++) { |
| 8366 | // Do not flip this face [a,b,c] if there are two Stars involved. |
| 8367 | if ((elemcounter(abtets[i]) > 1) || |
| 8368 | (elemcounter(abtets[(i - 1 + n) % n]) > 1)) { |
| 8369 | continue; |
| 8370 | } |
| 8371 | pc = apex(abtets[i]); |
| 8372 | if (pc == dummypoint) { |
| 8373 | continue; // [a,b] is a hull edge. |
| 8374 | } |
| 8375 | pd = apex(abtets[(i + 1) % n]); |
| 8376 | pe = apex(abtets[(i - 1 + n) % n]); |
| 8377 | if ((pd == dummypoint) || (pe == dummypoint)) { |
| 8378 | continue; // [a,b,c] is a hull face. |
| 8379 | } |
| 8380 | |
| 8381 | |
| 8382 | edgepivot = 0; // No edge is selected yet. |
| 8383 | |
| 8384 | // Test if [b,c] is locally convex or flat. |
| 8385 | ori = orient3d(pb, pc, pd, pe); |
| 8386 | if (ori <= 0) { |
| 8387 | // Select the edge [c,b]. |
| 8388 | enext(abtets[i], flipedge); // [b,c,a,d] |
| 8389 | edgepivot = 1; |
| 8390 | } |
| 8391 | if (!edgepivot) { |
| 8392 | // Test if [c,a] is locally convex or flat. |
| 8393 | ori = orient3d(pc, pa, pd, pe); |
| 8394 | if (ori <= 0) { |
| 8395 | // Select the edge [a,c]. |
| 8396 | eprev(abtets[i], flipedge); // [c,a,b,d]. |
| 8397 | edgepivot = 2; |
| 8398 | } |
| 8399 | } |
| 8400 | |
| 8401 | if (!edgepivot) continue; |
| 8402 | |
| 8403 | // An edge is selected. |
| 8404 | if (checksubsegflag) { |
| 8405 | // Do not flip it if it is a segment. |
| 8406 | if (issubseg(flipedge)) { |
| 8407 | if (fc->collectencsegflag) { |
| 8408 | face checkseg, *paryseg; |
| 8409 | tsspivot1(flipedge, checkseg); |
| 8410 | if (!sinfected(checkseg)) { |
| 8411 | // Queue this segment in list. |
| 8412 | sinfect(checkseg); |
| 8413 | caveencseglist->newindex((void **) &paryseg); |
| 8414 | *paryseg = checkseg; |
| 8415 | } |
| 8416 | } |
| 8417 | continue; |
| 8418 | } |
| 8419 | } |
| 8420 | |
| 8421 | // Try to flip the selected edge ([c,b] or [a,c]). |
| 8422 | esymself(flipedge); |
| 8423 | // Count the number of tets at the edge. |
| 8424 | n1 = 0; |
| 8425 | j = 0; // Sum of the star counters. |
| 8426 | spintet = flipedge; |
| 8427 | while (1) { |
| 8428 | n1++; |
| 8429 | j += (elemcounter(spintet)); |
| 8430 | fnextself(spintet); |
| 8431 | if (spintet.tet == flipedge.tet) break; |
| 8432 | } |
| 8433 | assert(n1 >= 3); |
| 8434 | if (j > 2) { |
| 8435 | // The Star(flipedge) overlaps other Stars. |
| 8436 | continue; // Do not flip this edge. |
| 8437 | } |
| 8438 | // Only two tets can be marktested. |
| 8439 | assert(j == 2); |
| 8440 | |
| 8441 | if ((b->flipstarsize > 0) && (n1 > b->flipstarsize)) { |
| 8442 | // The star size exceeds the given limit. |
| 8443 | continue; // Do not flip it. |
| 8444 | } |
| 8445 | |
| 8446 | // Allocate spaces for Star(flipedge). |
| 8447 | tmpabtets = new triface[n1]; |
| 8448 | // Form the Star(flipedge). |
| 8449 | j = 0; |
| 8450 | spintet = flipedge; |
| 8451 | while (1) { |
| 8452 | tmpabtets[j] = spintet; |
| 8453 | // Increase the star counter of this tet. |
| 8454 | increaseelemcounter(tmpabtets[j]); |
| 8455 | j++; |
| 8456 | fnextself(spintet); |
| 8457 | if (spintet.tet == flipedge.tet) break; |
| 8458 | } |
| 8459 | |
| 8460 | // Try to flip the selected edge away. |
| 8461 | nn = flipnm(tmpabtets, n1, level + 1, edgepivot, fc); |
| 8462 | |
| 8463 | if (nn == 2) { |
| 8464 | // The edge is flipped. Star(ab) is reduced. |
| 8465 | // Shrink the array 'abtets', maintain the original order. |
| 8466 | if (edgepivot == 1) { |
| 8467 | // 'tmpabtets[0]' is [d,a,e,b] => contains [a,b]. |
| 8468 | spintet = tmpabtets[0]; // [d,a,e,b] |
| 8469 | enextself(spintet); |
| 8470 | esymself(spintet); |
| 8471 | enextself(spintet); // [a,b,e,d] |
| 8472 | } else { |
| 8473 | // 'tmpabtets[1]' is [b,d,e,a] => contains [a,b]. |
| 8474 | spintet = tmpabtets[1]; // [b,d,e,a] |
| 8475 | eprevself(spintet); |
| 8476 | esymself(spintet); |
| 8477 | eprevself(spintet); // [a,b,e,d] |
| 8478 | } // edgepivot == 2 |
| 8479 | assert(elemcounter(spintet) == 0); // It's a new tet. |
| 8480 | increaseelemcounter(spintet); // It is in Star(ab). |
| 8481 | // Put the new tet at [i-1]-th entry. |
| 8482 | abtets[(i - 1 + n) % n] = spintet; |
| 8483 | for (j = i; j < n - 1; j++) { |
| 8484 | abtets[j] = abtets[j + 1]; // Upshift |
| 8485 | } |
| 8486 | // Remember the flips in the last entry of the array 'abtets'. |
| 8487 | // They can be used to recover the flipped edge. |
| 8488 | abtets[n - 1].tet = (tetrahedron *) tmpabtets; // The star(fedge). |
| 8489 | abtets[n - 1].ver = 0; // Clear it. |
| 8490 | // Use the 1st and 2nd bit to save 'edgepivot' (1 or 2). |
| 8491 | abtets[n - 1].ver |= edgepivot; |
| 8492 | // Use the 6th bit to signal this n1-to-m1 flip. |
| 8493 | abtets[n - 1].ver |= (1 << 5); |
| 8494 | // The poisition [i] of this flip is saved from 7th to 19th bit. |
| 8495 | abtets[n - 1].ver |= (i << 6); |
| 8496 | // The size of the star 'n1' is saved from 20th bit. |
| 8497 | abtets[n - 1].ver |= (n1 << 19); |
| 8498 | |
| 8499 | // Remember the flipped link vertex 'c'. It can be used to recover |
| 8500 | // the original edge link of [a,b], and to collect new tets. |
| 8501 | tmpabtets[0].tet = (tetrahedron *) pc; |
| 8502 | tmpabtets[0].ver = (1 << 5); // Flag it as a vertex handle. |
| 8503 | |
| 8504 | // Continue to flip the edge [a,b]. |
| 8505 | nn = flipnm(abtets, n - 1, level, abedgepivot, fc); |
| 8506 | |
| 8507 | if (nn == 2) { |
| 8508 | // The edge has been flipped. |
| 8509 | return nn; |
| 8510 | } else { // if (nn > 2) { |
| 8511 | // The edge is not flipped. |
| 8512 | if (fc->unflip) { |
| 8513 | // Recover the flipped edge ([c,b] or [a,c]). |
| 8514 | assert(nn == (n - 1)); |
| 8515 | // The sequence of flips are saved in 'tmpabtets'. |
| 8516 | // abtets[(i-1) % (n-1)] is [a,b,e,d], i.e., the tet created by |
| 8517 | // the flipping of edge [c,b] or [a,c].It must still exist in |
| 8518 | // Star(ab). It is the start tet to recover the flipped edge. |
| 8519 | if (edgepivot == 1) { |
| 8520 | // The flip edge is [c,b]. |
| 8521 | tmpabtets[0] = abtets[((i-1)+(n-1))%(n-1)]; // [a,b,e,d] |
| 8522 | eprevself(tmpabtets[0]); |
| 8523 | esymself(tmpabtets[0]); |
| 8524 | eprevself(tmpabtets[0]); // [d,a,e,b] |
| 8525 | fsym(tmpabtets[0], tmpabtets[1]); // [a,d,e,c] |
| 8526 | } else { |
| 8527 | // The flip edge is [a,c]. |
| 8528 | tmpabtets[1] = abtets[((i-1)+(n-1))%(n-1)]; // [a,b,e,d] |
| 8529 | enextself(tmpabtets[1]); |
| 8530 | esymself(tmpabtets[1]); |
| 8531 | enextself(tmpabtets[1]); // [b,d,e,a] |
| 8532 | fsym(tmpabtets[1], tmpabtets[0]); // [d,b,e,c] |
| 8533 | } // if (edgepivot == 2) |
| 8534 | |
| 8535 | // Recover the flipped edge ([c,b] or [a,c]). |
| 8536 | flipnm_post(tmpabtets, n1, 2, edgepivot, fc); |
| 8537 | |
| 8538 | // Insert the two recovered tets into Star(ab). |
| 8539 | for (j = n - 2; j >= i; j--) { |
| 8540 | abtets[j + 1] = abtets[j]; // Downshift |
| 8541 | } |
| 8542 | if (edgepivot == 1) { |
| 8543 | // tmpabtets[0] is [c,b,d,a] ==> contains [a,b] |
| 8544 | // tmpabtets[1] is [c,b,a,e] ==> contains [a,b] |
| 8545 | // tmpabtets[2] is [c,b,e,d] |
| 8546 | fliptets[0] = tmpabtets[1]; |
| 8547 | enextself(fliptets[0]); |
| 8548 | esymself(fliptets[0]); // [a,b,e,c] |
| 8549 | fliptets[1] = tmpabtets[0]; |
| 8550 | esymself(fliptets[1]); |
| 8551 | eprevself(fliptets[1]); // [a,b,c,d] |
| 8552 | } else { |
| 8553 | // tmpabtets[0] is [a,c,d,b] ==> contains [a,b] |
| 8554 | // tmpabtets[1] is [a,c,b,e] ==> contains [a,b] |
| 8555 | // tmpabtets[2] is [a,c,e,d] |
| 8556 | fliptets[0] = tmpabtets[1]; |
| 8557 | eprevself(fliptets[0]); |
| 8558 | esymself(fliptets[0]); // [a,b,e,c] |
| 8559 | fliptets[1] = tmpabtets[0]; |
| 8560 | esymself(fliptets[1]); |
| 8561 | enextself(fliptets[1]); // [a,b,c,d] |
| 8562 | } // edgepivot == 2 |
| 8563 | for (j = 0; j < 2; j++) { |
| 8564 | increaseelemcounter(fliptets[j]); |
| 8565 | } |
| 8566 | // Insert the two recovered tets into Star(ab). |
| 8567 | abtets[(i - 1 + n) % n] = fliptets[0]; |
| 8568 | abtets[i] = fliptets[1]; |
| 8569 | nn++; |
| 8570 | // Release the allocated spaces. |
| 8571 | delete [] tmpabtets; |
| 8572 | } // if (unflip) |
| 8573 | } // if (nn > 2) |
| 8574 | |
| 8575 | if (!fc->unflip) { |
| 8576 | // The flips are not reversed. The current Star(ab) can not be |
| 8577 | // further reduced. Return its size (# of tets). |
| 8578 | return nn; |
| 8579 | } |
| 8580 | // unflip is set. |
| 8581 | // Continue the search for flips. |
| 8582 | } else { |
| 8583 | // The selected edge is not flipped. |
| 8584 | if (fc->unflip) { |
| 8585 | // The memory should already be freed. |
| 8586 | assert(nn == n1); |
| 8587 | } else { |
| 8588 | // Release the memory used in this attempted flip. |
| 8589 | flipnm_post(tmpabtets, n1, nn, edgepivot, fc); |
| 8590 | } |
| 8591 | // Decrease the star counters of tets in Star(flipedge). |
| 8592 | for (j = 0; j < nn; j++) { |
| 8593 | assert(elemcounter(tmpabtets[j]) > 0); // SELF_CHECK |
| 8594 | decreaseelemcounter(tmpabtets[j]); |
| 8595 | } |
| 8596 | // Release the allocated spaces. |
| 8597 | delete [] tmpabtets; |
| 8598 | } |
| 8599 | } // i |
| 8600 | } // if (level...) |
| 8601 | } // if (reflexlinkedgecount > 0) |
| 8602 | } else { |
| 8603 | // Check if a 3-to-2 flip is possible. |
| 8604 | // Let the three apexes be c, d,and e. Hull tets may be involved. If so, |
| 8605 | // we rearrange them such that the vertex e is dummypoint. |
| 8606 | hullflag = 0; |
| 8607 | |
| 8608 | if (apex(abtets[0]) == dummypoint) { |
| 8609 | pc = apex(abtets[1]); |
| 8610 | pd = apex(abtets[2]); |
| 8611 | pe = apex(abtets[0]); |
| 8612 | hullflag = 1; |
| 8613 | } else if (apex(abtets[1]) == dummypoint) { |
| 8614 | pc = apex(abtets[2]); |
| 8615 | pd = apex(abtets[0]); |
| 8616 | pe = apex(abtets[1]); |
| 8617 | hullflag = 2; |
| 8618 | } else { |
| 8619 | pc = apex(abtets[0]); |
| 8620 | pd = apex(abtets[1]); |
| 8621 | pe = apex(abtets[2]); |
| 8622 | hullflag = (pe == dummypoint) ? 3 : 0; |
| 8623 | } |
| 8624 | |
| 8625 | reducflag = 0; |
| 8626 | rejflag = 0; |
| 8627 | |
| 8628 | |
| 8629 | if (hullflag == 0) { |
| 8630 | // Make sure that no inverted tet will be created, i.e. the new tets |
| 8631 | // [d,c,e,a] and [c,d,e,b] must be valid tets. |
| 8632 | ori = orient3d(pd, pc, pe, pa); |
| 8633 | if (ori < 0) { |
| 8634 | ori = orient3d(pc, pd, pe, pb); |
| 8635 | if (ori < 0) { |
| 8636 | reducflag = 1; |
| 8637 | } |
| 8638 | } |
| 8639 | } else { |
| 8640 | // [a,b] is a hull edge. |
| 8641 | // Note: This can happen when it is in the middle of a 4-to-4 flip. |
| 8642 | // Note: [a,b] may even be a non-convex hull edge. |
| 8643 | if (!nonconvex) { |
| 8644 | // The mesh is convex, only do flip if it is a coplanar hull edge. |
| 8645 | ori = orient3d(pa, pb, pc, pd); |
| 8646 | if (ori == 0) { |
| 8647 | reducflag = 1; |
| 8648 | } |
| 8649 | } else { // nonconvex |
| 8650 | reducflag = 1; |
| 8651 | } |
| 8652 | if (reducflag == 1) { |
| 8653 | // [a,b], [a,b,c] and [a,b,d] are on the convex hull. |
| 8654 | // Make sure that no inverted tet will be created. |
| 8655 | point searchpt = NULL, chkpt; |
| 8656 | REAL bigvol = 0.0, ori1, ori2; |
| 8657 | // Search an interior vertex which is an apex of edge [c,d]. |
| 8658 | // In principle, it can be arbitrary interior vertex. To avoid |
| 8659 | // numerical issue, we choose the vertex which belongs to a tet |
| 8660 | // 't' at edge [c,d] and 't' has the biggest volume. |
| 8661 | fliptets[0] = abtets[hullflag % 3]; // [a,b,c,d]. |
| 8662 | eorgoppoself(fliptets[0]); // [d,c,b,a] |
| 8663 | spintet = fliptets[0]; |
| 8664 | while (1) { |
| 8665 | fnextself(spintet); |
| 8666 | chkpt = oppo(spintet); |
| 8667 | if (chkpt == pb) break; |
| 8668 | if ((chkpt != dummypoint) && (apex(spintet) != dummypoint)) { |
| 8669 | ori = -orient3d(pd, pc, apex(spintet), chkpt); |
| 8670 | assert(ori > 0); |
| 8671 | if (ori > bigvol) { |
| 8672 | bigvol = ori; |
| 8673 | searchpt = chkpt; |
| 8674 | } |
| 8675 | } |
| 8676 | } |
| 8677 | if (searchpt != NULL) { |
| 8678 | // Now valid the configuration. |
| 8679 | ori1 = orient3d(pd, pc, searchpt, pa); |
| 8680 | ori2 = orient3d(pd, pc, searchpt, pb); |
| 8681 | if (ori1 * ori2 >= 0.0) { |
| 8682 | reducflag = 0; // Not valid. |
| 8683 | } else { |
| 8684 | ori1 = orient3d(pa, pb, searchpt, pc); |
| 8685 | ori2 = orient3d(pa, pb, searchpt, pd); |
| 8686 | if (ori1 * ori2 >= 0.0) { |
| 8687 | reducflag = 0; // Not valid. |
| 8688 | } |
| 8689 | } |
| 8690 | } else { |
| 8691 | // No valid searchpt is found. |
| 8692 | reducflag = 0; // Do not flip it. |
| 8693 | } |
| 8694 | } // if (reducflag == 1) |
| 8695 | } // if (hullflag == 1) |
| 8696 | |
| 8697 | if (reducflag) { |
| 8698 | // A 3-to-2 flip is possible. |
| 8699 | if (checksubfaceflag) { |
| 8700 | // This edge (must not be a segment) can be flipped ONLY IF it belongs |
| 8701 | // to either 0 or 2 subfaces. In the latter case, a 2-to-2 flip in |
| 8702 | // the surface mesh will be automatically performed within the |
| 8703 | // 3-to-2 flip. |
| 8704 | nn = 0; |
| 8705 | edgepivot = -1; // Re-use it. |
| 8706 | for (j = 0; j < 3; j++) { |
| 8707 | if (issubface(abtets[j])) { |
| 8708 | nn++; // Found a subface. |
| 8709 | } else { |
| 8710 | edgepivot = j; |
| 8711 | } |
| 8712 | } |
| 8713 | assert(nn < 3); |
| 8714 | if (nn == 1) { |
| 8715 | // Found only 1 subface containing this edge. This can happen in |
| 8716 | // the boundary recovery phase. The neighbor subface is not yet |
| 8717 | // recovered. This edge should not be flipped at this moment. |
| 8718 | rejflag = 1; |
| 8719 | } else if (nn == 2) { |
| 8720 | // Found two subfaces. A 2-to-2 flip is possible. Validate it. |
| 8721 | // Below we check if the two faces [p,q,a] and [p,q,b] are subfaces. |
| 8722 | eorgoppo(abtets[(edgepivot + 1) % 3], spintet); // [q,p,b,a] |
| 8723 | if (issubface(spintet)) { |
| 8724 | rejflag = 1; // Conflict to a 2-to-2 flip. |
| 8725 | } else { |
| 8726 | esymself(spintet); |
| 8727 | if (issubface(spintet)) { |
| 8728 | rejflag = 1; // Conflict to a 2-to-2 flip. |
| 8729 | } |
| 8730 | } |
| 8731 | } |
| 8732 | } |
| 8733 | if (!rejflag && fc->checkflipeligibility) { |
| 8734 | // Here we must exchange 'a' and 'b'. Since in the check... function, |
| 8735 | // we assume the following point sequence, 'a,b,c,d,e', where |
| 8736 | // the face [a,b,c] will be flipped and the edge [e,d] will be |
| 8737 | // created. The two new tets are [a,b,c,d] and [b,a,c,e]. |
| 8738 | rejflag = checkflipeligibility(2, pc, pd, pe, pb, pa, level, |
| 8739 | abedgepivot, fc); |
| 8740 | } |
| 8741 | if (!rejflag) { |
| 8742 | // Do flip: [a,b] => [c,d,e] |
| 8743 | flip32(abtets, hullflag, fc); |
| 8744 | if (fc->remove_ndelaunay_edge) { |
| 8745 | if (level == 0) { |
| 8746 | // It is the desired removing edge. Check if we have improved |
| 8747 | // the objective function. |
| 8748 | if ((fc->tetprism_vol_sum >= 0.0) || |
| 8749 | (fabs(fc->tetprism_vol_sum) < fc->bak_tetprism_vol)) { |
| 8750 | // No improvement! flip back: [c,d,e] => [a,b]. |
| 8751 | flip23(abtets, hullflag, fc); |
| 8752 | // Increase the element counter -- They are in cavity. |
| 8753 | for (j = 0; j < 3; j++) { |
| 8754 | increaseelemcounter(abtets[j]); |
| 8755 | } |
| 8756 | return 3; |
| 8757 | } |
| 8758 | } // if (level == 0) |
| 8759 | } |
| 8760 | if (fc->collectnewtets) { |
| 8761 | // Collect new tets. |
| 8762 | if (level == 0) { |
| 8763 | // Push the two new tets into stack. |
| 8764 | for (j = 0; j < 2; j++) { |
| 8765 | cavetetlist->newindex((void **) &parytet); |
| 8766 | *parytet = abtets[j]; |
| 8767 | } |
| 8768 | } else { |
| 8769 | // Only one of the new tets is collected. The other one is inside |
| 8770 | // the reduced edge star. 'abedgepivot' is either '1' or '2'. |
| 8771 | cavetetlist->newindex((void **) &parytet); |
| 8772 | if (abedgepivot == 1) { // [c,b] |
| 8773 | *parytet = abtets[1]; |
| 8774 | } else { |
| 8775 | assert(abedgepivot == 2); // [a,c] |
| 8776 | *parytet = abtets[0]; |
| 8777 | } |
| 8778 | } |
| 8779 | } // if (fc->collectnewtets) |
| 8780 | return 2; |
| 8781 | } |
| 8782 | } // if (reducflag) |
| 8783 | } // if (n == 3) |
| 8784 | |
| 8785 | // The current (reduced) Star size. |
| 8786 | return n; |
| 8787 | } |
| 8788 | |
| 8789 | /////////////////////////////////////////////////////////////////////////////// |
| 8790 | // // |
| 8791 | // flipnm_post() Post process a n-to-m flip. // |
| 8792 | // // |
| 8793 | // IMPORTANT: This routine only works when there is no other flip operation // |
| 8794 | // is done after flipnm([a,b]) which attempts to remove an edge [a,b]. // |
| 8795 | // // |
| 8796 | // 'abtets' is an array of 'n' (>= 3) tets which are in the original star of // |
| 8797 | // [a,b] before flipnm([a,b]). 'nn' (< n) is the value returned by flipnm. // |
| 8798 | // If 'nn == 2', the edge [a,b] has been flipped. 'abtets[0]' and 'abtets[1]'// |
| 8799 | // are [c,d,e,b] and [d,c,e,a], i.e., a 2-to-3 flip can recover the edge [a, // |
| 8800 | // b] and its initial Star([a,b]). If 'nn >= 3' edge [a,b] still exists in // |
| 8801 | // current mesh and 'nn' is the current number of tets in Star([a,b]). // |
| 8802 | // // |
| 8803 | // Each 'abtets[i]', where nn <= i < n, saves either a 2-to-3 flip or a // |
| 8804 | // flipnm([p1,p2]) operation ([p1,p2] != [a,b]) which created the tet // |
| 8805 | // 'abtets[t-1]', where '0 <= t <= i'. These information can be used to // |
| 8806 | // undo the flips performed in flipnm([a,b]) or to collect new tets created // |
| 8807 | // by the flipnm([a,b]) operation. // |
| 8808 | // // |
| 8809 | // Default, this routine only walks through the flips and frees the spaces // |
| 8810 | // allocated during the flipnm([a,b]) operation. // |
| 8811 | // // |
| 8812 | // If the flag 'fc->unflip' is set, this routine un-does the flips performed // |
| 8813 | // in flipnm([a,b]) so that the mesh is returned to its original state // |
| 8814 | // before doing the flipnm([a,b]) operation. // |
| 8815 | // // |
| 8816 | // // |
| 8817 | /////////////////////////////////////////////////////////////////////////////// |
| 8818 | |
| 8819 | int tetgenmesh::flipnm_post(triface* abtets, int n, int nn, int abedgepivot, |
| 8820 | flipconstraints* fc) |
| 8821 | { |
| 8822 | triface fliptets[3], flipface; |
| 8823 | triface *tmpabtets; |
| 8824 | int fliptype; |
| 8825 | int edgepivot; |
| 8826 | int t, n1; |
| 8827 | int i, j; |
| 8828 | |
| 8829 | |
| 8830 | if (nn == 2) { |
| 8831 | // The edge [a,b] has been flipped. |
| 8832 | // 'abtets[0]' is [c,d,e,b] or [#,#,#,b]. |
| 8833 | // 'abtets[1]' is [d,c,e,a] or [#,#,#,a]. |
| 8834 | if (fc->unflip) { |
| 8835 | // Do a 2-to-3 flip to recover the edge [a,b]. There may be hull tets. |
| 8836 | flip23(abtets, 1, fc); |
| 8837 | if (fc->collectnewtets) { |
| 8838 | // Pop up new (flipped) tets from the stack. |
| 8839 | if (abedgepivot == 0) { |
| 8840 | // Two new tets were collected. |
| 8841 | cavetetlist->objects -= 2; |
| 8842 | } else { |
| 8843 | // Only one of the two new tets was collected. |
| 8844 | cavetetlist->objects -= 1; |
| 8845 | } |
| 8846 | } |
| 8847 | } |
| 8848 | // The initial size of Star(ab) is 3. |
| 8849 | nn++; |
| 8850 | } |
| 8851 | |
| 8852 | // Walk through the performed flips. |
| 8853 | for (i = nn; i < n; i++) { |
| 8854 | // At the beginning of each step 'i', the size of the Star([a,b]) is 'i'. |
| 8855 | // At the end of this step, the size of the Star([a,b]) is 'i+1'. |
| 8856 | // The sizes of the Link([a,b]) are the same. |
| 8857 | fliptype = ((abtets[i].ver >> 4) & 3); // 0, 1, or 2. |
| 8858 | if (fliptype == 1) { |
| 8859 | // It was a 2-to-3 flip: [a,b,c]->[e,d]. |
| 8860 | t = (abtets[i].ver >> 6); |
| 8861 | assert(t <= i); |
| 8862 | if (fc->unflip) { |
| 8863 | if (b->verbose > 2) { |
| 8864 | printf(" Recover a 2-to-3 flip at f[%d].\n" , t); |
| 8865 | } |
| 8866 | // 'abtets[(t-1)%i]' is the tet [a,b,e,d] in current Star(ab), i.e., |
| 8867 | // it is created by a 2-to-3 flip [a,b,c] => [e,d]. |
| 8868 | fliptets[0] = abtets[((t - 1) + i) % i]; // [a,b,e,d] |
| 8869 | eprevself(fliptets[0]); |
| 8870 | esymself(fliptets[0]); |
| 8871 | enextself(fliptets[0]); // [e,d,a,b] |
| 8872 | fnext(fliptets[0], fliptets[1]); // [e,d,b,c] |
| 8873 | fnext(fliptets[1], fliptets[2]); // [e,d,c,a] |
| 8874 | // Do a 3-to-2 flip: [e,d] => [a,b,c]. |
| 8875 | // NOTE: hull tets may be invloved. |
| 8876 | flip32(fliptets, 1, fc); |
| 8877 | // Expand the array 'abtets', maintain the original order. |
| 8878 | // The new array length is (i+1). |
| 8879 | for (j = i - 1; j >= t; j--) { |
| 8880 | abtets[j + 1] = abtets[j]; // Downshift |
| 8881 | } |
| 8882 | // The tet abtets[(t-1)%i] is deleted. Insert the two new tets |
| 8883 | // 'fliptets[0]' [a,b,c,d] and 'fliptets[1]' [b,a,c,e] into |
| 8884 | // the (t-1)-th and t-th entries, respectively. |
| 8885 | esym(fliptets[1], abtets[((t-1) + (i+1)) % (i+1)]); // [a,b,e,c] |
| 8886 | abtets[t] = fliptets[0]; // [a,b,c,d] |
| 8887 | if (fc->collectnewtets) { |
| 8888 | // Pop up two (flipped) tets from the stack. |
| 8889 | cavetetlist->objects -= 2; |
| 8890 | } |
| 8891 | } |
| 8892 | } else if (fliptype == 2) { |
| 8893 | tmpabtets = (triface *) (abtets[i].tet); |
| 8894 | n1 = ((abtets[i].ver >> 19) & 8191); // \sum_{i=0^12}{2^i} = 8191 |
| 8895 | edgepivot = (abtets[i].ver & 3); |
| 8896 | t = ((abtets[i].ver >> 6) & 8191); |
| 8897 | assert(t <= i); |
| 8898 | if (fc->unflip) { |
| 8899 | if (b->verbose > 2) { |
| 8900 | printf(" Recover a %d-to-m flip at e[%d] of f[%d].\n" , n1, |
| 8901 | edgepivot, t); |
| 8902 | } |
| 8903 | // Recover the flipped edge ([c,b] or [a,c]). |
| 8904 | // abtets[(t - 1 + i) % i] is [a,b,e,d], i.e., the tet created by |
| 8905 | // the flipping of edge [c,b] or [a,c]. It must still exist in |
| 8906 | // Star(ab). Use it to recover the flipped edge. |
| 8907 | if (edgepivot == 1) { |
| 8908 | // The flip edge is [c,b]. |
| 8909 | tmpabtets[0] = abtets[(t - 1 + i) % i]; // [a,b,e,d] |
| 8910 | eprevself(tmpabtets[0]); |
| 8911 | esymself(tmpabtets[0]); |
| 8912 | eprevself(tmpabtets[0]); // [d,a,e,b] |
| 8913 | fsym(tmpabtets[0], tmpabtets[1]); // [a,d,e,c] |
| 8914 | } else { |
| 8915 | // The flip edge is [a,c]. |
| 8916 | tmpabtets[1] = abtets[(t - 1 + i) % i]; // [a,b,e,d] |
| 8917 | enextself(tmpabtets[1]); |
| 8918 | esymself(tmpabtets[1]); |
| 8919 | enextself(tmpabtets[1]); // [b,d,e,a] |
| 8920 | fsym(tmpabtets[1], tmpabtets[0]); // [d,b,e,c] |
| 8921 | } // if (edgepivot == 2) |
| 8922 | |
| 8923 | // Do a n1-to-m1 flip to recover the flipped edge ([c,b] or [a,c]). |
| 8924 | flipnm_post(tmpabtets, n1, 2, edgepivot, fc); |
| 8925 | |
| 8926 | // Insert the two recovered tets into the original Star(ab). |
| 8927 | for (j = i - 1; j >= t; j--) { |
| 8928 | abtets[j + 1] = abtets[j]; // Downshift |
| 8929 | } |
| 8930 | if (edgepivot == 1) { |
| 8931 | // tmpabtets[0] is [c,b,d,a] ==> contains [a,b] |
| 8932 | // tmpabtets[1] is [c,b,a,e] ==> contains [a,b] |
| 8933 | // tmpabtets[2] is [c,b,e,d] |
| 8934 | fliptets[0] = tmpabtets[1]; |
| 8935 | enextself(fliptets[0]); |
| 8936 | esymself(fliptets[0]); // [a,b,e,c] |
| 8937 | fliptets[1] = tmpabtets[0]; |
| 8938 | esymself(fliptets[1]); |
| 8939 | eprevself(fliptets[1]); // [a,b,c,d] |
| 8940 | } else { |
| 8941 | // tmpabtets[0] is [a,c,d,b] ==> contains [a,b] |
| 8942 | // tmpabtets[1] is [a,c,b,e] ==> contains [a,b] |
| 8943 | // tmpabtets[2] is [a,c,e,d] |
| 8944 | fliptets[0] = tmpabtets[1]; |
| 8945 | eprevself(fliptets[0]); |
| 8946 | esymself(fliptets[0]); // [a,b,e,c] |
| 8947 | fliptets[1] = tmpabtets[0]; |
| 8948 | esymself(fliptets[1]); |
| 8949 | enextself(fliptets[1]); // [a,b,c,d] |
| 8950 | } // edgepivot == 2 |
| 8951 | // Insert the two recovered tets into Star(ab). |
| 8952 | abtets[((t-1) + (i+1)) % (i+1)] = fliptets[0]; |
| 8953 | abtets[t] = fliptets[1]; |
| 8954 | } |
| 8955 | else { |
| 8956 | // Only free the spaces. |
| 8957 | flipnm_post(tmpabtets, n1, 2, edgepivot, fc); |
| 8958 | } // if (!unflip) |
| 8959 | if (b->verbose > 2) { |
| 8960 | printf(" Release %d spaces at f[%d].\n" , n1, i); |
| 8961 | } |
| 8962 | delete [] tmpabtets; |
| 8963 | } |
| 8964 | } // i |
| 8965 | |
| 8966 | return 1; |
| 8967 | } |
| 8968 | |
| 8969 | /////////////////////////////////////////////////////////////////////////////// |
| 8970 | // // |
| 8971 | // insertpoint() Insert a point into current tetrahedralization. // |
| 8972 | // // |
| 8973 | // The Bowyer-Watson (B-W) algorithm is used to add a new point p into the // |
| 8974 | // tetrahedralization T. It first finds a "cavity", denoted as C, in T, C // |
| 8975 | // consists of tetrahedra in T that "conflict" with p. If T is a Delaunay // |
| 8976 | // tetrahedralization, then all boundary faces (triangles) of C are visible // |
| 8977 | // by p, i.e.,C is star-shaped. We can insert p into T by first deleting all // |
| 8978 | // tetrahedra in C, then creating new tetrahedra formed by boundary faces of // |
| 8979 | // C and p. If T is not a DT, then C may be not star-shaped. It must be // |
| 8980 | // modified so that it becomes star-shaped. // |
| 8981 | // // |
| 8982 | /////////////////////////////////////////////////////////////////////////////// |
| 8983 | |
| 8984 | int tetgenmesh::insertpoint(point insertpt, triface *searchtet, face *splitsh, |
| 8985 | face *splitseg, insertvertexflags *ivf) |
| 8986 | { |
| 8987 | arraypool *swaplist; |
| 8988 | triface *cavetet, spintet, neightet, neineitet, *parytet; |
| 8989 | triface oldtet, newtet, newneitet; |
| 8990 | face checksh, neighsh, *parysh; |
| 8991 | face checkseg, *paryseg; |
| 8992 | point *pts, pa, pb, pc, *parypt; |
| 8993 | enum locateresult loc = OUTSIDE; |
| 8994 | REAL sign, ori; |
| 8995 | REAL attrib, volume; |
| 8996 | bool enqflag; |
| 8997 | int t1ver; |
| 8998 | int i, j, k, s; |
| 8999 | |
| 9000 | if (b->verbose > 2) { |
| 9001 | printf(" Insert point %d\n" , pointmark(insertpt)); |
| 9002 | } |
| 9003 | |
| 9004 | // Locate the point. |
| 9005 | if (searchtet->tet != NULL) { |
| 9006 | loc = (enum locateresult) ivf->iloc; |
| 9007 | } |
| 9008 | |
| 9009 | if (loc == OUTSIDE) { |
| 9010 | if (searchtet->tet == NULL) { |
| 9011 | if (!b->weighted) { |
| 9012 | randomsample(insertpt, searchtet); |
| 9013 | } else { |
| 9014 | // Weighted DT. There may exist dangling vertex. |
| 9015 | *searchtet = recenttet; |
| 9016 | } |
| 9017 | } |
| 9018 | // Locate the point. |
| 9019 | loc = locate(insertpt, searchtet); |
| 9020 | } |
| 9021 | |
| 9022 | ivf->iloc = (int) loc; // The return value. |
| 9023 | |
| 9024 | if (b->weighted) { |
| 9025 | if (loc != OUTSIDE) { |
| 9026 | // Check if this vertex is regular. |
| 9027 | pts = (point *) searchtet->tet; |
| 9028 | assert(pts[7] != dummypoint); |
| 9029 | sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], insertpt, |
| 9030 | pts[4][3], pts[5][3], pts[6][3], pts[7][3], |
| 9031 | insertpt[3]); |
| 9032 | if (sign > 0) { |
| 9033 | // This new vertex does not lie below the lower hull. Skip it. |
| 9034 | setpointtype(insertpt, NREGULARVERTEX); |
| 9035 | nonregularcount++; |
| 9036 | ivf->iloc = (int) NONREGULAR; |
| 9037 | return 0; |
| 9038 | } |
| 9039 | } |
| 9040 | } |
| 9041 | |
| 9042 | // Create the initial cavity C(p) which contains all tetrahedra that |
| 9043 | // intersect p. It may include 1, 2, or n tetrahedra. |
| 9044 | // If p lies on a segment or subface, also create the initial sub-cavity |
| 9045 | // sC(p) which contains all subfaces (and segment) which intersect p. |
| 9046 | |
| 9047 | if (loc == OUTSIDE) { |
| 9048 | flip14count++; |
| 9049 | // The current hull will be enlarged. |
| 9050 | // Add four adjacent boundary tets into list. |
| 9051 | for (i = 0; i < 4; i++) { |
| 9052 | decode(searchtet->tet[i], neightet); |
| 9053 | neightet.ver = epivot[neightet.ver]; |
| 9054 | cavebdrylist->newindex((void **) &parytet); |
| 9055 | *parytet = neightet; |
| 9056 | } |
| 9057 | infect(*searchtet); |
| 9058 | caveoldtetlist->newindex((void **) &parytet); |
| 9059 | *parytet = *searchtet; |
| 9060 | } else if (loc == INTETRAHEDRON) { |
| 9061 | flip14count++; |
| 9062 | // Add four adjacent boundary tets into list. |
| 9063 | for (i = 0; i < 4; i++) { |
| 9064 | decode(searchtet->tet[i], neightet); |
| 9065 | neightet.ver = epivot[neightet.ver]; |
| 9066 | cavebdrylist->newindex((void **) &parytet); |
| 9067 | *parytet = neightet; |
| 9068 | } |
| 9069 | infect(*searchtet); |
| 9070 | caveoldtetlist->newindex((void **) &parytet); |
| 9071 | *parytet = *searchtet; |
| 9072 | } else if (loc == ONFACE) { |
| 9073 | flip26count++; |
| 9074 | // Add six adjacent boundary tets into list. |
| 9075 | j = (searchtet->ver & 3); // The current face number. |
| 9076 | for (i = 1; i < 4; i++) { |
| 9077 | decode(searchtet->tet[(j + i) % 4], neightet); |
| 9078 | neightet.ver = epivot[neightet.ver]; |
| 9079 | cavebdrylist->newindex((void **) &parytet); |
| 9080 | *parytet = neightet; |
| 9081 | } |
| 9082 | decode(searchtet->tet[j], spintet); |
| 9083 | j = (spintet.ver & 3); // The current face number. |
| 9084 | for (i = 1; i < 4; i++) { |
| 9085 | decode(spintet.tet[(j + i) % 4], neightet); |
| 9086 | neightet.ver = epivot[neightet.ver]; |
| 9087 | cavebdrylist->newindex((void **) &parytet); |
| 9088 | *parytet = neightet; |
| 9089 | } |
| 9090 | infect(spintet); |
| 9091 | caveoldtetlist->newindex((void **) &parytet); |
| 9092 | *parytet = spintet; |
| 9093 | infect(*searchtet); |
| 9094 | caveoldtetlist->newindex((void **) &parytet); |
| 9095 | *parytet = *searchtet; |
| 9096 | |
| 9097 | if (ivf->splitbdflag) { |
| 9098 | if ((splitsh != NULL) && (splitsh->sh != NULL)) { |
| 9099 | // Create the initial sub-cavity sC(p). |
| 9100 | smarktest(*splitsh); |
| 9101 | caveshlist->newindex((void **) &parysh); |
| 9102 | *parysh = *splitsh; |
| 9103 | } |
| 9104 | } // if (splitbdflag) |
| 9105 | } else if (loc == ONEDGE) { |
| 9106 | flipn2ncount++; |
| 9107 | // Add all adjacent boundary tets into list. |
| 9108 | spintet = *searchtet; |
| 9109 | while (1) { |
| 9110 | eorgoppo(spintet, neightet); |
| 9111 | decode(neightet.tet[neightet.ver & 3], neightet); |
| 9112 | neightet.ver = epivot[neightet.ver]; |
| 9113 | cavebdrylist->newindex((void **) &parytet); |
| 9114 | *parytet = neightet; |
| 9115 | edestoppo(spintet, neightet); |
| 9116 | decode(neightet.tet[neightet.ver & 3], neightet); |
| 9117 | neightet.ver = epivot[neightet.ver]; |
| 9118 | cavebdrylist->newindex((void **) &parytet); |
| 9119 | *parytet = neightet; |
| 9120 | infect(spintet); |
| 9121 | caveoldtetlist->newindex((void **) &parytet); |
| 9122 | *parytet = spintet; |
| 9123 | fnextself(spintet); |
| 9124 | if (spintet.tet == searchtet->tet) break; |
| 9125 | } // while (1) |
| 9126 | |
| 9127 | if (ivf->splitbdflag) { |
| 9128 | // Create the initial sub-cavity sC(p). |
| 9129 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
| 9130 | smarktest(*splitseg); |
| 9131 | splitseg->shver = 0; |
| 9132 | spivot(*splitseg, *splitsh); |
| 9133 | } |
| 9134 | if (splitsh != NULL) { |
| 9135 | if (splitsh->sh != NULL) { |
| 9136 | // Collect all subfaces share at this edge. |
| 9137 | pa = sorg(*splitsh); |
| 9138 | neighsh = *splitsh; |
| 9139 | while (1) { |
| 9140 | // Adjust the origin of its edge to be 'pa'. |
| 9141 | if (sorg(neighsh) != pa) { |
| 9142 | sesymself(neighsh); |
| 9143 | } |
| 9144 | // Add this face into list (in B-W cavity). |
| 9145 | smarktest(neighsh); |
| 9146 | caveshlist->newindex((void **) &parysh); |
| 9147 | *parysh = neighsh; |
| 9148 | // Add this face into face-at-splitedge list. |
| 9149 | cavesegshlist->newindex((void **) &parysh); |
| 9150 | *parysh = neighsh; |
| 9151 | // Go to the next face at the edge. |
| 9152 | spivotself(neighsh); |
| 9153 | // Stop if all faces at the edge have been visited. |
| 9154 | if (neighsh.sh == splitsh->sh) break; |
| 9155 | if (neighsh.sh == NULL) break; |
| 9156 | } // while (1) |
| 9157 | } // if (not a dangling segment) |
| 9158 | } |
| 9159 | } // if (splitbdflag) |
| 9160 | } else if (loc == INSTAR) { |
| 9161 | // We assume that all tets in the star are given in 'caveoldtetlist', |
| 9162 | // and they are all infected. |
| 9163 | assert(caveoldtetlist->objects > 0); |
| 9164 | // Collect the boundary faces of the star. |
| 9165 | for (i = 0; i < caveoldtetlist->objects; i++) { |
| 9166 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
| 9167 | // Check its 4 neighbor tets. |
| 9168 | for (j = 0; j < 4; j++) { |
| 9169 | decode(cavetet->tet[j], neightet); |
| 9170 | if (!infected(neightet)) { |
| 9171 | // It's a boundary face. |
| 9172 | neightet.ver = epivot[neightet.ver]; |
| 9173 | cavebdrylist->newindex((void **) &parytet); |
| 9174 | *parytet = neightet; |
| 9175 | } |
| 9176 | } |
| 9177 | } |
| 9178 | } else if (loc == ONVERTEX) { |
| 9179 | // The point already exist. Do nothing and return. |
| 9180 | return 0; |
| 9181 | } |
| 9182 | |
| 9183 | |
| 9184 | if (ivf->assignmeshsize) { |
| 9185 | // Assign mesh size for the new point. |
| 9186 | if (bgm != NULL) { |
| 9187 | // Interpolate the mesh size from the background mesh. |
| 9188 | bgm->decode(point2bgmtet(org(*searchtet)), neightet); |
| 9189 | int bgmloc = (int) bgm->scoutpoint(insertpt, &neightet, 0); |
| 9190 | if (bgmloc != (int) OUTSIDE) { |
| 9191 | insertpt[pointmtrindex] = |
| 9192 | bgm->getpointmeshsize(insertpt, &neightet, bgmloc); |
| 9193 | setpoint2bgmtet(insertpt, bgm->encode(neightet)); |
| 9194 | } |
| 9195 | } else { |
| 9196 | insertpt[pointmtrindex] = getpointmeshsize(insertpt,searchtet,(int)loc); |
| 9197 | } |
| 9198 | } // if (assignmeshsize) |
| 9199 | |
| 9200 | if (ivf->bowywat) { |
| 9201 | // Update the cavity C(p) using the Bowyer-Watson algorithm. |
| 9202 | swaplist = cavetetlist; |
| 9203 | cavetetlist = cavebdrylist; |
| 9204 | cavebdrylist = swaplist; |
| 9205 | for (i = 0; i < cavetetlist->objects; i++) { |
| 9206 | // 'cavetet' is an adjacent tet at outside of the cavity. |
| 9207 | cavetet = (triface *) fastlookup(cavetetlist, i); |
| 9208 | // The tet may be tested and included in the (enlarged) cavity. |
| 9209 | if (!infected(*cavetet)) { |
| 9210 | // Check for two possible cases for this tet: |
| 9211 | // (1) It is a cavity tet, or |
| 9212 | // (2) it is a cavity boundary face. |
| 9213 | enqflag = false; |
| 9214 | if (!marktested(*cavetet)) { |
| 9215 | // Do Delaunay (in-sphere) test. |
| 9216 | pts = (point *) cavetet->tet; |
| 9217 | if (pts[7] != dummypoint) { |
| 9218 | // A volume tet. Operate on it. |
| 9219 | if (b->weighted) { |
| 9220 | sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], insertpt, |
| 9221 | pts[4][3], pts[5][3], pts[6][3], pts[7][3], |
| 9222 | insertpt[3]); |
| 9223 | } else { |
| 9224 | sign = insphere_s(pts[4], pts[5], pts[6], pts[7], insertpt); |
| 9225 | } |
| 9226 | enqflag = (sign < 0.0); |
| 9227 | } else { |
| 9228 | if (!nonconvex) { |
| 9229 | // Test if this hull face is visible by the new point. |
| 9230 | ori = orient3d(pts[4], pts[5], pts[6], insertpt); |
| 9231 | if (ori < 0) { |
| 9232 | // A visible hull face. |
| 9233 | //if (!nonconvex) { |
| 9234 | // Include it in the cavity. The convex hull will be enlarged. |
| 9235 | enqflag = true; // (ori < 0.0); |
| 9236 | //} |
| 9237 | } else if (ori == 0.0) { |
| 9238 | // A coplanar hull face. We need to test if this hull face is |
| 9239 | // Delaunay or not. We test if the adjacent tet (not faked) |
| 9240 | // of this hull face is Delaunay or not. |
| 9241 | decode(cavetet->tet[3], neineitet); |
| 9242 | if (!infected(neineitet)) { |
| 9243 | if (!marktested(neineitet)) { |
| 9244 | // Do Delaunay test on this tet. |
| 9245 | pts = (point *) neineitet.tet; |
| 9246 | assert(pts[7] != dummypoint); |
| 9247 | if (b->weighted) { |
| 9248 | sign = orient4d_s(pts[4],pts[5],pts[6],pts[7], insertpt, |
| 9249 | pts[4][3], pts[5][3], pts[6][3], |
| 9250 | pts[7][3], insertpt[3]); |
| 9251 | } else { |
| 9252 | sign = insphere_s(pts[4],pts[5],pts[6],pts[7], insertpt); |
| 9253 | } |
| 9254 | enqflag = (sign < 0.0); |
| 9255 | } |
| 9256 | } else { |
| 9257 | // The adjacent tet is non-Delaunay. The hull face is non- |
| 9258 | // Delaunay as well. Include it in the cavity. |
| 9259 | enqflag = true; |
| 9260 | } // if (!infected(neineitet)) |
| 9261 | } // if (ori == 0.0) |
| 9262 | } else { |
| 9263 | // A hull face (must be a subface). |
| 9264 | // We FIRST include it in the initial cavity if the adjacent tet |
| 9265 | // (not faked) of this hull face is not Delaunay wrt p. |
| 9266 | // Whether it belongs to the final cavity will be determined |
| 9267 | // during the validation process. 'validflag'. |
| 9268 | decode(cavetet->tet[3], neineitet); |
| 9269 | if (!infected(neineitet)) { |
| 9270 | if (!marktested(neineitet)) { |
| 9271 | // Do Delaunay test on this tet. |
| 9272 | pts = (point *) neineitet.tet; |
| 9273 | assert(pts[7] != dummypoint); |
| 9274 | if (b->weighted) { |
| 9275 | sign = orient4d_s(pts[4],pts[5],pts[6],pts[7], insertpt, |
| 9276 | pts[4][3], pts[5][3], pts[6][3], |
| 9277 | pts[7][3], insertpt[3]); |
| 9278 | } else { |
| 9279 | sign = insphere_s(pts[4],pts[5],pts[6],pts[7], insertpt); |
| 9280 | } |
| 9281 | enqflag = (sign < 0.0); |
| 9282 | } |
| 9283 | } else { |
| 9284 | // The adjacent tet is non-Delaunay. The hull face is non- |
| 9285 | // Delaunay as well. Include it in the cavity. |
| 9286 | enqflag = true; |
| 9287 | } // if (infected(neineitet)) |
| 9288 | } // if (nonconvex) |
| 9289 | } // if (pts[7] != dummypoint) |
| 9290 | marktest(*cavetet); // Only test it once. |
| 9291 | } // if (!marktested(*cavetet)) |
| 9292 | |
| 9293 | if (enqflag) { |
| 9294 | // Found a tet in the cavity. Put other three faces in check list. |
| 9295 | k = (cavetet->ver & 3); // The current face number |
| 9296 | for (j = 1; j < 4; j++) { |
| 9297 | decode(cavetet->tet[(j + k) % 4], neightet); |
| 9298 | cavetetlist->newindex((void **) &parytet); |
| 9299 | *parytet = neightet; |
| 9300 | } |
| 9301 | infect(*cavetet); |
| 9302 | caveoldtetlist->newindex((void **) &parytet); |
| 9303 | *parytet = *cavetet; |
| 9304 | } else { |
| 9305 | // Found a boundary face of the cavity. |
| 9306 | cavetet->ver = epivot[cavetet->ver]; |
| 9307 | cavebdrylist->newindex((void **) &parytet); |
| 9308 | *parytet = *cavetet; |
| 9309 | } |
| 9310 | } // if (!infected(*cavetet)) |
| 9311 | } // i |
| 9312 | |
| 9313 | cavetetlist->restart(); // Clear the working list. |
| 9314 | } // if (ivf->bowywat) |
| 9315 | |
| 9316 | if (checksubsegflag) { |
| 9317 | // Collect all segments of C(p). |
| 9318 | shellface *ssptr; |
| 9319 | for (i = 0; i < caveoldtetlist->objects; i++) { |
| 9320 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
| 9321 | if ((ssptr = (shellface*) cavetet->tet[8]) != NULL) { |
| 9322 | for (j = 0; j < 6; j++) { |
| 9323 | if (ssptr[j]) { |
| 9324 | sdecode(ssptr[j], checkseg); |
| 9325 | if (!sinfected(checkseg)) { |
| 9326 | sinfect(checkseg); |
| 9327 | cavetetseglist->newindex((void **) &paryseg); |
| 9328 | *paryseg = checkseg; |
| 9329 | } |
| 9330 | } |
| 9331 | } // j |
| 9332 | } |
| 9333 | } // i |
| 9334 | // Uninfect collected segments. |
| 9335 | for (i = 0; i < cavetetseglist->objects; i++) { |
| 9336 | paryseg = (face *) fastlookup(cavetetseglist, i); |
| 9337 | suninfect(*paryseg); |
| 9338 | } |
| 9339 | |
| 9340 | if (ivf->rejflag & 1) { |
| 9341 | // Reject this point if it encroaches upon any segment. |
| 9342 | face *paryseg1; |
| 9343 | for (i = 0; i < cavetetseglist->objects; i++) { |
| 9344 | paryseg1 = (face *) fastlookup(cavetetseglist, i); |
| 9345 | if (checkseg4encroach((point) paryseg1->sh[3], (point) paryseg1->sh[4], |
| 9346 | insertpt)) { |
| 9347 | encseglist->newindex((void **) &paryseg); |
| 9348 | *paryseg = *paryseg1; |
| 9349 | } |
| 9350 | } // i |
| 9351 | if (encseglist->objects > 0) { |
| 9352 | insertpoint_abort(splitseg, ivf); |
| 9353 | ivf->iloc = (int) ENCSEGMENT; |
| 9354 | return 0; |
| 9355 | } |
| 9356 | } |
| 9357 | } // if (checksubsegflag) |
| 9358 | |
| 9359 | if (checksubfaceflag) { |
| 9360 | // Collect all subfaces of C(p). |
| 9361 | shellface *sptr; |
| 9362 | for (i = 0; i < caveoldtetlist->objects; i++) { |
| 9363 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
| 9364 | if ((sptr = (shellface*) cavetet->tet[9]) != NULL) { |
| 9365 | for (j = 0; j < 4; j++) { |
| 9366 | if (sptr[j]) { |
| 9367 | sdecode(sptr[j], checksh); |
| 9368 | if (!sinfected(checksh)) { |
| 9369 | sinfect(checksh); |
| 9370 | cavetetshlist->newindex((void **) &parysh); |
| 9371 | *parysh = checksh; |
| 9372 | } |
| 9373 | } |
| 9374 | } // j |
| 9375 | } |
| 9376 | } // i |
| 9377 | // Uninfect collected subfaces. |
| 9378 | for (i = 0; i < cavetetshlist->objects; i++) { |
| 9379 | parysh = (face *) fastlookup(cavetetshlist, i); |
| 9380 | suninfect(*parysh); |
| 9381 | } |
| 9382 | |
| 9383 | if (ivf->rejflag & 2) { |
| 9384 | REAL rd, cent[3]; |
| 9385 | badface *bface; |
| 9386 | // Reject this point if it encroaches upon any subface. |
| 9387 | for (i = 0; i < cavetetshlist->objects; i++) { |
| 9388 | parysh = (face *) fastlookup(cavetetshlist, i); |
| 9389 | if (checkfac4encroach((point) parysh->sh[3], (point) parysh->sh[4], |
| 9390 | (point) parysh->sh[5], insertpt, cent, &rd)) { |
| 9391 | encshlist->newindex((void **) &bface); |
| 9392 | bface->ss = *parysh; |
| 9393 | bface->forg = (point) parysh->sh[3]; // Not a dad one. |
| 9394 | for (j = 0; j < 3; j++) bface->cent[j] = cent[j]; |
| 9395 | bface->key = rd; |
| 9396 | } |
| 9397 | } |
| 9398 | if (encshlist->objects > 0) { |
| 9399 | insertpoint_abort(splitseg, ivf); |
| 9400 | ivf->iloc = (int) ENCSUBFACE; |
| 9401 | return 0; |
| 9402 | } |
| 9403 | } |
| 9404 | } // if (checksubfaceflag) |
| 9405 | |
| 9406 | if ((ivf->iloc == (int) OUTSIDE) && ivf->refineflag) { |
| 9407 | // The vertex lies outside of the domain. And it does not encroach |
| 9408 | // upon any boundary segment or subface. Do not insert it. |
| 9409 | insertpoint_abort(splitseg, ivf); |
| 9410 | return 0; |
| 9411 | } |
| 9412 | |
| 9413 | if (ivf->splitbdflag) { |
| 9414 | // The new point locates in surface mesh. Update the sC(p). |
| 9415 | // We have already 'smarktested' the subfaces which directly intersect |
| 9416 | // with p in 'caveshlist'. From them, we 'smarktest' their neighboring |
| 9417 | // subfaces which are included in C(p). Do not across a segment. |
| 9418 | for (i = 0; i < caveshlist->objects; i++) { |
| 9419 | parysh = (face *) fastlookup(caveshlist, i); |
| 9420 | assert(smarktested(*parysh)); |
| 9421 | checksh = *parysh; |
| 9422 | for (j = 0; j < 3; j++) { |
| 9423 | if (!isshsubseg(checksh)) { |
| 9424 | spivot(checksh, neighsh); |
| 9425 | assert(neighsh.sh != NULL); |
| 9426 | if (!smarktested(neighsh)) { |
| 9427 | stpivot(neighsh, neightet); |
| 9428 | if (infected(neightet)) { |
| 9429 | fsymself(neightet); |
| 9430 | if (infected(neightet)) { |
| 9431 | // This subface is inside C(p). |
| 9432 | // Check if its diametrical circumsphere encloses 'p'. |
| 9433 | // The purpose of this check is to avoid forming invalid |
| 9434 | // subcavity in surface mesh. |
| 9435 | sign = incircle3d(sorg(neighsh), sdest(neighsh), |
| 9436 | sapex(neighsh), insertpt); |
| 9437 | if (sign < 0) { |
| 9438 | smarktest(neighsh); |
| 9439 | caveshlist->newindex((void **) &parysh); |
| 9440 | *parysh = neighsh; |
| 9441 | } |
| 9442 | } |
| 9443 | } |
| 9444 | } |
| 9445 | } |
| 9446 | senextself(checksh); |
| 9447 | } // j |
| 9448 | } // i |
| 9449 | } // if (ivf->splitbdflag) |
| 9450 | |
| 9451 | if (ivf->validflag) { |
| 9452 | // Validate C(p) and update it if it is not star-shaped. |
| 9453 | int cutcount = 0; |
| 9454 | |
| 9455 | if (ivf->respectbdflag) { |
| 9456 | // The initial cavity may include subfaces which are not on the facets |
| 9457 | // being splitting. Find them and make them as boundary of C(p). |
| 9458 | // Comment: We have already 'smarktested' the subfaces in sC(p). They |
| 9459 | // are completely inside C(p). |
| 9460 | for (i = 0; i < cavetetshlist->objects; i++) { |
| 9461 | parysh = (face *) fastlookup(cavetetshlist, i); |
| 9462 | stpivot(*parysh, neightet); |
| 9463 | if (infected(neightet)) { |
| 9464 | fsymself(neightet); |
| 9465 | if (infected(neightet)) { |
| 9466 | // Found a subface inside C(p). |
| 9467 | if (!smarktested(*parysh)) { |
| 9468 | // It is possible that this face is a boundary subface. |
| 9469 | // Check if it is a hull face. |
| 9470 | //assert(apex(neightet) != dummypoint); |
| 9471 | if (oppo(neightet) != dummypoint) { |
| 9472 | fsymself(neightet); |
| 9473 | } |
| 9474 | if (oppo(neightet) != dummypoint) { |
| 9475 | ori = orient3d(org(neightet), dest(neightet), apex(neightet), |
| 9476 | insertpt); |
| 9477 | if (ori < 0) { |
| 9478 | // A visible face, get its neighbor face. |
| 9479 | fsymself(neightet); |
| 9480 | ori = -ori; // It must be invisible by p. |
| 9481 | } |
| 9482 | } else { |
| 9483 | // A hull tet. It needs to be cut. |
| 9484 | ori = 1; |
| 9485 | } |
| 9486 | // Cut this tet if it is either invisible by or coplanar with p. |
| 9487 | if (ori >= 0) { |
| 9488 | uninfect(neightet); |
| 9489 | unmarktest(neightet); |
| 9490 | cutcount++; |
| 9491 | neightet.ver = epivot[neightet.ver]; |
| 9492 | cavebdrylist->newindex((void **) &parytet); |
| 9493 | *parytet = neightet; |
| 9494 | // Add three new faces to find new boundaries. |
| 9495 | for (j = 0; j < 3; j++) { |
| 9496 | esym(neightet, neineitet); |
| 9497 | neineitet.ver = epivot[neineitet.ver]; |
| 9498 | cavebdrylist->newindex((void **) &parytet); |
| 9499 | *parytet = neineitet; |
| 9500 | enextself(neightet); |
| 9501 | } |
| 9502 | } // if (ori >= 0) |
| 9503 | } |
| 9504 | } |
| 9505 | } |
| 9506 | } // i |
| 9507 | |
| 9508 | // The initial cavity may include segments in its interior. We need to |
| 9509 | // Update the cavity so that these segments are on the boundary of |
| 9510 | // the cavity. |
| 9511 | for (i = 0; i < cavetetseglist->objects; i++) { |
| 9512 | paryseg = (face *) fastlookup(cavetetseglist, i); |
| 9513 | // Check this segment if it is not a splitting segment. |
| 9514 | if (!smarktested(*paryseg)) { |
| 9515 | sstpivot1(*paryseg, neightet); |
| 9516 | spintet = neightet; |
| 9517 | while (1) { |
| 9518 | if (!infected(spintet)) break; |
| 9519 | fnextself(spintet); |
| 9520 | if (spintet.tet == neightet.tet) break; |
| 9521 | } |
| 9522 | if (infected(spintet)) { |
| 9523 | // Find an adjacent tet at this segment such that both faces |
| 9524 | // at this segment are not visible by p. |
| 9525 | pa = org(neightet); |
| 9526 | pb = dest(neightet); |
| 9527 | spintet = neightet; |
| 9528 | j = 0; |
| 9529 | while (1) { |
| 9530 | // Check if this face is visible by p. |
| 9531 | pc = apex(spintet); |
| 9532 | if (pc != dummypoint) { |
| 9533 | ori = orient3d(pa, pb, pc, insertpt); |
| 9534 | if (ori >= 0) { |
| 9535 | // Not visible. Check another face in this tet. |
| 9536 | esym(spintet, neineitet); |
| 9537 | pc = apex(neineitet); |
| 9538 | if (pc != dummypoint) { |
| 9539 | ori = orient3d(pb, pa, pc, insertpt); |
| 9540 | if (ori >= 0) { |
| 9541 | // Not visible. Found this face. |
| 9542 | j = 1; // Flag that it is found. |
| 9543 | break; |
| 9544 | } |
| 9545 | } |
| 9546 | } |
| 9547 | } |
| 9548 | fnextself(spintet); |
| 9549 | if (spintet.tet == neightet.tet) break; |
| 9550 | } |
| 9551 | if (j == 0) { |
| 9552 | // Not found such a face. |
| 9553 | assert(0); // debug this case. |
| 9554 | } |
| 9555 | neightet = spintet; |
| 9556 | if (b->verbose > 3) { |
| 9557 | printf(" Cut tet (%d, %d, %d, %d)\n" , |
| 9558 | pointmark(org(neightet)), pointmark(dest(neightet)), |
| 9559 | pointmark(apex(neightet)), pointmark(oppo(neightet))); |
| 9560 | } |
| 9561 | uninfect(neightet); |
| 9562 | unmarktest(neightet); |
| 9563 | cutcount++; |
| 9564 | neightet.ver = epivot[neightet.ver]; |
| 9565 | cavebdrylist->newindex((void **) &parytet); |
| 9566 | *parytet = neightet; |
| 9567 | // Add three new faces to find new boundaries. |
| 9568 | for (j = 0; j < 3; j++) { |
| 9569 | esym(neightet, neineitet); |
| 9570 | neineitet.ver = epivot[neineitet.ver]; |
| 9571 | cavebdrylist->newindex((void **) &parytet); |
| 9572 | *parytet = neineitet; |
| 9573 | enextself(neightet); |
| 9574 | } |
| 9575 | } |
| 9576 | } |
| 9577 | } // i |
| 9578 | } // if (ivf->respectbdflag) |
| 9579 | |
| 9580 | // Update the cavity by removing invisible faces until it is star-shaped. |
| 9581 | for (i = 0; i < cavebdrylist->objects; i++) { |
| 9582 | cavetet = (triface *) fastlookup(cavebdrylist, i); |
| 9583 | // 'cavetet' is an exterior tet adjacent to the cavity. |
| 9584 | // Check if its neighbor is inside C(p). |
| 9585 | fsym(*cavetet, neightet); |
| 9586 | if (infected(neightet)) { |
| 9587 | if (apex(*cavetet) != dummypoint) { |
| 9588 | // It is a cavity boundary face. Check its visibility. |
| 9589 | if (oppo(neightet) != dummypoint) { |
| 9590 | ori = orient3d(org(*cavetet), dest(*cavetet), apex(*cavetet), |
| 9591 | insertpt); |
| 9592 | enqflag = (ori > 0); |
| 9593 | // Comment: if ori == 0 (coplanar case), we also cut the tet. |
| 9594 | } else { |
| 9595 | // It is a hull face. And its adjacent tet (at inside of the |
| 9596 | // domain) has been cut from the cavity. Cut it as well. |
| 9597 | //assert(nonconvex); |
| 9598 | enqflag = false; |
| 9599 | } |
| 9600 | } else { |
| 9601 | enqflag = true; // A hull edge. |
| 9602 | } |
| 9603 | if (enqflag) { |
| 9604 | // This face is valid, save it. |
| 9605 | cavetetlist->newindex((void **) &parytet); |
| 9606 | *parytet = *cavetet; |
| 9607 | } else { |
| 9608 | uninfect(neightet); |
| 9609 | unmarktest(neightet); |
| 9610 | cutcount++; |
| 9611 | // Add three new faces to find new boundaries. |
| 9612 | for (j = 0; j < 3; j++) { |
| 9613 | esym(neightet, neineitet); |
| 9614 | neineitet.ver = epivot[neineitet.ver]; |
| 9615 | cavebdrylist->newindex((void **) &parytet); |
| 9616 | *parytet = neineitet; |
| 9617 | enextself(neightet); |
| 9618 | } |
| 9619 | // 'cavetet' is not on the cavity boundary anymore. |
| 9620 | unmarktest(*cavetet); |
| 9621 | } |
| 9622 | } else { |
| 9623 | // 'cavetet' is not on the cavity boundary anymore. |
| 9624 | unmarktest(*cavetet); |
| 9625 | } |
| 9626 | } // i |
| 9627 | |
| 9628 | if (cutcount > 0) { |
| 9629 | // The cavity has been updated. |
| 9630 | // Update the cavity boundary faces. |
| 9631 | cavebdrylist->restart(); |
| 9632 | for (i = 0; i < cavetetlist->objects; i++) { |
| 9633 | cavetet = (triface *) fastlookup(cavetetlist, i); |
| 9634 | // 'cavetet' was an exterior tet adjacent to the cavity. |
| 9635 | fsym(*cavetet, neightet); |
| 9636 | if (infected(neightet)) { |
| 9637 | // It is a cavity boundary face. |
| 9638 | cavebdrylist->newindex((void **) &parytet); |
| 9639 | *parytet = *cavetet; |
| 9640 | } else { |
| 9641 | // Not a cavity boundary face. |
| 9642 | unmarktest(*cavetet); |
| 9643 | } |
| 9644 | } |
| 9645 | |
| 9646 | // Update the list of old tets. |
| 9647 | cavetetlist->restart(); |
| 9648 | for (i = 0; i < caveoldtetlist->objects; i++) { |
| 9649 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
| 9650 | if (infected(*cavetet)) { |
| 9651 | cavetetlist->newindex((void **) &parytet); |
| 9652 | *parytet = *cavetet; |
| 9653 | } |
| 9654 | } |
| 9655 | // Swap 'cavetetlist' and 'caveoldtetlist'. |
| 9656 | swaplist = caveoldtetlist; |
| 9657 | caveoldtetlist = cavetetlist; |
| 9658 | cavetetlist = swaplist; |
| 9659 | |
| 9660 | // The cavity should contain at least one tet. |
| 9661 | if (caveoldtetlist->objects == 0l) { |
| 9662 | insertpoint_abort(splitseg, ivf); |
| 9663 | ivf->iloc = (int) BADELEMENT; |
| 9664 | return 0; |
| 9665 | } |
| 9666 | |
| 9667 | if (ivf->splitbdflag) { |
| 9668 | int cutshcount = 0; |
| 9669 | // Update the sub-cavity sC(p). |
| 9670 | for (i = 0; i < caveshlist->objects; i++) { |
| 9671 | parysh = (face *) fastlookup(caveshlist, i); |
| 9672 | if (smarktested(*parysh)) { |
| 9673 | enqflag = false; |
| 9674 | stpivot(*parysh, neightet); |
| 9675 | if (infected(neightet)) { |
| 9676 | fsymself(neightet); |
| 9677 | if (infected(neightet)) { |
| 9678 | enqflag = true; |
| 9679 | } |
| 9680 | } |
| 9681 | if (!enqflag) { |
| 9682 | sunmarktest(*parysh); |
| 9683 | // Use the last entry of this array to fill this entry. |
| 9684 | j = caveshlist->objects - 1; |
| 9685 | checksh = * (face *) fastlookup(caveshlist, j); |
| 9686 | *parysh = checksh; |
| 9687 | cutshcount++; |
| 9688 | caveshlist->objects--; // The list is shrinked. |
| 9689 | i--; |
| 9690 | } |
| 9691 | } |
| 9692 | } |
| 9693 | |
| 9694 | if (cutshcount > 0) { |
| 9695 | i = 0; // Count the number of invalid subfaces/segments. |
| 9696 | // Valid the updated sub-cavity sC(p). |
| 9697 | if (loc == ONFACE) { |
| 9698 | if ((splitsh != NULL) && (splitsh->sh != NULL)) { |
| 9699 | // The to-be split subface should be in sC(p). |
| 9700 | if (!smarktested(*splitsh)) i++; |
| 9701 | } |
| 9702 | } else if (loc == ONEDGE) { |
| 9703 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
| 9704 | // The to-be split segment should be in sC(p). |
| 9705 | if (!smarktested(*splitseg)) i++; |
| 9706 | } |
| 9707 | if ((splitsh != NULL) && (splitsh->sh != NULL)) { |
| 9708 | // All subfaces at this edge should be in sC(p). |
| 9709 | pa = sorg(*splitsh); |
| 9710 | neighsh = *splitsh; |
| 9711 | while (1) { |
| 9712 | // Adjust the origin of its edge to be 'pa'. |
| 9713 | if (sorg(neighsh) != pa) { |
| 9714 | sesymself(neighsh); |
| 9715 | } |
| 9716 | // Add this face into list (in B-W cavity). |
| 9717 | if (!smarktested(neighsh)) i++; |
| 9718 | // Go to the next face at the edge. |
| 9719 | spivotself(neighsh); |
| 9720 | // Stop if all faces at the edge have been visited. |
| 9721 | if (neighsh.sh == splitsh->sh) break; |
| 9722 | if (neighsh.sh == NULL) break; |
| 9723 | } // while (1) |
| 9724 | } |
| 9725 | } |
| 9726 | |
| 9727 | if (i > 0) { |
| 9728 | // The updated sC(p) is invalid. Do not insert this vertex. |
| 9729 | insertpoint_abort(splitseg, ivf); |
| 9730 | ivf->iloc = (int) BADELEMENT; |
| 9731 | return 0; |
| 9732 | } |
| 9733 | } // if (cutshcount > 0) |
| 9734 | } // if (ivf->splitbdflag) |
| 9735 | } // if (cutcount > 0) |
| 9736 | |
| 9737 | } // if (ivf->validflag) |
| 9738 | |
| 9739 | if (ivf->refineflag) { |
| 9740 | // The new point is inserted by Delaunay refinement, i.e., it is the |
| 9741 | // circumcenter of a tetrahedron, or a subface, or a segment. |
| 9742 | // Do not insert this point if the tetrahedron, or subface, or segment |
| 9743 | // is not inside the final cavity. |
| 9744 | if (((ivf->refineflag == 1) && !infected(ivf->refinetet)) || |
| 9745 | ((ivf->refineflag == 2) && !smarktested(ivf->refinesh))) { |
| 9746 | insertpoint_abort(splitseg, ivf); |
| 9747 | ivf->iloc = (int) BADELEMENT; |
| 9748 | return 0; |
| 9749 | } |
| 9750 | } // if (ivf->refineflag) |
| 9751 | |
| 9752 | if (b->plc && (loc != INSTAR)) { |
| 9753 | // Reject the new point if it lies too close to an existing point (b->plc), |
| 9754 | // or it lies inside a protecting ball of near vertex (ivf->rejflag & 4). |
| 9755 | // Collect the list of vertices of the initial cavity. |
| 9756 | if (loc == OUTSIDE) { |
| 9757 | pts = (point *) &(searchtet->tet[4]); |
| 9758 | for (i = 0; i < 3; i++) { |
| 9759 | cavetetvertlist->newindex((void **) &parypt); |
| 9760 | *parypt = pts[i]; |
| 9761 | } |
| 9762 | } else if (loc == INTETRAHEDRON) { |
| 9763 | pts = (point *) &(searchtet->tet[4]); |
| 9764 | for (i = 0; i < 4; i++) { |
| 9765 | cavetetvertlist->newindex((void **) &parypt); |
| 9766 | *parypt = pts[i]; |
| 9767 | } |
| 9768 | } else if (loc == ONFACE) { |
| 9769 | pts = (point *) &(searchtet->tet[4]); |
| 9770 | for (i = 0; i < 3; i++) { |
| 9771 | cavetetvertlist->newindex((void **) &parypt); |
| 9772 | *parypt = pts[i]; |
| 9773 | } |
| 9774 | if (pts[3] != dummypoint) { |
| 9775 | cavetetvertlist->newindex((void **) &parypt); |
| 9776 | *parypt = pts[3]; |
| 9777 | } |
| 9778 | fsym(*searchtet, spintet); |
| 9779 | if (oppo(spintet) != dummypoint) { |
| 9780 | cavetetvertlist->newindex((void **) &parypt); |
| 9781 | *parypt = oppo(spintet); |
| 9782 | } |
| 9783 | } else if (loc == ONEDGE) { |
| 9784 | spintet = *searchtet; |
| 9785 | cavetetvertlist->newindex((void **) &parypt); |
| 9786 | *parypt = org(spintet); |
| 9787 | cavetetvertlist->newindex((void **) &parypt); |
| 9788 | *parypt = dest(spintet); |
| 9789 | while (1) { |
| 9790 | if (apex(spintet) != dummypoint) { |
| 9791 | cavetetvertlist->newindex((void **) &parypt); |
| 9792 | *parypt = apex(spintet); |
| 9793 | } |
| 9794 | fnextself(spintet); |
| 9795 | if (spintet.tet == searchtet->tet) break; |
| 9796 | } |
| 9797 | } |
| 9798 | |
| 9799 | int rejptflag = (ivf->rejflag & 4); |
| 9800 | REAL rd; |
| 9801 | pts = NULL; |
| 9802 | |
| 9803 | for (i = 0; i < cavetetvertlist->objects; i++) { |
| 9804 | parypt = (point *) fastlookup(cavetetvertlist, i); |
| 9805 | rd = distance(*parypt, insertpt); |
| 9806 | // Is the point very close to an existing point? |
| 9807 | if (rd < b->minedgelength) { |
| 9808 | pts = parypt; |
| 9809 | loc = NEARVERTEX; |
| 9810 | break; |
| 9811 | } |
| 9812 | if (rejptflag) { |
| 9813 | // Is the point encroaches upon an existing point? |
| 9814 | if (rd < (0.5 * (*parypt)[pointmtrindex])) { |
| 9815 | pts = parypt; |
| 9816 | loc = ENCVERTEX; |
| 9817 | break; |
| 9818 | } |
| 9819 | } |
| 9820 | } |
| 9821 | cavetetvertlist->restart(); // Clear the work list. |
| 9822 | |
| 9823 | if (pts != NULL) { |
| 9824 | // The point is either too close to an existing vertex (NEARVERTEX) |
| 9825 | // or encroaches upon (inside the protecting ball) of that vertex. |
| 9826 | if (loc == NEARVERTEX) { |
| 9827 | if (b->nomergevertex) { // -M0/1 option. |
| 9828 | // In this case, we still insert this vertex. Although it is very |
| 9829 | // close to an existing vertex. Give a warning, anyway. |
| 9830 | if (!b->quiet) { |
| 9831 | printf("Warning: Two points, %d and %d, are very close.\n" , |
| 9832 | pointmark(insertpt), pointmark(*pts)); |
| 9833 | printf(" Creating a very short edge (len = %g) (< %g).\n" , |
| 9834 | rd, b->minedgelength); |
| 9835 | printf(" You may try a smaller tolerance (-T) (current is %g)\n" , |
| 9836 | b->epsilon); |
| 9837 | printf(" to avoid this warning.\n" ); |
| 9838 | } |
| 9839 | } else { |
| 9840 | insertpt[3] = rd; // Only for reporting. |
| 9841 | setpoint2ppt(insertpt, *pts); |
| 9842 | insertpoint_abort(splitseg, ivf); |
| 9843 | ivf->iloc = (int) loc; |
| 9844 | return 0; |
| 9845 | } |
| 9846 | } else { // loc == ENCVERTEX |
| 9847 | // The point lies inside the protection ball. |
| 9848 | setpoint2ppt(insertpt, *pts); |
| 9849 | insertpoint_abort(splitseg, ivf); |
| 9850 | ivf->iloc = (int) loc; |
| 9851 | return 0; |
| 9852 | } |
| 9853 | } |
| 9854 | } // if (b->plc && (loc != INSTAR)) |
| 9855 | |
| 9856 | if (b->weighted || ivf->cdtflag || ivf->smlenflag |
| 9857 | ) { |
| 9858 | // There may be other vertices inside C(p). We need to find them. |
| 9859 | // Collect all vertices of C(p). |
| 9860 | for (i = 0; i < caveoldtetlist->objects; i++) { |
| 9861 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
| 9862 | //assert(infected(*cavetet)); |
| 9863 | pts = (point *) &(cavetet->tet[4]); |
| 9864 | for (j = 0; j < 4; j++) { |
| 9865 | if (pts[j] != dummypoint) { |
| 9866 | if (!pinfected(pts[j])) { |
| 9867 | pinfect(pts[j]); |
| 9868 | cavetetvertlist->newindex((void **) &parypt); |
| 9869 | *parypt = pts[j]; |
| 9870 | } |
| 9871 | } |
| 9872 | } // j |
| 9873 | } // i |
| 9874 | // Uninfect all collected (cavity) vertices. |
| 9875 | for (i = 0; i < cavetetvertlist->objects; i++) { |
| 9876 | parypt = (point *) fastlookup(cavetetvertlist, i); |
| 9877 | puninfect(*parypt); |
| 9878 | } |
| 9879 | if (ivf->smlenflag) { |
| 9880 | REAL len; |
| 9881 | // Get the length of the shortest edge connecting to 'newpt'. |
| 9882 | parypt = (point *) fastlookup(cavetetvertlist, 0); |
| 9883 | ivf->smlen = distance(*parypt, insertpt); |
| 9884 | ivf->parentpt = *parypt; |
| 9885 | for (i = 1; i < cavetetvertlist->objects; i++) { |
| 9886 | parypt = (point *) fastlookup(cavetetvertlist, i); |
| 9887 | len = distance(*parypt, insertpt); |
| 9888 | if (len < ivf->smlen) { |
| 9889 | ivf->smlen = len; |
| 9890 | ivf->parentpt = *parypt; |
| 9891 | } |
| 9892 | } |
| 9893 | } |
| 9894 | } |
| 9895 | |
| 9896 | |
| 9897 | if (ivf->cdtflag) { |
| 9898 | // Unmark tets. |
| 9899 | for (i = 0; i < caveoldtetlist->objects; i++) { |
| 9900 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
| 9901 | unmarktest(*cavetet); |
| 9902 | } |
| 9903 | for (i = 0; i < cavebdrylist->objects; i++) { |
| 9904 | cavetet = (triface *) fastlookup(cavebdrylist, i); |
| 9905 | unmarktest(*cavetet); |
| 9906 | } |
| 9907 | // Clean up arrays which are not needed. |
| 9908 | cavetetlist->restart(); |
| 9909 | if (checksubsegflag) { |
| 9910 | cavetetseglist->restart(); |
| 9911 | } |
| 9912 | if (checksubfaceflag) { |
| 9913 | cavetetshlist->restart(); |
| 9914 | } |
| 9915 | return 1; |
| 9916 | } |
| 9917 | |
| 9918 | // Before re-mesh C(p). Process the segments and subfaces which are on the |
| 9919 | // boundary of C(p). Make sure that each such segment or subface is |
| 9920 | // connecting to a tet outside C(p). So we can re-connect them to the |
| 9921 | // new tets inside the C(p) later. |
| 9922 | |
| 9923 | if (checksubsegflag) { |
| 9924 | for (i = 0; i < cavetetseglist->objects; i++) { |
| 9925 | paryseg = (face *) fastlookup(cavetetseglist, i); |
| 9926 | // Operate on it if it is not the splitting segment, i.e., in sC(p). |
| 9927 | if (!smarktested(*paryseg)) { |
| 9928 | // Check if the segment is inside the cavity. |
| 9929 | // 'j' counts the num of adjacent tets of this seg. |
| 9930 | // 'k' counts the num of adjacent tets which are 'sinfected'. |
| 9931 | j = k = 0; |
| 9932 | sstpivot1(*paryseg, neightet); |
| 9933 | spintet = neightet; |
| 9934 | while (1) { |
| 9935 | j++; |
| 9936 | if (!infected(spintet)) { |
| 9937 | neineitet = spintet; // An outer tet. Remember it. |
| 9938 | } else { |
| 9939 | k++; // An in tet. |
| 9940 | } |
| 9941 | fnextself(spintet); |
| 9942 | if (spintet.tet == neightet.tet) break; |
| 9943 | } |
| 9944 | // assert(j > 0); |
| 9945 | if (k == 0) { |
| 9946 | // The segment is not connect to C(p) anymore. Remove it by |
| 9947 | // Replacing it by the last entry of this list. |
| 9948 | s = cavetetseglist->objects - 1; |
| 9949 | checkseg = * (face *) fastlookup(cavetetseglist, s); |
| 9950 | *paryseg = checkseg; |
| 9951 | cavetetseglist->objects--; |
| 9952 | i--; |
| 9953 | } else if (k < j) { |
| 9954 | // The segment is on the boundary of C(p). |
| 9955 | sstbond1(*paryseg, neineitet); |
| 9956 | } else { // k == j |
| 9957 | // The segment is inside C(p). |
| 9958 | if (!ivf->splitbdflag) { |
| 9959 | checkseg = *paryseg; |
| 9960 | sinfect(checkseg); // Flag it as an interior segment. |
| 9961 | caveencseglist->newindex((void **) &paryseg); |
| 9962 | *paryseg = checkseg; |
| 9963 | } else { |
| 9964 | assert(0); // Not possible. |
| 9965 | } |
| 9966 | } |
| 9967 | } else { |
| 9968 | // assert(smarktested(*paryseg)); |
| 9969 | // Flag it as an interior segment. Do not queue it, since it will |
| 9970 | // be deleted after the segment splitting. |
| 9971 | sinfect(*paryseg); |
| 9972 | } |
| 9973 | } // i |
| 9974 | } // if (checksubsegflag) |
| 9975 | |
| 9976 | if (checksubfaceflag) { |
| 9977 | for (i = 0; i < cavetetshlist->objects; i++) { |
| 9978 | parysh = (face *) fastlookup(cavetetshlist, i); |
| 9979 | // Operate on it if it is not inside the sub-cavity sC(p). |
| 9980 | if (!smarktested(*parysh)) { |
| 9981 | // Check if this subface is inside the cavity. |
| 9982 | k = 0; |
| 9983 | for (j = 0; j < 2; j++) { |
| 9984 | stpivot(*parysh, neightet); |
| 9985 | if (!infected(neightet)) { |
| 9986 | checksh = *parysh; // Remember this side. |
| 9987 | } else { |
| 9988 | k++; |
| 9989 | } |
| 9990 | sesymself(*parysh); |
| 9991 | } |
| 9992 | if (k == 0) { |
| 9993 | // The subface is not connected to C(p). Remove it. |
| 9994 | s = cavetetshlist->objects - 1; |
| 9995 | checksh = * (face *) fastlookup(cavetetshlist, s); |
| 9996 | *parysh = checksh; |
| 9997 | cavetetshlist->objects--; |
| 9998 | i--; |
| 9999 | } else if (k == 1) { |
| 10000 | // This side is the outer boundary of C(p). |
| 10001 | *parysh = checksh; |
| 10002 | } else { // k == 2 |
| 10003 | if (!ivf->splitbdflag) { |
| 10004 | checksh = *parysh; |
| 10005 | sinfect(checksh); // Flag it. |
| 10006 | caveencshlist->newindex((void **) &parysh); |
| 10007 | *parysh = checksh; |
| 10008 | } else { |
| 10009 | assert(0); // Not possible. |
| 10010 | } |
| 10011 | } |
| 10012 | } else { |
| 10013 | // assert(smarktested(*parysh)); |
| 10014 | // Flag it as an interior subface. Do not queue it. It will be |
| 10015 | // deleted after the facet point insertion. |
| 10016 | sinfect(*parysh); |
| 10017 | } |
| 10018 | } // i |
| 10019 | } // if (checksubfaceflag) |
| 10020 | |
| 10021 | // Create new tetrahedra to fill the cavity. |
| 10022 | |
| 10023 | for (i = 0; i < cavebdrylist->objects; i++) { |
| 10024 | cavetet = (triface *) fastlookup(cavebdrylist, i); |
| 10025 | neightet = *cavetet; |
| 10026 | unmarktest(neightet); // Unmark it. |
| 10027 | // Get the oldtet (inside the cavity). |
| 10028 | fsym(neightet, oldtet); |
| 10029 | if (apex(neightet) != dummypoint) { |
| 10030 | // Create a new tet in the cavity. |
| 10031 | maketetrahedron(&newtet); |
| 10032 | setorg(newtet, dest(neightet)); |
| 10033 | setdest(newtet, org(neightet)); |
| 10034 | setapex(newtet, apex(neightet)); |
| 10035 | setoppo(newtet, insertpt); |
| 10036 | } else { |
| 10037 | // Create a new hull tet. |
| 10038 | hullsize++; |
| 10039 | maketetrahedron(&newtet); |
| 10040 | setorg(newtet, org(neightet)); |
| 10041 | setdest(newtet, dest(neightet)); |
| 10042 | setapex(newtet, insertpt); |
| 10043 | setoppo(newtet, dummypoint); // It must opposite to face 3. |
| 10044 | // Adjust back to the cavity bounday face. |
| 10045 | esymself(newtet); |
| 10046 | } |
| 10047 | // The new tet inherits attribtes from the old tet. |
| 10048 | for (j = 0; j < numelemattrib; j++) { |
| 10049 | attrib = elemattribute(oldtet.tet, j); |
| 10050 | setelemattribute(newtet.tet, j, attrib); |
| 10051 | } |
| 10052 | if (b->varvolume) { |
| 10053 | volume = volumebound(oldtet.tet); |
| 10054 | setvolumebound(newtet.tet, volume); |
| 10055 | } |
| 10056 | // Connect newtet <==> neightet, this also disconnect the old bond. |
| 10057 | bond(newtet, neightet); |
| 10058 | // oldtet still connects to neightet. |
| 10059 | *cavetet = oldtet; // *cavetet = newtet; |
| 10060 | } // i |
| 10061 | |
| 10062 | // Set a handle for speeding point location. |
| 10063 | recenttet = newtet; |
| 10064 | //setpoint2tet(insertpt, encode(newtet)); |
| 10065 | setpoint2tet(insertpt, (tetrahedron) (newtet.tet)); |
| 10066 | |
| 10067 | // Re-use this list to save new interior cavity faces. |
| 10068 | cavetetlist->restart(); |
| 10069 | |
| 10070 | // Connect adjacent new tetrahedra together. |
| 10071 | for (i = 0; i < cavebdrylist->objects; i++) { |
| 10072 | cavetet = (triface *) fastlookup(cavebdrylist, i); |
| 10073 | // cavtet is an oldtet, get the newtet at this face. |
| 10074 | oldtet = *cavetet; |
| 10075 | fsym(oldtet, neightet); |
| 10076 | fsym(neightet, newtet); |
| 10077 | // Comment: oldtet and newtet must be at the same directed edge. |
| 10078 | // Connect the three other faces of this newtet. |
| 10079 | for (j = 0; j < 3; j++) { |
| 10080 | esym(newtet, neightet); // Go to the face. |
| 10081 | if (neightet.tet[neightet.ver & 3] == NULL) { |
| 10082 | // Find the adjacent face of this newtet. |
| 10083 | spintet = oldtet; |
| 10084 | while (1) { |
| 10085 | fnextself(spintet); |
| 10086 | if (!infected(spintet)) break; |
| 10087 | } |
| 10088 | fsym(spintet, newneitet); |
| 10089 | esymself(newneitet); |
| 10090 | assert(newneitet.tet[newneitet.ver & 3] == NULL); |
| 10091 | bond(neightet, newneitet); |
| 10092 | if (ivf->lawson > 1) { |
| 10093 | cavetetlist->newindex((void **) &parytet); |
| 10094 | *parytet = neightet; |
| 10095 | } |
| 10096 | } |
| 10097 | //setpoint2tet(org(newtet), encode(newtet)); |
| 10098 | setpoint2tet(org(newtet), (tetrahedron) (newtet.tet)); |
| 10099 | enextself(newtet); |
| 10100 | enextself(oldtet); |
| 10101 | } |
| 10102 | *cavetet = newtet; // Save the new tet. |
| 10103 | } // i |
| 10104 | |
| 10105 | if (checksubfaceflag) { |
| 10106 | // Connect subfaces on the boundary of the cavity to the new tets. |
| 10107 | for (i = 0; i < cavetetshlist->objects; i++) { |
| 10108 | parysh = (face *) fastlookup(cavetetshlist, i); |
| 10109 | // Connect it if it is not a missing subface. |
| 10110 | if (!sinfected(*parysh)) { |
| 10111 | stpivot(*parysh, neightet); |
| 10112 | fsym(neightet, spintet); |
| 10113 | sesymself(*parysh); |
| 10114 | tsbond(spintet, *parysh); |
| 10115 | } |
| 10116 | } |
| 10117 | } |
| 10118 | |
| 10119 | if (checksubsegflag) { |
| 10120 | // Connect segments on the boundary of the cavity to the new tets. |
| 10121 | for (i = 0; i < cavetetseglist->objects; i++) { |
| 10122 | paryseg = (face *) fastlookup(cavetetseglist, i); |
| 10123 | // Connect it if it is not a missing segment. |
| 10124 | if (!sinfected(*paryseg)) { |
| 10125 | sstpivot1(*paryseg, neightet); |
| 10126 | spintet = neightet; |
| 10127 | while (1) { |
| 10128 | tssbond1(spintet, *paryseg); |
| 10129 | fnextself(spintet); |
| 10130 | if (spintet.tet == neightet.tet) break; |
| 10131 | } |
| 10132 | } |
| 10133 | } |
| 10134 | } |
| 10135 | |
| 10136 | if (((splitsh != NULL) && (splitsh->sh != NULL)) || |
| 10137 | ((splitseg != NULL) && (splitseg->sh != NULL))) { |
| 10138 | // Split a subface or a segment. |
| 10139 | sinsertvertex(insertpt, splitsh, splitseg, ivf->sloc, ivf->sbowywat, 0); |
| 10140 | } |
| 10141 | |
| 10142 | if (checksubfaceflag) { |
| 10143 | if (ivf->splitbdflag) { |
| 10144 | // Recover new subfaces in C(p). |
| 10145 | for (i = 0; i < caveshbdlist->objects; i++) { |
| 10146 | // Get an old subface at edge [a, b]. |
| 10147 | parysh = (face *) fastlookup(caveshbdlist, i); |
| 10148 | spivot(*parysh, checksh); // The new subface [a, b, p]. |
| 10149 | // Do not recover a deleted new face (degenerated). |
| 10150 | if (checksh.sh[3] != NULL) { |
| 10151 | // Note that the old subface still connects to adjacent old tets |
| 10152 | // of C(p), which still connect to the tets outside C(p). |
| 10153 | stpivot(*parysh, neightet); |
| 10154 | assert(infected(neightet)); |
| 10155 | // Find the adjacent tet containing the edge [a,b] outside C(p). |
| 10156 | spintet = neightet; |
| 10157 | while (1) { |
| 10158 | fnextself(spintet); |
| 10159 | if (!infected(spintet)) break; |
| 10160 | assert(spintet.tet != neightet.tet); |
| 10161 | } |
| 10162 | // The adjacent tet connects to a new tet in C(p). |
| 10163 | fsym(spintet, neightet); |
| 10164 | assert(!infected(neightet)); |
| 10165 | // Find the tet containing the face [a, b, p]. |
| 10166 | spintet = neightet; |
| 10167 | while (1) { |
| 10168 | fnextself(spintet); |
| 10169 | if (apex(spintet) == insertpt) break; |
| 10170 | assert(spintet.tet != neightet.tet); |
| 10171 | } |
| 10172 | // Adjust the edge direction in spintet and checksh. |
| 10173 | if (sorg(checksh) != org(spintet)) { |
| 10174 | sesymself(checksh); |
| 10175 | assert(sorg(checksh) == org(spintet)); |
| 10176 | } |
| 10177 | assert(sdest(checksh) == dest(spintet)); |
| 10178 | // Connect the subface to two adjacent tets. |
| 10179 | tsbond(spintet, checksh); |
| 10180 | fsymself(spintet); |
| 10181 | sesymself(checksh); |
| 10182 | tsbond(spintet, checksh); |
| 10183 | } // if (checksh.sh[3] != NULL) |
| 10184 | } |
| 10185 | // There should be no missing interior subfaces in C(p). |
| 10186 | assert(caveencshlist->objects == 0l); |
| 10187 | } else { |
| 10188 | // The Boundary recovery phase. |
| 10189 | // Put all new subfaces into stack for recovery. |
| 10190 | for (i = 0; i < caveshbdlist->objects; i++) { |
| 10191 | // Get an old subface at edge [a, b]. |
| 10192 | parysh = (face *) fastlookup(caveshbdlist, i); |
| 10193 | spivot(*parysh, checksh); // The new subface [a, b, p]. |
| 10194 | // Do not recover a deleted new face (degenerated). |
| 10195 | if (checksh.sh[3] != NULL) { |
| 10196 | subfacstack->newindex((void **) &parysh); |
| 10197 | *parysh = checksh; |
| 10198 | } |
| 10199 | } |
| 10200 | // Put all interior subfaces into stack for recovery. |
| 10201 | for (i = 0; i < caveencshlist->objects; i++) { |
| 10202 | parysh = (face *) fastlookup(caveencshlist, i); |
| 10203 | assert(sinfected(*parysh)); |
| 10204 | // Some subfaces inside C(p) might be split in sinsertvertex(). |
| 10205 | // Only queue those faces which are not split. |
| 10206 | if (!smarktested(*parysh)) { |
| 10207 | checksh = *parysh; |
| 10208 | suninfect(checksh); |
| 10209 | stdissolve(checksh); // Detach connections to old tets. |
| 10210 | subfacstack->newindex((void **) &parysh); |
| 10211 | *parysh = checksh; |
| 10212 | } |
| 10213 | } |
| 10214 | } |
| 10215 | } // if (checksubfaceflag) |
| 10216 | |
| 10217 | if (checksubsegflag) { |
| 10218 | if (ivf->splitbdflag) { |
| 10219 | if (splitseg != NULL) { |
| 10220 | // Recover the two new subsegments in C(p). |
| 10221 | for (i = 0; i < cavesegshlist->objects; i++) { |
| 10222 | paryseg = (face *) fastlookup(cavesegshlist, i); |
| 10223 | // Insert this subsegment into C(p). |
| 10224 | checkseg = *paryseg; |
| 10225 | // Get the adjacent new subface. |
| 10226 | checkseg.shver = 0; |
| 10227 | spivot(checkseg, checksh); |
| 10228 | if (checksh.sh != NULL) { |
| 10229 | // Get the adjacent new tetrahedron. |
| 10230 | stpivot(checksh, neightet); |
| 10231 | } else { |
| 10232 | // It's a dangling segment. |
| 10233 | point2tetorg(sorg(checkseg), neightet); |
| 10234 | finddirection(&neightet, sdest(checkseg)); |
| 10235 | assert(dest(neightet) == sdest(checkseg)); |
| 10236 | } |
| 10237 | assert(!infected(neightet)); |
| 10238 | sstbond1(checkseg, neightet); |
| 10239 | spintet = neightet; |
| 10240 | while (1) { |
| 10241 | tssbond1(spintet, checkseg); |
| 10242 | fnextself(spintet); |
| 10243 | if (spintet.tet == neightet.tet) break; |
| 10244 | } |
| 10245 | } |
| 10246 | } // if (splitseg != NULL) |
| 10247 | // There should be no interior segment in C(p). |
| 10248 | assert(caveencseglist->objects == 0l); |
| 10249 | } else { |
| 10250 | // The Boundary Recovery Phase. |
| 10251 | // Queue missing segments in C(p) for recovery. |
| 10252 | if (splitseg != NULL) { |
| 10253 | // Queue two new subsegments in C(p) for recovery. |
| 10254 | for (i = 0; i < cavesegshlist->objects; i++) { |
| 10255 | paryseg = (face *) fastlookup(cavesegshlist, i); |
| 10256 | checkseg = *paryseg; |
| 10257 | //sstdissolve1(checkseg); // It has not been connected yet. |
| 10258 | s = randomnation(subsegstack->objects + 1); |
| 10259 | subsegstack->newindex((void **) &paryseg); |
| 10260 | *paryseg = * (face *) fastlookup(subsegstack, s); |
| 10261 | paryseg = (face *) fastlookup(subsegstack, s); |
| 10262 | *paryseg = checkseg; |
| 10263 | } |
| 10264 | } // if (splitseg != NULL) |
| 10265 | for (i = 0; i < caveencseglist->objects; i++) { |
| 10266 | paryseg = (face *) fastlookup(caveencseglist, i); |
| 10267 | assert(sinfected(*paryseg)); |
| 10268 | if (!smarktested(*paryseg)) { // It may be split. |
| 10269 | checkseg = *paryseg; |
| 10270 | suninfect(checkseg); |
| 10271 | sstdissolve1(checkseg); // Detach connections to old tets. |
| 10272 | s = randomnation(subsegstack->objects + 1); |
| 10273 | subsegstack->newindex((void **) &paryseg); |
| 10274 | *paryseg = * (face *) fastlookup(subsegstack, s); |
| 10275 | paryseg = (face *) fastlookup(subsegstack, s); |
| 10276 | *paryseg = checkseg; |
| 10277 | } |
| 10278 | } |
| 10279 | } |
| 10280 | } // if (checksubsegflag) |
| 10281 | |
| 10282 | if (b->weighted |
| 10283 | ) { |
| 10284 | // Some vertices may be completed inside the cavity. They must be |
| 10285 | // detected and added to recovering list. |
| 10286 | // Since every "live" vertex must contain a pointer to a non-dead |
| 10287 | // tetrahedron, we can check for each vertex this pointer. |
| 10288 | for (i = 0; i < cavetetvertlist->objects; i++) { |
| 10289 | pts = (point *) fastlookup(cavetetvertlist, i); |
| 10290 | decode(point2tet(*pts), *searchtet); |
| 10291 | assert(searchtet->tet != NULL); // No tet has been deleted yet. |
| 10292 | if (infected(*searchtet)) { |
| 10293 | if (b->weighted) { |
| 10294 | if (b->verbose > 1) { |
| 10295 | printf(" Point #%d is non-regular after the insertion of #%d.\n" , |
| 10296 | pointmark(*pts), pointmark(insertpt)); |
| 10297 | } |
| 10298 | setpointtype(*pts, NREGULARVERTEX); |
| 10299 | nonregularcount++; |
| 10300 | } |
| 10301 | } |
| 10302 | } |
| 10303 | } |
| 10304 | |
| 10305 | if (ivf->chkencflag & 1) { |
| 10306 | // Queue all segment outside C(p). |
| 10307 | for (i = 0; i < cavetetseglist->objects; i++) { |
| 10308 | paryseg = (face *) fastlookup(cavetetseglist, i); |
| 10309 | // Skip if it is the split segment. |
| 10310 | if (!sinfected(*paryseg)) { |
| 10311 | enqueuesubface(badsubsegs, paryseg); |
| 10312 | } |
| 10313 | } |
| 10314 | if (splitseg != NULL) { |
| 10315 | // Queue the two new subsegments inside C(p). |
| 10316 | for (i = 0; i < cavesegshlist->objects; i++) { |
| 10317 | paryseg = (face *) fastlookup(cavesegshlist, i); |
| 10318 | enqueuesubface(badsubsegs, paryseg); |
| 10319 | } |
| 10320 | } |
| 10321 | } // if (chkencflag & 1) |
| 10322 | |
| 10323 | if (ivf->chkencflag & 2) { |
| 10324 | // Queue all subfaces outside C(p). |
| 10325 | for (i = 0; i < cavetetshlist->objects; i++) { |
| 10326 | parysh = (face *) fastlookup(cavetetshlist, i); |
| 10327 | // Skip if it is a split subface. |
| 10328 | if (!sinfected(*parysh)) { |
| 10329 | enqueuesubface(badsubfacs, parysh); |
| 10330 | } |
| 10331 | } |
| 10332 | // Queue all new subfaces inside C(p). |
| 10333 | for (i = 0; i < caveshbdlist->objects; i++) { |
| 10334 | // Get an old subface at edge [a, b]. |
| 10335 | parysh = (face *) fastlookup(caveshbdlist, i); |
| 10336 | spivot(*parysh, checksh); // checksh is a new subface [a, b, p]. |
| 10337 | // Do not recover a deleted new face (degenerated). |
| 10338 | if (checksh.sh[3] != NULL) { |
| 10339 | enqueuesubface(badsubfacs, &checksh); |
| 10340 | } |
| 10341 | } |
| 10342 | } // if (chkencflag & 2) |
| 10343 | |
| 10344 | if (ivf->chkencflag & 4) { |
| 10345 | // Queue all new tetrahedra in C(p). |
| 10346 | for (i = 0; i < cavebdrylist->objects; i++) { |
| 10347 | cavetet = (triface *) fastlookup(cavebdrylist, i); |
| 10348 | enqueuetetrahedron(cavetet); |
| 10349 | } |
| 10350 | } |
| 10351 | |
| 10352 | // C(p) is re-meshed successfully. |
| 10353 | |
| 10354 | // Delete the old tets in C(p). |
| 10355 | for (i = 0; i < caveoldtetlist->objects; i++) { |
| 10356 | searchtet = (triface *) fastlookup(caveoldtetlist, i); |
| 10357 | if (ishulltet(*searchtet)) { |
| 10358 | hullsize--; |
| 10359 | } |
| 10360 | tetrahedrondealloc(searchtet->tet); |
| 10361 | } |
| 10362 | |
| 10363 | if (((splitsh != NULL) && (splitsh->sh != NULL)) || |
| 10364 | ((splitseg != NULL) && (splitseg->sh != NULL))) { |
| 10365 | // Delete the old subfaces in sC(p). |
| 10366 | for (i = 0; i < caveshlist->objects; i++) { |
| 10367 | parysh = (face *) fastlookup(caveshlist, i); |
| 10368 | if (checksubfaceflag) {//if (bowywat == 2) { |
| 10369 | // It is possible that this subface still connects to adjacent |
| 10370 | // tets which are not in C(p). If so, clear connections in the |
| 10371 | // adjacent tets at this subface. |
| 10372 | stpivot(*parysh, neightet); |
| 10373 | if (neightet.tet != NULL) { |
| 10374 | if (neightet.tet[4] != NULL) { |
| 10375 | // Found an adjacent tet. It must be not in C(p). |
| 10376 | assert(!infected(neightet)); |
| 10377 | tsdissolve(neightet); |
| 10378 | fsymself(neightet); |
| 10379 | assert(!infected(neightet)); |
| 10380 | tsdissolve(neightet); |
| 10381 | } |
| 10382 | } |
| 10383 | } |
| 10384 | shellfacedealloc(subfaces, parysh->sh); |
| 10385 | } |
| 10386 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
| 10387 | // Delete the old segment in sC(p). |
| 10388 | shellfacedealloc(subsegs, splitseg->sh); |
| 10389 | } |
| 10390 | } |
| 10391 | |
| 10392 | if (ivf->lawson) { |
| 10393 | for (i = 0; i < cavebdrylist->objects; i++) { |
| 10394 | searchtet = (triface *) fastlookup(cavebdrylist, i); |
| 10395 | flippush(flipstack, searchtet); |
| 10396 | } |
| 10397 | if (ivf->lawson > 1) { |
| 10398 | for (i = 0; i < cavetetlist->objects; i++) { |
| 10399 | searchtet = (triface *) fastlookup(cavetetlist, i); |
| 10400 | flippush(flipstack, searchtet); |
| 10401 | } |
| 10402 | } |
| 10403 | } |
| 10404 | |
| 10405 | |
| 10406 | // Clean the working lists. |
| 10407 | |
| 10408 | caveoldtetlist->restart(); |
| 10409 | cavebdrylist->restart(); |
| 10410 | cavetetlist->restart(); |
| 10411 | |
| 10412 | if (checksubsegflag) { |
| 10413 | cavetetseglist->restart(); |
| 10414 | caveencseglist->restart(); |
| 10415 | } |
| 10416 | |
| 10417 | if (checksubfaceflag) { |
| 10418 | cavetetshlist->restart(); |
| 10419 | caveencshlist->restart(); |
| 10420 | } |
| 10421 | |
| 10422 | if (b->weighted || ivf->validflag) { |
| 10423 | cavetetvertlist->restart(); |
| 10424 | } |
| 10425 | |
| 10426 | if (((splitsh != NULL) && (splitsh->sh != NULL)) || |
| 10427 | ((splitseg != NULL) && (splitseg->sh != NULL))) { |
| 10428 | caveshlist->restart(); |
| 10429 | caveshbdlist->restart(); |
| 10430 | cavesegshlist->restart(); |
| 10431 | } |
| 10432 | |
| 10433 | return 1; // Point is inserted. |
| 10434 | } |
| 10435 | |
| 10436 | /////////////////////////////////////////////////////////////////////////////// |
| 10437 | // // |
| 10438 | // insertpoint_abort() Abort the insertion of a new vertex. // |
| 10439 | // // |
| 10440 | // The cavity will be restored. All working lists are cleared. // |
| 10441 | // // |
| 10442 | /////////////////////////////////////////////////////////////////////////////// |
| 10443 | |
| 10444 | void tetgenmesh::insertpoint_abort(face *splitseg, insertvertexflags *ivf) |
| 10445 | { |
| 10446 | triface *cavetet; |
| 10447 | face *parysh; |
| 10448 | int i; |
| 10449 | |
| 10450 | for (i = 0; i < caveoldtetlist->objects; i++) { |
| 10451 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
| 10452 | uninfect(*cavetet); |
| 10453 | unmarktest(*cavetet); |
| 10454 | } |
| 10455 | for (i = 0; i < cavebdrylist->objects; i++) { |
| 10456 | cavetet = (triface *) fastlookup(cavebdrylist, i); |
| 10457 | unmarktest(*cavetet); |
| 10458 | } |
| 10459 | cavetetlist->restart(); |
| 10460 | cavebdrylist->restart(); |
| 10461 | caveoldtetlist->restart(); |
| 10462 | cavetetseglist->restart(); |
| 10463 | cavetetshlist->restart(); |
| 10464 | if (ivf->splitbdflag) { |
| 10465 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
| 10466 | sunmarktest(*splitseg); |
| 10467 | } |
| 10468 | for (i = 0; i < caveshlist->objects; i++) { |
| 10469 | parysh = (face *) fastlookup(caveshlist, i); |
| 10470 | assert(smarktested(*parysh)); |
| 10471 | sunmarktest(*parysh); |
| 10472 | } |
| 10473 | caveshlist->restart(); |
| 10474 | cavesegshlist->restart(); |
| 10475 | } |
| 10476 | } |
| 10477 | |
| 10478 | //// //// |
| 10479 | //// //// |
| 10480 | //// flip_cxx ///////////////////////////////////////////////////////////////// |
| 10481 | |
| 10482 | //// delaunay_cxx ///////////////////////////////////////////////////////////// |
| 10483 | //// //// |
| 10484 | //// //// |
| 10485 | |
| 10486 | /////////////////////////////////////////////////////////////////////////////// |
| 10487 | // // |
| 10488 | // transfernodes() Read the vertices from the input (tetgenio). // |
| 10489 | // // |
| 10490 | // Transferring all points from input ('in->pointlist') to TetGen's 'points'.// |
| 10491 | // All points are indexed (the first point index is 'in->firstnumber'). Each // |
| 10492 | // point's type is initialized as UNUSEDVERTEX. The bounding box (xmax, xmin,// |
| 10493 | // ...) and the diameter (longest) of the point set are calculated. // |
| 10494 | // // |
| 10495 | /////////////////////////////////////////////////////////////////////////////// |
| 10496 | |
| 10497 | void tetgenmesh::transfernodes() |
| 10498 | { |
| 10499 | point pointloop; |
| 10500 | REAL x, y, z, w; |
| 10501 | int coordindex; |
| 10502 | int attribindex; |
| 10503 | int mtrindex; |
| 10504 | int i, j; |
| 10505 | |
| 10506 | if (b->psc) { |
| 10507 | assert(in->pointparamlist != NULL); |
| 10508 | } |
| 10509 | |
| 10510 | // Read the points. |
| 10511 | coordindex = 0; |
| 10512 | attribindex = 0; |
| 10513 | mtrindex = 0; |
| 10514 | for (i = 0; i < in->numberofpoints; i++) { |
| 10515 | makepoint(&pointloop, UNUSEDVERTEX); |
| 10516 | // Read the point coordinates. |
| 10517 | x = pointloop[0] = in->pointlist[coordindex++]; |
| 10518 | y = pointloop[1] = in->pointlist[coordindex++]; |
| 10519 | z = pointloop[2] = in->pointlist[coordindex++]; |
| 10520 | // Read the point attributes. (Including point weights.) |
| 10521 | for (j = 0; j < in->numberofpointattributes; j++) { |
| 10522 | pointloop[3 + j] = in->pointattributelist[attribindex++]; |
| 10523 | } |
| 10524 | // Read the point metric tensor. |
| 10525 | for (j = 0; j < in->numberofpointmtrs; j++) { |
| 10526 | pointloop[pointmtrindex + j] = in->pointmtrlist[mtrindex++]; |
| 10527 | } |
| 10528 | if (b->weighted) { // -w option |
| 10529 | if (in->numberofpointattributes > 0) { |
| 10530 | // The first point attribute is its weight. |
| 10531 | //w = in->pointattributelist[in->numberofpointattributes * i]; |
| 10532 | w = pointloop[3]; |
| 10533 | } else { |
| 10534 | // No given weight available. Default choose the maximum |
| 10535 | // absolute value among its coordinates. |
| 10536 | w = fabs(x); |
| 10537 | if (w < fabs(y)) w = fabs(y); |
| 10538 | if (w < fabs(z)) w = fabs(z); |
| 10539 | } |
| 10540 | if (b->weighted_param == 0) { |
| 10541 | pointloop[3] = x * x + y * y + z * z - w; // Weighted DT. |
| 10542 | } else { // -w1 option |
| 10543 | pointloop[3] = w; // Regular tetrahedralization. |
| 10544 | } |
| 10545 | } |
| 10546 | // Determine the smallest and largest x, y and z coordinates. |
| 10547 | if (i == 0) { |
| 10548 | xmin = xmax = x; |
| 10549 | ymin = ymax = y; |
| 10550 | zmin = zmax = z; |
| 10551 | } else { |
| 10552 | xmin = (x < xmin) ? x : xmin; |
| 10553 | xmax = (x > xmax) ? x : xmax; |
| 10554 | ymin = (y < ymin) ? y : ymin; |
| 10555 | ymax = (y > ymax) ? y : ymax; |
| 10556 | zmin = (z < zmin) ? z : zmin; |
| 10557 | zmax = (z > zmax) ? z : zmax; |
| 10558 | } |
| 10559 | if (b->psc) { |
| 10560 | // Read the geometry parameters. |
| 10561 | setpointgeomuv(pointloop, 0, in->pointparamlist[i].uv[0]); |
| 10562 | setpointgeomuv(pointloop, 1, in->pointparamlist[i].uv[1]); |
| 10563 | setpointgeomtag(pointloop, in->pointparamlist[i].tag); |
| 10564 | if (in->pointparamlist[i].type == 0) { |
| 10565 | setpointtype(pointloop, RIDGEVERTEX); |
| 10566 | } else if (in->pointparamlist[i].type == 1) { |
| 10567 | setpointtype(pointloop, FREESEGVERTEX); |
| 10568 | } else if (in->pointparamlist[i].type == 2) { |
| 10569 | setpointtype(pointloop, FREEFACETVERTEX); |
| 10570 | } else if (in->pointparamlist[i].type == 3) { |
| 10571 | setpointtype(pointloop, FREEVOLVERTEX); |
| 10572 | } |
| 10573 | } |
| 10574 | } |
| 10575 | |
| 10576 | // 'longest' is the largest possible edge length formed by input vertices. |
| 10577 | x = xmax - xmin; |
| 10578 | y = ymax - ymin; |
| 10579 | z = zmax - zmin; |
| 10580 | longest = sqrt(x * x + y * y + z * z); |
| 10581 | if (longest == 0.0) { |
| 10582 | printf("Error: The point set is trivial.\n" ); |
| 10583 | terminatetetgen(this, 3); |
| 10584 | } |
| 10585 | |
| 10586 | // Two identical points are distinguished by 'lengthlimit'. |
| 10587 | if (b->minedgelength == 0.0) { |
| 10588 | b->minedgelength = longest * b->epsilon; |
| 10589 | } |
| 10590 | } |
| 10591 | |
| 10592 | /////////////////////////////////////////////////////////////////////////////// |
| 10593 | // // |
| 10594 | // hilbert_init() Initialize the Gray code permutation table. // |
| 10595 | // // |
| 10596 | // The table 'transgc' has 8 x 3 x 8 entries. It contains all possible Gray // |
| 10597 | // code sequences traveled by the 1st order Hilbert curve in 3 dimensions. // |
| 10598 | // The first column is the Gray code of the entry point of the curve, and // |
| 10599 | // the second column is the direction (0, 1, or 2, 0 means the x-axis) where // |
| 10600 | // the exit point of curve lies. // |
| 10601 | // // |
| 10602 | // The table 'tsb1mod3' contains the numbers of trailing set '1' bits of the // |
| 10603 | // indices from 0 to 7, modulo by '3'. The code for generating this table is // |
| 10604 | // from: http://graphics.stanford.edu/~seander/bithacks.html. // |
| 10605 | // // |
| 10606 | /////////////////////////////////////////////////////////////////////////////// |
| 10607 | |
| 10608 | void tetgenmesh::hilbert_init(int n) |
| 10609 | { |
| 10610 | int gc[8], N, mask, travel_bit; |
| 10611 | int e, d, f, k, g; |
| 10612 | int v, c; |
| 10613 | int i; |
| 10614 | |
| 10615 | N = (n == 2) ? 4 : 8; |
| 10616 | mask = (n == 2) ? 3 : 7; |
| 10617 | |
| 10618 | // Generate the Gray code sequence. |
| 10619 | for (i = 0; i < N; i++) { |
| 10620 | gc[i] = i ^ (i >> 1); |
| 10621 | } |
| 10622 | |
| 10623 | for (e = 0; e < N; e++) { |
| 10624 | for (d = 0; d < n; d++) { |
| 10625 | // Calculate the end point (f). |
| 10626 | f = e ^ (1 << d); // Toggle the d-th bit of 'e'. |
| 10627 | // travel_bit = 2**p, the bit we want to travel. |
| 10628 | travel_bit = e ^ f; |
| 10629 | for (i = 0; i < N; i++) { |
| 10630 | // // Rotate gc[i] left by (p + 1) % n bits. |
| 10631 | k = gc[i] * (travel_bit * 2); |
| 10632 | g = ((k | (k / N)) & mask); |
| 10633 | // Calculate the permuted Gray code by xor with the start point (e). |
| 10634 | transgc[e][d][i] = (g ^ e); |
| 10635 | } |
| 10636 | assert(transgc[e][d][0] == e); |
| 10637 | assert(transgc[e][d][N - 1] == f); |
| 10638 | } // d |
| 10639 | } // e |
| 10640 | |
| 10641 | // Count the consecutive '1' bits (trailing) on the right. |
| 10642 | tsb1mod3[0] = 0; |
| 10643 | for (i = 1; i < N; i++) { |
| 10644 | v = ~i; // Count the 0s. |
| 10645 | v = (v ^ (v - 1)) >> 1; // Set v's trailing 0s to 1s and zero rest |
| 10646 | for (c = 0; v; c++) { |
| 10647 | v >>= 1; |
| 10648 | } |
| 10649 | tsb1mod3[i] = c % n; |
| 10650 | } |
| 10651 | } |
| 10652 | |
| 10653 | /////////////////////////////////////////////////////////////////////////////// |
| 10654 | // // |
| 10655 | // hilbert_sort3() Sort points using the 3d Hilbert curve. // |
| 10656 | // // |
| 10657 | /////////////////////////////////////////////////////////////////////////////// |
| 10658 | |
| 10659 | int tetgenmesh::hilbert_split(point* vertexarray,int arraysize,int gc0,int gc1, |
| 10660 | REAL bxmin, REAL bxmax, REAL bymin, REAL bymax, |
| 10661 | REAL bzmin, REAL bzmax) |
| 10662 | { |
| 10663 | point swapvert; |
| 10664 | int axis, d; |
| 10665 | REAL split; |
| 10666 | int i, j; |
| 10667 | |
| 10668 | |
| 10669 | // Find the current splitting axis. 'axis' is a value 0, or 1, or 2, which |
| 10670 | // correspoding to x-, or y- or z-axis. |
| 10671 | axis = (gc0 ^ gc1) >> 1; |
| 10672 | |
| 10673 | // Calulate the split position along the axis. |
| 10674 | if (axis == 0) { |
| 10675 | split = 0.5 * (bxmin + bxmax); |
| 10676 | } else if (axis == 1) { |
| 10677 | split = 0.5 * (bymin + bymax); |
| 10678 | } else { // == 2 |
| 10679 | split = 0.5 * (bzmin + bzmax); |
| 10680 | } |
| 10681 | |
| 10682 | // Find the direction (+1 or -1) of the axis. If 'd' is +1, the direction |
| 10683 | // of the axis is to the positive of the axis, otherwise, it is -1. |
| 10684 | d = ((gc0 & (1<<axis)) == 0) ? 1 : -1; |
| 10685 | |
| 10686 | |
| 10687 | // Partition the vertices into left- and right-arrays such that left points |
| 10688 | // have Hilbert indices lower than the right points. |
| 10689 | i = 0; |
| 10690 | j = arraysize - 1; |
| 10691 | |
| 10692 | // Partition the vertices into left- and right-arrays. |
| 10693 | if (d > 0) { |
| 10694 | do { |
| 10695 | for (; i < arraysize; i++) { |
| 10696 | if (vertexarray[i][axis] >= split) break; |
| 10697 | } |
| 10698 | for (; j >= 0; j--) { |
| 10699 | if (vertexarray[j][axis] < split) break; |
| 10700 | } |
| 10701 | // Is the partition finished? |
| 10702 | if (i == (j + 1)) break; |
| 10703 | // Swap i-th and j-th vertices. |
| 10704 | swapvert = vertexarray[i]; |
| 10705 | vertexarray[i] = vertexarray[j]; |
| 10706 | vertexarray[j] = swapvert; |
| 10707 | // Continue patitioning the array; |
| 10708 | } while (true); |
| 10709 | } else { |
| 10710 | do { |
| 10711 | for (; i < arraysize; i++) { |
| 10712 | if (vertexarray[i][axis] <= split) break; |
| 10713 | } |
| 10714 | for (; j >= 0; j--) { |
| 10715 | if (vertexarray[j][axis] > split) break; |
| 10716 | } |
| 10717 | // Is the partition finished? |
| 10718 | if (i == (j + 1)) break; |
| 10719 | // Swap i-th and j-th vertices. |
| 10720 | swapvert = vertexarray[i]; |
| 10721 | vertexarray[i] = vertexarray[j]; |
| 10722 | vertexarray[j] = swapvert; |
| 10723 | // Continue patitioning the array; |
| 10724 | } while (true); |
| 10725 | } |
| 10726 | |
| 10727 | return i; |
| 10728 | } |
| 10729 | |
| 10730 | void tetgenmesh::hilbert_sort3(point* vertexarray, int arraysize, int e, int d, |
| 10731 | REAL bxmin, REAL bxmax, REAL bymin, REAL bymax, |
| 10732 | REAL bzmin, REAL bzmax, int depth) |
| 10733 | { |
| 10734 | REAL x1, x2, y1, y2, z1, z2; |
| 10735 | int p[9], w, e_w, d_w, k, ei, di; |
| 10736 | int n = 3, mask = 7; |
| 10737 | |
| 10738 | p[0] = 0; |
| 10739 | p[8] = arraysize; |
| 10740 | |
| 10741 | // Sort the points according to the 1st order Hilbert curve in 3d. |
| 10742 | p[4] = hilbert_split(vertexarray, p[8], transgc[e][d][3], transgc[e][d][4], |
| 10743 | bxmin, bxmax, bymin, bymax, bzmin, bzmax); |
| 10744 | p[2] = hilbert_split(vertexarray, p[4], transgc[e][d][1], transgc[e][d][2], |
| 10745 | bxmin, bxmax, bymin, bymax, bzmin, bzmax); |
| 10746 | p[1] = hilbert_split(vertexarray, p[2], transgc[e][d][0], transgc[e][d][1], |
| 10747 | bxmin, bxmax, bymin, bymax, bzmin, bzmax); |
| 10748 | p[3] = hilbert_split(&(vertexarray[p[2]]), p[4] - p[2], |
| 10749 | transgc[e][d][2], transgc[e][d][3], |
| 10750 | bxmin, bxmax, bymin, bymax, bzmin, bzmax) + p[2]; |
| 10751 | p[6] = hilbert_split(&(vertexarray[p[4]]), p[8] - p[4], |
| 10752 | transgc[e][d][5], transgc[e][d][6], |
| 10753 | bxmin, bxmax, bymin, bymax, bzmin, bzmax) + p[4]; |
| 10754 | p[5] = hilbert_split(&(vertexarray[p[4]]), p[6] - p[4], |
| 10755 | transgc[e][d][4], transgc[e][d][5], |
| 10756 | bxmin, bxmax, bymin, bymax, bzmin, bzmax) + p[4]; |
| 10757 | p[7] = hilbert_split(&(vertexarray[p[6]]), p[8] - p[6], |
| 10758 | transgc[e][d][6], transgc[e][d][7], |
| 10759 | bxmin, bxmax, bymin, bymax, bzmin, bzmax) + p[6]; |
| 10760 | |
| 10761 | if (b->hilbert_order > 0) { |
| 10762 | // A maximum order is prescribed. |
| 10763 | if ((depth + 1) == b->hilbert_order) { |
| 10764 | // The maximum prescribed order is reached. |
| 10765 | return; |
| 10766 | } |
| 10767 | } |
| 10768 | |
| 10769 | // Recursively sort the points in sub-boxes. |
| 10770 | for (w = 0; w < 8; w++) { |
| 10771 | // w is the local Hilbert index (NOT Gray code). |
| 10772 | // Sort into the sub-box either there are more than 2 points in it, or |
| 10773 | // the prescribed order of the curve is not reached yet. |
| 10774 | //if ((p[w+1] - p[w] > b->hilbert_limit) || (b->hilbert_order > 0)) { |
| 10775 | if ((p[w+1] - p[w]) > b->hilbert_limit) { |
| 10776 | // Calculcate the start point (ei) of the curve in this sub-box. |
| 10777 | // update e = e ^ (e(w) left_rotate (d+1)). |
| 10778 | if (w == 0) { |
| 10779 | e_w = 0; |
| 10780 | } else { |
| 10781 | // calculate e(w) = gc(2 * floor((w - 1) / 2)). |
| 10782 | k = 2 * ((w - 1) / 2); |
| 10783 | e_w = k ^ (k >> 1); // = gc(k). |
| 10784 | } |
| 10785 | k = e_w; |
| 10786 | e_w = ((k << (d+1)) & mask) | ((k >> (n-d-1)) & mask); |
| 10787 | ei = e ^ e_w; |
| 10788 | // Calulcate the direction (di) of the curve in this sub-box. |
| 10789 | // update d = (d + d(w) + 1) % n |
| 10790 | if (w == 0) { |
| 10791 | d_w = 0; |
| 10792 | } else { |
| 10793 | d_w = ((w % 2) == 0) ? tsb1mod3[w - 1] : tsb1mod3[w]; |
| 10794 | } |
| 10795 | di = (d + d_w + 1) % n; |
| 10796 | // Calculate the bounding box of the sub-box. |
| 10797 | if (transgc[e][d][w] & 1) { // x-axis |
| 10798 | x1 = 0.5 * (bxmin + bxmax); |
| 10799 | x2 = bxmax; |
| 10800 | } else { |
| 10801 | x1 = bxmin; |
| 10802 | x2 = 0.5 * (bxmin + bxmax); |
| 10803 | } |
| 10804 | if (transgc[e][d][w] & 2) { // y-axis |
| 10805 | y1 = 0.5 * (bymin + bymax); |
| 10806 | y2 = bymax; |
| 10807 | } else { |
| 10808 | y1 = bymin; |
| 10809 | y2 = 0.5 * (bymin + bymax); |
| 10810 | } |
| 10811 | if (transgc[e][d][w] & 4) { // z-axis |
| 10812 | z1 = 0.5 * (bzmin + bzmax); |
| 10813 | z2 = bzmax; |
| 10814 | } else { |
| 10815 | z1 = bzmin; |
| 10816 | z2 = 0.5 * (bzmin + bzmax); |
| 10817 | } |
| 10818 | hilbert_sort3(&(vertexarray[p[w]]), p[w+1] - p[w], ei, di, |
| 10819 | x1, x2, y1, y2, z1, z2, depth+1); |
| 10820 | } // if (p[w+1] - p[w] > 1) |
| 10821 | } // w |
| 10822 | } |
| 10823 | |
| 10824 | /////////////////////////////////////////////////////////////////////////////// |
| 10825 | // // |
| 10826 | // brio_multiscale_sort() Sort the points using BRIO and Hilbert curve. // |
| 10827 | // // |
| 10828 | /////////////////////////////////////////////////////////////////////////////// |
| 10829 | |
| 10830 | void tetgenmesh::brio_multiscale_sort(point* vertexarray, int arraysize, |
| 10831 | int threshold, REAL ratio, int *depth) |
| 10832 | { |
| 10833 | int middle; |
| 10834 | |
| 10835 | middle = 0; |
| 10836 | if (arraysize >= threshold) { |
| 10837 | (*depth)++; |
| 10838 | middle = (int)(arraysize * ratio); |
| 10839 | brio_multiscale_sort(vertexarray, middle, threshold, ratio, depth); |
| 10840 | } |
| 10841 | // Sort the right-array (rnd-th round) using the Hilbert curve. |
| 10842 | hilbert_sort3(&(vertexarray[middle]), arraysize - middle, 0, 0, // e, d |
| 10843 | xmin, xmax, ymin, ymax, zmin, zmax, 0); // depth. |
| 10844 | } |
| 10845 | |
| 10846 | /////////////////////////////////////////////////////////////////////////////// |
| 10847 | // // |
| 10848 | // randomnation() Generate a random number between 0 and 'choices' - 1. // |
| 10849 | // // |
| 10850 | /////////////////////////////////////////////////////////////////////////////// |
| 10851 | |
| 10852 | unsigned long tetgenmesh::randomnation(unsigned int choices) |
| 10853 | { |
| 10854 | unsigned long newrandom; |
| 10855 | |
| 10856 | if (choices >= 714025l) { |
| 10857 | newrandom = (randomseed * 1366l + 150889l) % 714025l; |
| 10858 | randomseed = (newrandom * 1366l + 150889l) % 714025l; |
| 10859 | newrandom = newrandom * (choices / 714025l) + randomseed; |
| 10860 | if (newrandom >= choices) { |
| 10861 | return newrandom - choices; |
| 10862 | } else { |
| 10863 | return newrandom; |
| 10864 | } |
| 10865 | } else { |
| 10866 | randomseed = (randomseed * 1366l + 150889l) % 714025l; |
| 10867 | return randomseed % choices; |
| 10868 | } |
| 10869 | } |
| 10870 | |
| 10871 | /////////////////////////////////////////////////////////////////////////////// |
| 10872 | // // |
| 10873 | // randomsample() Randomly sample the tetrahedra for point loation. // |
| 10874 | // // |
| 10875 | // Searching begins from one of handles: the input 'searchtet', a recently // |
| 10876 | // encountered tetrahedron 'recenttet', or from one chosen from a random // |
| 10877 | // sample. The choice is made by determining which one's origin is closest // |
| 10878 | // to the point we are searching for. // |
| 10879 | // // |
| 10880 | /////////////////////////////////////////////////////////////////////////////// |
| 10881 | |
| 10882 | void tetgenmesh::randomsample(point searchpt,triface *searchtet) |
| 10883 | { |
| 10884 | tetrahedron *firsttet, *tetptr; |
| 10885 | point torg; |
| 10886 | void **sampleblock; |
| 10887 | uintptr_t alignptr; |
| 10888 | long sampleblocks, samplesperblock, samplenum; |
| 10889 | long tetblocks, i, j; |
| 10890 | REAL searchdist, dist; |
| 10891 | |
| 10892 | if (b->verbose > 2) { |
| 10893 | printf(" Random sampling tetrahedra for searching point %d.\n" , |
| 10894 | pointmark(searchpt)); |
| 10895 | } |
| 10896 | |
| 10897 | if (!nonconvex) { |
| 10898 | if (searchtet->tet == NULL) { |
| 10899 | // A null tet. Choose the recenttet as the starting tet. |
| 10900 | *searchtet = recenttet; |
| 10901 | // Recenttet should not be dead. |
| 10902 | assert(recenttet.tet[4] != NULL); |
| 10903 | } |
| 10904 | |
| 10905 | // 'searchtet' should be a valid tetrahedron. Choose the base face |
| 10906 | // whose vertices must not be 'dummypoint'. |
| 10907 | searchtet->ver = 3; |
| 10908 | // Record the distance from its origin to the searching point. |
| 10909 | torg = org(*searchtet); |
| 10910 | searchdist = (searchpt[0] - torg[0]) * (searchpt[0] - torg[0]) + |
| 10911 | (searchpt[1] - torg[1]) * (searchpt[1] - torg[1]) + |
| 10912 | (searchpt[2] - torg[2]) * (searchpt[2] - torg[2]); |
| 10913 | |
| 10914 | // If a recently encountered tetrahedron has been recorded and has not |
| 10915 | // been deallocated, test it as a good starting point. |
| 10916 | if (recenttet.tet != searchtet->tet) { |
| 10917 | recenttet.ver = 3; |
| 10918 | torg = org(recenttet); |
| 10919 | dist = (searchpt[0] - torg[0]) * (searchpt[0] - torg[0]) + |
| 10920 | (searchpt[1] - torg[1]) * (searchpt[1] - torg[1]) + |
| 10921 | (searchpt[2] - torg[2]) * (searchpt[2] - torg[2]); |
| 10922 | if (dist < searchdist) { |
| 10923 | *searchtet = recenttet; |
| 10924 | searchdist = dist; |
| 10925 | } |
| 10926 | } |
| 10927 | } else { |
| 10928 | // The mesh is non-convex. Do not use 'recenttet'. |
| 10929 | assert(samples >= 1l); // Make sure at least 1 sample. |
| 10930 | searchdist = longest; |
| 10931 | } |
| 10932 | |
| 10933 | // Select "good" candidate using k random samples, taking the closest one. |
| 10934 | // The number of random samples taken is proportional to the fourth root |
| 10935 | // of the number of tetrahedra in the mesh. |
| 10936 | while (samples * samples * samples * samples < tetrahedrons->items) { |
| 10937 | samples++; |
| 10938 | } |
| 10939 | // Find how much blocks in current tet pool. |
| 10940 | tetblocks = (tetrahedrons->maxitems + b->tetrahedraperblock - 1) |
| 10941 | / b->tetrahedraperblock; |
| 10942 | // Find the average samples per block. Each block at least have 1 sample. |
| 10943 | samplesperblock = 1 + (samples / tetblocks); |
| 10944 | sampleblocks = samples / samplesperblock; |
| 10945 | sampleblock = tetrahedrons->firstblock; |
| 10946 | for (i = 0; i < sampleblocks; i++) { |
| 10947 | alignptr = (uintptr_t) (sampleblock + 1); |
| 10948 | firsttet = (tetrahedron *) |
| 10949 | (alignptr + (uintptr_t) tetrahedrons->alignbytes |
| 10950 | - (alignptr % (uintptr_t) tetrahedrons->alignbytes)); |
| 10951 | for (j = 0; j < samplesperblock; j++) { |
| 10952 | if (i == tetblocks - 1) { |
| 10953 | // This is the last block. |
| 10954 | samplenum = randomnation((int) |
| 10955 | (tetrahedrons->maxitems - (i * b->tetrahedraperblock))); |
| 10956 | } else { |
| 10957 | samplenum = randomnation(b->tetrahedraperblock); |
| 10958 | } |
| 10959 | tetptr = (tetrahedron *) |
| 10960 | (firsttet + (samplenum * tetrahedrons->itemwords)); |
| 10961 | torg = (point) tetptr[4]; |
| 10962 | if (torg != (point) NULL) { |
| 10963 | dist = (searchpt[0] - torg[0]) * (searchpt[0] - torg[0]) + |
| 10964 | (searchpt[1] - torg[1]) * (searchpt[1] - torg[1]) + |
| 10965 | (searchpt[2] - torg[2]) * (searchpt[2] - torg[2]); |
| 10966 | if (dist < searchdist) { |
| 10967 | searchtet->tet = tetptr; |
| 10968 | searchtet->ver = 11; // torg = org(t); |
| 10969 | searchdist = dist; |
| 10970 | } |
| 10971 | } else { |
| 10972 | // A dead tet. Re-sample it. |
| 10973 | if (i != tetblocks - 1) j--; |
| 10974 | } |
| 10975 | } |
| 10976 | sampleblock = (void **) *sampleblock; |
| 10977 | } |
| 10978 | } |
| 10979 | |
| 10980 | /////////////////////////////////////////////////////////////////////////////// |
| 10981 | // // |
| 10982 | // locate() Find a tetrahedron containing a given point. // |
| 10983 | // // |
| 10984 | // Begins its search from 'searchtet', assume there is a line segment L from // |
| 10985 | // a vertex of 'searchtet' to the query point 'searchpt', and simply walk // |
| 10986 | // towards 'searchpt' by traversing all faces intersected by L. // |
| 10987 | // // |
| 10988 | // On completion, 'searchtet' is a tetrahedron that contains 'searchpt'. The // |
| 10989 | // returned value indicates one of the following cases: // |
| 10990 | // - ONVERTEX, the search point lies on the origin of 'searchtet'. // |
| 10991 | // - ONEDGE, the search point lies on an edge of 'searchtet'. // |
| 10992 | // - ONFACE, the search point lies on a face of 'searchtet'. // |
| 10993 | // - INTET, the search point lies in the interior of 'searchtet'. // |
| 10994 | // - OUTSIDE, the search point lies outside the mesh. 'searchtet' is a // |
| 10995 | // hull face which is visible by the search point. // |
| 10996 | // // |
| 10997 | // WARNING: This routine is designed for convex triangulations, and will not // |
| 10998 | // generally work after the holes and concavities have been carved. // |
| 10999 | // // |
| 11000 | /////////////////////////////////////////////////////////////////////////////// |
| 11001 | |
| 11002 | enum tetgenmesh::locateresult tetgenmesh::locate(point searchpt, |
| 11003 | triface* searchtet) |
| 11004 | { |
| 11005 | point torg, tdest, tapex, toppo; |
| 11006 | enum {ORGMOVE, DESTMOVE, APEXMOVE} nextmove; |
| 11007 | REAL ori, oriorg, oridest, oriapex; |
| 11008 | enum locateresult loc = OUTSIDE; |
| 11009 | int t1ver; |
| 11010 | int s; |
| 11011 | |
| 11012 | if (searchtet->tet == NULL) { |
| 11013 | // A null tet. Choose the recenttet as the starting tet. |
| 11014 | searchtet->tet = recenttet.tet; |
| 11015 | } |
| 11016 | |
| 11017 | // Check if we are in the outside of the convex hull. |
| 11018 | if (ishulltet(*searchtet)) { |
| 11019 | // Get its adjacent tet (inside the hull). |
| 11020 | searchtet->ver = 3; |
| 11021 | fsymself(*searchtet); |
| 11022 | } |
| 11023 | |
| 11024 | // Let searchtet be the face such that 'searchpt' lies above to it. |
| 11025 | for (searchtet->ver = 0; searchtet->ver < 4; searchtet->ver++) { |
| 11026 | torg = org(*searchtet); |
| 11027 | tdest = dest(*searchtet); |
| 11028 | tapex = apex(*searchtet); |
| 11029 | ori = orient3d(torg, tdest, tapex, searchpt); |
| 11030 | if (ori < 0.0) break; |
| 11031 | } |
| 11032 | assert(searchtet->ver != 4); |
| 11033 | |
| 11034 | // Walk through tetrahedra to locate the point. |
| 11035 | while (true) { |
| 11036 | |
| 11037 | toppo = oppo(*searchtet); |
| 11038 | |
| 11039 | // Check if the vertex is we seek. |
| 11040 | if (toppo == searchpt) { |
| 11041 | // Adjust the origin of searchtet to be searchpt. |
| 11042 | esymself(*searchtet); |
| 11043 | eprevself(*searchtet); |
| 11044 | loc = ONVERTEX; // return ONVERTEX; |
| 11045 | break; |
| 11046 | } |
| 11047 | |
| 11048 | // We enter from one of serarchtet's faces, which face do we exit? |
| 11049 | oriorg = orient3d(tdest, tapex, toppo, searchpt); |
| 11050 | oridest = orient3d(tapex, torg, toppo, searchpt); |
| 11051 | oriapex = orient3d(torg, tdest, toppo, searchpt); |
| 11052 | |
| 11053 | // Now decide which face to move. It is possible there are more than one |
| 11054 | // faces are viable moves. If so, randomly choose one. |
| 11055 | if (oriorg < 0) { |
| 11056 | if (oridest < 0) { |
| 11057 | if (oriapex < 0) { |
| 11058 | // All three faces are possible. |
| 11059 | s = randomnation(3); // 's' is in {0,1,2}. |
| 11060 | if (s == 0) { |
| 11061 | nextmove = ORGMOVE; |
| 11062 | } else if (s == 1) { |
| 11063 | nextmove = DESTMOVE; |
| 11064 | } else { |
| 11065 | nextmove = APEXMOVE; |
| 11066 | } |
| 11067 | } else { |
| 11068 | // Two faces, opposite to origin and destination, are viable. |
| 11069 | //s = randomnation(2); // 's' is in {0,1}. |
| 11070 | if (randomnation(2)) { |
| 11071 | nextmove = ORGMOVE; |
| 11072 | } else { |
| 11073 | nextmove = DESTMOVE; |
| 11074 | } |
| 11075 | } |
| 11076 | } else { |
| 11077 | if (oriapex < 0) { |
| 11078 | // Two faces, opposite to origin and apex, are viable. |
| 11079 | //s = randomnation(2); // 's' is in {0,1}. |
| 11080 | if (randomnation(2)) { |
| 11081 | nextmove = ORGMOVE; |
| 11082 | } else { |
| 11083 | nextmove = APEXMOVE; |
| 11084 | } |
| 11085 | } else { |
| 11086 | // Only the face opposite to origin is viable. |
| 11087 | nextmove = ORGMOVE; |
| 11088 | } |
| 11089 | } |
| 11090 | } else { |
| 11091 | if (oridest < 0) { |
| 11092 | if (oriapex < 0) { |
| 11093 | // Two faces, opposite to destination and apex, are viable. |
| 11094 | //s = randomnation(2); // 's' is in {0,1}. |
| 11095 | if (randomnation(2)) { |
| 11096 | nextmove = DESTMOVE; |
| 11097 | } else { |
| 11098 | nextmove = APEXMOVE; |
| 11099 | } |
| 11100 | } else { |
| 11101 | // Only the face opposite to destination is viable. |
| 11102 | nextmove = DESTMOVE; |
| 11103 | } |
| 11104 | } else { |
| 11105 | if (oriapex < 0) { |
| 11106 | // Only the face opposite to apex is viable. |
| 11107 | nextmove = APEXMOVE; |
| 11108 | } else { |
| 11109 | // The point we seek must be on the boundary of or inside this |
| 11110 | // tetrahedron. Check for boundary cases. |
| 11111 | if (oriorg == 0) { |
| 11112 | // Go to the face opposite to origin. |
| 11113 | enextesymself(*searchtet); |
| 11114 | if (oridest == 0) { |
| 11115 | eprevself(*searchtet); // edge oppo->apex |
| 11116 | if (oriapex == 0) { |
| 11117 | // oppo is duplicated with p. |
| 11118 | loc = ONVERTEX; // return ONVERTEX; |
| 11119 | break; |
| 11120 | } |
| 11121 | loc = ONEDGE; // return ONEDGE; |
| 11122 | break; |
| 11123 | } |
| 11124 | if (oriapex == 0) { |
| 11125 | enextself(*searchtet); // edge dest->oppo |
| 11126 | loc = ONEDGE; // return ONEDGE; |
| 11127 | break; |
| 11128 | } |
| 11129 | loc = ONFACE; // return ONFACE; |
| 11130 | break; |
| 11131 | } |
| 11132 | if (oridest == 0) { |
| 11133 | // Go to the face opposite to destination. |
| 11134 | eprevesymself(*searchtet); |
| 11135 | if (oriapex == 0) { |
| 11136 | eprevself(*searchtet); // edge oppo->org |
| 11137 | loc = ONEDGE; // return ONEDGE; |
| 11138 | break; |
| 11139 | } |
| 11140 | loc = ONFACE; // return ONFACE; |
| 11141 | break; |
| 11142 | } |
| 11143 | if (oriapex == 0) { |
| 11144 | // Go to the face opposite to apex |
| 11145 | esymself(*searchtet); |
| 11146 | loc = ONFACE; // return ONFACE; |
| 11147 | break; |
| 11148 | } |
| 11149 | loc = INTETRAHEDRON; // return INTETRAHEDRON; |
| 11150 | break; |
| 11151 | } |
| 11152 | } |
| 11153 | } |
| 11154 | |
| 11155 | // Move to the selected face. |
| 11156 | if (nextmove == ORGMOVE) { |
| 11157 | enextesymself(*searchtet); |
| 11158 | } else if (nextmove == DESTMOVE) { |
| 11159 | eprevesymself(*searchtet); |
| 11160 | } else { |
| 11161 | esymself(*searchtet); |
| 11162 | } |
| 11163 | // Move to the adjacent tetrahedron (maybe a hull tetrahedron). |
| 11164 | fsymself(*searchtet); |
| 11165 | if (oppo(*searchtet) == dummypoint) { |
| 11166 | loc = OUTSIDE; // return OUTSIDE; |
| 11167 | break; |
| 11168 | } |
| 11169 | |
| 11170 | // Retreat the three vertices of the base face. |
| 11171 | torg = org(*searchtet); |
| 11172 | tdest = dest(*searchtet); |
| 11173 | tapex = apex(*searchtet); |
| 11174 | |
| 11175 | } // while (true) |
| 11176 | |
| 11177 | return loc; |
| 11178 | } |
| 11179 | |
| 11180 | /////////////////////////////////////////////////////////////////////////////// |
| 11181 | // // |
| 11182 | // flippush() Push a face (possibly will be flipped) into flipstack. // |
| 11183 | // // |
| 11184 | // The face is marked. The flag is used to check the validity of the face on // |
| 11185 | // its popup. Some other flips may change it already. // |
| 11186 | // // |
| 11187 | /////////////////////////////////////////////////////////////////////////////// |
| 11188 | |
| 11189 | void tetgenmesh::flippush(badface*& fstack, triface* flipface) |
| 11190 | { |
| 11191 | if (!facemarked(*flipface)) { |
| 11192 | badface *newflipface = (badface *) flippool->alloc(); |
| 11193 | newflipface->tt = *flipface; |
| 11194 | markface(newflipface->tt); |
| 11195 | // Push this face into stack. |
| 11196 | newflipface->nextitem = fstack; |
| 11197 | fstack = newflipface; |
| 11198 | } |
| 11199 | } |
| 11200 | |
| 11201 | /////////////////////////////////////////////////////////////////////////////// |
| 11202 | // // |
| 11203 | // incrementalflip() Incrementally flipping to construct DT. // |
| 11204 | // // |
| 11205 | // Faces need to be checked for flipping are already queued in 'flipstack'. // |
| 11206 | // Return the total number of performed flips. // |
| 11207 | // // |
| 11208 | // Comment: This routine should be only used in the incremental Delaunay // |
| 11209 | // construction. In other cases, lawsonflip3d() should be used. // |
| 11210 | // // |
| 11211 | // If the new point lies outside of the convex hull ('hullflag' is set). The // |
| 11212 | // incremental flip algorithm still works as usual. However, we must ensure // |
| 11213 | // that every flip (2-to-3 or 3-to-2) does not create a duplicated (existing)// |
| 11214 | // edge or face. Otherwise, the underlying space of the triangulation becomes// |
| 11215 | // non-manifold and it is not possible to flip further. // |
| 11216 | // Thanks to Joerg Rambau and Frank Lutz for helping in this issue. // |
| 11217 | // // |
| 11218 | /////////////////////////////////////////////////////////////////////////////// |
| 11219 | |
| 11220 | int tetgenmesh::incrementalflip(point newpt, int hullflag, flipconstraints *fc) |
| 11221 | { |
| 11222 | badface *popface; |
| 11223 | triface fliptets[5], *parytet; |
| 11224 | point *pts, *parypt, pe; |
| 11225 | REAL sign, ori; |
| 11226 | int flipcount = 0; |
| 11227 | int t1ver; |
| 11228 | int i; |
| 11229 | |
| 11230 | if (b->verbose > 2) { |
| 11231 | printf(" Lawson flip (%ld faces).\n" , flippool->items); |
| 11232 | } |
| 11233 | |
| 11234 | if (hullflag) { |
| 11235 | // 'newpt' lies in the outside of the convex hull. |
| 11236 | // Mark all hull vertices which are connecting to it. |
| 11237 | popface = flipstack; |
| 11238 | while (popface != NULL) { |
| 11239 | pts = (point *) popface->tt.tet; |
| 11240 | for (i = 4; i < 8; i++) { |
| 11241 | if ((pts[i] != newpt) && (pts[i] != dummypoint)) { |
| 11242 | if (!pinfected(pts[i])) { |
| 11243 | pinfect(pts[i]); |
| 11244 | cavetetvertlist->newindex((void **) &parypt); |
| 11245 | *parypt = pts[i]; |
| 11246 | } |
| 11247 | } |
| 11248 | } |
| 11249 | popface = popface->nextitem; |
| 11250 | } |
| 11251 | } |
| 11252 | |
| 11253 | // Loop until the queue is empty. |
| 11254 | while (flipstack != NULL) { |
| 11255 | |
| 11256 | // Pop a face from the stack. |
| 11257 | popface = flipstack; |
| 11258 | fliptets[0] = popface->tt; |
| 11259 | flipstack = flipstack->nextitem; // The next top item in stack. |
| 11260 | flippool->dealloc((void *) popface); |
| 11261 | |
| 11262 | // Skip it if it is a dead tet (destroyed by previous flips). |
| 11263 | if (isdeadtet(fliptets[0])) continue; |
| 11264 | // Skip it if it is not the same tet as we saved. |
| 11265 | if (!facemarked(fliptets[0])) continue; |
| 11266 | |
| 11267 | unmarkface(fliptets[0]); |
| 11268 | |
| 11269 | if ((point) fliptets[0].tet[7] == dummypoint) { |
| 11270 | // It must be a hull edge. |
| 11271 | fliptets[0].ver = epivot[fliptets[0].ver]; |
| 11272 | // A hull edge. The current convex hull may be enlarged. |
| 11273 | fsym(fliptets[0], fliptets[1]); |
| 11274 | pts = (point *) fliptets[1].tet; |
| 11275 | ori = orient3d(pts[4], pts[5], pts[6], newpt); |
| 11276 | if (ori < 0) { |
| 11277 | // Visible. The convex hull will be enlarged. |
| 11278 | // Decide which flip (2-to-3, 3-to-2, or 4-to-1) to use. |
| 11279 | // Check if the tet [a,c,e,d] or [c,b,e,d] exists. |
| 11280 | enext(fliptets[1], fliptets[2]); |
| 11281 | eprev(fliptets[1], fliptets[3]); |
| 11282 | fnextself(fliptets[2]); // [a,c,e,*] |
| 11283 | fnextself(fliptets[3]); // [c,b,e,*] |
| 11284 | if (oppo(fliptets[2]) == newpt) { |
| 11285 | if (oppo(fliptets[3]) == newpt) { |
| 11286 | // Both tets exist! A 4-to-1 flip is found. |
| 11287 | terminatetetgen(this, 2); // Report a bug. |
| 11288 | } else { |
| 11289 | esym(fliptets[2], fliptets[0]); |
| 11290 | fnext(fliptets[0], fliptets[1]); |
| 11291 | fnext(fliptets[1], fliptets[2]); |
| 11292 | // Perform a 3-to-2 flip. Replace edge [c,a] by face [d,e,b]. |
| 11293 | // This corresponds to my standard labels, where edge [e,d] is |
| 11294 | // repalced by face [a,b,c], and a is the new vertex. |
| 11295 | // [0] [c,a,d,e] (d = newpt) |
| 11296 | // [1] [c,a,e,b] (c = dummypoint) |
| 11297 | // [2] [c,a,b,d] |
| 11298 | flip32(fliptets, 1, fc); |
| 11299 | } |
| 11300 | } else { |
| 11301 | if (oppo(fliptets[3]) == newpt) { |
| 11302 | fnext(fliptets[3], fliptets[0]); |
| 11303 | fnext(fliptets[0], fliptets[1]); |
| 11304 | fnext(fliptets[1], fliptets[2]); |
| 11305 | // Perform a 3-to-2 flip. Replace edge [c,b] by face [d,a,e]. |
| 11306 | // [0] [c,b,d,a] (d = newpt) |
| 11307 | // [1] [c,b,a,e] (c = dummypoint) |
| 11308 | // [2] [c,b,e,d] |
| 11309 | flip32(fliptets, 1, fc); |
| 11310 | } else { |
| 11311 | if (hullflag) { |
| 11312 | // Reject this flip if pe is already marked. |
| 11313 | pe = oppo(fliptets[1]); |
| 11314 | if (!pinfected(pe)) { |
| 11315 | pinfect(pe); |
| 11316 | cavetetvertlist->newindex((void **) &parypt); |
| 11317 | *parypt = pe; |
| 11318 | // Perform a 2-to-3 flip. |
| 11319 | flip23(fliptets, 1, fc); |
| 11320 | } else { |
| 11321 | // Reject this flip. |
| 11322 | flipcount--; |
| 11323 | } |
| 11324 | } else { |
| 11325 | // Perform a 2-to-3 flip. Replace face [a,b,c] by edge [e,d]. |
| 11326 | // [0] [a,b,c,d], d = newpt. |
| 11327 | // [1] [b,a,c,e], c = dummypoint. |
| 11328 | flip23(fliptets, 1, fc); |
| 11329 | } |
| 11330 | } |
| 11331 | } |
| 11332 | flipcount++; |
| 11333 | } |
| 11334 | continue; |
| 11335 | } // if (dummypoint) |
| 11336 | |
| 11337 | fsym(fliptets[0], fliptets[1]); |
| 11338 | if ((point) fliptets[1].tet[7] == dummypoint) { |
| 11339 | // A hull face is locally Delaunay. |
| 11340 | continue; |
| 11341 | } |
| 11342 | // Check if the adjacent tet has already been tested. |
| 11343 | if (marktested(fliptets[1])) { |
| 11344 | // It has been tested and it is Delaunay. |
| 11345 | continue; |
| 11346 | } |
| 11347 | |
| 11348 | // Test whether the face is locally Delaunay or not. |
| 11349 | pts = (point *) fliptets[1].tet; |
| 11350 | if (b->weighted) { |
| 11351 | sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], newpt, |
| 11352 | pts[4][3], pts[5][3], pts[6][3], pts[7][3], |
| 11353 | newpt[3]); |
| 11354 | } else { |
| 11355 | sign = insphere_s(pts[4], pts[5], pts[6], pts[7], newpt); |
| 11356 | } |
| 11357 | |
| 11358 | |
| 11359 | if (sign < 0) { |
| 11360 | point pd = newpt; |
| 11361 | point pe = oppo(fliptets[1]); |
| 11362 | // Check the convexity of its three edges. Stop checking either a |
| 11363 | // locally non-convex edge (ori < 0) or a flat edge (ori = 0) is |
| 11364 | // encountered, and 'fliptet' represents that edge. |
| 11365 | for (i = 0; i < 3; i++) { |
| 11366 | ori = orient3d(org(fliptets[0]), dest(fliptets[0]), pd, pe); |
| 11367 | if (ori <= 0) break; |
| 11368 | enextself(fliptets[0]); |
| 11369 | } |
| 11370 | if (ori > 0) { |
| 11371 | // A 2-to-3 flip is found. |
| 11372 | // [0] [a,b,c,d], |
| 11373 | // [1] [b,a,c,e]. no dummypoint. |
| 11374 | flip23(fliptets, 0, fc); |
| 11375 | flipcount++; |
| 11376 | } else { // ori <= 0 |
| 11377 | // The edge ('fliptets[0]' = [a',b',c',d]) is non-convex or flat, |
| 11378 | // where the edge [a',b'] is one of [a,b], [b,c], and [c,a]. |
| 11379 | // Check if there are three or four tets sharing at this edge. |
| 11380 | esymself(fliptets[0]); // [b,a,d,c] |
| 11381 | for (i = 0; i < 3; i++) { |
| 11382 | fnext(fliptets[i], fliptets[i+1]); |
| 11383 | } |
| 11384 | if (fliptets[3].tet == fliptets[0].tet) { |
| 11385 | // A 3-to-2 flip is found. (No hull tet.) |
| 11386 | flip32(fliptets, 0, fc); |
| 11387 | flipcount++; |
| 11388 | } else { |
| 11389 | // There are more than 3 tets at this edge. |
| 11390 | fnext(fliptets[3], fliptets[4]); |
| 11391 | if (fliptets[4].tet == fliptets[0].tet) { |
| 11392 | if (ori == 0) { |
| 11393 | // A 4-to-4 flip is found. (Two hull tets may be involved.) |
| 11394 | // Current tets in 'fliptets': |
| 11395 | // [0] [b,a,d,c] (d may be newpt) |
| 11396 | // [1] [b,a,c,e] |
| 11397 | // [2] [b,a,e,f] (f may be dummypoint) |
| 11398 | // [3] [b,a,f,d] |
| 11399 | esymself(fliptets[0]); // [a,b,c,d] |
| 11400 | // A 2-to-3 flip replaces face [a,b,c] by edge [e,d]. |
| 11401 | // This creates a degenerate tet [e,d,a,b] (tmpfliptets[0]). |
| 11402 | // It will be removed by the followed 3-to-2 flip. |
| 11403 | flip23(fliptets, 0, fc); // No hull tet. |
| 11404 | fnext(fliptets[3], fliptets[1]); |
| 11405 | fnext(fliptets[1], fliptets[2]); |
| 11406 | // Current tets in 'fliptets': |
| 11407 | // [0] [...] |
| 11408 | // [1] [b,a,d,e] (degenerated, d may be new point). |
| 11409 | // [2] [b,a,e,f] (f may be dummypoint) |
| 11410 | // [3] [b,a,f,d] |
| 11411 | // A 3-to-2 flip replaces edge [b,a] by face [d,e,f]. |
| 11412 | // Hull tets may be involved (f may be dummypoint). |
| 11413 | flip32(&(fliptets[1]), (apex(fliptets[3]) == dummypoint), fc); |
| 11414 | flipcount++; |
| 11415 | } |
| 11416 | } |
| 11417 | } |
| 11418 | } // ori |
| 11419 | } else { |
| 11420 | // The adjacent tet is Delaunay. Mark it to avoid testing it again. |
| 11421 | marktest(fliptets[1]); |
| 11422 | // Save it for unmarking it later. |
| 11423 | cavebdrylist->newindex((void **) &parytet); |
| 11424 | *parytet = fliptets[1]; |
| 11425 | } |
| 11426 | |
| 11427 | } // while (flipstack) |
| 11428 | |
| 11429 | // Unmark saved tetrahedra. |
| 11430 | for (i = 0; i < cavebdrylist->objects; i++) { |
| 11431 | parytet = (triface *) fastlookup(cavebdrylist, i); |
| 11432 | unmarktest(*parytet); |
| 11433 | } |
| 11434 | cavebdrylist->restart(); |
| 11435 | |
| 11436 | if (hullflag) { |
| 11437 | // Unmark infected vertices. |
| 11438 | for (i = 0; i < cavetetvertlist->objects; i++) { |
| 11439 | parypt = (point *) fastlookup(cavetetvertlist, i); |
| 11440 | puninfect(*parypt); |
| 11441 | } |
| 11442 | cavetetvertlist->restart(); |
| 11443 | } |
| 11444 | |
| 11445 | |
| 11446 | return flipcount; |
| 11447 | } |
| 11448 | |
| 11449 | /////////////////////////////////////////////////////////////////////////////// |
| 11450 | // // |
| 11451 | // initialdelaunay() Create an initial Delaunay tetrahedralization. // |
| 11452 | // // |
| 11453 | // The tetrahedralization contains only one tetrahedron abcd, and four hull // |
| 11454 | // tetrahedra. The points pa, pb, pc, and pd must be linearly independent. // |
| 11455 | // // |
| 11456 | /////////////////////////////////////////////////////////////////////////////// |
| 11457 | |
| 11458 | void tetgenmesh::initialdelaunay(point pa, point pb, point pc, point pd) |
| 11459 | { |
| 11460 | triface firsttet, tetopa, tetopb, tetopc, tetopd; |
| 11461 | triface worktet, worktet1; |
| 11462 | |
| 11463 | if (b->verbose > 2) { |
| 11464 | printf(" Create init tet (%d, %d, %d, %d)\n" , pointmark(pa), |
| 11465 | pointmark(pb), pointmark(pc), pointmark(pd)); |
| 11466 | } |
| 11467 | |
| 11468 | // Create the first tetrahedron. |
| 11469 | maketetrahedron(&firsttet); |
| 11470 | setvertices(firsttet, pa, pb, pc, pd); |
| 11471 | // Create four hull tetrahedra. |
| 11472 | maketetrahedron(&tetopa); |
| 11473 | setvertices(tetopa, pb, pc, pd, dummypoint); |
| 11474 | maketetrahedron(&tetopb); |
| 11475 | setvertices(tetopb, pc, pa, pd, dummypoint); |
| 11476 | maketetrahedron(&tetopc); |
| 11477 | setvertices(tetopc, pa, pb, pd, dummypoint); |
| 11478 | maketetrahedron(&tetopd); |
| 11479 | setvertices(tetopd, pb, pa, pc, dummypoint); |
| 11480 | hullsize += 4; |
| 11481 | |
| 11482 | // Connect hull tetrahedra to firsttet (at four faces of firsttet). |
| 11483 | bond(firsttet, tetopd); |
| 11484 | esym(firsttet, worktet); |
| 11485 | bond(worktet, tetopc); // ab |
| 11486 | enextesym(firsttet, worktet); |
| 11487 | bond(worktet, tetopa); // bc |
| 11488 | eprevesym(firsttet, worktet); |
| 11489 | bond(worktet, tetopb); // ca |
| 11490 | |
| 11491 | // Connect hull tetrahedra together (at six edges of firsttet). |
| 11492 | esym(tetopc, worktet); |
| 11493 | esym(tetopd, worktet1); |
| 11494 | bond(worktet, worktet1); // ab |
| 11495 | esym(tetopa, worktet); |
| 11496 | eprevesym(tetopd, worktet1); |
| 11497 | bond(worktet, worktet1); // bc |
| 11498 | esym(tetopb, worktet); |
| 11499 | enextesym(tetopd, worktet1); |
| 11500 | bond(worktet, worktet1); // ca |
| 11501 | eprevesym(tetopc, worktet); |
| 11502 | enextesym(tetopb, worktet1); |
| 11503 | bond(worktet, worktet1); // da |
| 11504 | eprevesym(tetopa, worktet); |
| 11505 | enextesym(tetopc, worktet1); |
| 11506 | bond(worktet, worktet1); // db |
| 11507 | eprevesym(tetopb, worktet); |
| 11508 | enextesym(tetopa, worktet1); |
| 11509 | bond(worktet, worktet1); // dc |
| 11510 | |
| 11511 | // Set the vertex type. |
| 11512 | if (pointtype(pa) == UNUSEDVERTEX) { |
| 11513 | setpointtype(pa, VOLVERTEX); |
| 11514 | } |
| 11515 | if (pointtype(pb) == UNUSEDVERTEX) { |
| 11516 | setpointtype(pb, VOLVERTEX); |
| 11517 | } |
| 11518 | if (pointtype(pc) == UNUSEDVERTEX) { |
| 11519 | setpointtype(pc, VOLVERTEX); |
| 11520 | } |
| 11521 | if (pointtype(pd) == UNUSEDVERTEX) { |
| 11522 | setpointtype(pd, VOLVERTEX); |
| 11523 | } |
| 11524 | |
| 11525 | setpoint2tet(pa, encode(firsttet)); |
| 11526 | setpoint2tet(pb, encode(firsttet)); |
| 11527 | setpoint2tet(pc, encode(firsttet)); |
| 11528 | setpoint2tet(pd, encode(firsttet)); |
| 11529 | |
| 11530 | // Remember the first tetrahedron. |
| 11531 | recenttet = firsttet; |
| 11532 | } |
| 11533 | |
| 11534 | /////////////////////////////////////////////////////////////////////////////// |
| 11535 | // // |
| 11536 | // incrementaldelaunay() Create a Delaunay tetrahedralization by // |
| 11537 | // the incremental approach. // |
| 11538 | // // |
| 11539 | /////////////////////////////////////////////////////////////////////////////// |
| 11540 | |
| 11541 | |
| 11542 | void tetgenmesh::incrementaldelaunay(clock_t& tv) |
| 11543 | { |
| 11544 | triface searchtet; |
| 11545 | point *permutarray, swapvertex; |
| 11546 | REAL v1[3], v2[3], n[3]; |
| 11547 | REAL bboxsize, bboxsize2, bboxsize3, ori; |
| 11548 | int randindex; |
| 11549 | int ngroup = 0; |
| 11550 | int i, j; |
| 11551 | |
| 11552 | if (!b->quiet) { |
| 11553 | printf("Delaunizing vertices...\n" ); |
| 11554 | } |
| 11555 | |
| 11556 | // Form a random permuation (uniformly at random) of the set of vertices. |
| 11557 | permutarray = new point[in->numberofpoints]; |
| 11558 | points->traversalinit(); |
| 11559 | |
| 11560 | if (b->no_sort) { |
| 11561 | if (b->verbose) { |
| 11562 | printf(" Using the input order.\n" ); |
| 11563 | } |
| 11564 | for (i = 0; i < in->numberofpoints; i++) { |
| 11565 | permutarray[i] = (point) points->traverse(); |
| 11566 | } |
| 11567 | } else { |
| 11568 | if (b->verbose) { |
| 11569 | printf(" Permuting vertices.\n" ); |
| 11570 | } |
| 11571 | srand(in->numberofpoints); |
| 11572 | for (i = 0; i < in->numberofpoints; i++) { |
| 11573 | randindex = rand() % (i + 1); // randomnation(i + 1); |
| 11574 | permutarray[i] = permutarray[randindex]; |
| 11575 | permutarray[randindex] = (point) points->traverse(); |
| 11576 | } |
| 11577 | if (b->brio_hilbert) { // -b option |
| 11578 | if (b->verbose) { |
| 11579 | printf(" Sorting vertices.\n" ); |
| 11580 | } |
| 11581 | hilbert_init(in->mesh_dim); |
| 11582 | brio_multiscale_sort(permutarray, in->numberofpoints, b->brio_threshold, |
| 11583 | b->brio_ratio, &ngroup); |
| 11584 | } |
| 11585 | } |
| 11586 | |
| 11587 | tv = clock(); // Remember the time for sorting points. |
| 11588 | |
| 11589 | // Calculate the diagonal size of its bounding box. |
| 11590 | bboxsize = sqrt(norm2(xmax - xmin, ymax - ymin, zmax - zmin)); |
| 11591 | bboxsize2 = bboxsize * bboxsize; |
| 11592 | bboxsize3 = bboxsize2 * bboxsize; |
| 11593 | |
| 11594 | // Make sure the second vertex is not identical with the first one. |
| 11595 | i = 1; |
| 11596 | while ((distance(permutarray[0],permutarray[i])/bboxsize)<b->epsilon) { |
| 11597 | i++; |
| 11598 | if (i == in->numberofpoints - 1) { |
| 11599 | printf("Exception: All vertices are (nearly) identical (Tol = %g).\n" , |
| 11600 | b->epsilon); |
| 11601 | terminatetetgen(this, 10); |
| 11602 | } |
| 11603 | } |
| 11604 | if (i > 1) { |
| 11605 | // Swap to move the non-identical vertex from index i to index 1. |
| 11606 | swapvertex = permutarray[i]; |
| 11607 | permutarray[i] = permutarray[1]; |
| 11608 | permutarray[1] = swapvertex; |
| 11609 | } |
| 11610 | |
| 11611 | // Make sure the third vertex is not collinear with the first two. |
| 11612 | // Acknowledgement: Thanks Jan Pomplun for his correction by using |
| 11613 | // epsilon^2 and epsilon^3 (instead of epsilon). 2013-08-15. |
| 11614 | i = 2; |
| 11615 | for (j = 0; j < 3; j++) { |
| 11616 | v1[j] = permutarray[1][j] - permutarray[0][j]; |
| 11617 | v2[j] = permutarray[i][j] - permutarray[0][j]; |
| 11618 | } |
| 11619 | cross(v1, v2, n); |
| 11620 | while ((sqrt(norm2(n[0], n[1], n[2])) / bboxsize2) < |
| 11621 | (b->epsilon * b->epsilon)) { |
| 11622 | i++; |
| 11623 | if (i == in->numberofpoints - 1) { |
| 11624 | printf("Exception: All vertices are (nearly) collinear (Tol = %g).\n" , |
| 11625 | b->epsilon); |
| 11626 | terminatetetgen(this, 10); |
| 11627 | } |
| 11628 | for (j = 0; j < 3; j++) { |
| 11629 | v2[j] = permutarray[i][j] - permutarray[0][j]; |
| 11630 | } |
| 11631 | cross(v1, v2, n); |
| 11632 | } |
| 11633 | if (i > 2) { |
| 11634 | // Swap to move the non-identical vertex from index i to index 1. |
| 11635 | swapvertex = permutarray[i]; |
| 11636 | permutarray[i] = permutarray[2]; |
| 11637 | permutarray[2] = swapvertex; |
| 11638 | } |
| 11639 | |
| 11640 | // Make sure the fourth vertex is not coplanar with the first three. |
| 11641 | i = 3; |
| 11642 | ori = orient3dfast(permutarray[0], permutarray[1], permutarray[2], |
| 11643 | permutarray[i]); |
| 11644 | while ((fabs(ori) / bboxsize3) < (b->epsilon * b->epsilon * b->epsilon)) { |
| 11645 | i++; |
| 11646 | if (i == in->numberofpoints) { |
| 11647 | printf("Exception: All vertices are coplanar (Tol = %g).\n" , |
| 11648 | b->epsilon); |
| 11649 | terminatetetgen(this, 10); |
| 11650 | } |
| 11651 | ori = orient3dfast(permutarray[0], permutarray[1], permutarray[2], |
| 11652 | permutarray[i]); |
| 11653 | } |
| 11654 | if (i > 3) { |
| 11655 | // Swap to move the non-identical vertex from index i to index 1. |
| 11656 | swapvertex = permutarray[i]; |
| 11657 | permutarray[i] = permutarray[3]; |
| 11658 | permutarray[3] = swapvertex; |
| 11659 | } |
| 11660 | |
| 11661 | // Orient the first four vertices in permutarray so that they follow the |
| 11662 | // right-hand rule. |
| 11663 | if (ori > 0.0) { |
| 11664 | // Swap the first two vertices. |
| 11665 | swapvertex = permutarray[0]; |
| 11666 | permutarray[0] = permutarray[1]; |
| 11667 | permutarray[1] = swapvertex; |
| 11668 | } |
| 11669 | |
| 11670 | // Create the initial Delaunay tetrahedralization. |
| 11671 | initialdelaunay(permutarray[0], permutarray[1], permutarray[2], |
| 11672 | permutarray[3]); |
| 11673 | |
| 11674 | if (b->verbose) { |
| 11675 | printf(" Incrementally inserting vertices.\n" ); |
| 11676 | } |
| 11677 | insertvertexflags ivf; |
| 11678 | flipconstraints fc; |
| 11679 | |
| 11680 | // Choose algorithm: Bowyer-Watson (default) or Incremental Flip |
| 11681 | if (b->incrflip) { |
| 11682 | ivf.bowywat = 0; |
| 11683 | ivf.lawson = 1; |
| 11684 | fc.enqflag = 1; |
| 11685 | } else { |
| 11686 | ivf.bowywat = 1; |
| 11687 | ivf.lawson = 0; |
| 11688 | } |
| 11689 | |
| 11690 | |
| 11691 | for (i = 4; i < in->numberofpoints; i++) { |
| 11692 | if (pointtype(permutarray[i]) == UNUSEDVERTEX) { |
| 11693 | setpointtype(permutarray[i], VOLVERTEX); |
| 11694 | } |
| 11695 | if (b->brio_hilbert || b->no_sort) { // -b or -b/1 |
| 11696 | // Start the last updated tet. |
| 11697 | searchtet.tet = recenttet.tet; |
| 11698 | } else { // -b0 |
| 11699 | // Randomly choose the starting tet for point location. |
| 11700 | searchtet.tet = NULL; |
| 11701 | } |
| 11702 | ivf.iloc = (int) OUTSIDE; |
| 11703 | // Insert the vertex. |
| 11704 | if (insertpoint(permutarray[i], &searchtet, NULL, NULL, &ivf)) { |
| 11705 | if (flipstack != NULL) { |
| 11706 | // Perform flip to recover Delaunayness. |
| 11707 | incrementalflip(permutarray[i], (ivf.iloc == (int) OUTSIDE), &fc); |
| 11708 | } |
| 11709 | } else { |
| 11710 | if (ivf.iloc == (int) ONVERTEX) { |
| 11711 | // The point already exists. Mark it and do nothing on it. |
| 11712 | swapvertex = org(searchtet); |
| 11713 | assert(swapvertex != permutarray[i]); // SELF_CHECK |
| 11714 | if (b->object != tetgenbehavior::STL) { |
| 11715 | if (!b->quiet) { |
| 11716 | printf("Warning: Point #%d is coincident with #%d. Ignored!\n" , |
| 11717 | pointmark(permutarray[i]), pointmark(swapvertex)); |
| 11718 | } |
| 11719 | } |
| 11720 | setpoint2ppt(permutarray[i], swapvertex); |
| 11721 | setpointtype(permutarray[i], DUPLICATEDVERTEX); |
| 11722 | dupverts++; |
| 11723 | } else if (ivf.iloc == (int) NEARVERTEX) { |
| 11724 | swapvertex = point2ppt(permutarray[i]); |
| 11725 | if (!b->quiet) { |
| 11726 | printf("Warning: Point %d is replaced by point %d.\n" , |
| 11727 | pointmark(permutarray[i]), pointmark(swapvertex)); |
| 11728 | printf(" Avoid creating a very short edge (len = %g) (< %g).\n" , |
| 11729 | permutarray[i][3], b->minedgelength); |
| 11730 | printf(" You may try a smaller tolerance (-T) (current is %g)\n" , |
| 11731 | b->epsilon); |
| 11732 | printf(" or use the option -M0/1 to avoid such replacement.\n" ); |
| 11733 | } |
| 11734 | // Remember it is a duplicated point. |
| 11735 | setpointtype(permutarray[i], DUPLICATEDVERTEX); |
| 11736 | // Count the number of duplicated points. |
| 11737 | dupverts++; |
| 11738 | } |
| 11739 | } |
| 11740 | } |
| 11741 | |
| 11742 | |
| 11743 | |
| 11744 | delete [] permutarray; |
| 11745 | } |
| 11746 | |
| 11747 | //// //// |
| 11748 | //// //// |
| 11749 | //// delaunay_cxx ///////////////////////////////////////////////////////////// |
| 11750 | |
| 11751 | //// surface_cxx ////////////////////////////////////////////////////////////// |
| 11752 | //// //// |
| 11753 | //// //// |
| 11754 | |
| 11755 | /////////////////////////////////////////////////////////////////////////////// |
| 11756 | // // |
| 11757 | // flipshpush() Push a facet edge into flip stack. // |
| 11758 | // // |
| 11759 | /////////////////////////////////////////////////////////////////////////////// |
| 11760 | |
| 11761 | void tetgenmesh::flipshpush(face* flipedge) |
| 11762 | { |
| 11763 | badface *newflipface; |
| 11764 | |
| 11765 | newflipface = (badface *) flippool->alloc(); |
| 11766 | newflipface->ss = *flipedge; |
| 11767 | newflipface->forg = sorg(*flipedge); |
| 11768 | newflipface->fdest = sdest(*flipedge); |
| 11769 | newflipface->nextitem = flipstack; |
| 11770 | flipstack = newflipface; |
| 11771 | } |
| 11772 | |
| 11773 | /////////////////////////////////////////////////////////////////////////////// |
| 11774 | // // |
| 11775 | // flip22() Perform a 2-to-2 flip in surface mesh. // |
| 11776 | // // |
| 11777 | // 'flipfaces' is an array of two subfaces. On input, they are [a,b,c] and // |
| 11778 | // [b,a,d]. On output, they are [c,d,b] and [d,c,a]. As a result, edge [a,b] // |
| 11779 | // is replaced by edge [c,d]. // |
| 11780 | // // |
| 11781 | /////////////////////////////////////////////////////////////////////////////// |
| 11782 | |
| 11783 | void tetgenmesh::flip22(face* flipfaces, int flipflag, int chkencflag) |
| 11784 | { |
| 11785 | face bdedges[4], outfaces[4], infaces[4]; |
| 11786 | face bdsegs[4]; |
| 11787 | face checkface; |
| 11788 | point pa, pb, pc, pd; |
| 11789 | int i; |
| 11790 | |
| 11791 | pa = sorg(flipfaces[0]); |
| 11792 | pb = sdest(flipfaces[0]); |
| 11793 | pc = sapex(flipfaces[0]); |
| 11794 | pd = sapex(flipfaces[1]); |
| 11795 | |
| 11796 | if (sorg(flipfaces[1]) != pb) { |
| 11797 | sesymself(flipfaces[1]); |
| 11798 | } |
| 11799 | |
| 11800 | flip22count++; |
| 11801 | |
| 11802 | // Collect the four boundary edges. |
| 11803 | senext(flipfaces[0], bdedges[0]); |
| 11804 | senext2(flipfaces[0], bdedges[1]); |
| 11805 | senext(flipfaces[1], bdedges[2]); |
| 11806 | senext2(flipfaces[1], bdedges[3]); |
| 11807 | |
| 11808 | // Collect outer boundary faces. |
| 11809 | for (i = 0; i < 4; i++) { |
| 11810 | spivot(bdedges[i], outfaces[i]); |
| 11811 | infaces[i] = outfaces[i]; |
| 11812 | sspivot(bdedges[i], bdsegs[i]); |
| 11813 | if (outfaces[i].sh != NULL) { |
| 11814 | if (isshsubseg(bdedges[i])) { |
| 11815 | spivot(infaces[i], checkface); |
| 11816 | while (checkface.sh != bdedges[i].sh) { |
| 11817 | infaces[i] = checkface; |
| 11818 | spivot(infaces[i], checkface); |
| 11819 | } |
| 11820 | } |
| 11821 | } |
| 11822 | } |
| 11823 | |
| 11824 | // The flags set in these two subfaces do not change. |
| 11825 | // Shellmark does not change. |
| 11826 | // area constraint does not change. |
| 11827 | |
| 11828 | // Transform [a,b,c] -> [c,d,b]. |
| 11829 | setshvertices(flipfaces[0], pc, pd, pb); |
| 11830 | // Transform [b,a,d] -> [d,c,a]. |
| 11831 | setshvertices(flipfaces[1], pd, pc, pa); |
| 11832 | |
| 11833 | // Update the point-to-subface map. |
| 11834 | if (pointtype(pa) == FREEFACETVERTEX) { |
| 11835 | setpoint2sh(pa, sencode(flipfaces[1])); |
| 11836 | } |
| 11837 | if (pointtype(pb) == FREEFACETVERTEX) { |
| 11838 | setpoint2sh(pb, sencode(flipfaces[0])); |
| 11839 | } |
| 11840 | if (pointtype(pc) == FREEFACETVERTEX) { |
| 11841 | setpoint2sh(pc, sencode(flipfaces[0])); |
| 11842 | } |
| 11843 | if (pointtype(pd) == FREEFACETVERTEX) { |
| 11844 | setpoint2sh(pd, sencode(flipfaces[0])); |
| 11845 | } |
| 11846 | |
| 11847 | // Reconnect boundary edges to outer boundary faces. |
| 11848 | for (i = 0; i < 4; i++) { |
| 11849 | if (outfaces[(3 + i) % 4].sh != NULL) { |
| 11850 | // Make sure that the subface has the ori as the segment. |
| 11851 | if (bdsegs[(3 + i) % 4].sh != NULL) { |
| 11852 | bdsegs[(3 + i) % 4].shver = 0; |
| 11853 | if (sorg(bdedges[i]) != sorg(bdsegs[(3 + i) % 4])) { |
| 11854 | sesymself(bdedges[i]); |
| 11855 | } |
| 11856 | } |
| 11857 | sbond1(bdedges[i], outfaces[(3 + i) % 4]); |
| 11858 | sbond1(infaces[(3 + i) % 4], bdedges[i]); |
| 11859 | } else { |
| 11860 | sdissolve(bdedges[i]); |
| 11861 | } |
| 11862 | if (bdsegs[(3 + i) % 4].sh != NULL) { |
| 11863 | ssbond(bdedges[i], bdsegs[(3 + i) % 4]); |
| 11864 | if (chkencflag & 1) { |
| 11865 | // Queue this segment for encroaching check. |
| 11866 | enqueuesubface(badsubsegs, &(bdsegs[(3 + i) % 4])); |
| 11867 | } |
| 11868 | } else { |
| 11869 | ssdissolve(bdedges[i]); |
| 11870 | } |
| 11871 | } |
| 11872 | |
| 11873 | if (chkencflag & 2) { |
| 11874 | // Queue the flipped subfaces for quality/encroaching checks. |
| 11875 | for (i = 0; i < 2; i++) { |
| 11876 | enqueuesubface(badsubfacs, &(flipfaces[i])); |
| 11877 | } |
| 11878 | } |
| 11879 | |
| 11880 | recentsh = flipfaces[0]; |
| 11881 | |
| 11882 | if (flipflag) { |
| 11883 | // Put the boundary edges into flip stack. |
| 11884 | for (i = 0; i < 4; i++) { |
| 11885 | flipshpush(&(bdedges[i])); |
| 11886 | } |
| 11887 | } |
| 11888 | } |
| 11889 | |
| 11890 | /////////////////////////////////////////////////////////////////////////////// |
| 11891 | // // |
| 11892 | // flip31() Remove a vertex by transforming 3-to-1 subfaces. // |
| 11893 | // // |
| 11894 | // 'flipfaces' is an array of subfaces. Its length is at least 4. On input, // |
| 11895 | // the first three faces are: [p,a,b], [p,b,c], and [p,c,a]. This routine // |
| 11896 | // replaces them by one face [a,b,c], it is returned in flipfaces[3]. // |
| 11897 | // // |
| 11898 | // NOTE: The three old subfaces are not deleted within this routine. They // |
| 11899 | // still hold pointers to their adjacent subfaces. These informations are // |
| 11900 | // needed by the routine 'sremovevertex()' for recovering a segment. // |
| 11901 | // The caller of this routine must delete the old subfaces after their uses. // |
| 11902 | // // |
| 11903 | /////////////////////////////////////////////////////////////////////////////// |
| 11904 | |
| 11905 | void tetgenmesh::flip31(face* flipfaces, int flipflag) |
| 11906 | { |
| 11907 | face bdedges[3], outfaces[3], infaces[3]; |
| 11908 | face bdsegs[3]; |
| 11909 | face checkface; |
| 11910 | point pa, pb, pc; |
| 11911 | int i; |
| 11912 | |
| 11913 | pa = sdest(flipfaces[0]); |
| 11914 | pb = sdest(flipfaces[1]); |
| 11915 | pc = sdest(flipfaces[2]); |
| 11916 | |
| 11917 | flip31count++; |
| 11918 | |
| 11919 | // Collect all infos at the three boundary edges. |
| 11920 | for (i = 0; i < 3; i++) { |
| 11921 | senext(flipfaces[i], bdedges[i]); |
| 11922 | spivot(bdedges[i], outfaces[i]); |
| 11923 | infaces[i] = outfaces[i]; |
| 11924 | sspivot(bdedges[i], bdsegs[i]); |
| 11925 | if (outfaces[i].sh != NULL) { |
| 11926 | if (isshsubseg(bdedges[i])) { |
| 11927 | spivot(infaces[i], checkface); |
| 11928 | while (checkface.sh != bdedges[i].sh) { |
| 11929 | infaces[i] = checkface; |
| 11930 | spivot(infaces[i], checkface); |
| 11931 | } |
| 11932 | } |
| 11933 | } |
| 11934 | } // i |
| 11935 | |
| 11936 | // Create a new subface. |
| 11937 | makeshellface(subfaces, &(flipfaces[3])); |
| 11938 | setshvertices(flipfaces[3], pa, pb,pc); |
| 11939 | setshellmark(flipfaces[3], shellmark(flipfaces[0])); |
| 11940 | if (checkconstraints) { |
| 11941 | //area = areabound(flipfaces[0]); |
| 11942 | setareabound(flipfaces[3], areabound(flipfaces[0])); |
| 11943 | } |
| 11944 | if (useinsertradius) { |
| 11945 | setfacetindex(flipfaces[3], getfacetindex(flipfaces[0])); |
| 11946 | } |
| 11947 | |
| 11948 | // Update the point-to-subface map. |
| 11949 | if (pointtype(pa) == FREEFACETVERTEX) { |
| 11950 | setpoint2sh(pa, sencode(flipfaces[3])); |
| 11951 | } |
| 11952 | if (pointtype(pb) == FREEFACETVERTEX) { |
| 11953 | setpoint2sh(pb, sencode(flipfaces[3])); |
| 11954 | } |
| 11955 | if (pointtype(pc) == FREEFACETVERTEX) { |
| 11956 | setpoint2sh(pc, sencode(flipfaces[3])); |
| 11957 | } |
| 11958 | |
| 11959 | // Update the three new boundary edges. |
| 11960 | bdedges[0] = flipfaces[3]; // [a,b] |
| 11961 | senext(flipfaces[3], bdedges[1]); // [b,c] |
| 11962 | senext2(flipfaces[3], bdedges[2]); // [c,a] |
| 11963 | |
| 11964 | // Reconnect boundary edges to outer boundary faces. |
| 11965 | for (i = 0; i < 3; i++) { |
| 11966 | if (outfaces[i].sh != NULL) { |
| 11967 | // Make sure that the subface has the ori as the segment. |
| 11968 | if (bdsegs[i].sh != NULL) { |
| 11969 | bdsegs[i].shver = 0; |
| 11970 | if (sorg(bdedges[i]) != sorg(bdsegs[i])) { |
| 11971 | sesymself(bdedges[i]); |
| 11972 | } |
| 11973 | } |
| 11974 | sbond1(bdedges[i], outfaces[i]); |
| 11975 | sbond1(infaces[i], bdedges[i]); |
| 11976 | } |
| 11977 | if (bdsegs[i].sh != NULL) { |
| 11978 | ssbond(bdedges[i], bdsegs[i]); |
| 11979 | } |
| 11980 | } |
| 11981 | |
| 11982 | recentsh = flipfaces[3]; |
| 11983 | |
| 11984 | if (flipflag) { |
| 11985 | // Put the boundary edges into flip stack. |
| 11986 | for (i = 0; i < 3; i++) { |
| 11987 | flipshpush(&(bdedges[i])); |
| 11988 | } |
| 11989 | } |
| 11990 | } |
| 11991 | |
| 11992 | /////////////////////////////////////////////////////////////////////////////// |
| 11993 | // // |
| 11994 | // lawsonflip() Flip non-locally Delaunay edges. // |
| 11995 | // // |
| 11996 | /////////////////////////////////////////////////////////////////////////////// |
| 11997 | |
| 11998 | long tetgenmesh::lawsonflip() |
| 11999 | { |
| 12000 | badface *popface; |
| 12001 | face flipfaces[2]; |
| 12002 | point pa, pb, pc, pd; |
| 12003 | REAL sign; |
| 12004 | long flipcount = 0; |
| 12005 | |
| 12006 | if (b->verbose > 2) { |
| 12007 | printf(" Lawson flip %ld edges.\n" , flippool->items); |
| 12008 | } |
| 12009 | |
| 12010 | while (flipstack != (badface *) NULL) { |
| 12011 | |
| 12012 | // Pop an edge from the stack. |
| 12013 | popface = flipstack; |
| 12014 | flipfaces[0] = popface->ss; |
| 12015 | pa = popface->forg; |
| 12016 | pb = popface->fdest; |
| 12017 | flipstack = popface->nextitem; // The next top item in stack. |
| 12018 | flippool->dealloc((void *) popface); |
| 12019 | |
| 12020 | // Skip it if it is dead. |
| 12021 | if (flipfaces[0].sh[3] == NULL) continue; |
| 12022 | // Skip it if it is not the same edge as we saved. |
| 12023 | if ((sorg(flipfaces[0]) != pa) || (sdest(flipfaces[0]) != pb)) continue; |
| 12024 | // Skip it if it is a subsegment. |
| 12025 | if (isshsubseg(flipfaces[0])) continue; |
| 12026 | |
| 12027 | // Get the adjacent face. |
| 12028 | spivot(flipfaces[0], flipfaces[1]); |
| 12029 | if (flipfaces[1].sh == NULL) continue; // Skip a hull edge. |
| 12030 | pc = sapex(flipfaces[0]); |
| 12031 | pd = sapex(flipfaces[1]); |
| 12032 | |
| 12033 | sign = incircle3d(pa, pb, pc, pd); |
| 12034 | |
| 12035 | if (sign < 0) { |
| 12036 | // It is non-locally Delaunay. Flip it. |
| 12037 | flip22(flipfaces, 1, 0); |
| 12038 | flipcount++; |
| 12039 | } |
| 12040 | } |
| 12041 | |
| 12042 | if (b->verbose > 2) { |
| 12043 | printf(" Performed %ld flips.\n" , flipcount); |
| 12044 | } |
| 12045 | |
| 12046 | return flipcount; |
| 12047 | } |
| 12048 | |
| 12049 | /////////////////////////////////////////////////////////////////////////////// |
| 12050 | // // |
| 12051 | // sinsertvertex() Insert a vertex into a triangulation of a facet. // |
| 12052 | // // |
| 12053 | // This function uses three global arrays: 'caveshlist', 'caveshbdlist', and // |
| 12054 | // 'caveshseglist'. On return, 'caveshlist' contains old subfaces in C(p), // |
| 12055 | // 'caveshbdlist' contains new subfaces in C(p). If the new point lies on a // |
| 12056 | // segment, 'cavesegshlist' returns the two new subsegments. // |
| 12057 | // // |
| 12058 | // 'iloc' suggests the location of the point. If it is OUTSIDE, this routine // |
| 12059 | // will first locate the point. It starts searching from 'searchsh' or 'rec- // |
| 12060 | // entsh' if 'searchsh' is NULL. // |
| 12061 | // // |
| 12062 | // If 'bowywat' is set (1), the Bowyer-Watson algorithm is used to insert // |
| 12063 | // the vertex. Otherwise, only insert the vertex in the initial cavity. // |
| 12064 | // // |
| 12065 | // If 'iloc' is 'INSTAR', this means the cavity of this vertex was already // |
| 12066 | // provided in the list 'caveshlist'. // |
| 12067 | // // |
| 12068 | // If 'splitseg' is not NULL, the new vertex lies on the segment and it will // |
| 12069 | // be split. 'iloc' must be either 'ONEDGE' or 'INSTAR'. // |
| 12070 | // // |
| 12071 | // 'rflag' (rounding) is a parameter passed to slocate() function. If it is // |
| 12072 | // set, after the location of the point is found, either ONEDGE or ONFACE, // |
| 12073 | // round the result using an epsilon. // |
| 12074 | // // |
| 12075 | // NOTE: the old subfaces in C(p) are not deleted. They're needed in case we // |
| 12076 | // want to remove the new point immediately. // |
| 12077 | // // |
| 12078 | /////////////////////////////////////////////////////////////////////////////// |
| 12079 | |
| 12080 | int tetgenmesh::sinsertvertex(point insertpt, face *searchsh, face *splitseg, |
| 12081 | int iloc, int bowywat, int rflag) |
| 12082 | { |
| 12083 | face cavesh, neighsh, *parysh; |
| 12084 | face newsh, casout, casin; |
| 12085 | face checkseg; |
| 12086 | point pa, pb; |
| 12087 | enum locateresult loc = OUTSIDE; |
| 12088 | REAL sign, ori; |
| 12089 | int i, j; |
| 12090 | |
| 12091 | if (b->verbose > 2) { |
| 12092 | printf(" Insert facet point %d.\n" , pointmark(insertpt)); |
| 12093 | } |
| 12094 | |
| 12095 | if (bowywat == 3) { |
| 12096 | loc = INSTAR; |
| 12097 | } |
| 12098 | |
| 12099 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
| 12100 | // A segment is going to be split, no point location. |
| 12101 | spivot(*splitseg, *searchsh); |
| 12102 | if (loc != INSTAR) loc = ONEDGE; |
| 12103 | } else { |
| 12104 | if (loc != INSTAR) loc = (enum locateresult) iloc; |
| 12105 | if (loc == OUTSIDE) { |
| 12106 | // Do point location in surface mesh. |
| 12107 | if (searchsh->sh == NULL) { |
| 12108 | *searchsh = recentsh; |
| 12109 | } |
| 12110 | // Search the vertex. An above point must be provided ('aflag' = 1). |
| 12111 | loc = slocate(insertpt, searchsh, 1, 1, rflag); |
| 12112 | } |
| 12113 | } |
| 12114 | |
| 12115 | |
| 12116 | // Form the initial sC(p). |
| 12117 | if (loc == ONFACE) { |
| 12118 | // Add the face into list (in B-W cavity). |
| 12119 | smarktest(*searchsh); |
| 12120 | caveshlist->newindex((void **) &parysh); |
| 12121 | *parysh = *searchsh; |
| 12122 | } else if (loc == ONEDGE) { |
| 12123 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
| 12124 | splitseg->shver = 0; |
| 12125 | pa = sorg(*splitseg); |
| 12126 | } else { |
| 12127 | pa = sorg(*searchsh); |
| 12128 | } |
| 12129 | if (searchsh->sh != NULL) { |
| 12130 | // Collect all subfaces share at this edge. |
| 12131 | neighsh = *searchsh; |
| 12132 | while (1) { |
| 12133 | // Adjust the origin of its edge to be 'pa'. |
| 12134 | if (sorg(neighsh) != pa) sesymself(neighsh); |
| 12135 | // Add this face into list (in B-W cavity). |
| 12136 | smarktest(neighsh); |
| 12137 | caveshlist->newindex((void **) &parysh); |
| 12138 | *parysh = neighsh; |
| 12139 | // Add this face into face-at-splitedge list. |
| 12140 | cavesegshlist->newindex((void **) &parysh); |
| 12141 | *parysh = neighsh; |
| 12142 | // Go to the next face at the edge. |
| 12143 | spivotself(neighsh); |
| 12144 | // Stop if all faces at the edge have been visited. |
| 12145 | if (neighsh.sh == searchsh->sh) break; |
| 12146 | if (neighsh.sh == NULL) break; |
| 12147 | } |
| 12148 | } // If (not a non-dangling segment). |
| 12149 | } else if (loc == ONVERTEX) { |
| 12150 | return (int) loc; |
| 12151 | } else if (loc == OUTSIDE) { |
| 12152 | // Comment: This should only happen during the surface meshing step. |
| 12153 | // Enlarge the convex hull of the triangulation by including p. |
| 12154 | // An above point of the facet is set in 'dummypoint' to replace |
| 12155 | // orient2d tests by orient3d tests. |
| 12156 | // Imagine that the current edge a->b (in 'searchsh') is horizontal in a |
| 12157 | // plane, and a->b is directed from left to right, p lies above a->b. |
| 12158 | // Find the right-most edge of the triangulation which is visible by p. |
| 12159 | neighsh = *searchsh; |
| 12160 | while (1) { |
| 12161 | senext2self(neighsh); |
| 12162 | spivot(neighsh, casout); |
| 12163 | if (casout.sh == NULL) { |
| 12164 | // A convex hull edge. Is it visible by p. |
| 12165 | ori = orient3d(sorg(neighsh), sdest(neighsh), dummypoint, insertpt); |
| 12166 | if (ori < 0) { |
| 12167 | *searchsh = neighsh; // Visible, update 'searchsh'. |
| 12168 | } else { |
| 12169 | break; // 'searchsh' is the right-most visible edge. |
| 12170 | } |
| 12171 | } else { |
| 12172 | if (sorg(casout) != sdest(neighsh)) sesymself(casout); |
| 12173 | neighsh = casout; |
| 12174 | } |
| 12175 | } |
| 12176 | // Create new triangles for all visible edges of p (from right to left). |
| 12177 | casin.sh = NULL; // No adjacent face at right. |
| 12178 | pa = sorg(*searchsh); |
| 12179 | pb = sdest(*searchsh); |
| 12180 | while (1) { |
| 12181 | // Create a new subface on top of the (visible) edge. |
| 12182 | makeshellface(subfaces, &newsh); |
| 12183 | setshvertices(newsh, pb, pa, insertpt); |
| 12184 | setshellmark(newsh, shellmark(*searchsh)); |
| 12185 | if (checkconstraints) { |
| 12186 | //area = areabound(*searchsh); |
| 12187 | setareabound(newsh, areabound(*searchsh)); |
| 12188 | } |
| 12189 | if (useinsertradius) { |
| 12190 | setfacetindex(newsh, getfacetindex(*searchsh)); |
| 12191 | } |
| 12192 | // Connect the new subface to the bottom subfaces. |
| 12193 | sbond1(newsh, *searchsh); |
| 12194 | sbond1(*searchsh, newsh); |
| 12195 | // Connect the new subface to its right-adjacent subface. |
| 12196 | if (casin.sh != NULL) { |
| 12197 | senext(newsh, casout); |
| 12198 | sbond1(casout, casin); |
| 12199 | sbond1(casin, casout); |
| 12200 | } |
| 12201 | // The left-adjacent subface has not been created yet. |
| 12202 | senext2(newsh, casin); |
| 12203 | // Add the new face into list (inside the B-W cavity). |
| 12204 | smarktest(newsh); |
| 12205 | caveshlist->newindex((void **) &parysh); |
| 12206 | *parysh = newsh; |
| 12207 | // Move to the convex hull edge at the left of 'searchsh'. |
| 12208 | neighsh = *searchsh; |
| 12209 | while (1) { |
| 12210 | senextself(neighsh); |
| 12211 | spivot(neighsh, casout); |
| 12212 | if (casout.sh == NULL) { |
| 12213 | *searchsh = neighsh; |
| 12214 | break; |
| 12215 | } |
| 12216 | if (sorg(casout) != sdest(neighsh)) sesymself(casout); |
| 12217 | neighsh = casout; |
| 12218 | } |
| 12219 | // A convex hull edge. Is it visible by p. |
| 12220 | pa = sorg(*searchsh); |
| 12221 | pb = sdest(*searchsh); |
| 12222 | ori = orient3d(pa, pb, dummypoint, insertpt); |
| 12223 | // Finish the process if p is not visible by the hull edge. |
| 12224 | if (ori >= 0) break; |
| 12225 | } |
| 12226 | } else if (loc == INSTAR) { |
| 12227 | // Under this case, the sub-cavity sC(p) has already been formed in |
| 12228 | // insertvertex(). |
| 12229 | } |
| 12230 | |
| 12231 | // Form the Bowyer-Watson cavity sC(p). |
| 12232 | for (i = 0; i < caveshlist->objects; i++) { |
| 12233 | cavesh = * (face *) fastlookup(caveshlist, i); |
| 12234 | for (j = 0; j < 3; j++) { |
| 12235 | if (!isshsubseg(cavesh)) { |
| 12236 | spivot(cavesh, neighsh); |
| 12237 | if (neighsh.sh != NULL) { |
| 12238 | // The adjacent face exists. |
| 12239 | if (!smarktested(neighsh)) { |
| 12240 | if (bowywat) { |
| 12241 | if (loc == INSTAR) { // if (bowywat > 2) { |
| 12242 | // It must be a boundary edge. |
| 12243 | sign = 1; |
| 12244 | } else { |
| 12245 | // Check if this subface is connected to adjacent tet(s). |
| 12246 | if (!isshtet(neighsh)) { |
| 12247 | // Check if the subface is non-Delaunay wrt. the new pt. |
| 12248 | sign = incircle3d(sorg(neighsh), sdest(neighsh), |
| 12249 | sapex(neighsh), insertpt); |
| 12250 | } else { |
| 12251 | // It is connected to an adjacent tet. A boundary edge. |
| 12252 | sign = 1; |
| 12253 | } |
| 12254 | } |
| 12255 | if (sign < 0) { |
| 12256 | // Add the adjacent face in list (in B-W cavity). |
| 12257 | smarktest(neighsh); |
| 12258 | caveshlist->newindex((void **) &parysh); |
| 12259 | *parysh = neighsh; |
| 12260 | } |
| 12261 | } else { |
| 12262 | sign = 1; // A boundary edge. |
| 12263 | } |
| 12264 | } else { |
| 12265 | sign = -1; // Not a boundary edge. |
| 12266 | } |
| 12267 | } else { |
| 12268 | // No adjacent face. It is a hull edge. |
| 12269 | if (loc == OUTSIDE) { |
| 12270 | // It is a boundary edge if it does not contain p. |
| 12271 | if ((sorg(cavesh) == insertpt) || (sdest(cavesh) == insertpt)) { |
| 12272 | sign = -1; // Not a boundary edge. |
| 12273 | } else { |
| 12274 | sign = 1; // A boundary edge. |
| 12275 | } |
| 12276 | } else { |
| 12277 | sign = 1; // A boundary edge. |
| 12278 | } |
| 12279 | } |
| 12280 | } else { |
| 12281 | // Do not across a segment. It is a boundary edge. |
| 12282 | sign = 1; |
| 12283 | } |
| 12284 | if (sign >= 0) { |
| 12285 | // Add a boundary edge. |
| 12286 | caveshbdlist->newindex((void **) &parysh); |
| 12287 | *parysh = cavesh; |
| 12288 | } |
| 12289 | senextself(cavesh); |
| 12290 | } // j |
| 12291 | } // i |
| 12292 | |
| 12293 | |
| 12294 | // Creating new subfaces. |
| 12295 | for (i = 0; i < caveshbdlist->objects; i++) { |
| 12296 | parysh = (face *) fastlookup(caveshbdlist, i); |
| 12297 | sspivot(*parysh, checkseg); |
| 12298 | if ((parysh->shver & 01) != 0) sesymself(*parysh); |
| 12299 | pa = sorg(*parysh); |
| 12300 | pb = sdest(*parysh); |
| 12301 | // Create a new subface. |
| 12302 | makeshellface(subfaces, &newsh); |
| 12303 | setshvertices(newsh, pa, pb, insertpt); |
| 12304 | setshellmark(newsh, shellmark(*parysh)); |
| 12305 | if (checkconstraints) { |
| 12306 | //area = areabound(*parysh); |
| 12307 | setareabound(newsh, areabound(*parysh)); |
| 12308 | } |
| 12309 | if (useinsertradius) { |
| 12310 | setfacetindex(newsh, getfacetindex(*parysh)); |
| 12311 | } |
| 12312 | // Update the point-to-subface map. |
| 12313 | if (pointtype(pa) == FREEFACETVERTEX) { |
| 12314 | setpoint2sh(pa, sencode(newsh)); |
| 12315 | } |
| 12316 | if (pointtype(pb) == FREEFACETVERTEX) { |
| 12317 | setpoint2sh(pb, sencode(newsh)); |
| 12318 | } |
| 12319 | // Connect newsh to outer subfaces. |
| 12320 | spivot(*parysh, casout); |
| 12321 | if (casout.sh != NULL) { |
| 12322 | casin = casout; |
| 12323 | if (checkseg.sh != NULL) { |
| 12324 | // Make sure that newsh has the right ori at this segment. |
| 12325 | checkseg.shver = 0; |
| 12326 | if (sorg(newsh) != sorg(checkseg)) { |
| 12327 | sesymself(newsh); |
| 12328 | sesymself(*parysh); // This side should also be inverse. |
| 12329 | } |
| 12330 | spivot(casin, neighsh); |
| 12331 | while (neighsh.sh != parysh->sh) { |
| 12332 | casin = neighsh; |
| 12333 | spivot(casin, neighsh); |
| 12334 | } |
| 12335 | } |
| 12336 | sbond1(newsh, casout); |
| 12337 | sbond1(casin, newsh); |
| 12338 | } |
| 12339 | if (checkseg.sh != NULL) { |
| 12340 | ssbond(newsh, checkseg); |
| 12341 | } |
| 12342 | // Connect oldsh <== newsh (for connecting adjacent new subfaces). |
| 12343 | // *parysh and newsh point to the same edge and the same ori. |
| 12344 | sbond1(*parysh, newsh); |
| 12345 | } |
| 12346 | |
| 12347 | if (newsh.sh != NULL) { |
| 12348 | // Set a handle for searching. |
| 12349 | recentsh = newsh; |
| 12350 | } |
| 12351 | |
| 12352 | // Update the point-to-subface map. |
| 12353 | if (pointtype(insertpt) == FREEFACETVERTEX) { |
| 12354 | setpoint2sh(insertpt, sencode(newsh)); |
| 12355 | } |
| 12356 | |
| 12357 | // Connect adjacent new subfaces together. |
| 12358 | for (i = 0; i < caveshbdlist->objects; i++) { |
| 12359 | // Get an old subface at edge [a, b]. |
| 12360 | parysh = (face *) fastlookup(caveshbdlist, i); |
| 12361 | spivot(*parysh, newsh); // The new subface [a, b, p]. |
| 12362 | senextself(newsh); // At edge [b, p]. |
| 12363 | spivot(newsh, neighsh); |
| 12364 | if (neighsh.sh == NULL) { |
| 12365 | // Find the adjacent new subface at edge [b, p]. |
| 12366 | pb = sdest(*parysh); |
| 12367 | neighsh = *parysh; |
| 12368 | while (1) { |
| 12369 | senextself(neighsh); |
| 12370 | spivotself(neighsh); |
| 12371 | if (neighsh.sh == NULL) break; |
| 12372 | if (!smarktested(neighsh)) break; |
| 12373 | if (sdest(neighsh) != pb) sesymself(neighsh); |
| 12374 | } |
| 12375 | if (neighsh.sh != NULL) { |
| 12376 | // Now 'neighsh' is a new subface at edge [b, #]. |
| 12377 | if (sorg(neighsh) != pb) sesymself(neighsh); |
| 12378 | senext2self(neighsh); // Go to the open edge [p, b]. |
| 12379 | sbond(newsh, neighsh); |
| 12380 | } else { |
| 12381 | // There is no adjacent new face at this side. |
| 12382 | assert(loc == OUTSIDE); // SELF_CHECK |
| 12383 | } |
| 12384 | } |
| 12385 | spivot(*parysh, newsh); // The new subface [a, b, p]. |
| 12386 | senext2self(newsh); // At edge [p, a]. |
| 12387 | spivot(newsh, neighsh); |
| 12388 | if (neighsh.sh == NULL) { |
| 12389 | // Find the adjacent new subface at edge [p, a]. |
| 12390 | pa = sorg(*parysh); |
| 12391 | neighsh = *parysh; |
| 12392 | while (1) { |
| 12393 | senext2self(neighsh); |
| 12394 | spivotself(neighsh); |
| 12395 | if (neighsh.sh == NULL) break; |
| 12396 | if (!smarktested(neighsh)) break; |
| 12397 | if (sorg(neighsh) != pa) sesymself(neighsh); |
| 12398 | } |
| 12399 | if (neighsh.sh != NULL) { |
| 12400 | // Now 'neighsh' is a new subface at edge [#, a]. |
| 12401 | if (sdest(neighsh) != pa) sesymself(neighsh); |
| 12402 | senextself(neighsh); // Go to the open edge [a, p]. |
| 12403 | sbond(newsh, neighsh); |
| 12404 | } else { |
| 12405 | // There is no adjacent new face at this side. |
| 12406 | assert(loc == OUTSIDE); // SELF_CHECK |
| 12407 | } |
| 12408 | } |
| 12409 | } |
| 12410 | |
| 12411 | if ((loc == ONEDGE) || ((splitseg != NULL) && (splitseg->sh != NULL)) |
| 12412 | || (cavesegshlist->objects > 0l)) { |
| 12413 | // An edge is being split. We distinguish two cases: |
| 12414 | // (1) the edge is not on the boundary of the cavity; |
| 12415 | // (2) the edge is on the boundary of the cavity. |
| 12416 | // In case (2), the edge is either a segment or a hull edge. There are |
| 12417 | // degenerated new faces in the cavity. They must be removed. |
| 12418 | face aseg, bseg, aoutseg, boutseg; |
| 12419 | |
| 12420 | for (i = 0; i < cavesegshlist->objects; i++) { |
| 12421 | // Get the saved old subface. |
| 12422 | parysh = (face *) fastlookup(cavesegshlist, i); |
| 12423 | // Get a possible new degenerated subface. |
| 12424 | spivot(*parysh, cavesh); |
| 12425 | if (sapex(cavesh) == insertpt) { |
| 12426 | // Found a degenerated new subface, i.e., case (2). |
| 12427 | if (cavesegshlist->objects > 1) { |
| 12428 | // There are more than one subface share at this edge. |
| 12429 | j = (i + 1) % (int) cavesegshlist->objects; |
| 12430 | parysh = (face *) fastlookup(cavesegshlist, j); |
| 12431 | spivot(*parysh, neighsh); |
| 12432 | // Adjust cavesh and neighsh both at edge a->b, and has p as apex. |
| 12433 | if (sorg(neighsh) != sorg(cavesh)) { |
| 12434 | sesymself(neighsh); |
| 12435 | assert(sorg(neighsh) == sorg(cavesh)); // SELF_CHECK |
| 12436 | } |
| 12437 | assert(sapex(neighsh) == insertpt); // SELF_CHECK |
| 12438 | // Connect adjacent faces at two other edges of cavesh and neighsh. |
| 12439 | // As a result, the two degenerated new faces are squeezed from the |
| 12440 | // new triangulation of the cavity. Note that the squeezed faces |
| 12441 | // still hold the adjacent informations which will be used in |
| 12442 | // re-connecting subsegments (if they exist). |
| 12443 | for (j = 0; j < 2; j++) { |
| 12444 | senextself(cavesh); |
| 12445 | senextself(neighsh); |
| 12446 | spivot(cavesh, newsh); |
| 12447 | spivot(neighsh, casout); |
| 12448 | sbond1(newsh, casout); // newsh <- casout. |
| 12449 | } |
| 12450 | } else { |
| 12451 | // There is only one subface containing this edge [a,b]. Squeeze the |
| 12452 | // degenerated new face [a,b,c] by disconnecting it from its two |
| 12453 | // adjacent subfaces at edges [b,c] and [c,a]. Note that the face |
| 12454 | // [a,b,c] still hold the connection to them. |
| 12455 | for (j = 0; j < 2; j++) { |
| 12456 | senextself(cavesh); |
| 12457 | spivot(cavesh, newsh); |
| 12458 | sdissolve(newsh); |
| 12459 | } |
| 12460 | } |
| 12461 | //recentsh = newsh; |
| 12462 | // Update the point-to-subface map. |
| 12463 | if (pointtype(insertpt) == FREEFACETVERTEX) { |
| 12464 | setpoint2sh(insertpt, sencode(newsh)); |
| 12465 | } |
| 12466 | } |
| 12467 | } |
| 12468 | |
| 12469 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
| 12470 | if (loc != INSTAR) { // if (bowywat < 3) { |
| 12471 | smarktest(*splitseg); // Mark it as being processed. |
| 12472 | } |
| 12473 | |
| 12474 | aseg = *splitseg; |
| 12475 | pa = sorg(*splitseg); |
| 12476 | pb = sdest(*splitseg); |
| 12477 | |
| 12478 | // Insert the new point p. |
| 12479 | makeshellface(subsegs, &aseg); |
| 12480 | makeshellface(subsegs, &bseg); |
| 12481 | |
| 12482 | setshvertices(aseg, pa, insertpt, NULL); |
| 12483 | setshvertices(bseg, insertpt, pb, NULL); |
| 12484 | setshellmark(aseg, shellmark(*splitseg)); |
| 12485 | setshellmark(bseg, shellmark(*splitseg)); |
| 12486 | if (checkconstraints) { |
| 12487 | setareabound(aseg, areabound(*splitseg)); |
| 12488 | setareabound(bseg, areabound(*splitseg)); |
| 12489 | } |
| 12490 | if (useinsertradius) { |
| 12491 | setfacetindex(aseg, getfacetindex(*splitseg)); |
| 12492 | setfacetindex(bseg, getfacetindex(*splitseg)); |
| 12493 | } |
| 12494 | |
| 12495 | // Connect [#, a]<->[a, p]. |
| 12496 | senext2(*splitseg, boutseg); // Temporarily use boutseg. |
| 12497 | spivotself(boutseg); |
| 12498 | if (boutseg.sh != NULL) { |
| 12499 | senext2(aseg, aoutseg); |
| 12500 | sbond(boutseg, aoutseg); |
| 12501 | } |
| 12502 | // Connect [p, b]<->[b, #]. |
| 12503 | senext(*splitseg, aoutseg); |
| 12504 | spivotself(aoutseg); |
| 12505 | if (aoutseg.sh != NULL) { |
| 12506 | senext(bseg, boutseg); |
| 12507 | sbond(boutseg, aoutseg); |
| 12508 | } |
| 12509 | // Connect [a, p] <-> [p, b]. |
| 12510 | senext(aseg, aoutseg); |
| 12511 | senext2(bseg, boutseg); |
| 12512 | sbond(aoutseg, boutseg); |
| 12513 | |
| 12514 | // Connect subsegs [a, p] and [p, b] to adjacent new subfaces. |
| 12515 | // Although the degenerated new faces have been squeezed. They still |
| 12516 | // hold the connections to the actual new faces. |
| 12517 | for (i = 0; i < cavesegshlist->objects; i++) { |
| 12518 | parysh = (face *) fastlookup(cavesegshlist, i); |
| 12519 | spivot(*parysh, neighsh); |
| 12520 | // neighsh is a degenerated new face. |
| 12521 | if (sorg(neighsh) != pa) { |
| 12522 | sesymself(neighsh); |
| 12523 | } |
| 12524 | senext2(neighsh, newsh); |
| 12525 | spivotself(newsh); // The edge [p, a] in newsh |
| 12526 | ssbond(newsh, aseg); |
| 12527 | senext(neighsh, newsh); |
| 12528 | spivotself(newsh); // The edge [b, p] in newsh |
| 12529 | ssbond(newsh, bseg); |
| 12530 | } |
| 12531 | |
| 12532 | |
| 12533 | // Let the point remember the segment it lies on. |
| 12534 | if (pointtype(insertpt) == FREESEGVERTEX) { |
| 12535 | setpoint2sh(insertpt, sencode(aseg)); |
| 12536 | } |
| 12537 | // Update the point-to-seg map. |
| 12538 | if (pointtype(pa) == FREESEGVERTEX) { |
| 12539 | setpoint2sh(pa, sencode(aseg)); |
| 12540 | } |
| 12541 | if (pointtype(pb) == FREESEGVERTEX) { |
| 12542 | setpoint2sh(pb, sencode(bseg)); |
| 12543 | } |
| 12544 | } // if ((splitseg != NULL) && (splitseg->sh != NULL)) |
| 12545 | |
| 12546 | // Delete all degenerated new faces. |
| 12547 | for (i = 0; i < cavesegshlist->objects; i++) { |
| 12548 | parysh = (face *) fastlookup(cavesegshlist, i); |
| 12549 | spivotself(*parysh); |
| 12550 | if (sapex(*parysh) == insertpt) { |
| 12551 | shellfacedealloc(subfaces, parysh->sh); |
| 12552 | } |
| 12553 | } |
| 12554 | cavesegshlist->restart(); |
| 12555 | |
| 12556 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
| 12557 | // Return the two new subsegments (for further process). |
| 12558 | // Re-use 'cavesegshlist'. |
| 12559 | cavesegshlist->newindex((void **) &parysh); |
| 12560 | *parysh = aseg; |
| 12561 | cavesegshlist->newindex((void **) &parysh); |
| 12562 | *parysh = bseg; |
| 12563 | } |
| 12564 | } // if (loc == ONEDGE) |
| 12565 | |
| 12566 | |
| 12567 | return (int) loc; |
| 12568 | } |
| 12569 | |
| 12570 | /////////////////////////////////////////////////////////////////////////////// |
| 12571 | // // |
| 12572 | // sremovevertex() Remove a vertex from the surface mesh. // |
| 12573 | // // |
| 12574 | // 'delpt' (p) is the vertex to be removed. If 'parentseg' is not NULL, p is // |
| 12575 | // a segment vertex, and the origin of 'parentseg' is p. Otherwise, p is a // |
| 12576 | // facet vertex, and the origin of 'parentsh' is p. // |
| 12577 | // // |
| 12578 | // Within each facet, we first use a sequence of 2-to-2 flips to flip any // |
| 12579 | // edge at p, finally use a 3-to-1 flip to remove p. // |
| 12580 | // // |
| 12581 | // All new created subfaces are returned in the global array 'caveshbdlist'. // |
| 12582 | // The new segment (when p is on segment) is returned in 'parentseg'. // |
| 12583 | // // |
| 12584 | // If 'lawson' > 0, the Lawson flip algorithm is used to recover Delaunay- // |
| 12585 | // ness after p is removed. // |
| 12586 | // // |
| 12587 | /////////////////////////////////////////////////////////////////////////////// |
| 12588 | |
| 12589 | int tetgenmesh::sremovevertex(point delpt, face* parentsh, face* parentseg, |
| 12590 | int lawson) |
| 12591 | { |
| 12592 | face flipfaces[4], spinsh, *parysh; |
| 12593 | point pa, pb, pc, pd; |
| 12594 | REAL ori1, ori2; |
| 12595 | int it, i, j; |
| 12596 | |
| 12597 | if (parentseg != NULL) { |
| 12598 | // 'delpt' (p) should be a Steiner point inserted in a segment [a,b], |
| 12599 | // where 'parentseg' should be [p,b]. Find the segment [a,p]. |
| 12600 | face startsh, neighsh, nextsh; |
| 12601 | face abseg, prevseg, checkseg; |
| 12602 | face adjseg1, adjseg2; |
| 12603 | face fakesh; |
| 12604 | senext2(*parentseg, prevseg); |
| 12605 | spivotself(prevseg); |
| 12606 | prevseg.shver = 0; |
| 12607 | assert(sdest(prevseg) == delpt); |
| 12608 | // Restore the original segment [a,b]. |
| 12609 | pa = sorg(prevseg); |
| 12610 | pb = sdest(*parentseg); |
| 12611 | if (b->verbose > 2) { |
| 12612 | printf(" Remove vertex %d from segment [%d, %d].\n" , |
| 12613 | pointmark(delpt), pointmark(pa), pointmark(pb)); |
| 12614 | } |
| 12615 | makeshellface(subsegs, &abseg); |
| 12616 | setshvertices(abseg, pa, pb, NULL); |
| 12617 | setshellmark(abseg, shellmark(*parentseg)); |
| 12618 | if (checkconstraints) { |
| 12619 | setareabound(abseg, areabound(*parentseg)); |
| 12620 | } |
| 12621 | if (useinsertradius) { |
| 12622 | setfacetindex(abseg, getfacetindex(*parentseg)); |
| 12623 | } |
| 12624 | // Connect [#, a]<->[a, b]. |
| 12625 | senext2(prevseg, adjseg1); |
| 12626 | spivotself(adjseg1); |
| 12627 | if (adjseg1.sh != NULL) { |
| 12628 | adjseg1.shver = 0; |
| 12629 | assert(sdest(adjseg1) == pa); |
| 12630 | senextself(adjseg1); |
| 12631 | senext2(abseg, adjseg2); |
| 12632 | sbond(adjseg1, adjseg2); |
| 12633 | } |
| 12634 | // Connect [a, b]<->[b, #]. |
| 12635 | senext(*parentseg, adjseg1); |
| 12636 | spivotself(adjseg1); |
| 12637 | if (adjseg1.sh != NULL) { |
| 12638 | adjseg1.shver = 0; |
| 12639 | assert(sorg(adjseg1) == pb); |
| 12640 | senext2self(adjseg1); |
| 12641 | senext(abseg, adjseg2); |
| 12642 | sbond(adjseg1, adjseg2); |
| 12643 | } |
| 12644 | // Update the point-to-segment map. |
| 12645 | setpoint2sh(pa, sencode(abseg)); |
| 12646 | setpoint2sh(pb, sencode(abseg)); |
| 12647 | |
| 12648 | // Get the faces in face ring at segment [p, b]. |
| 12649 | // Re-use array 'caveshlist'. |
| 12650 | spivot(*parentseg, *parentsh); |
| 12651 | if (parentsh->sh != NULL) { |
| 12652 | spinsh = *parentsh; |
| 12653 | while (1) { |
| 12654 | // Save this face in list. |
| 12655 | caveshlist->newindex((void **) &parysh); |
| 12656 | *parysh = spinsh; |
| 12657 | // Go to the next face in the ring. |
| 12658 | spivotself(spinsh); |
| 12659 | if (spinsh.sh == parentsh->sh) break; |
| 12660 | } |
| 12661 | } |
| 12662 | |
| 12663 | // Create the face ring of the new segment [a,b]. Each face in the ring |
| 12664 | // is [a,b,p] (degenerated!). It will be removed (automatically). |
| 12665 | for (i = 0; i < caveshlist->objects; i++) { |
| 12666 | parysh = (face *) fastlookup(caveshlist, i); |
| 12667 | startsh = *parysh; |
| 12668 | if (sorg(startsh) != delpt) { |
| 12669 | sesymself(startsh); |
| 12670 | assert(sorg(startsh) == delpt); |
| 12671 | } |
| 12672 | // startsh is [p, b, #1], find the subface [a, p, #2]. |
| 12673 | neighsh = startsh; |
| 12674 | while (1) { |
| 12675 | senext2self(neighsh); |
| 12676 | sspivot(neighsh, checkseg); |
| 12677 | if (checkseg.sh != NULL) { |
| 12678 | // It must be the segment [a, p]. |
| 12679 | assert(checkseg.sh == prevseg.sh); |
| 12680 | break; |
| 12681 | } |
| 12682 | spivotself(neighsh); |
| 12683 | assert(neighsh.sh != NULL); |
| 12684 | if (sorg(neighsh) != delpt) sesymself(neighsh); |
| 12685 | } |
| 12686 | // Now neighsh is [a, p, #2]. |
| 12687 | if (neighsh.sh != startsh.sh) { |
| 12688 | // Detach the two subsegments [a,p] and [p,b] from subfaces. |
| 12689 | ssdissolve(startsh); |
| 12690 | ssdissolve(neighsh); |
| 12691 | // Create a degenerated subface [a,b,p]. It is used to: (1) hold the |
| 12692 | // new segment [a,b]; (2) connect to the two adjacent subfaces |
| 12693 | // [p,b,#] and [a,p,#]. |
| 12694 | makeshellface(subfaces, &fakesh); |
| 12695 | setshvertices(fakesh, pa, pb, delpt); |
| 12696 | setshellmark(fakesh, shellmark(startsh)); |
| 12697 | // Connect fakesh to the segment [a,b]. |
| 12698 | ssbond(fakesh, abseg); |
| 12699 | // Connect fakesh to adjacent subfaces: [p,b,#1] and [a,p,#2]. |
| 12700 | senext(fakesh, nextsh); |
| 12701 | sbond(nextsh, startsh); |
| 12702 | senext2(fakesh, nextsh); |
| 12703 | sbond(nextsh, neighsh); |
| 12704 | smarktest(fakesh); // Mark it as faked. |
| 12705 | } else { |
| 12706 | // Special case. There exists already a degenerated face [a,b,p]! |
| 12707 | // There is no need to create a faked subface here. |
| 12708 | senext2self(neighsh); // [a,b,p] |
| 12709 | assert(sapex(neighsh) == delpt); |
| 12710 | // Since we will re-connect the face ring using the faked subfaces. |
| 12711 | // We put the adjacent face of [a,b,p] to the list. |
| 12712 | spivot(neighsh, startsh); // The original adjacent subface. |
| 12713 | if (sorg(startsh) != pa) sesymself(startsh); |
| 12714 | sdissolve(startsh); |
| 12715 | // Connect fakesh to the segment [a,b]. |
| 12716 | ssbond(startsh, abseg); |
| 12717 | fakesh = startsh; // Do not mark it! |
| 12718 | // Delete the degenerated subface. |
| 12719 | shellfacedealloc(subfaces, neighsh.sh); |
| 12720 | } |
| 12721 | // Save the fakesh in list (for re-creating the face ring). |
| 12722 | cavesegshlist->newindex((void **) &parysh); |
| 12723 | *parysh = fakesh; |
| 12724 | } // i |
| 12725 | caveshlist->restart(); |
| 12726 | |
| 12727 | // Re-create the face ring. |
| 12728 | if (cavesegshlist->objects > 1) { |
| 12729 | for (i = 0; i < cavesegshlist->objects; i++) { |
| 12730 | parysh = (face *) fastlookup(cavesegshlist, i); |
| 12731 | fakesh = *parysh; |
| 12732 | // Get the next face in the ring. |
| 12733 | j = (i + 1) % cavesegshlist->objects; |
| 12734 | parysh = (face *) fastlookup(cavesegshlist, j); |
| 12735 | nextsh = *parysh; |
| 12736 | sbond1(fakesh, nextsh); |
| 12737 | } |
| 12738 | } |
| 12739 | |
| 12740 | // Delete the two subsegments containing p. |
| 12741 | shellfacedealloc(subsegs, parentseg->sh); |
| 12742 | shellfacedealloc(subsegs, prevseg.sh); |
| 12743 | // Return the new segment. |
| 12744 | *parentseg = abseg; |
| 12745 | } else { |
| 12746 | // p is inside the surface. |
| 12747 | if (b->verbose > 2) { |
| 12748 | printf(" Remove vertex %d from surface.\n" , pointmark(delpt)); |
| 12749 | } |
| 12750 | assert(sorg(*parentsh) == delpt); |
| 12751 | // Let 'delpt' be its apex. |
| 12752 | senextself(*parentsh); |
| 12753 | // For unifying the code, we add parentsh to list. |
| 12754 | cavesegshlist->newindex((void **) &parysh); |
| 12755 | *parysh = *parentsh; |
| 12756 | } |
| 12757 | |
| 12758 | // Remove the point (p). |
| 12759 | |
| 12760 | for (it = 0; it < cavesegshlist->objects; it++) { |
| 12761 | parentsh = (face *) fastlookup(cavesegshlist, it); // [a,b,p] |
| 12762 | senextself(*parentsh); // [b,p,a]. |
| 12763 | spivotself(*parentsh); |
| 12764 | if (sorg(*parentsh) != delpt) sesymself(*parentsh); |
| 12765 | // now parentsh is [p,b,#]. |
| 12766 | if (sorg(*parentsh) != delpt) { |
| 12767 | // The vertex has already been removed in above special case. |
| 12768 | assert(!smarktested(*parentsh)); |
| 12769 | continue; |
| 12770 | } |
| 12771 | |
| 12772 | while (1) { |
| 12773 | // Initialize the flip edge list. Re-use 'caveshlist'. |
| 12774 | spinsh = *parentsh; // [p, b, #] |
| 12775 | while (1) { |
| 12776 | caveshlist->newindex((void **) &parysh); |
| 12777 | *parysh = spinsh; |
| 12778 | senext2self(spinsh); |
| 12779 | spivotself(spinsh); |
| 12780 | assert(spinsh.sh != NULL); |
| 12781 | if (spinsh.sh == parentsh->sh) break; |
| 12782 | if (sorg(spinsh) != delpt) sesymself(spinsh); |
| 12783 | assert(sorg(spinsh) == delpt); |
| 12784 | } // while (1) |
| 12785 | |
| 12786 | if (caveshlist->objects == 3) { |
| 12787 | // Delete the point by a 3-to-1 flip. |
| 12788 | for (i = 0; i < 3; i++) { |
| 12789 | parysh = (face *) fastlookup(caveshlist, i); |
| 12790 | flipfaces[i] = *parysh; |
| 12791 | } |
| 12792 | flip31(flipfaces, lawson); |
| 12793 | for (i = 0; i < 3; i++) { |
| 12794 | shellfacedealloc(subfaces, flipfaces[i].sh); |
| 12795 | } |
| 12796 | caveshlist->restart(); |
| 12797 | // Save the new subface. |
| 12798 | caveshbdlist->newindex((void **) &parysh); |
| 12799 | *parysh = flipfaces[3]; |
| 12800 | // The vertex is removed. |
| 12801 | break; |
| 12802 | } |
| 12803 | |
| 12804 | // Search an edge to flip. |
| 12805 | for (i = 0; i < caveshlist->objects; i++) { |
| 12806 | parysh = (face *) fastlookup(caveshlist, i); |
| 12807 | flipfaces[0] = *parysh; |
| 12808 | spivot(flipfaces[0], flipfaces[1]); |
| 12809 | if (sorg(flipfaces[0]) != sdest(flipfaces[1])) |
| 12810 | sesymself(flipfaces[1]); |
| 12811 | // Skip this edge if it belongs to a faked subface. |
| 12812 | if (!smarktested(flipfaces[0]) && !smarktested(flipfaces[1])) { |
| 12813 | pa = sorg(flipfaces[0]); |
| 12814 | pb = sdest(flipfaces[0]); |
| 12815 | pc = sapex(flipfaces[0]); |
| 12816 | pd = sapex(flipfaces[1]); |
| 12817 | calculateabovepoint4(pa, pb, pc, pd); |
| 12818 | // Check if a 2-to-2 flip is possible. |
| 12819 | ori1 = orient3d(pc, pd, dummypoint, pa); |
| 12820 | ori2 = orient3d(pc, pd, dummypoint, pb); |
| 12821 | if (ori1 * ori2 < 0) { |
| 12822 | // A 2-to-2 flip is found. |
| 12823 | flip22(flipfaces, lawson, 0); |
| 12824 | // The i-th edge is flipped. The i-th and (i-1)-th subfaces are |
| 12825 | // changed. The 'flipfaces[1]' contains p as its apex. |
| 12826 | senext2(flipfaces[1], *parentsh); |
| 12827 | // Save the new subface. |
| 12828 | caveshbdlist->newindex((void **) &parysh); |
| 12829 | *parysh = flipfaces[0]; |
| 12830 | break; |
| 12831 | } |
| 12832 | } // |
| 12833 | } // i |
| 12834 | |
| 12835 | if (i == caveshlist->objects) { |
| 12836 | // This can happen only if there are 4 edges at p, and they are |
| 12837 | // orthogonal to each other, see Fig. 2010-11-01. |
| 12838 | assert(caveshlist->objects == 4); |
| 12839 | // Do a flip22 and a flip31 to remove p. |
| 12840 | parysh = (face *) fastlookup(caveshlist, 0); |
| 12841 | flipfaces[0] = *parysh; |
| 12842 | spivot(flipfaces[0], flipfaces[1]); |
| 12843 | if (sorg(flipfaces[0]) != sdest(flipfaces[1])) { |
| 12844 | sesymself(flipfaces[1]); |
| 12845 | } |
| 12846 | flip22(flipfaces, lawson, 0); |
| 12847 | senext2(flipfaces[1], *parentsh); |
| 12848 | // Save the new subface. |
| 12849 | caveshbdlist->newindex((void **) &parysh); |
| 12850 | *parysh = flipfaces[0]; |
| 12851 | } |
| 12852 | |
| 12853 | // The edge list at p are changed. |
| 12854 | caveshlist->restart(); |
| 12855 | } // while (1) |
| 12856 | |
| 12857 | } // it |
| 12858 | |
| 12859 | cavesegshlist->restart(); |
| 12860 | |
| 12861 | if (b->verbose > 2) { |
| 12862 | printf(" Created %ld new subfaces.\n" , caveshbdlist->objects); |
| 12863 | } |
| 12864 | |
| 12865 | |
| 12866 | if (lawson) { |
| 12867 | lawsonflip(); |
| 12868 | } |
| 12869 | |
| 12870 | return 0; |
| 12871 | } |
| 12872 | |
| 12873 | /////////////////////////////////////////////////////////////////////////////// |
| 12874 | // // |
| 12875 | // slocate() Locate a point in a surface triangulation. // |
| 12876 | // // |
| 12877 | // Staring the search from 'searchsh'(it should not be NULL). Perform a line // |
| 12878 | // walk search for a subface containing the point (p). // |
| 12879 | // // |
| 12880 | // If 'aflag' is set, the 'dummypoint' is pre-calculated so that it lies // |
| 12881 | // above the 'searchsh' in its current orientation. The test if c is CCW to // |
| 12882 | // the line a->b can be done by the test if c is below the oriented plane // |
| 12883 | // a->b->dummypoint. // |
| 12884 | // // |
| 12885 | // If 'cflag' is not TRUE, the triangulation may not be convex. Stop search // |
| 12886 | // when a segment is met and return OUTSIDE. // |
| 12887 | // // |
| 12888 | // If 'rflag' (rounding) is set, after the location of the point is found, // |
| 12889 | // either ONEDGE or ONFACE, round the result using an epsilon. // |
| 12890 | // // |
| 12891 | // The returned value indicates the following cases: // |
| 12892 | // - ONVERTEX, p is the origin of 'searchsh'. // |
| 12893 | // - ONEDGE, p lies on the edge of 'searchsh'. // |
| 12894 | // - ONFACE, p lies in the interior of 'searchsh'. // |
| 12895 | // - OUTSIDE, p lies outside of the triangulation, p is on the left-hand // |
| 12896 | // side of the edge 'searchsh'(s), i.e., org(s), dest(s), p are CW. // |
| 12897 | // // |
| 12898 | /////////////////////////////////////////////////////////////////////////////// |
| 12899 | |
| 12900 | enum tetgenmesh::locateresult tetgenmesh::slocate(point searchpt, |
| 12901 | face* searchsh, int aflag, int cflag, int rflag) |
| 12902 | { |
| 12903 | face neighsh; |
| 12904 | point pa, pb, pc; |
| 12905 | enum locateresult loc; |
| 12906 | enum {MOVE_BC, MOVE_CA} nextmove; |
| 12907 | REAL ori, ori_bc, ori_ca; |
| 12908 | int i; |
| 12909 | |
| 12910 | pa = sorg(*searchsh); |
| 12911 | pb = sdest(*searchsh); |
| 12912 | pc = sapex(*searchsh); |
| 12913 | |
| 12914 | if (!aflag) { |
| 12915 | // No above point is given. Calculate an above point for this facet. |
| 12916 | calculateabovepoint4(pa, pb, pc, searchpt); |
| 12917 | } |
| 12918 | |
| 12919 | // 'dummypoint' is given. Make sure it is above [a,b,c] |
| 12920 | ori = orient3d(pa, pb, pc, dummypoint); |
| 12921 | assert(ori != 0); // SELF_CHECK |
| 12922 | if (ori > 0) { |
| 12923 | sesymself(*searchsh); // Reverse the face orientation. |
| 12924 | } |
| 12925 | |
| 12926 | // Find an edge of the face s.t. p lies on its right-hand side (CCW). |
| 12927 | for (i = 0; i < 3; i++) { |
| 12928 | pa = sorg(*searchsh); |
| 12929 | pb = sdest(*searchsh); |
| 12930 | ori = orient3d(pa, pb, dummypoint, searchpt); |
| 12931 | if (ori > 0) break; |
| 12932 | senextself(*searchsh); |
| 12933 | } |
| 12934 | assert(i < 3); // SELF_CHECK |
| 12935 | |
| 12936 | pc = sapex(*searchsh); |
| 12937 | |
| 12938 | if (pc == searchpt) { |
| 12939 | senext2self(*searchsh); |
| 12940 | return ONVERTEX; |
| 12941 | } |
| 12942 | |
| 12943 | while (1) { |
| 12944 | |
| 12945 | ori_bc = orient3d(pb, pc, dummypoint, searchpt); |
| 12946 | ori_ca = orient3d(pc, pa, dummypoint, searchpt); |
| 12947 | |
| 12948 | if (ori_bc < 0) { |
| 12949 | if (ori_ca < 0) { // (--) |
| 12950 | // Any of the edges is a viable move. |
| 12951 | if (randomnation(2)) { |
| 12952 | nextmove = MOVE_CA; |
| 12953 | } else { |
| 12954 | nextmove = MOVE_BC; |
| 12955 | } |
| 12956 | } else { // (-#) |
| 12957 | // Edge [b, c] is viable. |
| 12958 | nextmove = MOVE_BC; |
| 12959 | } |
| 12960 | } else { |
| 12961 | if (ori_ca < 0) { // (#-) |
| 12962 | // Edge [c, a] is viable. |
| 12963 | nextmove = MOVE_CA; |
| 12964 | } else { |
| 12965 | if (ori_bc > 0) { |
| 12966 | if (ori_ca > 0) { // (++) |
| 12967 | loc = ONFACE; // Inside [a, b, c]. |
| 12968 | break; |
| 12969 | } else { // (+0) |
| 12970 | senext2self(*searchsh); // On edge [c, a]. |
| 12971 | loc = ONEDGE; |
| 12972 | break; |
| 12973 | } |
| 12974 | } else { // ori_bc == 0 |
| 12975 | if (ori_ca > 0) { // (0+) |
| 12976 | senextself(*searchsh); // On edge [b, c]. |
| 12977 | loc = ONEDGE; |
| 12978 | break; |
| 12979 | } else { // (00) |
| 12980 | // p is coincident with vertex c. |
| 12981 | senext2self(*searchsh); |
| 12982 | return ONVERTEX; |
| 12983 | } |
| 12984 | } |
| 12985 | } |
| 12986 | } |
| 12987 | |
| 12988 | // Move to the next face. |
| 12989 | if (nextmove == MOVE_BC) { |
| 12990 | senextself(*searchsh); |
| 12991 | } else { |
| 12992 | senext2self(*searchsh); |
| 12993 | } |
| 12994 | if (!cflag) { |
| 12995 | // NON-convex case. Check if we will cross a boundary. |
| 12996 | if (isshsubseg(*searchsh)) { |
| 12997 | return ENCSEGMENT; |
| 12998 | } |
| 12999 | } |
| 13000 | spivot(*searchsh, neighsh); |
| 13001 | if (neighsh.sh == NULL) { |
| 13002 | return OUTSIDE; // A hull edge. |
| 13003 | } |
| 13004 | // Adjust the edge orientation. |
| 13005 | if (sorg(neighsh) != sdest(*searchsh)) { |
| 13006 | sesymself(neighsh); |
| 13007 | } |
| 13008 | assert(sorg(neighsh) == sdest(*searchsh)); // SELF_CHECK |
| 13009 | |
| 13010 | // Update the newly discovered face and its endpoints. |
| 13011 | *searchsh = neighsh; |
| 13012 | pa = sorg(*searchsh); |
| 13013 | pb = sdest(*searchsh); |
| 13014 | pc = sapex(*searchsh); |
| 13015 | |
| 13016 | if (pc == searchpt) { |
| 13017 | senext2self(*searchsh); |
| 13018 | return ONVERTEX; |
| 13019 | } |
| 13020 | |
| 13021 | } // while (1) |
| 13022 | |
| 13023 | // assert(loc == ONFACE || loc == ONEDGE); |
| 13024 | |
| 13025 | |
| 13026 | if (rflag) { |
| 13027 | // Round the locate result before return. |
| 13028 | REAL n[3], area_abc, area_abp, area_bcp, area_cap; |
| 13029 | |
| 13030 | pa = sorg(*searchsh); |
| 13031 | pb = sdest(*searchsh); |
| 13032 | pc = sapex(*searchsh); |
| 13033 | |
| 13034 | facenormal(pa, pb, pc, n, 1, NULL); |
| 13035 | area_abc = sqrt(dot(n, n)); |
| 13036 | |
| 13037 | facenormal(pb, pc, searchpt, n, 1, NULL); |
| 13038 | area_bcp = sqrt(dot(n, n)); |
| 13039 | if ((area_bcp / area_abc) < b->epsilon) { |
| 13040 | area_bcp = 0; // Rounding. |
| 13041 | } |
| 13042 | |
| 13043 | facenormal(pc, pa, searchpt, n, 1, NULL); |
| 13044 | area_cap = sqrt(dot(n, n)); |
| 13045 | if ((area_cap / area_abc) < b->epsilon) { |
| 13046 | area_cap = 0; // Rounding |
| 13047 | } |
| 13048 | |
| 13049 | if ((loc == ONFACE) || (loc == OUTSIDE)) { |
| 13050 | facenormal(pa, pb, searchpt, n, 1, NULL); |
| 13051 | area_abp = sqrt(dot(n, n)); |
| 13052 | if ((area_abp / area_abc) < b->epsilon) { |
| 13053 | area_abp = 0; // Rounding |
| 13054 | } |
| 13055 | } else { // loc == ONEDGE |
| 13056 | area_abp = 0; |
| 13057 | } |
| 13058 | |
| 13059 | if (area_abp == 0) { |
| 13060 | if (area_bcp == 0) { |
| 13061 | assert(area_cap != 0); |
| 13062 | senextself(*searchsh); |
| 13063 | loc = ONVERTEX; // p is close to b. |
| 13064 | } else { |
| 13065 | if (area_cap == 0) { |
| 13066 | loc = ONVERTEX; // p is close to a. |
| 13067 | } else { |
| 13068 | loc = ONEDGE; // p is on edge [a,b]. |
| 13069 | } |
| 13070 | } |
| 13071 | } else if (area_bcp == 0) { |
| 13072 | if (area_cap == 0) { |
| 13073 | senext2self(*searchsh); |
| 13074 | loc = ONVERTEX; // p is close to c. |
| 13075 | } else { |
| 13076 | senextself(*searchsh); |
| 13077 | loc = ONEDGE; // p is on edge [b,c]. |
| 13078 | } |
| 13079 | } else if (area_cap == 0) { |
| 13080 | senext2self(*searchsh); |
| 13081 | loc = ONEDGE; // p is on edge [c,a]. |
| 13082 | } else { |
| 13083 | loc = ONFACE; // p is on face [a,b,c]. |
| 13084 | } |
| 13085 | } // if (rflag) |
| 13086 | |
| 13087 | return loc; |
| 13088 | } |
| 13089 | |
| 13090 | /////////////////////////////////////////////////////////////////////////////// |
| 13091 | // // |
| 13092 | // sscoutsegment() Look for a segment in surface triangulation. // |
| 13093 | // // |
| 13094 | // The segment is given by the origin of 'searchsh' and 'endpt'. Assume the // |
| 13095 | // orientation of 'searchsh' is CCW w.r.t. the above point. // |
| 13096 | // // |
| 13097 | // If an edge in T is found matching this segment, the segment is "locked" // |
| 13098 | // in T at the edge. Otherwise, flip the first edge in T that the segment // |
| 13099 | // crosses. Continue the search from the flipped face. // |
| 13100 | // // |
| 13101 | /////////////////////////////////////////////////////////////////////////////// |
| 13102 | |
| 13103 | enum tetgenmesh::interresult tetgenmesh::sscoutsegment(face *searchsh, |
| 13104 | point endpt) |
| 13105 | { |
| 13106 | face flipshs[2], neighsh; |
| 13107 | face newseg; |
| 13108 | point startpt, pa, pb, pc, pd; |
| 13109 | enum interresult dir; |
| 13110 | enum {MOVE_AB, MOVE_CA} nextmove; |
| 13111 | REAL ori_ab, ori_ca, len; |
| 13112 | |
| 13113 | // The origin of 'searchsh' is fixed. |
| 13114 | startpt = sorg(*searchsh); // pa = startpt; |
| 13115 | nextmove = MOVE_AB; // Avoid compiler warning. |
| 13116 | |
| 13117 | if (b->verbose > 2) { |
| 13118 | printf(" Scout segment (%d, %d).\n" , pointmark(startpt), |
| 13119 | pointmark(endpt)); |
| 13120 | } |
| 13121 | len = distance(startpt, endpt); |
| 13122 | |
| 13123 | // Search an edge in 'searchsh' on the path of this segment. |
| 13124 | while (1) { |
| 13125 | |
| 13126 | pb = sdest(*searchsh); |
| 13127 | if (pb == endpt) { |
| 13128 | dir = SHAREEDGE; // Found! |
| 13129 | break; |
| 13130 | } |
| 13131 | |
| 13132 | pc = sapex(*searchsh); |
| 13133 | if (pc == endpt) { |
| 13134 | senext2self(*searchsh); |
| 13135 | sesymself(*searchsh); |
| 13136 | dir = SHAREEDGE; // Found! |
| 13137 | break; |
| 13138 | } |
| 13139 | |
| 13140 | // Round the results. |
| 13141 | if ((sqrt(triarea(startpt, pb, endpt)) / len) < b->epsilon) { |
| 13142 | ori_ab = 0.0; |
| 13143 | } else { |
| 13144 | ori_ab = orient3d(startpt, pb, dummypoint, endpt); |
| 13145 | } |
| 13146 | if ((sqrt(triarea(pc, startpt, endpt)) / len) < b->epsilon) { |
| 13147 | ori_ca = 0.0; |
| 13148 | } else { |
| 13149 | ori_ca = orient3d(pc, startpt, dummypoint, endpt); |
| 13150 | } |
| 13151 | |
| 13152 | if (ori_ab < 0) { |
| 13153 | if (ori_ca < 0) { // (--) |
| 13154 | // Both sides are viable moves. |
| 13155 | if (randomnation(2)) { |
| 13156 | nextmove = MOVE_CA; |
| 13157 | } else { |
| 13158 | nextmove = MOVE_AB; |
| 13159 | } |
| 13160 | } else { // (-#) |
| 13161 | nextmove = MOVE_AB; |
| 13162 | } |
| 13163 | } else { |
| 13164 | if (ori_ca < 0) { // (#-) |
| 13165 | nextmove = MOVE_CA; |
| 13166 | } else { |
| 13167 | if (ori_ab > 0) { |
| 13168 | if (ori_ca > 0) { // (++) |
| 13169 | // The segment intersects with edge [b, c]. |
| 13170 | dir = ACROSSEDGE; |
| 13171 | break; |
| 13172 | } else { // (+0) |
| 13173 | // The segment collinear with edge [c, a]. |
| 13174 | senext2self(*searchsh); |
| 13175 | sesymself(*searchsh); |
| 13176 | dir = ACROSSVERT; |
| 13177 | break; |
| 13178 | } |
| 13179 | } else { |
| 13180 | if (ori_ca > 0) { // (0+) |
| 13181 | // The segment collinear with edge [a, b]. |
| 13182 | dir = ACROSSVERT; |
| 13183 | break; |
| 13184 | } else { // (00) |
| 13185 | // startpt == endpt. Not possible. |
| 13186 | assert(0); // SELF_CHECK |
| 13187 | } |
| 13188 | } |
| 13189 | } |
| 13190 | } |
| 13191 | |
| 13192 | // Move 'searchsh' to the next face, keep the origin unchanged. |
| 13193 | if (nextmove == MOVE_AB) { |
| 13194 | spivot(*searchsh, neighsh); |
| 13195 | if (neighsh.sh != NULL) { |
| 13196 | if (sorg(neighsh) != pb) sesymself(neighsh); |
| 13197 | senext(neighsh, *searchsh); |
| 13198 | } else { |
| 13199 | // This side (startpt->pb) is outside. It is caused by rounding error. |
| 13200 | // Try the next side, i.e., (pc->startpt). |
| 13201 | senext2(*searchsh, neighsh); |
| 13202 | spivotself(neighsh); |
| 13203 | assert(neighsh.sh != NULL); |
| 13204 | if (sdest(neighsh) != pc) sesymself(neighsh); |
| 13205 | *searchsh = neighsh; |
| 13206 | } |
| 13207 | } else { |
| 13208 | senext2(*searchsh, neighsh); |
| 13209 | spivotself(neighsh); |
| 13210 | if (neighsh.sh != NULL) { |
| 13211 | if (sdest(neighsh) != pc) sesymself(neighsh); |
| 13212 | *searchsh = neighsh; |
| 13213 | } else { |
| 13214 | // The same reason as above. |
| 13215 | // Try the next side, i.e., (startpt->pb). |
| 13216 | spivot(*searchsh, neighsh); |
| 13217 | assert(neighsh.sh != NULL); |
| 13218 | if (sorg(neighsh) != pb) sesymself(neighsh); |
| 13219 | senext(neighsh, *searchsh); |
| 13220 | } |
| 13221 | } |
| 13222 | assert(sorg(*searchsh) == startpt); // SELF_CHECK |
| 13223 | |
| 13224 | } // while |
| 13225 | |
| 13226 | if (dir == SHAREEDGE) { |
| 13227 | // Insert the segment into the triangulation. |
| 13228 | makeshellface(subsegs, &newseg); |
| 13229 | setshvertices(newseg, startpt, endpt, NULL); |
| 13230 | // Set the default segment marker. |
| 13231 | setshellmark(newseg, 1); |
| 13232 | ssbond(*searchsh, newseg); |
| 13233 | spivot(*searchsh, neighsh); |
| 13234 | if (neighsh.sh != NULL) { |
| 13235 | ssbond(neighsh, newseg); |
| 13236 | } |
| 13237 | return dir; |
| 13238 | } |
| 13239 | |
| 13240 | if (dir == ACROSSVERT) { |
| 13241 | // A point is found collinear with this segment. |
| 13242 | return dir; |
| 13243 | } |
| 13244 | |
| 13245 | if (dir == ACROSSEDGE) { |
| 13246 | // Edge [b, c] intersects with the segment. |
| 13247 | senext(*searchsh, flipshs[0]); |
| 13248 | if (isshsubseg(flipshs[0])) { |
| 13249 | printf("Error: Invalid PLC.\n" ); |
| 13250 | pb = sorg(flipshs[0]); |
| 13251 | pc = sdest(flipshs[0]); |
| 13252 | printf(" Two segments (%d, %d) and (%d, %d) intersect.\n" , |
| 13253 | pointmark(startpt), pointmark(endpt), pointmark(pb), pointmark(pc)); |
| 13254 | terminatetetgen(this, 3); |
| 13255 | } |
| 13256 | // Flip edge [b, c], queue unflipped edges (for Delaunay checks). |
| 13257 | spivot(flipshs[0], flipshs[1]); |
| 13258 | assert(flipshs[1].sh != NULL); // SELF_CHECK |
| 13259 | if (sorg(flipshs[1]) != sdest(flipshs[0])) sesymself(flipshs[1]); |
| 13260 | flip22(flipshs, 1, 0); |
| 13261 | // The flip may create an inverted triangle, check it. |
| 13262 | pa = sapex(flipshs[1]); |
| 13263 | pb = sapex(flipshs[0]); |
| 13264 | pc = sorg(flipshs[0]); |
| 13265 | pd = sdest(flipshs[0]); |
| 13266 | // Check if pa and pb are on the different sides of [pc, pd]. |
| 13267 | // Re-use ori_ab, ori_ca for the tests. |
| 13268 | ori_ab = orient3d(pc, pd, dummypoint, pb); |
| 13269 | ori_ca = orient3d(pd, pc, dummypoint, pa); |
| 13270 | //assert(ori_ab * ori_ca != 0); // SELF_CHECK |
| 13271 | if (ori_ab < 0) { |
| 13272 | flipshpush(&(flipshs[0])); // push it to 'flipstack' |
| 13273 | } else if (ori_ca < 0) { |
| 13274 | flipshpush(&(flipshs[1])); // // push it to 'flipstack' |
| 13275 | } |
| 13276 | // Set 'searchsh' s.t. its origin is 'startpt'. |
| 13277 | *searchsh = flipshs[0]; |
| 13278 | assert(sorg(*searchsh) == startpt); |
| 13279 | } |
| 13280 | |
| 13281 | return sscoutsegment(searchsh, endpt); |
| 13282 | } |
| 13283 | |
| 13284 | /////////////////////////////////////////////////////////////////////////////// |
| 13285 | // // |
| 13286 | // scarveholes() Remove triangles not in the facet. // |
| 13287 | // // |
| 13288 | // This routine re-uses the two global arrays: caveshlist and caveshbdlist. // |
| 13289 | // // |
| 13290 | /////////////////////////////////////////////////////////////////////////////// |
| 13291 | |
| 13292 | void tetgenmesh::scarveholes(int holes, REAL* holelist) |
| 13293 | { |
| 13294 | face *parysh, searchsh, neighsh; |
| 13295 | enum locateresult loc; |
| 13296 | int i, j; |
| 13297 | |
| 13298 | // Get all triangles. Infect unprotected convex hull triangles. |
| 13299 | smarktest(recentsh); |
| 13300 | caveshlist->newindex((void **) &parysh); |
| 13301 | *parysh = recentsh; |
| 13302 | for (i = 0; i < caveshlist->objects; i++) { |
| 13303 | parysh = (face *) fastlookup(caveshlist, i); |
| 13304 | searchsh = *parysh; |
| 13305 | searchsh.shver = 0; |
| 13306 | for (j = 0; j < 3; j++) { |
| 13307 | spivot(searchsh, neighsh); |
| 13308 | // Is this side on the convex hull? |
| 13309 | if (neighsh.sh != NULL) { |
| 13310 | if (!smarktested(neighsh)) { |
| 13311 | smarktest(neighsh); |
| 13312 | caveshlist->newindex((void **) &parysh); |
| 13313 | *parysh = neighsh; |
| 13314 | } |
| 13315 | } else { |
| 13316 | // A hull side. Check if it is protected by a segment. |
| 13317 | if (!isshsubseg(searchsh)) { |
| 13318 | // Not protected. Save this face. |
| 13319 | if (!sinfected(searchsh)) { |
| 13320 | sinfect(searchsh); |
| 13321 | caveshbdlist->newindex((void **) &parysh); |
| 13322 | *parysh = searchsh; |
| 13323 | } |
| 13324 | } |
| 13325 | } |
| 13326 | senextself(searchsh); |
| 13327 | } |
| 13328 | } |
| 13329 | |
| 13330 | // Infect the triangles in the holes. |
| 13331 | for (i = 0; i < 3 * holes; i += 3) { |
| 13332 | searchsh = recentsh; |
| 13333 | loc = slocate(&(holelist[i]), &searchsh, 1, 1, 0); |
| 13334 | if (loc != OUTSIDE) { |
| 13335 | sinfect(searchsh); |
| 13336 | caveshbdlist->newindex((void **) &parysh); |
| 13337 | *parysh = searchsh; |
| 13338 | } |
| 13339 | } |
| 13340 | |
| 13341 | // Find and infect all exterior triangles. |
| 13342 | for (i = 0; i < caveshbdlist->objects; i++) { |
| 13343 | parysh = (face *) fastlookup(caveshbdlist, i); |
| 13344 | searchsh = *parysh; |
| 13345 | searchsh.shver = 0; |
| 13346 | for (j = 0; j < 3; j++) { |
| 13347 | spivot(searchsh, neighsh); |
| 13348 | if (neighsh.sh != NULL) { |
| 13349 | if (!isshsubseg(searchsh)) { |
| 13350 | if (!sinfected(neighsh)) { |
| 13351 | sinfect(neighsh); |
| 13352 | caveshbdlist->newindex((void **) &parysh); |
| 13353 | *parysh = neighsh; |
| 13354 | } |
| 13355 | } else { |
| 13356 | sdissolve(neighsh); // Disconnect a protected face. |
| 13357 | } |
| 13358 | } |
| 13359 | senextself(searchsh); |
| 13360 | } |
| 13361 | } |
| 13362 | |
| 13363 | // Delete exterior triangles, unmark interior triangles. |
| 13364 | for (i = 0; i < caveshlist->objects; i++) { |
| 13365 | parysh = (face *) fastlookup(caveshlist, i); |
| 13366 | if (sinfected(*parysh)) { |
| 13367 | shellfacedealloc(subfaces, parysh->sh); |
| 13368 | } else { |
| 13369 | sunmarktest(*parysh); |
| 13370 | } |
| 13371 | } |
| 13372 | |
| 13373 | caveshlist->restart(); |
| 13374 | caveshbdlist->restart(); |
| 13375 | } |
| 13376 | |
| 13377 | /////////////////////////////////////////////////////////////////////////////// |
| 13378 | // // |
| 13379 | // triangulate() Create a CDT for the facet. // |
| 13380 | // // |
| 13381 | // All vertices of the triangulation have type FACETVERTEX. The actual type // |
| 13382 | // of boundary vertices are set by the routine unifysements(). // |
| 13383 | // // |
| 13384 | /////////////////////////////////////////////////////////////////////////////// |
| 13385 | |
| 13386 | void tetgenmesh::triangulate(int shmark, arraypool* ptlist, arraypool* conlist, |
| 13387 | int holes, REAL* holelist) |
| 13388 | { |
| 13389 | face searchsh, newsh, *parysh; |
| 13390 | face newseg; |
| 13391 | point pa, pb, pc, *ppt, *cons; |
| 13392 | int iloc; |
| 13393 | int i, j; |
| 13394 | |
| 13395 | if (b->verbose > 2) { |
| 13396 | printf(" f%d: %ld vertices, %ld segments" , shmark, ptlist->objects, |
| 13397 | conlist->objects); |
| 13398 | if (holes > 0) { |
| 13399 | printf(", %d holes" , holes); |
| 13400 | } |
| 13401 | printf(".\n" ); |
| 13402 | } |
| 13403 | |
| 13404 | if (ptlist->objects < 2l) { |
| 13405 | // Not a segment or a facet. |
| 13406 | return; |
| 13407 | } |
| 13408 | |
| 13409 | if (ptlist->objects == 2l) { |
| 13410 | pa = * (point *) fastlookup(ptlist, 0); |
| 13411 | pb = * (point *) fastlookup(ptlist, 1); |
| 13412 | if (distance(pa, pb) > 0) { |
| 13413 | // It is a single segment. |
| 13414 | makeshellface(subsegs, &newseg); |
| 13415 | setshvertices(newseg, pa, pb, NULL); |
| 13416 | // Set the default segment marker '1'. |
| 13417 | setshellmark(newseg, 1); |
| 13418 | } |
| 13419 | if (pointtype(pa) == VOLVERTEX) { |
| 13420 | setpointtype(pa, FACETVERTEX); |
| 13421 | } |
| 13422 | if (pointtype(pb) == VOLVERTEX) { |
| 13423 | setpointtype(pb, FACETVERTEX); |
| 13424 | } |
| 13425 | return; |
| 13426 | } |
| 13427 | |
| 13428 | |
| 13429 | if (ptlist->objects == 3) { |
| 13430 | pa = * (point *) fastlookup(ptlist, 0); |
| 13431 | pb = * (point *) fastlookup(ptlist, 1); |
| 13432 | pc = * (point *) fastlookup(ptlist, 2); |
| 13433 | } else { |
| 13434 | // Calculate an above point of this facet. |
| 13435 | if (!calculateabovepoint(ptlist, &pa, &pb, &pc)) { |
| 13436 | return; // The point set is degenerate. |
| 13437 | } |
| 13438 | } |
| 13439 | |
| 13440 | // Create an initial triangulation. |
| 13441 | makeshellface(subfaces, &newsh); |
| 13442 | setshvertices(newsh, pa, pb, pc); |
| 13443 | setshellmark(newsh, shmark); |
| 13444 | recentsh = newsh; |
| 13445 | |
| 13446 | if (pointtype(pa) == VOLVERTEX) { |
| 13447 | setpointtype(pa, FACETVERTEX); |
| 13448 | } |
| 13449 | if (pointtype(pb) == VOLVERTEX) { |
| 13450 | setpointtype(pb, FACETVERTEX); |
| 13451 | } |
| 13452 | if (pointtype(pc) == VOLVERTEX) { |
| 13453 | setpointtype(pc, FACETVERTEX); |
| 13454 | } |
| 13455 | |
| 13456 | // Are there area constraints? |
| 13457 | if (b->quality && (in->facetconstraintlist != (REAL *) NULL)) { |
| 13458 | int idx, fmarker; |
| 13459 | REAL area; |
| 13460 | idx = in->facetmarkerlist[shmark - 1]; // The actual facet marker. |
| 13461 | for (i = 0; i < in->numberoffacetconstraints; i++) { |
| 13462 | fmarker = (int) in->facetconstraintlist[i * 2]; |
| 13463 | if (fmarker == idx) { |
| 13464 | area = in->facetconstraintlist[i * 2 + 1]; |
| 13465 | setareabound(newsh, area); |
| 13466 | break; |
| 13467 | } |
| 13468 | } |
| 13469 | } |
| 13470 | |
| 13471 | if (ptlist->objects == 3) { |
| 13472 | // The triangulation only has one element. |
| 13473 | for (i = 0; i < 3; i++) { |
| 13474 | makeshellface(subsegs, &newseg); |
| 13475 | setshvertices(newseg, sorg(newsh), sdest(newsh), NULL); |
| 13476 | // Set the default segment marker '1'. |
| 13477 | setshellmark(newseg, 1); |
| 13478 | ssbond(newsh, newseg); |
| 13479 | senextself(newsh); |
| 13480 | } |
| 13481 | return; |
| 13482 | } |
| 13483 | |
| 13484 | // Incrementally build the triangulation. |
| 13485 | pinfect(pa); |
| 13486 | pinfect(pb); |
| 13487 | pinfect(pc); |
| 13488 | for (i = 0; i < ptlist->objects; i++) { |
| 13489 | ppt = (point *) fastlookup(ptlist, i); |
| 13490 | if (!pinfected(*ppt)) { |
| 13491 | searchsh = recentsh; // Start from 'recentsh'. |
| 13492 | iloc = (int) OUTSIDE; |
| 13493 | // Insert the vertex. Use Bowyer-Watson algo. Round the location. |
| 13494 | iloc = sinsertvertex(*ppt, &searchsh, NULL, iloc, 1, 1); |
| 13495 | if (pointtype(*ppt) == VOLVERTEX) { |
| 13496 | setpointtype(*ppt, FACETVERTEX); |
| 13497 | } |
| 13498 | // Delete all removed subfaces. |
| 13499 | for (j = 0; j < caveshlist->objects; j++) { |
| 13500 | parysh = (face *) fastlookup(caveshlist, j); |
| 13501 | shellfacedealloc(subfaces, parysh->sh); |
| 13502 | } |
| 13503 | // Clear the global lists. |
| 13504 | caveshbdlist->restart(); |
| 13505 | caveshlist->restart(); |
| 13506 | cavesegshlist->restart(); |
| 13507 | } else { |
| 13508 | puninfect(*ppt); // This point has inserted. |
| 13509 | } |
| 13510 | } |
| 13511 | |
| 13512 | // Insert the segments. |
| 13513 | for (i = 0; i < conlist->objects; i++) { |
| 13514 | cons = (point *) fastlookup(conlist, i); |
| 13515 | searchsh = recentsh; |
| 13516 | iloc = (int) slocate(cons[0], &searchsh, 1, 1, 0); |
| 13517 | if (iloc != (enum locateresult) ONVERTEX) { |
| 13518 | // Not found due to roundoff errors. Do a brute-force search. |
| 13519 | subfaces->traversalinit(); |
| 13520 | searchsh.sh = shellfacetraverse(subfaces); |
| 13521 | while (searchsh.sh != NULL) { |
| 13522 | // Only search the subface in the same facet. |
| 13523 | if (shellmark(searchsh) == shmark) { |
| 13524 | if ((point) searchsh.sh[3] == cons[0]) { |
| 13525 | searchsh.shver = 0; break; |
| 13526 | } else if ((point) searchsh.sh[4] == cons[0]) { |
| 13527 | searchsh.shver = 2; break; |
| 13528 | } else if ((point) searchsh.sh[5] == cons[0]) { |
| 13529 | searchsh.shver = 4; break; |
| 13530 | } |
| 13531 | } |
| 13532 | searchsh.sh = shellfacetraverse(subfaces); |
| 13533 | } |
| 13534 | assert(searchsh.sh != NULL); |
| 13535 | } |
| 13536 | // Recover the segment. Some edges may be flipped. |
| 13537 | sscoutsegment(&searchsh, cons[1]); |
| 13538 | if (flipstack != NULL) { |
| 13539 | // Recover locally Delaunay edges. |
| 13540 | lawsonflip(); |
| 13541 | } |
| 13542 | } |
| 13543 | |
| 13544 | // Remove exterior and hole triangles. |
| 13545 | scarveholes(holes, holelist); |
| 13546 | } |
| 13547 | |
| 13548 | /////////////////////////////////////////////////////////////////////////////// |
| 13549 | // // |
| 13550 | // unifysubfaces() Unify two identical subfaces. // |
| 13551 | // // |
| 13552 | // Two subfaces, f1 [a, b, c] and f2 [a, b, d], share the same edge [a, b]. // |
| 13553 | // If c = d, then f1 and f2 are identical. Otherwise, these two subfaces // |
| 13554 | // intersect, and the mesher is stopped. // |
| 13555 | // // |
| 13556 | // If the two subfaces are identical, we try to replace f2 by f1, i.e, all // |
| 13557 | // neighbors of f2 are re-connected to f1. // |
| 13558 | // // |
| 13559 | /////////////////////////////////////////////////////////////////////////////// |
| 13560 | |
| 13561 | void tetgenmesh::unifysubfaces(face *f1, face *f2) |
| 13562 | { |
| 13563 | if (b->psc) { |
| 13564 | // In this case, it is possible that two subfaces are identical. |
| 13565 | // While they must belong to two different surfaces. |
| 13566 | return; |
| 13567 | } |
| 13568 | |
| 13569 | point pa, pb, pc, pd; |
| 13570 | |
| 13571 | pa = sorg(*f1); |
| 13572 | pb = sdest(*f1); |
| 13573 | pc = sapex(*f1); |
| 13574 | pd = sapex(*f2); |
| 13575 | |
| 13576 | if (pc != pd) { |
| 13577 | printf("Found two facets intersect each other.\n" ); |
| 13578 | printf(" 1st: [%d, %d, %d] #%d\n" , |
| 13579 | pointmark(pa), pointmark(pb), pointmark(pc), shellmark(*f1)); |
| 13580 | printf(" 2nd: [%d, %d, %d] #%d\n" , |
| 13581 | pointmark(pa), pointmark(pb), pointmark(pd), shellmark(*f2)); |
| 13582 | terminatetetgen(this, 3); |
| 13583 | } else { |
| 13584 | printf("Found two duplicated facets.\n" ); |
| 13585 | printf(" 1st: [%d, %d, %d] #%d\n" , |
| 13586 | pointmark(pa), pointmark(pb), pointmark(pc), shellmark(*f1)); |
| 13587 | printf(" 2nd: [%d, %d, %d] #%d\n" , |
| 13588 | pointmark(pa), pointmark(pb), pointmark(pd), shellmark(*f2)); |
| 13589 | terminatetetgen(this, 3); |
| 13590 | } |
| 13591 | |
| 13592 | } |
| 13593 | |
| 13594 | /////////////////////////////////////////////////////////////////////////////// |
| 13595 | // // |
| 13596 | // unifysegments() Remove redundant segments and create face links. // |
| 13597 | // // |
| 13598 | // After this routine, although segments are unique, but some of them may be // |
| 13599 | // removed later by mergefacet(). All vertices still have type FACETVERTEX. // |
| 13600 | // // |
| 13601 | /////////////////////////////////////////////////////////////////////////////// |
| 13602 | |
| 13603 | void tetgenmesh::unifysegments() |
| 13604 | { |
| 13605 | badface *facelink = NULL, *newlinkitem, *f1, *f2; |
| 13606 | face *facperverlist, sface; |
| 13607 | face subsegloop, testseg; |
| 13608 | point torg, tdest; |
| 13609 | REAL ori1, ori2, ori3; |
| 13610 | REAL n1[3], n2[3]; |
| 13611 | int *idx2faclist; |
| 13612 | int idx, k, m; |
| 13613 | |
| 13614 | if (b->verbose > 1) { |
| 13615 | printf(" Unifying segments.\n" ); |
| 13616 | } |
| 13617 | |
| 13618 | // Create a mapping from vertices to subfaces. |
| 13619 | makepoint2submap(subfaces, idx2faclist, facperverlist); |
| 13620 | |
| 13621 | if (b->psc) { |
| 13622 | face sface1; |
| 13623 | face seg, seg1; |
| 13624 | int fmarker, fmarker1; |
| 13625 | // First only connect subfaces which belong to the same surfaces. |
| 13626 | subsegloop.shver = 0; |
| 13627 | subsegs->traversalinit(); |
| 13628 | subsegloop.sh = shellfacetraverse(subsegs); |
| 13629 | while (subsegloop.sh != (shellface *) NULL) { |
| 13630 | torg = sorg(subsegloop); |
| 13631 | tdest = sdest(subsegloop); |
| 13632 | |
| 13633 | idx = pointmark(torg) - in->firstnumber; |
| 13634 | for (k = idx2faclist[idx]; k < idx2faclist[idx + 1]; k++) { |
| 13635 | sface = facperverlist[k]; |
| 13636 | // The face may be deleted if it is a duplicated face. |
| 13637 | if (sface.sh[3] == NULL) continue; |
| 13638 | // Search the edge torg->tdest. |
| 13639 | assert(sorg(sface) == torg); // SELF_CHECK |
| 13640 | if (sdest(sface) != tdest) { |
| 13641 | senext2self(sface); |
| 13642 | sesymself(sface); |
| 13643 | } |
| 13644 | if (sdest(sface) != tdest) continue; |
| 13645 | |
| 13646 | sspivot(sface, seg); |
| 13647 | if (seg.sh == NULL) continue; |
| 13648 | // assert(seg.sh != NULL); It may or may not be subsegloop. |
| 13649 | |
| 13650 | // Find the adjacent subface on the same facet. |
| 13651 | fmarker = in->facetmarkerlist[shellmark(sface) - 1]; |
| 13652 | sface1.sh = NULL; |
| 13653 | k++; |
| 13654 | for (; k < idx2faclist[idx + 1]; k++) { |
| 13655 | sface1 = facperverlist[k]; |
| 13656 | // The face may be deleted if it is a duplicated face. |
| 13657 | if (sface1.sh[3] == NULL) continue; |
| 13658 | // Search the edge torg->tdest. |
| 13659 | assert(sorg(sface1) == torg); // SELF_CHECK |
| 13660 | if (sdest(sface1) != tdest) { |
| 13661 | senext2self(sface1); |
| 13662 | sesymself(sface1); |
| 13663 | } |
| 13664 | if (sdest(sface1) != tdest) continue; |
| 13665 | // Found a subface sharing at the same edge. |
| 13666 | fmarker1 = in->facetmarkerlist[shellmark(sface1) - 1]; |
| 13667 | if (fmarker1 == fmarker) { |
| 13668 | // Found a pair of adjacent subfaces. Connect them. |
| 13669 | // Delete a redundent segment. |
| 13670 | sspivot(sface1, seg1); |
| 13671 | assert(seg1.sh != NULL); // SELF_CHECK |
| 13672 | shellfacedealloc(subsegs, seg.sh); |
| 13673 | shellfacedealloc(subsegs, seg1.sh); |
| 13674 | ssdissolve(sface); |
| 13675 | ssdissolve(sface1); |
| 13676 | // Connect them. |
| 13677 | sbond(sface, sface1); |
| 13678 | // Set Steiner point -to- subface map. |
| 13679 | if (pointtype(torg) == FREEFACETVERTEX) { |
| 13680 | setpoint2sh(torg, sencode(sface)); |
| 13681 | } |
| 13682 | if (pointtype(tdest) == FREEFACETVERTEX) { |
| 13683 | setpoint2sh(tdest, sencode(sface)); |
| 13684 | } |
| 13685 | break; |
| 13686 | } |
| 13687 | } |
| 13688 | break; |
| 13689 | } |
| 13690 | subsegloop.sh = shellfacetraverse(subsegs); |
| 13691 | } |
| 13692 | } // if (b->psc) |
| 13693 | |
| 13694 | subsegloop.shver = 0; |
| 13695 | subsegs->traversalinit(); |
| 13696 | subsegloop.sh = shellfacetraverse(subsegs); |
| 13697 | while (subsegloop.sh != (shellface *) NULL) { |
| 13698 | torg = sorg(subsegloop); |
| 13699 | tdest = sdest(subsegloop); |
| 13700 | |
| 13701 | idx = pointmark(torg) - in->firstnumber; |
| 13702 | // Loop through the set of subfaces containing 'torg'. Get all the |
| 13703 | // subfaces containing the edge (torg, tdest). Save and order them |
| 13704 | // in 'sfacelist', the ordering is defined by the right-hand rule |
| 13705 | // with thumb points from torg to tdest. |
| 13706 | for (k = idx2faclist[idx]; k < idx2faclist[idx + 1]; k++) { |
| 13707 | sface = facperverlist[k]; |
| 13708 | // The face may be deleted if it is a duplicated face. |
| 13709 | if (sface.sh[3] == NULL) continue; |
| 13710 | // Search the edge torg->tdest. |
| 13711 | assert(sorg(sface) == torg); // SELF_CHECK |
| 13712 | if (sdest(sface) != tdest) { |
| 13713 | senext2self(sface); |
| 13714 | sesymself(sface); |
| 13715 | } |
| 13716 | if (sdest(sface) != tdest) continue; |
| 13717 | |
| 13718 | // Save the face f in facelink. |
| 13719 | if (flippool->items >= 2) { |
| 13720 | f1 = facelink; |
| 13721 | for (m = 0; m < flippool->items - 1; m++) { |
| 13722 | f2 = f1->nextitem; |
| 13723 | ori1 = orient3d(torg, tdest, sapex(f1->ss), sapex(f2->ss)); |
| 13724 | ori2 = orient3d(torg, tdest, sapex(f1->ss), sapex(sface)); |
| 13725 | if (ori1 > 0) { |
| 13726 | // apex(f2) is below f1. |
| 13727 | if (ori2 > 0) { |
| 13728 | // apex(f) is below f1 (see Fig.1). |
| 13729 | ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface)); |
| 13730 | if (ori3 > 0) { |
| 13731 | // apex(f) is below f2, insert it. |
| 13732 | break; |
| 13733 | } else if (ori3 < 0) { |
| 13734 | // apex(f) is above f2, continue. |
| 13735 | } else { // ori3 == 0; |
| 13736 | // f is coplanar and codirection with f2. |
| 13737 | unifysubfaces(&(f2->ss), &sface); |
| 13738 | break; |
| 13739 | } |
| 13740 | } else if (ori2 < 0) { |
| 13741 | // apex(f) is above f1 below f2, inset it (see Fig. 2). |
| 13742 | break; |
| 13743 | } else { // ori2 == 0; |
| 13744 | // apex(f) is coplanar with f1 (see Fig. 5). |
| 13745 | ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface)); |
| 13746 | if (ori3 > 0) { |
| 13747 | // apex(f) is below f2, insert it. |
| 13748 | break; |
| 13749 | } else { |
| 13750 | // f is coplanar and codirection with f1. |
| 13751 | unifysubfaces(&(f1->ss), &sface); |
| 13752 | break; |
| 13753 | } |
| 13754 | } |
| 13755 | } else if (ori1 < 0) { |
| 13756 | // apex(f2) is above f1. |
| 13757 | if (ori2 > 0) { |
| 13758 | // apex(f) is below f1, continue (see Fig. 3). |
| 13759 | } else if (ori2 < 0) { |
| 13760 | // apex(f) is above f1 (see Fig.4). |
| 13761 | ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface)); |
| 13762 | if (ori3 > 0) { |
| 13763 | // apex(f) is below f2, insert it. |
| 13764 | break; |
| 13765 | } else if (ori3 < 0) { |
| 13766 | // apex(f) is above f2, continue. |
| 13767 | } else { // ori3 == 0; |
| 13768 | // f is coplanar and codirection with f2. |
| 13769 | unifysubfaces(&(f2->ss), &sface); |
| 13770 | break; |
| 13771 | } |
| 13772 | } else { // ori2 == 0; |
| 13773 | // f is coplanar and with f1 (see Fig. 6). |
| 13774 | ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface)); |
| 13775 | if (ori3 > 0) { |
| 13776 | // f is also codirection with f1. |
| 13777 | unifysubfaces(&(f1->ss), &sface); |
| 13778 | break; |
| 13779 | } else { |
| 13780 | // f is above f2, continue. |
| 13781 | } |
| 13782 | } |
| 13783 | } else { // ori1 == 0; |
| 13784 | // apex(f2) is coplanar with f1. By assumption, f1 is not |
| 13785 | // coplanar and codirection with f2. |
| 13786 | if (ori2 > 0) { |
| 13787 | // apex(f) is below f1, continue (see Fig. 7). |
| 13788 | } else if (ori2 < 0) { |
| 13789 | // apex(f) is above f1, insert it (see Fig. 7). |
| 13790 | break; |
| 13791 | } else { // ori2 == 0. |
| 13792 | // apex(f) is coplanar with f1 (see Fig. 8). |
| 13793 | // f is either codirection with f1 or is codirection with f2. |
| 13794 | facenormal(torg, tdest, sapex(f1->ss), n1, 1, NULL); |
| 13795 | facenormal(torg, tdest, sapex(sface), n2, 1, NULL); |
| 13796 | if (dot(n1, n2) > 0) { |
| 13797 | unifysubfaces(&(f1->ss), &sface); |
| 13798 | } else { |
| 13799 | unifysubfaces(&(f2->ss), &sface); |
| 13800 | } |
| 13801 | break; |
| 13802 | } |
| 13803 | } |
| 13804 | // Go to the next item; |
| 13805 | f1 = f2; |
| 13806 | } // for (m = 0; ...) |
| 13807 | if (sface.sh[3] != NULL) { |
| 13808 | // Insert sface between f1 and f2. |
| 13809 | newlinkitem = (badface *) flippool->alloc(); |
| 13810 | newlinkitem->ss = sface; |
| 13811 | newlinkitem->nextitem = f1->nextitem; |
| 13812 | f1->nextitem = newlinkitem; |
| 13813 | } |
| 13814 | } else if (flippool->items == 1) { |
| 13815 | f1 = facelink; |
| 13816 | // Make sure that f is not coplanar and codirection with f1. |
| 13817 | ori1 = orient3d(torg, tdest, sapex(f1->ss), sapex(sface)); |
| 13818 | if (ori1 == 0) { |
| 13819 | // f is coplanar with f1 (see Fig. 8). |
| 13820 | facenormal(torg, tdest, sapex(f1->ss), n1, 1, NULL); |
| 13821 | facenormal(torg, tdest, sapex(sface), n2, 1, NULL); |
| 13822 | if (dot(n1, n2) > 0) { |
| 13823 | // The two faces are codirectional as well. |
| 13824 | unifysubfaces(&(f1->ss), &sface); |
| 13825 | } |
| 13826 | } |
| 13827 | // Add this face to link if it is not deleted. |
| 13828 | if (sface.sh[3] != NULL) { |
| 13829 | // Add this face into link. |
| 13830 | newlinkitem = (badface *) flippool->alloc(); |
| 13831 | newlinkitem->ss = sface; |
| 13832 | newlinkitem->nextitem = NULL; |
| 13833 | f1->nextitem = newlinkitem; |
| 13834 | } |
| 13835 | } else { |
| 13836 | // The first face. |
| 13837 | newlinkitem = (badface *) flippool->alloc(); |
| 13838 | newlinkitem->ss = sface; |
| 13839 | newlinkitem->nextitem = NULL; |
| 13840 | facelink = newlinkitem; |
| 13841 | } |
| 13842 | } // for (k = idx2faclist[idx]; ...) |
| 13843 | |
| 13844 | if (b->psc) { |
| 13845 | // Set Steiner point -to- segment map. |
| 13846 | if (pointtype(torg) == FREESEGVERTEX) { |
| 13847 | setpoint2sh(torg, sencode(subsegloop)); |
| 13848 | } |
| 13849 | if (pointtype(tdest) == FREESEGVERTEX) { |
| 13850 | setpoint2sh(tdest, sencode(subsegloop)); |
| 13851 | } |
| 13852 | } |
| 13853 | |
| 13854 | // Set the connection between this segment and faces containing it, |
| 13855 | // at the same time, remove redundant segments. |
| 13856 | f1 = facelink; |
| 13857 | for (k = 0; k < flippool->items; k++) { |
| 13858 | sspivot(f1->ss, testseg); |
| 13859 | // If 'testseg' is not 'subsegloop' and is not dead, it is redundant. |
| 13860 | if ((testseg.sh != subsegloop.sh) && (testseg.sh[3] != NULL)) { |
| 13861 | shellfacedealloc(subsegs, testseg.sh); |
| 13862 | } |
| 13863 | // Bonds the subface and the segment together. |
| 13864 | ssbond(f1->ss, subsegloop); |
| 13865 | f1 = f1->nextitem; |
| 13866 | } |
| 13867 | |
| 13868 | // Create the face ring at the segment. |
| 13869 | if (flippool->items > 1) { |
| 13870 | f1 = facelink; |
| 13871 | for (k = 1; k <= flippool->items; k++) { |
| 13872 | k < flippool->items ? f2 = f1->nextitem : f2 = facelink; |
| 13873 | sbond1(f1->ss, f2->ss); |
| 13874 | f1 = f2; |
| 13875 | } |
| 13876 | } |
| 13877 | |
| 13878 | // All identified segments has an init marker "0". |
| 13879 | flippool->restart(); |
| 13880 | |
| 13881 | // Are there length constraints? |
| 13882 | if (b->quality && (in->segmentconstraintlist != (REAL *) NULL)) { |
| 13883 | int e1, e2; |
| 13884 | REAL len; |
| 13885 | for (k = 0; k < in->numberofsegmentconstraints; k++) { |
| 13886 | e1 = (int) in->segmentconstraintlist[k * 3]; |
| 13887 | e2 = (int) in->segmentconstraintlist[k * 3 + 1]; |
| 13888 | if (((pointmark(torg) == e1) && (pointmark(tdest) == e2)) || |
| 13889 | ((pointmark(torg) == e2) && (pointmark(tdest) == e1))) { |
| 13890 | len = in->segmentconstraintlist[k * 3 + 2]; |
| 13891 | setareabound(subsegloop, len); |
| 13892 | break; |
| 13893 | } |
| 13894 | } |
| 13895 | } |
| 13896 | |
| 13897 | subsegloop.sh = shellfacetraverse(subsegs); |
| 13898 | } |
| 13899 | |
| 13900 | delete [] idx2faclist; |
| 13901 | delete [] facperverlist; |
| 13902 | } |
| 13903 | |
| 13904 | /////////////////////////////////////////////////////////////////////////////// |
| 13905 | // // |
| 13906 | // mergefacets() Merge adjacent facets. // |
| 13907 | // // |
| 13908 | /////////////////////////////////////////////////////////////////////////////// |
| 13909 | |
| 13910 | void tetgenmesh::mergefacets() |
| 13911 | { |
| 13912 | face parentsh, neighsh, neineish; |
| 13913 | face segloop; |
| 13914 | point pa, pb, pc, pd; |
| 13915 | REAL ang_tol, ang; |
| 13916 | int remsegcount; |
| 13917 | int fidx1, fidx2; |
| 13918 | int fmrk1, fmrk2; |
| 13919 | |
| 13920 | if (b->verbose > 1) { |
| 13921 | printf(" Merging adjacent facets.\n" ); |
| 13922 | } |
| 13923 | |
| 13924 | // The dihedral angle bound for two different facets. |
| 13925 | // Set by -p option. Default is 179 degree. |
| 13926 | ang_tol = b->facet_ang_tol / 180.0 * PI; |
| 13927 | remsegcount = 0; |
| 13928 | |
| 13929 | // Loop all segments, merge adjacent coplanar facets. |
| 13930 | subsegs->traversalinit(); |
| 13931 | segloop.sh = shellfacetraverse(subsegs); |
| 13932 | while (segloop.sh != (shellface *) NULL) { |
| 13933 | spivot(segloop, parentsh); |
| 13934 | if (parentsh.sh != NULL) { |
| 13935 | spivot(parentsh, neighsh); |
| 13936 | if (neighsh.sh != NULL) { |
| 13937 | spivot(neighsh, neineish); |
| 13938 | if (neineish.sh == parentsh.sh) { |
| 13939 | // Exactly two subfaces at this segment. |
| 13940 | fidx1 = shellmark(parentsh) - 1; |
| 13941 | fidx2 = shellmark(neighsh) - 1; |
| 13942 | // Only merge them if they are in different facet. |
| 13943 | if (fidx1 != fidx2) { |
| 13944 | // The two subfaces are not in the same facet. |
| 13945 | if (in->facetmarkerlist != NULL) { |
| 13946 | fmrk1 = in->facetmarkerlist[fidx1]; |
| 13947 | fmrk2 = in->facetmarkerlist[fidx2]; |
| 13948 | } else { |
| 13949 | fmrk1 = fmrk2 = 0; |
| 13950 | } |
| 13951 | // Only merge them if they have the same boundary marker. |
| 13952 | if (fmrk1 == fmrk2) { |
| 13953 | pa = sorg(segloop); |
| 13954 | pb = sdest(segloop); |
| 13955 | pc = sapex(parentsh); |
| 13956 | pd = sapex(neighsh); |
| 13957 | // Calculate the dihedral angle at the segment [a,b]. |
| 13958 | ang = facedihedral(pa, pb, pc, pd); |
| 13959 | if (ang > PI) ang = (2 * PI - ang); |
| 13960 | if (ang > ang_tol) { |
| 13961 | remsegcount++; |
| 13962 | ssdissolve(parentsh); |
| 13963 | ssdissolve(neighsh); |
| 13964 | shellfacedealloc(subsegs, segloop.sh); |
| 13965 | // Add the edge to flip stack. |
| 13966 | flipshpush(&parentsh); |
| 13967 | } // if (ang > ang_tol) |
| 13968 | } // if (fmrk1 == fmrk2) |
| 13969 | } // if (fidx1 != fidx2) |
| 13970 | } // if (neineish.sh == parentsh.sh) |
| 13971 | } |
| 13972 | } |
| 13973 | segloop.sh = shellfacetraverse(subsegs); |
| 13974 | } |
| 13975 | |
| 13976 | if (flipstack != NULL) { |
| 13977 | lawsonflip(); // Recover Delaunayness. |
| 13978 | } |
| 13979 | |
| 13980 | if (b->verbose > 1) { |
| 13981 | printf(" %d segments are removed.\n" , remsegcount); |
| 13982 | } |
| 13983 | } |
| 13984 | |
| 13985 | /////////////////////////////////////////////////////////////////////////////// |
| 13986 | // // |
| 13987 | // identifypscedges() Identify PSC edges. // |
| 13988 | // // |
| 13989 | // The set of PSC edges are provided in the 'in->edgelist'. Each edge should // |
| 13990 | // also be an edge in the surface mesh. We find the corresponding edges in // |
| 13991 | // the surface mesh and make them segments of the mesh. // |
| 13992 | // // |
| 13993 | // It is possible to give an edge which is not in any facet, i.e., it is a // |
| 13994 | // dangling edge inside the volume. // |
| 13995 | // // |
| 13996 | /////////////////////////////////////////////////////////////////////////////// |
| 13997 | |
| 13998 | void tetgenmesh::identifypscedges(point *idx2verlist) |
| 13999 | { |
| 14000 | face* shperverlist; |
| 14001 | int* idx2shlist; |
| 14002 | face searchsh, neighsh; |
| 14003 | face segloop, checkseg, newseg; |
| 14004 | point checkpt, pa = NULL, pb = NULL; |
| 14005 | int *endpts; |
| 14006 | int edgemarker; |
| 14007 | int idx, i, j; |
| 14008 | |
| 14009 | int e1, e2; |
| 14010 | REAL len; |
| 14011 | |
| 14012 | if (!b->quiet) { |
| 14013 | printf("Inserting edges ...\n" ); |
| 14014 | } |
| 14015 | |
| 14016 | // All identified segments have the initial marker '1'. |
| 14017 | // All segments inserted here should have a marker 'k >= 0'. |
| 14018 | |
| 14019 | if (b->psc) { |
| 14020 | // First mark all segments of the mesh with a marker '-1'. |
| 14021 | subsegs->traversalinit(); |
| 14022 | segloop.sh = shellfacetraverse(subsegs); |
| 14023 | while (segloop.sh != NULL) { |
| 14024 | setshellmark(segloop, -1); |
| 14025 | segloop.sh = shellfacetraverse(subsegs); |
| 14026 | } |
| 14027 | } |
| 14028 | |
| 14029 | // Construct a map from points to subfaces. |
| 14030 | makepoint2submap(subfaces, idx2shlist, shperverlist); |
| 14031 | |
| 14032 | // Process the set of PSC edges. |
| 14033 | for (i = 0; i < in->numberofedges; i++) { |
| 14034 | endpts = &(in->edgelist[(i << 1)]); |
| 14035 | edgemarker = in->edgemarkerlist ? in->edgemarkerlist[i] : 0; |
| 14036 | |
| 14037 | // Find a face contains the edge. |
| 14038 | newseg.sh = NULL; |
| 14039 | searchsh.sh = NULL; |
| 14040 | idx = endpts[0] - in->firstnumber; |
| 14041 | for (j = idx2shlist[idx]; j < idx2shlist[idx + 1]; j++) { |
| 14042 | checkpt = sdest(shperverlist[j]); |
| 14043 | if (pointmark(checkpt) == endpts[1]) { |
| 14044 | searchsh = shperverlist[j]; |
| 14045 | break; // Found. |
| 14046 | } else { |
| 14047 | checkpt = sapex(shperverlist[j]); |
| 14048 | if (pointmark(checkpt) == endpts[1]) { |
| 14049 | senext2(shperverlist[j], searchsh); |
| 14050 | sesymself(searchsh); |
| 14051 | break; |
| 14052 | } |
| 14053 | } |
| 14054 | } // j |
| 14055 | |
| 14056 | if (searchsh.sh != NULL) { |
| 14057 | // Check if this edge is already a segment of the mesh. |
| 14058 | sspivot(searchsh, checkseg); |
| 14059 | if (checkseg.sh != NULL) { |
| 14060 | // This segment already exist. |
| 14061 | newseg = checkseg; |
| 14062 | } else { |
| 14063 | // Create a new segment at this edge. |
| 14064 | pa = sorg(searchsh); |
| 14065 | pb = sdest(searchsh); |
| 14066 | makeshellface(subsegs, &newseg); |
| 14067 | setshvertices(newseg, pa, pb, NULL); |
| 14068 | ssbond(searchsh, newseg); |
| 14069 | spivot(searchsh, neighsh); |
| 14070 | if (neighsh.sh != NULL) { |
| 14071 | ssbond(neighsh, newseg); |
| 14072 | } |
| 14073 | if (b->psc) { |
| 14074 | if (pointtype(pa) == FREESEGVERTEX) { |
| 14075 | setpoint2sh(pa, sencode(newseg)); |
| 14076 | } |
| 14077 | if (pointtype(pb) == FREESEGVERTEX) { |
| 14078 | setpoint2sh(pb, sencode(newseg)); |
| 14079 | } |
| 14080 | } |
| 14081 | } |
| 14082 | } else { |
| 14083 | // It is a dangling segment (not belong to any facets). |
| 14084 | // Get the two endpoints of this segment. |
| 14085 | pa = idx2verlist[endpts[0]]; |
| 14086 | pb = idx2verlist[endpts[1]]; |
| 14087 | // Check if segment [a,b] already exists. |
| 14088 | // TODO: Change the brute-force search. Slow! |
| 14089 | point *ppt; |
| 14090 | subsegs->traversalinit(); |
| 14091 | segloop.sh = shellfacetraverse(subsegs); |
| 14092 | while (segloop.sh != NULL) { |
| 14093 | ppt = (point *) &(segloop.sh[3]); |
| 14094 | if (((ppt[0] == pa) && (ppt[1] == pb)) || |
| 14095 | ((ppt[0] == pb) && (ppt[1] == pa))) { |
| 14096 | // Found! |
| 14097 | newseg = segloop; |
| 14098 | break; |
| 14099 | } |
| 14100 | segloop.sh = shellfacetraverse(subsegs); |
| 14101 | } |
| 14102 | if (newseg.sh == NULL) { |
| 14103 | makeshellface(subsegs, &newseg); |
| 14104 | setshvertices(newseg, pa, pb, NULL); |
| 14105 | if (b->psc) { |
| 14106 | if (pointtype(pa) == FREESEGVERTEX) { |
| 14107 | setpoint2sh(pa, sencode(newseg)); |
| 14108 | } |
| 14109 | if (pointtype(pb) == FREESEGVERTEX) { |
| 14110 | setpoint2sh(pb, sencode(newseg)); |
| 14111 | } |
| 14112 | } |
| 14113 | } |
| 14114 | } |
| 14115 | |
| 14116 | setshellmark(newseg, edgemarker); |
| 14117 | |
| 14118 | if (b->quality && (in->segmentconstraintlist != (REAL *) NULL)) { |
| 14119 | for (i = 0; i < in->numberofsegmentconstraints; i++) { |
| 14120 | e1 = (int) in->segmentconstraintlist[i * 3]; |
| 14121 | e2 = (int) in->segmentconstraintlist[i * 3 + 1]; |
| 14122 | if (((pointmark(pa) == e1) && (pointmark(pb) == e2)) || |
| 14123 | ((pointmark(pa) == e2) && (pointmark(pb) == e1))) { |
| 14124 | len = in->segmentconstraintlist[i * 3 + 2]; |
| 14125 | setareabound(newseg, len); |
| 14126 | break; |
| 14127 | } |
| 14128 | } |
| 14129 | } |
| 14130 | } // i |
| 14131 | |
| 14132 | |
| 14133 | delete [] shperverlist; |
| 14134 | delete [] idx2shlist; |
| 14135 | |
| 14136 | if (b->psc) { |
| 14137 | // Removing all segments with a marker '-1'. |
| 14138 | subsegs->traversalinit(); |
| 14139 | segloop.sh = shellfacetraverse(subsegs); |
| 14140 | while (segloop.sh != NULL) { |
| 14141 | if (shellmark(segloop) == -1) { |
| 14142 | shellfacedealloc(subsegs, segloop.sh); |
| 14143 | } |
| 14144 | segloop.sh = shellfacetraverse(subsegs); |
| 14145 | } |
| 14146 | |
| 14147 | // Connecting subsegments at Steiner points. |
| 14148 | face seg1, seg2; |
| 14149 | // Re-use 'idx2shlist' and 'shperverlist'. |
| 14150 | makepoint2submap(subsegs, idx2shlist, shperverlist); |
| 14151 | |
| 14152 | points->traversalinit(); |
| 14153 | pa = pointtraverse(); |
| 14154 | while (pa != NULL) { |
| 14155 | if (pointtype(pa) == FREESEGVERTEX) { |
| 14156 | idx = pointmark(pa) - in->firstnumber; |
| 14157 | // There must be only two segments containing this vertex. |
| 14158 | assert((idx2shlist[idx + 1] - idx2shlist[idx]) == 2); |
| 14159 | i = idx2shlist[idx]; |
| 14160 | seg1 = shperverlist[i]; |
| 14161 | seg2 = shperverlist[i+1]; |
| 14162 | senextself(seg1); |
| 14163 | senextself(seg2); |
| 14164 | sbond(seg1, seg2); |
| 14165 | } |
| 14166 | pa = pointtraverse(); |
| 14167 | } |
| 14168 | |
| 14169 | delete [] shperverlist; |
| 14170 | delete [] idx2shlist; |
| 14171 | } |
| 14172 | } |
| 14173 | |
| 14174 | /////////////////////////////////////////////////////////////////////////////// |
| 14175 | // // |
| 14176 | // meshsurface() Create a surface mesh of the input PLC. // |
| 14177 | // // |
| 14178 | /////////////////////////////////////////////////////////////////////////////// |
| 14179 | |
| 14180 | void tetgenmesh::meshsurface() |
| 14181 | { |
| 14182 | arraypool *ptlist, *conlist; |
| 14183 | point *idx2verlist; |
| 14184 | point tstart, tend, *pnewpt, *cons; |
| 14185 | tetgenio::facet *f; |
| 14186 | tetgenio::polygon *p; |
| 14187 | int end1, end2; |
| 14188 | int shmark, i, j; |
| 14189 | |
| 14190 | if (!b->quiet) { |
| 14191 | printf("Creating surface mesh ...\n" ); |
| 14192 | } |
| 14193 | |
| 14194 | // Create a map from indices to points. |
| 14195 | makeindex2pointmap(idx2verlist); |
| 14196 | |
| 14197 | // Initialize arrays (block size: 2^8 = 256). |
| 14198 | ptlist = new arraypool(sizeof(point *), 8); |
| 14199 | conlist = new arraypool(2 * sizeof(point *), 8); |
| 14200 | |
| 14201 | // Loop the facet list, triangulate each facet. |
| 14202 | for (shmark = 1; shmark <= in->numberoffacets; shmark++) { |
| 14203 | |
| 14204 | // Get a facet F. |
| 14205 | f = &in->facetlist[shmark - 1]; |
| 14206 | |
| 14207 | // Process the duplicated points first, they are marked with type |
| 14208 | // DUPLICATEDVERTEX. If p and q are duplicated, and p'index > q's, |
| 14209 | // then p is substituted by q. |
| 14210 | if (dupverts > 0l) { |
| 14211 | // Loop all polygons of this facet. |
| 14212 | for (i = 0; i < f->numberofpolygons; i++) { |
| 14213 | p = &(f->polygonlist[i]); |
| 14214 | // Loop other vertices of this polygon. |
| 14215 | for (j = 0; j < p->numberofvertices; j++) { |
| 14216 | end1 = p->vertexlist[j]; |
| 14217 | tstart = idx2verlist[end1]; |
| 14218 | if (pointtype(tstart) == DUPLICATEDVERTEX) { |
| 14219 | // Reset the index of vertex-j. |
| 14220 | tend = point2ppt(tstart); |
| 14221 | end2 = pointmark(tend); |
| 14222 | p->vertexlist[j] = end2; |
| 14223 | } |
| 14224 | } |
| 14225 | } |
| 14226 | } |
| 14227 | |
| 14228 | // Loop polygons of F, get the set of vertices and segments. |
| 14229 | for (i = 0; i < f->numberofpolygons; i++) { |
| 14230 | // Get a polygon. |
| 14231 | p = &(f->polygonlist[i]); |
| 14232 | // Get the first vertex. |
| 14233 | end1 = p->vertexlist[0]; |
| 14234 | if ((end1 < in->firstnumber) || |
| 14235 | (end1 >= in->firstnumber + in->numberofpoints)) { |
| 14236 | if (!b->quiet) { |
| 14237 | printf("Warning: Invalid the 1st vertex %d of polygon" , end1); |
| 14238 | printf(" %d in facet %d.\n" , i + 1, shmark); |
| 14239 | } |
| 14240 | continue; // Skip this polygon. |
| 14241 | } |
| 14242 | tstart = idx2verlist[end1]; |
| 14243 | // Add tstart to V if it haven't been added yet. |
| 14244 | if (!pinfected(tstart)) { |
| 14245 | pinfect(tstart); |
| 14246 | ptlist->newindex((void **) &pnewpt); |
| 14247 | *pnewpt = tstart; |
| 14248 | } |
| 14249 | // Loop other vertices of this polygon. |
| 14250 | for (j = 1; j <= p->numberofvertices; j++) { |
| 14251 | // get a vertex. |
| 14252 | if (j < p->numberofvertices) { |
| 14253 | end2 = p->vertexlist[j]; |
| 14254 | } else { |
| 14255 | end2 = p->vertexlist[0]; // Form a loop from last to first. |
| 14256 | } |
| 14257 | if ((end2 < in->firstnumber) || |
| 14258 | (end2 >= in->firstnumber + in->numberofpoints)) { |
| 14259 | if (!b->quiet) { |
| 14260 | printf("Warning: Invalid vertex %d in polygon %d" , end2, i + 1); |
| 14261 | printf(" in facet %d.\n" , shmark); |
| 14262 | } |
| 14263 | } else { |
| 14264 | if (end1 != end2) { |
| 14265 | // 'end1' and 'end2' form a segment. |
| 14266 | tend = idx2verlist[end2]; |
| 14267 | // Add tstart to V if it haven't been added yet. |
| 14268 | if (!pinfected(tend)) { |
| 14269 | pinfect(tend); |
| 14270 | ptlist->newindex((void **) &pnewpt); |
| 14271 | *pnewpt = tend; |
| 14272 | } |
| 14273 | // Save the segment in S (conlist). |
| 14274 | conlist->newindex((void **) &cons); |
| 14275 | cons[0] = tstart; |
| 14276 | cons[1] = tend; |
| 14277 | // Set the start for next continuous segment. |
| 14278 | end1 = end2; |
| 14279 | tstart = tend; |
| 14280 | } else { |
| 14281 | // Two identical vertices mean an isolated vertex of F. |
| 14282 | if (p->numberofvertices > 2) { |
| 14283 | // This may be an error in the input, anyway, we can continue |
| 14284 | // by simply skipping this segment. |
| 14285 | if (!b->quiet) { |
| 14286 | printf("Warning: Polygon %d has two identical verts" , i + 1); |
| 14287 | printf(" in facet %d.\n" , shmark); |
| 14288 | } |
| 14289 | } |
| 14290 | // Ignore this vertex. |
| 14291 | } |
| 14292 | } |
| 14293 | // Is the polygon degenerate (a segment or a vertex)? |
| 14294 | if (p->numberofvertices == 2) break; |
| 14295 | } |
| 14296 | } |
| 14297 | // Unmark vertices. |
| 14298 | for (i = 0; i < ptlist->objects; i++) { |
| 14299 | pnewpt = (point *) fastlookup(ptlist, i); |
| 14300 | puninfect(*pnewpt); |
| 14301 | } |
| 14302 | |
| 14303 | // Triangulate F into a CDT. |
| 14304 | triangulate(shmark, ptlist, conlist, f->numberofholes, f->holelist); |
| 14305 | |
| 14306 | // Clear working lists. |
| 14307 | ptlist->restart(); |
| 14308 | conlist->restart(); |
| 14309 | } |
| 14310 | |
| 14311 | if (!b->diagnose) { |
| 14312 | // Remove redundant segments and build the face links. |
| 14313 | unifysegments(); |
| 14314 | if (!b->psc && !b->nomergefacet && !b->nobisect) { |
| 14315 | // Merge adjacent coplanar facets. |
| 14316 | mergefacets(); |
| 14317 | } |
| 14318 | if (in->numberofedges > 0) { // if (b->psc) |
| 14319 | // There are segments specified by the user. Read and create them. |
| 14320 | identifypscedges(idx2verlist); |
| 14321 | } |
| 14322 | if (!b->psc) { |
| 14323 | // Mark all segment vertices to be RIDGEVERTEX. |
| 14324 | face segloop; |
| 14325 | point *ppt; |
| 14326 | subsegs->traversalinit(); |
| 14327 | segloop.sh = shellfacetraverse(subsegs); |
| 14328 | while (segloop.sh != NULL) { |
| 14329 | ppt = (point *) &(segloop.sh[3]); |
| 14330 | setpointtype(ppt[0], RIDGEVERTEX); |
| 14331 | setpointtype(ppt[1], RIDGEVERTEX); |
| 14332 | segloop.sh = shellfacetraverse(subsegs); |
| 14333 | } |
| 14334 | } |
| 14335 | } |
| 14336 | |
| 14337 | if (b->object == tetgenbehavior::STL) { |
| 14338 | // Remove redundant vertices (for .stl input mesh). |
| 14339 | jettisonnodes(); |
| 14340 | } |
| 14341 | |
| 14342 | if (b->verbose) { |
| 14343 | printf(" %ld (%ld) subfaces (segments).\n" , subfaces->items, |
| 14344 | subsegs->items); |
| 14345 | } |
| 14346 | |
| 14347 | // The total number of iunput segments. |
| 14348 | insegments = subsegs->items; |
| 14349 | |
| 14350 | delete [] idx2verlist; |
| 14351 | delete ptlist; |
| 14352 | delete conlist; |
| 14353 | } |
| 14354 | |
| 14355 | /////////////////////////////////////////////////////////////////////////////// |
| 14356 | // // |
| 14357 | // interecursive() Recursively do intersection test on a set of triangles.// |
| 14358 | // // |
| 14359 | // Recursively split the set 'subfacearray' of subfaces into two sets using // |
| 14360 | // a cut plane parallel to x-, or, y-, or z-axis. The split criteria are // |
| 14361 | // follows. Assume the cut plane is H, and H+ denotes the left halfspace of // |
| 14362 | // H, and H- denotes the right halfspace of H; and s be a subface: // |
| 14363 | // // |
| 14364 | // (1) If all points of s lie at H+, put it into left array; // |
| 14365 | // (2) If all points of s lie at H-, put it into right array; // |
| 14366 | // (3) If some points of s lie at H+ and some of lie at H-, or some // |
| 14367 | // points lie on H, put it into both arraies. // |
| 14368 | // // |
| 14369 | // Partitions by x-axis if axis == '0'; by y-axis if axis == '1'; by z-axis // |
| 14370 | // if axis == '2'. If current cut plane is parallel to the x-axis, the next // |
| 14371 | // one will be parallel to y-axis, and the next one after the next is z-axis,// |
| 14372 | // and then alternately return back to x-axis. // |
| 14373 | // // |
| 14374 | // Stop splitting when the number of triangles of the input array is not // |
| 14375 | // decreased anymore. Do tests on the current set. // |
| 14376 | // // |
| 14377 | /////////////////////////////////////////////////////////////////////////////// |
| 14378 | |
| 14379 | void tetgenmesh::interecursive(shellface** subfacearray, int arraysize, |
| 14380 | int axis, REAL bxmin, REAL bxmax, REAL bymin, |
| 14381 | REAL bymax, REAL bzmin, REAL bzmax, |
| 14382 | int* internum) |
| 14383 | { |
| 14384 | shellface **leftarray, **rightarray; |
| 14385 | face sface1, sface2; |
| 14386 | point p1, p2, p3; |
| 14387 | point p4, p5, p6; |
| 14388 | enum interresult intersect; |
| 14389 | REAL split; |
| 14390 | bool toleft, toright; |
| 14391 | int leftsize, rightsize; |
| 14392 | int i, j; |
| 14393 | |
| 14394 | if (b->verbose > 2) { |
| 14395 | printf(" Recur %d faces. Bbox (%g, %g, %g),(%g, %g, %g). %s-axis\n" , |
| 14396 | arraysize, bxmin, bymin, bzmin, bxmax, bymax, bzmax, |
| 14397 | axis == 0 ? "x" : (axis == 1 ? "y" : "z" )); |
| 14398 | } |
| 14399 | |
| 14400 | leftarray = new shellface*[arraysize]; |
| 14401 | if (leftarray == NULL) { |
| 14402 | terminatetetgen(this, 1); |
| 14403 | } |
| 14404 | rightarray = new shellface*[arraysize]; |
| 14405 | if (rightarray == NULL) { |
| 14406 | terminatetetgen(this, 1); |
| 14407 | } |
| 14408 | leftsize = rightsize = 0; |
| 14409 | |
| 14410 | if (axis == 0) { |
| 14411 | // Split along x-axis. |
| 14412 | split = 0.5 * (bxmin + bxmax); |
| 14413 | } else if (axis == 1) { |
| 14414 | // Split along y-axis. |
| 14415 | split = 0.5 * (bymin + bymax); |
| 14416 | } else { |
| 14417 | // Split along z-axis. |
| 14418 | split = 0.5 * (bzmin + bzmax); |
| 14419 | } |
| 14420 | |
| 14421 | for (i = 0; i < arraysize; i++) { |
| 14422 | sface1.sh = subfacearray[i]; |
| 14423 | p1 = (point) sface1.sh[3]; |
| 14424 | p2 = (point) sface1.sh[4]; |
| 14425 | p3 = (point) sface1.sh[5]; |
| 14426 | toleft = toright = false; |
| 14427 | if (p1[axis] < split) { |
| 14428 | toleft = true; |
| 14429 | if (p2[axis] >= split || p3[axis] >= split) { |
| 14430 | toright = true; |
| 14431 | } |
| 14432 | } else if (p1[axis] > split) { |
| 14433 | toright = true; |
| 14434 | if (p2[axis] <= split || p3[axis] <= split) { |
| 14435 | toleft = true; |
| 14436 | } |
| 14437 | } else { |
| 14438 | // p1[axis] == split; |
| 14439 | toleft = true; |
| 14440 | toright = true; |
| 14441 | } |
| 14442 | // At least one is true; |
| 14443 | assert(!(toleft == false && toright == false)); |
| 14444 | if (toleft) { |
| 14445 | leftarray[leftsize] = sface1.sh; |
| 14446 | leftsize++; |
| 14447 | } |
| 14448 | if (toright) { |
| 14449 | rightarray[rightsize] = sface1.sh; |
| 14450 | rightsize++; |
| 14451 | } |
| 14452 | } |
| 14453 | |
| 14454 | if (leftsize < arraysize && rightsize < arraysize) { |
| 14455 | // Continue to partition the input set. Now 'subfacearray' has been |
| 14456 | // split into two sets, it's memory can be freed. 'leftarray' and |
| 14457 | // 'rightarray' will be freed in the next recursive (after they're |
| 14458 | // partitioned again or performing tests). |
| 14459 | delete [] subfacearray; |
| 14460 | // Continue to split these two sets. |
| 14461 | if (axis == 0) { |
| 14462 | interecursive(leftarray, leftsize, 1, bxmin, split, bymin, bymax, |
| 14463 | bzmin, bzmax, internum); |
| 14464 | interecursive(rightarray, rightsize, 1, split, bxmax, bymin, bymax, |
| 14465 | bzmin, bzmax, internum); |
| 14466 | } else if (axis == 1) { |
| 14467 | interecursive(leftarray, leftsize, 2, bxmin, bxmax, bymin, split, |
| 14468 | bzmin, bzmax, internum); |
| 14469 | interecursive(rightarray, rightsize, 2, bxmin, bxmax, split, bymax, |
| 14470 | bzmin, bzmax, internum); |
| 14471 | } else { |
| 14472 | interecursive(leftarray, leftsize, 0, bxmin, bxmax, bymin, bymax, |
| 14473 | bzmin, split, internum); |
| 14474 | interecursive(rightarray, rightsize, 0, bxmin, bxmax, bymin, bymax, |
| 14475 | split, bzmax, internum); |
| 14476 | } |
| 14477 | } else { |
| 14478 | if (b->verbose > 1) { |
| 14479 | printf(" Checking intersecting faces.\n" ); |
| 14480 | } |
| 14481 | // Perform a brute-force compare on the set. |
| 14482 | for (i = 0; i < arraysize; i++) { |
| 14483 | sface1.sh = subfacearray[i]; |
| 14484 | p1 = (point) sface1.sh[3]; |
| 14485 | p2 = (point) sface1.sh[4]; |
| 14486 | p3 = (point) sface1.sh[5]; |
| 14487 | for (j = i + 1; j < arraysize; j++) { |
| 14488 | sface2.sh = subfacearray[j]; |
| 14489 | p4 = (point) sface2.sh[3]; |
| 14490 | p5 = (point) sface2.sh[4]; |
| 14491 | p6 = (point) sface2.sh[5]; |
| 14492 | intersect = (enum interresult) tri_tri_inter(p1, p2, p3, p4, p5, p6); |
| 14493 | if (intersect == INTERSECT || intersect == SHAREFACE) { |
| 14494 | if (!b->quiet) { |
| 14495 | if (intersect == INTERSECT) { |
| 14496 | printf(" Facet #%d intersects facet #%d at triangles:\n" , |
| 14497 | shellmark(sface1), shellmark(sface2)); |
| 14498 | printf(" (%4d, %4d, %4d) and (%4d, %4d, %4d)\n" , |
| 14499 | pointmark(p1), pointmark(p2), pointmark(p3), |
| 14500 | pointmark(p4), pointmark(p5), pointmark(p6)); |
| 14501 | } else { |
| 14502 | printf(" Facet #%d duplicates facet #%d at triangle:\n" , |
| 14503 | shellmark(sface1), shellmark(sface2)); |
| 14504 | printf(" (%4d, %4d, %4d) and (%4d, %4d, %4d)\n" , |
| 14505 | pointmark(p1), pointmark(p2), pointmark(p3), |
| 14506 | pointmark(p4), pointmark(p5), pointmark(p6)); |
| 14507 | } |
| 14508 | } |
| 14509 | // Increase the number of intersecting pairs. |
| 14510 | (*internum)++; |
| 14511 | // Infect these two faces (although they may already be infected). |
| 14512 | sinfect(sface1); |
| 14513 | sinfect(sface2); |
| 14514 | } |
| 14515 | } |
| 14516 | } |
| 14517 | // Don't forget to free all three arrays. No further partition. |
| 14518 | delete [] leftarray; |
| 14519 | delete [] rightarray; |
| 14520 | delete [] subfacearray; |
| 14521 | } |
| 14522 | } |
| 14523 | |
| 14524 | /////////////////////////////////////////////////////////////////////////////// |
| 14525 | // // |
| 14526 | // detectinterfaces() Detect intersecting triangles. // |
| 14527 | // // |
| 14528 | // Given a set of triangles, find the pairs of intersecting triangles from // |
| 14529 | // them. Here the set of triangles is in 'subfaces' which is a surface mesh // |
| 14530 | // of a PLC (.poly or .smesh). // |
| 14531 | // // |
| 14532 | // To detect whether two triangles are intersecting is done by the routine // |
| 14533 | // 'tri_tri_inter()'. The algorithm for the test is very simple and stable. // |
| 14534 | // It is based on geometric orientation test which uses exact arithmetics. // |
| 14535 | // // |
| 14536 | // Use divide-and-conquer algorithm for reducing the number of intersection // |
| 14537 | // tests. Start from the bounding box of the input point set, recursively // |
| 14538 | // partition the box into smaller boxes, until the number of triangles in a // |
| 14539 | // box is not decreased anymore. Then perform triangle-triangle tests on the // |
| 14540 | // remaining set of triangles. The memory allocated in the input set is // |
| 14541 | // freed immediately after it has been partitioned into two arrays. So it // |
| 14542 | // can be re-used for the consequent partitions. // |
| 14543 | // // |
| 14544 | // On return, the pool 'subfaces' will be cleared, and only the intersecting // |
| 14545 | // triangles remain for output (to a .face file). // |
| 14546 | // // |
| 14547 | /////////////////////////////////////////////////////////////////////////////// |
| 14548 | |
| 14549 | void tetgenmesh::detectinterfaces() |
| 14550 | { |
| 14551 | shellface **subfacearray; |
| 14552 | face shloop; |
| 14553 | int internum; |
| 14554 | int i; |
| 14555 | |
| 14556 | if (!b->quiet) { |
| 14557 | printf("Detecting self-intersecting facets...\n" ); |
| 14558 | } |
| 14559 | |
| 14560 | // Construct a map from indices to subfaces; |
| 14561 | subfacearray = new shellface*[subfaces->items]; |
| 14562 | subfaces->traversalinit(); |
| 14563 | shloop.sh = shellfacetraverse(subfaces); |
| 14564 | i = 0; |
| 14565 | while (shloop.sh != (shellface *) NULL) { |
| 14566 | subfacearray[i] = shloop.sh; |
| 14567 | shloop.sh = shellfacetraverse(subfaces); |
| 14568 | i++; |
| 14569 | } |
| 14570 | |
| 14571 | internum = 0; |
| 14572 | // Recursively split the set of triangles into two sets using a cut plane |
| 14573 | // parallel to x-, or, y-, or z-axis. Stop splitting when the number |
| 14574 | // of subfaces is not decreasing anymore. Do tests on the current set. |
| 14575 | interecursive(subfacearray, subfaces->items, 0, xmin, xmax, ymin, ymax, |
| 14576 | zmin, zmax, &internum); |
| 14577 | |
| 14578 | if (!b->quiet) { |
| 14579 | if (internum > 0) { |
| 14580 | printf("\n!! Found %d pairs of faces are intersecting.\n\n" , internum); |
| 14581 | } else { |
| 14582 | printf("\nNo faces are intersecting.\n\n" ); |
| 14583 | } |
| 14584 | } |
| 14585 | |
| 14586 | if (internum > 0) { |
| 14587 | // Traverse all subfaces, deallocate those have not been infected (they |
| 14588 | // are not intersecting faces). Uninfect those have been infected. |
| 14589 | // After this loop, only intersecting faces remain. |
| 14590 | subfaces->traversalinit(); |
| 14591 | shloop.sh = shellfacetraverse(subfaces); |
| 14592 | while (shloop.sh != (shellface *) NULL) { |
| 14593 | if (sinfected(shloop)) { |
| 14594 | suninfect(shloop); |
| 14595 | } else { |
| 14596 | shellfacedealloc(subfaces, shloop.sh); |
| 14597 | } |
| 14598 | shloop.sh = shellfacetraverse(subfaces); |
| 14599 | } |
| 14600 | } else { |
| 14601 | // Deallocate all subfaces. |
| 14602 | subfaces->restart(); |
| 14603 | } |
| 14604 | } |
| 14605 | |
| 14606 | //// //// |
| 14607 | //// //// |
| 14608 | //// surface_cxx ////////////////////////////////////////////////////////////// |
| 14609 | |
| 14610 | //// constrained_cxx ////////////////////////////////////////////////////////// |
| 14611 | //// //// |
| 14612 | //// //// |
| 14613 | |
| 14614 | /////////////////////////////////////////////////////////////////////////////// |
| 14615 | // // |
| 14616 | // makesegmentendpointsmap() Create a map from a segment to its endpoints.// |
| 14617 | // // |
| 14618 | // The map is saved in the array 'segmentendpointslist'. The length of this // |
| 14619 | // array is twice the number of segments. Each segment is assigned a unique // |
| 14620 | // index (starting from 0). // |
| 14621 | // // |
| 14622 | /////////////////////////////////////////////////////////////////////////////// |
| 14623 | |
| 14624 | void tetgenmesh::makesegmentendpointsmap() |
| 14625 | { |
| 14626 | arraypool *segptlist; |
| 14627 | face segloop, prevseg, nextseg; |
| 14628 | point eorg, edest, *parypt; |
| 14629 | int segindex = 0, idx = 0; |
| 14630 | int i; |
| 14631 | |
| 14632 | if (b->verbose > 0) { |
| 14633 | printf(" Creating the segment-endpoints map.\n" ); |
| 14634 | } |
| 14635 | |
| 14636 | segptlist = new arraypool(2 * sizeof(point), 10); |
| 14637 | |
| 14638 | // A segment s may have been split into many subsegments. Operate the one |
| 14639 | // which contains the origin of s. Then mark the rest of subsegments. |
| 14640 | subsegs->traversalinit(); |
| 14641 | segloop.sh = shellfacetraverse(subsegs); |
| 14642 | segloop.shver = 0; |
| 14643 | while (segloop.sh != NULL) { |
| 14644 | senext2(segloop, prevseg); |
| 14645 | spivotself(prevseg); |
| 14646 | if (prevseg.sh == NULL) { |
| 14647 | eorg = sorg(segloop); |
| 14648 | edest = sdest(segloop); |
| 14649 | setfacetindex(segloop, segindex); |
| 14650 | senext(segloop, nextseg); |
| 14651 | spivotself(nextseg); |
| 14652 | while (nextseg.sh != NULL) { |
| 14653 | setfacetindex(nextseg, segindex); |
| 14654 | nextseg.shver = 0; |
| 14655 | if (sorg(nextseg) != edest) sesymself(nextseg); |
| 14656 | assert(sorg(nextseg) == edest); |
| 14657 | edest = sdest(nextseg); |
| 14658 | // Go the next connected subsegment at edest. |
| 14659 | senextself(nextseg); |
| 14660 | spivotself(nextseg); |
| 14661 | } |
| 14662 | segptlist->newindex((void **) &parypt); |
| 14663 | parypt[0] = eorg; |
| 14664 | parypt[1] = edest; |
| 14665 | segindex++; |
| 14666 | } |
| 14667 | segloop.sh = shellfacetraverse(subsegs); |
| 14668 | } |
| 14669 | |
| 14670 | if (b->verbose) { |
| 14671 | printf(" Found %ld segments.\n" , segptlist->objects); |
| 14672 | } |
| 14673 | |
| 14674 | segmentendpointslist = new point[segptlist->objects * 2]; |
| 14675 | |
| 14676 | totalworkmemory += (segptlist->objects * 2) * sizeof(point *); |
| 14677 | |
| 14678 | for (i = 0; i < segptlist->objects; i++) { |
| 14679 | parypt = (point *) fastlookup(segptlist, i); |
| 14680 | segmentendpointslist[idx++] = parypt[0]; |
| 14681 | segmentendpointslist[idx++] = parypt[1]; |
| 14682 | } |
| 14683 | |
| 14684 | delete segptlist; |
| 14685 | } |
| 14686 | |
| 14687 | |
| 14688 | /////////////////////////////////////////////////////////////////////////////// |
| 14689 | // // |
| 14690 | // finddirection() Find the tet on the path from one point to another. // |
| 14691 | // // |
| 14692 | // The path starts from 'searchtet''s origin and ends at 'endpt'. On finish, // |
| 14693 | // 'searchtet' contains a tet on the path, its origin does not change. // |
| 14694 | // // |
| 14695 | // The return value indicates one of the following cases (let 'searchtet' be // |
| 14696 | // abcd, a is the origin of the path): // |
| 14697 | // - ACROSSVERT, edge ab is collinear with the path; // |
| 14698 | // - ACROSSEDGE, edge bc intersects with the path; // |
| 14699 | // - ACROSSFACE, face bcd intersects with the path. // |
| 14700 | // // |
| 14701 | // WARNING: This routine is designed for convex triangulations, and will not // |
| 14702 | // generally work after the holes and concavities have been carved. // |
| 14703 | // // |
| 14704 | /////////////////////////////////////////////////////////////////////////////// |
| 14705 | |
| 14706 | enum tetgenmesh::interresult |
| 14707 | tetgenmesh::finddirection(triface* searchtet, point endpt) |
| 14708 | { |
| 14709 | triface neightet; |
| 14710 | point pa, pb, pc, pd; |
| 14711 | enum {HMOVE, RMOVE, LMOVE} nextmove; |
| 14712 | REAL hori, rori, lori; |
| 14713 | int t1ver; |
| 14714 | int s; |
| 14715 | |
| 14716 | // The origin is fixed. |
| 14717 | pa = org(*searchtet); |
| 14718 | if ((point) searchtet->tet[7] == dummypoint) { |
| 14719 | // A hull tet. Choose the neighbor of its base face. |
| 14720 | decode(searchtet->tet[3], *searchtet); |
| 14721 | // Reset the origin to be pa. |
| 14722 | if ((point) searchtet->tet[4] == pa) { |
| 14723 | searchtet->ver = 11; |
| 14724 | } else if ((point) searchtet->tet[5] == pa) { |
| 14725 | searchtet->ver = 3; |
| 14726 | } else if ((point) searchtet->tet[6] == pa) { |
| 14727 | searchtet->ver = 7; |
| 14728 | } else { |
| 14729 | assert((point) searchtet->tet[7] == pa); |
| 14730 | searchtet->ver = 0; |
| 14731 | } |
| 14732 | } |
| 14733 | |
| 14734 | pb = dest(*searchtet); |
| 14735 | // Check whether the destination or apex is 'endpt'. |
| 14736 | if (pb == endpt) { |
| 14737 | // pa->pb is the search edge. |
| 14738 | return ACROSSVERT; |
| 14739 | } |
| 14740 | |
| 14741 | pc = apex(*searchtet); |
| 14742 | if (pc == endpt) { |
| 14743 | // pa->pc is the search edge. |
| 14744 | eprevesymself(*searchtet); |
| 14745 | return ACROSSVERT; |
| 14746 | } |
| 14747 | |
| 14748 | // Walk through tets around pa until the right one is found. |
| 14749 | while (1) { |
| 14750 | |
| 14751 | pd = oppo(*searchtet); |
| 14752 | // Check whether the opposite vertex is 'endpt'. |
| 14753 | if (pd == endpt) { |
| 14754 | // pa->pd is the search edge. |
| 14755 | esymself(*searchtet); |
| 14756 | enextself(*searchtet); |
| 14757 | return ACROSSVERT; |
| 14758 | } |
| 14759 | // Check if we have entered outside of the domain. |
| 14760 | if (pd == dummypoint) { |
| 14761 | // This is possible when the mesh is non-convex. |
| 14762 | assert(nonconvex); |
| 14763 | return ACROSSSUB; // Hit a bounday. |
| 14764 | } |
| 14765 | |
| 14766 | // Now assume that the base face abc coincides with the horizon plane, |
| 14767 | // and d lies above the horizon. The search point 'endpt' may lie |
| 14768 | // above or below the horizon. We test the orientations of 'endpt' |
| 14769 | // with respect to three planes: abc (horizon), bad (right plane), |
| 14770 | // and acd (left plane). |
| 14771 | hori = orient3d(pa, pb, pc, endpt); |
| 14772 | rori = orient3d(pb, pa, pd, endpt); |
| 14773 | lori = orient3d(pa, pc, pd, endpt); |
| 14774 | |
| 14775 | // Now decide the tet to move. It is possible there are more than one |
| 14776 | // tets are viable moves. Is so, randomly choose one. |
| 14777 | if (hori > 0) { |
| 14778 | if (rori > 0) { |
| 14779 | if (lori > 0) { |
| 14780 | // Any of the three neighbors is a viable move. |
| 14781 | s = randomnation(3); |
| 14782 | if (s == 0) { |
| 14783 | nextmove = HMOVE; |
| 14784 | } else if (s == 1) { |
| 14785 | nextmove = RMOVE; |
| 14786 | } else { |
| 14787 | nextmove = LMOVE; |
| 14788 | } |
| 14789 | } else { |
| 14790 | // Two tets, below horizon and below right, are viable. |
| 14791 | //s = randomnation(2); |
| 14792 | if (randomnation(2)) { |
| 14793 | nextmove = HMOVE; |
| 14794 | } else { |
| 14795 | nextmove = RMOVE; |
| 14796 | } |
| 14797 | } |
| 14798 | } else { |
| 14799 | if (lori > 0) { |
| 14800 | // Two tets, below horizon and below left, are viable. |
| 14801 | //s = randomnation(2); |
| 14802 | if (randomnation(2)) { |
| 14803 | nextmove = HMOVE; |
| 14804 | } else { |
| 14805 | nextmove = LMOVE; |
| 14806 | } |
| 14807 | } else { |
| 14808 | // The tet below horizon is chosen. |
| 14809 | nextmove = HMOVE; |
| 14810 | } |
| 14811 | } |
| 14812 | } else { |
| 14813 | if (rori > 0) { |
| 14814 | if (lori > 0) { |
| 14815 | // Two tets, below right and below left, are viable. |
| 14816 | //s = randomnation(2); |
| 14817 | if (randomnation(2)) { |
| 14818 | nextmove = RMOVE; |
| 14819 | } else { |
| 14820 | nextmove = LMOVE; |
| 14821 | } |
| 14822 | } else { |
| 14823 | // The tet below right is chosen. |
| 14824 | nextmove = RMOVE; |
| 14825 | } |
| 14826 | } else { |
| 14827 | if (lori > 0) { |
| 14828 | // The tet below left is chosen. |
| 14829 | nextmove = LMOVE; |
| 14830 | } else { |
| 14831 | // 'endpt' lies either on the plane(s) or across face bcd. |
| 14832 | if (hori == 0) { |
| 14833 | if (rori == 0) { |
| 14834 | // pa->'endpt' is COLLINEAR with pa->pb. |
| 14835 | return ACROSSVERT; |
| 14836 | } |
| 14837 | if (lori == 0) { |
| 14838 | // pa->'endpt' is COLLINEAR with pa->pc. |
| 14839 | eprevesymself(*searchtet); // // [a,c,d] |
| 14840 | return ACROSSVERT; |
| 14841 | } |
| 14842 | // pa->'endpt' crosses the edge pb->pc. |
| 14843 | return ACROSSEDGE; |
| 14844 | } |
| 14845 | if (rori == 0) { |
| 14846 | if (lori == 0) { |
| 14847 | // pa->'endpt' is COLLINEAR with pa->pd. |
| 14848 | esymself(*searchtet); // face bad. |
| 14849 | enextself(*searchtet); // face [a,d,b] |
| 14850 | return ACROSSVERT; |
| 14851 | } |
| 14852 | // pa->'endpt' crosses the edge pb->pd. |
| 14853 | esymself(*searchtet); // face bad. |
| 14854 | enextself(*searchtet); // face adb |
| 14855 | return ACROSSEDGE; |
| 14856 | } |
| 14857 | if (lori == 0) { |
| 14858 | // pa->'endpt' crosses the edge pc->pd. |
| 14859 | eprevesymself(*searchtet); // [a,c,d] |
| 14860 | return ACROSSEDGE; |
| 14861 | } |
| 14862 | // pa->'endpt' crosses the face bcd. |
| 14863 | return ACROSSFACE; |
| 14864 | } |
| 14865 | } |
| 14866 | } |
| 14867 | |
| 14868 | // Move to the next tet, fix pa as its origin. |
| 14869 | if (nextmove == RMOVE) { |
| 14870 | fnextself(*searchtet); |
| 14871 | } else if (nextmove == LMOVE) { |
| 14872 | eprevself(*searchtet); |
| 14873 | fnextself(*searchtet); |
| 14874 | enextself(*searchtet); |
| 14875 | } else { // HMOVE |
| 14876 | fsymself(*searchtet); |
| 14877 | enextself(*searchtet); |
| 14878 | } |
| 14879 | assert(org(*searchtet) == pa); |
| 14880 | pb = dest(*searchtet); |
| 14881 | pc = apex(*searchtet); |
| 14882 | |
| 14883 | } // while (1) |
| 14884 | |
| 14885 | } |
| 14886 | |
| 14887 | /////////////////////////////////////////////////////////////////////////////// |
| 14888 | // // |
| 14889 | // scoutsegment() Search an edge in the tetrahedralization. // |
| 14890 | // // |
| 14891 | // If the edge is found, it returns SHAREEDGE, and 'searchtet' returns the // |
| 14892 | // edge from startpt to endpt. // |
| 14893 | // // |
| 14894 | // If the edge is missing, it returns either ACROSSEDGE or ACROSSFACE, which // |
| 14895 | // indicates that the edge intersects an edge or a face. If 'refpt' is NULL,// |
| 14896 | // 'searchtet' returns the edge or face. If 'refpt' is not NULL, it returns // |
| 14897 | // a vertex which encroaches upon this edge, and 'searchtet' returns a tet // |
| 14898 | // which containing 'refpt'. // |
| 14899 | // // |
| 14900 | // The following cases can happen when the input PLC is not valid. // |
| 14901 | // - ACROSSVERT, the edge intersects a vertex return by the origin of // |
| 14902 | // 'searchtet'. // |
| 14903 | // - ACROSSSEG, the edge intersects a segment returned by 'searchtet'. // |
| 14904 | // - ACROSSSUB, the edge intersects a subface returned by 'searchtet'. // |
| 14905 | // // |
| 14906 | /////////////////////////////////////////////////////////////////////////////// |
| 14907 | |
| 14908 | enum tetgenmesh::interresult |
| 14909 | tetgenmesh::scoutsegment(point startpt, point endpt, triface* searchtet, |
| 14910 | point* refpt, arraypool* intfacelist) |
| 14911 | { |
| 14912 | point pd; |
| 14913 | enum interresult dir; |
| 14914 | int t1ver; |
| 14915 | |
| 14916 | if (b->verbose > 2) { |
| 14917 | printf(" Scout seg (%d, %d).\n" ,pointmark(startpt),pointmark(endpt)); |
| 14918 | } |
| 14919 | |
| 14920 | point2tetorg(startpt, *searchtet); |
| 14921 | dir = finddirection(searchtet, endpt); |
| 14922 | |
| 14923 | if (dir == ACROSSVERT) { |
| 14924 | pd = dest(*searchtet); |
| 14925 | if (pd == endpt) { |
| 14926 | // The job is done. |
| 14927 | return SHAREEDGE; |
| 14928 | } else { |
| 14929 | // A point is on the path. |
| 14930 | // Let the origin of the searchtet be the vertex. |
| 14931 | enextself(*searchtet); |
| 14932 | if (refpt) *refpt = pd; |
| 14933 | return ACROSSVERT; |
| 14934 | } |
| 14935 | } // if (dir == ACROSSVERT) |
| 14936 | |
| 14937 | // dir is either ACROSSEDGE or ACROSSFACE. |
| 14938 | |
| 14939 | enextesymself(*searchtet); // Go to the opposite face. |
| 14940 | fsymself(*searchtet); // Enter the adjacent tet. |
| 14941 | |
| 14942 | if (dir == ACROSSEDGE) { |
| 14943 | // Check whether two segments are intersecting. |
| 14944 | if (issubseg(*searchtet)) { |
| 14945 | return ACROSSSEG; |
| 14946 | } |
| 14947 | } else if (dir == ACROSSFACE) { |
| 14948 | if (checksubfaceflag) { |
| 14949 | // Check whether a segment and a subface are intersecting. |
| 14950 | if (issubface(*searchtet)) { |
| 14951 | return ACROSSSUB; |
| 14952 | } |
| 14953 | } |
| 14954 | } |
| 14955 | |
| 14956 | if (refpt == NULL) { |
| 14957 | // Do not need a reference point. Return. |
| 14958 | return dir; |
| 14959 | } |
| 14960 | |
| 14961 | triface neightet, reftet; |
| 14962 | point pa, pb, pc; |
| 14963 | REAL angmax, ang; |
| 14964 | int types[2], poss[4]; |
| 14965 | int pos = 0, i, j; |
| 14966 | |
| 14967 | pa = org(*searchtet); |
| 14968 | angmax = interiorangle(pa, startpt, endpt, NULL); |
| 14969 | *refpt = pa; |
| 14970 | pb = dest(*searchtet); |
| 14971 | ang = interiorangle(pb, startpt, endpt, NULL); |
| 14972 | if (ang > angmax) { |
| 14973 | angmax = ang; |
| 14974 | *refpt = pb; |
| 14975 | } |
| 14976 | pc = apex(*searchtet); |
| 14977 | ang = interiorangle(pc, startpt, endpt, NULL); |
| 14978 | if (ang > angmax) { |
| 14979 | angmax = ang; |
| 14980 | *refpt = pc; |
| 14981 | } |
| 14982 | reftet = *searchtet; // Save the tet containing the refpt. |
| 14983 | |
| 14984 | // Search intersecting faces along the segment. |
| 14985 | while (1) { |
| 14986 | |
| 14987 | |
| 14988 | pd = oppo(*searchtet); |
| 14989 | assert(pd != dummypoint); // SELF_CHECK |
| 14990 | |
| 14991 | |
| 14992 | // Stop if we meet 'endpt'. |
| 14993 | if (pd == endpt) break; |
| 14994 | |
| 14995 | ang = interiorangle(pd, startpt, endpt, NULL); |
| 14996 | if (ang > angmax) { |
| 14997 | angmax = ang; |
| 14998 | *refpt = pd; |
| 14999 | reftet = *searchtet; |
| 15000 | } |
| 15001 | |
| 15002 | // Find a face intersecting the segment. |
| 15003 | if (dir == ACROSSFACE) { |
| 15004 | // One of the three oppo faces in 'searchtet' intersects the segment. |
| 15005 | neightet = *searchtet; |
| 15006 | j = (neightet.ver & 3); // j is the current face number. |
| 15007 | for (i = j + 1; i < j + 4; i++) { |
| 15008 | neightet.ver = (i % 4); |
| 15009 | pa = org(neightet); |
| 15010 | pb = dest(neightet); |
| 15011 | pc = apex(neightet); |
| 15012 | pd = oppo(neightet); // The above point. |
| 15013 | if (tri_edge_test(pa, pb, pc, startpt, endpt, pd, 1, types, poss)) { |
| 15014 | dir = (enum interresult) types[0]; |
| 15015 | pos = poss[0]; |
| 15016 | break; |
| 15017 | } else { |
| 15018 | dir = DISJOINT; |
| 15019 | pos = 0; |
| 15020 | } |
| 15021 | } |
| 15022 | assert(dir != DISJOINT); // SELF_CHECK |
| 15023 | } else { // dir == ACROSSEDGE |
| 15024 | // Check the two opposite faces (of the edge) in 'searchtet'. |
| 15025 | for (i = 0; i < 2; i++) { |
| 15026 | if (i == 0) { |
| 15027 | enextesym(*searchtet, neightet); |
| 15028 | } else { |
| 15029 | eprevesym(*searchtet, neightet); |
| 15030 | } |
| 15031 | pa = org(neightet); |
| 15032 | pb = dest(neightet); |
| 15033 | pc = apex(neightet); |
| 15034 | pd = oppo(neightet); // The above point. |
| 15035 | if (tri_edge_test(pa, pb, pc, startpt, endpt, pd, 1, types, poss)) { |
| 15036 | dir = (enum interresult) types[0]; |
| 15037 | pos = poss[0]; |
| 15038 | break; |
| 15039 | } else { |
| 15040 | dir = DISJOINT; |
| 15041 | pos = 0; |
| 15042 | } |
| 15043 | } |
| 15044 | if (dir == DISJOINT) { |
| 15045 | // No intersection. Rotate to the next tet at the edge. |
| 15046 | dir = ACROSSEDGE; |
| 15047 | fnextself(*searchtet); |
| 15048 | continue; |
| 15049 | } |
| 15050 | } |
| 15051 | |
| 15052 | if (dir == ACROSSVERT) { |
| 15053 | // This segment passing a vertex. Choose it and return. |
| 15054 | for (i = 0; i < pos; i++) { |
| 15055 | enextself(neightet); |
| 15056 | } |
| 15057 | pd = org(neightet); |
| 15058 | *refpt = pd; |
| 15059 | // break; |
| 15060 | return ACROSSVERT; |
| 15061 | } else if (dir == ACROSSEDGE) { |
| 15062 | // Get the edge intersects with the segment. |
| 15063 | for (i = 0; i < pos; i++) { |
| 15064 | enextself(neightet); |
| 15065 | } |
| 15066 | } |
| 15067 | // Go to the next tet. |
| 15068 | fsym(neightet, *searchtet); |
| 15069 | |
| 15070 | if (dir == ACROSSEDGE) { |
| 15071 | // Check whether two segments are intersecting. |
| 15072 | if (issubseg(*searchtet)) { |
| 15073 | return ACROSSSEG; |
| 15074 | } |
| 15075 | } else if (dir == ACROSSFACE) { |
| 15076 | if (checksubfaceflag) { |
| 15077 | // Check whether a segment and a subface are intersecting. |
| 15078 | if (issubface(*searchtet)) { |
| 15079 | return ACROSSSUB; |
| 15080 | } |
| 15081 | } |
| 15082 | } |
| 15083 | |
| 15084 | } // while (1) |
| 15085 | |
| 15086 | // A valid reference point should inside the diametrial circumsphere of |
| 15087 | // the missing segment, i.e., it encroaches upon it. |
| 15088 | if (2.0 * angmax < PI) { |
| 15089 | *refpt = NULL; |
| 15090 | } |
| 15091 | |
| 15092 | |
| 15093 | *searchtet = reftet; |
| 15094 | return dir; |
| 15095 | } |
| 15096 | |
| 15097 | /////////////////////////////////////////////////////////////////////////////// |
| 15098 | // // |
| 15099 | // getsteinerpointonsegment() Get a Steiner point on a segment. // |
| 15100 | // // |
| 15101 | // Return '1' if 'refpt' lies on an adjacent segment of this segment. Other- // |
| 15102 | // wise, return '0'. // |
| 15103 | // // |
| 15104 | /////////////////////////////////////////////////////////////////////////////// |
| 15105 | |
| 15106 | int tetgenmesh::getsteinerptonsegment(face* seg, point refpt, point steinpt) |
| 15107 | { |
| 15108 | point ei = sorg(*seg); |
| 15109 | point ej = sdest(*seg); |
| 15110 | int adjflag = 0, i; |
| 15111 | |
| 15112 | if (refpt != NULL) { |
| 15113 | REAL L, L1, t; |
| 15114 | |
| 15115 | if (pointtype(refpt) == FREESEGVERTEX) { |
| 15116 | face parentseg; |
| 15117 | sdecode(point2sh(refpt), parentseg); |
| 15118 | int sidx1 = getfacetindex(parentseg); |
| 15119 | point far_pi = segmentendpointslist[sidx1 * 2]; |
| 15120 | point far_pj = segmentendpointslist[sidx1 * 2 + 1]; |
| 15121 | int sidx2 = getfacetindex(*seg); |
| 15122 | point far_ei = segmentendpointslist[sidx2 * 2]; |
| 15123 | point far_ej = segmentendpointslist[sidx2 * 2 + 1]; |
| 15124 | if ((far_pi == far_ei) || (far_pj == far_ei)) { |
| 15125 | // Create a Steiner point at the intersection of the segment |
| 15126 | // [far_ei, far_ej] and the sphere centered at far_ei with |
| 15127 | // radius |far_ei - refpt|. |
| 15128 | L = distance(far_ei, far_ej); |
| 15129 | L1 = distance(far_ei, refpt); |
| 15130 | t = L1 / L; |
| 15131 | for (i = 0; i < 3; i++) { |
| 15132 | steinpt[i] = far_ei[i] + t * (far_ej[i] - far_ei[i]); |
| 15133 | } |
| 15134 | adjflag = 1; |
| 15135 | } else if ((far_pi == far_ej) || (far_pj == far_ej)) { |
| 15136 | L = distance(far_ei, far_ej); |
| 15137 | L1 = distance(far_ej, refpt); |
| 15138 | t = L1 / L; |
| 15139 | for (i = 0; i < 3; i++) { |
| 15140 | steinpt[i] = far_ej[i] + t * (far_ei[i] - far_ej[i]); |
| 15141 | } |
| 15142 | adjflag = 1; |
| 15143 | } else { |
| 15144 | // Cut the segment by the projection point of refpt. |
| 15145 | projpt2edge(refpt, ei, ej, steinpt); |
| 15146 | } |
| 15147 | } else { |
| 15148 | // Cut the segment by the projection point of refpt. |
| 15149 | projpt2edge(refpt, ei, ej, steinpt); |
| 15150 | } |
| 15151 | |
| 15152 | // Make sure that steinpt is not too close to ei and ej. |
| 15153 | L = distance(ei, ej); |
| 15154 | L1 = distance(steinpt, ei); |
| 15155 | t = L1 / L; |
| 15156 | if ((t < 0.2) || (t > 0.8)) { |
| 15157 | // Split the point at the middle. |
| 15158 | for (i = 0; i < 3; i++) { |
| 15159 | steinpt[i] = ei[i] + 0.5 * (ej[i] - ei[i]); |
| 15160 | } |
| 15161 | } |
| 15162 | } else { |
| 15163 | // Split the point at the middle. |
| 15164 | for (i = 0; i < 3; i++) { |
| 15165 | steinpt[i] = ei[i] + 0.5 * (ej[i] - ei[i]); |
| 15166 | } |
| 15167 | } |
| 15168 | |
| 15169 | |
| 15170 | return adjflag; |
| 15171 | } |
| 15172 | |
| 15173 | |
| 15174 | |
| 15175 | /////////////////////////////////////////////////////////////////////////////// |
| 15176 | // // |
| 15177 | // delaunizesegments() Recover segments in a DT. // |
| 15178 | // // |
| 15179 | // All segments need to be recovered are in 'subsegstack' (Q). They will be // |
| 15180 | // be recovered one by one (in a random order). // |
| 15181 | // // |
| 15182 | // Given a segment s in the Q, this routine first queries s in the DT, if s // |
| 15183 | // matches an edge in DT, it is 'locked' at the edge. Otherwise, s is split // |
| 15184 | // by inserting a new point p in both the DT and itself. The two new subseg- // |
| 15185 | // ments of s are queued in Q. The process continues until Q is empty. // |
| 15186 | // // |
| 15187 | /////////////////////////////////////////////////////////////////////////////// |
| 15188 | |
| 15189 | void tetgenmesh::delaunizesegments() |
| 15190 | { |
| 15191 | triface searchtet, spintet; |
| 15192 | face searchsh; |
| 15193 | face sseg, *psseg; |
| 15194 | point refpt, newpt; |
| 15195 | enum interresult dir; |
| 15196 | insertvertexflags ivf; |
| 15197 | int t1ver; |
| 15198 | |
| 15199 | |
| 15200 | ivf.bowywat = 1; // Use Bowyer-Watson insertion. |
| 15201 | ivf.assignmeshsize = b->metric; |
| 15202 | ivf.sloc = (int) ONEDGE; // on 'sseg'. |
| 15203 | ivf.sbowywat = 1; // Use Bowyer-Watson insertion. |
| 15204 | |
| 15205 | // Loop until 'subsegstack' is empty. |
| 15206 | while (subsegstack->objects > 0l) { |
| 15207 | // seglist is used as a stack. |
| 15208 | subsegstack->objects--; |
| 15209 | psseg = (face *) fastlookup(subsegstack, subsegstack->objects); |
| 15210 | sseg = *psseg; |
| 15211 | |
| 15212 | // Check if this segment has been recovered. |
| 15213 | sstpivot1(sseg, searchtet); |
| 15214 | if (searchtet.tet != NULL) { |
| 15215 | continue; // Not a missing segment. |
| 15216 | } |
| 15217 | |
| 15218 | // Search the segment. |
| 15219 | dir = scoutsegment(sorg(sseg), sdest(sseg), &searchtet, &refpt, NULL); |
| 15220 | |
| 15221 | if (dir == SHAREEDGE) { |
| 15222 | // Found this segment, insert it. |
| 15223 | if (!issubseg(searchtet)) { |
| 15224 | // Let the segment remember an adjacent tet. |
| 15225 | sstbond1(sseg, searchtet); |
| 15226 | // Bond the segment to all tets containing it. |
| 15227 | spintet = searchtet; |
| 15228 | do { |
| 15229 | tssbond1(spintet, sseg); |
| 15230 | fnextself(spintet); |
| 15231 | } while (spintet.tet != searchtet.tet); |
| 15232 | } else { |
| 15233 | // Collision! Maybe a bug. |
| 15234 | assert(0); |
| 15235 | } |
| 15236 | } else { |
| 15237 | if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
| 15238 | // The segment is missing. Split it. |
| 15239 | // Create a new point. |
| 15240 | makepoint(&newpt, FREESEGVERTEX); |
| 15241 | //setpointtype(newpt, FREESEGVERTEX); |
| 15242 | getsteinerptonsegment(&sseg, refpt, newpt); |
| 15243 | |
| 15244 | // Start searching from 'searchtet'. |
| 15245 | ivf.iloc = (int) OUTSIDE; |
| 15246 | // Insert the new point into the tetrahedralization T. |
| 15247 | // Missing segments and subfaces are queued for recovery. |
| 15248 | // Note that T is convex (nonconvex = 0). |
| 15249 | if (insertpoint(newpt, &searchtet, &searchsh, &sseg, &ivf)) { |
| 15250 | // The new point has been inserted. |
| 15251 | st_segref_count++; |
| 15252 | if (steinerleft > 0) steinerleft--; |
| 15253 | } else { |
| 15254 | assert (ivf.iloc == (enum locateresult) NEARVERTEX); |
| 15255 | terminatetetgen(this, 4); |
| 15256 | } |
| 15257 | } else { |
| 15258 | // Indicate it is an input problem. |
| 15259 | terminatetetgen(this, 3); |
| 15260 | } |
| 15261 | } |
| 15262 | } // while |
| 15263 | } |
| 15264 | |
| 15265 | /////////////////////////////////////////////////////////////////////////////// |
| 15266 | // // |
| 15267 | // scoutsubface() Search subface in the tetrahedralization. // |
| 15268 | // // |
| 15269 | // 'searchsh' is searched in T. If it exists, it is 'locked' at the face in // |
| 15270 | // T. 'searchtet' refers to the face. Otherwise, it is missing. // |
| 15271 | // // |
| 15272 | // The return value indicates one of the following cases: // |
| 15273 | // - SHAREFACE, 'searchsh' exists and is inserted in T. // |
| 15274 | // - COLLISIONFACE, 'searchsh' exists in T, but it conflicts with another // |
| 15275 | // subface which was inserted earlier. It is not inserted. // |
| 15276 | // // |
| 15277 | /////////////////////////////////////////////////////////////////////////////// |
| 15278 | |
| 15279 | enum tetgenmesh::interresult |
| 15280 | tetgenmesh::scoutsubface(face* searchsh, triface* searchtet) |
| 15281 | { |
| 15282 | triface spintet; |
| 15283 | point pa, pb, pc; |
| 15284 | enum interresult dir; |
| 15285 | int t1ver; |
| 15286 | |
| 15287 | pa = sorg(*searchsh); |
| 15288 | pb = sdest(*searchsh); |
| 15289 | |
| 15290 | |
| 15291 | // Get a tet whose origin is a. |
| 15292 | point2tetorg(pa, *searchtet); |
| 15293 | // Search the edge [a,b]. |
| 15294 | dir = finddirection(searchtet, pb); |
| 15295 | if (dir == ACROSSVERT) { |
| 15296 | // Check validity of a PLC. |
| 15297 | if (dest(*searchtet) != pb) { |
| 15298 | // A vertex lies on the search edge. |
| 15299 | enextself(*searchtet); |
| 15300 | // It is possible a PLC self-intersection problem. |
| 15301 | terminatetetgen(this, 3); |
| 15302 | return TOUCHEDGE; |
| 15303 | } |
| 15304 | // The edge exists. Check if the face exists. |
| 15305 | pc = sapex(*searchsh); |
| 15306 | // Searchtet holds edge [a,b]. Search a face with apex c. |
| 15307 | spintet = *searchtet; |
| 15308 | while (1) { |
| 15309 | if (apex(spintet) == pc) { |
| 15310 | // Found a face matching to 'searchsh'! |
| 15311 | if (!issubface(spintet)) { |
| 15312 | // Insert 'searchsh'. |
| 15313 | tsbond(spintet, *searchsh); |
| 15314 | fsymself(spintet); |
| 15315 | sesymself(*searchsh); |
| 15316 | tsbond(spintet, *searchsh); |
| 15317 | *searchtet = spintet; |
| 15318 | return SHAREFACE; |
| 15319 | } else { |
| 15320 | // Another subface is already inserted. |
| 15321 | face checksh; |
| 15322 | tspivot(spintet, checksh); |
| 15323 | assert(checksh.sh != searchsh->sh); // SELF_CHECK |
| 15324 | // This is possibly an input problem, i.e., two facets overlap. |
| 15325 | // Report this problem and exit. |
| 15326 | printf("Warning: Found two facets nearly overlap.\n" ); |
| 15327 | terminatetetgen(this, 5); |
| 15328 | // unifysubfaces(&checksh, searchsh); |
| 15329 | *searchtet = spintet; |
| 15330 | return COLLISIONFACE; |
| 15331 | } |
| 15332 | } |
| 15333 | fnextself(spintet); |
| 15334 | if (spintet.tet == searchtet->tet) break; |
| 15335 | } |
| 15336 | } |
| 15337 | |
| 15338 | // dir is either ACROSSEDGE or ACROSSFACE. |
| 15339 | return dir; |
| 15340 | } |
| 15341 | |
| 15342 | /////////////////////////////////////////////////////////////////////////////// |
| 15343 | // // |
| 15344 | // formregion() Form the missing region of a missing subface. // |
| 15345 | // // |
| 15346 | // 'missh' is a missing subface. From it we form a missing region R which is // |
| 15347 | // a connected region formed by a set of missing subfaces of a facet. // |
| 15348 | // Comment: There should be no segment inside R. // |
| 15349 | // // |
| 15350 | // 'missingshs' returns the list of subfaces in R. All subfaces in this list // |
| 15351 | // are oriented as the 'missh'. 'missingshbds' returns the list of boundary // |
| 15352 | // edges (tetrahedral handles) of R. 'missingshverts' returns all vertices // |
| 15353 | // of R. They are all pmarktested. // |
| 15354 | // // |
| 15355 | // Except the first one (which is 'missh') in 'missingshs', each subface in // |
| 15356 | // this list represents an internal edge of R, i.e., it is missing in the // |
| 15357 | // tetrahedralization. Since R may contain interior vertices, not all miss- // |
| 15358 | // ing edges can be found by this way. // |
| 15359 | /////////////////////////////////////////////////////////////////////////////// |
| 15360 | |
| 15361 | void tetgenmesh::formregion(face* missh, arraypool* missingshs, |
| 15362 | arraypool* missingshbds, arraypool* missingshverts) |
| 15363 | { |
| 15364 | triface searchtet, spintet; |
| 15365 | face neighsh, *parysh; |
| 15366 | face neighseg, fakeseg; |
| 15367 | point pa, pb, *parypt; |
| 15368 | enum interresult dir; |
| 15369 | int t1ver; |
| 15370 | int i, j; |
| 15371 | |
| 15372 | smarktest(*missh); |
| 15373 | missingshs->newindex((void **) &parysh); |
| 15374 | *parysh = *missh; |
| 15375 | |
| 15376 | // Incrementally find other missing subfaces. |
| 15377 | for (i = 0; i < missingshs->objects; i++) { |
| 15378 | missh = (face *) fastlookup(missingshs, i); |
| 15379 | for (j = 0; j < 3; j++) { |
| 15380 | pa = sorg(*missh); |
| 15381 | pb = sdest(*missh); |
| 15382 | point2tetorg(pa, searchtet); |
| 15383 | dir = finddirection(&searchtet, pb); |
| 15384 | if (dir != ACROSSVERT) { |
| 15385 | // This edge is missing. Its neighbor is a missing subface. |
| 15386 | spivot(*missh, neighsh); |
| 15387 | if (!smarktested(neighsh)) { |
| 15388 | // Adjust the face orientation. |
| 15389 | if (sorg(neighsh) != pb) sesymself(neighsh); |
| 15390 | smarktest(neighsh); |
| 15391 | missingshs->newindex((void **) &parysh); |
| 15392 | *parysh = neighsh; |
| 15393 | } |
| 15394 | } else { |
| 15395 | if (dest(searchtet) != pb) { |
| 15396 | // This might be a self-intersection problem. |
| 15397 | terminatetetgen(this, 3); |
| 15398 | } |
| 15399 | } |
| 15400 | // Collect the vertices of R. |
| 15401 | if (!pmarktested(pa)) { |
| 15402 | pmarktest(pa); |
| 15403 | missingshverts->newindex((void **) &parypt); |
| 15404 | *parypt = pa; |
| 15405 | } |
| 15406 | senextself(*missh); |
| 15407 | } // j |
| 15408 | } // i |
| 15409 | |
| 15410 | // Get the boundary edges of R. |
| 15411 | for (i = 0; i < missingshs->objects; i++) { |
| 15412 | missh = (face *) fastlookup(missingshs, i); |
| 15413 | for (j = 0; j < 3; j++) { |
| 15414 | spivot(*missh, neighsh); |
| 15415 | if ((neighsh.sh == NULL) || !smarktested(neighsh)) { |
| 15416 | // A boundary edge of R. |
| 15417 | // Let the segment point to the adjacent tet. |
| 15418 | point2tetorg(sorg(*missh), searchtet); |
| 15419 | finddirection(&searchtet, sdest(*missh)); |
| 15420 | missingshbds->newindex((void **) &parysh); |
| 15421 | *parysh = *missh; |
| 15422 | // Check if this edge is a segment. |
| 15423 | sspivot(*missh, neighseg); |
| 15424 | if (neighseg.sh == NULL) { |
| 15425 | // Temporarily create a segment at this edge. |
| 15426 | makeshellface(subsegs, &fakeseg); |
| 15427 | setsorg(fakeseg, sorg(*missh)); |
| 15428 | setsdest(fakeseg, sdest(*missh)); |
| 15429 | sinfect(fakeseg); // Mark it as faked. |
| 15430 | // Connect it to all tets at this edge. |
| 15431 | spintet = searchtet; |
| 15432 | while (1) { |
| 15433 | tssbond1(spintet, fakeseg); |
| 15434 | fnextself(spintet); |
| 15435 | if (spintet.tet == searchtet.tet) break; |
| 15436 | } |
| 15437 | neighseg = fakeseg; |
| 15438 | } |
| 15439 | // Let the segment and the boundary edge point to each other. |
| 15440 | ssbond(*missh, neighseg); |
| 15441 | sstbond1(neighseg, searchtet); |
| 15442 | } |
| 15443 | senextself(*missh); |
| 15444 | } // j |
| 15445 | } // i |
| 15446 | |
| 15447 | |
| 15448 | // Unmarktest collected missing subfaces. |
| 15449 | for (i = 0; i < missingshs->objects; i++) { |
| 15450 | parysh = (face *) fastlookup(missingshs, i); |
| 15451 | sunmarktest(*parysh); |
| 15452 | } |
| 15453 | } |
| 15454 | |
| 15455 | /////////////////////////////////////////////////////////////////////////////// |
| 15456 | // // |
| 15457 | // scoutcrossedge() Search an edge that crosses the missing region. // |
| 15458 | // // |
| 15459 | // Return 1 if a crossing edge is found. It is returned by 'crosstet'. More- // |
| 15460 | // over, the edge is oriented such that its origin lies below R. Return 0 // |
| 15461 | // if no such edge is found. // |
| 15462 | // // |
| 15463 | // Assumption: All vertices of the missing region are marktested. // |
| 15464 | // // |
| 15465 | /////////////////////////////////////////////////////////////////////////////// |
| 15466 | |
| 15467 | int tetgenmesh::scoutcrossedge(triface& crosstet, arraypool* missingshbds, |
| 15468 | arraypool* missingshs) |
| 15469 | { |
| 15470 | triface searchtet, spintet; |
| 15471 | face *parysh; |
| 15472 | face neighseg; |
| 15473 | point pa, pb, pc, pd, pe; |
| 15474 | enum interresult dir; |
| 15475 | REAL ori; |
| 15476 | int types[2], poss[4]; |
| 15477 | int searchflag, interflag; |
| 15478 | int t1ver; |
| 15479 | int i, j; |
| 15480 | |
| 15481 | searchflag = 0; |
| 15482 | |
| 15483 | for (j = 0; j < missingshbds->objects && !searchflag; j++) { |
| 15484 | parysh = (face *) fastlookup(missingshbds, j); |
| 15485 | sspivot(*parysh, neighseg); |
| 15486 | sstpivot1(neighseg, searchtet); |
| 15487 | interflag = 0; |
| 15488 | // Let 'spintet' be [#,#,d,e] where [#,#] is the boundary edge of R. |
| 15489 | spintet = searchtet; |
| 15490 | while (1) { |
| 15491 | pd = apex(spintet); |
| 15492 | pe = oppo(spintet); |
| 15493 | // Skip a hull edge. |
| 15494 | if ((pd != dummypoint) && (pe != dummypoint)) { |
| 15495 | // Skip an edge containing a vertex of R. |
| 15496 | if (!pmarktested(pd) && !pmarktested(pe)) { |
| 15497 | // Check if [d,e] intersects R. |
| 15498 | for (i = 0; i < missingshs->objects && !interflag; i++) { |
| 15499 | parysh = (face *) fastlookup(missingshs, i); |
| 15500 | pa = sorg(*parysh); |
| 15501 | pb = sdest(*parysh); |
| 15502 | pc = sapex(*parysh); |
| 15503 | interflag=tri_edge_test(pa, pb, pc, pd, pe, NULL, 1, types, poss); |
| 15504 | if (interflag > 0) { |
| 15505 | if (interflag == 2) { |
| 15506 | // They intersect at a single point. |
| 15507 | dir = (enum interresult) types[0]; |
| 15508 | if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
| 15509 | //pos = poss[0]; |
| 15510 | // Go to the crossing edge [d,e,#,#]. |
| 15511 | edestoppo(spintet, crosstet); // // [d,e,#,#]. |
| 15512 | // Check if it is a segment. |
| 15513 | if (issubseg(crosstet)) { |
| 15514 | //face checkseg; |
| 15515 | //tsspivot1(crosstet, checkseg); |
| 15516 | //reportselfintersect(&checkseg, parysh); |
| 15517 | terminatetetgen(this, 3); |
| 15518 | } |
| 15519 | // Adjust the edge such that d lies below [a,b,c]. |
| 15520 | ori = orient3d(pa, pb, pc, pd); |
| 15521 | assert(ori != 0); |
| 15522 | if (ori < 0) { |
| 15523 | esymself(crosstet); |
| 15524 | } |
| 15525 | searchflag = 1; |
| 15526 | } |
| 15527 | } |
| 15528 | break; |
| 15529 | } // if (interflag > 0) |
| 15530 | } |
| 15531 | } |
| 15532 | } |
| 15533 | // Leave search at this bdry edge if an intersection is found. |
| 15534 | if (interflag > 0) break; |
| 15535 | // Go to the next tetrahedron. |
| 15536 | fnextself(spintet); |
| 15537 | if (spintet.tet == searchtet.tet) break; |
| 15538 | } // while (1) |
| 15539 | } // j |
| 15540 | |
| 15541 | return searchflag; |
| 15542 | } |
| 15543 | |
| 15544 | /////////////////////////////////////////////////////////////////////////////// |
| 15545 | // // |
| 15546 | // formcavity() Form the cavity of a missing region. // |
| 15547 | // // |
| 15548 | // The missing region R is formed by a set of missing subfaces 'missingshs'. // |
| 15549 | // In the following, we assume R is horizontal and oriented. (All subfaces // |
| 15550 | // of R are oriented in the same way.) 'searchtet' is a tetrahedron [d,e,#, // |
| 15551 | // #] which intersects R in its interior, where the edge [d,e] intersects R, // |
| 15552 | // and d lies below R. // |
| 15553 | // // |
| 15554 | // 'crosstets' returns the set of crossing tets. Every tet in it has the // |
| 15555 | // form [d,e,#,#] where [d,e] is a crossing edge, and d lies below R. The // |
| 15556 | // set of tets form the cavity C, which is divided into two parts by R, one // |
| 15557 | // at top and one at bottom. 'topfaces' and 'botfaces' return the upper and // |
| 15558 | // lower boundary faces of C. 'toppoints' contains vertices of 'crosstets' // |
| 15559 | // in the top part of C, and so does 'botpoints'. Both 'toppoints' and // |
| 15560 | // 'botpoints' contain vertices of R. // |
| 15561 | // // |
| 15562 | // Important: This routine assumes all vertices of the facet containing this // |
| 15563 | // subface are marked, i.e., pmarktested(p) returns true. // |
| 15564 | // // |
| 15565 | /////////////////////////////////////////////////////////////////////////////// |
| 15566 | |
| 15567 | bool tetgenmesh::formcavity(triface* searchtet, arraypool* missingshs, |
| 15568 | arraypool* crosstets, arraypool* topfaces, |
| 15569 | arraypool* botfaces, arraypool* toppoints, |
| 15570 | arraypool* botpoints) |
| 15571 | { |
| 15572 | arraypool *crossedges; |
| 15573 | triface spintet, neightet, *parytet; |
| 15574 | face *parysh = NULL; |
| 15575 | point pa, pd, pe, *parypt; |
| 15576 | enum interresult dir; |
| 15577 | bool testflag, invalidflag; |
| 15578 | int types[2], poss[4]; |
| 15579 | int t1ver; |
| 15580 | int i, j, k; |
| 15581 | |
| 15582 | // Temporarily re-use 'topfaces' for all crossing edges. |
| 15583 | crossedges = topfaces; |
| 15584 | |
| 15585 | if (b->verbose > 2) { |
| 15586 | printf(" Form the cavity of a missing region.\n" ); |
| 15587 | } |
| 15588 | // Mark this edge to avoid testing it later. |
| 15589 | markedge(*searchtet); |
| 15590 | crossedges->newindex((void **) &parytet); |
| 15591 | *parytet = *searchtet; |
| 15592 | |
| 15593 | invalidflag = 0; |
| 15594 | |
| 15595 | // Collect all crossing tets. Each cross tet is saved in the standard |
| 15596 | // form [d,e,#,#], where [d,e] is a crossing edge, d lies below R. |
| 15597 | // NEITHER d NOR e is a vertex of R (!pmarktested). |
| 15598 | for (i = 0; i < crossedges->objects; i++) { |
| 15599 | // Get a crossing edge [d,e,#,#]. |
| 15600 | searchtet = (triface *) fastlookup(crossedges, i); |
| 15601 | |
| 15602 | // Sort vertices into the bottom and top arrays. |
| 15603 | pd = org(*searchtet); |
| 15604 | if (!pinfected(pd)) { |
| 15605 | pinfect(pd); |
| 15606 | botpoints->newindex((void **) &parypt); |
| 15607 | *parypt = pd; |
| 15608 | } |
| 15609 | pe = dest(*searchtet); |
| 15610 | if (!pinfected(pe)) { |
| 15611 | pinfect(pe); |
| 15612 | toppoints->newindex((void **) &parypt); |
| 15613 | *parypt = pe; |
| 15614 | } |
| 15615 | |
| 15616 | // All tets sharing this edge are crossing tets. |
| 15617 | spintet = *searchtet; |
| 15618 | while (1) { |
| 15619 | if (!infected(spintet)) { |
| 15620 | infect(spintet); |
| 15621 | crosstets->newindex((void **) &parytet); |
| 15622 | *parytet = spintet; |
| 15623 | } |
| 15624 | // Go to the next crossing tet. |
| 15625 | fnextself(spintet); |
| 15626 | if (spintet.tet == searchtet->tet) break; |
| 15627 | } // while (1) |
| 15628 | |
| 15629 | // Detect new crossing edges. |
| 15630 | spintet = *searchtet; |
| 15631 | while (1) { |
| 15632 | // spintet is [d,e,a,#], where d lies below R, and e lies above R. |
| 15633 | pa = apex(spintet); |
| 15634 | if (pa != dummypoint) { |
| 15635 | if (!pmarktested(pa)) { |
| 15636 | // There exists a crossing edge, either [e,a] or [a,d]. First check |
| 15637 | // if the crossing edge has already be added, i.e., check if a |
| 15638 | // tetrahedron at this edge is marked. |
| 15639 | testflag = true; |
| 15640 | for (j = 0; j < 2 && testflag; j++) { |
| 15641 | if (j == 0) { |
| 15642 | enext(spintet, neightet); |
| 15643 | } else { |
| 15644 | eprev(spintet, neightet); |
| 15645 | } |
| 15646 | while (1) { |
| 15647 | if (edgemarked(neightet)) { |
| 15648 | // This crossing edge has already been tested. Skip it. |
| 15649 | testflag = false; |
| 15650 | break; |
| 15651 | } |
| 15652 | fnextself(neightet); |
| 15653 | if (neightet.tet == spintet.tet) break; |
| 15654 | } |
| 15655 | } // j |
| 15656 | if (testflag) { |
| 15657 | // Test if [e,a] or [a,d] intersects R. |
| 15658 | // Do a brute-force search in the set of subfaces of R. Slow! |
| 15659 | // Need to be improved! |
| 15660 | pd = org(spintet); |
| 15661 | pe = dest(spintet); |
| 15662 | for (k = 0; k < missingshs->objects; k++) { |
| 15663 | parysh = (face *) fastlookup(missingshs, k); |
| 15664 | if (tri_edge_test(sorg(*parysh), sdest(*parysh), sapex(*parysh), |
| 15665 | pe, pa, NULL, 1, types, poss)) { |
| 15666 | // Found intersection. 'a' lies below R. |
| 15667 | enext(spintet, neightet); |
| 15668 | dir = (enum interresult) types[0]; |
| 15669 | if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
| 15670 | // A valid intersection. |
| 15671 | } else { |
| 15672 | // A non-valid intersection. Maybe a PLC problem. |
| 15673 | invalidflag = 1; |
| 15674 | } |
| 15675 | break; |
| 15676 | } |
| 15677 | if (tri_edge_test(sorg(*parysh), sdest(*parysh), sapex(*parysh), |
| 15678 | pa, pd, NULL, 1, types, poss)) { |
| 15679 | // Found intersection. 'a' lies above R. |
| 15680 | eprev(spintet, neightet); |
| 15681 | dir = (enum interresult) types[0]; |
| 15682 | if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
| 15683 | // A valid intersection. |
| 15684 | } else { |
| 15685 | // A non-valid intersection. Maybe a PLC problem. |
| 15686 | invalidflag = 1; |
| 15687 | } |
| 15688 | break; |
| 15689 | } |
| 15690 | } // k |
| 15691 | if (k < missingshs->objects) { |
| 15692 | // Found a pair of triangle - edge intersection. |
| 15693 | if (invalidflag) { |
| 15694 | if (!b->quiet) { |
| 15695 | printf("Warning: A non-valid facet - edge intersection\n" ); |
| 15696 | printf(" subface: (%d, %d, %d) edge: (%d, %d)\n" , |
| 15697 | pointmark(sorg(*parysh)), pointmark(sdest(*parysh)), |
| 15698 | pointmark(sapex(*parysh)), pointmark(org(neightet)), |
| 15699 | pointmark(dest(neightet))); |
| 15700 | } |
| 15701 | // It may be a PLC problem. |
| 15702 | terminatetetgen(this, 3); |
| 15703 | } |
| 15704 | // Adjust the edge direction, so that its origin lies below R, |
| 15705 | // and its destination lies above R. |
| 15706 | esymself(neightet); |
| 15707 | // Check if this edge is a segment. |
| 15708 | if (issubseg(neightet)) { |
| 15709 | // Invalid PLC! |
| 15710 | //face checkseg; |
| 15711 | //tsspivot1(neightet, checkseg); |
| 15712 | //reportselfintersect(&checkseg, parysh); |
| 15713 | terminatetetgen(this, 3); |
| 15714 | } |
| 15715 | // Mark this edge to avoid testing it again. |
| 15716 | markedge(neightet); |
| 15717 | crossedges->newindex((void **) &parytet); |
| 15718 | *parytet = neightet; |
| 15719 | } else { |
| 15720 | // No intersection is found. It may be a PLC problem. |
| 15721 | invalidflag = 1; |
| 15722 | // Split the subface intersecting [d,e]. |
| 15723 | for (k = 0; k < missingshs->objects; k++) { |
| 15724 | parysh = (face *) fastlookup(missingshs, k); |
| 15725 | // Test if this face intersects [e,a]. |
| 15726 | if (tri_edge_test(sorg(*parysh),sdest(*parysh),sapex(*parysh), |
| 15727 | pd, pe, NULL, 1, types, poss)) { |
| 15728 | break; |
| 15729 | } |
| 15730 | } // k |
| 15731 | if (k == missingshs->objects) { |
| 15732 | // Not found such an edge. |
| 15733 | // Arbitrarily choose an edge (except the first) to split. |
| 15734 | k = randomnation(missingshs->objects - 1); |
| 15735 | parysh = (face *) fastlookup(missingshs, k + 1); |
| 15736 | } |
| 15737 | recentsh = *parysh; |
| 15738 | recenttet = spintet; // For point location. |
| 15739 | break; // the while (1) loop |
| 15740 | } // if (k == missingshs->objects) |
| 15741 | } // if (testflag) |
| 15742 | } // if (!pmarktested(pa) || b->psc) |
| 15743 | } // if (pa != dummypoint) |
| 15744 | // Go to the next crossing tet. |
| 15745 | fnextself(spintet); |
| 15746 | if (spintet.tet == searchtet->tet) break; |
| 15747 | } // while (1) |
| 15748 | |
| 15749 | //if (b->psc) { |
| 15750 | if (invalidflag) break; |
| 15751 | //} |
| 15752 | } // i |
| 15753 | |
| 15754 | if (b->verbose > 2) { |
| 15755 | printf(" Formed cavity: %ld (%ld) cross tets (edges).\n" , |
| 15756 | crosstets->objects, crossedges->objects); |
| 15757 | } |
| 15758 | |
| 15759 | // Unmark all marked edges. |
| 15760 | for (i = 0; i < crossedges->objects; i++) { |
| 15761 | searchtet = (triface *) fastlookup(crossedges, i); |
| 15762 | assert(edgemarked(*searchtet)); // SELF_CHECK |
| 15763 | unmarkedge(*searchtet); |
| 15764 | } |
| 15765 | crossedges->restart(); |
| 15766 | |
| 15767 | |
| 15768 | if (invalidflag) { |
| 15769 | // Unmark all collected tets. |
| 15770 | for (i = 0; i < crosstets->objects; i++) { |
| 15771 | searchtet = (triface *) fastlookup(crosstets, i); |
| 15772 | uninfect(*searchtet); |
| 15773 | } |
| 15774 | // Unmark all collected vertices. |
| 15775 | for (i = 0; i < botpoints->objects; i++) { |
| 15776 | parypt = (point *) fastlookup(botpoints, i); |
| 15777 | puninfect(*parypt); |
| 15778 | } |
| 15779 | for (i = 0; i < toppoints->objects; i++) { |
| 15780 | parypt = (point *) fastlookup(toppoints, i); |
| 15781 | puninfect(*parypt); |
| 15782 | } |
| 15783 | crosstets->restart(); |
| 15784 | botpoints->restart(); |
| 15785 | toppoints->restart(); |
| 15786 | |
| 15787 | // Randomly split an interior edge of R. |
| 15788 | i = randomnation(missingshs->objects - 1); |
| 15789 | recentsh = * (face *) fastlookup(missingshs, i); |
| 15790 | return false; |
| 15791 | } |
| 15792 | |
| 15793 | |
| 15794 | // Collect the top and bottom faces and the middle vertices. Since all top |
| 15795 | // and bottom vertices have been infected. Uninfected vertices must be |
| 15796 | // middle vertices (i.e., the vertices of R). |
| 15797 | // NOTE 1: Hull tets may be collected. Process them as a normal one. |
| 15798 | // NOTE 2: Some previously recovered subfaces may be completely inside the |
| 15799 | // cavity. In such case, we remove these subfaces from the cavity and put |
| 15800 | // them into 'subfacstack'. They will be recovered later. |
| 15801 | // NOTE 3: Some segments may be completely inside the cavity, e.g., they |
| 15802 | // attached to a subface which is inside the cavity. Such segments are |
| 15803 | // put in 'subsegstack'. They will be recovered later. |
| 15804 | // NOTE4 : The interior subfaces and segments mentioned in NOTE 2 and 3 |
| 15805 | // are identified in the routine "carvecavity()". |
| 15806 | |
| 15807 | for (i = 0; i < crosstets->objects; i++) { |
| 15808 | searchtet = (triface *) fastlookup(crosstets, i); |
| 15809 | // searchtet is [d,e,a,b]. |
| 15810 | eorgoppo(*searchtet, spintet); |
| 15811 | fsym(spintet, neightet); // neightet is [a,b,e,#] |
| 15812 | if (!infected(neightet)) { |
| 15813 | // A top face. |
| 15814 | topfaces->newindex((void **) &parytet); |
| 15815 | *parytet = neightet; |
| 15816 | } |
| 15817 | edestoppo(*searchtet, spintet); |
| 15818 | fsym(spintet, neightet); // neightet is [b,a,d,#] |
| 15819 | if (!infected(neightet)) { |
| 15820 | // A bottom face. |
| 15821 | botfaces->newindex((void **) &parytet); |
| 15822 | *parytet = neightet; |
| 15823 | } |
| 15824 | // Add middle vertices if there are (skip dummypoint). |
| 15825 | pa = org(neightet); |
| 15826 | if (!pinfected(pa)) { |
| 15827 | if (pa != dummypoint) { |
| 15828 | pinfect(pa); |
| 15829 | botpoints->newindex((void **) &parypt); |
| 15830 | *parypt = pa; |
| 15831 | toppoints->newindex((void **) &parypt); |
| 15832 | *parypt = pa; |
| 15833 | } |
| 15834 | } |
| 15835 | pa = dest(neightet); |
| 15836 | if (!pinfected(pa)) { |
| 15837 | if (pa != dummypoint) { |
| 15838 | pinfect(pa); |
| 15839 | botpoints->newindex((void **) &parypt); |
| 15840 | *parypt = pa; |
| 15841 | toppoints->newindex((void **) &parypt); |
| 15842 | *parypt = pa; |
| 15843 | } |
| 15844 | } |
| 15845 | } // i |
| 15846 | |
| 15847 | // Uninfect all collected top, bottom, and middle vertices. |
| 15848 | for (i = 0; i < toppoints->objects; i++) { |
| 15849 | parypt = (point *) fastlookup(toppoints, i); |
| 15850 | puninfect(*parypt); |
| 15851 | } |
| 15852 | for (i = 0; i < botpoints->objects; i++) { |
| 15853 | parypt = (point *) fastlookup(botpoints, i); |
| 15854 | puninfect(*parypt); |
| 15855 | } |
| 15856 | cavitycount++; |
| 15857 | |
| 15858 | return true; |
| 15859 | } |
| 15860 | |
| 15861 | /////////////////////////////////////////////////////////////////////////////// |
| 15862 | // // |
| 15863 | // delaunizecavity() Fill a cavity by Delaunay tetrahedra. // |
| 15864 | // // |
| 15865 | // The cavity C to be tetrahedralized is the top or bottom part of a whole // |
| 15866 | // cavity. 'cavfaces' contains the boundary faces of C. NOTE: faces in 'cav- // |
| 15867 | // faces' do not form a closed polyhedron. The "open" side are subfaces of // |
| 15868 | // the missing facet. These faces will be recovered later in fillcavity(). // |
| 15869 | // // |
| 15870 | // This routine first constructs the DT of the vertices. Then it identifies // |
| 15871 | // the half boundary faces of the cavity in DT. Possiblely the cavity C will // |
| 15872 | // be enlarged. // |
| 15873 | // // |
| 15874 | // The DT is returned in 'newtets'. // |
| 15875 | // // |
| 15876 | /////////////////////////////////////////////////////////////////////////////// |
| 15877 | |
| 15878 | void tetgenmesh::delaunizecavity(arraypool *cavpoints, arraypool *cavfaces, |
| 15879 | arraypool *cavshells, arraypool *newtets, |
| 15880 | arraypool *crosstets, arraypool *misfaces) |
| 15881 | { |
| 15882 | triface searchtet, neightet, *parytet, *parytet1; |
| 15883 | face tmpsh, *parysh; |
| 15884 | point pa, pb, pc, pd, pt[3], *parypt; |
| 15885 | enum interresult dir; |
| 15886 | insertvertexflags ivf; |
| 15887 | REAL ori; |
| 15888 | long baknum, bakhullsize; |
| 15889 | int bakchecksubsegflag, bakchecksubfaceflag; |
| 15890 | int t1ver; |
| 15891 | int i, j; |
| 15892 | |
| 15893 | if (b->verbose > 2) { |
| 15894 | printf(" Delaunizing cavity: %ld points, %ld faces.\n" , |
| 15895 | cavpoints->objects, cavfaces->objects); |
| 15896 | } |
| 15897 | // Remember the current number of crossing tets. It may be enlarged later. |
| 15898 | baknum = crosstets->objects; |
| 15899 | bakhullsize = hullsize; |
| 15900 | bakchecksubsegflag = checksubsegflag; |
| 15901 | bakchecksubfaceflag = checksubfaceflag; |
| 15902 | hullsize = 0l; |
| 15903 | checksubsegflag = 0; |
| 15904 | checksubfaceflag = 0; |
| 15905 | b->verbose--; // Suppress informations for creating Delaunay tetra. |
| 15906 | b->plc = 0; // Do not check near vertices. |
| 15907 | |
| 15908 | ivf.bowywat = 1; // Use Bowyer-Watson algorithm. |
| 15909 | |
| 15910 | // Get four non-coplanar points (no dummypoint). |
| 15911 | pa = pb = pc = NULL; |
| 15912 | for (i = 0; i < cavfaces->objects; i++) { |
| 15913 | parytet = (triface *) fastlookup(cavfaces, i); |
| 15914 | parytet->ver = epivot[parytet->ver]; |
| 15915 | if (apex(*parytet) != dummypoint) { |
| 15916 | pa = org(*parytet); |
| 15917 | pb = dest(*parytet); |
| 15918 | pc = apex(*parytet); |
| 15919 | break; |
| 15920 | } |
| 15921 | } |
| 15922 | pd = NULL; |
| 15923 | for (; i < cavfaces->objects; i++) { |
| 15924 | parytet = (triface *) fastlookup(cavfaces, i); |
| 15925 | pt[0] = org(*parytet); |
| 15926 | pt[1] = dest(*parytet); |
| 15927 | pt[2] = apex(*parytet); |
| 15928 | for (j = 0; j < 3; j++) { |
| 15929 | if (pt[j] != dummypoint) { // Do not include a hull point. |
| 15930 | ori = orient3d(pa, pb, pc, pt[j]); |
| 15931 | if (ori != 0) { |
| 15932 | pd = pt[j]; |
| 15933 | if (ori > 0) { // Swap pa and pb. |
| 15934 | pt[j] = pa; pa = pb; pb = pt[j]; |
| 15935 | } |
| 15936 | break; |
| 15937 | } |
| 15938 | } |
| 15939 | } |
| 15940 | if (pd != NULL) break; |
| 15941 | } |
| 15942 | assert(i < cavfaces->objects); // SELF_CHECK |
| 15943 | |
| 15944 | // Create an init DT. |
| 15945 | initialdelaunay(pa, pb, pc, pd); |
| 15946 | |
| 15947 | // Incrementally insert the vertices (duplicated vertices are ignored). |
| 15948 | for (i = 0; i < cavpoints->objects; i++) { |
| 15949 | pt[0] = * (point *) fastlookup(cavpoints, i); |
| 15950 | searchtet = recenttet; |
| 15951 | ivf.iloc = (int) OUTSIDE; |
| 15952 | insertpoint(pt[0], &searchtet, NULL, NULL, &ivf); |
| 15953 | } |
| 15954 | |
| 15955 | if (b->verbose > 2) { |
| 15956 | printf(" Identifying %ld boundary faces of the cavity.\n" , |
| 15957 | cavfaces->objects); |
| 15958 | } |
| 15959 | |
| 15960 | while (1) { |
| 15961 | |
| 15962 | // Identify boundary faces. Mark interior tets. Save missing faces. |
| 15963 | for (i = 0; i < cavfaces->objects; i++) { |
| 15964 | parytet = (triface *) fastlookup(cavfaces, i); |
| 15965 | // Skip an interior face (due to the enlargement of the cavity). |
| 15966 | if (infected(*parytet)) continue; |
| 15967 | parytet->ver = epivot[parytet->ver]; |
| 15968 | pt[0] = org(*parytet); |
| 15969 | pt[1] = dest(*parytet); |
| 15970 | pt[2] = apex(*parytet); |
| 15971 | // Create a temp subface. |
| 15972 | makeshellface(subfaces, &tmpsh); |
| 15973 | setshvertices(tmpsh, pt[0], pt[1], pt[2]); |
| 15974 | // Insert tmpsh in DT. |
| 15975 | searchtet.tet = NULL; |
| 15976 | dir = scoutsubface(&tmpsh, &searchtet); |
| 15977 | if (dir == SHAREFACE) { |
| 15978 | // Inserted! 'tmpsh' must face toward the inside of the cavity. |
| 15979 | // Remember the boundary tet (outside the cavity) in tmpsh |
| 15980 | // (use the adjacent tet slot). |
| 15981 | tmpsh.sh[0] = (shellface) encode(*parytet); |
| 15982 | // Save this subface. |
| 15983 | cavshells->newindex((void **) &parysh); |
| 15984 | *parysh = tmpsh; |
| 15985 | } |
| 15986 | else { |
| 15987 | // This boundary face is missing. |
| 15988 | shellfacedealloc(subfaces, tmpsh.sh); |
| 15989 | // Save this face in list. |
| 15990 | misfaces->newindex((void **) &parytet1); |
| 15991 | *parytet1 = *parytet; |
| 15992 | } |
| 15993 | } // i |
| 15994 | |
| 15995 | if (misfaces->objects > 0) { |
| 15996 | if (b->verbose > 2) { |
| 15997 | printf(" Enlarging the cavity. %ld missing bdry faces\n" , |
| 15998 | misfaces->objects); |
| 15999 | } |
| 16000 | |
| 16001 | // Removing all temporary subfaces. |
| 16002 | for (i = 0; i < cavshells->objects; i++) { |
| 16003 | parysh = (face *) fastlookup(cavshells, i); |
| 16004 | stpivot(*parysh, neightet); |
| 16005 | tsdissolve(neightet); // Detach it from adj. tets. |
| 16006 | fsymself(neightet); |
| 16007 | tsdissolve(neightet); |
| 16008 | shellfacedealloc(subfaces, parysh->sh); |
| 16009 | } |
| 16010 | cavshells->restart(); |
| 16011 | |
| 16012 | // Infect the points which are of the cavity. |
| 16013 | for (i = 0; i < cavpoints->objects; i++) { |
| 16014 | pt[0] = * (point *) fastlookup(cavpoints, i); |
| 16015 | pinfect(pt[0]); // Mark it as inserted. |
| 16016 | } |
| 16017 | |
| 16018 | // Enlarge the cavity. |
| 16019 | for (i = 0; i < misfaces->objects; i++) { |
| 16020 | // Get a missing face. |
| 16021 | parytet = (triface *) fastlookup(misfaces, i); |
| 16022 | if (!infected(*parytet)) { |
| 16023 | // Put it into crossing tet list. |
| 16024 | infect(*parytet); |
| 16025 | crosstets->newindex((void **) &parytet1); |
| 16026 | *parytet1 = *parytet; |
| 16027 | // Insert the opposite point if it is not in DT. |
| 16028 | pd = oppo(*parytet); |
| 16029 | if (!pinfected(pd)) { |
| 16030 | searchtet = recenttet; |
| 16031 | ivf.iloc = (int) OUTSIDE; |
| 16032 | insertpoint(pd, &searchtet, NULL, NULL, &ivf); |
| 16033 | pinfect(pd); |
| 16034 | cavpoints->newindex((void **) &parypt); |
| 16035 | *parypt = pd; |
| 16036 | } |
| 16037 | // Add three opposite faces into the boundary list. |
| 16038 | for (j = 0; j < 3; j++) { |
| 16039 | esym(*parytet, neightet); |
| 16040 | fsymself(neightet); |
| 16041 | if (!infected(neightet)) { |
| 16042 | cavfaces->newindex((void **) &parytet1); |
| 16043 | *parytet1 = neightet; |
| 16044 | } |
| 16045 | enextself(*parytet); |
| 16046 | } // j |
| 16047 | } // if (!infected(parytet)) |
| 16048 | } // i |
| 16049 | |
| 16050 | // Uninfect the points which are of the cavity. |
| 16051 | for (i = 0; i < cavpoints->objects; i++) { |
| 16052 | pt[0] = * (point *) fastlookup(cavpoints, i); |
| 16053 | puninfect(pt[0]); |
| 16054 | } |
| 16055 | |
| 16056 | misfaces->restart(); |
| 16057 | continue; |
| 16058 | } // if (misfaces->objects > 0) |
| 16059 | |
| 16060 | break; |
| 16061 | |
| 16062 | } // while (1) |
| 16063 | |
| 16064 | // Collect all tets of the DT. All new tets are marktested. |
| 16065 | marktest(recenttet); |
| 16066 | newtets->newindex((void **) &parytet); |
| 16067 | *parytet = recenttet; |
| 16068 | for (i = 0; i < newtets->objects; i++) { |
| 16069 | searchtet = * (triface *) fastlookup(newtets, i); |
| 16070 | for (j = 0; j < 4; j++) { |
| 16071 | decode(searchtet.tet[j], neightet); |
| 16072 | if (!marktested(neightet)) { |
| 16073 | marktest(neightet); |
| 16074 | newtets->newindex((void **) &parytet); |
| 16075 | *parytet = neightet; |
| 16076 | } |
| 16077 | } |
| 16078 | } |
| 16079 | |
| 16080 | cavpoints->restart(); |
| 16081 | cavfaces->restart(); |
| 16082 | |
| 16083 | if (crosstets->objects > baknum) { |
| 16084 | // The cavity has been enlarged. |
| 16085 | cavityexpcount++; |
| 16086 | } |
| 16087 | |
| 16088 | // Restore the original values. |
| 16089 | hullsize = bakhullsize; |
| 16090 | checksubsegflag = bakchecksubsegflag; |
| 16091 | checksubfaceflag = bakchecksubfaceflag; |
| 16092 | b->verbose++; |
| 16093 | b->plc = 1; |
| 16094 | } |
| 16095 | |
| 16096 | /////////////////////////////////////////////////////////////////////////////// |
| 16097 | // // |
| 16098 | // fillcavity() Fill new tets into the cavity. // |
| 16099 | // // |
| 16100 | // The new tets are stored in two disjoint sets(which share the same facet). // |
| 16101 | // 'topfaces' and 'botfaces' are the boundaries of these two sets, respect- // |
| 16102 | // ively. 'midfaces' is empty on input, and will store faces in the facet. // |
| 16103 | // // |
| 16104 | // Important: This routine assumes all vertices of the missing region R are // |
| 16105 | // marktested, i.e., pmarktested(p) returns true. // |
| 16106 | // // |
| 16107 | /////////////////////////////////////////////////////////////////////////////// |
| 16108 | |
| 16109 | bool tetgenmesh::fillcavity(arraypool* topshells, arraypool* botshells, |
| 16110 | arraypool* midfaces, arraypool* missingshs, |
| 16111 | arraypool* topnewtets, arraypool* botnewtets, |
| 16112 | triface* crossedge) |
| 16113 | { |
| 16114 | arraypool *cavshells; |
| 16115 | triface bdrytet, neightet, *parytet; |
| 16116 | triface searchtet, spintet; |
| 16117 | face *parysh; |
| 16118 | face checkseg; |
| 16119 | point pa, pb, pc; |
| 16120 | bool mflag; |
| 16121 | int t1ver; |
| 16122 | int i, j; |
| 16123 | |
| 16124 | // Connect newtets to tets outside the cavity. These connections are needed |
| 16125 | // for identifying the middle faces (which belong to R). |
| 16126 | for (j = 0; j < 2; j++) { |
| 16127 | cavshells = (j == 0 ? topshells : botshells); |
| 16128 | if (cavshells != NULL) { |
| 16129 | for (i = 0; i < cavshells->objects; i++) { |
| 16130 | // Get a temp subface. |
| 16131 | parysh = (face *) fastlookup(cavshells, i); |
| 16132 | // Get the boundary tet outside the cavity (saved in sh[0]). |
| 16133 | decode(parysh->sh[0], bdrytet); |
| 16134 | pa = org(bdrytet); |
| 16135 | pb = dest(bdrytet); |
| 16136 | pc = apex(bdrytet); |
| 16137 | // Get the adjacent new tet inside the cavity. |
| 16138 | stpivot(*parysh, neightet); |
| 16139 | // Mark neightet as an interior tet of this cavity. |
| 16140 | infect(neightet); |
| 16141 | // Connect the two tets (the old connections are replaced). |
| 16142 | bond(bdrytet, neightet); |
| 16143 | tsdissolve(neightet); // Clear the pointer to tmpsh. |
| 16144 | // Update the point-to-tets map. |
| 16145 | setpoint2tet(pa, (tetrahedron) neightet.tet); |
| 16146 | setpoint2tet(pb, (tetrahedron) neightet.tet); |
| 16147 | setpoint2tet(pc, (tetrahedron) neightet.tet); |
| 16148 | } // i |
| 16149 | } // if (cavshells != NULL) |
| 16150 | } // j |
| 16151 | |
| 16152 | if (crossedge != NULL) { |
| 16153 | // Glue top and bottom tets at their common facet. |
| 16154 | triface toptet, bottet, spintet, *midface; |
| 16155 | point pd, pe; |
| 16156 | REAL ori; |
| 16157 | int types[2], poss[4]; |
| 16158 | int interflag; |
| 16159 | int bflag; |
| 16160 | |
| 16161 | mflag = false; |
| 16162 | pd = org(*crossedge); |
| 16163 | pe = dest(*crossedge); |
| 16164 | |
| 16165 | // Search the first (middle) face in R. |
| 16166 | // Since R may be non-convex, we must make sure that the face is in the |
| 16167 | // interior of R. We search a face in 'topnewtets' whose three vertices |
| 16168 | // are on R and it intersects 'crossedge' in its interior. Then search |
| 16169 | // a matching face in 'botnewtets'. |
| 16170 | for (i = 0; i < topnewtets->objects && !mflag; i++) { |
| 16171 | searchtet = * (triface *) fastlookup(topnewtets, i); |
| 16172 | for (searchtet.ver = 0; searchtet.ver < 4 && !mflag; searchtet.ver++) { |
| 16173 | pa = org(searchtet); |
| 16174 | if (pmarktested(pa)) { |
| 16175 | pb = dest(searchtet); |
| 16176 | if (pmarktested(pb)) { |
| 16177 | pc = apex(searchtet); |
| 16178 | if (pmarktested(pc)) { |
| 16179 | // Check if this face intersects [d,e]. |
| 16180 | interflag = tri_edge_test(pa,pb,pc,pd,pe,NULL,1,types,poss); |
| 16181 | if (interflag == 2) { |
| 16182 | // They intersect at a single point. Found. |
| 16183 | toptet = searchtet; |
| 16184 | // The face lies in the interior of R. |
| 16185 | // Get the tet (in topnewtets) which lies above R. |
| 16186 | ori = orient3d(pa, pb, pc, pd); |
| 16187 | assert(ori != 0); |
| 16188 | if (ori < 0) { |
| 16189 | fsymself(toptet); |
| 16190 | pa = org(toptet); |
| 16191 | pb = dest(toptet); |
| 16192 | } |
| 16193 | // Search the face [b,a,c] in 'botnewtets'. |
| 16194 | for (j = 0; j < botnewtets->objects; j++) { |
| 16195 | neightet = * (triface *) fastlookup(botnewtets, j); |
| 16196 | // Is neightet contains 'b'. |
| 16197 | if ((point) neightet.tet[4] == pb) { |
| 16198 | neightet.ver = 11; |
| 16199 | } else if ((point) neightet.tet[5] == pb) { |
| 16200 | neightet.ver = 3; |
| 16201 | } else if ((point) neightet.tet[6] == pb) { |
| 16202 | neightet.ver = 7; |
| 16203 | } else if ((point) neightet.tet[7] == pb) { |
| 16204 | neightet.ver = 0; |
| 16205 | } else { |
| 16206 | continue; |
| 16207 | } |
| 16208 | // Is the 'neightet' contains edge [b,a]. |
| 16209 | if (dest(neightet) == pa) { |
| 16210 | // 'neightet' is just the edge. |
| 16211 | } else if (apex(neightet) == pa) { |
| 16212 | eprevesymself(neightet); |
| 16213 | } else if (oppo(neightet) == pa) { |
| 16214 | esymself(neightet); |
| 16215 | enextself(neightet); |
| 16216 | } else { |
| 16217 | continue; |
| 16218 | } |
| 16219 | // Is 'neightet' the face [b,a,c]. |
| 16220 | if (apex(neightet) == pc) { |
| 16221 | bottet = neightet; |
| 16222 | mflag = true; |
| 16223 | break; |
| 16224 | } |
| 16225 | } // j |
| 16226 | } // if (interflag == 2) |
| 16227 | } // pc |
| 16228 | } // pb |
| 16229 | } // pa |
| 16230 | } // toptet.ver |
| 16231 | } // i |
| 16232 | |
| 16233 | if (mflag) { |
| 16234 | // Found a pair of matched faces in 'toptet' and 'bottet'. |
| 16235 | bond(toptet, bottet); |
| 16236 | // Both are interior tets. |
| 16237 | infect(toptet); |
| 16238 | infect(bottet); |
| 16239 | // Add this face into search list. |
| 16240 | markface(toptet); |
| 16241 | midfaces->newindex((void **) &parytet); |
| 16242 | *parytet = toptet; |
| 16243 | } else { |
| 16244 | // No pair of 'toptet' and 'bottet'. |
| 16245 | toptet.tet = NULL; |
| 16246 | // Randomly split an interior edge of R. |
| 16247 | i = randomnation(missingshs->objects - 1); |
| 16248 | recentsh = * (face *) fastlookup(missingshs, i); |
| 16249 | } |
| 16250 | |
| 16251 | // Find other middle faces, connect top and bottom tets. |
| 16252 | for (i = 0; i < midfaces->objects && mflag; i++) { |
| 16253 | // Get a matched middle face [a, b, c] |
| 16254 | midface = (triface *) fastlookup(midfaces, i); |
| 16255 | // The tet must be a new created tet (marktested). |
| 16256 | assert(marktested(*midface)); // SELF_CHECK |
| 16257 | // Check the neighbors at the edges of this face. |
| 16258 | for (j = 0; j < 3 && mflag; j++) { |
| 16259 | toptet = *midface; |
| 16260 | bflag = false; |
| 16261 | while (1) { |
| 16262 | // Go to the next face in the same tet. |
| 16263 | esymself(toptet); |
| 16264 | pc = apex(toptet); |
| 16265 | if (pmarktested(pc)) { |
| 16266 | break; // Find a subface. |
| 16267 | } |
| 16268 | if (pc == dummypoint) { |
| 16269 | assert(0); // Check this case. |
| 16270 | break; // Find a subface. |
| 16271 | } |
| 16272 | // Go to the adjacent tet. |
| 16273 | fsymself(toptet); |
| 16274 | // Do we walk outside the cavity? |
| 16275 | if (!marktested(toptet)) { |
| 16276 | // Yes, the adjacent face is not a middle face. |
| 16277 | bflag = true; break; |
| 16278 | } |
| 16279 | } |
| 16280 | if (!bflag) { |
| 16281 | // assert(marktested(toptet)); // SELF_CHECK |
| 16282 | if (!facemarked(toptet)) { |
| 16283 | fsym(*midface, bottet); |
| 16284 | spintet = bottet; |
| 16285 | while (1) { |
| 16286 | esymself(bottet); |
| 16287 | pd = apex(bottet); |
| 16288 | if (pd == pc) break; // Face matched. |
| 16289 | fsymself(bottet); |
| 16290 | if (bottet.tet == spintet.tet) { |
| 16291 | // Not found a matched bottom face. |
| 16292 | mflag = false; |
| 16293 | break; |
| 16294 | } |
| 16295 | } // while (1) |
| 16296 | if (mflag) { |
| 16297 | if (marktested(bottet)) { |
| 16298 | // Connect two tets together. |
| 16299 | bond(toptet, bottet); |
| 16300 | // Both are interior tets. |
| 16301 | infect(toptet); |
| 16302 | infect(bottet); |
| 16303 | // Add this face into list. |
| 16304 | markface(toptet); |
| 16305 | midfaces->newindex((void **) &parytet); |
| 16306 | *parytet = toptet; |
| 16307 | } |
| 16308 | } else { // mflag == false |
| 16309 | // Adjust 'toptet' and 'bottet' to be the crossing edges. |
| 16310 | fsym(*midface, bottet); |
| 16311 | spintet = bottet; |
| 16312 | while (1) { |
| 16313 | esymself(bottet); |
| 16314 | pd = apex(bottet); |
| 16315 | if (pmarktested(pd)) { |
| 16316 | // assert(pd != pc); |
| 16317 | // Let 'toptet' be [a,b,c,#], and 'bottet' be [b,a,d,*]. |
| 16318 | // Adjust 'toptet' and 'bottet' to be the crossing edges. |
| 16319 | // Test orient3d(b,c,#,d). |
| 16320 | ori = orient3d(dest(toptet), pc, oppo(toptet), pd); |
| 16321 | if (ori < 0) { |
| 16322 | // Edges [a,d] and [b,c] cross each other. |
| 16323 | enextself(toptet); // [b,c] |
| 16324 | enextself(bottet); // [a,d] |
| 16325 | } else if (ori > 0) { |
| 16326 | // Edges [a,c] and [b,d] cross each other. |
| 16327 | eprevself(toptet); // [c,a] |
| 16328 | eprevself(bottet); // [d,b] |
| 16329 | } else { |
| 16330 | // b,c,#,and d are coplanar!. |
| 16331 | assert(0); |
| 16332 | } |
| 16333 | break; // Not matched |
| 16334 | } |
| 16335 | fsymself(bottet); |
| 16336 | assert (bottet.tet != spintet.tet); |
| 16337 | } |
| 16338 | } // if (!mflag) |
| 16339 | } // if (!facemarked(toptet)) |
| 16340 | } // if (!bflag) |
| 16341 | enextself(*midface); |
| 16342 | } // j |
| 16343 | } // i |
| 16344 | |
| 16345 | if (mflag) { |
| 16346 | if (b->verbose > 2) { |
| 16347 | printf(" Found %ld middle subfaces.\n" , midfaces->objects); |
| 16348 | } |
| 16349 | face oldsh, newsh, casout, casin, neighsh; |
| 16350 | |
| 16351 | oldsh = * (face *) fastlookup(missingshs, 0); |
| 16352 | |
| 16353 | // Create new subfaces to fill the region R. |
| 16354 | for (i = 0; i < midfaces->objects; i++) { |
| 16355 | // Get a matched middle face [a, b, c] |
| 16356 | midface = (triface *) fastlookup(midfaces, i); |
| 16357 | unmarkface(*midface); |
| 16358 | makeshellface(subfaces, &newsh); |
| 16359 | setsorg(newsh, org(*midface)); |
| 16360 | setsdest(newsh, dest(*midface)); |
| 16361 | setsapex(newsh, apex(*midface)); |
| 16362 | // The new subface gets its markers from the old one. |
| 16363 | setshellmark(newsh, shellmark(oldsh)); |
| 16364 | if (checkconstraints) { |
| 16365 | setareabound(newsh, areabound(oldsh)); |
| 16366 | } |
| 16367 | // Connect the new subface to adjacent tets. |
| 16368 | tsbond(*midface, newsh); |
| 16369 | fsym(*midface, neightet); |
| 16370 | sesymself(newsh); |
| 16371 | tsbond(neightet, newsh); |
| 16372 | } |
| 16373 | |
| 16374 | // Connect new subfaces together and to the bdry of R. |
| 16375 | // Delete faked segments. |
| 16376 | for (i = 0; i < midfaces->objects; i++) { |
| 16377 | // Get a matched middle face [a, b, c] |
| 16378 | midface = (triface *) fastlookup(midfaces, i); |
| 16379 | for (j = 0; j < 3; j++) { |
| 16380 | tspivot(*midface, newsh); |
| 16381 | spivot(newsh, casout); |
| 16382 | if (casout.sh == NULL) { |
| 16383 | // Search its neighbor. |
| 16384 | fnext(*midface, searchtet); |
| 16385 | while (1) { |
| 16386 | // (1) First check if this side is a bdry edge of R. |
| 16387 | tsspivot1(searchtet, checkseg); |
| 16388 | if (checkseg.sh != NULL) { |
| 16389 | // It's a bdry edge of R. |
| 16390 | assert(!infected(searchtet)); // It must not be a cavity tet. |
| 16391 | // Get the old subface. |
| 16392 | checkseg.shver = 0; |
| 16393 | spivot(checkseg, oldsh); |
| 16394 | if (sinfected(checkseg)) { |
| 16395 | // It's a faked segment. Delete it. |
| 16396 | spintet = searchtet; |
| 16397 | while (1) { |
| 16398 | tssdissolve1(spintet); |
| 16399 | fnextself(spintet); |
| 16400 | if (spintet.tet == searchtet.tet) break; |
| 16401 | } |
| 16402 | shellfacedealloc(subsegs, checkseg.sh); |
| 16403 | ssdissolve(oldsh); |
| 16404 | checkseg.sh = NULL; |
| 16405 | } |
| 16406 | spivot(oldsh, casout); |
| 16407 | if (casout.sh != NULL) { |
| 16408 | casin = casout; |
| 16409 | if (checkseg.sh != NULL) { |
| 16410 | // Make sure that the subface has the right ori at the |
| 16411 | // segment. |
| 16412 | checkseg.shver = 0; |
| 16413 | if (sorg(newsh) != sorg(checkseg)) { |
| 16414 | sesymself(newsh); |
| 16415 | } |
| 16416 | spivot(casin, neighsh); |
| 16417 | while (neighsh.sh != oldsh.sh) { |
| 16418 | casin = neighsh; |
| 16419 | spivot(casin, neighsh); |
| 16420 | } |
| 16421 | } |
| 16422 | sbond1(newsh, casout); |
| 16423 | sbond1(casin, newsh); |
| 16424 | } |
| 16425 | if (checkseg.sh != NULL) { |
| 16426 | ssbond(newsh, checkseg); |
| 16427 | } |
| 16428 | break; |
| 16429 | } // if (checkseg.sh != NULL) |
| 16430 | // (2) Second check if this side is an interior edge of R. |
| 16431 | tspivot(searchtet, neighsh); |
| 16432 | if (neighsh.sh != NULL) { |
| 16433 | // Found an adjacent subface of newsh (an interior edge). |
| 16434 | sbond(newsh, neighsh); |
| 16435 | break; |
| 16436 | } |
| 16437 | fnextself(searchtet); |
| 16438 | assert(searchtet.tet != midface->tet); |
| 16439 | } // while (1) |
| 16440 | } // if (casout.sh == NULL) |
| 16441 | enextself(*midface); |
| 16442 | } // j |
| 16443 | } // i |
| 16444 | |
| 16445 | // Delete old subfaces. |
| 16446 | for (i = 0; i < missingshs->objects; i++) { |
| 16447 | parysh = (face *) fastlookup(missingshs, i); |
| 16448 | shellfacedealloc(subfaces, parysh->sh); |
| 16449 | } |
| 16450 | } else { |
| 16451 | if (toptet.tet != NULL) { |
| 16452 | // Faces at top and bottom are not matched. |
| 16453 | // Choose a Steiner point in R. |
| 16454 | // Split one of the crossing edges. |
| 16455 | pa = org(toptet); |
| 16456 | pb = dest(toptet); |
| 16457 | pc = org(bottet); |
| 16458 | pd = dest(bottet); |
| 16459 | // Search an edge in R which is either [a,b] or [c,d]. |
| 16460 | // Reminder: Subfaces in this list 'missingshs', except the first |
| 16461 | // one, represents an interior edge of R. |
| 16462 | for (i = 1; i < missingshs->objects; i++) { |
| 16463 | parysh = (face *) fastlookup(missingshs, i); |
| 16464 | if (((sorg(*parysh) == pa) && (sdest(*parysh) == pb)) || |
| 16465 | ((sorg(*parysh) == pb) && (sdest(*parysh) == pa))) break; |
| 16466 | if (((sorg(*parysh) == pc) && (sdest(*parysh) == pd)) || |
| 16467 | ((sorg(*parysh) == pd) && (sdest(*parysh) == pc))) break; |
| 16468 | } |
| 16469 | if (i < missingshs->objects) { |
| 16470 | // Found. Return it. |
| 16471 | recentsh = *parysh; |
| 16472 | } else { |
| 16473 | assert(0); |
| 16474 | } |
| 16475 | } |
| 16476 | } |
| 16477 | |
| 16478 | midfaces->restart(); |
| 16479 | } else { |
| 16480 | mflag = true; |
| 16481 | } |
| 16482 | |
| 16483 | // Delete the temp subfaces. |
| 16484 | for (j = 0; j < 2; j++) { |
| 16485 | cavshells = (j == 0 ? topshells : botshells); |
| 16486 | if (cavshells != NULL) { |
| 16487 | for (i = 0; i < cavshells->objects; i++) { |
| 16488 | parysh = (face *) fastlookup(cavshells, i); |
| 16489 | shellfacedealloc(subfaces, parysh->sh); |
| 16490 | } |
| 16491 | } |
| 16492 | } |
| 16493 | |
| 16494 | topshells->restart(); |
| 16495 | if (botshells != NULL) { |
| 16496 | botshells->restart(); |
| 16497 | } |
| 16498 | |
| 16499 | return mflag; |
| 16500 | } |
| 16501 | |
| 16502 | /////////////////////////////////////////////////////////////////////////////// |
| 16503 | // // |
| 16504 | // carvecavity() Delete old tets and outer new tets of the cavity. // |
| 16505 | // // |
| 16506 | /////////////////////////////////////////////////////////////////////////////// |
| 16507 | |
| 16508 | void tetgenmesh::carvecavity(arraypool *crosstets, arraypool *topnewtets, |
| 16509 | arraypool *botnewtets) |
| 16510 | { |
| 16511 | arraypool *newtets; |
| 16512 | shellface *sptr, *ssptr; |
| 16513 | triface *parytet, *pnewtet, newtet, neightet, spintet; |
| 16514 | face checksh, *parysh; |
| 16515 | face checkseg, *paryseg; |
| 16516 | int t1ver; |
| 16517 | int i, j; |
| 16518 | |
| 16519 | if (b->verbose > 2) { |
| 16520 | printf(" Carve cavity: %ld old tets.\n" , crosstets->objects); |
| 16521 | } |
| 16522 | |
| 16523 | // First process subfaces and segments which are adjacent to the cavity. |
| 16524 | // They must be re-connected to new tets in the cavity. |
| 16525 | // Comment: It is possible that some subfaces and segments are completely |
| 16526 | // inside the cavity. This can happen even if the cavity is not enlarged. |
| 16527 | // Before deleting the old tets, find and queue all interior subfaces |
| 16528 | // and segments. They will be recovered later. 2010-05-06. |
| 16529 | |
| 16530 | // Collect all subfaces and segments which attached to the old tets. |
| 16531 | for (i = 0; i < crosstets->objects; i++) { |
| 16532 | parytet = (triface *) fastlookup(crosstets, i); |
| 16533 | if ((sptr = (shellface*) parytet->tet[9]) != NULL) { |
| 16534 | for (j = 0; j < 4; j++) { |
| 16535 | if (sptr[j]) { |
| 16536 | sdecode(sptr[j], checksh); |
| 16537 | if (!sinfected(checksh)) { |
| 16538 | sinfect(checksh); |
| 16539 | cavetetshlist->newindex((void **) &parysh); |
| 16540 | *parysh = checksh; |
| 16541 | } |
| 16542 | } |
| 16543 | } // j |
| 16544 | } |
| 16545 | if ((ssptr = (shellface*) parytet->tet[8]) != NULL) { |
| 16546 | for (j = 0; j < 6; j++) { |
| 16547 | if (ssptr[j]) { |
| 16548 | sdecode(ssptr[j], checkseg); |
| 16549 | // Skip a deleted segment (was a faked segment) |
| 16550 | if (checkseg.sh[3] != NULL) { |
| 16551 | if (!sinfected(checkseg)) { |
| 16552 | sinfect(checkseg); |
| 16553 | cavetetseglist->newindex((void **) &paryseg); |
| 16554 | *paryseg = checkseg; |
| 16555 | } |
| 16556 | } |
| 16557 | } |
| 16558 | } // j |
| 16559 | } |
| 16560 | } // i |
| 16561 | |
| 16562 | // Uninfect collected subfaces. |
| 16563 | for (i = 0; i < cavetetshlist->objects; i++) { |
| 16564 | parysh = (face *) fastlookup(cavetetshlist, i); |
| 16565 | suninfect(*parysh); |
| 16566 | } |
| 16567 | // Uninfect collected segments. |
| 16568 | for (i = 0; i < cavetetseglist->objects; i++) { |
| 16569 | paryseg = (face *) fastlookup(cavetetseglist, i); |
| 16570 | suninfect(*paryseg); |
| 16571 | } |
| 16572 | |
| 16573 | // Connect subfaces to new tets. |
| 16574 | for (i = 0; i < cavetetshlist->objects; i++) { |
| 16575 | parysh = (face *) fastlookup(cavetetshlist, i); |
| 16576 | // Get an adjacent tet at this subface. |
| 16577 | stpivot(*parysh, neightet); |
| 16578 | // Does this tet lie inside the cavity. |
| 16579 | if (infected(neightet)) { |
| 16580 | // Yes. Get the other adjacent tet at this subface. |
| 16581 | sesymself(*parysh); |
| 16582 | stpivot(*parysh, neightet); |
| 16583 | // Does this tet lie inside the cavity. |
| 16584 | if (infected(neightet)) { |
| 16585 | checksh = *parysh; |
| 16586 | stdissolve(checksh); |
| 16587 | caveencshlist->newindex((void **) &parysh); |
| 16588 | *parysh = checksh; |
| 16589 | } |
| 16590 | } |
| 16591 | if (!infected(neightet)) { |
| 16592 | // Found an outside tet. Re-connect this subface to a new tet. |
| 16593 | fsym(neightet, newtet); |
| 16594 | assert(marktested(newtet)); // It's a new tet. |
| 16595 | sesymself(*parysh); |
| 16596 | tsbond(newtet, *parysh); |
| 16597 | } |
| 16598 | } // i |
| 16599 | |
| 16600 | |
| 16601 | for (i = 0; i < cavetetseglist->objects; i++) { |
| 16602 | checkseg = * (face *) fastlookup(cavetetseglist, i); |
| 16603 | // Check if the segment is inside the cavity. |
| 16604 | sstpivot1(checkseg, neightet); |
| 16605 | spintet = neightet; |
| 16606 | while (1) { |
| 16607 | if (!infected(spintet)) { |
| 16608 | // This segment is on the boundary of the cavity. |
| 16609 | break; |
| 16610 | } |
| 16611 | fnextself(spintet); |
| 16612 | if (spintet.tet == neightet.tet) { |
| 16613 | sstdissolve1(checkseg); |
| 16614 | caveencseglist->newindex((void **) &paryseg); |
| 16615 | *paryseg = checkseg; |
| 16616 | break; |
| 16617 | } |
| 16618 | } |
| 16619 | if (!infected(spintet)) { |
| 16620 | // A boundary segment. Connect this segment to the new tets. |
| 16621 | sstbond1(checkseg, spintet); |
| 16622 | neightet = spintet; |
| 16623 | while (1) { |
| 16624 | tssbond1(spintet, checkseg); |
| 16625 | fnextself(spintet); |
| 16626 | if (spintet.tet == neightet.tet) break; |
| 16627 | } |
| 16628 | } |
| 16629 | } // i |
| 16630 | |
| 16631 | |
| 16632 | cavetetshlist->restart(); |
| 16633 | cavetetseglist->restart(); |
| 16634 | |
| 16635 | // Delete the old tets in cavity. |
| 16636 | for (i = 0; i < crosstets->objects; i++) { |
| 16637 | parytet = (triface *) fastlookup(crosstets, i); |
| 16638 | if (ishulltet(*parytet)) { |
| 16639 | hullsize--; |
| 16640 | } |
| 16641 | tetrahedrondealloc(parytet->tet); |
| 16642 | } |
| 16643 | |
| 16644 | crosstets->restart(); // crosstets will be re-used. |
| 16645 | |
| 16646 | // Collect new tets in cavity. Some new tets have already been found |
| 16647 | // (and infected) in the fillcavity(). We first collect them. |
| 16648 | for (j = 0; j < 2; j++) { |
| 16649 | newtets = (j == 0 ? topnewtets : botnewtets); |
| 16650 | if (newtets != NULL) { |
| 16651 | for (i = 0; i < newtets->objects; i++) { |
| 16652 | parytet = (triface *) fastlookup(newtets, i); |
| 16653 | if (infected(*parytet)) { |
| 16654 | crosstets->newindex((void **) &pnewtet); |
| 16655 | *pnewtet = *parytet; |
| 16656 | } |
| 16657 | } // i |
| 16658 | } |
| 16659 | } // j |
| 16660 | |
| 16661 | // Now we collect all new tets in cavity. |
| 16662 | for (i = 0; i < crosstets->objects; i++) { |
| 16663 | parytet = (triface *) fastlookup(crosstets, i); |
| 16664 | for (j = 0; j < 4; j++) { |
| 16665 | decode(parytet->tet[j], neightet); |
| 16666 | if (marktested(neightet)) { // Is it a new tet? |
| 16667 | if (!infected(neightet)) { |
| 16668 | // Find an interior tet. |
| 16669 | //assert((point) neightet.tet[7] != dummypoint); // SELF_CHECK |
| 16670 | infect(neightet); |
| 16671 | crosstets->newindex((void **) &pnewtet); |
| 16672 | *pnewtet = neightet; |
| 16673 | } |
| 16674 | } |
| 16675 | } // j |
| 16676 | } // i |
| 16677 | |
| 16678 | parytet = (triface *) fastlookup(crosstets, 0); |
| 16679 | recenttet = *parytet; // Remember a live handle. |
| 16680 | |
| 16681 | // Delete outer new tets. |
| 16682 | for (j = 0; j < 2; j++) { |
| 16683 | newtets = (j == 0 ? topnewtets : botnewtets); |
| 16684 | if (newtets != NULL) { |
| 16685 | for (i = 0; i < newtets->objects; i++) { |
| 16686 | parytet = (triface *) fastlookup(newtets, i); |
| 16687 | if (infected(*parytet)) { |
| 16688 | // This is an interior tet. |
| 16689 | uninfect(*parytet); |
| 16690 | unmarktest(*parytet); |
| 16691 | if (ishulltet(*parytet)) { |
| 16692 | hullsize++; |
| 16693 | } |
| 16694 | } else { |
| 16695 | // An outer tet. Delete it. |
| 16696 | tetrahedrondealloc(parytet->tet); |
| 16697 | } |
| 16698 | } |
| 16699 | } |
| 16700 | } |
| 16701 | |
| 16702 | crosstets->restart(); |
| 16703 | topnewtets->restart(); |
| 16704 | if (botnewtets != NULL) { |
| 16705 | botnewtets->restart(); |
| 16706 | } |
| 16707 | } |
| 16708 | |
| 16709 | /////////////////////////////////////////////////////////////////////////////// |
| 16710 | // // |
| 16711 | // restorecavity() Reconnect old tets and delete new tets of the cavity. // |
| 16712 | // // |
| 16713 | /////////////////////////////////////////////////////////////////////////////// |
| 16714 | |
| 16715 | void tetgenmesh::restorecavity(arraypool *crosstets, arraypool *topnewtets, |
| 16716 | arraypool *botnewtets, arraypool *missingshbds) |
| 16717 | { |
| 16718 | triface *parytet, neightet, spintet; |
| 16719 | face *parysh; |
| 16720 | face checkseg; |
| 16721 | point *ppt; |
| 16722 | int t1ver; |
| 16723 | int i, j; |
| 16724 | |
| 16725 | // Reconnect crossing tets to cavity boundary. |
| 16726 | for (i = 0; i < crosstets->objects; i++) { |
| 16727 | parytet = (triface *) fastlookup(crosstets, i); |
| 16728 | assert(infected(*parytet)); // SELF_CHECK |
| 16729 | parytet->ver = 0; |
| 16730 | for (parytet->ver = 0; parytet->ver < 4; parytet->ver++) { |
| 16731 | fsym(*parytet, neightet); |
| 16732 | if (!infected(neightet)) { |
| 16733 | // Restore the old connections of tets. |
| 16734 | bond(*parytet, neightet); |
| 16735 | } |
| 16736 | } |
| 16737 | // Update the point-to-tet map. |
| 16738 | parytet->ver = 0; |
| 16739 | ppt = (point *) &(parytet->tet[4]); |
| 16740 | for (j = 0; j < 4; j++) { |
| 16741 | setpoint2tet(ppt[j], encode(*parytet)); |
| 16742 | } |
| 16743 | } |
| 16744 | |
| 16745 | // Uninfect all crossing tets. |
| 16746 | for (i = 0; i < crosstets->objects; i++) { |
| 16747 | parytet = (triface *) fastlookup(crosstets, i); |
| 16748 | uninfect(*parytet); |
| 16749 | } |
| 16750 | |
| 16751 | // Remember a live handle. |
| 16752 | recenttet = * (triface *) fastlookup(crosstets, 0); |
| 16753 | |
| 16754 | // Delete faked segments. |
| 16755 | for (i = 0; i < missingshbds->objects; i++) { |
| 16756 | parysh = (face *) fastlookup(missingshbds, i); |
| 16757 | sspivot(*parysh, checkseg); |
| 16758 | assert(checkseg.sh != NULL); |
| 16759 | if (checkseg.sh[3] != NULL) { |
| 16760 | if (sinfected(checkseg)) { |
| 16761 | // It's a faked segment. Delete it. |
| 16762 | sstpivot1(checkseg, neightet); |
| 16763 | spintet = neightet; |
| 16764 | while (1) { |
| 16765 | tssdissolve1(spintet); |
| 16766 | fnextself(spintet); |
| 16767 | if (spintet.tet == neightet.tet) break; |
| 16768 | } |
| 16769 | shellfacedealloc(subsegs, checkseg.sh); |
| 16770 | ssdissolve(*parysh); |
| 16771 | //checkseg.sh = NULL; |
| 16772 | } |
| 16773 | } |
| 16774 | } // i |
| 16775 | |
| 16776 | // Delete new tets. |
| 16777 | for (i = 0; i < topnewtets->objects; i++) { |
| 16778 | parytet = (triface *) fastlookup(topnewtets, i); |
| 16779 | tetrahedrondealloc(parytet->tet); |
| 16780 | } |
| 16781 | |
| 16782 | if (botnewtets != NULL) { |
| 16783 | for (i = 0; i < botnewtets->objects; i++) { |
| 16784 | parytet = (triface *) fastlookup(botnewtets, i); |
| 16785 | tetrahedrondealloc(parytet->tet); |
| 16786 | } |
| 16787 | } |
| 16788 | |
| 16789 | crosstets->restart(); |
| 16790 | topnewtets->restart(); |
| 16791 | if (botnewtets != NULL) { |
| 16792 | botnewtets->restart(); |
| 16793 | } |
| 16794 | } |
| 16795 | |
| 16796 | /////////////////////////////////////////////////////////////////////////////// |
| 16797 | // // |
| 16798 | // flipcertify() Insert a crossing face into priority queue. // |
| 16799 | // // |
| 16800 | // A crossing face of a facet must have at least one top and one bottom ver- // |
| 16801 | // tex of the facet. // |
| 16802 | // // |
| 16803 | /////////////////////////////////////////////////////////////////////////////// |
| 16804 | |
| 16805 | void tetgenmesh::flipcertify(triface *chkface,badface **pqueue,point plane_pa, |
| 16806 | point plane_pb, point plane_pc) |
| 16807 | { |
| 16808 | badface *parybf, *prevbf, *nextbf; |
| 16809 | triface neightet; |
| 16810 | face checksh; |
| 16811 | point p[5]; |
| 16812 | REAL w[5]; |
| 16813 | REAL insph, ori4; |
| 16814 | int topi, boti; |
| 16815 | int i; |
| 16816 | |
| 16817 | // Compute the flip time \tau. |
| 16818 | fsym(*chkface, neightet); |
| 16819 | |
| 16820 | p[0] = org(*chkface); |
| 16821 | p[1] = dest(*chkface); |
| 16822 | p[2] = apex(*chkface); |
| 16823 | p[3] = oppo(*chkface); |
| 16824 | p[4] = oppo(neightet); |
| 16825 | |
| 16826 | // Check if the face is a crossing face. |
| 16827 | topi = boti = 0; |
| 16828 | for (i = 0; i < 3; i++) { |
| 16829 | if (pmarktest2ed(p[i])) topi++; |
| 16830 | if (pmarktest3ed(p[i])) boti++; |
| 16831 | } |
| 16832 | if ((topi == 0) || (boti == 0)) { |
| 16833 | // It is not a crossing face. |
| 16834 | // return; |
| 16835 | for (i = 3; i < 5; i++) { |
| 16836 | if (pmarktest2ed(p[i])) topi++; |
| 16837 | if (pmarktest3ed(p[i])) boti++; |
| 16838 | } |
| 16839 | if ((topi == 0) || (boti == 0)) { |
| 16840 | // The two tets sharing at this face are on one side of the facet. |
| 16841 | // Check if this face is locally Delaunay (due to rounding error). |
| 16842 | if ((p[3] != dummypoint) && (p[4] != dummypoint)) { |
| 16843 | // Do not check it if it is a subface. |
| 16844 | tspivot(*chkface, checksh); |
| 16845 | if (checksh.sh == NULL) { |
| 16846 | insph = insphere_s(p[1], p[0], p[2], p[3], p[4]); |
| 16847 | assert(insph != 0); |
| 16848 | if (insph > 0) { |
| 16849 | // Add the face into queue. |
| 16850 | if (b->verbose > 2) { |
| 16851 | printf(" A locally non-Delanay face (%d, %d, %d)-%d,%d\n" , |
| 16852 | pointmark(p[0]), pointmark(p[1]), pointmark(p[2]), |
| 16853 | pointmark(p[3]), pointmark(p[4])); |
| 16854 | } |
| 16855 | parybf = (badface *) flippool->alloc(); |
| 16856 | parybf->key = 0.; // tau = 0, do immediately. |
| 16857 | parybf->tt = *chkface; |
| 16858 | parybf->forg = p[0]; |
| 16859 | parybf->fdest = p[1]; |
| 16860 | parybf->fapex = p[2]; |
| 16861 | parybf->foppo = p[3]; |
| 16862 | parybf->noppo = p[4]; |
| 16863 | // Add it at the top of the priority queue. |
| 16864 | if (*pqueue == NULL) { |
| 16865 | *pqueue = parybf; |
| 16866 | parybf->nextitem = NULL; |
| 16867 | } else { |
| 16868 | parybf->nextitem = *pqueue; |
| 16869 | *pqueue = parybf; |
| 16870 | } |
| 16871 | } // if (insph > 0) |
| 16872 | } // if (checksh.sh == NULL) |
| 16873 | } |
| 16874 | //return; |
| 16875 | } |
| 16876 | return; // Test: omit this face. |
| 16877 | } |
| 16878 | |
| 16879 | // Decide the "height" for each point. |
| 16880 | for (i = 0; i < 5; i++) { |
| 16881 | if (pmarktest2ed(p[i])) { |
| 16882 | // A top point has a positive weight. |
| 16883 | w[i] = orient3dfast(plane_pa, plane_pb, plane_pc, p[i]); |
| 16884 | if (w[i] < 0) w[i] = -w[i]; |
| 16885 | assert(w[i] != 0); |
| 16886 | } else { |
| 16887 | w[i] = 0; |
| 16888 | } |
| 16889 | } |
| 16890 | |
| 16891 | // Make sure orient3d(p[1], p[0], p[2], p[3]) > 0; |
| 16892 | // Hence if (insphere(p[1], p[0], p[2], p[3], p[4]) > 0) means that |
| 16893 | // p[4] lies inside the circumsphere of p[1], p[0], p[2], p[3]. |
| 16894 | // The same if orient4d(p[1], p[0], p[2], p[3], p[4]) > 0 means that |
| 16895 | // p[4] lies below the oriented hyperplane passing through |
| 16896 | // p[1], p[0], p[2], p[3]. |
| 16897 | |
| 16898 | insph = insphere(p[1], p[0], p[2], p[3], p[4]); |
| 16899 | ori4 = orient4d(p[1], p[0], p[2], p[3], p[4], w[1], w[0], w[2], w[3], w[4]); |
| 16900 | |
| 16901 | if (b->verbose > 2) { |
| 16902 | printf(" Heights: (%g, %g, %g, %g, %g)\n" , w[0],w[1],w[2],w[3],w[4]); |
| 16903 | printf(" Insph: %g, ori4: %g, tau = %g\n" , insph, ori4, -insph/ori4); |
| 16904 | } |
| 16905 | |
| 16906 | if (ori4 > 0) { |
| 16907 | // Add the face into queue. |
| 16908 | if (b->verbose > 2) { |
| 16909 | printf(" Insert face (%d, %d, %d) - %d, %d\n" , pointmark(p[0]), |
| 16910 | pointmark(p[1]), pointmark(p[2]), pointmark(p[3]), pointmark(p[4])); |
| 16911 | } |
| 16912 | |
| 16913 | parybf = (badface *) flippool->alloc(); |
| 16914 | |
| 16915 | parybf->key = -insph / ori4; |
| 16916 | parybf->tt = *chkface; |
| 16917 | parybf->forg = p[0]; |
| 16918 | parybf->fdest = p[1]; |
| 16919 | parybf->fapex = p[2]; |
| 16920 | parybf->foppo = p[3]; |
| 16921 | parybf->noppo = p[4]; |
| 16922 | |
| 16923 | // Push the face into priority queue. |
| 16924 | //pq.push(bface); |
| 16925 | if (*pqueue == NULL) { |
| 16926 | *pqueue = parybf; |
| 16927 | parybf->nextitem = NULL; |
| 16928 | } else { |
| 16929 | // Search an item whose key is larger or equal to current key. |
| 16930 | prevbf = NULL; |
| 16931 | nextbf = *pqueue; |
| 16932 | //if (!b->flipinsert_random) { // Default use a priority queue. |
| 16933 | // Insert the item into priority queue. |
| 16934 | while (nextbf != NULL) { |
| 16935 | if (nextbf->key < parybf->key) { |
| 16936 | prevbf = nextbf; |
| 16937 | nextbf = nextbf->nextitem; |
| 16938 | } else { |
| 16939 | break; |
| 16940 | } |
| 16941 | } |
| 16942 | //} // if (!b->flipinsert_random) |
| 16943 | // Insert the new item between prev and next items. |
| 16944 | if (prevbf == NULL) { |
| 16945 | *pqueue = parybf; |
| 16946 | } else { |
| 16947 | prevbf->nextitem = parybf; |
| 16948 | } |
| 16949 | parybf->nextitem = nextbf; |
| 16950 | } |
| 16951 | } else if (ori4 == 0) { |
| 16952 | |
| 16953 | } |
| 16954 | } |
| 16955 | |
| 16956 | /////////////////////////////////////////////////////////////////////////////// |
| 16957 | // // |
| 16958 | // flipinsertfacet() Insert a facet into a CDT by flips. // |
| 16959 | // // |
| 16960 | // The algorithm is described in Shewchuk's paper "Updating and Constructing // |
| 16961 | // Constrained Delaunay and Constrained Regular Triangulations by Flips", in // |
| 16962 | // Proc. 19th Ann. Symp. on Comput. Geom., 86--95, 2003. // |
| 16963 | // // |
| 16964 | // 'crosstets' contains the set of crossing tetrahedra (infected) of the // |
| 16965 | // facet. 'toppoints' and 'botpoints' are points lies above and below the // |
| 16966 | // facet, not on the facet. // |
| 16967 | // // |
| 16968 | /////////////////////////////////////////////////////////////////////////////// |
| 16969 | |
| 16970 | void tetgenmesh::flipinsertfacet(arraypool *crosstets, arraypool *toppoints, |
| 16971 | arraypool *botpoints, arraypool *midpoints) |
| 16972 | { |
| 16973 | arraypool *crossfaces, *bfacearray; |
| 16974 | triface fliptets[6], baktets[2], fliptet, newface; |
| 16975 | triface neightet, *parytet; |
| 16976 | face checksh; |
| 16977 | face checkseg; |
| 16978 | badface *pqueue; |
| 16979 | badface *popbf, bface; |
| 16980 | point plane_pa, plane_pb, plane_pc; |
| 16981 | point p1, p2, pd, pe; |
| 16982 | point *parypt; |
| 16983 | flipconstraints fc; |
| 16984 | REAL ori[3]; |
| 16985 | int convcount, copcount; |
| 16986 | int flipflag, fcount; |
| 16987 | int n, i; |
| 16988 | long f23count, f32count, f44count; |
| 16989 | long totalfcount; |
| 16990 | |
| 16991 | f23count = flip23count; |
| 16992 | f32count = flip32count; |
| 16993 | f44count = flip44count; |
| 16994 | |
| 16995 | // Get three affinely independent vertices in the missing region R. |
| 16996 | calculateabovepoint(midpoints, &plane_pa, &plane_pb, &plane_pc); |
| 16997 | |
| 16998 | // Mark top and bottom points. Do not mark midpoints. |
| 16999 | for (i = 0; i < toppoints->objects; i++) { |
| 17000 | parypt = (point *) fastlookup(toppoints, i); |
| 17001 | if (!pmarktested(*parypt)) { |
| 17002 | pmarktest2(*parypt); |
| 17003 | } |
| 17004 | } |
| 17005 | for (i = 0; i < botpoints->objects; i++) { |
| 17006 | parypt = (point *) fastlookup(botpoints, i); |
| 17007 | if (!pmarktested(*parypt)) { |
| 17008 | pmarktest3(*parypt); |
| 17009 | } |
| 17010 | } |
| 17011 | |
| 17012 | // Collect crossing faces. |
| 17013 | crossfaces = cavetetlist; // Re-use array 'cavetetlist'. |
| 17014 | |
| 17015 | // Each crossing face contains at least one bottom vertex and |
| 17016 | // one top vertex. |
| 17017 | for (i = 0; i < crosstets->objects; i++) { |
| 17018 | parytet = (triface *) fastlookup(crosstets, i); |
| 17019 | fliptet = *parytet; |
| 17020 | for (fliptet.ver = 0; fliptet.ver < 4; fliptet.ver++) { |
| 17021 | fsym(fliptet, neightet); |
| 17022 | if (infected(neightet)) { // It is an interior face. |
| 17023 | if (!marktested(neightet)) { // It is an unprocessed face. |
| 17024 | crossfaces->newindex((void **) &parytet); |
| 17025 | *parytet = fliptet; |
| 17026 | } |
| 17027 | } |
| 17028 | } |
| 17029 | marktest(fliptet); |
| 17030 | } |
| 17031 | |
| 17032 | if (b->verbose > 1) { |
| 17033 | printf(" Found %ld crossing faces.\n" , crossfaces->objects); |
| 17034 | } |
| 17035 | |
| 17036 | for (i = 0; i < crosstets->objects; i++) { |
| 17037 | parytet = (triface *) fastlookup(crosstets, i); |
| 17038 | unmarktest(*parytet); |
| 17039 | uninfect(*parytet); |
| 17040 | } |
| 17041 | |
| 17042 | // Initialize the priority queue. |
| 17043 | pqueue = NULL; |
| 17044 | |
| 17045 | for (i = 0; i < crossfaces->objects; i++) { |
| 17046 | parytet = (triface *) fastlookup(crossfaces, i); |
| 17047 | flipcertify(parytet, &pqueue, plane_pa, plane_pb, plane_pc); |
| 17048 | } |
| 17049 | crossfaces->restart(); |
| 17050 | |
| 17051 | // The list for temporarily storing unflipable faces. |
| 17052 | bfacearray = new arraypool(sizeof(triface), 4); |
| 17053 | |
| 17054 | |
| 17055 | fcount = 0; // Count the number of flips. |
| 17056 | |
| 17057 | // Flip insert the facet. |
| 17058 | while (pqueue != NULL) { |
| 17059 | |
| 17060 | // Pop a face from the priority queue. |
| 17061 | popbf = pqueue; |
| 17062 | bface = *popbf; |
| 17063 | |
| 17064 | // Update the queue. |
| 17065 | pqueue = pqueue->nextitem; |
| 17066 | |
| 17067 | // Delete the popped item from the pool. |
| 17068 | flippool->dealloc((void *) popbf); |
| 17069 | |
| 17070 | if (!isdeadtet(bface.tt)) { |
| 17071 | if ((org(bface.tt) == bface.forg) && (dest(bface.tt) == bface.fdest) && |
| 17072 | (apex(bface.tt) == bface.fapex) && (oppo(bface.tt) == bface.foppo)) { |
| 17073 | // It is still a crossing face of R. |
| 17074 | fliptet = bface.tt; |
| 17075 | fsym(fliptet, neightet); |
| 17076 | assert(!isdeadtet(neightet)); |
| 17077 | if (oppo(neightet) == bface.noppo) { |
| 17078 | pd = oppo(fliptet); |
| 17079 | pe = oppo(neightet); |
| 17080 | |
| 17081 | if (b->verbose > 2) { |
| 17082 | printf(" Get face (%d, %d, %d) - %d, %d, tau = %.17g\n" , |
| 17083 | pointmark(bface.forg), pointmark(bface.fdest), |
| 17084 | pointmark(bface.fapex), pointmark(bface.foppo), |
| 17085 | pointmark(bface.noppo), bface.key); |
| 17086 | } |
| 17087 | flipflag = 0; |
| 17088 | |
| 17089 | // Check for which type of flip can we do. |
| 17090 | convcount = 3; |
| 17091 | copcount = 0; |
| 17092 | for (i = 0; i < 3; i++) { |
| 17093 | p1 = org(fliptet); |
| 17094 | p2 = dest(fliptet); |
| 17095 | ori[i] = orient3d(p1, p2, pd, pe); |
| 17096 | if (ori[i] < 0) { |
| 17097 | convcount--; |
| 17098 | //break; |
| 17099 | } else if (ori[i] == 0) { |
| 17100 | convcount--; // Possible 4-to-4 flip. |
| 17101 | copcount++; |
| 17102 | //break; |
| 17103 | } |
| 17104 | enextself(fliptet); |
| 17105 | } |
| 17106 | |
| 17107 | if (convcount == 3) { |
| 17108 | // A 2-to-3 flip is found. |
| 17109 | // The face should not be a subface. |
| 17110 | tspivot(fliptet, checksh); |
| 17111 | assert(checksh.sh == NULL); |
| 17112 | |
| 17113 | fliptets[0] = fliptet; // abcd, d may be the new vertex. |
| 17114 | fliptets[1] = neightet; // bace. |
| 17115 | flip23(fliptets, 1, &fc); |
| 17116 | // Put the link faces into check list. |
| 17117 | for (i = 0; i < 3; i++) { |
| 17118 | eprevesym(fliptets[i], newface); |
| 17119 | crossfaces->newindex((void **) &parytet); |
| 17120 | *parytet = newface; |
| 17121 | } |
| 17122 | for (i = 0; i < 3; i++) { |
| 17123 | enextesym(fliptets[i], newface); |
| 17124 | crossfaces->newindex((void **) &parytet); |
| 17125 | *parytet = newface; |
| 17126 | } |
| 17127 | flipflag = 1; |
| 17128 | } else if (convcount == 2) { |
| 17129 | assert(copcount <= 1); |
| 17130 | //if (copcount <= 1) { |
| 17131 | // A 3-to-2 or 4-to-4 may be possible. |
| 17132 | // Get the edge which is locally non-convex or flat. |
| 17133 | for (i = 0; i < 3; i++) { |
| 17134 | if (ori[i] <= 0) break; |
| 17135 | enextself(fliptet); |
| 17136 | } |
| 17137 | // The edge should not be a segment. |
| 17138 | tsspivot1(fliptet, checkseg); |
| 17139 | assert(checkseg.sh == NULL); |
| 17140 | |
| 17141 | // Collect tets sharing at this edge. |
| 17142 | // NOTE: This operation may collect tets which lie outside the |
| 17143 | // cavity, e.g., when the edge lies on the boundary of the |
| 17144 | // cavity. Do not flip if there are outside tets at this edge. |
| 17145 | // 2012-07-27. |
| 17146 | esym(fliptet, fliptets[0]); // [b,a,d,c] |
| 17147 | n = 0; |
| 17148 | do { |
| 17149 | p1 = apex(fliptets[n]); |
| 17150 | if (!(pmarktested(p1) || pmarktest2ed(p1) || pmarktest3ed(p1))) { |
| 17151 | // This apex is not on the cavity. Hence the face does not |
| 17152 | // lie inside the cavity. Do not flip this edge. |
| 17153 | n = 1000; break; |
| 17154 | } |
| 17155 | fnext(fliptets[n], fliptets[n + 1]); |
| 17156 | n++; |
| 17157 | } while ((fliptets[n].tet != fliptet.tet) && (n < 5)); |
| 17158 | |
| 17159 | if (n == 3) { |
| 17160 | // Found a 3-to-2 flip. |
| 17161 | flip32(fliptets, 1, &fc); |
| 17162 | // Put the link faces into check list. |
| 17163 | for (i = 0; i < 3; i++) { |
| 17164 | esym(fliptets[0], newface); |
| 17165 | crossfaces->newindex((void **) &parytet); |
| 17166 | *parytet = newface; |
| 17167 | enextself(fliptets[0]); |
| 17168 | } |
| 17169 | for (i = 0; i < 3; i++) { |
| 17170 | esym(fliptets[1], newface); |
| 17171 | crossfaces->newindex((void **) &parytet); |
| 17172 | *parytet = newface; |
| 17173 | enextself(fliptets[1]); |
| 17174 | } |
| 17175 | flipflag = 1; |
| 17176 | } else if (n == 4) { |
| 17177 | if (copcount == 1) { |
| 17178 | // Found a 4-to-4 flip. |
| 17179 | // Let the six vertices are: a,b,c,d,e,f, where |
| 17180 | // fliptets[0] = [b,a,d,c] |
| 17181 | // [1] = [b,a,c,e] |
| 17182 | // [2] = [b,a,e,f] |
| 17183 | // [3] = [b,a,f,d] |
| 17184 | // After the 4-to-4 flip, edge [a,b] is flipped, edge [e,d] |
| 17185 | // is created. |
| 17186 | // First do a 2-to-3 flip. |
| 17187 | // Comment: This flip temporarily creates a degenerated |
| 17188 | // tet (whose volume is zero). It will be removed by the |
| 17189 | // followed 3-to-2 flip. |
| 17190 | fliptets[0] = fliptet; // = [a,b,c,d], d is the new vertex. |
| 17191 | // fliptets[1]; // = [b,a,c,e]. |
| 17192 | baktets[0] = fliptets[2]; // = [b,a,e,f] |
| 17193 | baktets[1] = fliptets[3]; // = [b,a,f,d] |
| 17194 | // The flip may involve hull tets. |
| 17195 | flip23(fliptets, 1, &fc); |
| 17196 | // Put the "outer" link faces into check list. |
| 17197 | // fliptets[0] = [e,d,a,b] => will be flipped, so |
| 17198 | // [a,b,d] and [a,b,e] are not "outer" link faces. |
| 17199 | for (i = 1; i < 3; i++) { |
| 17200 | eprevesym(fliptets[i], newface); |
| 17201 | crossfaces->newindex((void **) &parytet); |
| 17202 | *parytet = newface; |
| 17203 | } |
| 17204 | for (i = 1; i < 3; i++) { |
| 17205 | enextesym(fliptets[i], newface); |
| 17206 | crossfaces->newindex((void **) &parytet); |
| 17207 | *parytet = newface; |
| 17208 | } |
| 17209 | // Then do a 3-to-2 flip. |
| 17210 | enextesymself(fliptets[0]); // fliptets[0] is [e,d,a,b]. |
| 17211 | eprevself(fliptets[0]); // = [b,a,d,c], d is the new vertex. |
| 17212 | fliptets[1] = baktets[0]; // = [b,a,e,f] |
| 17213 | fliptets[2] = baktets[1]; // = [b,a,f,d] |
| 17214 | flip32(fliptets, 1, &fc); |
| 17215 | // Put the "outer" link faces into check list. |
| 17216 | // fliptets[0] = [d,e,f,a] |
| 17217 | // fliptets[1] = [e,d,f,b] |
| 17218 | // Faces [a,b,d] and [a,b,e] are not "outer" link faces. |
| 17219 | enextself(fliptets[0]); |
| 17220 | for (i = 1; i < 3; i++) { |
| 17221 | esym(fliptets[0], newface); |
| 17222 | crossfaces->newindex((void **) &parytet); |
| 17223 | *parytet = newface; |
| 17224 | enextself(fliptets[0]); |
| 17225 | } |
| 17226 | enextself(fliptets[1]); |
| 17227 | for (i = 1; i < 3; i++) { |
| 17228 | esym(fliptets[1], newface); |
| 17229 | crossfaces->newindex((void **) &parytet); |
| 17230 | *parytet = newface; |
| 17231 | enextself(fliptets[1]); |
| 17232 | } |
| 17233 | flip23count--; |
| 17234 | flip32count--; |
| 17235 | flip44count++; |
| 17236 | flipflag = 1; |
| 17237 | } else { |
| 17238 | //n == 4, convflag != 0; assert(0); |
| 17239 | } |
| 17240 | } else { |
| 17241 | // n > 4 => unflipable. //assert(0); |
| 17242 | } |
| 17243 | } else { |
| 17244 | // There are more than 1 non-convex or coplanar cases. |
| 17245 | flipflag = -1; // Ignore this face. |
| 17246 | if (b->verbose > 2) { |
| 17247 | printf(" Ignore face (%d, %d, %d) - %d, %d, tau = %.17g\n" , |
| 17248 | pointmark(bface.forg), pointmark(bface.fdest), |
| 17249 | pointmark(bface.fapex), pointmark(bface.foppo), |
| 17250 | pointmark(bface.noppo), bface.key); |
| 17251 | } |
| 17252 | } // if (convcount == 1) |
| 17253 | |
| 17254 | if (flipflag == 1) { |
| 17255 | // Update the priority queue. |
| 17256 | for (i = 0; i < crossfaces->objects; i++) { |
| 17257 | parytet = (triface *) fastlookup(crossfaces, i); |
| 17258 | flipcertify(parytet, &pqueue, plane_pa, plane_pb, plane_pc); |
| 17259 | } |
| 17260 | crossfaces->restart(); |
| 17261 | if (1) { // if (!b->flipinsert_random) { |
| 17262 | // Insert all queued unflipped faces. |
| 17263 | for (i = 0; i < bfacearray->objects; i++) { |
| 17264 | parytet = (triface *) fastlookup(bfacearray, i); |
| 17265 | // This face may be changed. |
| 17266 | if (!isdeadtet(*parytet)) { |
| 17267 | flipcertify(parytet, &pqueue, plane_pa, plane_pb, plane_pc); |
| 17268 | } |
| 17269 | } |
| 17270 | bfacearray->restart(); |
| 17271 | } |
| 17272 | fcount++; |
| 17273 | } else if (flipflag == 0) { |
| 17274 | // Queue an unflippable face. To process it later. |
| 17275 | bfacearray->newindex((void **) &parytet); |
| 17276 | *parytet = fliptet; |
| 17277 | } |
| 17278 | } // if (pe == bface.noppo) |
| 17279 | } // if ((pa == bface.forg) && ...) |
| 17280 | } // if (bface.tt != NULL) |
| 17281 | |
| 17282 | } // while (pqueue != NULL) |
| 17283 | |
| 17284 | if (bfacearray->objects > 0) { |
| 17285 | if (fcount == 0) { |
| 17286 | printf("!! No flip is found in %ld faces.\n" , bfacearray->objects); |
| 17287 | assert(0); |
| 17288 | } |
| 17289 | } |
| 17290 | |
| 17291 | // 'bfacearray' may be not empty (for what reason ??). |
| 17292 | //dbg_unflip_facecount += bfacearray->objects; |
| 17293 | |
| 17294 | assert(flippool->items == 0l); |
| 17295 | delete bfacearray; |
| 17296 | |
| 17297 | // Un-mark top and bottom points. |
| 17298 | for (i = 0; i < toppoints->objects; i++) { |
| 17299 | parypt = (point *) fastlookup(toppoints, i); |
| 17300 | punmarktest2(*parypt); |
| 17301 | } |
| 17302 | for (i = 0; i < botpoints->objects; i++) { |
| 17303 | parypt = (point *) fastlookup(botpoints, i); |
| 17304 | punmarktest3(*parypt); |
| 17305 | } |
| 17306 | |
| 17307 | f23count = flip23count - f23count; |
| 17308 | f32count = flip32count - f32count; |
| 17309 | f44count = flip44count - f44count; |
| 17310 | totalfcount = f23count + f32count + f44count; |
| 17311 | if (b->verbose > 2) { |
| 17312 | printf(" Total %ld flips. f23(%ld), f32(%ld), f44(%ld).\n" , |
| 17313 | totalfcount, f23count, f32count, f44count); |
| 17314 | } |
| 17315 | } |
| 17316 | |
| 17317 | /////////////////////////////////////////////////////////////////////////////// |
| 17318 | // // |
| 17319 | // fillregion() Fill the missing region by a set of new subfaces. // |
| 17320 | // // |
| 17321 | // 'missingshs' contains the list of subfaces in R. Moreover, each subface // |
| 17322 | // (except the first one) in this list represents an interior edge of R. // |
| 17323 | // // |
| 17324 | // Note: We assume that all vertices of R are marktested so we can detect // |
| 17325 | // new subface by checking the flag in apexes. // |
| 17326 | // // |
| 17327 | /////////////////////////////////////////////////////////////////////////////// |
| 17328 | |
| 17329 | bool tetgenmesh::fillregion(arraypool* missingshs, arraypool* missingshbds, |
| 17330 | arraypool* newshs) |
| 17331 | { |
| 17332 | badface *newflipface, *popface; |
| 17333 | triface searchtet, spintet, neightet; |
| 17334 | face oldsh, newsh, opensh, *parysh; |
| 17335 | face casout, casin, neighsh, checksh; |
| 17336 | face neighseg, checkseg; |
| 17337 | point pc; |
| 17338 | int success; |
| 17339 | int t1ver; |
| 17340 | int i, j; |
| 17341 | |
| 17342 | |
| 17343 | // Search the first new subface to fill the region. |
| 17344 | for (i = 0; i < missingshbds->objects; i++) { |
| 17345 | parysh = (face *) fastlookup(missingshbds, i); |
| 17346 | sspivot(*parysh, neighseg); |
| 17347 | sstpivot1(neighseg, searchtet); |
| 17348 | j = 0; // Count the number of passes of R. |
| 17349 | spintet = searchtet; |
| 17350 | while (1) { |
| 17351 | pc = apex(spintet); |
| 17352 | if (pmarktested(pc)) { |
| 17353 | neightet = spintet; |
| 17354 | j++; |
| 17355 | } |
| 17356 | fnextself(spintet); |
| 17357 | if (spintet.tet == searchtet.tet) break; |
| 17358 | } |
| 17359 | assert(j >= 1); |
| 17360 | if (j == 1) { |
| 17361 | // Found an interior new subface. |
| 17362 | searchtet = neightet; |
| 17363 | oldsh = *parysh; |
| 17364 | break; |
| 17365 | } |
| 17366 | } // i |
| 17367 | |
| 17368 | if (i == missingshbds->objects) { |
| 17369 | // Failed to find any interior subface. |
| 17370 | // Need Steiner points. |
| 17371 | return false; |
| 17372 | } |
| 17373 | |
| 17374 | makeshellface(subfaces, &newsh); |
| 17375 | setsorg(newsh, org(searchtet)); |
| 17376 | setsdest(newsh, dest(searchtet)); |
| 17377 | setsapex(newsh, apex(searchtet)); |
| 17378 | // The new subface gets its markers from the old one. |
| 17379 | setshellmark(newsh, shellmark(oldsh)); |
| 17380 | if (checkconstraints) { |
| 17381 | setareabound(newsh, areabound(oldsh)); |
| 17382 | } |
| 17383 | // Connect the new subface to adjacent tets. |
| 17384 | tsbond(searchtet, newsh); |
| 17385 | fsymself(searchtet); |
| 17386 | sesymself(newsh); |
| 17387 | tsbond(searchtet, newsh); |
| 17388 | // Connect newsh to outer subfaces. |
| 17389 | sspivot(oldsh, checkseg); |
| 17390 | if (sinfected(checkseg)) { |
| 17391 | // It's a faked segment. Delete it. |
| 17392 | spintet = searchtet; |
| 17393 | while (1) { |
| 17394 | tssdissolve1(spintet); |
| 17395 | fnextself(spintet); |
| 17396 | if (spintet.tet == searchtet.tet) break; |
| 17397 | } |
| 17398 | shellfacedealloc(subsegs, checkseg.sh); |
| 17399 | ssdissolve(oldsh); |
| 17400 | checkseg.sh = NULL; |
| 17401 | } |
| 17402 | spivot(oldsh, casout); |
| 17403 | if (casout.sh != NULL) { |
| 17404 | casin = casout; |
| 17405 | if (checkseg.sh != NULL) { |
| 17406 | // Make sure that the subface has the right ori at the segment. |
| 17407 | checkseg.shver = 0; |
| 17408 | if (sorg(newsh) != sorg(checkseg)) { |
| 17409 | sesymself(newsh); |
| 17410 | } |
| 17411 | spivot(casin, neighsh); |
| 17412 | while (neighsh.sh != oldsh.sh) { |
| 17413 | casin = neighsh; |
| 17414 | spivot(casin, neighsh); |
| 17415 | } |
| 17416 | } |
| 17417 | sbond1(newsh, casout); |
| 17418 | sbond1(casin, newsh); |
| 17419 | } |
| 17420 | if (checkseg.sh != NULL) { |
| 17421 | ssbond(newsh, checkseg); |
| 17422 | } |
| 17423 | // Add this new subface into list. |
| 17424 | sinfect(newsh); |
| 17425 | newshs->newindex((void **) &parysh); |
| 17426 | *parysh = newsh; |
| 17427 | |
| 17428 | // Push two "open" side of the new subface into stack. |
| 17429 | for (i = 0; i < 2; i++) { |
| 17430 | senextself(newsh); |
| 17431 | newflipface = (badface *) flippool->alloc(); |
| 17432 | newflipface->ss = newsh; |
| 17433 | newflipface->nextitem = flipstack; |
| 17434 | flipstack = newflipface; |
| 17435 | } |
| 17436 | |
| 17437 | success = 1; |
| 17438 | |
| 17439 | // Loop until 'flipstack' is empty. |
| 17440 | while ((flipstack != NULL) && success) { |
| 17441 | // Pop an "open" side from the stack. |
| 17442 | popface = flipstack; |
| 17443 | opensh = popface->ss; |
| 17444 | flipstack = popface->nextitem; // The next top item in stack. |
| 17445 | flippool->dealloc((void *) popface); |
| 17446 | |
| 17447 | // opensh is either (1) an interior edge or (2) a bdry edge. |
| 17448 | stpivot(opensh, searchtet); |
| 17449 | tsspivot1(searchtet, checkseg); |
| 17450 | if (checkseg.sh == NULL) { |
| 17451 | // No segment. It is an interior edge of R. |
| 17452 | // Search for a new face in R. |
| 17453 | spintet = searchtet; |
| 17454 | fnextself(spintet); // Skip the current face. |
| 17455 | while (1) { |
| 17456 | pc = apex(spintet); |
| 17457 | if (pmarktested(pc)) { |
| 17458 | // 'opensh' is an interior edge. |
| 17459 | if (!issubface(spintet)) { |
| 17460 | // Create a new subface. |
| 17461 | makeshellface(subfaces, &newsh); |
| 17462 | setsorg(newsh, org(spintet)); |
| 17463 | setsdest(newsh, dest(spintet)); |
| 17464 | setsapex(newsh, pc); |
| 17465 | // The new subface gets its markers from its neighbor. |
| 17466 | setshellmark(newsh, shellmark(opensh)); |
| 17467 | if (checkconstraints) { |
| 17468 | setareabound(newsh, areabound(opensh)); |
| 17469 | } |
| 17470 | // Connect the new subface to adjacent tets. |
| 17471 | tsbond(spintet, newsh); |
| 17472 | fsymself(spintet); |
| 17473 | sesymself(newsh); |
| 17474 | tsbond(spintet, newsh); |
| 17475 | // Connect newsh to its adjacent subface. |
| 17476 | sbond(newsh, opensh); |
| 17477 | // Add this new subface into list. |
| 17478 | sinfect(newsh); |
| 17479 | newshs->newindex((void **) &parysh); |
| 17480 | *parysh = newsh; |
| 17481 | // Push two "open" side of the new subface into stack. |
| 17482 | for (i = 0; i < 2; i++) { |
| 17483 | senextself(newsh); |
| 17484 | newflipface = (badface *) flippool->alloc(); |
| 17485 | newflipface->ss = newsh; |
| 17486 | newflipface->nextitem = flipstack; |
| 17487 | flipstack = newflipface; |
| 17488 | } |
| 17489 | } else { |
| 17490 | // Connect to another open edge. |
| 17491 | tspivot(spintet, checksh); |
| 17492 | sbond(opensh, checksh); |
| 17493 | } |
| 17494 | break; |
| 17495 | } // if (pmarktested(pc)) |
| 17496 | fnextself(spintet); |
| 17497 | if (spintet.tet == searchtet.tet) { |
| 17498 | // Not find any face to fill in R at this side. |
| 17499 | // Suggest a point to split the edge. |
| 17500 | success = 0; |
| 17501 | break; |
| 17502 | } |
| 17503 | } // while (1) |
| 17504 | } else { |
| 17505 | // This side coincident with a boundary edge of R. |
| 17506 | checkseg.shver = 0; |
| 17507 | spivot(checkseg, oldsh); |
| 17508 | if (sinfected(checkseg)) { |
| 17509 | // It's a faked segment. Delete it. |
| 17510 | spintet = searchtet; |
| 17511 | while (1) { |
| 17512 | tssdissolve1(spintet); |
| 17513 | fnextself(spintet); |
| 17514 | if (spintet.tet == searchtet.tet) break; |
| 17515 | } |
| 17516 | shellfacedealloc(subsegs, checkseg.sh); |
| 17517 | ssdissolve(oldsh); |
| 17518 | checkseg.sh = NULL; |
| 17519 | } |
| 17520 | spivot(oldsh, casout); |
| 17521 | if (casout.sh != NULL) { |
| 17522 | casin = casout; |
| 17523 | if (checkseg.sh != NULL) { |
| 17524 | // Make sure that the subface has the right ori at the segment. |
| 17525 | checkseg.shver = 0; |
| 17526 | if (sorg(opensh) != sorg(checkseg)) { |
| 17527 | sesymself(opensh); |
| 17528 | } |
| 17529 | spivot(casin, neighsh); |
| 17530 | while (neighsh.sh != oldsh.sh) { |
| 17531 | casin = neighsh; |
| 17532 | spivot(casin, neighsh); |
| 17533 | } |
| 17534 | } |
| 17535 | sbond1(opensh, casout); |
| 17536 | sbond1(casin, opensh); |
| 17537 | } |
| 17538 | if (checkseg.sh != NULL) { |
| 17539 | ssbond(opensh, checkseg); |
| 17540 | } |
| 17541 | } // if (checkseg.sh != NULL) |
| 17542 | } // while ((flipstack != NULL) && success) |
| 17543 | |
| 17544 | if (success) { |
| 17545 | // Uninfect all new subfaces. |
| 17546 | for (i = 0; i < newshs->objects; i++) { |
| 17547 | parysh = (face *) fastlookup(newshs, i); |
| 17548 | suninfect(*parysh); |
| 17549 | } |
| 17550 | // Delete old subfaces. |
| 17551 | for (i = 0; i < missingshs->objects; i++) { |
| 17552 | parysh = (face *) fastlookup(missingshs, i); |
| 17553 | shellfacedealloc(subfaces, parysh->sh); |
| 17554 | } |
| 17555 | fillregioncount++; |
| 17556 | } else { |
| 17557 | // Failed to fill the region. |
| 17558 | // Re-connect old subfaces at boundaries of R. |
| 17559 | // Also delete fake segments. |
| 17560 | for (i = 0; i < missingshbds->objects; i++) { |
| 17561 | parysh = (face *) fastlookup(missingshbds, i); |
| 17562 | // It still connect to 'casout'. |
| 17563 | // Re-connect 'casin' to it. |
| 17564 | spivot(*parysh, casout); |
| 17565 | casin = casout; |
| 17566 | spivot(casin, neighsh); |
| 17567 | while (1) { |
| 17568 | if (sinfected(neighsh)) break; |
| 17569 | if (neighsh.sh == parysh->sh) break; |
| 17570 | casin = neighsh; |
| 17571 | spivot(casin, neighsh); |
| 17572 | } |
| 17573 | if (sinfected(neighsh)) { |
| 17574 | sbond1(casin, *parysh); |
| 17575 | } |
| 17576 | sspivot(*parysh, checkseg); |
| 17577 | if (checkseg.sh != NULL) { |
| 17578 | if (checkseg.sh[3] != NULL) { |
| 17579 | if (sinfected(checkseg)) { |
| 17580 | sstpivot1(checkseg, searchtet); |
| 17581 | spintet = searchtet; |
| 17582 | while (1) { |
| 17583 | tssdissolve1(spintet); |
| 17584 | fnextself(spintet); |
| 17585 | if (spintet.tet == searchtet.tet) break; |
| 17586 | } |
| 17587 | ssdissolve(*parysh); |
| 17588 | shellfacedealloc(subsegs, checkseg.sh); |
| 17589 | } |
| 17590 | } |
| 17591 | } |
| 17592 | } |
| 17593 | // Delete all new subfaces. |
| 17594 | for (i = 0; i < newshs->objects; i++) { |
| 17595 | parysh = (face *) fastlookup(newshs, i); |
| 17596 | shellfacedealloc(subfaces, parysh->sh); |
| 17597 | } |
| 17598 | // Clear the flip pool. |
| 17599 | flippool->restart(); |
| 17600 | flipstack = NULL; |
| 17601 | |
| 17602 | // Choose an interior edge of R to split. |
| 17603 | assert(missingshs->objects > 1); |
| 17604 | // Skip the first subface in 'missingshs'. |
| 17605 | i = randomnation(missingshs->objects - 1) + 1; |
| 17606 | parysh = (face *) fastlookup(missingshs, i); |
| 17607 | recentsh = *parysh; |
| 17608 | } |
| 17609 | |
| 17610 | newshs->restart(); |
| 17611 | |
| 17612 | return success > 0 ? true : false; |
| 17613 | } |
| 17614 | |
| 17615 | /////////////////////////////////////////////////////////////////////////////// |
| 17616 | // // |
| 17617 | // insertpoint_cdt() Insert a new point into a CDT. // |
| 17618 | // // |
| 17619 | /////////////////////////////////////////////////////////////////////////////// |
| 17620 | |
| 17621 | int tetgenmesh::insertpoint_cdt(point newpt, triface *searchtet, face *splitsh, |
| 17622 | face *splitseg, insertvertexflags *ivf, |
| 17623 | arraypool *cavpoints, arraypool *cavfaces, |
| 17624 | arraypool *cavshells, arraypool *newtets, |
| 17625 | arraypool *crosstets, arraypool *misfaces) |
| 17626 | { |
| 17627 | triface neightet, *parytet; |
| 17628 | face checksh, *parysh, *parysh1; |
| 17629 | face *paryseg, *paryseg1; |
| 17630 | point *parypt; |
| 17631 | int t1ver; |
| 17632 | int i; |
| 17633 | |
| 17634 | if (b->verbose > 2) { |
| 17635 | printf(" Insert point %d into CDT\n" , pointmark(newpt)); |
| 17636 | } |
| 17637 | |
| 17638 | if (!insertpoint(newpt, searchtet, NULL, NULL, ivf)) { |
| 17639 | // Point is not inserted. Check ivf->iloc for reason. |
| 17640 | return 0; |
| 17641 | } |
| 17642 | |
| 17643 | |
| 17644 | for (i = 0; i < cavetetvertlist->objects; i++) { |
| 17645 | cavpoints->newindex((void **) &parypt); |
| 17646 | *parypt = * (point *) fastlookup(cavetetvertlist, i); |
| 17647 | } |
| 17648 | // Add the new point into the point list. |
| 17649 | cavpoints->newindex((void **) &parypt); |
| 17650 | *parypt = newpt; |
| 17651 | |
| 17652 | for (i = 0; i < cavebdrylist->objects; i++) { |
| 17653 | cavfaces->newindex((void **) &parytet); |
| 17654 | *parytet = * (triface *) fastlookup(cavebdrylist, i); |
| 17655 | } |
| 17656 | |
| 17657 | for (i = 0; i < caveoldtetlist->objects; i++) { |
| 17658 | crosstets->newindex((void **) &parytet); |
| 17659 | *parytet = * (triface *) fastlookup(caveoldtetlist, i); |
| 17660 | } |
| 17661 | |
| 17662 | cavetetvertlist->restart(); |
| 17663 | cavebdrylist->restart(); |
| 17664 | caveoldtetlist->restart(); |
| 17665 | |
| 17666 | // Insert the point using the cavity algorithm. |
| 17667 | delaunizecavity(cavpoints, cavfaces, cavshells, newtets, crosstets, |
| 17668 | misfaces); |
| 17669 | fillcavity(cavshells, NULL, NULL, NULL, NULL, NULL, NULL); |
| 17670 | carvecavity(crosstets, newtets, NULL); |
| 17671 | |
| 17672 | if ((splitsh != NULL) || (splitseg != NULL)) { |
| 17673 | // Insert the point into the surface mesh. |
| 17674 | sinsertvertex(newpt, splitsh, splitseg, ivf->sloc, ivf->sbowywat, 0); |
| 17675 | |
| 17676 | // Put all new subfaces into stack. |
| 17677 | for (i = 0; i < caveshbdlist->objects; i++) { |
| 17678 | // Get an old subface at edge [a, b]. |
| 17679 | parysh = (face *) fastlookup(caveshbdlist, i); |
| 17680 | spivot(*parysh, checksh); // The new subface [a, b, p]. |
| 17681 | // Do not recover a deleted new face (degenerated). |
| 17682 | if (checksh.sh[3] != NULL) { |
| 17683 | subfacstack->newindex((void **) &parysh); |
| 17684 | *parysh = checksh; |
| 17685 | } |
| 17686 | } |
| 17687 | |
| 17688 | if (splitseg != NULL) { |
| 17689 | // Queue two new subsegments in C(p) for recovery. |
| 17690 | for (i = 0; i < cavesegshlist->objects; i++) { |
| 17691 | paryseg = (face *) fastlookup(cavesegshlist, i); |
| 17692 | subsegstack->newindex((void **) &paryseg1); |
| 17693 | *paryseg1 = *paryseg; |
| 17694 | } |
| 17695 | } // if (splitseg != NULL) |
| 17696 | |
| 17697 | // Delete the old subfaces in sC(p). |
| 17698 | for (i = 0; i < caveshlist->objects; i++) { |
| 17699 | parysh = (face *) fastlookup(caveshlist, i); |
| 17700 | if (checksubfaceflag) { |
| 17701 | // It is possible that this subface still connects to adjacent |
| 17702 | // tets which are not in C(p). If so, clear connections in the |
| 17703 | // adjacent tets at this subface. |
| 17704 | stpivot(*parysh, neightet); |
| 17705 | if (neightet.tet != NULL) { |
| 17706 | if (neightet.tet[4] != NULL) { |
| 17707 | // Found an adjacent tet. It must be not in C(p). |
| 17708 | assert(!infected(neightet)); |
| 17709 | tsdissolve(neightet); |
| 17710 | fsymself(neightet); |
| 17711 | assert(!infected(neightet)); |
| 17712 | tsdissolve(neightet); |
| 17713 | } |
| 17714 | } |
| 17715 | } |
| 17716 | shellfacedealloc(subfaces, parysh->sh); |
| 17717 | } |
| 17718 | if (splitseg != NULL) { |
| 17719 | // Delete the old segment in sC(p). |
| 17720 | shellfacedealloc(subsegs, splitseg->sh); |
| 17721 | } |
| 17722 | |
| 17723 | // Clear working lists. |
| 17724 | caveshlist->restart(); |
| 17725 | caveshbdlist->restart(); |
| 17726 | cavesegshlist->restart(); |
| 17727 | } // if ((splitsh != NULL) || (splitseg != NULL)) |
| 17728 | |
| 17729 | // Put all interior subfaces into stack for recovery. |
| 17730 | // They were collected in carvecavity(). |
| 17731 | // Note: Some collected subfaces may be deleted by sinsertvertex(). |
| 17732 | for (i = 0; i < caveencshlist->objects; i++) { |
| 17733 | parysh = (face *) fastlookup(caveencshlist, i); |
| 17734 | if (parysh->sh[3] != NULL) { |
| 17735 | subfacstack->newindex((void **) &parysh1); |
| 17736 | *parysh1 = *parysh; |
| 17737 | } |
| 17738 | } |
| 17739 | |
| 17740 | // Put all interior segments into stack for recovery. |
| 17741 | // They were collected in carvecavity(). |
| 17742 | // Note: Some collected segments may be deleted by sinsertvertex(). |
| 17743 | for (i = 0; i < caveencseglist->objects; i++) { |
| 17744 | paryseg = (face *) fastlookup(caveencseglist, i); |
| 17745 | if (paryseg->sh[3] != NULL) { |
| 17746 | subsegstack->newindex((void **) &paryseg1); |
| 17747 | *paryseg1 = *paryseg; |
| 17748 | } |
| 17749 | } |
| 17750 | |
| 17751 | caveencshlist->restart(); |
| 17752 | caveencseglist->restart(); |
| 17753 | |
| 17754 | return 1; |
| 17755 | } |
| 17756 | |
| 17757 | /////////////////////////////////////////////////////////////////////////////// |
| 17758 | // // |
| 17759 | // refineregion() Refine a missing region by inserting points. // |
| 17760 | // // |
| 17761 | // 'splitsh' represents an edge of the facet to be split. It must be not a // |
| 17762 | // segment. |
| 17763 | // // |
| 17764 | // Assumption: The current mesh is a CDT and is convex. // |
| 17765 | // // |
| 17766 | /////////////////////////////////////////////////////////////////////////////// |
| 17767 | |
| 17768 | void tetgenmesh::refineregion(face &splitsh, arraypool *cavpoints, |
| 17769 | arraypool *cavfaces, arraypool *cavshells, |
| 17770 | arraypool *newtets, arraypool *crosstets, |
| 17771 | arraypool *misfaces) |
| 17772 | { |
| 17773 | triface searchtet, spintet; |
| 17774 | face splitseg, *paryseg; |
| 17775 | point steinpt, pa, pb, refpt; |
| 17776 | insertvertexflags ivf; |
| 17777 | enum interresult dir; |
| 17778 | long baknum = points->items; |
| 17779 | int t1ver; |
| 17780 | int i; |
| 17781 | |
| 17782 | if (b->verbose > 2) { |
| 17783 | printf(" Refining region at edge (%d, %d, %d).\n" , |
| 17784 | pointmark(sorg(splitsh)), pointmark(sdest(splitsh)), |
| 17785 | pointmark(sapex(splitsh))); |
| 17786 | } |
| 17787 | |
| 17788 | // Add the Steiner point at the barycenter of the face. |
| 17789 | pa = sorg(splitsh); |
| 17790 | pb = sdest(splitsh); |
| 17791 | // Create a new point. |
| 17792 | makepoint(&steinpt, FREEFACETVERTEX); |
| 17793 | for (i = 0; i < 3; i++) { |
| 17794 | steinpt[i] = 0.5 * (pa[i] + pb[i]); |
| 17795 | } |
| 17796 | |
| 17797 | ivf.bowywat = 1; // Use the Bowyer-Watson algorrithm. |
| 17798 | ivf.cdtflag = 1; // Only create the initial cavity. |
| 17799 | ivf.sloc = (int) ONEDGE; |
| 17800 | ivf.sbowywat = 1; |
| 17801 | ivf.assignmeshsize = b->metric; |
| 17802 | |
| 17803 | point2tetorg(pa, searchtet); // Start location from it. |
| 17804 | ivf.iloc = (int) OUTSIDE; |
| 17805 | |
| 17806 | ivf.rejflag = 1; // Reject it if it encroaches upon any segment. |
| 17807 | if (!insertpoint_cdt(steinpt, &searchtet, &splitsh, NULL, &ivf, cavpoints, |
| 17808 | cavfaces, cavshells, newtets, crosstets, misfaces)) { |
| 17809 | if (ivf.iloc == (int) ENCSEGMENT) { |
| 17810 | pointdealloc(steinpt); |
| 17811 | // Split an encroached segment. |
| 17812 | assert(encseglist->objects > 0); |
| 17813 | i = randomnation(encseglist->objects); |
| 17814 | paryseg = (face *) fastlookup(encseglist, i); |
| 17815 | splitseg = *paryseg; |
| 17816 | encseglist->restart(); |
| 17817 | |
| 17818 | // Split the segment. |
| 17819 | pa = sorg(splitseg); |
| 17820 | pb = sdest(splitseg); |
| 17821 | // Create a new point. |
| 17822 | makepoint(&steinpt, FREESEGVERTEX); |
| 17823 | for (i = 0; i < 3; i++) { |
| 17824 | steinpt[i] = 0.5 * (pa[i] + pb[i]); |
| 17825 | } |
| 17826 | point2tetorg(pa, searchtet); |
| 17827 | ivf.iloc = (int) OUTSIDE; |
| 17828 | ivf.rejflag = 0; |
| 17829 | if (!insertpoint_cdt(steinpt, &searchtet, &splitsh, &splitseg, &ivf, |
| 17830 | cavpoints, cavfaces, cavshells, newtets, |
| 17831 | crosstets, misfaces)) { |
| 17832 | assert(0); |
| 17833 | } |
| 17834 | st_segref_count++; |
| 17835 | if (steinerleft > 0) steinerleft--; |
| 17836 | } else { |
| 17837 | assert(0); |
| 17838 | } |
| 17839 | } else { |
| 17840 | st_facref_count++; |
| 17841 | if (steinerleft > 0) steinerleft--; |
| 17842 | } |
| 17843 | |
| 17844 | while (subsegstack->objects > 0l) { |
| 17845 | // seglist is used as a stack. |
| 17846 | subsegstack->objects--; |
| 17847 | paryseg = (face *) fastlookup(subsegstack, subsegstack->objects); |
| 17848 | splitseg = *paryseg; |
| 17849 | |
| 17850 | // Check if this segment has been recovered. |
| 17851 | sstpivot1(splitseg, searchtet); |
| 17852 | if (searchtet.tet != NULL) continue; |
| 17853 | |
| 17854 | // Search the segment. |
| 17855 | dir = scoutsegment(sorg(splitseg), sdest(splitseg), &searchtet, &refpt, |
| 17856 | NULL); |
| 17857 | if (dir == SHAREEDGE) { |
| 17858 | // Found this segment, insert it. |
| 17859 | if (!issubseg(searchtet)) { |
| 17860 | // Let the segment remember an adjacent tet. |
| 17861 | sstbond1(splitseg, searchtet); |
| 17862 | // Bond the segment to all tets containing it. |
| 17863 | spintet = searchtet; |
| 17864 | do { |
| 17865 | tssbond1(spintet, splitseg); |
| 17866 | fnextself(spintet); |
| 17867 | } while (spintet.tet != searchtet.tet); |
| 17868 | } else { |
| 17869 | // Collision! Should not happen. |
| 17870 | assert(0); |
| 17871 | } |
| 17872 | } else { |
| 17873 | if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
| 17874 | // Split the segment. |
| 17875 | // Create a new point. |
| 17876 | makepoint(&steinpt, FREESEGVERTEX); |
| 17877 | //setpointtype(newpt, FREESEGVERTEX); |
| 17878 | getsteinerptonsegment(&splitseg, refpt, steinpt); |
| 17879 | ivf.iloc = (int) OUTSIDE; |
| 17880 | ivf.rejflag = 0; |
| 17881 | if (!insertpoint_cdt(steinpt, &searchtet, &splitsh, &splitseg, &ivf, |
| 17882 | cavpoints, cavfaces, cavshells, newtets, |
| 17883 | crosstets, misfaces)) { |
| 17884 | assert(0); |
| 17885 | } |
| 17886 | st_segref_count++; |
| 17887 | if (steinerleft > 0) steinerleft--; |
| 17888 | } else { |
| 17889 | // Maybe a PLC problem. |
| 17890 | assert(0); |
| 17891 | } |
| 17892 | } |
| 17893 | } // while |
| 17894 | |
| 17895 | if (b->verbose > 2) { |
| 17896 | printf(" Added %ld Steiner points.\n" , points->items - baknum); |
| 17897 | } |
| 17898 | } |
| 17899 | |
| 17900 | /////////////////////////////////////////////////////////////////////////////// |
| 17901 | // // |
| 17902 | // constrainedfacets() Recover constrained facets in a CDT. // |
| 17903 | // // |
| 17904 | // All unrecovered subfaces are queued in 'subfacestack'. // |
| 17905 | // // |
| 17906 | /////////////////////////////////////////////////////////////////////////////// |
| 17907 | |
| 17908 | void tetgenmesh::constrainedfacets() |
| 17909 | { |
| 17910 | arraypool *tg_crosstets, *tg_topnewtets, *tg_botnewtets; |
| 17911 | arraypool *tg_topfaces, *tg_botfaces, *tg_midfaces; |
| 17912 | arraypool *tg_topshells, *tg_botshells, *tg_facfaces; |
| 17913 | arraypool *tg_toppoints, *tg_botpoints; |
| 17914 | arraypool *tg_missingshs, *tg_missingshbds, *tg_missingshverts; |
| 17915 | triface searchtet, neightet, crossedge; |
| 17916 | face searchsh, *parysh, *parysh1; |
| 17917 | face *paryseg; |
| 17918 | point *parypt; |
| 17919 | enum interresult dir; |
| 17920 | int facetcount; |
| 17921 | int success; |
| 17922 | int t1ver; |
| 17923 | int i, j; |
| 17924 | |
| 17925 | // Initialize arrays. |
| 17926 | tg_crosstets = new arraypool(sizeof(triface), 10); |
| 17927 | tg_topnewtets = new arraypool(sizeof(triface), 10); |
| 17928 | tg_botnewtets = new arraypool(sizeof(triface), 10); |
| 17929 | tg_topfaces = new arraypool(sizeof(triface), 10); |
| 17930 | tg_botfaces = new arraypool(sizeof(triface), 10); |
| 17931 | tg_midfaces = new arraypool(sizeof(triface), 10); |
| 17932 | tg_toppoints = new arraypool(sizeof(point), 8); |
| 17933 | tg_botpoints = new arraypool(sizeof(point), 8); |
| 17934 | tg_facfaces = new arraypool(sizeof(face), 10); |
| 17935 | tg_topshells = new arraypool(sizeof(face), 10); |
| 17936 | tg_botshells = new arraypool(sizeof(face), 10); |
| 17937 | tg_missingshs = new arraypool(sizeof(face), 10); |
| 17938 | tg_missingshbds = new arraypool(sizeof(face), 10); |
| 17939 | tg_missingshverts = new arraypool(sizeof(point), 8); |
| 17940 | // This is a global array used by refineregion(). |
| 17941 | encseglist = new arraypool(sizeof(face), 4); |
| 17942 | |
| 17943 | facetcount = 0; |
| 17944 | |
| 17945 | while (subfacstack->objects > 0l) { |
| 17946 | |
| 17947 | subfacstack->objects--; |
| 17948 | parysh = (face *) fastlookup(subfacstack, subfacstack->objects); |
| 17949 | searchsh = *parysh; |
| 17950 | |
| 17951 | if (searchsh.sh[3] == NULL) continue; // It is dead. |
| 17952 | if (isshtet(searchsh)) continue; // It is recovered. |
| 17953 | |
| 17954 | // Collect all unrecovered subfaces which are co-facet. |
| 17955 | smarktest(searchsh); |
| 17956 | tg_facfaces->newindex((void **) &parysh); |
| 17957 | *parysh = searchsh; |
| 17958 | for (i = 0; i < tg_facfaces->objects; i++) { |
| 17959 | parysh = (face *) fastlookup(tg_facfaces, i); |
| 17960 | for (j = 0; j < 3; j++) { |
| 17961 | if (!isshsubseg(*parysh)) { |
| 17962 | spivot(*parysh, searchsh); |
| 17963 | assert(searchsh.sh != NULL); // SELF_CHECK |
| 17964 | if (!smarktested(searchsh)) { |
| 17965 | if (!isshtet(searchsh)) { |
| 17966 | smarktest(searchsh); |
| 17967 | tg_facfaces->newindex((void **) &parysh1); |
| 17968 | *parysh1 = searchsh; |
| 17969 | } |
| 17970 | } |
| 17971 | } |
| 17972 | senextself(*parysh); |
| 17973 | } // j |
| 17974 | } // i |
| 17975 | // Have found all facet subfaces. Unmark them. |
| 17976 | for (i = 0; i < tg_facfaces->objects; i++) { |
| 17977 | parysh = (face *) fastlookup(tg_facfaces, i); |
| 17978 | sunmarktest(*parysh); |
| 17979 | } |
| 17980 | |
| 17981 | if (b->verbose > 2) { |
| 17982 | printf(" Recovering facet #%d: %ld subfaces.\n" , facetcount + 1, |
| 17983 | tg_facfaces->objects); |
| 17984 | } |
| 17985 | facetcount++; |
| 17986 | |
| 17987 | while (tg_facfaces->objects > 0l) { |
| 17988 | |
| 17989 | tg_facfaces->objects--; |
| 17990 | parysh = (face *) fastlookup(tg_facfaces, tg_facfaces->objects); |
| 17991 | searchsh = *parysh; |
| 17992 | |
| 17993 | if (searchsh.sh[3] == NULL) continue; // It is dead. |
| 17994 | if (isshtet(searchsh)) continue; // It is recovered. |
| 17995 | |
| 17996 | searchtet.tet = NULL; |
| 17997 | dir = scoutsubface(&searchsh, &searchtet); |
| 17998 | if (dir == SHAREFACE) continue; // The subface is inserted. |
| 17999 | |
| 18000 | // The subface is missing. Form the missing region. |
| 18001 | // Re-use 'tg_crosstets' for 'adjtets'. |
| 18002 | formregion(&searchsh, tg_missingshs, tg_missingshbds, tg_missingshverts); |
| 18003 | |
| 18004 | if (scoutcrossedge(searchtet, tg_missingshbds, tg_missingshs)) { |
| 18005 | // Save this crossing edge, will be used by fillcavity(). |
| 18006 | crossedge = searchtet; |
| 18007 | // Form a cavity of crossing tets. |
| 18008 | success = formcavity(&searchtet, tg_missingshs, tg_crosstets, |
| 18009 | tg_topfaces, tg_botfaces, tg_toppoints, |
| 18010 | tg_botpoints); |
| 18011 | if (success) { |
| 18012 | if (!b->flipinsert) { |
| 18013 | // Tetrahedralize the top part. Re-use 'tg_midfaces'. |
| 18014 | delaunizecavity(tg_toppoints, tg_topfaces, tg_topshells, |
| 18015 | tg_topnewtets, tg_crosstets, tg_midfaces); |
| 18016 | // Tetrahedralize the bottom part. Re-use 'tg_midfaces'. |
| 18017 | delaunizecavity(tg_botpoints, tg_botfaces, tg_botshells, |
| 18018 | tg_botnewtets, tg_crosstets, tg_midfaces); |
| 18019 | // Fill the cavity with new tets. |
| 18020 | success = fillcavity(tg_topshells, tg_botshells, tg_midfaces, |
| 18021 | tg_missingshs, tg_topnewtets, tg_botnewtets, |
| 18022 | &crossedge); |
| 18023 | if (success) { |
| 18024 | // Cavity is remeshed. Delete old tets and outer new tets. |
| 18025 | carvecavity(tg_crosstets, tg_topnewtets, tg_botnewtets); |
| 18026 | } else { |
| 18027 | restorecavity(tg_crosstets, tg_topnewtets, tg_botnewtets, |
| 18028 | tg_missingshbds); |
| 18029 | } |
| 18030 | } else { |
| 18031 | // Use the flip algorithm of Shewchuk to recover the subfaces. |
| 18032 | flipinsertfacet(tg_crosstets, tg_toppoints, tg_botpoints, |
| 18033 | tg_missingshverts); |
| 18034 | // Recover the missing region. |
| 18035 | success = fillregion(tg_missingshs, tg_missingshbds, tg_topshells); |
| 18036 | assert(success); |
| 18037 | // Clear working lists. |
| 18038 | tg_crosstets->restart(); |
| 18039 | tg_topfaces->restart(); |
| 18040 | tg_botfaces->restart(); |
| 18041 | tg_toppoints->restart(); |
| 18042 | tg_botpoints->restart(); |
| 18043 | } // b->flipinsert |
| 18044 | |
| 18045 | if (success) { |
| 18046 | // Recover interior subfaces. |
| 18047 | for (i = 0; i < caveencshlist->objects; i++) { |
| 18048 | parysh = (face *) fastlookup(caveencshlist, i); |
| 18049 | dir = scoutsubface(parysh, &searchtet); |
| 18050 | if (dir != SHAREFACE) { |
| 18051 | // Add this face at the end of the list, so it will be |
| 18052 | // processed immediately. |
| 18053 | tg_facfaces->newindex((void **) &parysh1); |
| 18054 | *parysh1 = *parysh; |
| 18055 | } |
| 18056 | } |
| 18057 | caveencshlist->restart(); |
| 18058 | // Recover interior segments. This should always be recovered. |
| 18059 | for (i = 0; i < caveencseglist->objects; i++) { |
| 18060 | paryseg = (face *) fastlookup(caveencseglist, i); |
| 18061 | dir = scoutsegment(sorg(*paryseg),sdest(*paryseg),&searchtet, |
| 18062 | NULL, NULL); |
| 18063 | assert(dir == SHAREEDGE); |
| 18064 | // Insert this segment. |
| 18065 | if (!issubseg(searchtet)) { |
| 18066 | // Let the segment remember an adjacent tet. |
| 18067 | sstbond1(*paryseg, searchtet); |
| 18068 | // Bond the segment to all tets containing it. |
| 18069 | neightet = searchtet; |
| 18070 | do { |
| 18071 | tssbond1(neightet, *paryseg); |
| 18072 | fnextself(neightet); |
| 18073 | } while (neightet.tet != searchtet.tet); |
| 18074 | } else { |
| 18075 | // Collision! Should not happen. |
| 18076 | assert(0); |
| 18077 | } |
| 18078 | } |
| 18079 | caveencseglist->restart(); |
| 18080 | } // success - remesh cavity |
| 18081 | } // success - form cavity |
| 18082 | } else { |
| 18083 | // Recover subfaces by retriangulate the surface mesh. |
| 18084 | // Re-use tg_topshells for newshs. |
| 18085 | success = fillregion(tg_missingshs, tg_missingshbds, tg_topshells); |
| 18086 | } |
| 18087 | |
| 18088 | // Unmarktest all points of the missing region. |
| 18089 | for (i = 0; i < tg_missingshverts->objects; i++) { |
| 18090 | parypt = (point *) fastlookup(tg_missingshverts, i); |
| 18091 | punmarktest(*parypt); |
| 18092 | } |
| 18093 | tg_missingshverts->restart(); |
| 18094 | tg_missingshbds->restart(); |
| 18095 | tg_missingshs->restart(); |
| 18096 | |
| 18097 | if (!success) { |
| 18098 | // The missing region can not be recovered. Refine it. |
| 18099 | refineregion(recentsh, tg_toppoints, tg_topfaces, tg_topshells, |
| 18100 | tg_topnewtets, tg_crosstets, tg_midfaces); |
| 18101 | // Clean the current list of facet subfaces. |
| 18102 | // tg_facfaces->restart(); |
| 18103 | } |
| 18104 | } // while (tg_facfaces->objects) |
| 18105 | |
| 18106 | } // while ((subfacstack->objects) |
| 18107 | |
| 18108 | // Accumulate the dynamic memory. |
| 18109 | totalworkmemory += (tg_crosstets->totalmemory + tg_topnewtets->totalmemory + |
| 18110 | tg_botnewtets->totalmemory + tg_topfaces->totalmemory + |
| 18111 | tg_botfaces->totalmemory + tg_midfaces->totalmemory + |
| 18112 | tg_toppoints->totalmemory + tg_botpoints->totalmemory + |
| 18113 | tg_facfaces->totalmemory + tg_topshells->totalmemory + |
| 18114 | tg_botshells->totalmemory + tg_missingshs->totalmemory + |
| 18115 | tg_missingshbds->totalmemory + |
| 18116 | tg_missingshverts->totalmemory + |
| 18117 | encseglist->totalmemory); |
| 18118 | |
| 18119 | // Delete arrays. |
| 18120 | delete tg_crosstets; |
| 18121 | delete tg_topnewtets; |
| 18122 | delete tg_botnewtets; |
| 18123 | delete tg_topfaces; |
| 18124 | delete tg_botfaces; |
| 18125 | delete tg_midfaces; |
| 18126 | delete tg_toppoints; |
| 18127 | delete tg_botpoints; |
| 18128 | delete tg_facfaces; |
| 18129 | delete tg_topshells; |
| 18130 | delete tg_botshells; |
| 18131 | delete tg_missingshs; |
| 18132 | delete tg_missingshbds; |
| 18133 | delete tg_missingshverts; |
| 18134 | delete encseglist; |
| 18135 | } |
| 18136 | |
| 18137 | /////////////////////////////////////////////////////////////////////////////// |
| 18138 | // // |
| 18139 | // constraineddelaunay() Create a constrained Delaunay tetrahedralization.// |
| 18140 | // // |
| 18141 | /////////////////////////////////////////////////////////////////////////////// |
| 18142 | |
| 18143 | void tetgenmesh::constraineddelaunay(clock_t& tv) |
| 18144 | { |
| 18145 | face searchsh, *parysh; |
| 18146 | face searchseg, *paryseg; |
| 18147 | int s, i; |
| 18148 | |
| 18149 | // Statistics. |
| 18150 | long bakfillregioncount; |
| 18151 | long bakcavitycount, bakcavityexpcount; |
| 18152 | long bakseg_ref_count; |
| 18153 | |
| 18154 | if (!b->quiet) { |
| 18155 | printf("Constrained Delaunay...\n" ); |
| 18156 | } |
| 18157 | |
| 18158 | makesegmentendpointsmap(); |
| 18159 | |
| 18160 | if (b->verbose) { |
| 18161 | printf(" Delaunizing segments.\n" ); |
| 18162 | } |
| 18163 | |
| 18164 | checksubsegflag = 1; |
| 18165 | |
| 18166 | // Put all segments into the list (in random order). |
| 18167 | subsegs->traversalinit(); |
| 18168 | for (i = 0; i < subsegs->items; i++) { |
| 18169 | s = randomnation(i + 1); |
| 18170 | // Move the s-th seg to the i-th. |
| 18171 | subsegstack->newindex((void **) &paryseg); |
| 18172 | *paryseg = * (face *) fastlookup(subsegstack, s); |
| 18173 | // Put i-th seg to be the s-th. |
| 18174 | searchseg.sh = shellfacetraverse(subsegs); |
| 18175 | //sinfect(searchseg); // Only save it once. |
| 18176 | paryseg = (face *) fastlookup(subsegstack, s); |
| 18177 | *paryseg = searchseg; |
| 18178 | } |
| 18179 | |
| 18180 | // Recover non-Delaunay segments. |
| 18181 | delaunizesegments(); |
| 18182 | |
| 18183 | if (b->verbose) { |
| 18184 | printf(" Inserted %ld Steiner points.\n" , st_segref_count); |
| 18185 | } |
| 18186 | |
| 18187 | tv = clock(); |
| 18188 | |
| 18189 | if (b->verbose) { |
| 18190 | printf(" Constraining facets.\n" ); |
| 18191 | } |
| 18192 | |
| 18193 | // Subfaces will be introduced. |
| 18194 | checksubfaceflag = 1; |
| 18195 | |
| 18196 | bakfillregioncount = fillregioncount; |
| 18197 | bakcavitycount = cavitycount; |
| 18198 | bakcavityexpcount = cavityexpcount; |
| 18199 | bakseg_ref_count = st_segref_count; |
| 18200 | |
| 18201 | // Randomly order the subfaces. |
| 18202 | subfaces->traversalinit(); |
| 18203 | for (i = 0; i < subfaces->items; i++) { |
| 18204 | s = randomnation(i + 1); |
| 18205 | // Move the s-th subface to the i-th. |
| 18206 | subfacstack->newindex((void **) &parysh); |
| 18207 | *parysh = * (face *) fastlookup(subfacstack, s); |
| 18208 | // Put i-th subface to be the s-th. |
| 18209 | searchsh.sh = shellfacetraverse(subfaces); |
| 18210 | parysh = (face *) fastlookup(subfacstack, s); |
| 18211 | *parysh = searchsh; |
| 18212 | } |
| 18213 | |
| 18214 | // Recover facets. |
| 18215 | constrainedfacets(); |
| 18216 | |
| 18217 | if (b->verbose) { |
| 18218 | if (fillregioncount > bakfillregioncount) { |
| 18219 | printf(" Remeshed %ld regions.\n" , fillregioncount-bakfillregioncount); |
| 18220 | } |
| 18221 | if (cavitycount > bakcavitycount) { |
| 18222 | printf(" Remeshed %ld cavities" , cavitycount - bakcavitycount); |
| 18223 | if (cavityexpcount - bakcavityexpcount) { |
| 18224 | printf(" (%ld enlarged)" , cavityexpcount - bakcavityexpcount); |
| 18225 | } |
| 18226 | printf(".\n" ); |
| 18227 | } |
| 18228 | if (st_segref_count + st_facref_count - bakseg_ref_count > 0) { |
| 18229 | printf(" Inserted %ld (%ld, %ld) refine points.\n" , |
| 18230 | st_segref_count + st_facref_count - bakseg_ref_count, |
| 18231 | st_segref_count - bakseg_ref_count, st_facref_count); |
| 18232 | } |
| 18233 | } |
| 18234 | } |
| 18235 | |
| 18236 | //// //// |
| 18237 | //// //// |
| 18238 | //// constrained_cxx ////////////////////////////////////////////////////////// |
| 18239 | |
| 18240 | //// steiner_cxx ////////////////////////////////////////////////////////////// |
| 18241 | //// //// |
| 18242 | //// //// |
| 18243 | |
| 18244 | /////////////////////////////////////////////////////////////////////////////// |
| 18245 | // // |
| 18246 | // checkflipeligibility() A call back function for boundary recovery. // |
| 18247 | // // |
| 18248 | // 'fliptype' indicates which elementary flip will be performed: 1 : 2-to-3, // |
| 18249 | // and 2 : 3-to-2, respectively. // |
| 18250 | // // |
| 18251 | // 'pa, ..., pe' are the vertices involved in this flip, where [a,b,c] is // |
| 18252 | // the flip face, and [d,e] is the flip edge. NOTE: 'pc' may be 'dummypoint',// |
| 18253 | // other points must not be 'dummypoint'. // |
| 18254 | // // |
| 18255 | /////////////////////////////////////////////////////////////////////////////// |
| 18256 | |
| 18257 | int tetgenmesh::checkflipeligibility(int fliptype, point pa, point pb, |
| 18258 | point pc, point pd, point pe, |
| 18259 | int level, int edgepivot, |
| 18260 | flipconstraints* fc) |
| 18261 | { |
| 18262 | point tmppts[3]; |
| 18263 | enum interresult dir; |
| 18264 | int types[2], poss[4]; |
| 18265 | int intflag; |
| 18266 | int rejflag = 0; |
| 18267 | int i; |
| 18268 | |
| 18269 | if (fc->seg[0] != NULL) { |
| 18270 | // A constraining edge is given (e.g., for edge recovery). |
| 18271 | if (fliptype == 1) { |
| 18272 | // A 2-to-3 flip: [a,b,c] => [e,d,a], [e,d,b], [e,d,c]. |
| 18273 | tmppts[0] = pa; |
| 18274 | tmppts[1] = pb; |
| 18275 | tmppts[2] = pc; |
| 18276 | for (i = 0; i < 3 && !rejflag; i++) { |
| 18277 | if (tmppts[i] != dummypoint) { |
| 18278 | // Test if the face [e,d,#] intersects the edge. |
| 18279 | intflag = tri_edge_test(pe, pd, tmppts[i], fc->seg[0], fc->seg[1], |
| 18280 | NULL, 1, types, poss); |
| 18281 | if (intflag == 2) { |
| 18282 | // They intersect at a single point. |
| 18283 | dir = (enum interresult) types[0]; |
| 18284 | if (dir == ACROSSFACE) { |
| 18285 | // The interior of [e,d,#] intersect the segment. |
| 18286 | rejflag = 1; |
| 18287 | } else if (dir == ACROSSEDGE) { |
| 18288 | if (poss[0] == 0) { |
| 18289 | // The interior of [e,d] intersect the segment. |
| 18290 | // Since [e,d] is the newly created edge. Reject this flip. |
| 18291 | rejflag = 1; |
| 18292 | } |
| 18293 | } |
| 18294 | } else if (intflag == 4) { |
| 18295 | // They may intersect at either a point or a line segment. |
| 18296 | dir = (enum interresult) types[0]; |
| 18297 | if (dir == ACROSSEDGE) { |
| 18298 | if (poss[0] == 0) { |
| 18299 | // The interior of [e,d] intersect the segment. |
| 18300 | // Since [e,d] is the newly created edge. Reject this flip. |
| 18301 | rejflag = 1; |
| 18302 | } |
| 18303 | } |
| 18304 | } |
| 18305 | } // if (tmppts[0] != dummypoint) |
| 18306 | } // i |
| 18307 | } else if (fliptype == 2) { |
| 18308 | // A 3-to-2 flip: [e,d,a], [e,d,b], [e,d,c] => [a,b,c] |
| 18309 | if (pc != dummypoint) { |
| 18310 | // Check if the new face [a,b,c] intersect the edge in its interior. |
| 18311 | intflag = tri_edge_test(pa, pb, pc, fc->seg[0], fc->seg[1], NULL, |
| 18312 | 1, types, poss); |
| 18313 | if (intflag == 2) { |
| 18314 | // They intersect at a single point. |
| 18315 | dir = (enum interresult) types[0]; |
| 18316 | if (dir == ACROSSFACE) { |
| 18317 | // The interior of [a,b,c] intersect the segment. |
| 18318 | rejflag = 1; // Do not flip. |
| 18319 | } |
| 18320 | } else if (intflag == 4) { |
| 18321 | // [a,b,c] is coplanar with the edge. |
| 18322 | dir = (enum interresult) types[0]; |
| 18323 | if (dir == ACROSSEDGE) { |
| 18324 | // The boundary of [a,b,c] intersect the segment. |
| 18325 | rejflag = 1; // Do not flip. |
| 18326 | } |
| 18327 | } |
| 18328 | } // if (pc != dummypoint) |
| 18329 | } |
| 18330 | } // if (fc->seg[0] != NULL) |
| 18331 | |
| 18332 | if ((fc->fac[0] != NULL) && !rejflag) { |
| 18333 | // A constraining face is given (e.g., for face recovery). |
| 18334 | if (fliptype == 1) { |
| 18335 | // A 2-to-3 flip. |
| 18336 | // Test if the new edge [e,d] intersects the face. |
| 18337 | intflag = tri_edge_test(fc->fac[0], fc->fac[1], fc->fac[2], pe, pd, |
| 18338 | NULL, 1, types, poss); |
| 18339 | if (intflag == 2) { |
| 18340 | // They intersect at a single point. |
| 18341 | dir = (enum interresult) types[0]; |
| 18342 | if (dir == ACROSSFACE) { |
| 18343 | rejflag = 1; |
| 18344 | } else if (dir == ACROSSEDGE) { |
| 18345 | rejflag = 1; |
| 18346 | } |
| 18347 | } else if (intflag == 4) { |
| 18348 | // The edge [e,d] is coplanar with the face. |
| 18349 | // There may be two intersections. |
| 18350 | for (i = 0; i < 2 && !rejflag; i++) { |
| 18351 | dir = (enum interresult) types[i]; |
| 18352 | if (dir == ACROSSFACE) { |
| 18353 | rejflag = 1; |
| 18354 | } else if (dir == ACROSSEDGE) { |
| 18355 | rejflag = 1; |
| 18356 | } |
| 18357 | } |
| 18358 | } |
| 18359 | } // if (fliptype == 1) |
| 18360 | } // if (fc->fac[0] != NULL) |
| 18361 | |
| 18362 | if ((fc->remvert != NULL) && !rejflag) { |
| 18363 | // The vertex is going to be removed. Do not create a new edge which |
| 18364 | // contains this vertex. |
| 18365 | if (fliptype == 1) { |
| 18366 | // A 2-to-3 flip. |
| 18367 | if ((pd == fc->remvert) || (pe == fc->remvert)) { |
| 18368 | rejflag = 1; |
| 18369 | } |
| 18370 | } |
| 18371 | } |
| 18372 | |
| 18373 | if (fc->remove_large_angle && !rejflag) { |
| 18374 | // Remove a large dihedral angle. Do not create a new small angle. |
| 18375 | REAL cosmaxd = 0, diff; |
| 18376 | if (fliptype == 1) { |
| 18377 | // We assume that neither 'a' nor 'b' is dummypoint. |
| 18378 | assert((pa != dummypoint) && (pb != dummypoint)); // SELF_CHECK |
| 18379 | // A 2-to-3 flip: [a,b,c] => [e,d,a], [e,d,b], [e,d,c]. |
| 18380 | // The new tet [e,d,a,b] will be flipped later. Only two new tets: |
| 18381 | // [e,d,b,c] and [e,d,c,a] need to be checked. |
| 18382 | if ((pc != dummypoint) && (pe != dummypoint) && (pd != dummypoint)) { |
| 18383 | // Get the largest dihedral angle of [e,d,b,c]. |
| 18384 | tetalldihedral(pe, pd, pb, pc, NULL, &cosmaxd, NULL); |
| 18385 | diff = cosmaxd - fc->cosdihed_in; |
| 18386 | if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding. |
| 18387 | if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) { |
| 18388 | rejflag = 1; |
| 18389 | } else { |
| 18390 | // Record the largest new angle. |
| 18391 | if (cosmaxd < fc->cosdihed_out) { |
| 18392 | fc->cosdihed_out = cosmaxd; |
| 18393 | } |
| 18394 | // Get the largest dihedral angle of [e,d,c,a]. |
| 18395 | tetalldihedral(pe, pd, pc, pa, NULL, &cosmaxd, NULL); |
| 18396 | diff = cosmaxd - fc->cosdihed_in; |
| 18397 | if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding. |
| 18398 | if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) { |
| 18399 | rejflag = 1; |
| 18400 | } else { |
| 18401 | // Record the largest new angle. |
| 18402 | if (cosmaxd < fc->cosdihed_out) { |
| 18403 | fc->cosdihed_out = cosmaxd; |
| 18404 | } |
| 18405 | } |
| 18406 | } |
| 18407 | } // if (pc != dummypoint && ...) |
| 18408 | } else if (fliptype == 2) { |
| 18409 | // A 3-to-2 flip: [e,d,a], [e,d,b], [e,d,c] => [a,b,c] |
| 18410 | // We assume that neither 'e' nor 'd' is dummypoint. |
| 18411 | assert((pe != dummypoint) && (pd != dummypoint)); // SELF_CHECK |
| 18412 | if (level == 0) { |
| 18413 | // Both new tets [a,b,c,d] and [b,a,c,e] are new tets. |
| 18414 | if ((pa != dummypoint) && (pb != dummypoint) && (pc != dummypoint)) { |
| 18415 | // Get the largest dihedral angle of [a,b,c,d]. |
| 18416 | tetalldihedral(pa, pb, pc, pd, NULL, &cosmaxd, NULL); |
| 18417 | diff = cosmaxd - fc->cosdihed_in; |
| 18418 | if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding |
| 18419 | if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) { |
| 18420 | rejflag = 1; |
| 18421 | } else { |
| 18422 | // Record the largest new angle. |
| 18423 | if (cosmaxd < fc->cosdihed_out) { |
| 18424 | fc->cosdihed_out = cosmaxd; |
| 18425 | } |
| 18426 | // Get the largest dihedral angle of [b,a,c,e]. |
| 18427 | tetalldihedral(pb, pa, pc, pe, NULL, &cosmaxd, NULL); |
| 18428 | diff = cosmaxd - fc->cosdihed_in; |
| 18429 | if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0;// Rounding |
| 18430 | if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) { |
| 18431 | rejflag = 1; |
| 18432 | } else { |
| 18433 | // Record the largest new angle. |
| 18434 | if (cosmaxd < fc->cosdihed_out) { |
| 18435 | fc->cosdihed_out = cosmaxd; |
| 18436 | } |
| 18437 | } |
| 18438 | } |
| 18439 | } |
| 18440 | } else { // level > 0 |
| 18441 | assert(edgepivot != 0); |
| 18442 | if (edgepivot == 1) { |
| 18443 | // The new tet [a,b,c,d] will be flipped. Only check [b,a,c,e]. |
| 18444 | if ((pa != dummypoint) && (pb != dummypoint) && (pc != dummypoint)) { |
| 18445 | // Get the largest dihedral angle of [b,a,c,e]. |
| 18446 | tetalldihedral(pb, pa, pc, pe, NULL, &cosmaxd, NULL); |
| 18447 | diff = cosmaxd - fc->cosdihed_in; |
| 18448 | if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0;// Rounding |
| 18449 | if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) { |
| 18450 | rejflag = 1; |
| 18451 | } else { |
| 18452 | // Record the largest new angle. |
| 18453 | if (cosmaxd < fc->cosdihed_out) { |
| 18454 | fc->cosdihed_out = cosmaxd; |
| 18455 | } |
| 18456 | } |
| 18457 | } |
| 18458 | } else { |
| 18459 | assert(edgepivot == 2); |
| 18460 | // The new tet [b,a,c,e] will be flipped. Only check [a,b,c,d]. |
| 18461 | if ((pa != dummypoint) && (pb != dummypoint) && (pc != dummypoint)) { |
| 18462 | // Get the largest dihedral angle of [b,a,c,e]. |
| 18463 | tetalldihedral(pa, pb, pc, pd, NULL, &cosmaxd, NULL); |
| 18464 | diff = cosmaxd - fc->cosdihed_in; |
| 18465 | if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0;// Rounding |
| 18466 | if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) { |
| 18467 | rejflag = 1; |
| 18468 | } else { |
| 18469 | // Record the largest new angle. |
| 18470 | if (cosmaxd < fc->cosdihed_out) { |
| 18471 | fc->cosdihed_out = cosmaxd; |
| 18472 | } |
| 18473 | } |
| 18474 | } |
| 18475 | } // edgepivot |
| 18476 | } // level |
| 18477 | } |
| 18478 | } |
| 18479 | |
| 18480 | return rejflag; |
| 18481 | } |
| 18482 | |
| 18483 | /////////////////////////////////////////////////////////////////////////////// |
| 18484 | // // |
| 18485 | // removeedgebyflips() Remove an edge by flips. // |
| 18486 | // // |
| 18487 | // 'flipedge' is a non-convex or flat edge [a,b,#,#] to be removed. // |
| 18488 | // // |
| 18489 | // The return value is a positive integer, it indicates whether the edge is // |
| 18490 | // removed or not. A value "2" means the edge is removed, otherwise, the // |
| 18491 | // edge is not removed and the value (must >= 3) is the current number of // |
| 18492 | // tets in the edge star. // |
| 18493 | // // |
| 18494 | /////////////////////////////////////////////////////////////////////////////// |
| 18495 | |
| 18496 | int tetgenmesh::removeedgebyflips(triface *flipedge, flipconstraints* fc) |
| 18497 | { |
| 18498 | triface *abtets, spintet; |
| 18499 | int t1ver; |
| 18500 | int n, nn, i; |
| 18501 | |
| 18502 | |
| 18503 | if (checksubsegflag) { |
| 18504 | // Do not flip a segment. |
| 18505 | if (issubseg(*flipedge)) { |
| 18506 | if (fc->collectencsegflag) { |
| 18507 | face checkseg, *paryseg; |
| 18508 | tsspivot1(*flipedge, checkseg); |
| 18509 | if (!sinfected(checkseg)) { |
| 18510 | // Queue this segment in list. |
| 18511 | sinfect(checkseg); |
| 18512 | caveencseglist->newindex((void **) &paryseg); |
| 18513 | *paryseg = checkseg; |
| 18514 | } |
| 18515 | } |
| 18516 | return 0; |
| 18517 | } |
| 18518 | } |
| 18519 | |
| 18520 | // Count the number of tets at edge [a,b]. |
| 18521 | n = 0; |
| 18522 | spintet = *flipedge; |
| 18523 | while (1) { |
| 18524 | n++; |
| 18525 | fnextself(spintet); |
| 18526 | if (spintet.tet == flipedge->tet) break; |
| 18527 | } |
| 18528 | assert(n >= 3); |
| 18529 | |
| 18530 | if ((b->flipstarsize > 0) && (n > b->flipstarsize)) { |
| 18531 | // The star size exceeds the limit. |
| 18532 | return 0; // Do not flip it. |
| 18533 | } |
| 18534 | |
| 18535 | // Allocate spaces. |
| 18536 | abtets = new triface[n]; |
| 18537 | // Collect the tets at edge [a,b]. |
| 18538 | spintet = *flipedge; |
| 18539 | i = 0; |
| 18540 | while (1) { |
| 18541 | abtets[i] = spintet; |
| 18542 | setelemcounter(abtets[i], 1); |
| 18543 | i++; |
| 18544 | fnextself(spintet); |
| 18545 | if (spintet.tet == flipedge->tet) break; |
| 18546 | } |
| 18547 | |
| 18548 | |
| 18549 | // Try to flip the edge (level = 0, edgepivot = 0). |
| 18550 | nn = flipnm(abtets, n, 0, 0, fc); |
| 18551 | |
| 18552 | |
| 18553 | if (nn > 2) { |
| 18554 | // Edge is not flipped. Unmarktest the remaining tets in Star(ab). |
| 18555 | for (i = 0; i < nn; i++) { |
| 18556 | setelemcounter(abtets[i], 0); |
| 18557 | } |
| 18558 | // Restore the input edge (needed by Lawson's flip). |
| 18559 | *flipedge = abtets[0]; |
| 18560 | } |
| 18561 | |
| 18562 | // Release the temporary allocated spaces. |
| 18563 | // NOTE: fc->unflip must be 0. |
| 18564 | int bakunflip = fc->unflip; |
| 18565 | fc->unflip = 0; |
| 18566 | flipnm_post(abtets, n, nn, 0, fc); |
| 18567 | fc->unflip = bakunflip; |
| 18568 | |
| 18569 | delete [] abtets; |
| 18570 | |
| 18571 | return nn; |
| 18572 | } |
| 18573 | |
| 18574 | /////////////////////////////////////////////////////////////////////////////// |
| 18575 | // // |
| 18576 | // removefacebyflips() Remove a face by flips. // |
| 18577 | // // |
| 18578 | // Return 1 if the face is removed. Otherwise, return 0. // |
| 18579 | // // |
| 18580 | // ASSUMPTIONS: // |
| 18581 | // - 'flipface' must not be a hull face. // |
| 18582 | // // |
| 18583 | /////////////////////////////////////////////////////////////////////////////// |
| 18584 | |
| 18585 | int tetgenmesh::removefacebyflips(triface *flipface, flipconstraints* fc) |
| 18586 | { |
| 18587 | if (checksubfaceflag) { |
| 18588 | if (issubface(*flipface)) { |
| 18589 | return 0; |
| 18590 | } |
| 18591 | } |
| 18592 | |
| 18593 | triface fliptets[3], flipedge; |
| 18594 | point pa, pb, pc, pd, pe; |
| 18595 | REAL ori; |
| 18596 | int reducflag = 0; |
| 18597 | |
| 18598 | fliptets[0] = *flipface; |
| 18599 | fsym(*flipface, fliptets[1]); |
| 18600 | pa = org(fliptets[0]); |
| 18601 | pb = dest(fliptets[0]); |
| 18602 | pc = apex(fliptets[0]); |
| 18603 | pd = oppo(fliptets[0]); |
| 18604 | pe = oppo(fliptets[1]); |
| 18605 | |
| 18606 | ori = orient3d(pa, pb, pd, pe); |
| 18607 | if (ori > 0) { |
| 18608 | ori = orient3d(pb, pc, pd, pe); |
| 18609 | if (ori > 0) { |
| 18610 | ori = orient3d(pc, pa, pd, pe); |
| 18611 | if (ori > 0) { |
| 18612 | // Found a 2-to-3 flip. |
| 18613 | reducflag = 1; |
| 18614 | } else { |
| 18615 | eprev(*flipface, flipedge); // [c,a] |
| 18616 | } |
| 18617 | } else { |
| 18618 | enext(*flipface, flipedge); // [b,c] |
| 18619 | } |
| 18620 | } else { |
| 18621 | flipedge = *flipface; // [a,b] |
| 18622 | } |
| 18623 | |
| 18624 | if (reducflag) { |
| 18625 | // A 2-to-3 flip is found. |
| 18626 | flip23(fliptets, 0, fc); |
| 18627 | return 1; |
| 18628 | } else { |
| 18629 | // Try to flip the selected edge of this face. |
| 18630 | if (removeedgebyflips(&flipedge, fc) == 2) { |
| 18631 | return 1; |
| 18632 | } |
| 18633 | } |
| 18634 | |
| 18635 | // Face is not removed. |
| 18636 | return 0; |
| 18637 | } |
| 18638 | |
| 18639 | /////////////////////////////////////////////////////////////////////////////// |
| 18640 | // // |
| 18641 | // recoveredge() Recover an edge in current tetrahedralization. // |
| 18642 | // // |
| 18643 | // If the edge is recovered, 'searchtet' returns a tet containing the edge. // |
| 18644 | // // |
| 18645 | // This edge may intersect a set of faces and edges in the mesh. All these // |
| 18646 | // faces or edges are needed to be removed. // |
| 18647 | // // |
| 18648 | // If the parameter 'fullsearch' is set, it tries to flip any face or edge // |
| 18649 | // that intersects the recovering edge. Otherwise, only the face or edge // |
| 18650 | // which is visible by 'startpt' is tried. // |
| 18651 | // // |
| 18652 | /////////////////////////////////////////////////////////////////////////////// |
| 18653 | |
| 18654 | int tetgenmesh::recoveredgebyflips(point startpt, point endpt, |
| 18655 | triface* searchtet, int fullsearch) |
| 18656 | { |
| 18657 | flipconstraints fc; |
| 18658 | enum interresult dir; |
| 18659 | |
| 18660 | fc.seg[0] = startpt; |
| 18661 | fc.seg[1] = endpt; |
| 18662 | fc.checkflipeligibility = 1; |
| 18663 | |
| 18664 | // The mainloop of the edge reocvery. |
| 18665 | while (1) { // Loop I |
| 18666 | |
| 18667 | // Search the edge from 'startpt'. |
| 18668 | point2tetorg(startpt, *searchtet); |
| 18669 | dir = finddirection(searchtet, endpt); |
| 18670 | if (dir == ACROSSVERT) { |
| 18671 | if (dest(*searchtet) == endpt) { |
| 18672 | return 1; // Edge is recovered. |
| 18673 | } else { |
| 18674 | terminatetetgen(this, 3); // // It may be a PLC problem. |
| 18675 | } |
| 18676 | } |
| 18677 | |
| 18678 | // The edge is missing. |
| 18679 | |
| 18680 | // Try to flip the first intersecting face/edge. |
| 18681 | enextesymself(*searchtet); // Go to the opposite face. |
| 18682 | if (dir == ACROSSFACE) { |
| 18683 | // A face is intersected with the segment. Try to flip it. |
| 18684 | if (removefacebyflips(searchtet, &fc)) { |
| 18685 | continue; |
| 18686 | } |
| 18687 | } else if (dir == ACROSSEDGE) { |
| 18688 | // An edge is intersected with the segment. Try to flip it. |
| 18689 | if (removeedgebyflips(searchtet, &fc) == 2) { |
| 18690 | continue; |
| 18691 | } |
| 18692 | } else { |
| 18693 | terminatetetgen(this, 3); // It may be a PLC problem. |
| 18694 | } |
| 18695 | |
| 18696 | // The edge is missing. |
| 18697 | |
| 18698 | if (fullsearch) { |
| 18699 | // Try to flip one of the faces/edges which intersects the edge. |
| 18700 | triface neightet, spintet; |
| 18701 | point pa, pb, pc, pd; |
| 18702 | badface bakface; |
| 18703 | enum interresult dir1; |
| 18704 | int types[2], poss[4], pos = 0; |
| 18705 | int success = 0; |
| 18706 | int t1ver; |
| 18707 | int i, j; |
| 18708 | |
| 18709 | // Loop through the sequence of intersecting faces/edges from |
| 18710 | // 'startpt' to 'endpt'. |
| 18711 | point2tetorg(startpt, *searchtet); |
| 18712 | dir = finddirection(searchtet, endpt); |
| 18713 | //assert(dir != ACROSSVERT); |
| 18714 | |
| 18715 | // Go to the face/edge intersecting the searching edge. |
| 18716 | enextesymself(*searchtet); // Go to the opposite face. |
| 18717 | // This face/edge has been tried in previous step. |
| 18718 | |
| 18719 | while (1) { // Loop I-I |
| 18720 | |
| 18721 | // Find the next intersecting face/edge. |
| 18722 | fsymself(*searchtet); |
| 18723 | if (dir == ACROSSFACE) { |
| 18724 | neightet = *searchtet; |
| 18725 | j = (neightet.ver & 3); // j is the current face number. |
| 18726 | for (i = j + 1; i < j + 4; i++) { |
| 18727 | neightet.ver = (i % 4); |
| 18728 | pa = org(neightet); |
| 18729 | pb = dest(neightet); |
| 18730 | pc = apex(neightet); |
| 18731 | pd = oppo(neightet); // The above point. |
| 18732 | if (tri_edge_test(pa,pb,pc,startpt,endpt, pd, 1, types, poss)) { |
| 18733 | dir = (enum interresult) types[0]; |
| 18734 | pos = poss[0]; |
| 18735 | break; |
| 18736 | } else { |
| 18737 | dir = DISJOINT; |
| 18738 | pos = 0; |
| 18739 | } |
| 18740 | } // i |
| 18741 | // There must be an intersection face/edge. |
| 18742 | assert(dir != DISJOINT); // SELF_CHECK |
| 18743 | } else { |
| 18744 | assert(dir == ACROSSEDGE); |
| 18745 | while (1) { // Loop I-I-I |
| 18746 | // Check the two opposite faces (of the edge) in 'searchtet'. |
| 18747 | for (i = 0; i < 2; i++) { |
| 18748 | if (i == 0) { |
| 18749 | enextesym(*searchtet, neightet); |
| 18750 | } else { |
| 18751 | eprevesym(*searchtet, neightet); |
| 18752 | } |
| 18753 | pa = org(neightet); |
| 18754 | pb = dest(neightet); |
| 18755 | pc = apex(neightet); |
| 18756 | pd = oppo(neightet); // The above point. |
| 18757 | if (tri_edge_test(pa,pb,pc,startpt,endpt,pd,1, types, poss)) { |
| 18758 | dir = (enum interresult) types[0]; |
| 18759 | pos = poss[0]; |
| 18760 | break; // for loop |
| 18761 | } else { |
| 18762 | dir = DISJOINT; |
| 18763 | pos = 0; |
| 18764 | } |
| 18765 | } // i |
| 18766 | if (dir != DISJOINT) { |
| 18767 | // Find an intersection face/edge. |
| 18768 | break; // Loop I-I-I |
| 18769 | } |
| 18770 | // No intersection. Rotate to the next tet at the edge. |
| 18771 | fnextself(*searchtet); |
| 18772 | } // while (1) // Loop I-I-I |
| 18773 | } |
| 18774 | |
| 18775 | // Adjust to the intersecting edge/vertex. |
| 18776 | for (i = 0; i < pos; i++) { |
| 18777 | enextself(neightet); |
| 18778 | } |
| 18779 | |
| 18780 | if (dir == SHAREVERT) { |
| 18781 | // Check if we have reached the 'endpt'. |
| 18782 | pd = org(neightet); |
| 18783 | if (pd == endpt) { |
| 18784 | // Failed to recover the edge. |
| 18785 | break; // Loop I-I |
| 18786 | } else { |
| 18787 | // We need to further check this case. It might be a PLC problem |
| 18788 | // or a Steiner point that was added at a bad location. |
| 18789 | assert(0); |
| 18790 | } |
| 18791 | } |
| 18792 | |
| 18793 | // The next to be flipped face/edge. |
| 18794 | *searchtet = neightet; |
| 18795 | |
| 18796 | // Bakup this face (tetrahedron). |
| 18797 | bakface.forg = org(*searchtet); |
| 18798 | bakface.fdest = dest(*searchtet); |
| 18799 | bakface.fapex = apex(*searchtet); |
| 18800 | bakface.foppo = oppo(*searchtet); |
| 18801 | |
| 18802 | // Try to flip this intersecting face/edge. |
| 18803 | if (dir == ACROSSFACE) { |
| 18804 | if (removefacebyflips(searchtet, &fc)) { |
| 18805 | success = 1; |
| 18806 | break; // Loop I-I |
| 18807 | } |
| 18808 | } else if (dir == ACROSSEDGE) { |
| 18809 | if (removeedgebyflips(searchtet, &fc) == 2) { |
| 18810 | success = 1; |
| 18811 | break; // Loop I-I |
| 18812 | } |
| 18813 | } else { |
| 18814 | assert(0); // A PLC problem. |
| 18815 | } |
| 18816 | |
| 18817 | // The face/edge is not flipped. |
| 18818 | if ((searchtet->tet == NULL) || |
| 18819 | (org(*searchtet) != bakface.forg) || |
| 18820 | (dest(*searchtet) != bakface.fdest) || |
| 18821 | (apex(*searchtet) != bakface.fapex) || |
| 18822 | (oppo(*searchtet) != bakface.foppo)) { |
| 18823 | // 'searchtet' was flipped. We must restore it. |
| 18824 | point2tetorg(bakface.forg, *searchtet); |
| 18825 | dir1 = finddirection(searchtet, bakface.fdest); |
| 18826 | if (dir1 == ACROSSVERT) { |
| 18827 | assert(dest(*searchtet) == bakface.fdest); |
| 18828 | spintet = *searchtet; |
| 18829 | while (1) { |
| 18830 | if (apex(spintet) == bakface.fapex) { |
| 18831 | // Found the face. |
| 18832 | *searchtet = spintet; |
| 18833 | break; |
| 18834 | } |
| 18835 | fnextself(spintet); |
| 18836 | if (spintet.tet == searchtet->tet) { |
| 18837 | searchtet->tet = NULL; |
| 18838 | break; // Not find. |
| 18839 | } |
| 18840 | } // while (1) |
| 18841 | if (searchtet->tet != NULL) { |
| 18842 | if (oppo(*searchtet) != bakface.foppo) { |
| 18843 | fsymself(*searchtet); |
| 18844 | if (oppo(*searchtet) != bakface.foppo) { |
| 18845 | assert(0); // Check this case. |
| 18846 | searchtet->tet = NULL; |
| 18847 | break; // Not find. |
| 18848 | } |
| 18849 | } |
| 18850 | } |
| 18851 | } else { |
| 18852 | searchtet->tet = NULL; // Not find. |
| 18853 | } |
| 18854 | if (searchtet->tet == NULL) { |
| 18855 | success = 0; // This face/edge has been destroyed. |
| 18856 | break; // Loop I-I |
| 18857 | } |
| 18858 | } |
| 18859 | } // while (1) // Loop I-I |
| 18860 | |
| 18861 | if (success) { |
| 18862 | // One of intersecting faces/edges is flipped. |
| 18863 | continue; |
| 18864 | } |
| 18865 | |
| 18866 | } // if (fullsearch) |
| 18867 | |
| 18868 | // The edge is missing. |
| 18869 | break; // Loop I |
| 18870 | |
| 18871 | } // while (1) // Loop I |
| 18872 | |
| 18873 | return 0; |
| 18874 | } |
| 18875 | |
| 18876 | /////////////////////////////////////////////////////////////////////////////// |
| 18877 | // // |
| 18878 | // add_steinerpt_in_schoenhardtpoly() Insert a Steiner point in a Schoen- // |
| 18879 | // hardt polyhedron. // |
| 18880 | // // |
| 18881 | // 'abtets' is an array of n tets which all share at the edge [a,b]. Let the // |
| 18882 | // tets are [a,b,p0,p1], [a,b,p1,p2], ..., [a,b,p_(n-2),p_(n-1)]. Moreover, // |
| 18883 | // the edge [p0,p_(n-1)] intersects all of the tets in 'abtets'. A special // |
| 18884 | // case is that the edge [p0,p_(n-1)] is coplanar with the edge [a,b]. // |
| 18885 | // Such set of tets arises when we want to recover an edge from 'p0' to 'p_ // |
| 18886 | // (n-1)', and the number of tets at [a,b] can not be reduced by any flip. // |
| 18887 | // // |
| 18888 | /////////////////////////////////////////////////////////////////////////////// |
| 18889 | |
| 18890 | int tetgenmesh::add_steinerpt_in_schoenhardtpoly(triface *abtets, int n, |
| 18891 | int chkencflag) |
| 18892 | { |
| 18893 | triface worktet, *parytet; |
| 18894 | triface faketet1, faketet2; |
| 18895 | point pc, pd, steinerpt; |
| 18896 | insertvertexflags ivf; |
| 18897 | optparameters opm; |
| 18898 | REAL vcd[3], sampt[3], smtpt[3]; |
| 18899 | REAL maxminvol = 0.0, minvol = 0.0, ori; |
| 18900 | int success, maxidx = 0; |
| 18901 | int it, i; |
| 18902 | |
| 18903 | |
| 18904 | pc = apex(abtets[0]); // pc = p0 |
| 18905 | pd = oppo(abtets[n-1]); // pd = p_(n-1) |
| 18906 | |
| 18907 | |
| 18908 | // Find an optimial point in edge [c,d]. It is visible by all outer faces |
| 18909 | // of 'abtets', and it maxmizes the min volume. |
| 18910 | |
| 18911 | // initialize the list of 2n boundary faces. |
| 18912 | for (i = 0; i < n; i++) { |
| 18913 | edestoppo(abtets[i], worktet); // [p_i,p_i+1,a] |
| 18914 | cavetetlist->newindex((void **) &parytet); |
| 18915 | *parytet = worktet; |
| 18916 | eorgoppo(abtets[i], worktet); // [p_i+1,p_i,b] |
| 18917 | cavetetlist->newindex((void **) &parytet); |
| 18918 | *parytet = worktet; |
| 18919 | } |
| 18920 | |
| 18921 | int N = 100; |
| 18922 | REAL stepi = 0.01; |
| 18923 | |
| 18924 | // Search the point along the edge [c,d]. |
| 18925 | for (i = 0; i < 3; i++) vcd[i] = pd[i] - pc[i]; |
| 18926 | |
| 18927 | // Sample N points in edge [c,d]. |
| 18928 | for (it = 1; it < N; it++) { |
| 18929 | for (i = 0; i < 3; i++) { |
| 18930 | sampt[i] = pc[i] + (stepi * (double) it) * vcd[i]; |
| 18931 | } |
| 18932 | for (i = 0; i < cavetetlist->objects; i++) { |
| 18933 | parytet = (triface *) fastlookup(cavetetlist, i); |
| 18934 | ori = orient3d(dest(*parytet), org(*parytet), apex(*parytet), sampt); |
| 18935 | if (i == 0) { |
| 18936 | minvol = ori; |
| 18937 | } else { |
| 18938 | if (minvol > ori) minvol = ori; |
| 18939 | } |
| 18940 | } // i |
| 18941 | if (it == 1) { |
| 18942 | maxminvol = minvol; |
| 18943 | maxidx = it; |
| 18944 | } else { |
| 18945 | if (maxminvol < minvol) { |
| 18946 | maxminvol = minvol; |
| 18947 | maxidx = it; |
| 18948 | } |
| 18949 | } |
| 18950 | } // it |
| 18951 | |
| 18952 | if (maxminvol <= 0) { |
| 18953 | cavetetlist->restart(); |
| 18954 | return 0; |
| 18955 | } |
| 18956 | |
| 18957 | for (i = 0; i < 3; i++) { |
| 18958 | smtpt[i] = pc[i] + (stepi * (double) maxidx) * vcd[i]; |
| 18959 | } |
| 18960 | |
| 18961 | // Create two faked tets to hold the two non-existing boundary faces: |
| 18962 | // [d,c,a] and [c,d,b]. |
| 18963 | maketetrahedron(&faketet1); |
| 18964 | setvertices(faketet1, pd, pc, org(abtets[0]), dummypoint); |
| 18965 | cavetetlist->newindex((void **) &parytet); |
| 18966 | *parytet = faketet1; |
| 18967 | maketetrahedron(&faketet2); |
| 18968 | setvertices(faketet2, pc, pd, dest(abtets[0]), dummypoint); |
| 18969 | cavetetlist->newindex((void **) &parytet); |
| 18970 | *parytet = faketet2; |
| 18971 | |
| 18972 | // Point smooth options. |
| 18973 | opm.max_min_volume = 1; |
| 18974 | opm.numofsearchdirs = 20; |
| 18975 | opm.searchstep = 0.001; |
| 18976 | opm.maxiter = 100; // Limit the maximum iterations. |
| 18977 | opm.initval = 0.0; // Initial volume is zero. |
| 18978 | |
| 18979 | // Try to relocate the point into the inside of the polyhedron. |
| 18980 | success = smoothpoint(smtpt, cavetetlist, 1, &opm); |
| 18981 | |
| 18982 | if (success) { |
| 18983 | while (opm.smthiter == 100) { |
| 18984 | // It was relocated and the prescribed maximum iteration reached. |
| 18985 | // Try to increase the search stepsize. |
| 18986 | opm.searchstep *= 10.0; |
| 18987 | //opm.maxiter = 100; // Limit the maximum iterations. |
| 18988 | opm.initval = opm.imprval; |
| 18989 | opm.smthiter = 0; // Init. |
| 18990 | smoothpoint(smtpt, cavetetlist, 1, &opm); |
| 18991 | } |
| 18992 | } // if (success) |
| 18993 | |
| 18994 | // Delete the two faked tets. |
| 18995 | tetrahedrondealloc(faketet1.tet); |
| 18996 | tetrahedrondealloc(faketet2.tet); |
| 18997 | |
| 18998 | cavetetlist->restart(); |
| 18999 | |
| 19000 | if (!success) { |
| 19001 | return 0; |
| 19002 | } |
| 19003 | |
| 19004 | |
| 19005 | // Insert the Steiner point. |
| 19006 | makepoint(&steinerpt, FREEVOLVERTEX); |
| 19007 | for (i = 0; i < 3; i++) steinerpt[i] = smtpt[i]; |
| 19008 | |
| 19009 | // Insert the created Steiner point. |
| 19010 | for (i = 0; i < n; i++) { |
| 19011 | infect(abtets[i]); |
| 19012 | caveoldtetlist->newindex((void **) &parytet); |
| 19013 | *parytet = abtets[i]; |
| 19014 | } |
| 19015 | worktet = abtets[0]; // No need point location. |
| 19016 | ivf.iloc = (int) INSTAR; |
| 19017 | ivf.chkencflag = chkencflag; |
| 19018 | ivf.assignmeshsize = b->metric; |
| 19019 | if (ivf.assignmeshsize) { |
| 19020 | // Search the tet containing 'steinerpt' for size interpolation. |
| 19021 | locate(steinerpt, &(abtets[0])); |
| 19022 | worktet = abtets[0]; |
| 19023 | } |
| 19024 | |
| 19025 | // Insert the new point into the tetrahedralization T. |
| 19026 | // Note that T is convex (nonconvex = 0). |
| 19027 | if (insertpoint(steinerpt, &worktet, NULL, NULL, &ivf)) { |
| 19028 | // The vertex has been inserted. |
| 19029 | st_volref_count++; |
| 19030 | if (steinerleft > 0) steinerleft--; |
| 19031 | return 1; |
| 19032 | } else { |
| 19033 | // Not inserted. |
| 19034 | pointdealloc(steinerpt); |
| 19035 | return 0; |
| 19036 | } |
| 19037 | } |
| 19038 | |
| 19039 | /////////////////////////////////////////////////////////////////////////////// |
| 19040 | // // |
| 19041 | // add_steinerpt_in_segment() Add a Steiner point inside a segment. // |
| 19042 | // // |
| 19043 | /////////////////////////////////////////////////////////////////////////////// |
| 19044 | |
| 19045 | int tetgenmesh::add_steinerpt_in_segment(face* misseg, int searchlevel) |
| 19046 | { |
| 19047 | triface searchtet; |
| 19048 | face *paryseg, candseg; |
| 19049 | point startpt, endpt, pc, pd; |
| 19050 | flipconstraints fc; |
| 19051 | enum interresult dir; |
| 19052 | REAL P[3], Q[3], tp, tq; |
| 19053 | REAL len, smlen = 0, split = 0, split_q = 0; |
| 19054 | int success; |
| 19055 | int i; |
| 19056 | (void)success; |
| 19057 | |
| 19058 | startpt = sorg(*misseg); |
| 19059 | endpt = sdest(*misseg); |
| 19060 | |
| 19061 | fc.seg[0] = startpt; |
| 19062 | fc.seg[1] = endpt; |
| 19063 | fc.checkflipeligibility = 1; |
| 19064 | fc.collectencsegflag = 1; |
| 19065 | |
| 19066 | point2tetorg(startpt, searchtet); |
| 19067 | dir = finddirection(&searchtet, endpt); |
| 19068 | //assert(dir != ACROSSVERT); |
| 19069 | |
| 19070 | // Try to flip the first intersecting face/edge. |
| 19071 | enextesymself(searchtet); // Go to the opposite face. |
| 19072 | |
| 19073 | int bak_fliplinklevel = b->fliplinklevel; |
| 19074 | b->fliplinklevel = searchlevel; |
| 19075 | |
| 19076 | if (dir == ACROSSFACE) { |
| 19077 | // A face is intersected with the segment. Try to flip it. |
| 19078 | success = removefacebyflips(&searchtet, &fc); |
| 19079 | assert(success == 0); |
| 19080 | } else if (dir == ACROSSEDGE) { |
| 19081 | // An edge is intersected with the segment. Try to flip it. |
| 19082 | success = removeedgebyflips(&searchtet, &fc); |
| 19083 | assert(success != 2); |
| 19084 | } else { |
| 19085 | terminatetetgen(this, 3); // It may be a PLC problem. |
| 19086 | } |
| 19087 | |
| 19088 | split = 0; |
| 19089 | for (i = 0; i < caveencseglist->objects; i++) { |
| 19090 | paryseg = (face *) fastlookup(caveencseglist, i); |
| 19091 | suninfect(*paryseg); |
| 19092 | // Calculate the shortest edge between the two lines. |
| 19093 | pc = sorg(*paryseg); |
| 19094 | pd = sdest(*paryseg); |
| 19095 | tp = tq = 0; |
| 19096 | if (linelineint(startpt, endpt, pc, pd, P, Q, &tp, &tq)) { |
| 19097 | // Does the shortest edge lie between the two segments? |
| 19098 | // Round tp and tq. |
| 19099 | if ((tp > 0) && (tq < 1)) { |
| 19100 | if (tp < 0.5) { |
| 19101 | if (tp < (b->epsilon * 1e+3)) tp = 0.0; |
| 19102 | } else { |
| 19103 | if ((1.0 - tp) < (b->epsilon * 1e+3)) tp = 1.0; |
| 19104 | } |
| 19105 | } |
| 19106 | if ((tp <= 0) || (tp >= 1)) continue; |
| 19107 | if ((tq > 0) && (tq < 1)) { |
| 19108 | if (tq < 0.5) { |
| 19109 | if (tq < (b->epsilon * 1e+3)) tq = 0.0; |
| 19110 | } else { |
| 19111 | if ((1.0 - tq) < (b->epsilon * 1e+3)) tq = 1.0; |
| 19112 | } |
| 19113 | } |
| 19114 | if ((tq <= 0) || (tq >= 1)) continue; |
| 19115 | // It is a valid shortest edge. Calculate its length. |
| 19116 | len = distance(P, Q); |
| 19117 | if (split == 0) { |
| 19118 | smlen = len; |
| 19119 | split = tp; |
| 19120 | split_q = tq; |
| 19121 | candseg = *paryseg; |
| 19122 | } else { |
| 19123 | if (len < smlen) { |
| 19124 | smlen = len; |
| 19125 | split = tp; |
| 19126 | split_q = tq; |
| 19127 | candseg = *paryseg; |
| 19128 | } |
| 19129 | } |
| 19130 | } |
| 19131 | } |
| 19132 | |
| 19133 | caveencseglist->restart(); |
| 19134 | b->fliplinklevel = bak_fliplinklevel; |
| 19135 | |
| 19136 | if (split == 0) { |
| 19137 | // Found no crossing segment. |
| 19138 | return 0; |
| 19139 | } |
| 19140 | |
| 19141 | face splitsh; |
| 19142 | face splitseg; |
| 19143 | point steinerpt, *parypt; |
| 19144 | insertvertexflags ivf; |
| 19145 | |
| 19146 | if (b->addsteiner_algo == 1) { |
| 19147 | // Split the segment at the closest point to a near segment. |
| 19148 | makepoint(&steinerpt, FREESEGVERTEX); |
| 19149 | for (i = 0; i < 3; i++) { |
| 19150 | steinerpt[i] = startpt[i] + split * (endpt[i] - startpt[i]); |
| 19151 | } |
| 19152 | } else { // b->addsteiner_algo == 2 |
| 19153 | for (i = 0; i < 3; i++) { |
| 19154 | P[i] = startpt[i] + split * (endpt[i] - startpt[i]); |
| 19155 | } |
| 19156 | pc = sorg(candseg); |
| 19157 | pd = sdest(candseg); |
| 19158 | for (i = 0; i < 3; i++) { |
| 19159 | Q[i] = pc[i] + split_q * (pd[i] - pc[i]); |
| 19160 | } |
| 19161 | makepoint(&steinerpt, FREEVOLVERTEX); |
| 19162 | for (i = 0; i < 3; i++) { |
| 19163 | steinerpt[i] = 0.5 * (P[i] + Q[i]); |
| 19164 | } |
| 19165 | } |
| 19166 | |
| 19167 | // We need to locate the point. Start searching from 'searchtet'. |
| 19168 | if (split < 0.5) { |
| 19169 | point2tetorg(startpt, searchtet); |
| 19170 | } else { |
| 19171 | point2tetorg(endpt, searchtet); |
| 19172 | } |
| 19173 | if (b->addsteiner_algo == 1) { |
| 19174 | splitseg = *misseg; |
| 19175 | spivot(*misseg, splitsh); |
| 19176 | } else { |
| 19177 | splitsh.sh = NULL; |
| 19178 | splitseg.sh = NULL; |
| 19179 | } |
| 19180 | ivf.iloc = (int) OUTSIDE; |
| 19181 | ivf.bowywat = 1; |
| 19182 | ivf.lawson = 0; |
| 19183 | ivf.rejflag = 0; |
| 19184 | ivf.chkencflag = 0; |
| 19185 | ivf.sloc = (int) ONEDGE; |
| 19186 | ivf.sbowywat = 1; |
| 19187 | ivf.splitbdflag = 0; |
| 19188 | ivf.validflag = 1; |
| 19189 | ivf.respectbdflag = 1; |
| 19190 | ivf.assignmeshsize = b->metric; |
| 19191 | |
| 19192 | if (!insertpoint(steinerpt, &searchtet, &splitsh, &splitseg, &ivf)) { |
| 19193 | pointdealloc(steinerpt); |
| 19194 | return 0; |
| 19195 | } |
| 19196 | |
| 19197 | if (b->addsteiner_algo == 1) { |
| 19198 | // Save this Steiner point (for removal). |
| 19199 | // Re-use the array 'subvertstack'. |
| 19200 | subvertstack->newindex((void **) &parypt); |
| 19201 | *parypt = steinerpt; |
| 19202 | st_segref_count++; |
| 19203 | } else { // b->addsteiner_algo == 2 |
| 19204 | // Queue the segment for recovery. |
| 19205 | subsegstack->newindex((void **) &paryseg); |
| 19206 | *paryseg = *misseg; |
| 19207 | st_volref_count++; |
| 19208 | } |
| 19209 | if (steinerleft > 0) steinerleft--; |
| 19210 | |
| 19211 | return 1; |
| 19212 | } |
| 19213 | |
| 19214 | /////////////////////////////////////////////////////////////////////////////// |
| 19215 | // // |
| 19216 | // addsteiner4recoversegment() Add a Steiner point for recovering a seg. // |
| 19217 | // // |
| 19218 | /////////////////////////////////////////////////////////////////////////////// |
| 19219 | |
| 19220 | int tetgenmesh::addsteiner4recoversegment(face* misseg, int splitsegflag) |
| 19221 | { |
| 19222 | triface *abtets, searchtet, spintet; |
| 19223 | face splitsh; |
| 19224 | face *paryseg; |
| 19225 | point startpt, endpt; |
| 19226 | point pa, pb, pd, steinerpt, *parypt; |
| 19227 | enum interresult dir; |
| 19228 | insertvertexflags ivf; |
| 19229 | int types[2], poss[4]; |
| 19230 | int n, endi, success; |
| 19231 | int t1ver; |
| 19232 | int i; |
| 19233 | |
| 19234 | startpt = sorg(*misseg); |
| 19235 | if (pointtype(startpt) == FREESEGVERTEX) { |
| 19236 | sesymself(*misseg); |
| 19237 | startpt = sorg(*misseg); |
| 19238 | } |
| 19239 | endpt = sdest(*misseg); |
| 19240 | |
| 19241 | // Try to recover the edge by adding Steiner points. |
| 19242 | point2tetorg(startpt, searchtet); |
| 19243 | dir = finddirection(&searchtet, endpt); |
| 19244 | enextself(searchtet); |
| 19245 | //assert(apex(searchtet) == startpt); |
| 19246 | |
| 19247 | if (dir == ACROSSFACE) { |
| 19248 | // The segment is crossing at least 3 faces. Find the common edge of |
| 19249 | // the first 3 crossing faces. |
| 19250 | esymself(searchtet); |
| 19251 | fsym(searchtet, spintet); |
| 19252 | pd = oppo(spintet); |
| 19253 | for (i = 0; i < 3; i++) { |
| 19254 | pa = org(spintet); |
| 19255 | pb = dest(spintet); |
| 19256 | //pc = apex(neightet); |
| 19257 | if (tri_edge_test(pa, pb, pd, startpt, endpt, NULL, 1, types, poss)) { |
| 19258 | break; // Found the edge. |
| 19259 | } |
| 19260 | enextself(spintet); |
| 19261 | eprevself(searchtet); |
| 19262 | } |
| 19263 | assert(i < 3); |
| 19264 | esymself(searchtet); |
| 19265 | } else { |
| 19266 | assert(dir == ACROSSEDGE); |
| 19267 | // PLC check. |
| 19268 | if (issubseg(searchtet)) { |
| 19269 | face checkseg; |
| 19270 | tsspivot1(searchtet, checkseg); |
| 19271 | printf("Found two segments intersect each other.\n" ); |
| 19272 | pa = farsorg(*misseg); |
| 19273 | pb = farsdest(*misseg); |
| 19274 | printf(" 1st: [%d,%d] %d.\n" , pointmark(pa), pointmark(pb), |
| 19275 | shellmark(*misseg)); |
| 19276 | pa = farsorg(checkseg); |
| 19277 | pb = farsdest(checkseg); |
| 19278 | printf(" 2nd: [%d,%d] %d.\n" , pointmark(pa), pointmark(pb), |
| 19279 | shellmark(checkseg)); |
| 19280 | terminatetetgen(this, 3); |
| 19281 | } |
| 19282 | } |
| 19283 | assert(apex(searchtet) == startpt); |
| 19284 | |
| 19285 | spintet = searchtet; |
| 19286 | n = 0; endi = -1; |
| 19287 | while (1) { |
| 19288 | // Check if the endpt appears in the star. |
| 19289 | if (apex(spintet) == endpt) { |
| 19290 | endi = n; // Remember the position of endpt. |
| 19291 | } |
| 19292 | n++; // Count a tet in the star. |
| 19293 | fnextself(spintet); |
| 19294 | if (spintet.tet == searchtet.tet) break; |
| 19295 | } |
| 19296 | assert(n >= 3); |
| 19297 | |
| 19298 | if (endi > 0) { |
| 19299 | // endpt is also in the edge star |
| 19300 | // Get all tets in the edge star. |
| 19301 | abtets = new triface[n]; |
| 19302 | spintet = searchtet; |
| 19303 | for (i = 0; i < n; i++) { |
| 19304 | abtets[i] = spintet; |
| 19305 | fnextself(spintet); |
| 19306 | } |
| 19307 | |
| 19308 | success = 0; |
| 19309 | |
| 19310 | if (dir == ACROSSFACE) { |
| 19311 | // Find a Steiner points inside the polyhedron. |
| 19312 | if (add_steinerpt_in_schoenhardtpoly(abtets, endi, 0)) { |
| 19313 | success = 1; |
| 19314 | } |
| 19315 | } else if (dir == ACROSSEDGE) { |
| 19316 | if (n > 4) { |
| 19317 | // In this case, 'abtets' is separated by the plane (containing the |
| 19318 | // two intersecting edges) into two parts, P1 and P2, where P1 |
| 19319 | // consists of 'endi' tets: abtets[0], abtets[1], ..., |
| 19320 | // abtets[endi-1], and P2 consists of 'n - endi' tets: |
| 19321 | // abtets[endi], abtets[endi+1], abtets[n-1]. |
| 19322 | if (endi > 2) { // P1 |
| 19323 | // There are at least 3 tets in the first part. |
| 19324 | if (add_steinerpt_in_schoenhardtpoly(abtets, endi, 0)) { |
| 19325 | success++; |
| 19326 | } |
| 19327 | } |
| 19328 | if ((n - endi) > 2) { // P2 |
| 19329 | // There are at least 3 tets in the first part. |
| 19330 | if (add_steinerpt_in_schoenhardtpoly(&(abtets[endi]), n - endi, 0)) { |
| 19331 | success++; |
| 19332 | } |
| 19333 | } |
| 19334 | } else { |
| 19335 | // In this case, a 4-to-4 flip should be re-cover the edge [c,d]. |
| 19336 | // However, there will be invalid tets (either zero or negtive |
| 19337 | // volume). Otherwise, [c,d] should already be recovered by the |
| 19338 | // recoveredge() function. |
| 19339 | terminatetetgen(this, 2); // Report a bug. |
| 19340 | } |
| 19341 | } else { |
| 19342 | terminatetetgen(this, 10); // A PLC problem. |
| 19343 | } |
| 19344 | |
| 19345 | delete [] abtets; |
| 19346 | |
| 19347 | if (success) { |
| 19348 | // Add the missing segment back to the recovering list. |
| 19349 | subsegstack->newindex((void **) &paryseg); |
| 19350 | *paryseg = *misseg; |
| 19351 | return 1; |
| 19352 | } |
| 19353 | } // if (endi > 0) |
| 19354 | |
| 19355 | if (!splitsegflag) { |
| 19356 | return 0; |
| 19357 | } |
| 19358 | |
| 19359 | if (b->verbose > 2) { |
| 19360 | printf(" Splitting segment (%d, %d)\n" , pointmark(startpt), |
| 19361 | pointmark(endpt)); |
| 19362 | } |
| 19363 | steinerpt = NULL; |
| 19364 | |
| 19365 | if (b->addsteiner_algo > 0) { // -Y/1 or -Y/2 |
| 19366 | if (add_steinerpt_in_segment(misseg, 3)) { |
| 19367 | return 1; |
| 19368 | } |
| 19369 | sesymself(*misseg); |
| 19370 | if (add_steinerpt_in_segment(misseg, 3)) { |
| 19371 | return 1; |
| 19372 | } |
| 19373 | sesymself(*misseg); |
| 19374 | } |
| 19375 | |
| 19376 | |
| 19377 | |
| 19378 | |
| 19379 | if (steinerpt == NULL) { |
| 19380 | // Split the segment at its midpoint. |
| 19381 | makepoint(&steinerpt, FREESEGVERTEX); |
| 19382 | for (i = 0; i < 3; i++) { |
| 19383 | steinerpt[i] = 0.5 * (startpt[i] + endpt[i]); |
| 19384 | } |
| 19385 | |
| 19386 | // We need to locate the point. |
| 19387 | assert(searchtet.tet != NULL); // Start searching from 'searchtet'. |
| 19388 | spivot(*misseg, splitsh); |
| 19389 | ivf.iloc = (int) OUTSIDE; |
| 19390 | ivf.bowywat = 1; |
| 19391 | ivf.lawson = 0; |
| 19392 | ivf.rejflag = 0; |
| 19393 | ivf.chkencflag = 0; |
| 19394 | ivf.sloc = (int) ONEDGE; |
| 19395 | ivf.sbowywat = 1; |
| 19396 | ivf.splitbdflag = 0; |
| 19397 | ivf.validflag = 1; |
| 19398 | ivf.respectbdflag = 1; |
| 19399 | ivf.assignmeshsize = b->metric; |
| 19400 | if (!insertpoint(steinerpt, &searchtet, &splitsh, misseg, &ivf)) { |
| 19401 | assert(0); |
| 19402 | } |
| 19403 | } // if (endi > 0) |
| 19404 | |
| 19405 | // Save this Steiner point (for removal). |
| 19406 | // Re-use the array 'subvertstack'. |
| 19407 | subvertstack->newindex((void **) &parypt); |
| 19408 | *parypt = steinerpt; |
| 19409 | |
| 19410 | st_segref_count++; |
| 19411 | if (steinerleft > 0) steinerleft--; |
| 19412 | |
| 19413 | return 1; |
| 19414 | } |
| 19415 | |
| 19416 | /////////////////////////////////////////////////////////////////////////////// |
| 19417 | // // |
| 19418 | // recoversegments() Recover all segments. // |
| 19419 | // // |
| 19420 | // All segments need to be recovered are in 'subsegstack'. // |
| 19421 | // // |
| 19422 | // This routine first tries to recover each segment by only using flips. If // |
| 19423 | // no flip is possible, and the flag 'steinerflag' is set, it then tries to // |
| 19424 | // insert Steiner points near or in the segment. // |
| 19425 | // // |
| 19426 | /////////////////////////////////////////////////////////////////////////////// |
| 19427 | |
| 19428 | int tetgenmesh::recoversegments(arraypool *misseglist, int fullsearch, |
| 19429 | int steinerflag) |
| 19430 | { |
| 19431 | triface searchtet, spintet; |
| 19432 | face sseg, *paryseg; |
| 19433 | point startpt, endpt; |
| 19434 | int success; |
| 19435 | int t1ver; |
| 19436 | long bak_inpoly_count = st_volref_count; |
| 19437 | long bak_segref_count = st_segref_count; |
| 19438 | |
| 19439 | if (b->verbose > 1) { |
| 19440 | printf(" Recover segments [%s level = %2d] #: %ld.\n" , |
| 19441 | (b->fliplinklevel > 0) ? "fixed" : "auto" , |
| 19442 | (b->fliplinklevel > 0) ? b->fliplinklevel : autofliplinklevel, |
| 19443 | subsegstack->objects); |
| 19444 | } |
| 19445 | |
| 19446 | // Loop until 'subsegstack' is empty. |
| 19447 | while (subsegstack->objects > 0l) { |
| 19448 | // seglist is used as a stack. |
| 19449 | subsegstack->objects--; |
| 19450 | paryseg = (face *) fastlookup(subsegstack, subsegstack->objects); |
| 19451 | sseg = *paryseg; |
| 19452 | |
| 19453 | // Check if this segment has been recovered. |
| 19454 | sstpivot1(sseg, searchtet); |
| 19455 | if (searchtet.tet != NULL) { |
| 19456 | continue; // Not a missing segment. |
| 19457 | } |
| 19458 | |
| 19459 | startpt = sorg(sseg); |
| 19460 | endpt = sdest(sseg); |
| 19461 | |
| 19462 | if (b->verbose > 2) { |
| 19463 | printf(" Recover segment (%d, %d).\n" , pointmark(startpt), |
| 19464 | pointmark(endpt)); |
| 19465 | } |
| 19466 | |
| 19467 | success = 0; |
| 19468 | |
| 19469 | if (recoveredgebyflips(startpt, endpt, &searchtet, 0)) { |
| 19470 | success = 1; |
| 19471 | } else { |
| 19472 | // Try to recover it from the other direction. |
| 19473 | if (recoveredgebyflips(endpt, startpt, &searchtet, 0)) { |
| 19474 | success = 1; |
| 19475 | } |
| 19476 | } |
| 19477 | |
| 19478 | if (!success && fullsearch) { |
| 19479 | if (recoveredgebyflips(startpt, endpt, &searchtet, fullsearch)) { |
| 19480 | success = 1; |
| 19481 | } |
| 19482 | } |
| 19483 | |
| 19484 | if (success) { |
| 19485 | // Segment is recovered. Insert it. |
| 19486 | // Let the segment remember an adjacent tet. |
| 19487 | sstbond1(sseg, searchtet); |
| 19488 | // Bond the segment to all tets containing it. |
| 19489 | spintet = searchtet; |
| 19490 | do { |
| 19491 | tssbond1(spintet, sseg); |
| 19492 | fnextself(spintet); |
| 19493 | } while (spintet.tet != searchtet.tet); |
| 19494 | } else { |
| 19495 | if (steinerflag > 0) { |
| 19496 | // Try to recover the segment but do not split it. |
| 19497 | if (addsteiner4recoversegment(&sseg, 0)) { |
| 19498 | success = 1; |
| 19499 | } |
| 19500 | if (!success && (steinerflag > 1)) { |
| 19501 | // Split the segment. |
| 19502 | addsteiner4recoversegment(&sseg, 1); |
| 19503 | success = 1; |
| 19504 | } |
| 19505 | } |
| 19506 | if (!success) { |
| 19507 | if (misseglist != NULL) { |
| 19508 | // Save this segment. |
| 19509 | misseglist->newindex((void **) &paryseg); |
| 19510 | *paryseg = sseg; |
| 19511 | } |
| 19512 | } |
| 19513 | } |
| 19514 | |
| 19515 | } // while (subsegstack->objects > 0l) |
| 19516 | |
| 19517 | if (steinerflag) { |
| 19518 | if (b->verbose > 1) { |
| 19519 | // Report the number of added Steiner points. |
| 19520 | if (st_volref_count > bak_inpoly_count) { |
| 19521 | printf(" Add %ld Steiner points in volume.\n" , |
| 19522 | st_volref_count - bak_inpoly_count); |
| 19523 | } |
| 19524 | if (st_segref_count > bak_segref_count) { |
| 19525 | printf(" Add %ld Steiner points in segments.\n" , |
| 19526 | st_segref_count - bak_segref_count); |
| 19527 | } |
| 19528 | } |
| 19529 | } |
| 19530 | |
| 19531 | return 0; |
| 19532 | } |
| 19533 | |
| 19534 | /////////////////////////////////////////////////////////////////////////////// |
| 19535 | // // |
| 19536 | // recoverfacebyflips() Recover a face by flips. // |
| 19537 | // // |
| 19538 | // If 'searchsh' is not NULL, it is a subface to be recovered. It is only // |
| 19539 | // used for checking self-intersections. // |
| 19540 | // // |
| 19541 | /////////////////////////////////////////////////////////////////////////////// |
| 19542 | |
| 19543 | int tetgenmesh::recoverfacebyflips(point pa, point pb, point pc, |
| 19544 | face *searchsh, triface* searchtet) |
| 19545 | { |
| 19546 | triface spintet, flipedge; |
| 19547 | point pd, pe; |
| 19548 | enum interresult dir; |
| 19549 | flipconstraints fc; |
| 19550 | int types[2], poss[4], intflag; |
| 19551 | int success, success1; |
| 19552 | int t1ver; |
| 19553 | int i, j; |
| 19554 | |
| 19555 | |
| 19556 | fc.fac[0] = pa; |
| 19557 | fc.fac[1] = pb; |
| 19558 | fc.fac[2] = pc; |
| 19559 | fc.checkflipeligibility = 1; |
| 19560 | success = 0; |
| 19561 | |
| 19562 | for (i = 0; i < 3 && !success; i++) { |
| 19563 | while (1) { |
| 19564 | // Get a tet containing the edge [a,b]. |
| 19565 | point2tetorg(fc.fac[i], *searchtet); |
| 19566 | dir = finddirection(searchtet, fc.fac[(i+1)%3]); |
| 19567 | //assert(dir == ACROSSVERT); |
| 19568 | assert(dest(*searchtet) == fc.fac[(i+1)%3]); |
| 19569 | // Search the face [a,b,c] |
| 19570 | spintet = *searchtet; |
| 19571 | while (1) { |
| 19572 | if (apex(spintet) == fc.fac[(i+2)%3]) { |
| 19573 | // Found the face. |
| 19574 | *searchtet = spintet; |
| 19575 | // Return the face [a,b,c]. |
| 19576 | for (j = i; j > 0; j--) { |
| 19577 | eprevself(*searchtet); |
| 19578 | } |
| 19579 | success = 1; |
| 19580 | break; |
| 19581 | } |
| 19582 | fnextself(spintet); |
| 19583 | if (spintet.tet == searchtet->tet) break; |
| 19584 | } // while (1) |
| 19585 | if (success) break; |
| 19586 | // The face is missing. Try to recover it. |
| 19587 | success1 = 0; |
| 19588 | // Find a crossing edge of this face. |
| 19589 | spintet = *searchtet; |
| 19590 | while (1) { |
| 19591 | pd = apex(spintet); |
| 19592 | pe = oppo(spintet); |
| 19593 | if ((pd != dummypoint) && (pe != dummypoint)) { |
| 19594 | // Check if [d,e] intersects [a,b,c] |
| 19595 | intflag = tri_edge_test(pa, pb, pc, pd, pe, NULL, 1, types, poss); |
| 19596 | if (intflag > 0) { |
| 19597 | // By our assumptions, they can only intersect at a single point. |
| 19598 | if (intflag == 2) { |
| 19599 | // Check the intersection type. |
| 19600 | dir = (enum interresult) types[0]; |
| 19601 | if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
| 19602 | // Go to the edge [d,e]. |
| 19603 | edestoppo(spintet, flipedge); // [d,e,a,b] |
| 19604 | if (searchsh != NULL) { |
| 19605 | // Check if [e,d] is a segment. |
| 19606 | if (issubseg(flipedge)) { |
| 19607 | if (!b->quiet) { |
| 19608 | face checkseg; |
| 19609 | tsspivot1(flipedge, checkseg); |
| 19610 | printf("Found a segment and a subface intersect.\n" ); |
| 19611 | pd = farsorg(checkseg); |
| 19612 | pe = farsdest(checkseg); |
| 19613 | printf(" 1st: [%d, %d] %d.\n" , pointmark(pd), |
| 19614 | pointmark(pe), shellmark(checkseg)); |
| 19615 | printf(" 2nd: [%d,%d,%d] %d\n" , pointmark(pa), |
| 19616 | pointmark(pb), pointmark(pc), shellmark(*searchsh)); |
| 19617 | } |
| 19618 | terminatetetgen(this, 3); |
| 19619 | } |
| 19620 | } |
| 19621 | // Try to flip the edge [d,e]. |
| 19622 | success1 = (removeedgebyflips(&flipedge, &fc) == 2); |
| 19623 | } else { |
| 19624 | if (dir == TOUCHFACE) { |
| 19625 | point touchpt, *parypt; |
| 19626 | if (poss[1] == 0) { |
| 19627 | touchpt = pd; // pd is a coplanar vertex. |
| 19628 | } else { |
| 19629 | touchpt = pe; // pe is a coplanar vertex. |
| 19630 | } |
| 19631 | if (pointtype(touchpt) == FREEVOLVERTEX) { |
| 19632 | // A volume Steiner point was added in this subface. |
| 19633 | // Split this subface by this point. |
| 19634 | face checksh, *parysh; |
| 19635 | int siloc = (int) ONFACE; |
| 19636 | int sbowat = 0; // Only split this subface. |
| 19637 | setpointtype(touchpt, FREEFACETVERTEX); |
| 19638 | sinsertvertex(touchpt, searchsh, NULL, siloc, sbowat, 0); |
| 19639 | st_volref_count--; |
| 19640 | st_facref_count++; |
| 19641 | // Queue this vertex for removal. |
| 19642 | subvertstack->newindex((void **) &parypt); |
| 19643 | *parypt = touchpt; |
| 19644 | // Queue new subfaces for recovery. |
| 19645 | // Put all new subfaces into stack for recovery. |
| 19646 | for (i = 0; i < caveshbdlist->objects; i++) { |
| 19647 | // Get an old subface at edge [a, b]. |
| 19648 | parysh = (face *) fastlookup(caveshbdlist, i); |
| 19649 | spivot(*parysh, checksh); // The new subface [a, b, p]. |
| 19650 | // Do not recover a deleted new face (degenerated). |
| 19651 | if (checksh.sh[3] != NULL) { |
| 19652 | subfacstack->newindex((void **) &parysh); |
| 19653 | *parysh = checksh; |
| 19654 | } |
| 19655 | } |
| 19656 | // Delete the old subfaces in sC(p). |
| 19657 | assert(caveshlist->objects == 1); |
| 19658 | for (i = 0; i < caveshlist->objects; i++) { |
| 19659 | parysh = (face *) fastlookup(caveshlist, i); |
| 19660 | shellfacedealloc(subfaces, parysh->sh); |
| 19661 | } |
| 19662 | // Clear working lists. |
| 19663 | caveshlist->restart(); |
| 19664 | caveshbdlist->restart(); |
| 19665 | cavesegshlist->restart(); |
| 19666 | // We can return this function. |
| 19667 | searchsh->sh = NULL; // It has been split. |
| 19668 | success1 = 0; |
| 19669 | success = 1; |
| 19670 | } else { |
| 19671 | // It should be a PLC problem. |
| 19672 | if (pointtype(touchpt) == FREESEGVERTEX) { |
| 19673 | // A segment and a subface intersect. |
| 19674 | } else if (pointtype(touchpt) == FREEFACETVERTEX) { |
| 19675 | // Two facets self-intersect. |
| 19676 | } |
| 19677 | terminatetetgen(this, 3); |
| 19678 | } |
| 19679 | } else { |
| 19680 | assert(0); // Unknown cases. Debug. |
| 19681 | } |
| 19682 | } |
| 19683 | break; |
| 19684 | } else { // intflag == 4. Coplanar case. |
| 19685 | // This may be an input PLC error. |
| 19686 | assert(0); |
| 19687 | } |
| 19688 | } // if (intflag > 0) |
| 19689 | } |
| 19690 | fnextself(spintet); |
| 19691 | assert(spintet.tet != searchtet->tet); |
| 19692 | } // while (1) |
| 19693 | if (!success1) break; |
| 19694 | } // while (1) |
| 19695 | } // i |
| 19696 | |
| 19697 | return success; |
| 19698 | } |
| 19699 | |
| 19700 | /////////////////////////////////////////////////////////////////////////////// |
| 19701 | // // |
| 19702 | // recoversubfaces() Recover all subfaces. // |
| 19703 | // // |
| 19704 | /////////////////////////////////////////////////////////////////////////////// |
| 19705 | |
| 19706 | int tetgenmesh::recoversubfaces(arraypool *misshlist, int steinerflag) |
| 19707 | { |
| 19708 | triface searchtet, neightet, spintet; |
| 19709 | face searchsh, neighsh, neineish, *parysh; |
| 19710 | face bdsegs[3]; |
| 19711 | point startpt, endpt, apexpt, *parypt; |
| 19712 | point steinerpt; |
| 19713 | enum interresult dir; |
| 19714 | insertvertexflags ivf; |
| 19715 | int success; |
| 19716 | int t1ver; |
| 19717 | int i, j; |
| 19718 | |
| 19719 | if (b->verbose > 1) { |
| 19720 | printf(" Recover subfaces [%s level = %2d] #: %ld.\n" , |
| 19721 | (b->fliplinklevel > 0) ? "fixed" : "auto" , |
| 19722 | (b->fliplinklevel > 0) ? b->fliplinklevel : autofliplinklevel, |
| 19723 | subfacstack->objects); |
| 19724 | } |
| 19725 | |
| 19726 | // Loop until 'subfacstack' is empty. |
| 19727 | while (subfacstack->objects > 0l) { |
| 19728 | |
| 19729 | subfacstack->objects--; |
| 19730 | parysh = (face *) fastlookup(subfacstack, subfacstack->objects); |
| 19731 | searchsh = *parysh; |
| 19732 | |
| 19733 | if (searchsh.sh[3] == NULL) continue; // Skip a dead subface. |
| 19734 | |
| 19735 | stpivot(searchsh, neightet); |
| 19736 | if (neightet.tet != NULL) continue; // Skip a recovered subface. |
| 19737 | |
| 19738 | |
| 19739 | if (b->verbose > 2) { |
| 19740 | printf(" Recover subface (%d, %d, %d).\n" ,pointmark(sorg(searchsh)), |
| 19741 | pointmark(sdest(searchsh)), pointmark(sapex(searchsh))); |
| 19742 | } |
| 19743 | |
| 19744 | // The three edges of the face need to be existed first. |
| 19745 | for (i = 0; i < 3; i++) { |
| 19746 | sspivot(searchsh, bdsegs[i]); |
| 19747 | if (bdsegs[i].sh != NULL) { |
| 19748 | // The segment must exist. |
| 19749 | sstpivot1(bdsegs[i], searchtet); |
| 19750 | if (searchtet.tet == NULL) { |
| 19751 | assert(0); |
| 19752 | } |
| 19753 | } else { |
| 19754 | // This edge is not a segment (due to a Steiner point). |
| 19755 | // Check whether it exists or not. |
| 19756 | success = 0; |
| 19757 | startpt = sorg(searchsh); |
| 19758 | endpt = sdest(searchsh); |
| 19759 | point2tetorg(startpt, searchtet); |
| 19760 | dir = finddirection(&searchtet, endpt); |
| 19761 | if (dir == ACROSSVERT) { |
| 19762 | if (dest(searchtet) == endpt) { |
| 19763 | success = 1; |
| 19764 | } else { |
| 19765 | //assert(0); // A PLC problem. |
| 19766 | terminatetetgen(this, 3); |
| 19767 | } |
| 19768 | } else { |
| 19769 | // The edge is missing. Try to recover it. |
| 19770 | if (recoveredgebyflips(startpt, endpt, &searchtet, 0)) { |
| 19771 | success = 1; |
| 19772 | } else { |
| 19773 | if (recoveredgebyflips(endpt, startpt, &searchtet, 0)) { |
| 19774 | success = 1; |
| 19775 | } |
| 19776 | } |
| 19777 | } |
| 19778 | if (success) { |
| 19779 | // Insert a temporary segment to protect this edge. |
| 19780 | makeshellface(subsegs, &(bdsegs[i])); |
| 19781 | setshvertices(bdsegs[i], startpt, endpt, NULL); |
| 19782 | smarktest2(bdsegs[i]); // It's a temporary segment. |
| 19783 | // Insert this segment into surface mesh. |
| 19784 | ssbond(searchsh, bdsegs[i]); |
| 19785 | spivot(searchsh, neighsh); |
| 19786 | if (neighsh.sh != NULL) { |
| 19787 | ssbond(neighsh, bdsegs[i]); |
| 19788 | } |
| 19789 | // Insert this segment into tetrahedralization. |
| 19790 | sstbond1(bdsegs[i], searchtet); |
| 19791 | // Bond the segment to all tets containing it. |
| 19792 | spintet = searchtet; |
| 19793 | do { |
| 19794 | tssbond1(spintet, bdsegs[i]); |
| 19795 | fnextself(spintet); |
| 19796 | } while (spintet.tet != searchtet.tet); |
| 19797 | } else { |
| 19798 | // An edge of this subface is missing. Can't recover this subface. |
| 19799 | // Delete any temporary segment that has been created. |
| 19800 | for (j = (i - 1); j >= 0; j--) { |
| 19801 | if (smarktest2ed(bdsegs[j])) { |
| 19802 | spivot(bdsegs[j], neineish); |
| 19803 | assert(neineish.sh != NULL); |
| 19804 | //if (neineish.sh != NULL) { |
| 19805 | ssdissolve(neineish); |
| 19806 | spivot(neineish, neighsh); |
| 19807 | if (neighsh.sh != NULL) { |
| 19808 | ssdissolve(neighsh); |
| 19809 | // There should be only two subfaces at this segment. |
| 19810 | spivotself(neighsh); // SELF_CHECK |
| 19811 | assert(neighsh.sh == neineish.sh); |
| 19812 | } |
| 19813 | //} |
| 19814 | sstpivot1(bdsegs[j], searchtet); |
| 19815 | assert(searchtet.tet != NULL); |
| 19816 | //if (searchtet.tet != NULL) { |
| 19817 | spintet = searchtet; |
| 19818 | while (1) { |
| 19819 | tssdissolve1(spintet); |
| 19820 | fnextself(spintet); |
| 19821 | if (spintet.tet == searchtet.tet) break; |
| 19822 | } |
| 19823 | //} |
| 19824 | shellfacedealloc(subsegs, bdsegs[j].sh); |
| 19825 | } |
| 19826 | } // j |
| 19827 | if (steinerflag) { |
| 19828 | // Add a Steiner point at the midpoint of this edge. |
| 19829 | if (b->verbose > 2) { |
| 19830 | printf(" Add a Steiner point in subedge (%d, %d).\n" , |
| 19831 | pointmark(startpt), pointmark(endpt)); |
| 19832 | } |
| 19833 | makepoint(&steinerpt, FREEFACETVERTEX); |
| 19834 | for (j = 0; j < 3; j++) { |
| 19835 | steinerpt[j] = 0.5 * (startpt[j] + endpt[j]); |
| 19836 | } |
| 19837 | |
| 19838 | point2tetorg(startpt, searchtet); // Start from 'searchtet'. |
| 19839 | ivf.iloc = (int) OUTSIDE; // Need point location. |
| 19840 | ivf.bowywat = 1; |
| 19841 | ivf.lawson = 0; |
| 19842 | ivf.rejflag = 0; |
| 19843 | ivf.chkencflag = 0; |
| 19844 | ivf.sloc = (int) ONEDGE; |
| 19845 | ivf.sbowywat = 1; // Allow flips in facet. |
| 19846 | ivf.splitbdflag = 0; |
| 19847 | ivf.validflag = 1; |
| 19848 | ivf.respectbdflag = 1; |
| 19849 | ivf.assignmeshsize = b->metric; |
| 19850 | if (!insertpoint(steinerpt, &searchtet, &searchsh, NULL, &ivf)) { |
| 19851 | assert(0); |
| 19852 | } |
| 19853 | // Save this Steiner point (for removal). |
| 19854 | // Re-use the array 'subvertstack'. |
| 19855 | subvertstack->newindex((void **) &parypt); |
| 19856 | *parypt = steinerpt; |
| 19857 | |
| 19858 | st_facref_count++; |
| 19859 | if (steinerleft > 0) steinerleft--; |
| 19860 | } // if (steinerflag) |
| 19861 | break; |
| 19862 | } |
| 19863 | } |
| 19864 | senextself(searchsh); |
| 19865 | } // i |
| 19866 | |
| 19867 | if (i == 3) { |
| 19868 | // Recover the subface. |
| 19869 | startpt = sorg(searchsh); |
| 19870 | endpt = sdest(searchsh); |
| 19871 | apexpt = sapex(searchsh); |
| 19872 | |
| 19873 | success = recoverfacebyflips(startpt,endpt,apexpt,&searchsh,&searchtet); |
| 19874 | |
| 19875 | // Delete any temporary segment that has been created. |
| 19876 | for (j = 0; j < 3; j++) { |
| 19877 | if (smarktest2ed(bdsegs[j])) { |
| 19878 | spivot(bdsegs[j], neineish); |
| 19879 | assert(neineish.sh != NULL); |
| 19880 | //if (neineish.sh != NULL) { |
| 19881 | ssdissolve(neineish); |
| 19882 | spivot(neineish, neighsh); |
| 19883 | if (neighsh.sh != NULL) { |
| 19884 | ssdissolve(neighsh); |
| 19885 | // There should be only two subfaces at this segment. |
| 19886 | spivotself(neighsh); // SELF_CHECK |
| 19887 | assert(neighsh.sh == neineish.sh); |
| 19888 | } |
| 19889 | //} |
| 19890 | sstpivot1(bdsegs[j], neightet); |
| 19891 | assert(neightet.tet != NULL); |
| 19892 | //if (neightet.tet != NULL) { |
| 19893 | spintet = neightet; |
| 19894 | while (1) { |
| 19895 | tssdissolve1(spintet); |
| 19896 | fnextself(spintet); |
| 19897 | if (spintet.tet == neightet.tet) break; |
| 19898 | } |
| 19899 | //} |
| 19900 | shellfacedealloc(subsegs, bdsegs[j].sh); |
| 19901 | } |
| 19902 | } // j |
| 19903 | |
| 19904 | if (success) { |
| 19905 | if (searchsh.sh != NULL) { |
| 19906 | // Face is recovered. Insert it. |
| 19907 | tsbond(searchtet, searchsh); |
| 19908 | fsymself(searchtet); |
| 19909 | sesymself(searchsh); |
| 19910 | tsbond(searchtet, searchsh); |
| 19911 | } |
| 19912 | } else { |
| 19913 | if (steinerflag) { |
| 19914 | // Add a Steiner point at the barycenter of this subface. |
| 19915 | if (b->verbose > 2) { |
| 19916 | printf(" Add a Steiner point in subface (%d, %d, %d).\n" , |
| 19917 | pointmark(startpt), pointmark(endpt), pointmark(apexpt)); |
| 19918 | } |
| 19919 | makepoint(&steinerpt, FREEFACETVERTEX); |
| 19920 | for (j = 0; j < 3; j++) { |
| 19921 | steinerpt[j] = (startpt[j] + endpt[j] + apexpt[j]) / 3.0; |
| 19922 | } |
| 19923 | |
| 19924 | point2tetorg(startpt, searchtet); // Start from 'searchtet'. |
| 19925 | ivf.iloc = (int) OUTSIDE; // Need point location. |
| 19926 | ivf.bowywat = 1; |
| 19927 | ivf.lawson = 0; |
| 19928 | ivf.rejflag = 0; |
| 19929 | ivf.chkencflag = 0; |
| 19930 | ivf.sloc = (int) ONFACE; |
| 19931 | ivf.sbowywat = 1; // Allow flips in facet. |
| 19932 | ivf.splitbdflag = 0; |
| 19933 | ivf.validflag = 1; |
| 19934 | ivf.respectbdflag = 1; |
| 19935 | ivf.assignmeshsize = b->metric; |
| 19936 | if (!insertpoint(steinerpt, &searchtet, &searchsh, NULL, &ivf)) { |
| 19937 | assert(0); |
| 19938 | } |
| 19939 | // Save this Steiner point (for removal). |
| 19940 | // Re-use the array 'subvertstack'. |
| 19941 | subvertstack->newindex((void **) &parypt); |
| 19942 | *parypt = steinerpt; |
| 19943 | |
| 19944 | st_facref_count++; |
| 19945 | if (steinerleft > 0) steinerleft--; |
| 19946 | } // if (steinerflag) |
| 19947 | } |
| 19948 | } else { |
| 19949 | success = 0; |
| 19950 | } |
| 19951 | |
| 19952 | if (!success) { |
| 19953 | if (misshlist != NULL) { |
| 19954 | // Save this subface. |
| 19955 | misshlist->newindex((void **) &parysh); |
| 19956 | *parysh = searchsh; |
| 19957 | } |
| 19958 | } |
| 19959 | |
| 19960 | } // while (subfacstack->objects > 0l) |
| 19961 | |
| 19962 | return 0; |
| 19963 | } |
| 19964 | |
| 19965 | /////////////////////////////////////////////////////////////////////////////// |
| 19966 | // // |
| 19967 | // getvertexstar() Return the star of a vertex. // |
| 19968 | // // |
| 19969 | // If the flag 'fullstar' is set, return the complete star of this vertex. // |
| 19970 | // Otherwise, only a part of the star which is bounded by facets is returned.// |
| 19971 | // // |
| 19972 | // 'tetlist' returns the list of tets in the star of the vertex 'searchpt'. // |
| 19973 | // Every tet in 'tetlist' is at the face opposing to 'searchpt'. // |
| 19974 | // // |
| 19975 | // 'vertlist' returns the list of vertices in the star (exclude 'searchpt'). // |
| 19976 | // // |
| 19977 | // 'shlist' returns the list of subfaces in the star. Each subface must face // |
| 19978 | // to the interior of this star. // |
| 19979 | // // |
| 19980 | /////////////////////////////////////////////////////////////////////////////// |
| 19981 | |
| 19982 | int tetgenmesh::getvertexstar(int fullstar, point searchpt, arraypool* tetlist, |
| 19983 | arraypool* vertlist, arraypool* shlist) |
| 19984 | { |
| 19985 | triface searchtet, neightet, *parytet; |
| 19986 | face checksh, *parysh; |
| 19987 | point pt, *parypt; |
| 19988 | int collectflag; |
| 19989 | int t1ver; |
| 19990 | int i, j; |
| 19991 | |
| 19992 | point2tetorg(searchpt, searchtet); |
| 19993 | |
| 19994 | // Go to the opposite face (the link face) of the vertex. |
| 19995 | enextesymself(searchtet); |
| 19996 | //assert(oppo(searchtet) == searchpt); |
| 19997 | infect(searchtet); // Collect this tet (link face). |
| 19998 | tetlist->newindex((void **) &parytet); |
| 19999 | *parytet = searchtet; |
| 20000 | if (vertlist != NULL) { |
| 20001 | // Collect three (link) vertices. |
| 20002 | j = (searchtet.ver & 3); // The current vertex index. |
| 20003 | for (i = 1; i < 4; i++) { |
| 20004 | pt = (point) searchtet.tet[4 + ((j + i) % 4)]; |
| 20005 | pinfect(pt); |
| 20006 | vertlist->newindex((void **) &parypt); |
| 20007 | *parypt = pt; |
| 20008 | } |
| 20009 | } |
| 20010 | |
| 20011 | collectflag = 1; |
| 20012 | esym(searchtet, neightet); |
| 20013 | if (issubface(neightet)) { |
| 20014 | if (shlist != NULL) { |
| 20015 | tspivot(neightet, checksh); |
| 20016 | if (!sinfected(checksh)) { |
| 20017 | // Collect this subface (link edge). |
| 20018 | sinfected(checksh); |
| 20019 | shlist->newindex((void **) &parysh); |
| 20020 | *parysh = checksh; |
| 20021 | } |
| 20022 | } |
| 20023 | if (!fullstar) { |
| 20024 | collectflag = 0; |
| 20025 | } |
| 20026 | } |
| 20027 | if (collectflag) { |
| 20028 | fsymself(neightet); // Goto the adj tet of this face. |
| 20029 | esymself(neightet); // Goto the oppo face of this vertex. |
| 20030 | // assert(oppo(neightet) == searchpt); |
| 20031 | infect(neightet); // Collect this tet (link face). |
| 20032 | tetlist->newindex((void **) &parytet); |
| 20033 | *parytet = neightet; |
| 20034 | if (vertlist != NULL) { |
| 20035 | // Collect its apex. |
| 20036 | pt = apex(neightet); |
| 20037 | pinfect(pt); |
| 20038 | vertlist->newindex((void **) &parypt); |
| 20039 | *parypt = pt; |
| 20040 | } |
| 20041 | } // if (collectflag) |
| 20042 | |
| 20043 | // Continue to collect all tets in the star. |
| 20044 | for (i = 0; i < tetlist->objects; i++) { |
| 20045 | searchtet = * (triface *) fastlookup(tetlist, i); |
| 20046 | // Note that 'searchtet' is a face opposite to 'searchpt', and the neighbor |
| 20047 | // tet at the current edge is already collected. |
| 20048 | // Check the neighbors at the other two edges of this face. |
| 20049 | for (j = 0; j < 2; j++) { |
| 20050 | collectflag = 1; |
| 20051 | enextself(searchtet); |
| 20052 | esym(searchtet, neightet); |
| 20053 | if (issubface(neightet)) { |
| 20054 | if (shlist != NULL) { |
| 20055 | tspivot(neightet, checksh); |
| 20056 | if (!sinfected(checksh)) { |
| 20057 | // Collect this subface (link edge). |
| 20058 | sinfected(checksh); |
| 20059 | shlist->newindex((void **) &parysh); |
| 20060 | *parysh = checksh; |
| 20061 | } |
| 20062 | } |
| 20063 | if (!fullstar) { |
| 20064 | collectflag = 0; |
| 20065 | } |
| 20066 | } |
| 20067 | if (collectflag) { |
| 20068 | fsymself(neightet); |
| 20069 | if (!infected(neightet)) { |
| 20070 | esymself(neightet); // Go to the face opposite to 'searchpt'. |
| 20071 | infect(neightet); |
| 20072 | tetlist->newindex((void **) &parytet); |
| 20073 | *parytet = neightet; |
| 20074 | if (vertlist != NULL) { |
| 20075 | // Check if a vertex is collected. |
| 20076 | pt = apex(neightet); |
| 20077 | if (!pinfected(pt)) { |
| 20078 | pinfect(pt); |
| 20079 | vertlist->newindex((void **) &parypt); |
| 20080 | *parypt = pt; |
| 20081 | } |
| 20082 | } |
| 20083 | } // if (!infected(neightet)) |
| 20084 | } // if (collectflag) |
| 20085 | } // j |
| 20086 | } // i |
| 20087 | |
| 20088 | |
| 20089 | // Uninfect the list of tets and vertices. |
| 20090 | for (i = 0; i < tetlist->objects; i++) { |
| 20091 | parytet = (triface *) fastlookup(tetlist, i); |
| 20092 | uninfect(*parytet); |
| 20093 | } |
| 20094 | |
| 20095 | if (vertlist != NULL) { |
| 20096 | for (i = 0; i < vertlist->objects; i++) { |
| 20097 | parypt = (point *) fastlookup(vertlist, i); |
| 20098 | puninfect(*parypt); |
| 20099 | } |
| 20100 | } |
| 20101 | |
| 20102 | if (shlist != NULL) { |
| 20103 | for (i = 0; i < shlist->objects; i++) { |
| 20104 | parysh = (face *) fastlookup(shlist, i); |
| 20105 | suninfect(*parysh); |
| 20106 | } |
| 20107 | } |
| 20108 | |
| 20109 | return (int) tetlist->objects; |
| 20110 | } |
| 20111 | |
| 20112 | /////////////////////////////////////////////////////////////////////////////// |
| 20113 | // // |
| 20114 | // getedge() Get a tetrahedron having the two endpoints. // |
| 20115 | // // |
| 20116 | // The method here is to search the second vertex in the link faces of the // |
| 20117 | // first vertex. The global array 'cavetetlist' is re-used for searching. // |
| 20118 | // // |
| 20119 | // This function is used for the case when the mesh is non-convex. Otherwise,// |
| 20120 | // the function finddirection() should be faster than this. // |
| 20121 | // // |
| 20122 | /////////////////////////////////////////////////////////////////////////////// |
| 20123 | |
| 20124 | int tetgenmesh::getedge(point e1, point e2, triface *tedge) |
| 20125 | { |
| 20126 | triface searchtet, neightet, *parytet; |
| 20127 | point pt; |
| 20128 | int done; |
| 20129 | int i, j; |
| 20130 | |
| 20131 | if (b->verbose > 2) { |
| 20132 | printf(" Get edge from %d to %d.\n" , pointmark(e1), pointmark(e2)); |
| 20133 | } |
| 20134 | |
| 20135 | // Quickly check if 'tedge' is just this edge. |
| 20136 | if (!isdeadtet(*tedge)) { |
| 20137 | if (org(*tedge) == e1) { |
| 20138 | if (dest(*tedge) == e2) { |
| 20139 | return 1; |
| 20140 | } |
| 20141 | } else if (org(*tedge) == e2) { |
| 20142 | if (dest(*tedge) == e1) { |
| 20143 | esymself(*tedge); |
| 20144 | return 1; |
| 20145 | } |
| 20146 | } |
| 20147 | } |
| 20148 | |
| 20149 | // Search for the edge [e1, e2]. |
| 20150 | point2tetorg(e1, *tedge); |
| 20151 | finddirection(tedge, e2); |
| 20152 | if (dest(*tedge) == e2) { |
| 20153 | return 1; |
| 20154 | } else { |
| 20155 | // Search for the edge [e2, e1]. |
| 20156 | point2tetorg(e2, *tedge); |
| 20157 | finddirection(tedge, e1); |
| 20158 | if (dest(*tedge) == e1) { |
| 20159 | esymself(*tedge); |
| 20160 | return 1; |
| 20161 | } |
| 20162 | } |
| 20163 | |
| 20164 | |
| 20165 | // Go to the link face of e1. |
| 20166 | point2tetorg(e1, searchtet); |
| 20167 | enextesymself(searchtet); |
| 20168 | //assert(oppo(searchtet) == e1); |
| 20169 | |
| 20170 | assert(cavebdrylist->objects == 0l); // It will re-use this list. |
| 20171 | arraypool *tetlist = cavebdrylist; |
| 20172 | |
| 20173 | // Search e2. |
| 20174 | for (i = 0; i < 3; i++) { |
| 20175 | pt = apex(searchtet); |
| 20176 | if (pt == e2) { |
| 20177 | // Found. 'searchtet' is [#,#,e2,e1]. |
| 20178 | eorgoppo(searchtet, *tedge); // [e1,e2,#,#]. |
| 20179 | return 1; |
| 20180 | } |
| 20181 | enextself(searchtet); |
| 20182 | } |
| 20183 | |
| 20184 | // Get the adjacent link face at 'searchtet'. |
| 20185 | fnext(searchtet, neightet); |
| 20186 | esymself(neightet); |
| 20187 | // assert(oppo(neightet) == e1); |
| 20188 | pt = apex(neightet); |
| 20189 | if (pt == e2) { |
| 20190 | // Found. 'neightet' is [#,#,e2,e1]. |
| 20191 | eorgoppo(neightet, *tedge); // [e1,e2,#,#]. |
| 20192 | return 1; |
| 20193 | } |
| 20194 | |
| 20195 | // Continue searching in the link face of e1. |
| 20196 | infect(searchtet); |
| 20197 | tetlist->newindex((void **) &parytet); |
| 20198 | *parytet = searchtet; |
| 20199 | infect(neightet); |
| 20200 | tetlist->newindex((void **) &parytet); |
| 20201 | *parytet = neightet; |
| 20202 | |
| 20203 | done = 0; |
| 20204 | |
| 20205 | for (i = 0; (i < tetlist->objects) && !done; i++) { |
| 20206 | parytet = (triface *) fastlookup(tetlist, i); |
| 20207 | searchtet = *parytet; |
| 20208 | for (j = 0; (j < 2) && !done; j++) { |
| 20209 | enextself(searchtet); |
| 20210 | fnext(searchtet, neightet); |
| 20211 | if (!infected(neightet)) { |
| 20212 | esymself(neightet); |
| 20213 | pt = apex(neightet); |
| 20214 | if (pt == e2) { |
| 20215 | // Found. 'neightet' is [#,#,e2,e1]. |
| 20216 | eorgoppo(neightet, *tedge); |
| 20217 | done = 1; |
| 20218 | } else { |
| 20219 | infect(neightet); |
| 20220 | tetlist->newindex((void **) &parytet); |
| 20221 | *parytet = neightet; |
| 20222 | } |
| 20223 | } |
| 20224 | } // j |
| 20225 | } // i |
| 20226 | |
| 20227 | // Uninfect the list of visited tets. |
| 20228 | for (i = 0; i < tetlist->objects; i++) { |
| 20229 | parytet = (triface *) fastlookup(tetlist, i); |
| 20230 | uninfect(*parytet); |
| 20231 | } |
| 20232 | tetlist->restart(); |
| 20233 | |
| 20234 | return done; |
| 20235 | } |
| 20236 | |
| 20237 | /////////////////////////////////////////////////////////////////////////////// |
| 20238 | // // |
| 20239 | // reduceedgesatvertex() Reduce the number of edges at a given vertex. // |
| 20240 | // // |
| 20241 | // 'endptlist' contains the endpoints of edges connecting at the vertex. // |
| 20242 | // // |
| 20243 | /////////////////////////////////////////////////////////////////////////////// |
| 20244 | |
| 20245 | int tetgenmesh::reduceedgesatvertex(point startpt, arraypool* endptlist) |
| 20246 | { |
| 20247 | triface searchtet; |
| 20248 | point *pendpt, *parypt; |
| 20249 | enum interresult dir; |
| 20250 | flipconstraints fc; |
| 20251 | int reduceflag; |
| 20252 | int count; |
| 20253 | int n, i, j; |
| 20254 | |
| 20255 | |
| 20256 | fc.remvert = startpt; |
| 20257 | fc.checkflipeligibility = 1; |
| 20258 | |
| 20259 | while (1) { |
| 20260 | |
| 20261 | count = 0; |
| 20262 | |
| 20263 | for (i = 0; i < endptlist->objects; i++) { |
| 20264 | pendpt = (point *) fastlookup(endptlist, i); |
| 20265 | if (*pendpt == dummypoint) { |
| 20266 | continue; // Do not reduce a virtual edge. |
| 20267 | } |
| 20268 | reduceflag = 0; |
| 20269 | // Find the edge. |
| 20270 | if (nonconvex) { |
| 20271 | if (getedge(startpt, *pendpt, &searchtet)) { |
| 20272 | dir = ACROSSVERT; |
| 20273 | } else { |
| 20274 | // The edge does not exist (was flipped). |
| 20275 | dir = INTERSECT; |
| 20276 | } |
| 20277 | } else { |
| 20278 | point2tetorg(startpt, searchtet); |
| 20279 | dir = finddirection(&searchtet, *pendpt); |
| 20280 | } |
| 20281 | if (dir == ACROSSVERT) { |
| 20282 | if (dest(searchtet) == *pendpt) { |
| 20283 | // Do not flip a segment. |
| 20284 | if (!issubseg(searchtet)) { |
| 20285 | n = removeedgebyflips(&searchtet, &fc); |
| 20286 | if (n == 2) { |
| 20287 | reduceflag = 1; |
| 20288 | } |
| 20289 | } |
| 20290 | } else { |
| 20291 | assert(0); // A plc problem. |
| 20292 | } |
| 20293 | } else { |
| 20294 | // The edge has been flipped. |
| 20295 | reduceflag = 1; |
| 20296 | } |
| 20297 | if (reduceflag) { |
| 20298 | count++; |
| 20299 | // Move the last vertex into this slot. |
| 20300 | j = endptlist->objects - 1; |
| 20301 | parypt = (point *) fastlookup(endptlist, j); |
| 20302 | *pendpt = *parypt; |
| 20303 | endptlist->objects--; |
| 20304 | i--; |
| 20305 | } |
| 20306 | } // i |
| 20307 | |
| 20308 | if (count == 0) { |
| 20309 | // No edge is reduced. |
| 20310 | break; |
| 20311 | } |
| 20312 | |
| 20313 | } // while (1) |
| 20314 | |
| 20315 | return (int) endptlist->objects; |
| 20316 | } |
| 20317 | |
| 20318 | /////////////////////////////////////////////////////////////////////////////// |
| 20319 | // // |
| 20320 | // removevertexbyflips() Remove a vertex by flips. // |
| 20321 | // // |
| 20322 | // This routine attempts to remove the given vertex 'rempt' (p) from the // |
| 20323 | // tetrahedralization (T) by a sequence of flips. // |
| 20324 | // // |
| 20325 | // The algorithm used here is a simple edge reduce method. Suppose there are // |
| 20326 | // n edges connected at p. We try to reduce the number of edges by flipping // |
| 20327 | // any edge (not a segment) that is connecting at p. // |
| 20328 | // // |
| 20329 | // Unless T is a Delaunay tetrahedralization, there is no guarantee that 'p' // |
| 20330 | // can be successfully removed. // |
| 20331 | // // |
| 20332 | /////////////////////////////////////////////////////////////////////////////// |
| 20333 | |
| 20334 | int tetgenmesh::removevertexbyflips(point steinerpt) |
| 20335 | { |
| 20336 | triface *fliptets = NULL, wrktets[4]; |
| 20337 | triface searchtet, spintet, neightet; |
| 20338 | face parentsh, spinsh, checksh; |
| 20339 | face leftseg, rightseg, checkseg; |
| 20340 | point lpt = NULL, rpt = NULL, apexpt; //, *parypt; |
| 20341 | flipconstraints fc; |
| 20342 | enum verttype vt; |
| 20343 | enum locateresult loc; |
| 20344 | int valence, removeflag; |
| 20345 | int slawson; |
| 20346 | int t1ver; |
| 20347 | int n, i; |
| 20348 | |
| 20349 | vt = pointtype(steinerpt); |
| 20350 | |
| 20351 | if (vt == FREESEGVERTEX) { |
| 20352 | sdecode(point2sh(steinerpt), leftseg); |
| 20353 | assert(leftseg.sh != NULL); |
| 20354 | leftseg.shver = 0; |
| 20355 | if (sdest(leftseg) == steinerpt) { |
| 20356 | senext(leftseg, rightseg); |
| 20357 | spivotself(rightseg); |
| 20358 | assert(rightseg.sh != NULL); |
| 20359 | rightseg.shver = 0; |
| 20360 | assert(sorg(rightseg) == steinerpt); |
| 20361 | } else { |
| 20362 | assert(sorg(leftseg) == steinerpt); |
| 20363 | rightseg = leftseg; |
| 20364 | senext2(rightseg, leftseg); |
| 20365 | spivotself(leftseg); |
| 20366 | assert(leftseg.sh != NULL); |
| 20367 | leftseg.shver = 0; |
| 20368 | assert(sdest(leftseg) == steinerpt); |
| 20369 | } |
| 20370 | lpt = sorg(leftseg); |
| 20371 | rpt = sdest(rightseg); |
| 20372 | if (b->verbose > 2) { |
| 20373 | printf(" Removing Steiner point %d in segment (%d, %d).\n" , |
| 20374 | pointmark(steinerpt), pointmark(lpt), pointmark(rpt)); |
| 20375 | |
| 20376 | } |
| 20377 | } else if (vt == FREEFACETVERTEX) { |
| 20378 | if (b->verbose > 2) { |
| 20379 | printf(" Removing Steiner point %d in facet.\n" , |
| 20380 | pointmark(steinerpt)); |
| 20381 | } |
| 20382 | } else if (vt == FREEVOLVERTEX) { |
| 20383 | if (b->verbose > 2) { |
| 20384 | printf(" Removing Steiner point %d in volume.\n" , |
| 20385 | pointmark(steinerpt)); |
| 20386 | } |
| 20387 | } else if (vt == VOLVERTEX) { |
| 20388 | if (b->verbose > 2) { |
| 20389 | printf(" Removing a point %d in volume.\n" , |
| 20390 | pointmark(steinerpt)); |
| 20391 | } |
| 20392 | } else { |
| 20393 | // It is not a Steiner point. |
| 20394 | return 0; |
| 20395 | } |
| 20396 | |
| 20397 | // Try to reduce the number of edges at 'p' by flips. |
| 20398 | getvertexstar(1, steinerpt, cavetetlist, cavetetvertlist, NULL); |
| 20399 | cavetetlist->restart(); // This list may be re-used. |
| 20400 | if (cavetetvertlist->objects > 3l) { |
| 20401 | valence = reduceedgesatvertex(steinerpt, cavetetvertlist); |
| 20402 | } else { |
| 20403 | valence = cavetetvertlist->objects; |
| 20404 | } |
| 20405 | assert(cavetetlist->objects == 0l); |
| 20406 | cavetetvertlist->restart(); |
| 20407 | |
| 20408 | removeflag = 0; |
| 20409 | |
| 20410 | if (valence == 4) { |
| 20411 | // Only 4 vertices (4 tets) left! 'p' is inside the convex hull of the 4 |
| 20412 | // vertices. This case is due to that 'p' is not exactly on the segment. |
| 20413 | point2tetorg(steinerpt, searchtet); |
| 20414 | loc = INTETRAHEDRON; |
| 20415 | removeflag = 1; |
| 20416 | } else if (valence == 5) { |
| 20417 | // There are 5 edges. |
| 20418 | if (vt == FREESEGVERTEX) { |
| 20419 | sstpivot1(leftseg, searchtet); |
| 20420 | if (org(searchtet) != steinerpt) { |
| 20421 | esymself(searchtet); |
| 20422 | } |
| 20423 | assert(org(searchtet) == steinerpt); |
| 20424 | assert(dest(searchtet) == lpt); |
| 20425 | i = 0; // Count the numbe of tet at the edge [p,lpt]. |
| 20426 | neightet.tet = NULL; // Init the face. |
| 20427 | spintet = searchtet; |
| 20428 | while (1) { |
| 20429 | i++; |
| 20430 | if (apex(spintet) == rpt) { |
| 20431 | // Remember the face containing the edge [lpt, rpt]. |
| 20432 | neightet = spintet; |
| 20433 | } |
| 20434 | fnextself(spintet); |
| 20435 | if (spintet.tet == searchtet.tet) break; |
| 20436 | } |
| 20437 | if (i == 3) { |
| 20438 | // This case has been checked below. |
| 20439 | } else if (i == 4) { |
| 20440 | // There are 4 tets sharing at [p,lpt]. There must be 4 tets sharing |
| 20441 | // at [p,rpt]. There must be a face [p, lpt, rpt]. |
| 20442 | if (apex(neightet) == rpt) { |
| 20443 | // The edge (segment) has been already recovered! |
| 20444 | // Check if a 6-to-2 flip is possible (to remove 'p'). |
| 20445 | // Let 'searchtet' be [p,d,a,b] |
| 20446 | esym(neightet, searchtet); |
| 20447 | enextself(searchtet); |
| 20448 | // Check if there are exactly three tets at edge [p,d]. |
| 20449 | wrktets[0] = searchtet; // [p,d,a,b] |
| 20450 | for (i = 0; i < 2; i++) { |
| 20451 | fnext(wrktets[i], wrktets[i+1]); // [p,d,b,c], [p,d,c,a] |
| 20452 | } |
| 20453 | if (apex(wrktets[0]) == oppo(wrktets[2])) { |
| 20454 | loc = ONFACE; |
| 20455 | removeflag = 1; |
| 20456 | } |
| 20457 | } |
| 20458 | } |
| 20459 | } else if (vt == FREEFACETVERTEX) { |
| 20460 | // It is possible to do a 6-to-2 flip to remove the vertex. |
| 20461 | point2tetorg(steinerpt, searchtet); |
| 20462 | // Get the three faces of 'searchtet' which share at p. |
| 20463 | // All faces has p as origin. |
| 20464 | wrktets[0] = searchtet; |
| 20465 | wrktets[1] = searchtet; |
| 20466 | esymself(wrktets[1]); |
| 20467 | enextself(wrktets[1]); |
| 20468 | wrktets[2] = searchtet; |
| 20469 | eprevself(wrktets[2]); |
| 20470 | esymself(wrktets[2]); |
| 20471 | // All internal edges of the six tets have valance either 3 or 4. |
| 20472 | // Get one edge which has valance 3. |
| 20473 | searchtet.tet = NULL; |
| 20474 | for (i = 0; i < 3; i++) { |
| 20475 | spintet = wrktets[i]; |
| 20476 | valence = 0; |
| 20477 | while (1) { |
| 20478 | valence++; |
| 20479 | fnextself(spintet); |
| 20480 | if (spintet.tet == wrktets[i].tet) break; |
| 20481 | } |
| 20482 | if (valence == 3) { |
| 20483 | // Found the edge. |
| 20484 | searchtet = wrktets[i]; |
| 20485 | break; |
| 20486 | } else { |
| 20487 | assert(valence == 4); |
| 20488 | } |
| 20489 | } |
| 20490 | assert(searchtet.tet != NULL); |
| 20491 | // Note, we do not detach the three subfaces at p. |
| 20492 | // They will be removed within a 4-to-1 flip. |
| 20493 | loc = ONFACE; |
| 20494 | removeflag = 1; |
| 20495 | } else { |
| 20496 | // assert(0); DEBUG IT |
| 20497 | } |
| 20498 | //removeflag = 1; |
| 20499 | } |
| 20500 | |
| 20501 | if (!removeflag) { |
| 20502 | if (vt == FREESEGVERTEX) { |
| 20503 | // Check is it possible to recover the edge [lpt,rpt]. |
| 20504 | // The condition to check is: Whether each tet containing 'leftseg' is |
| 20505 | // adjacent to a tet containing 'rightseg'. |
| 20506 | sstpivot1(leftseg, searchtet); |
| 20507 | if (org(searchtet) != steinerpt) { |
| 20508 | esymself(searchtet); |
| 20509 | } |
| 20510 | assert(org(searchtet) == steinerpt); |
| 20511 | assert(dest(searchtet) == lpt); |
| 20512 | spintet = searchtet; |
| 20513 | while (1) { |
| 20514 | // Go to the bottom face of this tet. |
| 20515 | eprev(spintet, neightet); |
| 20516 | esymself(neightet); // [steinerpt, p1, p2, lpt] |
| 20517 | // Get the adjacent tet. |
| 20518 | fsymself(neightet); // [p1, steinerpt, p2, rpt] |
| 20519 | if (oppo(neightet) != rpt) { |
| 20520 | // Found a non-matching adjacent tet. |
| 20521 | break; |
| 20522 | } |
| 20523 | fnextself(spintet); |
| 20524 | if (spintet.tet == searchtet.tet) { |
| 20525 | // 'searchtet' is [p,d,p1,p2]. |
| 20526 | loc = ONEDGE; |
| 20527 | removeflag = 1; |
| 20528 | break; |
| 20529 | } |
| 20530 | } |
| 20531 | } // if (vt == FREESEGVERTEX) |
| 20532 | } |
| 20533 | |
| 20534 | if (!removeflag) { |
| 20535 | if (vt == FREESEGVERTEX) { |
| 20536 | // Check if the edge [lpt, rpt] exists. |
| 20537 | if (getedge(lpt, rpt, &searchtet)) { |
| 20538 | // We have recovered this edge. Shift the vertex into the volume. |
| 20539 | // We can recover this edge if the subfaces are not recovered yet. |
| 20540 | if (!checksubfaceflag) { |
| 20541 | // Remove the vertex from the surface mesh. |
| 20542 | // This will re-create the segment [lpt, rpt] and re-triangulate |
| 20543 | // all the facets at the segment. |
| 20544 | // Detach the subsegments from their surrounding tets. |
| 20545 | for (i = 0; i < 2; i++) { |
| 20546 | checkseg = (i == 0) ? leftseg : rightseg; |
| 20547 | sstpivot1(checkseg, neightet); |
| 20548 | spintet = neightet; |
| 20549 | while (1) { |
| 20550 | tssdissolve1(spintet); |
| 20551 | fnextself(spintet); |
| 20552 | if (spintet.tet == neightet.tet) break; |
| 20553 | } |
| 20554 | sstdissolve1(checkseg); |
| 20555 | } // i |
| 20556 | slawson = 1; // Do lawson flip after removal. |
| 20557 | spivot(rightseg, parentsh); // 'rightseg' has p as its origin. |
| 20558 | sremovevertex(steinerpt, &parentsh, &rightseg, slawson); |
| 20559 | // Clear the list for new subfaces. |
| 20560 | caveshbdlist->restart(); |
| 20561 | // Insert the new segment. |
| 20562 | assert(org(searchtet) == lpt); |
| 20563 | assert(dest(searchtet) == rpt); |
| 20564 | sstbond1(rightseg, searchtet); |
| 20565 | spintet = searchtet; |
| 20566 | while (1) { |
| 20567 | tsspivot1(spintet, checkseg); // FOR DEBUG ONLY |
| 20568 | assert(checkseg.sh == NULL); // FOR DEBUG ONLY |
| 20569 | tssbond1(spintet, rightseg); |
| 20570 | fnextself(spintet); |
| 20571 | if (spintet.tet == searchtet.tet) break; |
| 20572 | } |
| 20573 | // The Steiner point has been shifted into the volume. |
| 20574 | setpointtype(steinerpt, FREEVOLVERTEX); |
| 20575 | st_segref_count--; |
| 20576 | st_volref_count++; |
| 20577 | return 1; |
| 20578 | } // if (!checksubfaceflag) |
| 20579 | } // if (getedge(...)) |
| 20580 | } // if (vt == FREESEGVERTEX) |
| 20581 | } // if (!removeflag) |
| 20582 | |
| 20583 | if (!removeflag) { |
| 20584 | return 0; |
| 20585 | } |
| 20586 | |
| 20587 | assert(org(searchtet) == steinerpt); |
| 20588 | |
| 20589 | if (vt == FREESEGVERTEX) { |
| 20590 | // Detach the subsegments from their surronding tets. |
| 20591 | for (i = 0; i < 2; i++) { |
| 20592 | checkseg = (i == 0) ? leftseg : rightseg; |
| 20593 | sstpivot1(checkseg, neightet); |
| 20594 | spintet = neightet; |
| 20595 | while (1) { |
| 20596 | tssdissolve1(spintet); |
| 20597 | fnextself(spintet); |
| 20598 | if (spintet.tet == neightet.tet) break; |
| 20599 | } |
| 20600 | sstdissolve1(checkseg); |
| 20601 | } // i |
| 20602 | if (checksubfaceflag) { |
| 20603 | // Detach the subfaces at the subsegments from their attached tets. |
| 20604 | for (i = 0; i < 2; i++) { |
| 20605 | checkseg = (i == 0) ? leftseg : rightseg; |
| 20606 | spivot(checkseg, parentsh); |
| 20607 | if (parentsh.sh != NULL) { |
| 20608 | spinsh = parentsh; |
| 20609 | while (1) { |
| 20610 | stpivot(spinsh, neightet); |
| 20611 | if (neightet.tet != NULL) { |
| 20612 | tsdissolve(neightet); |
| 20613 | } |
| 20614 | sesymself(spinsh); |
| 20615 | stpivot(spinsh, neightet); |
| 20616 | if (neightet.tet != NULL) { |
| 20617 | tsdissolve(neightet); |
| 20618 | } |
| 20619 | stdissolve(spinsh); |
| 20620 | spivotself(spinsh); // Go to the next subface. |
| 20621 | if (spinsh.sh == parentsh.sh) break; |
| 20622 | } |
| 20623 | } |
| 20624 | } // i |
| 20625 | } // if (checksubfaceflag) |
| 20626 | } |
| 20627 | |
| 20628 | if (loc == INTETRAHEDRON) { |
| 20629 | // Collect the four tets containing 'p'. |
| 20630 | fliptets = new triface[4]; |
| 20631 | fliptets[0] = searchtet; // [p,d,a,b] |
| 20632 | for (i = 0; i < 2; i++) { |
| 20633 | fnext(fliptets[i], fliptets[i+1]); // [p,d,b,c], [p,d,c,a] |
| 20634 | } |
| 20635 | eprev(fliptets[0], fliptets[3]); |
| 20636 | fnextself(fliptets[3]); // it is [a,p,b,c] |
| 20637 | eprevself(fliptets[3]); |
| 20638 | esymself(fliptets[3]); // [a,b,c,p]. |
| 20639 | // Remove p by a 4-to-1 flip. |
| 20640 | //flip41(fliptets, 1, 0, 0); |
| 20641 | flip41(fliptets, 1, &fc); |
| 20642 | //recenttet = fliptets[0]; |
| 20643 | } else if (loc == ONFACE) { |
| 20644 | // Let the original two tets be [a,b,c,d] and [b,a,c,e]. And p is in |
| 20645 | // face [a,b,c]. Let 'searchtet' be the tet [p,d,a,b]. |
| 20646 | // Collect the six tets containing 'p'. |
| 20647 | fliptets = new triface[6]; |
| 20648 | fliptets[0] = searchtet; // [p,d,a,b] |
| 20649 | for (i = 0; i < 2; i++) { |
| 20650 | fnext(fliptets[i], fliptets[i+1]); // [p,d,b,c], [p,d,c,a] |
| 20651 | } |
| 20652 | eprev(fliptets[0], fliptets[3]); |
| 20653 | fnextself(fliptets[3]); // [a,p,b,e] |
| 20654 | esymself(fliptets[3]); // [p,a,e,b] |
| 20655 | eprevself(fliptets[3]); // [e,p,a,b] |
| 20656 | for (i = 3; i < 5; i++) { |
| 20657 | fnext(fliptets[i], fliptets[i+1]); // [e,p,b,c], [e,p,c,a] |
| 20658 | } |
| 20659 | if (vt == FREEFACETVERTEX) { |
| 20660 | // We need to determine the location of three subfaces at p. |
| 20661 | valence = 0; // Re-use it. |
| 20662 | // Check if subfaces are all located in the lower three tets. |
| 20663 | // i.e., [e,p,a,b], [e,p,b,c], and [e,p,c,a]. |
| 20664 | for (i = 3; i < 6; i++) { |
| 20665 | if (issubface(fliptets[i])) valence++; |
| 20666 | } |
| 20667 | if (valence > 0) { |
| 20668 | assert(valence == 2); |
| 20669 | // We must do 3-to-2 flip in the upper part. We simply re-arrange |
| 20670 | // the six tets. |
| 20671 | for (i = 0; i < 3; i++) { |
| 20672 | esym(fliptets[i+3], wrktets[i]); |
| 20673 | esym(fliptets[i], fliptets[i+3]); |
| 20674 | fliptets[i] = wrktets[i]; |
| 20675 | } |
| 20676 | // Swap the last two pairs, i.e., [1]<->[[2], and [4]<->[5] |
| 20677 | wrktets[1] = fliptets[1]; |
| 20678 | fliptets[1] = fliptets[2]; |
| 20679 | fliptets[2] = wrktets[1]; |
| 20680 | wrktets[1] = fliptets[4]; |
| 20681 | fliptets[4] = fliptets[5]; |
| 20682 | fliptets[5] = wrktets[1]; |
| 20683 | } |
| 20684 | } |
| 20685 | // Remove p by a 6-to-2 flip, which is a combination of two flips: |
| 20686 | // a 3-to-2 (deletes the edge [e,p]), and |
| 20687 | // a 4-to-1 (deletes the vertex p). |
| 20688 | // First do a 3-to-2 flip on [e,p,a,b],[e,p,b,c],[e,p,c,a]. It creates |
| 20689 | // two new tets: [a,b,c,p] and [b,a,c,e]. The new tet [a,b,c,p] is |
| 20690 | // degenerate (has zero volume). It will be deleted in the followed |
| 20691 | // 4-to-1 flip. |
| 20692 | //flip32(&(fliptets[3]), 1, 0, 0); |
| 20693 | flip32(&(fliptets[3]), 1, &fc); |
| 20694 | // Second do a 4-to-1 flip on [p,d,a,b],[p,d,b,c],[p,d,c,a],[a,b,c,p]. |
| 20695 | // This creates a new tet [a,b,c,d]. |
| 20696 | //flip41(fliptets, 1, 0, 0); |
| 20697 | flip41(fliptets, 1, &fc); |
| 20698 | //recenttet = fliptets[0]; |
| 20699 | } else if (loc == ONEDGE) { |
| 20700 | // Let the original edge be [e,d] and p is in [e,d]. Assume there are n |
| 20701 | // tets sharing at edge [e,d] originally. We number the link vertices |
| 20702 | // of [e,d]: p_0, p_1, ..., p_n-1. 'searchtet' is [p,d,p_0,p_1]. |
| 20703 | // Count the number of tets at edge [e,p] and [p,d] (this is n). |
| 20704 | n = 0; |
| 20705 | spintet = searchtet; |
| 20706 | while (1) { |
| 20707 | n++; |
| 20708 | fnextself(spintet); |
| 20709 | if (spintet.tet == searchtet.tet) break; |
| 20710 | } |
| 20711 | assert(n >= 3); |
| 20712 | // Collect the 2n tets containing 'p'. |
| 20713 | fliptets = new triface[2 * n]; |
| 20714 | fliptets[0] = searchtet; // [p,b,p_0,p_1] |
| 20715 | for (i = 0; i < (n - 1); i++) { |
| 20716 | fnext(fliptets[i], fliptets[i+1]); // [p,d,p_i,p_i+1]. |
| 20717 | } |
| 20718 | eprev(fliptets[0], fliptets[n]); |
| 20719 | fnextself(fliptets[n]); // [p_0,p,p_1,e] |
| 20720 | esymself(fliptets[n]); // [p,p_0,e,p_1] |
| 20721 | eprevself(fliptets[n]); // [e,p,p_0,p_1] |
| 20722 | for (i = n; i < (2 * n - 1); i++) { |
| 20723 | fnext(fliptets[i], fliptets[i+1]); // [e,p,p_i,p_i+1]. |
| 20724 | } |
| 20725 | // Remove p by a 2n-to-n flip, it is a sequence of n flips: |
| 20726 | // - Do a 2-to-3 flip on |
| 20727 | // [p_0,p_1,p,d] and |
| 20728 | // [p,p_1,p_0,e]. |
| 20729 | // This produces: |
| 20730 | // [e,d,p_0,p_1], |
| 20731 | // [e,d,p_1,p] (degenerated), and |
| 20732 | // [e,d,p,p_0] (degenerated). |
| 20733 | wrktets[0] = fliptets[0]; // [p,d,p_0,p_1] |
| 20734 | eprevself(wrktets[0]); // [p_0,p,d,p_1] |
| 20735 | esymself(wrktets[0]); // [p,p_0,p_1,d] |
| 20736 | enextself(wrktets[0]); // [p_0,p_1,p,d] [0] |
| 20737 | wrktets[1] = fliptets[n]; // [e,p,p_0,p_1] |
| 20738 | enextself(wrktets[1]); // [p,p_0,e,p_1] |
| 20739 | esymself(wrktets[1]); // [p_0,p,p_1,e] |
| 20740 | eprevself(wrktets[1]); // [p_1,p_0,p,e] [1] |
| 20741 | //flip23(wrktets, 1, 0, 0); |
| 20742 | flip23(wrktets, 1, &fc); |
| 20743 | // Save the new tet [e,d,p,p_0] (degenerated). |
| 20744 | fliptets[n] = wrktets[2]; |
| 20745 | // Save the new tet [e,d,p_0,p_1]. |
| 20746 | fliptets[0] = wrktets[0]; |
| 20747 | // - Repeat from i = 1 to n-2: (n - 2) flips |
| 20748 | // - Do a 3-to-2 flip on |
| 20749 | // [p,p_i,d,e], |
| 20750 | // [p,p_i,e,p_i+1], and |
| 20751 | // [p,p_i,p_i+1,d]. |
| 20752 | // This produces: |
| 20753 | // [d,e,p_i+1,p_i], and |
| 20754 | // [e,d,p_i+1,p] (degenerated). |
| 20755 | for (i = 1; i < (n - 1); i++) { |
| 20756 | wrktets[0] = wrktets[1]; // [e,d,p_i,p] (degenerated). |
| 20757 | enextself(wrktets[0]); // [d,p_i,e,p] (...) |
| 20758 | esymself(wrktets[0]); // [p_i,d,p,e] (...) |
| 20759 | eprevself(wrktets[0]); // [p,p_i,d,e] (degenerated) [0]. |
| 20760 | wrktets[1] = fliptets[n+i]; // [e,p,p_i,p_i+1] |
| 20761 | enextself(wrktets[1]); // [p,p_i,e,p_i+1] [1] |
| 20762 | wrktets[2] = fliptets[i]; // [p,d,p_i,p_i+1] |
| 20763 | eprevself(wrktets[2]); // [p_i,p,d,p_i+1] |
| 20764 | esymself(wrktets[2]); // [p,p_i,p_i+1,d] [2] |
| 20765 | //flip32(wrktets, 1, 0, 0); |
| 20766 | flip32(wrktets, 1, &fc); |
| 20767 | // Save the new tet [e,d,p_i,p_i+1]. // FOR DEBUG ONLY |
| 20768 | fliptets[i] = wrktets[0]; // [d,e,p_i+1,p_i] // FOR DEBUG ONLY |
| 20769 | esymself(fliptets[i]); // [e,d,p_i,p_i+1] // FOR DEBUG ONLY |
| 20770 | } |
| 20771 | // - Do a 4-to-1 flip on |
| 20772 | // [p,p_0,e,d], [d,e,p_0,p], |
| 20773 | // [p,p_0,d,p_n-1], [e,p_n-1,p_0,p], |
| 20774 | // [p,p_0,p_n-1,e], [p_0,p_n-1,d,p], and |
| 20775 | // [e,d,p_n-1,p]. |
| 20776 | // This produces |
| 20777 | // [e,d,p_n-1,p_0] and |
| 20778 | // deletes p. |
| 20779 | wrktets[3] = wrktets[1]; // [e,d,p_n-1,p] (degenerated) [3] |
| 20780 | wrktets[0] = fliptets[n]; // [e,d,p,p_0] (degenerated) |
| 20781 | eprevself(wrktets[0]); // [p,e,d,p_0] (...) |
| 20782 | esymself(wrktets[0]); // [e,p,p_0,d] (...) |
| 20783 | enextself(wrktets[0]); // [p,p_0,e,d] (degenerated) [0] |
| 20784 | wrktets[1] = fliptets[n-1]; // [p,d,p_n-1,p_0] |
| 20785 | esymself(wrktets[1]); // [d,p,p_0,p_n-1] |
| 20786 | enextself(wrktets[1]); // [p,p_0,d,p_n-1] [1] |
| 20787 | wrktets[2] = fliptets[2*n-1]; // [e,p,p_n-1,p_0] |
| 20788 | enextself(wrktets[2]); // [p_p_n-1,e,p_0] |
| 20789 | esymself(wrktets[2]); // [p_n-1,p,p_0,e] |
| 20790 | enextself(wrktets[2]); // [p,p_0,p_n-1,e] [2] |
| 20791 | //flip41(wrktets, 1, 0, 0); |
| 20792 | flip41(wrktets, 1, &fc); |
| 20793 | // Save the new tet [e,d,p_n-1,p_0] // FOR DEBUG ONLY |
| 20794 | fliptets[n-1] = wrktets[0]; // [e,d,p_n-1,p_0] // FOR DEBUG ONLY |
| 20795 | //recenttet = fliptets[0]; |
| 20796 | } else { |
| 20797 | assert(0); // Unknown location. |
| 20798 | } // if (iloc == ...) |
| 20799 | |
| 20800 | delete [] fliptets; |
| 20801 | |
| 20802 | if (vt == FREESEGVERTEX) { |
| 20803 | // Remove the vertex from the surface mesh. |
| 20804 | // This will re-create the segment [lpt, rpt] and re-triangulate |
| 20805 | // all the facets at the segment. |
| 20806 | // Only do lawson flip when subfaces are not recovery yet. |
| 20807 | slawson = (checksubfaceflag ? 0 : 1); |
| 20808 | spivot(rightseg, parentsh); // 'rightseg' has p as its origin. |
| 20809 | sremovevertex(steinerpt, &parentsh, &rightseg, slawson); |
| 20810 | |
| 20811 | // The original segment is returned in 'rightseg'. |
| 20812 | rightseg.shver = 0; |
| 20813 | assert(sorg(rightseg) == lpt); |
| 20814 | assert(sdest(rightseg) == rpt); |
| 20815 | |
| 20816 | // Insert the new segment. |
| 20817 | point2tetorg(lpt, searchtet); |
| 20818 | finddirection(&searchtet, rpt); |
| 20819 | assert(dest(searchtet) == rpt); |
| 20820 | sstbond1(rightseg, searchtet); |
| 20821 | spintet = searchtet; |
| 20822 | while (1) { |
| 20823 | tsspivot1(spintet, checkseg); // FOR DEBUG ONLY |
| 20824 | assert(checkseg.sh == NULL); // FOR DEBUG ONLY |
| 20825 | tssbond1(spintet, rightseg); |
| 20826 | fnextself(spintet); |
| 20827 | if (spintet.tet == searchtet.tet) break; |
| 20828 | } |
| 20829 | |
| 20830 | if (checksubfaceflag) { |
| 20831 | // Insert subfaces at segment [lpt,rpt] into the tetrahedralization. |
| 20832 | spivot(rightseg, parentsh); |
| 20833 | if (parentsh.sh != NULL) { |
| 20834 | spinsh = parentsh; |
| 20835 | while (1) { |
| 20836 | if (sorg(spinsh) != lpt) { |
| 20837 | sesymself(spinsh); |
| 20838 | assert(sorg(spinsh) == lpt); |
| 20839 | } |
| 20840 | assert(sdest(spinsh) == rpt); |
| 20841 | apexpt = sapex(spinsh); |
| 20842 | // Find the adjacent tet of [lpt,rpt,apexpt]; |
| 20843 | spintet = searchtet; |
| 20844 | while (1) { |
| 20845 | if (apex(spintet) == apexpt) { |
| 20846 | tsbond(spintet, spinsh); |
| 20847 | sesymself(spinsh); // Get to another side of this face. |
| 20848 | fsym(spintet, neightet); |
| 20849 | tsbond(neightet, spinsh); |
| 20850 | sesymself(spinsh); // Get back to the original side. |
| 20851 | break; |
| 20852 | } |
| 20853 | fnextself(spintet); |
| 20854 | assert(spintet.tet != searchtet.tet); |
| 20855 | //if (spintet.tet == searchtet.tet) break; |
| 20856 | } |
| 20857 | spivotself(spinsh); |
| 20858 | if (spinsh.sh == parentsh.sh) break; |
| 20859 | } |
| 20860 | } |
| 20861 | } // if (checksubfaceflag) |
| 20862 | |
| 20863 | // Clear the set of new subfaces. |
| 20864 | caveshbdlist->restart(); |
| 20865 | } // if (vt == FREESEGVERTEX) |
| 20866 | |
| 20867 | // The point has been removed. |
| 20868 | if (pointtype(steinerpt) != UNUSEDVERTEX) { |
| 20869 | setpointtype(steinerpt, UNUSEDVERTEX); |
| 20870 | unuverts++; |
| 20871 | } |
| 20872 | if (vt != VOLVERTEX) { |
| 20873 | // Update the correspinding counters. |
| 20874 | if (vt == FREESEGVERTEX) { |
| 20875 | st_segref_count--; |
| 20876 | } else if (vt == FREEFACETVERTEX) { |
| 20877 | st_facref_count--; |
| 20878 | } else if (vt == FREEVOLVERTEX) { |
| 20879 | st_volref_count--; |
| 20880 | } |
| 20881 | if (steinerleft > 0) steinerleft++; |
| 20882 | } |
| 20883 | |
| 20884 | return 1; |
| 20885 | } |
| 20886 | |
| 20887 | /////////////////////////////////////////////////////////////////////////////// |
| 20888 | // // |
| 20889 | // suppressbdrysteinerpoint() Suppress a boundary Steiner point // |
| 20890 | // // |
| 20891 | /////////////////////////////////////////////////////////////////////////////// |
| 20892 | |
| 20893 | int tetgenmesh::suppressbdrysteinerpoint(point steinerpt) |
| 20894 | { |
| 20895 | face parentsh, spinsh, *parysh; |
| 20896 | face leftseg, rightseg; |
| 20897 | point lpt = NULL, rpt = NULL; |
| 20898 | int i; |
| 20899 | |
| 20900 | verttype vt = pointtype(steinerpt); |
| 20901 | |
| 20902 | if (vt == FREESEGVERTEX) { |
| 20903 | sdecode(point2sh(steinerpt), leftseg); |
| 20904 | leftseg.shver = 0; |
| 20905 | if (sdest(leftseg) == steinerpt) { |
| 20906 | senext(leftseg, rightseg); |
| 20907 | spivotself(rightseg); |
| 20908 | assert(rightseg.sh != NULL); |
| 20909 | rightseg.shver = 0; |
| 20910 | assert(sorg(rightseg) == steinerpt); |
| 20911 | } else { |
| 20912 | assert(sorg(leftseg) == steinerpt); |
| 20913 | rightseg = leftseg; |
| 20914 | senext2(rightseg, leftseg); |
| 20915 | spivotself(leftseg); |
| 20916 | assert(leftseg.sh != NULL); |
| 20917 | leftseg.shver = 0; |
| 20918 | assert(sdest(leftseg) == steinerpt); |
| 20919 | } |
| 20920 | lpt = sorg(leftseg); |
| 20921 | rpt = sdest(rightseg); |
| 20922 | if (b->verbose > 2) { |
| 20923 | printf(" Suppressing Steiner point %d in segment (%d, %d).\n" , |
| 20924 | pointmark(steinerpt), pointmark(lpt), pointmark(rpt)); |
| 20925 | } |
| 20926 | // Get all subfaces at the left segment [lpt, steinerpt]. |
| 20927 | spivot(leftseg, parentsh); |
| 20928 | spinsh = parentsh; |
| 20929 | while (1) { |
| 20930 | cavesegshlist->newindex((void **) &parysh); |
| 20931 | *parysh = spinsh; |
| 20932 | // Orient the face consistently. |
| 20933 | if (sorg(*parysh)!= sorg(parentsh)) sesymself(*parysh); |
| 20934 | spivotself(spinsh); |
| 20935 | if (spinsh.sh == NULL) break; |
| 20936 | if (spinsh.sh == parentsh.sh) break; |
| 20937 | } |
| 20938 | if (cavesegshlist->objects < 2) { |
| 20939 | // It is a single segment. Not handle it yet. |
| 20940 | cavesegshlist->restart(); |
| 20941 | return 0; |
| 20942 | } |
| 20943 | } else if (vt == FREEFACETVERTEX) { |
| 20944 | if (b->verbose > 2) { |
| 20945 | printf(" Suppressing Steiner point %d from facet.\n" , |
| 20946 | pointmark(steinerpt)); |
| 20947 | } |
| 20948 | sdecode(point2sh(steinerpt), parentsh); |
| 20949 | // A facet Steiner point. There are exactly two sectors. |
| 20950 | for (i = 0; i < 2; i++) { |
| 20951 | cavesegshlist->newindex((void **) &parysh); |
| 20952 | *parysh = parentsh; |
| 20953 | sesymself(parentsh); |
| 20954 | } |
| 20955 | } else { |
| 20956 | return 0; |
| 20957 | } |
| 20958 | |
| 20959 | triface searchtet, neightet, *parytet; |
| 20960 | point pa, pb, pc, pd; |
| 20961 | REAL v1[3], v2[3], len, u; |
| 20962 | |
| 20963 | REAL startpt[3] = {0,}, samplept[3] = {0,}, candpt[3] = {0,}; |
| 20964 | REAL ori, minvol, smallvol; |
| 20965 | int samplesize; |
| 20966 | int it, j, k; |
| 20967 | |
| 20968 | int n = (int) cavesegshlist->objects; |
| 20969 | point *newsteiners = new point[n]; |
| 20970 | for (i = 0; i < n; i++) newsteiners[i] = NULL; |
| 20971 | |
| 20972 | // Search for each sector an interior vertex. |
| 20973 | for (i = 0; i < cavesegshlist->objects; i++) { |
| 20974 | parysh = (face *) fastlookup(cavesegshlist, i); |
| 20975 | stpivot(*parysh, searchtet); |
| 20976 | // Skip it if it is outside. |
| 20977 | if (ishulltet(searchtet)) continue; |
| 20978 | // Get the "half-ball". Tets in 'cavetetlist' all contain 'steinerpt' as |
| 20979 | // opposite. Subfaces in 'caveshlist' all contain 'steinerpt' as apex. |
| 20980 | // Moreover, subfaces are oriented towards the interior of the ball. |
| 20981 | setpoint2tet(steinerpt, encode(searchtet)); |
| 20982 | getvertexstar(0, steinerpt, cavetetlist, NULL, caveshlist); |
| 20983 | // Calculate the searching vector. |
| 20984 | pa = sorg(*parysh); |
| 20985 | pb = sdest(*parysh); |
| 20986 | pc = sapex(*parysh); |
| 20987 | facenormal(pa, pb, pc, v1, 1, NULL); |
| 20988 | len = sqrt(dot(v1, v1)); |
| 20989 | assert(len > 0.0); |
| 20990 | v1[0] /= len; |
| 20991 | v1[1] /= len; |
| 20992 | v1[2] /= len; |
| 20993 | if (vt == FREESEGVERTEX) { |
| 20994 | parysh = (face *) fastlookup(cavesegshlist, (i + 1) % n); |
| 20995 | pd = sapex(*parysh); |
| 20996 | facenormal(pb, pa, pd, v2, 1, NULL); |
| 20997 | len = sqrt(dot(v2, v2)); |
| 20998 | assert(len > 0.0); |
| 20999 | v2[0] /= len; |
| 21000 | v2[1] /= len; |
| 21001 | v2[2] /= len; |
| 21002 | // Average the two vectors. |
| 21003 | v1[0] = 0.5 * (v1[0] + v2[0]); |
| 21004 | v1[1] = 0.5 * (v1[1] + v2[1]); |
| 21005 | v1[2] = 0.5 * (v1[2] + v2[2]); |
| 21006 | } |
| 21007 | // Search the intersection of the ray starting from 'steinerpt' to |
| 21008 | // the search direction 'v1' and the shell of the half-ball. |
| 21009 | // - Construct an endpoint. |
| 21010 | len = distance(pa, pb); |
| 21011 | v2[0] = steinerpt[0] + len * v1[0]; |
| 21012 | v2[1] = steinerpt[1] + len * v1[1]; |
| 21013 | v2[2] = steinerpt[2] + len * v1[2]; |
| 21014 | for (j = 0; j < cavetetlist->objects; j++) { |
| 21015 | parytet = (triface *) fastlookup(cavetetlist, j); |
| 21016 | pa = org(*parytet); |
| 21017 | pb = dest(*parytet); |
| 21018 | pc = apex(*parytet); |
| 21019 | // Test if the ray startpt->v2 lies in the cone: where 'steinerpt' |
| 21020 | // is the apex, and three sides are defined by the triangle |
| 21021 | // [pa, pb, pc]. |
| 21022 | ori = orient3d(steinerpt, pa, pb, v2); |
| 21023 | if (ori >= 0) { |
| 21024 | ori = orient3d(steinerpt, pb, pc, v2); |
| 21025 | if (ori >= 0) { |
| 21026 | ori = orient3d(steinerpt, pc, pa, v2); |
| 21027 | if (ori >= 0) { |
| 21028 | // Found! Calculate the intersection. |
| 21029 | planelineint(pa, pb, pc, steinerpt, v2, startpt, &u); |
| 21030 | assert(u != 0.0); |
| 21031 | break; |
| 21032 | } |
| 21033 | } |
| 21034 | } |
| 21035 | } // j |
| 21036 | assert(j < cavetetlist->objects); // There must be an intersection. |
| 21037 | // Close the ball by adding the subfaces. |
| 21038 | for (j = 0; j < caveshlist->objects; j++) { |
| 21039 | parysh = (face *) fastlookup(caveshlist, j); |
| 21040 | stpivot(*parysh, neightet); |
| 21041 | cavetetlist->newindex((void **) &parytet); |
| 21042 | *parytet = neightet; |
| 21043 | } |
| 21044 | // Search a best point inside the segment [startpt, steinerpt]. |
| 21045 | it = 0; |
| 21046 | samplesize = 100; |
| 21047 | v1[0] = steinerpt[0] - startpt[0]; |
| 21048 | v1[1] = steinerpt[1] - startpt[1]; |
| 21049 | v1[2] = steinerpt[2] - startpt[2]; |
| 21050 | minvol = -1.0; |
| 21051 | while (it < 3) { |
| 21052 | for (j = 1; j < samplesize - 1; j++) { |
| 21053 | samplept[0] = startpt[0] + ((REAL) j / (REAL) samplesize) * v1[0]; |
| 21054 | samplept[1] = startpt[1] + ((REAL) j / (REAL) samplesize) * v1[1]; |
| 21055 | samplept[2] = startpt[2] + ((REAL) j / (REAL) samplesize) * v1[2]; |
| 21056 | // Find the minimum volume for 'samplept'. |
| 21057 | smallvol = -1; |
| 21058 | for (k = 0; k < cavetetlist->objects; k++) { |
| 21059 | parytet = (triface *) fastlookup(cavetetlist, k); |
| 21060 | pa = org(*parytet); |
| 21061 | pb = dest(*parytet); |
| 21062 | pc = apex(*parytet); |
| 21063 | ori = orient3d(pb, pa, pc, samplept); |
| 21064 | if (ori <= 0) { |
| 21065 | break; // An invalid tet. |
| 21066 | } |
| 21067 | if (smallvol == -1) { |
| 21068 | smallvol = ori; |
| 21069 | } else { |
| 21070 | if (ori < smallvol) smallvol = ori; |
| 21071 | } |
| 21072 | } // k |
| 21073 | if (k == cavetetlist->objects) { |
| 21074 | // Found a valid point. Remember it. |
| 21075 | if (minvol == -1.0) { |
| 21076 | candpt[0] = samplept[0]; |
| 21077 | candpt[1] = samplept[1]; |
| 21078 | candpt[2] = samplept[2]; |
| 21079 | minvol = smallvol; |
| 21080 | } else { |
| 21081 | if (minvol < smallvol) { |
| 21082 | // It is a better location. Remember it. |
| 21083 | candpt[0] = samplept[0]; |
| 21084 | candpt[1] = samplept[1]; |
| 21085 | candpt[2] = samplept[2]; |
| 21086 | minvol = smallvol; |
| 21087 | } else { |
| 21088 | // No improvement of smallest volume. |
| 21089 | // Since we are searching along the line [startpt, steinerpy], |
| 21090 | // The smallest volume can only be decreased later. |
| 21091 | break; |
| 21092 | } |
| 21093 | } |
| 21094 | } |
| 21095 | } // j |
| 21096 | if (minvol > 0) break; |
| 21097 | samplesize *= 10; |
| 21098 | it++; |
| 21099 | } // while (it < 3) |
| 21100 | if (minvol == -1.0) { |
| 21101 | // Failed to find a valid point. |
| 21102 | cavetetlist->restart(); |
| 21103 | caveshlist->restart(); |
| 21104 | break; |
| 21105 | } |
| 21106 | // Create a new Steiner point inside this section. |
| 21107 | makepoint(&(newsteiners[i]), FREEVOLVERTEX); |
| 21108 | newsteiners[i][0] = candpt[0]; |
| 21109 | newsteiners[i][1] = candpt[1]; |
| 21110 | newsteiners[i][2] = candpt[2]; |
| 21111 | cavetetlist->restart(); |
| 21112 | caveshlist->restart(); |
| 21113 | } // i |
| 21114 | |
| 21115 | if (i < cavesegshlist->objects) { |
| 21116 | // Failed to suppress the vertex. |
| 21117 | for (; i > 0; i--) { |
| 21118 | if (newsteiners[i - 1] != NULL) { |
| 21119 | pointdealloc(newsteiners[i - 1]); |
| 21120 | } |
| 21121 | } |
| 21122 | delete [] newsteiners; |
| 21123 | cavesegshlist->restart(); |
| 21124 | return 0; |
| 21125 | } |
| 21126 | |
| 21127 | // Remove p from the segment or the facet. |
| 21128 | triface newtet, newface, spintet; |
| 21129 | face newsh, neighsh; |
| 21130 | face *splitseg, checkseg; |
| 21131 | int slawson = 0; // Do not do flip afterword. |
| 21132 | int t1ver; |
| 21133 | |
| 21134 | if (vt == FREESEGVERTEX) { |
| 21135 | // Detach 'leftseg' and 'rightseg' from their adjacent tets. |
| 21136 | // These two subsegments will be deleted. |
| 21137 | sstpivot1(leftseg, neightet); |
| 21138 | spintet = neightet; |
| 21139 | while (1) { |
| 21140 | tssdissolve1(spintet); |
| 21141 | fnextself(spintet); |
| 21142 | if (spintet.tet == neightet.tet) break; |
| 21143 | } |
| 21144 | sstpivot1(rightseg, neightet); |
| 21145 | spintet = neightet; |
| 21146 | while (1) { |
| 21147 | tssdissolve1(spintet); |
| 21148 | fnextself(spintet); |
| 21149 | if (spintet.tet == neightet.tet) break; |
| 21150 | } |
| 21151 | } |
| 21152 | |
| 21153 | // Loop through all sectors bounded by facets at this segment. |
| 21154 | // Within each sector, create a new Steiner point 'np', and replace 'p' |
| 21155 | // by 'np' for all tets in this sector. |
| 21156 | for (i = 0; i < cavesegshlist->objects; i++) { |
| 21157 | parysh = (face *) fastlookup(cavesegshlist, i); |
| 21158 | // 'parysh' is the face [lpt, steinerpt, #]. |
| 21159 | stpivot(*parysh, neightet); |
| 21160 | // Get all tets in this sector. |
| 21161 | setpoint2tet(steinerpt, encode(neightet)); |
| 21162 | getvertexstar(0, steinerpt, cavetetlist, NULL, caveshlist); |
| 21163 | if (!ishulltet(neightet)) { |
| 21164 | // Within each tet in the ball, replace 'p' by 'np'. |
| 21165 | for (j = 0; j < cavetetlist->objects; j++) { |
| 21166 | parytet = (triface *) fastlookup(cavetetlist, j); |
| 21167 | setoppo(*parytet, newsteiners[i]); |
| 21168 | } // j |
| 21169 | // Point to a parent tet. |
| 21170 | parytet = (triface *) fastlookup(cavetetlist, 0); |
| 21171 | setpoint2tet(newsteiners[i], (tetrahedron) (parytet->tet)); |
| 21172 | st_volref_count++; |
| 21173 | if (steinerleft > 0) steinerleft--; |
| 21174 | } |
| 21175 | // Disconnect the set of boundary faces. They're temporarily open faces. |
| 21176 | // They will be connected to the new tets after 'p' is removed. |
| 21177 | for (j = 0; j < caveshlist->objects; j++) { |
| 21178 | // Get a boundary face. |
| 21179 | parysh = (face *) fastlookup(caveshlist, j); |
| 21180 | stpivot(*parysh, neightet); |
| 21181 | //assert(apex(neightet) == newpt); |
| 21182 | // Clear the connection at this face. |
| 21183 | dissolve(neightet); |
| 21184 | tsdissolve(neightet); |
| 21185 | } |
| 21186 | // Clear the working lists. |
| 21187 | cavetetlist->restart(); |
| 21188 | caveshlist->restart(); |
| 21189 | } // i |
| 21190 | cavesegshlist->restart(); |
| 21191 | |
| 21192 | if (vt == FREESEGVERTEX) { |
| 21193 | spivot(rightseg, parentsh); // 'rightseg' has p as its origin. |
| 21194 | splitseg = &rightseg; |
| 21195 | } else { |
| 21196 | if (sdest(parentsh) == steinerpt) { |
| 21197 | senextself(parentsh); |
| 21198 | } else if (sapex(parentsh) == steinerpt) { |
| 21199 | senext2self(parentsh); |
| 21200 | } |
| 21201 | assert(sorg(parentsh) == steinerpt); |
| 21202 | splitseg = NULL; |
| 21203 | } |
| 21204 | sremovevertex(steinerpt, &parentsh, splitseg, slawson); |
| 21205 | |
| 21206 | if (vt == FREESEGVERTEX) { |
| 21207 | // The original segment is returned in 'rightseg'. |
| 21208 | rightseg.shver = 0; |
| 21209 | } |
| 21210 | |
| 21211 | // For each new subface, create two new tets at each side of it. |
| 21212 | // Both of the two new tets have its opposite be dummypoint. |
| 21213 | for (i = 0; i < caveshbdlist->objects; i++) { |
| 21214 | parysh = (face *) fastlookup(caveshbdlist, i); |
| 21215 | sinfect(*parysh); // Mark it for connecting new tets. |
| 21216 | newsh = *parysh; |
| 21217 | pa = sorg(newsh); |
| 21218 | pb = sdest(newsh); |
| 21219 | pc = sapex(newsh); |
| 21220 | maketetrahedron(&newtet); |
| 21221 | maketetrahedron(&neightet); |
| 21222 | setvertices(newtet, pa, pb, pc, dummypoint); |
| 21223 | setvertices(neightet, pb, pa, pc, dummypoint); |
| 21224 | bond(newtet, neightet); |
| 21225 | tsbond(newtet, newsh); |
| 21226 | sesymself(newsh); |
| 21227 | tsbond(neightet, newsh); |
| 21228 | } |
| 21229 | // Temporarily increase the hullsize. |
| 21230 | hullsize += (caveshbdlist->objects * 2l); |
| 21231 | |
| 21232 | if (vt == FREESEGVERTEX) { |
| 21233 | // Connecting new tets at the recovered segment. |
| 21234 | spivot(rightseg, parentsh); |
| 21235 | assert(parentsh.sh != NULL); |
| 21236 | spinsh = parentsh; |
| 21237 | while (1) { |
| 21238 | if (sorg(spinsh) != lpt) sesymself(spinsh); |
| 21239 | // Get the new tet at this subface. |
| 21240 | stpivot(spinsh, newtet); |
| 21241 | tssbond1(newtet, rightseg); |
| 21242 | // Go to the other face at this segment. |
| 21243 | spivot(spinsh, neighsh); |
| 21244 | if (sorg(neighsh) != lpt) sesymself(neighsh); |
| 21245 | sesymself(neighsh); |
| 21246 | stpivot(neighsh, neightet); |
| 21247 | tssbond1(neightet, rightseg); |
| 21248 | sstbond1(rightseg, neightet); |
| 21249 | // Connecting two adjacent tets at this segment. |
| 21250 | esymself(newtet); |
| 21251 | esymself(neightet); |
| 21252 | // Connect the two tets (at rightseg) together. |
| 21253 | bond(newtet, neightet); |
| 21254 | // Go to the next subface. |
| 21255 | spivotself(spinsh); |
| 21256 | if (spinsh.sh == parentsh.sh) break; |
| 21257 | } |
| 21258 | } |
| 21259 | |
| 21260 | // Connecting new tets at new subfaces together. |
| 21261 | for (i = 0; i < caveshbdlist->objects; i++) { |
| 21262 | parysh = (face *) fastlookup(caveshbdlist, i); |
| 21263 | newsh = *parysh; |
| 21264 | //assert(sinfected(newsh)); |
| 21265 | // Each new subface contains two new tets. |
| 21266 | for (k = 0; k < 2; k++) { |
| 21267 | stpivot(newsh, newtet); |
| 21268 | for (j = 0; j < 3; j++) { |
| 21269 | // Check if this side is open. |
| 21270 | esym(newtet, newface); |
| 21271 | if (newface.tet[newface.ver & 3] == NULL) { |
| 21272 | // An open face. Connect it to its adjacent tet. |
| 21273 | sspivot(newsh, checkseg); |
| 21274 | if (checkseg.sh != NULL) { |
| 21275 | // A segment. It must not be the recovered segment. |
| 21276 | tssbond1(newtet, checkseg); |
| 21277 | sstbond1(checkseg, newtet); |
| 21278 | } |
| 21279 | spivot(newsh, neighsh); |
| 21280 | if (neighsh.sh != NULL) { |
| 21281 | // The adjacent subface exists. It's not a dangling segment. |
| 21282 | if (sorg(neighsh) != sdest(newsh)) sesymself(neighsh); |
| 21283 | stpivot(neighsh, neightet); |
| 21284 | if (sinfected(neighsh)) { |
| 21285 | esymself(neightet); |
| 21286 | assert(neightet.tet[neightet.ver & 3] == NULL); |
| 21287 | } else { |
| 21288 | // Search for an open face at this edge. |
| 21289 | spintet = neightet; |
| 21290 | while (1) { |
| 21291 | esym(spintet, searchtet); |
| 21292 | fsym(searchtet, spintet); |
| 21293 | if (spintet.tet == NULL) break; |
| 21294 | assert(spintet.tet != neightet.tet); |
| 21295 | } |
| 21296 | // Found an open face at 'searchtet'. |
| 21297 | neightet = searchtet; |
| 21298 | } |
| 21299 | } else { |
| 21300 | // The edge (at 'newsh') is a dangling segment. |
| 21301 | assert(checkseg.sh != NULL); |
| 21302 | // Get an adjacent tet at this segment. |
| 21303 | sstpivot1(checkseg, neightet); |
| 21304 | assert(!isdeadtet(neightet)); |
| 21305 | if (org(neightet) != sdest(newsh)) esymself(neightet); |
| 21306 | assert((org(neightet) == sdest(newsh)) && |
| 21307 | (dest(neightet) == sorg(newsh))); |
| 21308 | // Search for an open face at this edge. |
| 21309 | spintet = neightet; |
| 21310 | while (1) { |
| 21311 | esym(spintet, searchtet); |
| 21312 | fsym(searchtet, spintet); |
| 21313 | if (spintet.tet == NULL) break; |
| 21314 | assert(spintet.tet != neightet.tet); |
| 21315 | } |
| 21316 | // Found an open face at 'searchtet'. |
| 21317 | neightet = searchtet; |
| 21318 | } |
| 21319 | pc = apex(newface); |
| 21320 | if (apex(neightet) == steinerpt) { |
| 21321 | // Exterior case. The 'neightet' is a hull tet which contain |
| 21322 | // 'steinerpt'. It will be deleted after 'steinerpt' is removed. |
| 21323 | assert(pc == dummypoint); |
| 21324 | caveoldtetlist->newindex((void **) &parytet); |
| 21325 | *parytet = neightet; |
| 21326 | // Connect newface to the adjacent hull tet of 'neightet', which |
| 21327 | // has the same edge as 'newface', and does not has 'steinerpt'. |
| 21328 | fnextself(neightet); |
| 21329 | } else { |
| 21330 | if (pc == dummypoint) { |
| 21331 | if (apex(neightet) != dummypoint) { |
| 21332 | setapex(newface, apex(neightet)); |
| 21333 | // A hull tet has turned into an interior tet. |
| 21334 | hullsize--; // Must update the hullsize. |
| 21335 | } |
| 21336 | } |
| 21337 | } |
| 21338 | bond(newface, neightet); |
| 21339 | } // if (newface.tet[newface.ver & 3] == NULL) |
| 21340 | enextself(newtet); |
| 21341 | senextself(newsh); |
| 21342 | } // j |
| 21343 | sesymself(newsh); |
| 21344 | } // k |
| 21345 | } // i |
| 21346 | |
| 21347 | // Unmark all new subfaces. |
| 21348 | for (i = 0; i < caveshbdlist->objects; i++) { |
| 21349 | parysh = (face *) fastlookup(caveshbdlist, i); |
| 21350 | suninfect(*parysh); |
| 21351 | } |
| 21352 | caveshbdlist->restart(); |
| 21353 | |
| 21354 | if (caveoldtetlist->objects > 0l) { |
| 21355 | // Delete hull tets which contain 'steinerpt'. |
| 21356 | for (i = 0; i < caveoldtetlist->objects; i++) { |
| 21357 | parytet = (triface *) fastlookup(caveoldtetlist, i); |
| 21358 | tetrahedrondealloc(parytet->tet); |
| 21359 | } |
| 21360 | // Must update the hullsize. |
| 21361 | hullsize -= caveoldtetlist->objects; |
| 21362 | caveoldtetlist->restart(); |
| 21363 | } |
| 21364 | |
| 21365 | setpointtype(steinerpt, UNUSEDVERTEX); |
| 21366 | unuverts++; |
| 21367 | if (vt == FREESEGVERTEX) { |
| 21368 | st_segref_count--; |
| 21369 | } else { // vt == FREEFACETVERTEX |
| 21370 | st_facref_count--; |
| 21371 | } |
| 21372 | if (steinerleft > 0) steinerleft++; // We've removed a Steiner points. |
| 21373 | |
| 21374 | |
| 21375 | point *parypt; |
| 21376 | int steinercount = 0; |
| 21377 | |
| 21378 | int bak_fliplinklevel = b->fliplinklevel; |
| 21379 | b->fliplinklevel = 100000; // Unlimited flip level. |
| 21380 | |
| 21381 | // Try to remove newly added Steiner points. |
| 21382 | for (i = 0; i < n; i++) { |
| 21383 | if (newsteiners[i] != NULL) { |
| 21384 | if (!removevertexbyflips(newsteiners[i])) { |
| 21385 | if (b->nobisect_param > 0) { // Not -Y0 |
| 21386 | // Save it in subvertstack for removal. |
| 21387 | subvertstack->newindex((void **) &parypt); |
| 21388 | *parypt = newsteiners[i]; |
| 21389 | } |
| 21390 | steinercount++; |
| 21391 | } |
| 21392 | } |
| 21393 | } |
| 21394 | |
| 21395 | b->fliplinklevel = bak_fliplinklevel; |
| 21396 | |
| 21397 | if (steinercount > 0) { |
| 21398 | if (b->verbose > 2) { |
| 21399 | printf(" Added %d interior Steiner points.\n" , steinercount); |
| 21400 | } |
| 21401 | } |
| 21402 | |
| 21403 | delete [] newsteiners; |
| 21404 | |
| 21405 | return 1; |
| 21406 | } |
| 21407 | |
| 21408 | |
| 21409 | /////////////////////////////////////////////////////////////////////////////// |
| 21410 | // // |
| 21411 | // suppresssteinerpoints() Suppress Steiner points. // |
| 21412 | // // |
| 21413 | // All Steiner points have been saved in 'subvertstack' in the routines // |
| 21414 | // carveholes() and suppresssteinerpoint(). // |
| 21415 | // Each Steiner point is either removed or shifted into the interior. // |
| 21416 | // // |
| 21417 | /////////////////////////////////////////////////////////////////////////////// |
| 21418 | |
| 21419 | int tetgenmesh::suppresssteinerpoints() |
| 21420 | { |
| 21421 | |
| 21422 | if (!b->quiet) { |
| 21423 | printf("Suppressing Steiner points ...\n" ); |
| 21424 | } |
| 21425 | |
| 21426 | point rempt, *parypt; |
| 21427 | |
| 21428 | int bak_fliplinklevel = b->fliplinklevel; |
| 21429 | b->fliplinklevel = 100000; // Unlimited flip level. |
| 21430 | int suppcount = 0, remcount = 0; |
| 21431 | int i; |
| 21432 | |
| 21433 | // Try to suppress boundary Steiner points. |
| 21434 | for (i = 0; i < subvertstack->objects; i++) { |
| 21435 | parypt = (point *) fastlookup(subvertstack, i); |
| 21436 | rempt = *parypt; |
| 21437 | if (pointtype(rempt) != UNUSEDVERTEX) { |
| 21438 | if ((pointtype(rempt) == FREESEGVERTEX) || |
| 21439 | (pointtype(rempt) == FREEFACETVERTEX)) { |
| 21440 | if (suppressbdrysteinerpoint(rempt)) { |
| 21441 | suppcount++; |
| 21442 | } |
| 21443 | } |
| 21444 | } |
| 21445 | } // i |
| 21446 | |
| 21447 | if (suppcount > 0) { |
| 21448 | if (b->verbose) { |
| 21449 | printf(" Suppressed %d boundary Steiner points.\n" , suppcount); |
| 21450 | } |
| 21451 | } |
| 21452 | |
| 21453 | if (b->nobisect_param > 0) { // -Y1 |
| 21454 | for (i = 0; i < subvertstack->objects; i++) { |
| 21455 | parypt = (point *) fastlookup(subvertstack, i); |
| 21456 | rempt = *parypt; |
| 21457 | if (pointtype(rempt) != UNUSEDVERTEX) { |
| 21458 | if (pointtype(rempt) == FREEVOLVERTEX) { |
| 21459 | if (removevertexbyflips(rempt)) { |
| 21460 | remcount++; |
| 21461 | } |
| 21462 | } |
| 21463 | } |
| 21464 | } |
| 21465 | } |
| 21466 | |
| 21467 | if (remcount > 0) { |
| 21468 | if (b->verbose) { |
| 21469 | printf(" Removed %d interior Steiner points.\n" , remcount); |
| 21470 | } |
| 21471 | } |
| 21472 | |
| 21473 | b->fliplinklevel = bak_fliplinklevel; |
| 21474 | |
| 21475 | if (b->nobisect_param > 1) { // -Y2 |
| 21476 | // Smooth interior Steiner points. |
| 21477 | optparameters opm; |
| 21478 | triface *parytet; |
| 21479 | point *ppt; |
| 21480 | REAL ori; |
| 21481 | int smtcount, count, ivcount; |
| 21482 | int nt, j; |
| 21483 | |
| 21484 | // Point smooth options. |
| 21485 | opm.max_min_volume = 1; |
| 21486 | opm.numofsearchdirs = 20; |
| 21487 | opm.searchstep = 0.001; |
| 21488 | opm.maxiter = 30; // Limit the maximum iterations. |
| 21489 | |
| 21490 | smtcount = 0; |
| 21491 | |
| 21492 | do { |
| 21493 | |
| 21494 | nt = 0; |
| 21495 | |
| 21496 | while (1) { |
| 21497 | count = 0; |
| 21498 | ivcount = 0; // Clear the inverted count. |
| 21499 | |
| 21500 | for (i = 0; i < subvertstack->objects; i++) { |
| 21501 | parypt = (point *) fastlookup(subvertstack, i); |
| 21502 | rempt = *parypt; |
| 21503 | if (pointtype(rempt) == FREEVOLVERTEX) { |
| 21504 | getvertexstar(1, rempt, cavetetlist, NULL, NULL); |
| 21505 | // Calculate the initial smallest volume (maybe zero or negative). |
| 21506 | for (j = 0; j < cavetetlist->objects; j++) { |
| 21507 | parytet = (triface *) fastlookup(cavetetlist, j); |
| 21508 | ppt = (point *) &(parytet->tet[4]); |
| 21509 | ori = orient3dfast(ppt[1], ppt[0], ppt[2], ppt[3]); |
| 21510 | if (j == 0) { |
| 21511 | opm.initval = ori; |
| 21512 | } else { |
| 21513 | if (opm.initval > ori) opm.initval = ori; |
| 21514 | } |
| 21515 | } |
| 21516 | if (smoothpoint(rempt, cavetetlist, 1, &opm)) { |
| 21517 | count++; |
| 21518 | } |
| 21519 | if (opm.imprval <= 0.0) { |
| 21520 | ivcount++; // The mesh contains inverted elements. |
| 21521 | } |
| 21522 | cavetetlist->restart(); |
| 21523 | } |
| 21524 | } // i |
| 21525 | |
| 21526 | smtcount += count; |
| 21527 | |
| 21528 | if (count == 0) { |
| 21529 | // No point has been smoothed. |
| 21530 | break; |
| 21531 | } |
| 21532 | |
| 21533 | nt++; |
| 21534 | if (nt > 2) { |
| 21535 | break; // Already three iterations. |
| 21536 | } |
| 21537 | } // while |
| 21538 | |
| 21539 | if (ivcount > 0) { |
| 21540 | // There are inverted elements! |
| 21541 | if (opm.maxiter > 0) { |
| 21542 | // Set unlimited smoothing steps. Try again. |
| 21543 | opm.numofsearchdirs = 30; |
| 21544 | opm.searchstep = 0.0001; |
| 21545 | opm.maxiter = -1; |
| 21546 | continue; |
| 21547 | } |
| 21548 | } |
| 21549 | |
| 21550 | break; |
| 21551 | } while (1); // Additional loop for (ivcount > 0) |
| 21552 | |
| 21553 | if (ivcount > 0) { |
| 21554 | printf("BUG Report! The mesh contain inverted elements.\n" ); |
| 21555 | } |
| 21556 | |
| 21557 | if (b->verbose) { |
| 21558 | if (smtcount > 0) { |
| 21559 | printf(" Smoothed %d Steiner points.\n" , smtcount); |
| 21560 | } |
| 21561 | } |
| 21562 | } // -Y2 |
| 21563 | |
| 21564 | subvertstack->restart(); |
| 21565 | |
| 21566 | return 1; |
| 21567 | } |
| 21568 | |
| 21569 | /////////////////////////////////////////////////////////////////////////////// |
| 21570 | // // |
| 21571 | // recoverboundary() Recover segments and facets. // |
| 21572 | // // |
| 21573 | /////////////////////////////////////////////////////////////////////////////// |
| 21574 | |
| 21575 | void tetgenmesh::recoverboundary(clock_t& tv) |
| 21576 | { |
| 21577 | arraypool *misseglist, *misshlist; |
| 21578 | arraypool *bdrysteinerptlist; |
| 21579 | face searchsh, *parysh; |
| 21580 | face searchseg, *paryseg; |
| 21581 | point rempt, *parypt; |
| 21582 | long ms; // The number of missing segments/subfaces. |
| 21583 | int nit; // The number of iterations. |
| 21584 | int s, i; |
| 21585 | |
| 21586 | // Counters. |
| 21587 | long bak_segref_count, bak_facref_count, bak_volref_count; |
| 21588 | |
| 21589 | if (!b->quiet) { |
| 21590 | printf("Recovering boundaries...\n" ); |
| 21591 | } |
| 21592 | |
| 21593 | |
| 21594 | if (b->verbose) { |
| 21595 | printf(" Recovering segments.\n" ); |
| 21596 | } |
| 21597 | |
| 21598 | // Segments will be introduced. |
| 21599 | checksubsegflag = 1; |
| 21600 | |
| 21601 | misseglist = new arraypool(sizeof(face), 8); |
| 21602 | bdrysteinerptlist = new arraypool(sizeof(point), 8); |
| 21603 | |
| 21604 | // In random order. |
| 21605 | subsegs->traversalinit(); |
| 21606 | for (i = 0; i < subsegs->items; i++) { |
| 21607 | s = randomnation(i + 1); |
| 21608 | // Move the s-th seg to the i-th. |
| 21609 | subsegstack->newindex((void **) &paryseg); |
| 21610 | *paryseg = * (face *) fastlookup(subsegstack, s); |
| 21611 | // Put i-th seg to be the s-th. |
| 21612 | searchseg.sh = shellfacetraverse(subsegs); |
| 21613 | paryseg = (face *) fastlookup(subsegstack, s); |
| 21614 | *paryseg = searchseg; |
| 21615 | } |
| 21616 | |
| 21617 | // The init number of missing segments. |
| 21618 | ms = subsegs->items; |
| 21619 | nit = 0; |
| 21620 | if (b->fliplinklevel < 0) { |
| 21621 | autofliplinklevel = 1; // Init value. |
| 21622 | } |
| 21623 | |
| 21624 | // First, trying to recover segments by only doing flips. |
| 21625 | while (1) { |
| 21626 | recoversegments(misseglist, 0, 0); |
| 21627 | |
| 21628 | if (misseglist->objects > 0) { |
| 21629 | if (b->fliplinklevel >= 0) { |
| 21630 | break; |
| 21631 | } else { |
| 21632 | if (misseglist->objects >= ms) { |
| 21633 | nit++; |
| 21634 | if (nit >= 3) { |
| 21635 | //break; |
| 21636 | // Do the last round with unbounded flip link level. |
| 21637 | b->fliplinklevel = 100000; |
| 21638 | } |
| 21639 | } else { |
| 21640 | ms = misseglist->objects; |
| 21641 | if (nit > 0) { |
| 21642 | nit--; |
| 21643 | } |
| 21644 | } |
| 21645 | for (i = 0; i < misseglist->objects; i++) { |
| 21646 | subsegstack->newindex((void **) &paryseg); |
| 21647 | *paryseg = * (face *) fastlookup(misseglist, i); |
| 21648 | } |
| 21649 | misseglist->restart(); |
| 21650 | autofliplinklevel+=b->fliplinklevelinc; |
| 21651 | } |
| 21652 | } else { |
| 21653 | // All segments are recovered. |
| 21654 | break; |
| 21655 | } |
| 21656 | } // while (1) |
| 21657 | |
| 21658 | if (b->verbose) { |
| 21659 | printf(" %ld (%ld) segments are recovered (missing).\n" , |
| 21660 | subsegs->items - misseglist->objects, misseglist->objects); |
| 21661 | } |
| 21662 | |
| 21663 | if (misseglist->objects > 0) { |
| 21664 | // Second, trying to recover segments by doing more flips (fullsearch). |
| 21665 | while (misseglist->objects > 0) { |
| 21666 | ms = misseglist->objects; |
| 21667 | for (i = 0; i < misseglist->objects; i++) { |
| 21668 | subsegstack->newindex((void **) &paryseg); |
| 21669 | *paryseg = * (face *) fastlookup(misseglist, i); |
| 21670 | } |
| 21671 | misseglist->restart(); |
| 21672 | |
| 21673 | recoversegments(misseglist, 1, 0); |
| 21674 | |
| 21675 | if (misseglist->objects < ms) { |
| 21676 | // The number of missing segments is reduced. |
| 21677 | continue; |
| 21678 | } else { |
| 21679 | break; |
| 21680 | } |
| 21681 | } |
| 21682 | if (b->verbose) { |
| 21683 | printf(" %ld (%ld) segments are recovered (missing).\n" , |
| 21684 | subsegs->items - misseglist->objects, misseglist->objects); |
| 21685 | } |
| 21686 | } |
| 21687 | |
| 21688 | if (misseglist->objects > 0) { |
| 21689 | // Third, trying to recover segments by doing more flips (fullsearch) |
| 21690 | // and adding Steiner points in the volume. |
| 21691 | while (misseglist->objects > 0) { |
| 21692 | ms = misseglist->objects; |
| 21693 | for (i = 0; i < misseglist->objects; i++) { |
| 21694 | subsegstack->newindex((void **) &paryseg); |
| 21695 | *paryseg = * (face *) fastlookup(misseglist, i); |
| 21696 | } |
| 21697 | misseglist->restart(); |
| 21698 | |
| 21699 | recoversegments(misseglist, 1, 1); |
| 21700 | |
| 21701 | if (misseglist->objects < ms) { |
| 21702 | // The number of missing segments is reduced. |
| 21703 | continue; |
| 21704 | } else { |
| 21705 | break; |
| 21706 | } |
| 21707 | } |
| 21708 | if (b->verbose) { |
| 21709 | printf(" Added %ld Steiner points in volume.\n" , st_volref_count); |
| 21710 | } |
| 21711 | } |
| 21712 | |
| 21713 | if (misseglist->objects > 0) { |
| 21714 | // Last, trying to recover segments by doing more flips (fullsearch), |
| 21715 | // and adding Steiner points in the volume, and splitting segments. |
| 21716 | long bak_inpoly_count = st_volref_count; //st_inpoly_count; |
| 21717 | for (i = 0; i < misseglist->objects; i++) { |
| 21718 | subsegstack->newindex((void **) &paryseg); |
| 21719 | *paryseg = * (face *) fastlookup(misseglist, i); |
| 21720 | } |
| 21721 | misseglist->restart(); |
| 21722 | |
| 21723 | recoversegments(misseglist, 1, 2); |
| 21724 | |
| 21725 | if (b->verbose) { |
| 21726 | printf(" Added %ld Steiner points in segments.\n" , st_segref_count); |
| 21727 | if (st_volref_count > bak_inpoly_count) { |
| 21728 | printf(" Added another %ld Steiner points in volume.\n" , |
| 21729 | st_volref_count - bak_inpoly_count); |
| 21730 | } |
| 21731 | } |
| 21732 | assert(misseglist->objects == 0l); |
| 21733 | } |
| 21734 | |
| 21735 | |
| 21736 | if (st_segref_count > 0) { |
| 21737 | // Try to remove the Steiner points added in segments. |
| 21738 | bak_segref_count = st_segref_count; |
| 21739 | bak_volref_count = st_volref_count; |
| 21740 | for (i = 0; i < subvertstack->objects; i++) { |
| 21741 | // Get the Steiner point. |
| 21742 | parypt = (point *) fastlookup(subvertstack, i); |
| 21743 | rempt = *parypt; |
| 21744 | if (!removevertexbyflips(rempt)) { |
| 21745 | // Save it in list. |
| 21746 | bdrysteinerptlist->newindex((void **) &parypt); |
| 21747 | *parypt = rempt; |
| 21748 | } |
| 21749 | } |
| 21750 | if (b->verbose) { |
| 21751 | if (st_segref_count < bak_segref_count) { |
| 21752 | if (bak_volref_count < st_volref_count) { |
| 21753 | printf(" Suppressed %ld Steiner points in segments.\n" , |
| 21754 | st_volref_count - bak_volref_count); |
| 21755 | } |
| 21756 | if ((st_segref_count + (st_volref_count - bak_volref_count)) < |
| 21757 | bak_segref_count) { |
| 21758 | printf(" Removed %ld Steiner points in segments.\n" , |
| 21759 | bak_segref_count - |
| 21760 | (st_segref_count + (st_volref_count - bak_volref_count))); |
| 21761 | } |
| 21762 | } |
| 21763 | } |
| 21764 | subvertstack->restart(); |
| 21765 | } |
| 21766 | |
| 21767 | |
| 21768 | tv = clock(); |
| 21769 | |
| 21770 | if (b->verbose) { |
| 21771 | printf(" Recovering facets.\n" ); |
| 21772 | } |
| 21773 | |
| 21774 | // Subfaces will be introduced. |
| 21775 | checksubfaceflag = 1; |
| 21776 | |
| 21777 | misshlist = new arraypool(sizeof(face), 8); |
| 21778 | |
| 21779 | // Randomly order the subfaces. |
| 21780 | subfaces->traversalinit(); |
| 21781 | for (i = 0; i < subfaces->items; i++) { |
| 21782 | s = randomnation(i + 1); |
| 21783 | // Move the s-th subface to the i-th. |
| 21784 | subfacstack->newindex((void **) &parysh); |
| 21785 | *parysh = * (face *) fastlookup(subfacstack, s); |
| 21786 | // Put i-th subface to be the s-th. |
| 21787 | searchsh.sh = shellfacetraverse(subfaces); |
| 21788 | parysh = (face *) fastlookup(subfacstack, s); |
| 21789 | *parysh = searchsh; |
| 21790 | } |
| 21791 | |
| 21792 | ms = subfaces->items; |
| 21793 | nit = 0; |
| 21794 | b->fliplinklevel = -1; // Init. |
| 21795 | if (b->fliplinklevel < 0) { |
| 21796 | autofliplinklevel = 1; // Init value. |
| 21797 | } |
| 21798 | |
| 21799 | while (1) { |
| 21800 | recoversubfaces(misshlist, 0); |
| 21801 | |
| 21802 | if (misshlist->objects > 0) { |
| 21803 | if (b->fliplinklevel >= 0) { |
| 21804 | break; |
| 21805 | } else { |
| 21806 | if (misshlist->objects >= ms) { |
| 21807 | nit++; |
| 21808 | if (nit >= 3) { |
| 21809 | //break; |
| 21810 | // Do the last round with unbounded flip link level. |
| 21811 | b->fliplinklevel = 100000; |
| 21812 | } |
| 21813 | } else { |
| 21814 | ms = misshlist->objects; |
| 21815 | if (nit > 0) { |
| 21816 | nit--; |
| 21817 | } |
| 21818 | } |
| 21819 | for (i = 0; i < misshlist->objects; i++) { |
| 21820 | subfacstack->newindex((void **) &parysh); |
| 21821 | *parysh = * (face *) fastlookup(misshlist, i); |
| 21822 | } |
| 21823 | misshlist->restart(); |
| 21824 | autofliplinklevel+=b->fliplinklevelinc; |
| 21825 | } |
| 21826 | } else { |
| 21827 | // All subfaces are recovered. |
| 21828 | break; |
| 21829 | } |
| 21830 | } // while (1) |
| 21831 | |
| 21832 | if (b->verbose) { |
| 21833 | printf(" %ld (%ld) subfaces are recovered (missing).\n" , |
| 21834 | subfaces->items - misshlist->objects, misshlist->objects); |
| 21835 | } |
| 21836 | |
| 21837 | if (misshlist->objects > 0) { |
| 21838 | // There are missing subfaces. Add Steiner points. |
| 21839 | for (i = 0; i < misshlist->objects; i++) { |
| 21840 | subfacstack->newindex((void **) &parysh); |
| 21841 | *parysh = * (face *) fastlookup(misshlist, i); |
| 21842 | } |
| 21843 | misshlist->restart(); |
| 21844 | |
| 21845 | recoversubfaces(NULL, 1); |
| 21846 | |
| 21847 | if (b->verbose) { |
| 21848 | printf(" Added %ld Steiner points in facets.\n" , st_facref_count); |
| 21849 | } |
| 21850 | } |
| 21851 | |
| 21852 | |
| 21853 | if (st_facref_count > 0) { |
| 21854 | // Try to remove the Steiner points added in facets. |
| 21855 | bak_facref_count = st_facref_count; |
| 21856 | for (i = 0; i < subvertstack->objects; i++) { |
| 21857 | // Get the Steiner point. |
| 21858 | parypt = (point *) fastlookup(subvertstack, i); |
| 21859 | rempt = *parypt; |
| 21860 | if (!removevertexbyflips(*parypt)) { |
| 21861 | // Save it in list. |
| 21862 | bdrysteinerptlist->newindex((void **) &parypt); |
| 21863 | *parypt = rempt; |
| 21864 | } |
| 21865 | } |
| 21866 | if (b->verbose) { |
| 21867 | if (st_facref_count < bak_facref_count) { |
| 21868 | printf(" Removed %ld Steiner points in facets.\n" , |
| 21869 | bak_facref_count - st_facref_count); |
| 21870 | } |
| 21871 | } |
| 21872 | subvertstack->restart(); |
| 21873 | } |
| 21874 | |
| 21875 | |
| 21876 | if (bdrysteinerptlist->objects > 0) { |
| 21877 | if (b->verbose) { |
| 21878 | printf(" %ld Steiner points remained in boundary.\n" , |
| 21879 | bdrysteinerptlist->objects); |
| 21880 | } |
| 21881 | } // if |
| 21882 | |
| 21883 | |
| 21884 | // Accumulate the dynamic memory. |
| 21885 | totalworkmemory += (misseglist->totalmemory + misshlist->totalmemory + |
| 21886 | bdrysteinerptlist->totalmemory); |
| 21887 | |
| 21888 | delete bdrysteinerptlist; |
| 21889 | delete misseglist; |
| 21890 | delete misshlist; |
| 21891 | } |
| 21892 | |
| 21893 | //// //// |
| 21894 | //// //// |
| 21895 | //// steiner_cxx ////////////////////////////////////////////////////////////// |
| 21896 | |
| 21897 | |
| 21898 | //// reconstruct_cxx ////////////////////////////////////////////////////////// |
| 21899 | //// //// |
| 21900 | //// //// |
| 21901 | |
| 21902 | /////////////////////////////////////////////////////////////////////////////// |
| 21903 | // // |
| 21904 | // carveholes() Remove tetrahedra not in the mesh domain. // |
| 21905 | // // |
| 21906 | /////////////////////////////////////////////////////////////////////////////// |
| 21907 | |
| 21908 | |
| 21909 | void tetgenmesh::carveholes() |
| 21910 | { |
| 21911 | arraypool *tetarray, *hullarray; |
| 21912 | triface tetloop, neightet, *parytet, *parytet1; |
| 21913 | triface *regiontets = NULL; |
| 21914 | face checksh, *parysh; |
| 21915 | face checkseg; |
| 21916 | point ptloop, *parypt; |
| 21917 | int t1ver; |
| 21918 | int i, j, k; |
| 21919 | |
| 21920 | if (!b->quiet) { |
| 21921 | if (b->convex) { |
| 21922 | printf("Marking exterior tetrahedra ...\n" ); |
| 21923 | } else { |
| 21924 | printf("Removing exterior tetrahedra ...\n" ); |
| 21925 | } |
| 21926 | } |
| 21927 | |
| 21928 | // Initialize the pool of exterior tets. |
| 21929 | tetarray = new arraypool(sizeof(triface), 10); |
| 21930 | hullarray = new arraypool(sizeof(triface), 10); |
| 21931 | |
| 21932 | // Collect unprotected tets and hull tets. |
| 21933 | tetrahedrons->traversalinit(); |
| 21934 | tetloop.ver = 11; // The face opposite to dummypoint. |
| 21935 | tetloop.tet = alltetrahedrontraverse(); |
| 21936 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 21937 | if (ishulltet(tetloop)) { |
| 21938 | // Is this side protected by a subface? |
| 21939 | if (!issubface(tetloop)) { |
| 21940 | // Collect an unprotected hull tet and tet. |
| 21941 | infect(tetloop); |
| 21942 | hullarray->newindex((void **) &parytet); |
| 21943 | *parytet = tetloop; |
| 21944 | // tetloop's face number is 11 & 3 = 3. |
| 21945 | decode(tetloop.tet[3], neightet); |
| 21946 | if (!infected(neightet)) { |
| 21947 | infect(neightet); |
| 21948 | tetarray->newindex((void **) &parytet); |
| 21949 | *parytet = neightet; |
| 21950 | } |
| 21951 | } |
| 21952 | } |
| 21953 | tetloop.tet = alltetrahedrontraverse(); |
| 21954 | } |
| 21955 | |
| 21956 | if (in->numberofholes > 0) { |
| 21957 | // Mark as infected any tets inside volume holes. |
| 21958 | for (i = 0; i < 3 * in->numberofholes; i += 3) { |
| 21959 | // Search a tet containing the i-th hole point. |
| 21960 | neightet.tet = NULL; |
| 21961 | randomsample(&(in->holelist[i]), &neightet); |
| 21962 | if (locate(&(in->holelist[i]), &neightet) != OUTSIDE) { |
| 21963 | // The tet 'neightet' contain this point. |
| 21964 | if (!infected(neightet)) { |
| 21965 | infect(neightet); |
| 21966 | tetarray->newindex((void **) &parytet); |
| 21967 | *parytet = neightet; |
| 21968 | // Add its adjacent tet if it is not protected. |
| 21969 | if (!issubface(neightet)) { |
| 21970 | decode(neightet.tet[neightet.ver & 3], tetloop); |
| 21971 | if (!infected(tetloop)) { |
| 21972 | infect(tetloop); |
| 21973 | if (ishulltet(tetloop)) { |
| 21974 | hullarray->newindex((void **) &parytet); |
| 21975 | } else { |
| 21976 | tetarray->newindex((void **) &parytet); |
| 21977 | } |
| 21978 | *parytet = tetloop; |
| 21979 | } |
| 21980 | } |
| 21981 | else { |
| 21982 | // It is protected. Check if its adjacent tet is a hull tet. |
| 21983 | decode(neightet.tet[neightet.ver & 3], tetloop); |
| 21984 | if (ishulltet(tetloop)) { |
| 21985 | // It is hull tet, add it into the list. Moreover, the subface |
| 21986 | // is dead, i.e., both sides are in exterior. |
| 21987 | if (!infected(tetloop)) { |
| 21988 | infect(tetloop); |
| 21989 | hullarray->newindex((void **) &parytet); |
| 21990 | *parytet = tetloop; |
| 21991 | } |
| 21992 | } |
| 21993 | if (infected(tetloop)) { |
| 21994 | // Both sides of this subface are in exterior. |
| 21995 | tspivot(neightet, checksh); |
| 21996 | sinfect(checksh); // Only queue it once. |
| 21997 | subfacstack->newindex((void **) &parysh); |
| 21998 | *parysh = checksh; |
| 21999 | } |
| 22000 | } |
| 22001 | } // if (!infected(neightet)) |
| 22002 | } else { |
| 22003 | // A hole point locates outside of the convex hull. |
| 22004 | if (!b->quiet) { |
| 22005 | printf("Warning: The %d-th hole point " , i/3 + 1); |
| 22006 | printf("lies outside the convex hull.\n" ); |
| 22007 | } |
| 22008 | } |
| 22009 | } // i |
| 22010 | } // if (in->numberofholes > 0) |
| 22011 | |
| 22012 | if (b->regionattrib && (in->numberofregions > 0)) { // -A option. |
| 22013 | // Record the tetrahedra that contains the region points for assigning |
| 22014 | // region attributes after the holes have been carved. |
| 22015 | regiontets = new triface[in->numberofregions]; |
| 22016 | // Mark as marktested any tetrahedra inside volume regions. |
| 22017 | for (i = 0; i < 5 * in->numberofregions; i += 5) { |
| 22018 | // Search a tet containing the i-th region point. |
| 22019 | neightet.tet = NULL; |
| 22020 | randomsample(&(in->regionlist[i]), &neightet); |
| 22021 | if (locate(&(in->regionlist[i]), &neightet) != OUTSIDE) { |
| 22022 | regiontets[i/5] = neightet; |
| 22023 | } else { |
| 22024 | if (!b->quiet) { |
| 22025 | printf("Warning: The %d-th region point " , i/5+1); |
| 22026 | printf("lies outside the convex hull.\n" ); |
| 22027 | } |
| 22028 | regiontets[i/5].tet = NULL; |
| 22029 | } |
| 22030 | } |
| 22031 | } |
| 22032 | |
| 22033 | // Collect all exterior tets (in concave place and in holes). |
| 22034 | for (i = 0; i < tetarray->objects; i++) { |
| 22035 | parytet = (triface *) fastlookup(tetarray, i); |
| 22036 | j = (parytet->ver & 3); // j is the current face number. |
| 22037 | // Check the other three adjacent tets. |
| 22038 | for (k = 1; k < 4; k++) { |
| 22039 | decode(parytet->tet[(j + k) % 4], neightet); |
| 22040 | // neightet may be a hull tet. |
| 22041 | if (!infected(neightet)) { |
| 22042 | // Is neightet protected by a subface. |
| 22043 | if (!issubface(neightet)) { |
| 22044 | // Not proected. Collect it. (It must not be a hull tet). |
| 22045 | infect(neightet); |
| 22046 | tetarray->newindex((void **) &parytet1); |
| 22047 | *parytet1 = neightet; |
| 22048 | } else { |
| 22049 | // Protected. Check if it is a hull tet. |
| 22050 | if (ishulltet(neightet)) { |
| 22051 | // A hull tet. Collect it. |
| 22052 | infect(neightet); |
| 22053 | hullarray->newindex((void **) &parytet1); |
| 22054 | *parytet1 = neightet; |
| 22055 | // Both sides of this subface are exterior. |
| 22056 | tspivot(neightet, checksh); |
| 22057 | // Queue this subface (to be deleted later). |
| 22058 | assert(!sinfected(checksh)); |
| 22059 | sinfect(checksh); // Only queue it once. |
| 22060 | subfacstack->newindex((void **) &parysh); |
| 22061 | *parysh = checksh; |
| 22062 | } |
| 22063 | } |
| 22064 | } else { |
| 22065 | // Both sides of this face are in exterior. |
| 22066 | // If there is a subface. It should be collected. |
| 22067 | if (issubface(neightet)) { |
| 22068 | tspivot(neightet, checksh); |
| 22069 | if (!sinfected(checksh)) { |
| 22070 | sinfect(checksh); |
| 22071 | subfacstack->newindex((void **) &parysh); |
| 22072 | *parysh = checksh; |
| 22073 | } |
| 22074 | } |
| 22075 | } |
| 22076 | } // j, k |
| 22077 | } // i |
| 22078 | |
| 22079 | if (b->regionattrib && (in->numberofregions > 0)) { |
| 22080 | // Re-check saved region tets to see if they lie outside. |
| 22081 | for (i = 0; i < in->numberofregions; i++) { |
| 22082 | if (infected(regiontets[i])) { |
| 22083 | if (b->verbose) { |
| 22084 | printf("Warning: The %d-th region point " , i+1); |
| 22085 | printf("lies in the exterior of the domain.\n" ); |
| 22086 | } |
| 22087 | regiontets[i].tet = NULL; |
| 22088 | } |
| 22089 | } |
| 22090 | } |
| 22091 | |
| 22092 | // Collect vertices which point to infected tets. These vertices |
| 22093 | // may get deleted after the removal of exterior tets. |
| 22094 | // If -Y1 option is used, collect all Steiner points for removal. |
| 22095 | // The lists 'cavetetvertlist' and 'subvertstack' are re-used. |
| 22096 | points->traversalinit(); |
| 22097 | ptloop = pointtraverse(); |
| 22098 | while (ptloop != NULL) { |
| 22099 | if ((pointtype(ptloop) != UNUSEDVERTEX) && |
| 22100 | (pointtype(ptloop) != DUPLICATEDVERTEX)) { |
| 22101 | decode(point2tet(ptloop), neightet); |
| 22102 | if (infected(neightet)) { |
| 22103 | cavetetvertlist->newindex((void **) &parypt); |
| 22104 | *parypt = ptloop; |
| 22105 | } |
| 22106 | if (b->nobisect && (b->nobisect_param > 0)) { // -Y1 |
| 22107 | // Queue it if it is a Steiner point. |
| 22108 | if (pointmark(ptloop) > |
| 22109 | (in->numberofpoints - (in->firstnumber ? 0 : 1))) { |
| 22110 | subvertstack->newindex((void **) &parypt); |
| 22111 | *parypt = ptloop; |
| 22112 | } |
| 22113 | } |
| 22114 | } |
| 22115 | ptloop = pointtraverse(); |
| 22116 | } |
| 22117 | |
| 22118 | if (!b->convex && (tetarray->objects > 0l)) { // No -c option. |
| 22119 | // Remove exterior tets. Hull tets are updated. |
| 22120 | arraypool *newhullfacearray; |
| 22121 | triface hulltet, casface; |
| 22122 | point pa, pb, pc; |
| 22123 | |
| 22124 | newhullfacearray = new arraypool(sizeof(triface), 10); |
| 22125 | |
| 22126 | // Create and save new hull tets. |
| 22127 | for (i = 0; i < tetarray->objects; i++) { |
| 22128 | parytet = (triface *) fastlookup(tetarray, i); |
| 22129 | for (j = 0; j < 4; j++) { |
| 22130 | decode(parytet->tet[j], tetloop); |
| 22131 | if (!infected(tetloop)) { |
| 22132 | // Found a new hull face (must be a subface). |
| 22133 | tspivot(tetloop, checksh); |
| 22134 | maketetrahedron(&hulltet); |
| 22135 | pa = org(tetloop); |
| 22136 | pb = dest(tetloop); |
| 22137 | pc = apex(tetloop); |
| 22138 | setvertices(hulltet, pb, pa, pc, dummypoint); |
| 22139 | bond(tetloop, hulltet); |
| 22140 | // Update the subface-to-tet map. |
| 22141 | sesymself(checksh); |
| 22142 | tsbond(hulltet, checksh); |
| 22143 | // Update the segment-to-tet map. |
| 22144 | for (k = 0; k < 3; k++) { |
| 22145 | if (issubseg(tetloop)) { |
| 22146 | tsspivot1(tetloop, checkseg); |
| 22147 | tssbond1(hulltet, checkseg); |
| 22148 | sstbond1(checkseg, hulltet); |
| 22149 | } |
| 22150 | enextself(tetloop); |
| 22151 | eprevself(hulltet); |
| 22152 | } |
| 22153 | // Update the point-to-tet map. |
| 22154 | setpoint2tet(pa, (tetrahedron) tetloop.tet); |
| 22155 | setpoint2tet(pb, (tetrahedron) tetloop.tet); |
| 22156 | setpoint2tet(pc, (tetrahedron) tetloop.tet); |
| 22157 | // Save the exterior tet at this hull face. It still holds pointer |
| 22158 | // to the adjacent interior tet. Use it to connect new hull tets. |
| 22159 | newhullfacearray->newindex((void **) &parytet1); |
| 22160 | parytet1->tet = parytet->tet; |
| 22161 | parytet1->ver = j; |
| 22162 | } // if (!infected(tetloop)) |
| 22163 | } // j |
| 22164 | } // i |
| 22165 | |
| 22166 | // Connect new hull tets. |
| 22167 | for (i = 0; i < newhullfacearray->objects; i++) { |
| 22168 | parytet = (triface *) fastlookup(newhullfacearray, i); |
| 22169 | fsym(*parytet, neightet); |
| 22170 | // Get the new hull tet. |
| 22171 | fsym(neightet, hulltet); |
| 22172 | for (j = 0; j < 3; j++) { |
| 22173 | esym(hulltet, casface); |
| 22174 | if (casface.tet[casface.ver & 3] == NULL) { |
| 22175 | // Since the boundary of the domain may not be a manifold, we |
| 22176 | // find the adjacent hull face by traversing the tets in the |
| 22177 | // exterior (which are all infected tets). |
| 22178 | neightet = *parytet; |
| 22179 | while (1) { |
| 22180 | fnextself(neightet); |
| 22181 | if (!infected(neightet)) break; |
| 22182 | } |
| 22183 | if (!ishulltet(neightet)) { |
| 22184 | // An interior tet. Get the new hull tet. |
| 22185 | fsymself(neightet); |
| 22186 | esymself(neightet); |
| 22187 | } |
| 22188 | // Bond them together. |
| 22189 | bond(casface, neightet); |
| 22190 | } |
| 22191 | enextself(hulltet); |
| 22192 | enextself(*parytet); |
| 22193 | } // j |
| 22194 | } // i |
| 22195 | |
| 22196 | if (subfacstack->objects > 0l) { |
| 22197 | // Remove all subfaces which do not attach to any tetrahedron. |
| 22198 | // Segments which are not attached to any subfaces and tets |
| 22199 | // are deleted too. |
| 22200 | face casingout, casingin; |
| 22201 | long delsegcount = 0l; |
| 22202 | |
| 22203 | for (i = 0; i < subfacstack->objects; i++) { |
| 22204 | parysh = (face *) fastlookup(subfacstack, i); |
| 22205 | if (i == 0) { |
| 22206 | if (b->verbose) { |
| 22207 | printf("Warning: Removing an open face (%d, %d, %d)\n" , |
| 22208 | pointmark(sorg(*parysh)), pointmark(sdest(*parysh)), |
| 22209 | pointmark(sapex(*parysh))); |
| 22210 | } |
| 22211 | } |
| 22212 | // Dissolve this subface from face links. |
| 22213 | for (j = 0; j < 3; j++) { |
| 22214 | spivot(*parysh, casingout); |
| 22215 | sspivot(*parysh, checkseg); |
| 22216 | if (casingout.sh != NULL) { |
| 22217 | casingin = casingout; |
| 22218 | while (1) { |
| 22219 | spivot(casingin, checksh); |
| 22220 | if (checksh.sh == parysh->sh) break; |
| 22221 | casingin = checksh; |
| 22222 | } |
| 22223 | if (casingin.sh != casingout.sh) { |
| 22224 | // Update the link: ... -> casingin -> casingout ->... |
| 22225 | sbond1(casingin, casingout); |
| 22226 | } else { |
| 22227 | // Only one subface at this edge is left. |
| 22228 | sdissolve(casingout); |
| 22229 | } |
| 22230 | if (checkseg.sh != NULL) { |
| 22231 | // Make sure the segment does not connect to a dead one. |
| 22232 | ssbond(casingout, checkseg); |
| 22233 | } |
| 22234 | } else { |
| 22235 | if (checkseg.sh != NULL) { |
| 22236 | // The segment is also dead. |
| 22237 | if (delsegcount == 0) { |
| 22238 | if (b->verbose) { |
| 22239 | printf("Warning: Removing a dangling segment (%d, %d)\n" , |
| 22240 | pointmark(sorg(checkseg)), pointmark(sdest(checkseg))); |
| 22241 | } |
| 22242 | } |
| 22243 | shellfacedealloc(subsegs, checkseg.sh); |
| 22244 | delsegcount++; |
| 22245 | } |
| 22246 | } |
| 22247 | senextself(*parysh); |
| 22248 | } // j |
| 22249 | // Delete this subface. |
| 22250 | shellfacedealloc(subfaces, parysh->sh); |
| 22251 | } // i |
| 22252 | if (b->verbose) { |
| 22253 | printf(" Deleted %ld subfaces.\n" , subfacstack->objects); |
| 22254 | if (delsegcount > 0) { |
| 22255 | printf(" Deleted %ld segments.\n" , delsegcount); |
| 22256 | } |
| 22257 | } |
| 22258 | subfacstack->restart(); |
| 22259 | } // if (subfacstack->objects > 0l) |
| 22260 | |
| 22261 | if (cavetetvertlist->objects > 0l) { |
| 22262 | // Some vertices may lie in exterior. Marke them as UNUSEDVERTEX. |
| 22263 | long delvertcount = unuverts; |
| 22264 | long delsteinercount = 0l; |
| 22265 | |
| 22266 | for (i = 0; i < cavetetvertlist->objects; i++) { |
| 22267 | parypt = (point *) fastlookup(cavetetvertlist, i); |
| 22268 | decode(point2tet(*parypt), neightet); |
| 22269 | if (infected(neightet)) { |
| 22270 | // Found an exterior vertex. |
| 22271 | if (pointmark(*parypt) > |
| 22272 | (in->numberofpoints - (in->firstnumber ? 0 : 1))) { |
| 22273 | // A Steiner point. |
| 22274 | if (pointtype(*parypt) == FREESEGVERTEX) { |
| 22275 | st_segref_count--; |
| 22276 | } else if (pointtype(*parypt) == FREEFACETVERTEX) { |
| 22277 | st_facref_count--; |
| 22278 | } else { |
| 22279 | assert(pointtype(*parypt) == FREEVOLVERTEX); |
| 22280 | st_volref_count--; |
| 22281 | } |
| 22282 | delsteinercount++; |
| 22283 | if (steinerleft > 0) steinerleft++; |
| 22284 | } |
| 22285 | setpointtype(*parypt, UNUSEDVERTEX); |
| 22286 | unuverts++; |
| 22287 | } |
| 22288 | } |
| 22289 | |
| 22290 | if (b->verbose) { |
| 22291 | if (unuverts > delvertcount) { |
| 22292 | if (delsteinercount > 0l) { |
| 22293 | if (unuverts > (delvertcount + delsteinercount)) { |
| 22294 | printf(" Removed %ld exterior input vertices.\n" , |
| 22295 | unuverts - delvertcount - delsteinercount); |
| 22296 | } |
| 22297 | printf(" Removed %ld exterior Steiner vertices.\n" , |
| 22298 | delsteinercount); |
| 22299 | } else { |
| 22300 | printf(" Removed %ld exterior input vertices.\n" , |
| 22301 | unuverts - delvertcount); |
| 22302 | } |
| 22303 | } |
| 22304 | } |
| 22305 | cavetetvertlist->restart(); |
| 22306 | // Comment: 'subvertstack' will be cleaned in routine |
| 22307 | // suppresssteinerpoints(). |
| 22308 | } // if (cavetetvertlist->objects > 0l) |
| 22309 | |
| 22310 | // Update the hull size. |
| 22311 | hullsize += (newhullfacearray->objects - hullarray->objects); |
| 22312 | |
| 22313 | // Delete all exterior tets and old hull tets. |
| 22314 | for (i = 0; i < tetarray->objects; i++) { |
| 22315 | parytet = (triface *) fastlookup(tetarray, i); |
| 22316 | tetrahedrondealloc(parytet->tet); |
| 22317 | } |
| 22318 | tetarray->restart(); |
| 22319 | |
| 22320 | for (i = 0; i < hullarray->objects; i++) { |
| 22321 | parytet = (triface *) fastlookup(hullarray, i); |
| 22322 | tetrahedrondealloc(parytet->tet); |
| 22323 | } |
| 22324 | hullarray->restart(); |
| 22325 | |
| 22326 | delete newhullfacearray; |
| 22327 | } // if (!b->convex && (tetarray->objects > 0l)) |
| 22328 | |
| 22329 | if (b->convex && (tetarray->objects > 0l)) { // With -c option |
| 22330 | // In this case, all exterior tets get a region marker '-1'. |
| 22331 | assert(b->regionattrib > 0); // -A option must be enabled. |
| 22332 | int attrnum = numelemattrib - 1; |
| 22333 | |
| 22334 | for (i = 0; i < tetarray->objects; i++) { |
| 22335 | parytet = (triface *) fastlookup(tetarray, i); |
| 22336 | setelemattribute(parytet->tet, attrnum, -1); |
| 22337 | } |
| 22338 | tetarray->restart(); |
| 22339 | |
| 22340 | for (i = 0; i < hullarray->objects; i++) { |
| 22341 | parytet = (triface *) fastlookup(hullarray, i); |
| 22342 | uninfect(*parytet); |
| 22343 | } |
| 22344 | hullarray->restart(); |
| 22345 | |
| 22346 | if (subfacstack->objects > 0l) { |
| 22347 | for (i = 0; i < subfacstack->objects; i++) { |
| 22348 | parysh = (face *) fastlookup(subfacstack, i); |
| 22349 | suninfect(*parysh); |
| 22350 | } |
| 22351 | subfacstack->restart(); |
| 22352 | } |
| 22353 | |
| 22354 | if (cavetetvertlist->objects > 0l) { |
| 22355 | cavetetvertlist->restart(); |
| 22356 | } |
| 22357 | } // if (b->convex && (tetarray->objects > 0l)) |
| 22358 | |
| 22359 | if (b->regionattrib) { // With -A option. |
| 22360 | if (!b->quiet) { |
| 22361 | printf("Spreading region attributes.\n" ); |
| 22362 | } |
| 22363 | REAL volume; |
| 22364 | int attr, maxattr = 0; // Choose a small number here. |
| 22365 | int attrnum = numelemattrib - 1; |
| 22366 | // Comment: The element region marker is at the end of the list of |
| 22367 | // the element attributes. |
| 22368 | int regioncount = 0; |
| 22369 | |
| 22370 | // If has user-defined region attributes. |
| 22371 | if (in->numberofregions > 0) { |
| 22372 | // Spread region attributes. |
| 22373 | for (i = 0; i < 5 * in->numberofregions; i += 5) { |
| 22374 | if (regiontets[i/5].tet != NULL) { |
| 22375 | attr = (int) in->regionlist[i + 3]; |
| 22376 | if (attr > maxattr) { |
| 22377 | maxattr = attr; |
| 22378 | } |
| 22379 | volume = in->regionlist[i + 4]; |
| 22380 | tetarray->restart(); // Re-use this array. |
| 22381 | infect(regiontets[i/5]); |
| 22382 | tetarray->newindex((void **) &parytet); |
| 22383 | *parytet = regiontets[i/5]; |
| 22384 | // Collect and set attrs for all tets of this region. |
| 22385 | for (j = 0; j < tetarray->objects; j++) { |
| 22386 | parytet = (triface *) fastlookup(tetarray, j); |
| 22387 | tetloop = *parytet; |
| 22388 | setelemattribute(tetloop.tet, attrnum, attr); |
| 22389 | if (b->varvolume) { // If has -a option. |
| 22390 | setvolumebound(tetloop.tet, volume); |
| 22391 | } |
| 22392 | for (k = 0; k < 4; k++) { |
| 22393 | decode(tetloop.tet[k], neightet); |
| 22394 | // Is the adjacent already checked? |
| 22395 | if (!infected(neightet)) { |
| 22396 | // Is this side protected by a subface? |
| 22397 | if (!issubface(neightet)) { |
| 22398 | infect(neightet); |
| 22399 | tetarray->newindex((void **) &parytet); |
| 22400 | *parytet = neightet; |
| 22401 | } |
| 22402 | } |
| 22403 | } // k |
| 22404 | } // j |
| 22405 | regioncount++; |
| 22406 | } // if (regiontets[i/5].tet != NULL) |
| 22407 | } // i |
| 22408 | } |
| 22409 | |
| 22410 | // Set attributes for all tetrahedra. |
| 22411 | attr = maxattr + 1; |
| 22412 | tetrahedrons->traversalinit(); |
| 22413 | tetloop.tet = tetrahedrontraverse(); |
| 22414 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 22415 | if (!infected(tetloop)) { |
| 22416 | // An unmarked region. |
| 22417 | tetarray->restart(); // Re-use this array. |
| 22418 | infect(tetloop); |
| 22419 | tetarray->newindex((void **) &parytet); |
| 22420 | *parytet = tetloop; |
| 22421 | // Find and mark all tets. |
| 22422 | for (j = 0; j < tetarray->objects; j++) { |
| 22423 | parytet = (triface *) fastlookup(tetarray, j); |
| 22424 | tetloop = *parytet; |
| 22425 | setelemattribute(tetloop.tet, attrnum, attr); |
| 22426 | for (k = 0; k < 4; k++) { |
| 22427 | decode(tetloop.tet[k], neightet); |
| 22428 | // Is the adjacent tet already checked? |
| 22429 | if (!infected(neightet)) { |
| 22430 | // Is this side protected by a subface? |
| 22431 | if (!issubface(neightet)) { |
| 22432 | infect(neightet); |
| 22433 | tetarray->newindex((void **) &parytet); |
| 22434 | *parytet = neightet; |
| 22435 | } |
| 22436 | } |
| 22437 | } // k |
| 22438 | } // j |
| 22439 | attr++; // Increase the attribute. |
| 22440 | regioncount++; |
| 22441 | } |
| 22442 | tetloop.tet = tetrahedrontraverse(); |
| 22443 | } |
| 22444 | // Until here, every tet has a region attribute. |
| 22445 | |
| 22446 | // Uninfect processed tets. |
| 22447 | tetrahedrons->traversalinit(); |
| 22448 | tetloop.tet = tetrahedrontraverse(); |
| 22449 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 22450 | uninfect(tetloop); |
| 22451 | tetloop.tet = tetrahedrontraverse(); |
| 22452 | } |
| 22453 | |
| 22454 | if (b->verbose) { |
| 22455 | //assert(regioncount > 0); |
| 22456 | if (regioncount > 1) { |
| 22457 | printf(" Found %d subdomains.\n" , regioncount); |
| 22458 | } else { |
| 22459 | printf(" Found %d domain.\n" , regioncount); |
| 22460 | } |
| 22461 | } |
| 22462 | } // if (b->regionattrib) |
| 22463 | |
| 22464 | if (regiontets != NULL) { |
| 22465 | delete [] regiontets; |
| 22466 | } |
| 22467 | delete tetarray; |
| 22468 | delete hullarray; |
| 22469 | |
| 22470 | if (!b->convex) { // No -c option |
| 22471 | // The mesh is non-convex now. |
| 22472 | nonconvex = 1; |
| 22473 | |
| 22474 | // Push all hull tets into 'flipstack'. |
| 22475 | tetrahedrons->traversalinit(); |
| 22476 | tetloop.ver = 11; // The face opposite to dummypoint. |
| 22477 | tetloop.tet = alltetrahedrontraverse(); |
| 22478 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 22479 | if ((point) tetloop.tet[7] == dummypoint) { |
| 22480 | fsym(tetloop, neightet); |
| 22481 | flippush(flipstack, &neightet); |
| 22482 | } |
| 22483 | tetloop.tet = alltetrahedrontraverse(); |
| 22484 | } |
| 22485 | |
| 22486 | flipconstraints fc; |
| 22487 | fc.enqflag = 2; |
| 22488 | long sliver_peel_count = lawsonflip3d(&fc); |
| 22489 | |
| 22490 | if (sliver_peel_count > 0l) { |
| 22491 | if (b->verbose) { |
| 22492 | printf(" Removed %ld hull slivers.\n" , sliver_peel_count); |
| 22493 | } |
| 22494 | } |
| 22495 | unflipqueue->restart(); |
| 22496 | } // if (!b->convex) |
| 22497 | } |
| 22498 | |
| 22499 | /////////////////////////////////////////////////////////////////////////////// |
| 22500 | // // |
| 22501 | // reconstructmesh() Reconstruct a tetrahedral mesh. // |
| 22502 | // // |
| 22503 | /////////////////////////////////////////////////////////////////////////////// |
| 22504 | |
| 22505 | void tetgenmesh::reconstructmesh() |
| 22506 | { |
| 22507 | tetrahedron *ver2tetarray; |
| 22508 | point *idx2verlist; |
| 22509 | triface tetloop, checktet, prevchktet; |
| 22510 | triface hulltet, face1, face2; |
| 22511 | tetrahedron tptr; |
| 22512 | face subloop, neighsh, nextsh; |
| 22513 | face segloop; |
| 22514 | shellface sptr; |
| 22515 | point p[4], q[3]; |
| 22516 | REAL ori, attrib, volume; |
| 22517 | REAL angtol, ang; |
| 22518 | int , marker = 0; |
| 22519 | int bondflag; |
| 22520 | int t1ver; |
| 22521 | int idx, i, j, k; |
| 22522 | |
| 22523 | if (!b->quiet) { |
| 22524 | printf("Reconstructing mesh ...\n" ); |
| 22525 | } |
| 22526 | |
| 22527 | if (b->convex) { // -c option. |
| 22528 | // Assume the mesh is convex. Exterior tets have region attribute -1. |
| 22529 | assert(in->numberoftetrahedronattributes > 0); |
| 22530 | } else { |
| 22531 | // Assume the mesh is non-convex. |
| 22532 | nonconvex = 1; |
| 22533 | } |
| 22534 | |
| 22535 | // Create a map from indices to vertices. |
| 22536 | makeindex2pointmap(idx2verlist); |
| 22537 | // 'idx2verlist' has length 'in->numberofpoints + 1'. |
| 22538 | if (in->firstnumber == 1) { |
| 22539 | idx2verlist[0] = dummypoint; // Let 0th-entry be dummypoint. |
| 22540 | } |
| 22541 | |
| 22542 | // Allocate an array that maps each vertex to its adjacent tets. |
| 22543 | ver2tetarray = new tetrahedron[in->numberofpoints + 1]; |
| 22544 | //for (i = 0; i < in->numberofpoints + 1; i++) { |
| 22545 | for (i = in->firstnumber; i < in->numberofpoints + in->firstnumber; i++) { |
| 22546 | setpointtype(idx2verlist[i], VOLVERTEX); // initial type. |
| 22547 | ver2tetarray[i] = NULL; |
| 22548 | } |
| 22549 | |
| 22550 | // Create the tetrahedra and connect those that share a common face. |
| 22551 | for (i = 0; i < in->numberoftetrahedra; i++) { |
| 22552 | // Get the four vertices. |
| 22553 | idx = i * in->numberofcorners; |
| 22554 | for (j = 0; j < 4; j++) { |
| 22555 | p[j] = idx2verlist[in->tetrahedronlist[idx++]]; |
| 22556 | } |
| 22557 | // Check the orientation. |
| 22558 | ori = orient3d(p[0], p[1], p[2], p[3]); |
| 22559 | if (ori > 0.0) { |
| 22560 | // Swap the first two vertices. |
| 22561 | q[0] = p[0]; p[0] = p[1]; p[1] = q[0]; |
| 22562 | } else if (ori == 0.0) { |
| 22563 | if (!b->quiet) { |
| 22564 | printf("Warning: Tet #%d is degenerate.\n" , i + in->firstnumber); |
| 22565 | } |
| 22566 | } |
| 22567 | // Create a new tetrahedron. |
| 22568 | maketetrahedron(&tetloop); // tetloop.ver = 11. |
| 22569 | setvertices(tetloop, p[0], p[1], p[2], p[3]); |
| 22570 | // Set element attributes if they exist. |
| 22571 | for (j = 0; j < in->numberoftetrahedronattributes; j++) { |
| 22572 | idx = i * in->numberoftetrahedronattributes; |
| 22573 | attrib = in->tetrahedronattributelist[idx + j]; |
| 22574 | setelemattribute(tetloop.tet, j, attrib); |
| 22575 | } |
| 22576 | // If -a switch is used (with no number follows) Set a volume |
| 22577 | // constraint if it exists. |
| 22578 | if (b->varvolume) { |
| 22579 | if (in->tetrahedronvolumelist != (REAL *) NULL) { |
| 22580 | volume = in->tetrahedronvolumelist[i]; |
| 22581 | } else { |
| 22582 | volume = -1.0; |
| 22583 | } |
| 22584 | setvolumebound(tetloop.tet, volume); |
| 22585 | } |
| 22586 | // Try connecting this tet to others that share the common faces. |
| 22587 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
| 22588 | p[3] = oppo(tetloop); |
| 22589 | // Look for other tets having this vertex. |
| 22590 | idx = pointmark(p[3]); |
| 22591 | tptr = ver2tetarray[idx]; |
| 22592 | // Link the current tet to the next one in the stack. |
| 22593 | tetloop.tet[8 + tetloop.ver] = tptr; |
| 22594 | // Push the current tet onto the stack. |
| 22595 | ver2tetarray[idx] = encode(tetloop); |
| 22596 | decode(tptr, checktet); |
| 22597 | if (checktet.tet != NULL) { |
| 22598 | p[0] = org(tetloop); // a |
| 22599 | p[1] = dest(tetloop); // b |
| 22600 | p[2] = apex(tetloop); // c |
| 22601 | prevchktet = tetloop; |
| 22602 | do { |
| 22603 | q[0] = org(checktet); // a' |
| 22604 | q[1] = dest(checktet); // b' |
| 22605 | q[2] = apex(checktet); // c' |
| 22606 | // Check the three faces at 'd' in 'checktet'. |
| 22607 | bondflag = 0; |
| 22608 | for (j = 0; j < 3; j++) { |
| 22609 | // Go to the face [b',a',d], or [c',b',d], or [a',c',d]. |
| 22610 | esym(checktet, face2); |
| 22611 | if (face2.tet[face2.ver & 3] == NULL) { |
| 22612 | k = ((j + 1) % 3); |
| 22613 | if (q[k] == p[0]) { // b', c', a' = a |
| 22614 | if (q[j] == p[1]) { // a', b', c' = b |
| 22615 | // [#,#,d] is matched to [b,a,d]. |
| 22616 | esym(tetloop, face1); |
| 22617 | bond(face1, face2); |
| 22618 | bondflag++; |
| 22619 | } |
| 22620 | } |
| 22621 | if (q[k] == p[1]) { // b',c',a' = b |
| 22622 | if (q[j] == p[2]) { // a',b',c' = c |
| 22623 | // [#,#,d] is matched to [c,b,d]. |
| 22624 | enext(tetloop, face1); |
| 22625 | esymself(face1); |
| 22626 | bond(face1, face2); |
| 22627 | bondflag++; |
| 22628 | } |
| 22629 | } |
| 22630 | if (q[k] == p[2]) { // b',c',a' = c |
| 22631 | if (q[j] == p[0]) { // a',b',c' = a |
| 22632 | // [#,#,d] is matched to [a,c,d]. |
| 22633 | eprev(tetloop, face1); |
| 22634 | esymself(face1); |
| 22635 | bond(face1, face2); |
| 22636 | bondflag++; |
| 22637 | } |
| 22638 | } |
| 22639 | } else { |
| 22640 | bondflag++; |
| 22641 | } |
| 22642 | enextself(checktet); |
| 22643 | } // j |
| 22644 | // Go to the next tet in the link. |
| 22645 | tptr = checktet.tet[8 + checktet.ver]; |
| 22646 | if (bondflag == 3) { |
| 22647 | // All three faces at d in 'checktet' have been connected. |
| 22648 | // It can be removed from the link. |
| 22649 | prevchktet.tet[8 + prevchktet.ver] = tptr; |
| 22650 | } else { |
| 22651 | // Bakup the previous tet in the link. |
| 22652 | prevchktet = checktet; |
| 22653 | } |
| 22654 | decode(tptr, checktet); |
| 22655 | } while (checktet.tet != NULL); |
| 22656 | } // if (checktet.tet != NULL) |
| 22657 | } // for (tetloop.ver = 0; ... |
| 22658 | } // i |
| 22659 | |
| 22660 | // Remember a tet of the mesh. |
| 22661 | recenttet = tetloop; |
| 22662 | |
| 22663 | // Create hull tets, create the point-to-tet map, and clean up the |
| 22664 | // temporary spaces used in each tet. |
| 22665 | hullsize = tetrahedrons->items; |
| 22666 | |
| 22667 | tetrahedrons->traversalinit(); |
| 22668 | tetloop.tet = tetrahedrontraverse(); |
| 22669 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 22670 | tptr = encode(tetloop); |
| 22671 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
| 22672 | if (tetloop.tet[tetloop.ver] == NULL) { |
| 22673 | // Create a hull tet. |
| 22674 | maketetrahedron(&hulltet); |
| 22675 | p[0] = org(tetloop); |
| 22676 | p[1] = dest(tetloop); |
| 22677 | p[2] = apex(tetloop); |
| 22678 | setvertices(hulltet, p[1], p[0], p[2], dummypoint); |
| 22679 | bond(tetloop, hulltet); |
| 22680 | // Try connecting this to others that share common hull edges. |
| 22681 | for (j = 0; j < 3; j++) { |
| 22682 | fsym(hulltet, face2); |
| 22683 | while (1) { |
| 22684 | if (face2.tet == NULL) break; |
| 22685 | esymself(face2); |
| 22686 | if (apex(face2) == dummypoint) break; |
| 22687 | fsymself(face2); |
| 22688 | } |
| 22689 | if (face2.tet != NULL) { |
| 22690 | // Found an adjacent hull tet. |
| 22691 | assert(face2.tet[face2.ver & 3] == NULL); |
| 22692 | esym(hulltet, face1); |
| 22693 | bond(face1, face2); |
| 22694 | } |
| 22695 | enextself(hulltet); |
| 22696 | } |
| 22697 | //hullsize++; |
| 22698 | } |
| 22699 | // Create the point-to-tet map. |
| 22700 | setpoint2tet((point) (tetloop.tet[4 + tetloop.ver]), tptr); |
| 22701 | // Clean the temporary used space. |
| 22702 | tetloop.tet[8 + tetloop.ver] = NULL; |
| 22703 | } |
| 22704 | tetloop.tet = tetrahedrontraverse(); |
| 22705 | } |
| 22706 | |
| 22707 | hullsize = tetrahedrons->items - hullsize; |
| 22708 | |
| 22709 | // Subfaces will be inserted into the mesh. |
| 22710 | if (in->trifacelist != NULL) { |
| 22711 | // A .face file is given. It may contain boundary faces. Insert them. |
| 22712 | for (i = 0; i < in->numberoftrifaces; i++) { |
| 22713 | // Is it a subface? |
| 22714 | if (in->trifacemarkerlist != NULL) { |
| 22715 | marker = in->trifacemarkerlist[i]; |
| 22716 | } else { |
| 22717 | // Face markers are not available. Assume all of them are subfaces. |
| 22718 | marker = 1; |
| 22719 | } |
| 22720 | if (marker > 0) { |
| 22721 | idx = i * 3; |
| 22722 | for (j = 0; j < 3; j++) { |
| 22723 | p[j] = idx2verlist[in->trifacelist[idx++]]; |
| 22724 | } |
| 22725 | // Search the subface. |
| 22726 | bondflag = 0; |
| 22727 | // Make sure all vertices are in the mesh. Avoid crash. |
| 22728 | for (j = 0; j < 3; j++) { |
| 22729 | decode(point2tet(p[j]), checktet); |
| 22730 | if (checktet.tet == NULL) break; |
| 22731 | } |
| 22732 | if ((j == 3) && getedge(p[0], p[1], &checktet)) { |
| 22733 | tetloop = checktet; |
| 22734 | q[2] = apex(checktet); |
| 22735 | while (1) { |
| 22736 | if (apex(tetloop) == p[2]) { |
| 22737 | // Found the face. |
| 22738 | // Check if there exist a subface already? |
| 22739 | tspivot(tetloop, neighsh); |
| 22740 | if (neighsh.sh != NULL) { |
| 22741 | // Found a duplicated subface. |
| 22742 | // This happens when the mesh was generated by other mesher. |
| 22743 | bondflag = 0; |
| 22744 | } else { |
| 22745 | bondflag = 1; |
| 22746 | } |
| 22747 | break; |
| 22748 | } |
| 22749 | fnextself(tetloop); |
| 22750 | if (apex(tetloop) == q[2]) break; |
| 22751 | } |
| 22752 | } |
| 22753 | if (bondflag) { |
| 22754 | // Create a new subface. |
| 22755 | makeshellface(subfaces, &subloop); |
| 22756 | setshvertices(subloop, p[0], p[1], p[2]); |
| 22757 | // Create the point-to-subface map. |
| 22758 | sptr = sencode(subloop); |
| 22759 | for (j = 0; j < 3; j++) { |
| 22760 | setpointtype(p[j], FACETVERTEX); // initial type. |
| 22761 | setpoint2sh(p[j], sptr); |
| 22762 | } |
| 22763 | if (in->trifacemarkerlist != NULL) { |
| 22764 | setshellmark(subloop, in->trifacemarkerlist[i]); |
| 22765 | } |
| 22766 | // Insert the subface into the mesh. |
| 22767 | tsbond(tetloop, subloop); |
| 22768 | fsymself(tetloop); |
| 22769 | sesymself(subloop); |
| 22770 | tsbond(tetloop, subloop); |
| 22771 | } else { |
| 22772 | if (!b->quiet) { |
| 22773 | if (neighsh.sh == NULL) { |
| 22774 | printf("Warning: Subface #%d [%d,%d,%d] is missing.\n" , |
| 22775 | i + in->firstnumber, pointmark(p[0]), pointmark(p[1]), |
| 22776 | pointmark(p[2])); |
| 22777 | } else { |
| 22778 | printf("Warning: Ignore a dunplicated subface #%d [%d,%d,%d].\n" , |
| 22779 | i + in->firstnumber, pointmark(p[0]), pointmark(p[1]), |
| 22780 | pointmark(p[2])); |
| 22781 | } |
| 22782 | } |
| 22783 | } // if (bondflag) |
| 22784 | } // if (marker > 0) |
| 22785 | } // i |
| 22786 | } // if (in->trifacelist) |
| 22787 | |
| 22788 | // Indentify subfaces from the mesh. |
| 22789 | // Create subfaces for hull faces (if they're not subface yet) and |
| 22790 | // interior faces which separate two different materials. |
| 22791 | eextras = in->numberoftetrahedronattributes; |
| 22792 | tetrahedrons->traversalinit(); |
| 22793 | tetloop.tet = tetrahedrontraverse(); |
| 22794 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 22795 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
| 22796 | tspivot(tetloop, neighsh); |
| 22797 | if (neighsh.sh == NULL) { |
| 22798 | bondflag = 0; |
| 22799 | fsym(tetloop, checktet); |
| 22800 | if (ishulltet(checktet)) { |
| 22801 | // A hull face. |
| 22802 | if (!b->convex) { |
| 22803 | bondflag = 1; // Insert a hull subface. |
| 22804 | } |
| 22805 | } else { |
| 22806 | if (eextras > 0) { |
| 22807 | if (elemattribute(tetloop.tet, eextras - 1) != |
| 22808 | elemattribute(checktet.tet, eextras - 1)) { |
| 22809 | bondflag = 1; // Insert an interior interface. |
| 22810 | } |
| 22811 | } |
| 22812 | } |
| 22813 | if (bondflag) { |
| 22814 | // Create a new subface. |
| 22815 | makeshellface(subfaces, &subloop); |
| 22816 | p[0] = org(tetloop); |
| 22817 | p[1] = dest(tetloop); |
| 22818 | p[2] = apex(tetloop); |
| 22819 | setshvertices(subloop, p[0], p[1], p[2]); |
| 22820 | // Create the point-to-subface map. |
| 22821 | sptr = sencode(subloop); |
| 22822 | for (j = 0; j < 3; j++) { |
| 22823 | setpointtype(p[j], FACETVERTEX); // initial type. |
| 22824 | setpoint2sh(p[j], sptr); |
| 22825 | } |
| 22826 | setshellmark(subloop, 0); // Default marker. |
| 22827 | // Insert the subface into the mesh. |
| 22828 | tsbond(tetloop, subloop); |
| 22829 | sesymself(subloop); |
| 22830 | tsbond(checktet, subloop); |
| 22831 | } // if (bondflag) |
| 22832 | } // if (neighsh.sh == NULL) |
| 22833 | } |
| 22834 | tetloop.tet = tetrahedrontraverse(); |
| 22835 | } |
| 22836 | |
| 22837 | // Connect subfaces together. |
| 22838 | subfaces->traversalinit(); |
| 22839 | subloop.shver = 0; |
| 22840 | subloop.sh = shellfacetraverse(subfaces); |
| 22841 | while (subloop.sh != (shellface *) NULL) { |
| 22842 | for (i = 0; i < 3; i++) { |
| 22843 | spivot(subloop, neighsh); |
| 22844 | if (neighsh.sh == NULL) { |
| 22845 | // Form a subface ring by linking all subfaces at this edge. |
| 22846 | // Traversing all faces of the tets at this edge. |
| 22847 | stpivot(subloop, tetloop); |
| 22848 | q[2] = apex(tetloop); |
| 22849 | neighsh = subloop; |
| 22850 | while (1) { |
| 22851 | fnextself(tetloop); |
| 22852 | tspivot(tetloop, nextsh); |
| 22853 | if (nextsh.sh != NULL) { |
| 22854 | // Link neighsh <= nextsh. |
| 22855 | sbond1(neighsh, nextsh); |
| 22856 | neighsh = nextsh; |
| 22857 | } |
| 22858 | if (apex(tetloop) == q[2]) { |
| 22859 | assert(nextsh.sh == subloop.sh); // It's a ring. |
| 22860 | break; |
| 22861 | } |
| 22862 | } // while (1) |
| 22863 | } // if (neighsh.sh == NULL) |
| 22864 | senextself(subloop); |
| 22865 | } |
| 22866 | subloop.sh = shellfacetraverse(subfaces); |
| 22867 | } |
| 22868 | |
| 22869 | |
| 22870 | // Segments will be introduced. |
| 22871 | if (in->edgelist != NULL) { |
| 22872 | // A .edge file is given. It may contain boundary edges. Insert them. |
| 22873 | for (i = 0; i < in->numberofedges; i++) { |
| 22874 | // Is it a segment? |
| 22875 | if (in->edgemarkerlist != NULL) { |
| 22876 | marker = in->edgemarkerlist[i]; |
| 22877 | } else { |
| 22878 | // Edge markers are not available. Assume all of them are segments. |
| 22879 | marker = 1; |
| 22880 | } |
| 22881 | if (marker != 0) { |
| 22882 | // Insert a segment. |
| 22883 | idx = i * 2; |
| 22884 | for (j = 0; j < 2; j++) { |
| 22885 | p[j] = idx2verlist[in->edgelist[idx++]]; |
| 22886 | } |
| 22887 | // Make sure all vertices are in the mesh. Avoid crash. |
| 22888 | for (j = 0; j < 2; j++) { |
| 22889 | decode(point2tet(p[j]), checktet); |
| 22890 | if (checktet.tet == NULL) break; |
| 22891 | } |
| 22892 | // Search the segment. |
| 22893 | if ((j == 2) && getedge(p[0], p[1], &checktet)) { |
| 22894 | // Create a new subface. |
| 22895 | makeshellface(subsegs, &segloop); |
| 22896 | setshvertices(segloop, p[0], p[1], NULL); |
| 22897 | // Create the point-to-segment map. |
| 22898 | sptr = sencode(segloop); |
| 22899 | for (j = 0; j < 2; j++) { |
| 22900 | setpointtype(p[j], RIDGEVERTEX); // initial type. |
| 22901 | setpoint2sh(p[j], sptr); |
| 22902 | } |
| 22903 | if (in->edgemarkerlist != NULL) { |
| 22904 | setshellmark(segloop, marker); |
| 22905 | } |
| 22906 | // Insert the segment into the mesh. |
| 22907 | tetloop = checktet; |
| 22908 | q[2] = apex(checktet); |
| 22909 | subloop.sh = NULL; |
| 22910 | while (1) { |
| 22911 | tssbond1(tetloop, segloop); |
| 22912 | tspivot(tetloop, subloop); |
| 22913 | if (subloop.sh != NULL) { |
| 22914 | ssbond1(subloop, segloop); |
| 22915 | sbond1(segloop, subloop); |
| 22916 | } |
| 22917 | fnextself(tetloop); |
| 22918 | if (apex(tetloop) == q[2]) break; |
| 22919 | } // while (1) |
| 22920 | // Remember an adjacent tet for this segment. |
| 22921 | sstbond1(segloop, tetloop); |
| 22922 | } else { |
| 22923 | if (!b->quiet) { |
| 22924 | printf("Warning: Segment #%d [%d,%d] is missing.\n" , |
| 22925 | i + in->firstnumber, pointmark(p[0]), pointmark(p[1])); |
| 22926 | } |
| 22927 | } |
| 22928 | } // if (marker != 0) |
| 22929 | } // i |
| 22930 | } // if (in->edgelist) |
| 22931 | |
| 22932 | // Identify segments from the mesh. |
| 22933 | // Create segments for non-manifold edges (which are shared by more |
| 22934 | // than two subfaces), and for non-coplanar edges, i.e., two subfaces |
| 22935 | // form an dihedral angle > 'b->facet_ang_tol' (degree). |
| 22936 | angtol = b->facet_ang_tol / 180.0 * PI; |
| 22937 | subfaces->traversalinit(); |
| 22938 | subloop.shver = 0; |
| 22939 | subloop.sh = shellfacetraverse(subfaces); |
| 22940 | while (subloop.sh != (shellface *) NULL) { |
| 22941 | for (i = 0; i < 3; i++) { |
| 22942 | sspivot(subloop, segloop); |
| 22943 | if (segloop.sh == NULL) { |
| 22944 | // Check if this edge is a segment. |
| 22945 | bondflag = 0; |
| 22946 | // Counter the number of subfaces at this edge. |
| 22947 | idx = 0; |
| 22948 | nextsh = subloop; |
| 22949 | while (1) { |
| 22950 | idx++; |
| 22951 | spivotself(nextsh); |
| 22952 | if (nextsh.sh == subloop.sh) break; |
| 22953 | } |
| 22954 | if (idx != 2) { |
| 22955 | // It's a non-manifold edge. Insert a segment. |
| 22956 | p[0] = sorg(subloop); |
| 22957 | p[1] = sdest(subloop); |
| 22958 | bondflag = 1; |
| 22959 | } else { |
| 22960 | spivot(subloop, neighsh); |
| 22961 | if (shellmark(subloop) != shellmark(neighsh)) { |
| 22962 | // It's an interior interface. Insert a segment. |
| 22963 | p[0] = sorg(subloop); |
| 22964 | p[1] = sdest(subloop); |
| 22965 | bondflag = 1; |
| 22966 | } else { |
| 22967 | if (!b->convex) { |
| 22968 | // Check the dihedral angle formed by the two subfaces. |
| 22969 | p[0] = sorg(subloop); |
| 22970 | p[1] = sdest(subloop); |
| 22971 | p[2] = sapex(subloop); |
| 22972 | p[3] = sapex(neighsh); |
| 22973 | ang = facedihedral(p[0], p[1], p[2], p[3]); |
| 22974 | if (ang > PI) ang = 2 * PI - ang; |
| 22975 | if (ang < angtol) { |
| 22976 | bondflag = 1; |
| 22977 | } |
| 22978 | } |
| 22979 | } |
| 22980 | } |
| 22981 | if (bondflag) { |
| 22982 | // Create a new segment. |
| 22983 | makeshellface(subsegs, &segloop); |
| 22984 | setshvertices(segloop, p[0], p[1], NULL); |
| 22985 | // Create the point-to-segment map. |
| 22986 | sptr = sencode(segloop); |
| 22987 | for (j = 0; j < 2; j++) { |
| 22988 | setpointtype(p[j], RIDGEVERTEX); // initial type. |
| 22989 | setpoint2sh(p[j], sptr); |
| 22990 | } |
| 22991 | setshellmark(segloop, 0); // Initially has no marker. |
| 22992 | // Insert the subface into the mesh. |
| 22993 | stpivot(subloop, tetloop); |
| 22994 | q[2] = apex(tetloop); |
| 22995 | while (1) { |
| 22996 | tssbond1(tetloop, segloop); |
| 22997 | tspivot(tetloop, neighsh); |
| 22998 | if (neighsh.sh != NULL) { |
| 22999 | ssbond1(neighsh, segloop); |
| 23000 | } |
| 23001 | fnextself(tetloop); |
| 23002 | if (apex(tetloop) == q[2]) break; |
| 23003 | } // while (1) |
| 23004 | // Remember an adjacent tet for this segment. |
| 23005 | sstbond1(segloop, tetloop); |
| 23006 | sbond1(segloop, subloop); |
| 23007 | } // if (bondflag) |
| 23008 | } // if (neighsh.sh == NULL) |
| 23009 | senextself(subloop); |
| 23010 | } // i |
| 23011 | subloop.sh = shellfacetraverse(subfaces); |
| 23012 | } |
| 23013 | |
| 23014 | // Remember the number of input segments. |
| 23015 | insegments = subsegs->items; |
| 23016 | |
| 23017 | if (!b->nobisect || checkconstraints) { |
| 23018 | // Mark Steiner points on segments and facets. |
| 23019 | // - all vertices which remaining type FEACTVERTEX become |
| 23020 | // Steiner points in facets (= FREEFACERVERTEX). |
| 23021 | // - vertices on segment need to be checked. |
| 23022 | face* segperverlist; |
| 23023 | int* idx2seglist; |
| 23024 | face parentseg, nextseg; |
| 23025 | verttype vt; |
| 23026 | REAL area, len, l1, l2; |
| 23027 | int fmarker; |
| 23028 | |
| 23029 | makepoint2submap(subsegs, idx2seglist, segperverlist); |
| 23030 | |
| 23031 | points->traversalinit(); |
| 23032 | point ptloop = pointtraverse(); |
| 23033 | while (ptloop != NULL) { |
| 23034 | vt = pointtype(ptloop); |
| 23035 | if (vt == VOLVERTEX) { |
| 23036 | setpointtype(ptloop, FREEVOLVERTEX); |
| 23037 | st_volref_count++; |
| 23038 | } else if (vt == FACETVERTEX) { |
| 23039 | setpointtype(ptloop, FREEFACETVERTEX); |
| 23040 | st_facref_count++; |
| 23041 | } else if (vt == RIDGEVERTEX) { |
| 23042 | idx = pointmark(ptloop) - in->firstnumber; |
| 23043 | if ((idx2seglist[idx + 1] - idx2seglist[idx]) == 2) { |
| 23044 | i = idx2seglist[idx]; |
| 23045 | parentseg = segperverlist[i]; |
| 23046 | nextseg = segperverlist[i + 1]; |
| 23047 | sesymself(nextseg); |
| 23048 | p[0] = sorg(nextseg); |
| 23049 | p[1] = sdest(parentseg); |
| 23050 | // Check if three points p[0], ptloop, p[2] are (nearly) collinear. |
| 23051 | len = distance(p[0], p[1]); |
| 23052 | l1 = distance(p[0], ptloop); |
| 23053 | l2 = distance(ptloop, p[1]); |
| 23054 | if (((l1 + l2 - len) / len) < b->epsilon) { |
| 23055 | // They are (nearly) collinear. |
| 23056 | setpointtype(ptloop, FREESEGVERTEX); |
| 23057 | // Connect nextseg and parentseg together at ptloop. |
| 23058 | senextself(nextseg); |
| 23059 | senext2self(parentseg); |
| 23060 | sbond(nextseg, parentseg); |
| 23061 | st_segref_count++; |
| 23062 | } |
| 23063 | } |
| 23064 | } |
| 23065 | ptloop = pointtraverse(); |
| 23066 | } |
| 23067 | |
| 23068 | // Are there area constraints? |
| 23069 | if (b->quality && (in->facetconstraintlist != (REAL *) NULL)) { |
| 23070 | // Set maximum area constraints on facets. |
| 23071 | for (i = 0; i < in->numberoffacetconstraints; i++) { |
| 23072 | fmarker = (int) in->facetconstraintlist[i * 2]; |
| 23073 | area = in->facetconstraintlist[i * 2 + 1]; |
| 23074 | subfaces->traversalinit(); |
| 23075 | subloop.sh = shellfacetraverse(subfaces); |
| 23076 | while (subloop.sh != NULL) { |
| 23077 | if (shellmark(subloop) == fmarker) { |
| 23078 | setareabound(subloop, area); |
| 23079 | } |
| 23080 | subloop.sh = shellfacetraverse(subfaces); |
| 23081 | } |
| 23082 | } |
| 23083 | } |
| 23084 | |
| 23085 | // Are there length constraints? |
| 23086 | if (b->quality && (in->segmentconstraintlist != (REAL *) NULL)) { |
| 23087 | // Set maximum length constraints on segments. |
| 23088 | int e1, e2; |
| 23089 | for (i = 0; i < in->numberofsegmentconstraints; i++) { |
| 23090 | e1 = (int) in->segmentconstraintlist[i * 3]; |
| 23091 | e2 = (int) in->segmentconstraintlist[i * 3 + 1]; |
| 23092 | len = in->segmentconstraintlist[i * 3 + 2]; |
| 23093 | // Search for edge [e1, e2]. |
| 23094 | idx = e1 - in->firstnumber; |
| 23095 | for (j = idx2seglist[idx]; j < idx2seglist[idx + 1]; j++) { |
| 23096 | parentseg = segperverlist[j]; |
| 23097 | if (pointmark(sdest(parentseg)) == e2) { |
| 23098 | setareabound(parentseg, len); |
| 23099 | break; |
| 23100 | } |
| 23101 | } |
| 23102 | } |
| 23103 | } |
| 23104 | |
| 23105 | delete [] idx2seglist; |
| 23106 | delete [] segperverlist; |
| 23107 | } |
| 23108 | |
| 23109 | |
| 23110 | // Set global flags. |
| 23111 | checksubsegflag = 1; |
| 23112 | checksubfaceflag = 1; |
| 23113 | |
| 23114 | delete [] idx2verlist; |
| 23115 | delete [] ver2tetarray; |
| 23116 | } |
| 23117 | |
| 23118 | /////////////////////////////////////////////////////////////////////////////// |
| 23119 | // // |
| 23120 | // scoutpoint() Search a point in mesh. // |
| 23121 | // // |
| 23122 | // This function searches the point in a mesh whose domain may be not convex.// |
| 23123 | // In case of a convex domain, the locate() function is sufficient. // |
| 23124 | // // |
| 23125 | // If 'randflag' is used, randomly select a start searching tet. Otherwise, // |
| 23126 | // start searching directly from 'searchtet'. // |
| 23127 | // // |
| 23128 | /////////////////////////////////////////////////////////////////////////////// |
| 23129 | |
| 23130 | int tetgenmesh::scoutpoint(point searchpt, triface *searchtet, int randflag) |
| 23131 | { |
| 23132 | point pa, pb, pc, pd; |
| 23133 | enum locateresult loc = OUTSIDE; |
| 23134 | REAL vol, ori1, ori2 = 0, ori3 = 0, ori4 = 0; |
| 23135 | int t1ver; |
| 23136 | |
| 23137 | |
| 23138 | // Randomly select a good starting tet. |
| 23139 | if (randflag) { |
| 23140 | randomsample(searchpt, searchtet); |
| 23141 | } else { |
| 23142 | if (searchtet->tet == NULL) { |
| 23143 | *searchtet = recenttet; |
| 23144 | } |
| 23145 | } |
| 23146 | loc = locate(searchpt, searchtet); |
| 23147 | |
| 23148 | if (loc == OUTSIDE) { |
| 23149 | if (b->convex) { // -c option |
| 23150 | // The point lies outside of the convex hull. |
| 23151 | return (int) loc; |
| 23152 | } |
| 23153 | // Test if it lies nearly on the hull face. |
| 23154 | // Reuse vol, ori1. |
| 23155 | pa = org(*searchtet); |
| 23156 | pb = dest(*searchtet); |
| 23157 | pc = apex(*searchtet); |
| 23158 | vol = triarea(pa, pb, pc); |
| 23159 | ori1 = orient3dfast(pa, pb, pc, searchpt); |
| 23160 | if (fabs(ori1 / vol) < b->epsilon) { |
| 23161 | loc = ONFACE; // On face (or on edge, or on vertex). |
| 23162 | fsymself(*searchtet); |
| 23163 | } |
| 23164 | } |
| 23165 | |
| 23166 | if (loc != OUTSIDE) { |
| 23167 | // Round the result of location. |
| 23168 | pa = org(*searchtet); |
| 23169 | pb = dest(*searchtet); |
| 23170 | pc = apex(*searchtet); |
| 23171 | pd = oppo(*searchtet); |
| 23172 | vol = orient3dfast(pa, pb, pc, pd); |
| 23173 | ori1 = orient3dfast(pa, pb, pc, searchpt); |
| 23174 | ori2 = orient3dfast(pb, pa, pd, searchpt); |
| 23175 | ori3 = orient3dfast(pc, pb, pd, searchpt); |
| 23176 | ori4 = orient3dfast(pa, pc, pd, searchpt); |
| 23177 | if (fabs(ori1 / vol) < b->epsilon) ori1 = 0; |
| 23178 | if (fabs(ori2 / vol) < b->epsilon) ori2 = 0; |
| 23179 | if (fabs(ori3 / vol) < b->epsilon) ori3 = 0; |
| 23180 | if (fabs(ori4 / vol) < b->epsilon) ori4 = 0; |
| 23181 | } else { // if (loc == OUTSIDE) { |
| 23182 | // Do a brute force search for the point (with rounding). |
| 23183 | tetrahedrons->traversalinit(); |
| 23184 | searchtet->tet = tetrahedrontraverse(); |
| 23185 | while (searchtet->tet != NULL) { |
| 23186 | pa = org(*searchtet); |
| 23187 | pb = dest(*searchtet); |
| 23188 | pc = apex(*searchtet); |
| 23189 | pd = oppo(*searchtet); |
| 23190 | |
| 23191 | vol = orient3dfast(pa, pb, pc, pd); |
| 23192 | if (vol < 0) { |
| 23193 | ori1 = orient3dfast(pa, pb, pc, searchpt); |
| 23194 | if (fabs(ori1 / vol) < b->epsilon) ori1 = 0; // Rounding. |
| 23195 | if (ori1 <= 0) { |
| 23196 | ori2 = orient3dfast(pb, pa, pd, searchpt); |
| 23197 | if (fabs(ori2 / vol) < b->epsilon) ori2 = 0; |
| 23198 | if (ori2 <= 0) { |
| 23199 | ori3 = orient3dfast(pc, pb, pd, searchpt); |
| 23200 | if (fabs(ori3 / vol) < b->epsilon) ori3 = 0; |
| 23201 | if (ori3 <= 0) { |
| 23202 | ori4 = orient3dfast(pa, pc, pd, searchpt); |
| 23203 | if (fabs(ori4 / vol) < b->epsilon) ori4 = 0; |
| 23204 | if (ori4 <= 0) { |
| 23205 | // Found the tet. Return its location. |
| 23206 | break; |
| 23207 | } // ori4 |
| 23208 | } // ori3 |
| 23209 | } // ori2 |
| 23210 | } // ori1 |
| 23211 | } |
| 23212 | |
| 23213 | searchtet->tet = tetrahedrontraverse(); |
| 23214 | } // while (searchtet->tet != NULL) |
| 23215 | nonregularcount++; // Re-use this counter. |
| 23216 | } |
| 23217 | |
| 23218 | if (searchtet->tet != NULL) { |
| 23219 | // Return the point location. |
| 23220 | if (ori1 == 0) { // on face [a,b,c] |
| 23221 | if (ori2 == 0) { // on edge [a,b]. |
| 23222 | if (ori3 == 0) { // on vertex [b]. |
| 23223 | assert(ori4 != 0); |
| 23224 | enextself(*searchtet); // [b,c,a,d] |
| 23225 | loc = ONVERTEX; |
| 23226 | } else { |
| 23227 | if (ori4 == 0) { // on vertex [a] |
| 23228 | loc = ONVERTEX; // [a,b,c,d] |
| 23229 | } else { |
| 23230 | loc = ONEDGE; // [a,b,c,d] |
| 23231 | } |
| 23232 | } |
| 23233 | } else { // ori2 != 0 |
| 23234 | if (ori3 == 0) { // on edge [b,c] |
| 23235 | if (ori4 == 0) { // on vertex [c] |
| 23236 | eprevself(*searchtet); // [c,a,b,d] |
| 23237 | loc = ONVERTEX; |
| 23238 | } else { |
| 23239 | enextself(*searchtet); // [b,c,a,d] |
| 23240 | loc = ONEDGE; |
| 23241 | } |
| 23242 | } else { // ori3 != 0 |
| 23243 | if (ori4 == 0) { // on edge [c,a] |
| 23244 | eprevself(*searchtet); // [c,a,b,d] |
| 23245 | loc = ONEDGE; |
| 23246 | } else { |
| 23247 | loc = ONFACE; |
| 23248 | } |
| 23249 | } |
| 23250 | } |
| 23251 | } else { // ori1 != 0 |
| 23252 | if (ori2 == 0) { // on face [b,a,d] |
| 23253 | esymself(*searchtet); // [b,a,d,c] |
| 23254 | if (ori3 == 0) { // on edge [b,d] |
| 23255 | eprevself(*searchtet); // [d,b,a,c] |
| 23256 | if (ori4 == 0) { // on vertex [d] |
| 23257 | loc = ONVERTEX; |
| 23258 | } else { |
| 23259 | loc = ONEDGE; |
| 23260 | } |
| 23261 | } else { // ori3 != 0 |
| 23262 | if (ori4 == 0) { // on edge [a,d] |
| 23263 | enextself(*searchtet); // [a,d,b,c] |
| 23264 | loc = ONEDGE; |
| 23265 | } else { |
| 23266 | loc = ONFACE; |
| 23267 | } |
| 23268 | } |
| 23269 | } else { // ori2 != 0 |
| 23270 | if (ori3 == 0) { // on face [c,b,d] |
| 23271 | enextself(*searchtet); |
| 23272 | esymself(*searchtet); |
| 23273 | if (ori4 == 0) { // on edge [c,d] |
| 23274 | eprevself(*searchtet); |
| 23275 | loc = ONEDGE; |
| 23276 | } else { |
| 23277 | loc = ONFACE; |
| 23278 | } |
| 23279 | } else { |
| 23280 | if (ori4 == 0) { // on face [a,c,d] |
| 23281 | eprevself(*searchtet); |
| 23282 | esymself(*searchtet); |
| 23283 | loc = ONFACE; |
| 23284 | } else { // inside tet [a,b,c,d] |
| 23285 | loc = INTETRAHEDRON; |
| 23286 | } // ori4 |
| 23287 | } // ori3 |
| 23288 | } // ori2 |
| 23289 | } // ori1 |
| 23290 | } else { |
| 23291 | loc = OUTSIDE; |
| 23292 | } |
| 23293 | |
| 23294 | return (int) loc; |
| 23295 | } |
| 23296 | |
| 23297 | /////////////////////////////////////////////////////////////////////////////// |
| 23298 | // // |
| 23299 | // getpointmeshsize() Interpolate the mesh size at given point. // |
| 23300 | // // |
| 23301 | // 'iloc' indicates the location of the point w.r.t. 'searchtet'. The size // |
| 23302 | // is obtained by linear interpolation on the vertices of the tet. // |
| 23303 | // // |
| 23304 | /////////////////////////////////////////////////////////////////////////////// |
| 23305 | |
| 23306 | REAL tetgenmesh::getpointmeshsize(point searchpt, triface *searchtet, int iloc) |
| 23307 | { |
| 23308 | point *pts, pa, pb, pc; |
| 23309 | REAL volume, vol[4], wei[4]; |
| 23310 | REAL size; |
| 23311 | int i; |
| 23312 | |
| 23313 | size = 0; |
| 23314 | |
| 23315 | if (iloc == (int) INTETRAHEDRON) { |
| 23316 | pts = (point *) &(searchtet->tet[4]); |
| 23317 | assert(pts[3] != dummypoint); |
| 23318 | // Only do interpolation if all vertices have non-zero sizes. |
| 23319 | if ((pts[0][pointmtrindex] > 0) && (pts[1][pointmtrindex] > 0) && |
| 23320 | (pts[2][pointmtrindex] > 0) && (pts[3][pointmtrindex] > 0)) { |
| 23321 | // P1 interpolation. |
| 23322 | volume = orient3dfast(pts[0], pts[1], pts[2], pts[3]); |
| 23323 | vol[0] = orient3dfast(searchpt, pts[1], pts[2], pts[3]); |
| 23324 | vol[1] = orient3dfast(pts[0], searchpt, pts[2], pts[3]); |
| 23325 | vol[2] = orient3dfast(pts[0], pts[1], searchpt, pts[3]); |
| 23326 | vol[3] = orient3dfast(pts[0], pts[1], pts[2], searchpt); |
| 23327 | for (i = 0; i < 4; i++) { |
| 23328 | wei[i] = fabs(vol[i] / volume); |
| 23329 | size += (wei[i] * pts[i][pointmtrindex]); |
| 23330 | } |
| 23331 | } |
| 23332 | } else if (iloc == (int) ONFACE) { |
| 23333 | pa = org(*searchtet); |
| 23334 | pb = dest(*searchtet); |
| 23335 | pc = apex(*searchtet); |
| 23336 | if ((pa[pointmtrindex] > 0) && (pb[pointmtrindex] > 0) && |
| 23337 | (pc[pointmtrindex] > 0)) { |
| 23338 | volume = triarea(pa, pb, pc); |
| 23339 | vol[0] = triarea(searchpt, pb, pc); |
| 23340 | vol[1] = triarea(pa, searchpt, pc); |
| 23341 | vol[2] = triarea(pa, pb, searchpt); |
| 23342 | size = (vol[0] / volume) * pa[pointmtrindex] |
| 23343 | + (vol[1] / volume) * pb[pointmtrindex] |
| 23344 | + (vol[2] / volume) * pc[pointmtrindex]; |
| 23345 | } |
| 23346 | } else if (iloc == (int) ONEDGE) { |
| 23347 | pa = org(*searchtet); |
| 23348 | pb = dest(*searchtet); |
| 23349 | if ((pa[pointmtrindex] > 0) && (pb[pointmtrindex] > 0)) { |
| 23350 | volume = distance(pa, pb); |
| 23351 | vol[0] = distance(searchpt, pb); |
| 23352 | vol[1] = distance(pa, searchpt); |
| 23353 | size = (vol[0] / volume) * pa[pointmtrindex] |
| 23354 | + (vol[1] / volume) * pb[pointmtrindex]; |
| 23355 | } |
| 23356 | } else if (iloc == (int) ONVERTEX) { |
| 23357 | pa = org(*searchtet); |
| 23358 | if (pa[pointmtrindex] > 0) { |
| 23359 | size = pa[pointmtrindex]; |
| 23360 | } |
| 23361 | } |
| 23362 | |
| 23363 | return size; |
| 23364 | } |
| 23365 | |
| 23366 | /////////////////////////////////////////////////////////////////////////////// |
| 23367 | // // |
| 23368 | // interpolatemeshsize() Interpolate the mesh size from a background mesh // |
| 23369 | // (source) to the current mesh (destination). // |
| 23370 | // // |
| 23371 | /////////////////////////////////////////////////////////////////////////////// |
| 23372 | |
| 23373 | void tetgenmesh::interpolatemeshsize() |
| 23374 | { |
| 23375 | triface searchtet; |
| 23376 | point ploop; |
| 23377 | REAL minval = 0.0, maxval = 0.0; |
| 23378 | int iloc; |
| 23379 | int count; |
| 23380 | |
| 23381 | if (!b->quiet) { |
| 23382 | printf("Interpolating mesh size ...\n" ); |
| 23383 | } |
| 23384 | |
| 23385 | long bak_nonregularcount = nonregularcount; |
| 23386 | nonregularcount = 0l; // Count the number of (slow) global searches. |
| 23387 | long baksmaples = bgm->samples; |
| 23388 | bgm->samples = 3l; |
| 23389 | count = 0; // Count the number of interpolated points. |
| 23390 | |
| 23391 | // Interpolate sizes for all points in the current mesh. |
| 23392 | points->traversalinit(); |
| 23393 | ploop = pointtraverse(); |
| 23394 | while (ploop != NULL) { |
| 23395 | // Search a tet in bgm which containing this point. |
| 23396 | searchtet.tet = NULL; |
| 23397 | iloc = bgm->scoutpoint(ploop, &searchtet, 1); // randflag = 1 |
| 23398 | if (iloc != (int) OUTSIDE) { |
| 23399 | // Interpolate the mesh size. |
| 23400 | ploop[pointmtrindex] = bgm->getpointmeshsize(ploop, &searchtet, iloc); |
| 23401 | setpoint2bgmtet(ploop, bgm->encode(searchtet)); |
| 23402 | if (count == 0) { |
| 23403 | // This is the first interpolated point. |
| 23404 | minval = maxval = ploop[pointmtrindex]; |
| 23405 | } else { |
| 23406 | if (ploop[pointmtrindex] < minval) { |
| 23407 | minval = ploop[pointmtrindex]; |
| 23408 | } |
| 23409 | if (ploop[pointmtrindex] > maxval) { |
| 23410 | maxval = ploop[pointmtrindex]; |
| 23411 | } |
| 23412 | } |
| 23413 | count++; |
| 23414 | } else { |
| 23415 | if (!b->quiet) { |
| 23416 | printf("Warnning: Failed to locate point %d in source mesh.\n" , |
| 23417 | pointmark(ploop)); |
| 23418 | } |
| 23419 | } |
| 23420 | ploop = pointtraverse(); |
| 23421 | } |
| 23422 | |
| 23423 | if (b->verbose) { |
| 23424 | printf(" Interoplated %d points.\n" , count); |
| 23425 | if (nonregularcount > 0l) { |
| 23426 | printf(" Performed %ld brute-force searches.\n" , nonregularcount); |
| 23427 | } |
| 23428 | printf(" Size rangle [%.17g, %.17g].\n" , minval, maxval); |
| 23429 | } |
| 23430 | |
| 23431 | bgm->samples = baksmaples; |
| 23432 | nonregularcount = bak_nonregularcount; |
| 23433 | } |
| 23434 | |
| 23435 | /////////////////////////////////////////////////////////////////////////////// |
| 23436 | // // |
| 23437 | // insertconstrainedpoints() Insert a list of points into the mesh. // |
| 23438 | // // |
| 23439 | // Assumption: The bounding box of the insert point set should be no larger // |
| 23440 | // than the bounding box of the mesh. (Required by point sorting). // |
| 23441 | // // |
| 23442 | /////////////////////////////////////////////////////////////////////////////// |
| 23443 | |
| 23444 | void tetgenmesh::insertconstrainedpoints(point *insertarray, int arylen, |
| 23445 | int rejflag) |
| 23446 | { |
| 23447 | triface searchtet, spintet; |
| 23448 | face splitsh; |
| 23449 | face splitseg; |
| 23450 | insertvertexflags ivf; |
| 23451 | flipconstraints fc; |
| 23452 | int randflag = 0; |
| 23453 | int t1ver; |
| 23454 | int i; |
| 23455 | |
| 23456 | if (b->verbose) { |
| 23457 | printf(" Inserting %d constrained points\n" , arylen); |
| 23458 | } |
| 23459 | |
| 23460 | if (b->no_sort) { // -b/1 option. |
| 23461 | if (b->verbose) { |
| 23462 | printf(" Using the input order.\n" ); |
| 23463 | } |
| 23464 | } else { |
| 23465 | if (b->verbose) { |
| 23466 | printf(" Permuting vertices.\n" ); |
| 23467 | } |
| 23468 | point swappoint; |
| 23469 | int randindex; |
| 23470 | srand(arylen); |
| 23471 | for (i = 0; i < arylen; i++) { |
| 23472 | randindex = rand() % (i + 1); |
| 23473 | swappoint = insertarray[i]; |
| 23474 | insertarray[i] = insertarray[randindex]; |
| 23475 | insertarray[randindex] = swappoint; |
| 23476 | } |
| 23477 | if (b->brio_hilbert) { // -b1 option |
| 23478 | if (b->verbose) { |
| 23479 | printf(" Sorting vertices.\n" ); |
| 23480 | } |
| 23481 | hilbert_init(in->mesh_dim); |
| 23482 | int ngroup = 0; |
| 23483 | brio_multiscale_sort(insertarray, arylen, b->brio_threshold, |
| 23484 | b->brio_ratio, &ngroup); |
| 23485 | } else { // -b0 option. |
| 23486 | randflag = 1; |
| 23487 | } // if (!b->brio_hilbert) |
| 23488 | } // if (!b->no_sort) |
| 23489 | |
| 23490 | long bak_nonregularcount = nonregularcount; |
| 23491 | nonregularcount = 0l; |
| 23492 | long baksmaples = samples; |
| 23493 | samples = 3l; // Use at least 3 samples. Updated in randomsample(). |
| 23494 | |
| 23495 | long bak_seg_count = st_segref_count; |
| 23496 | long bak_fac_count = st_facref_count; |
| 23497 | long bak_vol_count = st_volref_count; |
| 23498 | |
| 23499 | // Initialize the insertion parameters. |
| 23500 | if (b->incrflip) { // -l option |
| 23501 | // Use incremental flip algorithm. |
| 23502 | ivf.bowywat = 0; |
| 23503 | ivf.lawson = 1; |
| 23504 | ivf.validflag = 0; // No need to validate the cavity. |
| 23505 | fc.enqflag = 2; |
| 23506 | } else { |
| 23507 | // Use Bowyer-Watson algorithm. |
| 23508 | ivf.bowywat = 1; |
| 23509 | ivf.lawson = 0; |
| 23510 | ivf.validflag = 1; // Validate the B-W cavity. |
| 23511 | } |
| 23512 | ivf.rejflag = rejflag; |
| 23513 | ivf.chkencflag = 0; |
| 23514 | ivf.sloc = (int) INSTAR; |
| 23515 | ivf.sbowywat = 3; |
| 23516 | ivf.splitbdflag = 1; |
| 23517 | ivf.respectbdflag = 1; |
| 23518 | ivf.assignmeshsize = b->metric; |
| 23519 | |
| 23520 | encseglist = new arraypool(sizeof(face), 8); |
| 23521 | encshlist = new arraypool(sizeof(badface), 8); |
| 23522 | |
| 23523 | // Insert the points. |
| 23524 | for (i = 0; i < arylen; i++) { |
| 23525 | // Find the location of the inserted point. |
| 23526 | // Do not use 'recenttet', since the mesh may be non-convex. |
| 23527 | searchtet.tet = NULL; |
| 23528 | ivf.iloc = scoutpoint(insertarray[i], &searchtet, randflag); |
| 23529 | |
| 23530 | // Decide the right type for this point. |
| 23531 | setpointtype(insertarray[i], FREEVOLVERTEX); // Default. |
| 23532 | splitsh.sh = NULL; |
| 23533 | splitseg.sh = NULL; |
| 23534 | if (ivf.iloc == (int) ONEDGE) { |
| 23535 | if (issubseg(searchtet)) { |
| 23536 | tsspivot1(searchtet, splitseg); |
| 23537 | setpointtype(insertarray[i], FREESEGVERTEX); |
| 23538 | //ivf.rejflag = 0; |
| 23539 | } else { |
| 23540 | // Check if it is a subface edge. |
| 23541 | spintet = searchtet; |
| 23542 | while (1) { |
| 23543 | if (issubface(spintet)) { |
| 23544 | tspivot(spintet, splitsh); |
| 23545 | setpointtype(insertarray[i], FREEFACETVERTEX); |
| 23546 | //ivf.rejflag |= 1; |
| 23547 | break; |
| 23548 | } |
| 23549 | fnextself(spintet); |
| 23550 | if (spintet.tet == searchtet.tet) break; |
| 23551 | } |
| 23552 | } |
| 23553 | } else if (ivf.iloc == (int) ONFACE) { |
| 23554 | if (issubface(searchtet)) { |
| 23555 | tspivot(searchtet, splitsh); |
| 23556 | setpointtype(insertarray[i], FREEFACETVERTEX); |
| 23557 | //ivf.rejflag |= 1; |
| 23558 | } |
| 23559 | } |
| 23560 | |
| 23561 | // Now insert the point. |
| 23562 | if (insertpoint(insertarray[i], &searchtet, &splitsh, &splitseg, &ivf)) { |
| 23563 | if (flipstack != NULL) { |
| 23564 | // There are queued faces. Use flips to recover Delaunayness. |
| 23565 | lawsonflip3d(&fc); |
| 23566 | // There may be unflippable edges. Ignore them. |
| 23567 | unflipqueue->restart(); |
| 23568 | } |
| 23569 | // Update the Steiner counters. |
| 23570 | if (pointtype(insertarray[i]) == FREESEGVERTEX) { |
| 23571 | st_segref_count++; |
| 23572 | } else if (pointtype(insertarray[i]) == FREEFACETVERTEX) { |
| 23573 | st_facref_count++; |
| 23574 | } else { |
| 23575 | st_volref_count++; |
| 23576 | } |
| 23577 | } else { |
| 23578 | // Point is not inserted. |
| 23579 | //pointdealloc(insertarray[i]); |
| 23580 | setpointtype(insertarray[i], UNUSEDVERTEX); |
| 23581 | unuverts++; |
| 23582 | encseglist->restart(); |
| 23583 | encshlist->restart(); |
| 23584 | } |
| 23585 | } // i |
| 23586 | |
| 23587 | delete encseglist; |
| 23588 | delete encshlist; |
| 23589 | |
| 23590 | if (b->verbose) { |
| 23591 | printf(" Inserted %ld (%ld, %ld, %ld) vertices.\n" , |
| 23592 | st_segref_count + st_facref_count + st_volref_count - |
| 23593 | (bak_seg_count + bak_fac_count + bak_vol_count), |
| 23594 | st_segref_count - bak_seg_count, st_facref_count - bak_fac_count, |
| 23595 | st_volref_count - bak_vol_count); |
| 23596 | if (nonregularcount > 0l) { |
| 23597 | printf(" Performed %ld brute-force searches.\n" , nonregularcount); |
| 23598 | } |
| 23599 | } |
| 23600 | |
| 23601 | nonregularcount = bak_nonregularcount; |
| 23602 | samples = baksmaples; |
| 23603 | } |
| 23604 | |
| 23605 | void tetgenmesh::insertconstrainedpoints(tetgenio *addio) |
| 23606 | { |
| 23607 | point *insertarray, newpt; |
| 23608 | REAL x, y, z, w; |
| 23609 | int index, attribindex, mtrindex; |
| 23610 | int arylen, i, j; |
| 23611 | |
| 23612 | if (!b->quiet) { |
| 23613 | printf("Inserting constrained points ...\n" ); |
| 23614 | } |
| 23615 | |
| 23616 | insertarray = new point[addio->numberofpoints]; |
| 23617 | arylen = 0; |
| 23618 | index = 0; |
| 23619 | attribindex = 0; |
| 23620 | mtrindex = 0; |
| 23621 | |
| 23622 | for (i = 0; i < addio->numberofpoints; i++) { |
| 23623 | x = addio->pointlist[index++]; |
| 23624 | y = addio->pointlist[index++]; |
| 23625 | z = addio->pointlist[index++]; |
| 23626 | // Test if this point lies inside the bounding box. |
| 23627 | if ((x < xmin) || (x > xmax) || (y < ymin) || (y > ymax) || |
| 23628 | (z < zmin) || (z > zmax)) { |
| 23629 | if (b->verbose) { |
| 23630 | printf("Warning: Point #%d lies outside the bounding box. Ignored\n" , |
| 23631 | i + in->firstnumber); |
| 23632 | } |
| 23633 | continue; |
| 23634 | } |
| 23635 | makepoint(&newpt, UNUSEDVERTEX); |
| 23636 | newpt[0] = x; |
| 23637 | newpt[1] = y; |
| 23638 | newpt[2] = z; |
| 23639 | // Read the point attributes. (Including point weights.) |
| 23640 | for (j = 0; j < addio->numberofpointattributes; j++) { |
| 23641 | newpt[3 + j] = addio->pointattributelist[attribindex++]; |
| 23642 | } |
| 23643 | // Read the point metric tensor. |
| 23644 | for (j = 0; j < addio->numberofpointmtrs; j++) { |
| 23645 | newpt[pointmtrindex + j] = addio->pointmtrlist[mtrindex++]; |
| 23646 | } |
| 23647 | if (b->weighted) { // -w option |
| 23648 | if (addio->numberofpointattributes > 0) { |
| 23649 | // The first point attribute is its weight. |
| 23650 | w = newpt[3]; |
| 23651 | } else { |
| 23652 | // No given weight available. Default choose the maximum |
| 23653 | // absolute value among its coordinates. |
| 23654 | w = fabs(x); |
| 23655 | if (w < fabs(y)) w = fabs(y); |
| 23656 | if (w < fabs(z)) w = fabs(z); |
| 23657 | } |
| 23658 | if (b->weighted_param == 0) { |
| 23659 | newpt[3] = x * x + y * y + z * z - w; // Weighted DT. |
| 23660 | } else { // -w1 option |
| 23661 | newpt[3] = w; // Regular tetrahedralization. |
| 23662 | } |
| 23663 | } |
| 23664 | insertarray[arylen] = newpt; |
| 23665 | arylen++; |
| 23666 | } // i |
| 23667 | |
| 23668 | // Insert the points. |
| 23669 | int rejflag = 0; // Do not check encroachment. |
| 23670 | if (b->metric) { // -m option. |
| 23671 | rejflag |= 4; // Reject it if it lies in some protecting balls. |
| 23672 | } |
| 23673 | |
| 23674 | insertconstrainedpoints(insertarray, arylen, rejflag); |
| 23675 | |
| 23676 | delete [] insertarray; |
| 23677 | } |
| 23678 | |
| 23679 | /////////////////////////////////////////////////////////////////////////////// |
| 23680 | // // |
| 23681 | // meshcoarsening() Deleting (selected) vertices. // |
| 23682 | // // |
| 23683 | /////////////////////////////////////////////////////////////////////////////// |
| 23684 | |
| 23685 | void tetgenmesh::collectremovepoints(arraypool *remptlist) |
| 23686 | { |
| 23687 | point ptloop, *parypt; |
| 23688 | verttype vt; |
| 23689 | |
| 23690 | // If a mesh sizing function is given. Collect vertices whose mesh size |
| 23691 | // is greater than its smallest edge length. |
| 23692 | if (b->metric) { // -m option |
| 23693 | REAL len, smlen; |
| 23694 | int i; |
| 23695 | points->traversalinit(); |
| 23696 | ptloop = pointtraverse(); |
| 23697 | while (ptloop != NULL) { |
| 23698 | if (ptloop[pointmtrindex] > 0) { |
| 23699 | // Get the smallest edge length at this vertex. |
| 23700 | getvertexstar(1, ptloop, cavetetlist, cavetetvertlist, NULL); |
| 23701 | parypt = (point *) fastlookup(cavetetvertlist, 0); |
| 23702 | smlen = distance(ptloop, *parypt); |
| 23703 | for (i = 1; i < cavetetvertlist->objects; i++) { |
| 23704 | parypt = (point *) fastlookup(cavetetvertlist, i); |
| 23705 | len = distance(ptloop, *parypt); |
| 23706 | if (len < smlen) { |
| 23707 | smlen = len; |
| 23708 | } |
| 23709 | } |
| 23710 | cavetetvertlist->restart(); |
| 23711 | cavetetlist->restart(); |
| 23712 | if (smlen < ptloop[pointmtrindex]) { |
| 23713 | pinfect(ptloop); |
| 23714 | remptlist->newindex((void **) &parypt); |
| 23715 | *parypt = ptloop; |
| 23716 | } |
| 23717 | } |
| 23718 | ptloop = pointtraverse(); |
| 23719 | } |
| 23720 | if (b->verbose > 1) { |
| 23721 | printf(" Coarsen %ld oversized points.\n" , remptlist->objects); |
| 23722 | } |
| 23723 | } |
| 23724 | |
| 23725 | // If 'in->pointmarkerlist' exists, Collect vertices with markers '-1'. |
| 23726 | if (in->pointmarkerlist != NULL) { |
| 23727 | long bak_count = remptlist->objects; |
| 23728 | points->traversalinit(); |
| 23729 | ptloop = pointtraverse(); |
| 23730 | int index = 0; |
| 23731 | while (ptloop != NULL) { |
| 23732 | if (index < in->numberofpoints) { |
| 23733 | if (in->pointmarkerlist[index] == -1) { |
| 23734 | pinfect(ptloop); |
| 23735 | remptlist->newindex((void **) &parypt); |
| 23736 | *parypt = ptloop; |
| 23737 | } |
| 23738 | } else { |
| 23739 | // Remaining are not input points. Stop here. |
| 23740 | break; |
| 23741 | } |
| 23742 | index++; |
| 23743 | ptloop = pointtraverse(); |
| 23744 | } |
| 23745 | if (b->verbose > 1) { |
| 23746 | printf(" Coarsen %ld marked points.\n" , remptlist->objects - bak_count); |
| 23747 | } |
| 23748 | } // if (in->pointmarkerlist != NULL) |
| 23749 | |
| 23750 | if (b->coarsen_param > 0) { // -R1/# |
| 23751 | // Remove a coarsen_percent number of interior points. |
| 23752 | assert((b->coarsen_percent > 0) && (b->coarsen_percent <= 1.0)); |
| 23753 | if (b->verbose > 1) { |
| 23754 | printf(" Coarsen %g percent of interior points.\n" , |
| 23755 | b->coarsen_percent * 100.0); |
| 23756 | } |
| 23757 | arraypool *intptlist = new arraypool(sizeof(point *), 10); |
| 23758 | // Count the total number of interior points. |
| 23759 | points->traversalinit(); |
| 23760 | ptloop = pointtraverse(); |
| 23761 | while (ptloop != NULL) { |
| 23762 | vt = pointtype(ptloop); |
| 23763 | if ((vt == VOLVERTEX) || (vt == FREEVOLVERTEX) || |
| 23764 | (vt == FREEFACETVERTEX) || (vt == FREESEGVERTEX)) { |
| 23765 | intptlist->newindex((void **) &parypt); |
| 23766 | *parypt = ptloop; |
| 23767 | } |
| 23768 | ptloop = pointtraverse(); |
| 23769 | } |
| 23770 | if (intptlist->objects > 0l) { |
| 23771 | // Sort the list of points randomly. |
| 23772 | point *parypt_i, swappt; |
| 23773 | int randindex, i; |
| 23774 | srand(intptlist->objects); |
| 23775 | for (i = 0; i < intptlist->objects; i++) { |
| 23776 | randindex = rand() % (i + 1); // randomnation(i + 1); |
| 23777 | parypt_i = (point *) fastlookup(intptlist, i); |
| 23778 | parypt = (point *) fastlookup(intptlist, randindex); |
| 23779 | // Swap this two points. |
| 23780 | swappt = *parypt_i; |
| 23781 | *parypt_i = *parypt; |
| 23782 | *parypt = swappt; |
| 23783 | } |
| 23784 | int remcount = (int) ((REAL) intptlist->objects * b->coarsen_percent); |
| 23785 | // Return the first remcount points. |
| 23786 | for (i = 0; i < remcount; i++) { |
| 23787 | parypt_i = (point *) fastlookup(intptlist, i); |
| 23788 | if (!pinfected(*parypt_i)) { |
| 23789 | pinfected(*parypt_i); |
| 23790 | remptlist->newindex((void **) &parypt); |
| 23791 | *parypt = *parypt_i; |
| 23792 | } |
| 23793 | } |
| 23794 | } |
| 23795 | delete intptlist; |
| 23796 | } |
| 23797 | |
| 23798 | // Unmark all collected vertices. |
| 23799 | for (int i = 0; i < remptlist->objects; i++) { |
| 23800 | parypt = (point *) fastlookup(remptlist, i); |
| 23801 | puninfect(*parypt); |
| 23802 | } |
| 23803 | } |
| 23804 | |
| 23805 | void tetgenmesh::meshcoarsening() |
| 23806 | { |
| 23807 | arraypool *remptlist; |
| 23808 | |
| 23809 | if (!b->quiet) { |
| 23810 | printf("Mesh coarsening ...\n" ); |
| 23811 | } |
| 23812 | |
| 23813 | // Collect the set of points to be removed |
| 23814 | remptlist = new arraypool(sizeof(point *), 10); |
| 23815 | collectremovepoints(remptlist); |
| 23816 | |
| 23817 | if (remptlist->objects == 0l) { |
| 23818 | delete remptlist; |
| 23819 | return; |
| 23820 | } |
| 23821 | |
| 23822 | if (b->verbose) { |
| 23823 | if (remptlist->objects > 0l) { |
| 23824 | printf(" Removing %ld points...\n" , remptlist->objects); |
| 23825 | } |
| 23826 | } |
| 23827 | |
| 23828 | point *parypt, *plastpt; |
| 23829 | long ms = remptlist->objects; |
| 23830 | int nit = 0; |
| 23831 | int bak_fliplinklevel = b->fliplinklevel; |
| 23832 | b->fliplinklevel = -1; |
| 23833 | autofliplinklevel = 1; // Init value. |
| 23834 | int i; |
| 23835 | |
| 23836 | while (1) { |
| 23837 | |
| 23838 | if (b->verbose > 1) { |
| 23839 | printf(" Removing points [%s level = %2d] #: %ld.\n" , |
| 23840 | (b->fliplinklevel > 0) ? "fixed" : "auto" , |
| 23841 | (b->fliplinklevel > 0) ? b->fliplinklevel : autofliplinklevel, |
| 23842 | remptlist->objects); |
| 23843 | } |
| 23844 | |
| 23845 | // Remove the list of points. |
| 23846 | for (i = 0; i < remptlist->objects; i++) { |
| 23847 | parypt = (point *) fastlookup(remptlist, i); |
| 23848 | assert(pointtype(*parypt) != UNUSEDVERTEX); |
| 23849 | if (removevertexbyflips(*parypt)) { |
| 23850 | // Move the last entry to the current place. |
| 23851 | plastpt = (point *) fastlookup(remptlist, remptlist->objects - 1); |
| 23852 | *parypt = *plastpt; |
| 23853 | remptlist->objects--; |
| 23854 | i--; |
| 23855 | } |
| 23856 | } |
| 23857 | |
| 23858 | if (remptlist->objects > 0l) { |
| 23859 | if (b->fliplinklevel >= 0) { |
| 23860 | break; // We have tried all levels. |
| 23861 | } |
| 23862 | if (remptlist->objects == ms) { |
| 23863 | nit++; |
| 23864 | if (nit >= 3) { |
| 23865 | // Do the last round with unbounded flip link level. |
| 23866 | b->fliplinklevel = 100000; |
| 23867 | } |
| 23868 | } else { |
| 23869 | ms = remptlist->objects; |
| 23870 | if (nit > 0) { |
| 23871 | nit--; |
| 23872 | } |
| 23873 | } |
| 23874 | autofliplinklevel+=b->fliplinklevelinc; |
| 23875 | } else { |
| 23876 | // All points are removed. |
| 23877 | break; |
| 23878 | } |
| 23879 | } // while (1) |
| 23880 | |
| 23881 | if (remptlist->objects > 0l) { |
| 23882 | if (b->verbose) { |
| 23883 | printf(" %ld points are not removed !\n" , remptlist->objects); |
| 23884 | } |
| 23885 | } |
| 23886 | |
| 23887 | b->fliplinklevel = bak_fliplinklevel; |
| 23888 | delete remptlist; |
| 23889 | } |
| 23890 | |
| 23891 | //// //// |
| 23892 | //// //// |
| 23893 | //// reconstruct_cxx ////////////////////////////////////////////////////////// |
| 23894 | |
| 23895 | //// refine_cxx /////////////////////////////////////////////////////////////// |
| 23896 | //// //// |
| 23897 | //// //// |
| 23898 | |
| 23899 | /////////////////////////////////////////////////////////////////////////////// |
| 23900 | // // |
| 23901 | // makefacetverticesmap() Create a map from facet to its vertices. // |
| 23902 | // // |
| 23903 | // All facets will be indexed (starting from 0). The map is saved in two // |
| 23904 | // global arrays: 'idx2facetlist' and 'facetverticeslist'. // |
| 23905 | // // |
| 23906 | /////////////////////////////////////////////////////////////////////////////// |
| 23907 | |
| 23908 | void tetgenmesh::makefacetverticesmap() |
| 23909 | { |
| 23910 | arraypool *facetvertexlist, *vertlist, **paryvertlist; |
| 23911 | face subloop, neighsh, *parysh, *parysh1; |
| 23912 | point pa, *ppt, *parypt; |
| 23913 | verttype vt; |
| 23914 | int facetindex, totalvertices; |
| 23915 | int i, j, k; |
| 23916 | |
| 23917 | if (b->verbose) { |
| 23918 | printf(" Creating the facet vertices map.\n" ); |
| 23919 | } |
| 23920 | |
| 23921 | facetvertexlist = new arraypool(sizeof(arraypool *), 10); |
| 23922 | facetindex = totalvertices = 0; |
| 23923 | |
| 23924 | subfaces->traversalinit(); |
| 23925 | subloop.sh = shellfacetraverse(subfaces); |
| 23926 | while (subloop.sh != NULL) { |
| 23927 | if (!sinfected(subloop)) { |
| 23928 | // A new facet. Create its vertices list. |
| 23929 | vertlist = new arraypool(sizeof(point *), 8); |
| 23930 | ppt = (point *) &(subloop.sh[3]); |
| 23931 | for (k = 0; k < 3; k++) { |
| 23932 | vt = pointtype(ppt[k]); |
| 23933 | if ((vt != FREESEGVERTEX) && (vt != FREEFACETVERTEX)) { |
| 23934 | pinfect(ppt[k]); |
| 23935 | vertlist->newindex((void **) &parypt); |
| 23936 | *parypt = ppt[k]; |
| 23937 | } |
| 23938 | } |
| 23939 | sinfect(subloop); |
| 23940 | caveshlist->newindex((void **) &parysh); |
| 23941 | *parysh = subloop; |
| 23942 | for (i = 0; i < caveshlist->objects; i++) { |
| 23943 | parysh = (face *) fastlookup(caveshlist, i); |
| 23944 | setfacetindex(*parysh, facetindex); |
| 23945 | for (j = 0; j < 3; j++) { |
| 23946 | if (!isshsubseg(*parysh)) { |
| 23947 | spivot(*parysh, neighsh); |
| 23948 | assert(neighsh.sh != NULL); |
| 23949 | if (!sinfected(neighsh)) { |
| 23950 | pa = sapex(neighsh); |
| 23951 | if (!pinfected(pa)) { |
| 23952 | vt = pointtype(pa); |
| 23953 | if ((vt != FREESEGVERTEX) && (vt != FREEFACETVERTEX)) { |
| 23954 | pinfect(pa); |
| 23955 | vertlist->newindex((void **) &parypt); |
| 23956 | *parypt = pa; |
| 23957 | } |
| 23958 | } |
| 23959 | sinfect(neighsh); |
| 23960 | caveshlist->newindex((void **) &parysh1); |
| 23961 | *parysh1 = neighsh; |
| 23962 | } |
| 23963 | } |
| 23964 | senextself(*parysh); |
| 23965 | } |
| 23966 | } // i |
| 23967 | totalvertices += (int) vertlist->objects; |
| 23968 | // Uninfect facet vertices. |
| 23969 | for (k = 0; k < vertlist->objects; k++) { |
| 23970 | parypt = (point *) fastlookup(vertlist, k); |
| 23971 | puninfect(*parypt); |
| 23972 | } |
| 23973 | caveshlist->restart(); |
| 23974 | // Save this vertex list. |
| 23975 | facetvertexlist->newindex((void **) &paryvertlist); |
| 23976 | *paryvertlist = vertlist; |
| 23977 | facetindex++; |
| 23978 | } |
| 23979 | subloop.sh = shellfacetraverse(subfaces); |
| 23980 | } |
| 23981 | |
| 23982 | // All subfaces are infected. Uninfect them. |
| 23983 | subfaces->traversalinit(); |
| 23984 | subloop.sh = shellfacetraverse(subfaces); |
| 23985 | while (subloop.sh != NULL) { |
| 23986 | assert(sinfected(subloop)); |
| 23987 | suninfect(subloop); |
| 23988 | subloop.sh = shellfacetraverse(subfaces); |
| 23989 | } |
| 23990 | |
| 23991 | if (b->verbose) { |
| 23992 | printf(" Found %ld facets.\n" , facetvertexlist->objects); |
| 23993 | } |
| 23994 | |
| 23995 | idx2facetlist = new int[facetindex + 1]; |
| 23996 | facetverticeslist = new point[totalvertices]; |
| 23997 | |
| 23998 | totalworkmemory += ((facetindex + 1) * sizeof(int) + |
| 23999 | totalvertices * sizeof(point *)); |
| 24000 | |
| 24001 | idx2facetlist[0] = 0; |
| 24002 | for (i = 0, k = 0; i < facetindex; i++) { |
| 24003 | paryvertlist = (arraypool **) fastlookup(facetvertexlist, i); |
| 24004 | vertlist = *paryvertlist; |
| 24005 | idx2facetlist[i + 1] = (idx2facetlist[i] + (int) vertlist->objects); |
| 24006 | for (j = 0; j < vertlist->objects; j++) { |
| 24007 | parypt = (point *) fastlookup(vertlist, j); |
| 24008 | facetverticeslist[k] = *parypt; |
| 24009 | k++; |
| 24010 | } |
| 24011 | } |
| 24012 | assert(k == totalvertices); |
| 24013 | |
| 24014 | // Free the lists. |
| 24015 | for (i = 0; i < facetvertexlist->objects; i++) { |
| 24016 | paryvertlist = (arraypool **) fastlookup(facetvertexlist, i); |
| 24017 | vertlist = *paryvertlist; |
| 24018 | delete vertlist; |
| 24019 | } |
| 24020 | delete facetvertexlist; |
| 24021 | } |
| 24022 | |
| 24023 | /////////////////////////////////////////////////////////////////////////////// |
| 24024 | // // |
| 24025 | // Check whether two segments, or a segment and a facet, or two facets are // |
| 24026 | // adjacent to each other. // |
| 24027 | // // |
| 24028 | /////////////////////////////////////////////////////////////////////////////// |
| 24029 | |
| 24030 | int tetgenmesh::segsegadjacent(face *seg1, face *seg2) |
| 24031 | { |
| 24032 | int segidx1 = getfacetindex(*seg1); |
| 24033 | int segidx2 = getfacetindex(*seg2); |
| 24034 | |
| 24035 | if (segidx1 == segidx2) return 0; |
| 24036 | |
| 24037 | point pa1 = segmentendpointslist[segidx1 * 2]; |
| 24038 | point pb1 = segmentendpointslist[segidx1 * 2 + 1]; |
| 24039 | point pa2 = segmentendpointslist[segidx2 * 2]; |
| 24040 | point pb2 = segmentendpointslist[segidx2 * 2 + 1]; |
| 24041 | |
| 24042 | if ((pa1 == pa2) || (pa1 == pb2) || (pb1 == pa2) || (pb1 == pb2)) { |
| 24043 | return 1; |
| 24044 | } |
| 24045 | return 0; |
| 24046 | } |
| 24047 | |
| 24048 | int tetgenmesh::segfacetadjacent(face *subseg, face *subsh) |
| 24049 | { |
| 24050 | int segidx = getfacetindex(*subseg); |
| 24051 | point pa = segmentendpointslist[segidx * 2]; |
| 24052 | point pb = segmentendpointslist[segidx * 2 + 1]; |
| 24053 | |
| 24054 | pinfect(pa); |
| 24055 | pinfect(pb); |
| 24056 | |
| 24057 | int fidx = getfacetindex(*subsh); |
| 24058 | int count = 0, i; |
| 24059 | |
| 24060 | for (i = idx2facetlist[fidx]; i < idx2facetlist[fidx+1]; i++) { |
| 24061 | if (pinfected(facetverticeslist[i])) count++; |
| 24062 | } |
| 24063 | |
| 24064 | puninfect(pa); |
| 24065 | puninfect(pb); |
| 24066 | |
| 24067 | return count == 1; |
| 24068 | } |
| 24069 | |
| 24070 | int tetgenmesh::facetfacetadjacent(face *subsh1, face *subsh2) |
| 24071 | { |
| 24072 | int count = 0, i; |
| 24073 | |
| 24074 | int fidx1 = getfacetindex(*subsh1); |
| 24075 | int fidx2 = getfacetindex(*subsh2); |
| 24076 | |
| 24077 | if (fidx1 == fidx2) return 0; |
| 24078 | |
| 24079 | for (i = idx2facetlist[fidx1]; i < idx2facetlist[fidx1+1]; i++) { |
| 24080 | pinfect(facetverticeslist[i]); |
| 24081 | } |
| 24082 | |
| 24083 | for (i = idx2facetlist[fidx2]; i < idx2facetlist[fidx2+1]; i++) { |
| 24084 | if (pinfected(facetverticeslist[i])) count++; |
| 24085 | } |
| 24086 | |
| 24087 | // Uninfect the vertices. |
| 24088 | for (i = idx2facetlist[fidx1]; i < idx2facetlist[fidx1+1]; i++) { |
| 24089 | puninfect(facetverticeslist[i]); |
| 24090 | } |
| 24091 | |
| 24092 | return count > 0; |
| 24093 | } |
| 24094 | |
| 24095 | /////////////////////////////////////////////////////////////////////////////// |
| 24096 | // // |
| 24097 | // checkseg4encroach() Check if an edge is encroached upon by a point. // |
| 24098 | // // |
| 24099 | /////////////////////////////////////////////////////////////////////////////// |
| 24100 | |
| 24101 | int tetgenmesh::checkseg4encroach(point pa, point pb, point checkpt) |
| 24102 | { |
| 24103 | // Check if the point lies inside the diametrical sphere of this seg. |
| 24104 | REAL v1[3], v2[3]; |
| 24105 | |
| 24106 | v1[0] = pa[0] - checkpt[0]; |
| 24107 | v1[1] = pa[1] - checkpt[1]; |
| 24108 | v1[2] = pa[2] - checkpt[2]; |
| 24109 | v2[0] = pb[0] - checkpt[0]; |
| 24110 | v2[1] = pb[1] - checkpt[1]; |
| 24111 | v2[2] = pb[2] - checkpt[2]; |
| 24112 | |
| 24113 | if (dot(v1, v2) < 0) { |
| 24114 | // Inside. |
| 24115 | if (b->metric) { // -m option. |
| 24116 | if ((pa[pointmtrindex] > 0) && (pb[pointmtrindex] > 0)) { |
| 24117 | // The projection of 'checkpt' lies inside the segment [a,b]. |
| 24118 | REAL prjpt[3], u, v, t; |
| 24119 | projpt2edge(checkpt, pa, pb, prjpt); |
| 24120 | // Interoplate the mesh size at the location 'prjpt'. |
| 24121 | u = distance(pa, pb); |
| 24122 | v = distance(pa, prjpt); |
| 24123 | t = v / u; |
| 24124 | // 'u' is the mesh size at 'prjpt' |
| 24125 | u = pa[pointmtrindex] + t * (pb[pointmtrindex] - pa[pointmtrindex]); |
| 24126 | v = distance(checkpt, prjpt); |
| 24127 | if (v < u) { |
| 24128 | return 1; // Encroached prot-ball! |
| 24129 | } |
| 24130 | } else { |
| 24131 | return 1; // NO protecting ball. Encroached. |
| 24132 | } |
| 24133 | } else { |
| 24134 | return 1; // Inside! Encroached. |
| 24135 | } |
| 24136 | } |
| 24137 | |
| 24138 | return 0; |
| 24139 | } |
| 24140 | |
| 24141 | /////////////////////////////////////////////////////////////////////////////// |
| 24142 | // // |
| 24143 | // checkseg4split() Check if we need to split a segment. // |
| 24144 | // // |
| 24145 | // A segment needs to be split if it is in the following case: // |
| 24146 | // (1) It is encroached by an existing vertex. // |
| 24147 | // (2) It has bad quality (too long). // |
| 24148 | // (3) Its length is larger than the mesh sizes at its endpoints. // |
| 24149 | // // |
| 24150 | // Return 1 if it needs to be split, otherwise, return 0. 'pencpt' returns // |
| 24151 | // an encroaching point if there exists. 'qflag' returns '1' if the segment // |
| 24152 | // has a length larger than the desired edge length. // |
| 24153 | // // |
| 24154 | /////////////////////////////////////////////////////////////////////////////// |
| 24155 | |
| 24156 | int tetgenmesh::checkseg4split(face *chkseg, point& encpt, int& qflag) |
| 24157 | { |
| 24158 | REAL ccent[3], len, r; |
| 24159 | int i; |
| 24160 | |
| 24161 | point forg = sorg(*chkseg); |
| 24162 | point fdest = sdest(*chkseg); |
| 24163 | |
| 24164 | // Initialize the return values. |
| 24165 | encpt = NULL; |
| 24166 | qflag = 0; |
| 24167 | |
| 24168 | len = distance(forg, fdest); |
| 24169 | r = 0.5 * len; |
| 24170 | for (i = 0; i < 3; i++) { |
| 24171 | ccent[i] = 0.5 * (forg[i] + fdest[i]); |
| 24172 | } |
| 24173 | |
| 24174 | // First check its quality. |
| 24175 | if (checkconstraints && (areabound(*chkseg) > 0.0)) { |
| 24176 | if (len > areabound(*chkseg)) { |
| 24177 | qflag = 1; |
| 24178 | return 1; |
| 24179 | } |
| 24180 | } |
| 24181 | |
| 24182 | if (b->fixedvolume) { |
| 24183 | if ((len * len * len) > b->maxvolume) { |
| 24184 | qflag = 1; |
| 24185 | return 1; |
| 24186 | } |
| 24187 | } |
| 24188 | |
| 24189 | if (b->metric) { // -m option. Check mesh size. |
| 24190 | // Check if the ccent lies outside one of the prot.balls at vertices. |
| 24191 | if (((forg[pointmtrindex] > 0) && (r > forg[pointmtrindex])) || |
| 24192 | ((fdest[pointmtrindex]) > 0 && (r > fdest[pointmtrindex]))) { |
| 24193 | qflag = 1; // Enforce mesh size. |
| 24194 | return 1; |
| 24195 | } |
| 24196 | } |
| 24197 | |
| 24198 | |
| 24199 | // Second check if it is encroached. |
| 24200 | // Comment: There may exist more than one encroaching points of this segment. |
| 24201 | // The 'encpt' returns the one which is closet to it. |
| 24202 | triface searchtet, spintet; |
| 24203 | point eapex; |
| 24204 | REAL d, diff, smdist = 0; |
| 24205 | int t1ver; |
| 24206 | |
| 24207 | sstpivot1(*chkseg, searchtet); |
| 24208 | spintet = searchtet; |
| 24209 | while (1) { |
| 24210 | eapex = apex(spintet); |
| 24211 | if (eapex != dummypoint) { |
| 24212 | d = distance(ccent, eapex); |
| 24213 | diff = d - r; |
| 24214 | if (fabs(diff) / r < b->epsilon) diff = 0.0; // Rounding. |
| 24215 | if (diff < 0) { |
| 24216 | // This segment is encroached by eapex. |
| 24217 | if (useinsertradius) { |
| 24218 | if (encpt == NULL) { |
| 24219 | encpt = eapex; |
| 24220 | smdist = d; |
| 24221 | } else { |
| 24222 | // Choose the closet encroaching point. |
| 24223 | if (d < smdist) { |
| 24224 | encpt = eapex; |
| 24225 | smdist = d; |
| 24226 | } |
| 24227 | } |
| 24228 | } else { |
| 24229 | encpt = eapex; |
| 24230 | break; |
| 24231 | } |
| 24232 | } |
| 24233 | } |
| 24234 | fnextself(spintet); |
| 24235 | if (spintet.tet == searchtet.tet) break; |
| 24236 | } // while (1) |
| 24237 | |
| 24238 | if (encpt != NULL) { |
| 24239 | return 1; |
| 24240 | } |
| 24241 | |
| 24242 | return 0; // No need to split it. |
| 24243 | } |
| 24244 | |
| 24245 | /////////////////////////////////////////////////////////////////////////////// |
| 24246 | // // |
| 24247 | // splitsegment() Split a segment. // |
| 24248 | // // |
| 24249 | // The segment 'splitseg' is intended to be split. It will be split if it // |
| 24250 | // is in one of the following cases: // |
| 24251 | // (1) It is encroached by an existing vertex 'encpt != NULL'; or // |
| 24252 | // (2) It is in bad quality 'qflag == 1'; or // |
| 24253 | // (3) Its length is larger than the mesh sizes at its endpoints. // |
| 24254 | // // |
| 24255 | /////////////////////////////////////////////////////////////////////////////// |
| 24256 | |
| 24257 | int tetgenmesh::splitsegment(face *splitseg, point encpt, REAL rrp, |
| 24258 | point encpt1, point encpt2, int qflag, |
| 24259 | int chkencflag) |
| 24260 | { |
| 24261 | point pa = sorg(*splitseg); |
| 24262 | point pb = sdest(*splitseg); |
| 24263 | |
| 24264 | |
| 24265 | |
| 24266 | if ((encpt == NULL) && (qflag == 0)) { |
| 24267 | if (useinsertradius) { |
| 24268 | // Do not split this segment if the length is smaller than the smaller |
| 24269 | // insertion radius at its endpoints. |
| 24270 | REAL len = distance(pa, pb); |
| 24271 | REAL smrrv = getpointinsradius(pa); |
| 24272 | REAL rrv = getpointinsradius(pb); |
| 24273 | if (rrv > 0) { |
| 24274 | if (smrrv > 0) { |
| 24275 | if (rrv < smrrv) { |
| 24276 | smrrv = rrv; |
| 24277 | } |
| 24278 | } else { |
| 24279 | smrrv = rrv; |
| 24280 | } |
| 24281 | } |
| 24282 | if (smrrv > 0) { |
| 24283 | if ((fabs(smrrv - len) / len) < b->epsilon) smrrv = len; |
| 24284 | if (len < smrrv) { |
| 24285 | return 0; |
| 24286 | } |
| 24287 | } |
| 24288 | } |
| 24289 | } |
| 24290 | |
| 24291 | if (b->nobisect) { // With -Y option. |
| 24292 | // Only split this segment if it is allowed to be split. |
| 24293 | if (checkconstraints) { |
| 24294 | // Check if it has a non-zero length bound. |
| 24295 | if (areabound(*splitseg) == 0) { |
| 24296 | // It is not allowed. However, if all of facets containing this seg |
| 24297 | // is allowed to be split, we still split it. |
| 24298 | face parentsh, spinsh; |
| 24299 | //splitseg.shver = 0; |
| 24300 | spivot(*splitseg, parentsh); |
| 24301 | if (parentsh.sh == NULL) { |
| 24302 | return 0; // A dangling segment. Do not split it. |
| 24303 | } |
| 24304 | spinsh = parentsh; |
| 24305 | while (1) { |
| 24306 | if (areabound(spinsh) == 0) break; |
| 24307 | spivotself(spinsh); |
| 24308 | if (spinsh.sh == parentsh.sh) break; |
| 24309 | } |
| 24310 | if (areabound(spinsh) == 0) { |
| 24311 | // All facets at this seg are not allowed to be split. |
| 24312 | return 0; // Do not split it. |
| 24313 | } |
| 24314 | } |
| 24315 | } else { |
| 24316 | return 0; // Do not split this segment. |
| 24317 | } |
| 24318 | } // if (b->nobisect) |
| 24319 | |
| 24320 | triface searchtet; |
| 24321 | face searchsh; |
| 24322 | point newpt; |
| 24323 | insertvertexflags ivf; |
| 24324 | |
| 24325 | makepoint(&newpt, FREESEGVERTEX); |
| 24326 | getsteinerptonsegment(splitseg, encpt, newpt); |
| 24327 | |
| 24328 | // Split the segment by the Bowyer-Watson algorithm. |
| 24329 | sstpivot1(*splitseg, searchtet); |
| 24330 | ivf.iloc = (int) ONEDGE; |
| 24331 | // Use Bowyer-Watson algorithm. Preserve subsegments and subfaces; |
| 24332 | ivf.bowywat = 3; |
| 24333 | ivf.validflag = 1; // Validate the B-W cavity. |
| 24334 | ivf.lawson = 2; // Do flips to recover Delaunayness. |
| 24335 | ivf.rejflag = 0; // Do not check encroachment of new segments/facets. |
| 24336 | if (b->metric) { |
| 24337 | ivf.rejflag |= 4; // Do check encroachment of protecting balls. |
| 24338 | } |
| 24339 | ivf.chkencflag = chkencflag; |
| 24340 | ivf.sloc = (int) INSTAR; // ivf.iloc; |
| 24341 | ivf.sbowywat = 3; // ivf.bowywat; // Surface mesh options. |
| 24342 | ivf.splitbdflag = 1; |
| 24343 | ivf.respectbdflag = 1; |
| 24344 | ivf.assignmeshsize = b->metric; |
| 24345 | ivf.smlenflag = useinsertradius; |
| 24346 | |
| 24347 | |
| 24348 | if (insertpoint(newpt, &searchtet, &searchsh, splitseg, &ivf)) { |
| 24349 | st_segref_count++; |
| 24350 | if (steinerleft > 0) steinerleft--; |
| 24351 | if (useinsertradius) { |
| 24352 | // Update 'rv' (to be the shortest distance). |
| 24353 | REAL rv = ivf.smlen, rp; |
| 24354 | if (pointtype(ivf.parentpt) == FREESEGVERTEX) { |
| 24355 | face parentseg1, parentseg2; |
| 24356 | sdecode(point2sh(newpt), parentseg1); |
| 24357 | sdecode(point2sh(ivf.parentpt), parentseg2); |
| 24358 | if (segsegadjacent(&parentseg1, &parentseg2)) { |
| 24359 | rp = getpointinsradius(ivf.parentpt); |
| 24360 | if (rv < rp) { |
| 24361 | rv = rp; // The relaxed insertion radius of 'newpt'. |
| 24362 | } |
| 24363 | } |
| 24364 | } else if (pointtype(ivf.parentpt) == FREEFACETVERTEX) { |
| 24365 | face parentseg, parentsh; |
| 24366 | sdecode(point2sh(newpt), parentseg); |
| 24367 | sdecode(point2sh(ivf.parentpt), parentsh); |
| 24368 | if (segfacetadjacent(&parentseg, &parentsh)) { |
| 24369 | rp = getpointinsradius(ivf.parentpt); |
| 24370 | if (rv < rp) { |
| 24371 | rv = rp; // The relaxed insertion radius of 'newpt'. |
| 24372 | } |
| 24373 | } |
| 24374 | } |
| 24375 | setpointinsradius(newpt, rv); |
| 24376 | } |
| 24377 | if (flipstack != NULL) { |
| 24378 | flipconstraints fc; |
| 24379 | fc.chkencflag = chkencflag; |
| 24380 | fc.enqflag = 2; |
| 24381 | lawsonflip3d(&fc); |
| 24382 | unflipqueue->restart(); |
| 24383 | } |
| 24384 | return 1; |
| 24385 | } else { |
| 24386 | // Point is not inserted. |
| 24387 | pointdealloc(newpt); |
| 24388 | return 0; |
| 24389 | } |
| 24390 | } |
| 24391 | |
| 24392 | /////////////////////////////////////////////////////////////////////////////// |
| 24393 | // // |
| 24394 | // repairencsegs() Repair encroached (sub) segments. // |
| 24395 | // // |
| 24396 | /////////////////////////////////////////////////////////////////////////////// |
| 24397 | |
| 24398 | void tetgenmesh::repairencsegs(int chkencflag) |
| 24399 | { |
| 24400 | face *bface; |
| 24401 | point encpt = NULL; |
| 24402 | int qflag = 0; |
| 24403 | |
| 24404 | // Loop until the pool 'badsubsegs' is empty. Note that steinerleft == -1 |
| 24405 | // if an unlimited number of Steiner points is allowed. |
| 24406 | while ((badsubsegs->items > 0) && (steinerleft != 0)) { |
| 24407 | badsubsegs->traversalinit(); |
| 24408 | bface = (face *) badsubsegs->traverse(); |
| 24409 | while ((bface != NULL) && (steinerleft != 0)) { |
| 24410 | // Skip a deleleted element. |
| 24411 | if (bface->shver >= 0) { |
| 24412 | // A queued segment may have been deleted (split). |
| 24413 | if ((bface->sh != NULL) && (bface->sh[3] != NULL)) { |
| 24414 | // A queued segment may have been processed. |
| 24415 | if (smarktest2ed(*bface)) { |
| 24416 | sunmarktest2(*bface); |
| 24417 | if (checkseg4split(bface, encpt, qflag)) { |
| 24418 | splitsegment(bface, encpt, 0, NULL, NULL, qflag, chkencflag); |
| 24419 | } |
| 24420 | } |
| 24421 | } |
| 24422 | // Remove this entry from list. |
| 24423 | bface->shver = -1; // Signal it as a deleted element. |
| 24424 | badsubsegs->dealloc((void *) bface); |
| 24425 | } |
| 24426 | bface = (face *) badsubsegs->traverse(); |
| 24427 | } |
| 24428 | } |
| 24429 | |
| 24430 | if (badsubsegs->items > 0) { |
| 24431 | if (steinerleft == 0) { |
| 24432 | if (b->verbose) { |
| 24433 | printf("The desired number of Steiner points is reached.\n" ); |
| 24434 | } |
| 24435 | } else { |
| 24436 | assert(0); // Unknown case. |
| 24437 | } |
| 24438 | badsubsegs->traversalinit(); |
| 24439 | bface = (face *) badsubsegs->traverse(); |
| 24440 | while (bface != NULL) { |
| 24441 | // Skip a deleleted element. |
| 24442 | if (bface->shver >= 0) { |
| 24443 | if ((bface->sh != NULL) && (bface->sh[3] != NULL)) { |
| 24444 | if (smarktest2ed(*bface)) { |
| 24445 | sunmarktest2(*bface); |
| 24446 | } |
| 24447 | } |
| 24448 | } |
| 24449 | bface = (face *) badsubsegs->traverse(); |
| 24450 | } |
| 24451 | badsubsegs->restart(); |
| 24452 | } |
| 24453 | } |
| 24454 | |
| 24455 | /////////////////////////////////////////////////////////////////////////////// |
| 24456 | // // |
| 24457 | // enqueuesubface() Queue a subface or a subsegment for encroachment chk. // |
| 24458 | // // |
| 24459 | /////////////////////////////////////////////////////////////////////////////// |
| 24460 | |
| 24461 | void tetgenmesh::enqueuesubface(memorypool *pool, face *chkface) |
| 24462 | { |
| 24463 | if (!smarktest2ed(*chkface)) { |
| 24464 | smarktest2(*chkface); // Only queue it once. |
| 24465 | face *queface = (face *) pool->alloc(); |
| 24466 | *queface = *chkface; |
| 24467 | } |
| 24468 | } |
| 24469 | |
| 24470 | /////////////////////////////////////////////////////////////////////////////// |
| 24471 | // // |
| 24472 | // checkfac4encroach() Check if a subface is encroached by a point. // |
| 24473 | // // |
| 24474 | /////////////////////////////////////////////////////////////////////////////// |
| 24475 | |
| 24476 | int tetgenmesh::checkfac4encroach(point pa, point pb, point pc, point checkpt, |
| 24477 | REAL* cent, REAL* r) |
| 24478 | { |
| 24479 | REAL rd, len; |
| 24480 | |
| 24481 | circumsphere(pa, pb, pc, NULL, cent, &rd); |
| 24482 | assert(rd != 0); |
| 24483 | len = distance(cent, checkpt); |
| 24484 | if ((fabs(len - rd) / rd) < b->epsilon) len = rd; // Rounding. |
| 24485 | |
| 24486 | if (len < rd) { |
| 24487 | // The point lies inside the circumsphere of this face. |
| 24488 | if (b->metric) { // -m option. |
| 24489 | if ((pa[pointmtrindex] > 0) && (pb[pointmtrindex] > 0) && |
| 24490 | (pc[pointmtrindex] > 0)) { |
| 24491 | // Get the projection of 'checkpt' in the plane of pa, pb, and pc. |
| 24492 | REAL prjpt[3], n[3]; |
| 24493 | REAL a, a1, a2, a3; |
| 24494 | projpt2face(checkpt, pa, pb, pc, prjpt); |
| 24495 | // Get the face area of [a,b,c]. |
| 24496 | facenormal(pa, pb, pc, n, 1, NULL); |
| 24497 | a = sqrt(dot(n,n)); |
| 24498 | // Get the face areas of [a,b,p], [b,c,p], and [c,a,p]. |
| 24499 | facenormal(pa, pb, prjpt, n, 1, NULL); |
| 24500 | a1 = sqrt(dot(n,n)); |
| 24501 | facenormal(pb, pc, prjpt, n, 1, NULL); |
| 24502 | a2 = sqrt(dot(n,n)); |
| 24503 | facenormal(pc, pa, prjpt, n, 1, NULL); |
| 24504 | a3 = sqrt(dot(n,n)); |
| 24505 | if ((fabs(a1 + a2 + a3 - a) / a) < b->epsilon) { |
| 24506 | // This face contains the projection. |
| 24507 | // Get the mesh size at the location of the projection point. |
| 24508 | rd = a1 / a * pc[pointmtrindex] |
| 24509 | + a2 / a * pa[pointmtrindex] |
| 24510 | + a3 / a * pb[pointmtrindex]; |
| 24511 | len = distance(prjpt, checkpt); |
| 24512 | if (len < rd) { |
| 24513 | return 1; // Encroached. |
| 24514 | } |
| 24515 | } |
| 24516 | } else { |
| 24517 | return 1; // No protecting ball. Encroached. |
| 24518 | } |
| 24519 | } else { |
| 24520 | *r = rd; |
| 24521 | return 1; // Encroached. |
| 24522 | } |
| 24523 | } |
| 24524 | |
| 24525 | return 0; |
| 24526 | } |
| 24527 | |
| 24528 | /////////////////////////////////////////////////////////////////////////////// |
| 24529 | // // |
| 24530 | // checkfac4split() Check if a subface needs to be split. // |
| 24531 | // // |
| 24532 | // A subface needs to be split if it is in the following case: // |
| 24533 | // (1) It is encroached by an existing vertex. // |
| 24534 | // (2) It has bad quality (has a small angle, -q). // |
| 24535 | // (3) It's area is larger than a prescribed value (.var). // |
| 24536 | // // |
| 24537 | // Return 1 if it needs to be split, otherwise, return 0. // |
| 24538 | // 'chkfac' represents its longest edge. // |
| 24539 | // // |
| 24540 | /////////////////////////////////////////////////////////////////////////////// |
| 24541 | |
| 24542 | int tetgenmesh::checkfac4split(face *chkfac, point& encpt, int& qflag, |
| 24543 | REAL *cent) |
| 24544 | { |
| 24545 | point pa, pb, pc; |
| 24546 | REAL area, rd, len; |
| 24547 | REAL A[4][4], rhs[4], D; |
| 24548 | int indx[4]; |
| 24549 | int i; |
| 24550 | |
| 24551 | encpt = NULL; |
| 24552 | qflag = 0; |
| 24553 | |
| 24554 | pa = sorg(*chkfac); |
| 24555 | pb = sdest(*chkfac); |
| 24556 | pc = sapex(*chkfac); |
| 24557 | |
| 24558 | // Compute the coefficient matrix A (3x3). |
| 24559 | A[0][0] = pb[0] - pa[0]; |
| 24560 | A[0][1] = pb[1] - pa[1]; |
| 24561 | A[0][2] = pb[2] - pa[2]; // vector V1 (pa->pb) |
| 24562 | A[1][0] = pc[0] - pa[0]; |
| 24563 | A[1][1] = pc[1] - pa[1]; |
| 24564 | A[1][2] = pc[2] - pa[2]; // vector V2 (pa->pc) |
| 24565 | cross(A[0], A[1], A[2]); // vector V3 (V1 X V2) |
| 24566 | |
| 24567 | area = 0.5 * sqrt(dot(A[2], A[2])); // The area of [a,b,c]. |
| 24568 | |
| 24569 | // Compute the right hand side vector b (3x1). |
| 24570 | rhs[0] = 0.5 * dot(A[0], A[0]); // edge [a,b] |
| 24571 | rhs[1] = 0.5 * dot(A[1], A[1]); // edge [a,c] |
| 24572 | rhs[2] = 0.0; |
| 24573 | |
| 24574 | // Solve the 3 by 3 equations use LU decomposition with partial |
| 24575 | // pivoting and backward and forward substitute. |
| 24576 | if (!lu_decmp(A, 3, indx, &D, 0)) { |
| 24577 | // A degenerate triangle. |
| 24578 | assert(0); |
| 24579 | } |
| 24580 | |
| 24581 | lu_solve(A, 3, indx, rhs, 0); |
| 24582 | cent[0] = pa[0] + rhs[0]; |
| 24583 | cent[1] = pa[1] + rhs[1]; |
| 24584 | cent[2] = pa[2] + rhs[2]; |
| 24585 | rd = sqrt(rhs[0] * rhs[0] + rhs[1] * rhs[1] + rhs[2] * rhs[2]); |
| 24586 | |
| 24587 | if (checkconstraints && (areabound(*chkfac) > 0.0)) { |
| 24588 | // Check if the subface has too big area. |
| 24589 | if (area > areabound(*chkfac)) { |
| 24590 | qflag = 1; |
| 24591 | return 1; |
| 24592 | } |
| 24593 | } |
| 24594 | |
| 24595 | if (b->fixedvolume) { |
| 24596 | if ((area * sqrt(area)) > b->maxvolume) { |
| 24597 | qflag = 1; |
| 24598 | return 1; |
| 24599 | } |
| 24600 | } |
| 24601 | |
| 24602 | if (b->varvolume) { |
| 24603 | triface adjtet; |
| 24604 | REAL volbnd; |
| 24605 | int t1ver; |
| 24606 | |
| 24607 | stpivot(*chkfac, adjtet); |
| 24608 | if (!ishulltet(adjtet)) { |
| 24609 | volbnd = volumebound(adjtet.tet); |
| 24610 | if ((volbnd > 0) && (area * sqrt(area)) > volbnd) { |
| 24611 | qflag = 1; |
| 24612 | return 1; |
| 24613 | } |
| 24614 | } |
| 24615 | fsymself(adjtet); |
| 24616 | if (!ishulltet(adjtet)) { |
| 24617 | volbnd = volumebound(adjtet.tet); |
| 24618 | if ((volbnd > 0) && (area * sqrt(area)) > volbnd) { |
| 24619 | qflag = 1; |
| 24620 | return 1; |
| 24621 | } |
| 24622 | } |
| 24623 | } |
| 24624 | |
| 24625 | if (b->metric) { // -m option. Check mesh size. |
| 24626 | // Check if the ccent lies outside one of the prot.balls at vertices. |
| 24627 | if (((pa[pointmtrindex] > 0) && (rd > pa[pointmtrindex])) || |
| 24628 | ((pb[pointmtrindex] > 0) && (rd > pb[pointmtrindex])) || |
| 24629 | ((pc[pointmtrindex] > 0) && (rd > pc[pointmtrindex]))) { |
| 24630 | qflag = 1; // Enforce mesh size. |
| 24631 | return 1; |
| 24632 | } |
| 24633 | } |
| 24634 | |
| 24635 | triface searchtet; |
| 24636 | REAL smlen = 0; |
| 24637 | |
| 24638 | // Check if this subface is locally encroached. |
| 24639 | for (i = 0; i < 2; i++) { |
| 24640 | stpivot(*chkfac, searchtet); |
| 24641 | if (!ishulltet(searchtet)) { |
| 24642 | len = distance(oppo(searchtet), cent); |
| 24643 | if ((fabs(len - rd) / rd) < b->epsilon) len = rd;// Rounding. |
| 24644 | if (len < rd) { |
| 24645 | if (smlen == 0) { |
| 24646 | smlen = len; |
| 24647 | encpt = oppo(searchtet); |
| 24648 | } else { |
| 24649 | if (len < smlen) { |
| 24650 | smlen = len; |
| 24651 | encpt = oppo(searchtet); |
| 24652 | } |
| 24653 | } |
| 24654 | //return 1; |
| 24655 | } |
| 24656 | } |
| 24657 | sesymself(*chkfac); |
| 24658 | } |
| 24659 | |
| 24660 | return encpt != NULL; //return 0; |
| 24661 | } |
| 24662 | |
| 24663 | /////////////////////////////////////////////////////////////////////////////// |
| 24664 | // // |
| 24665 | // splitsubface() Split a subface. // |
| 24666 | // // |
| 24667 | // The subface may be encroached, or in bad-quality. It is split at its cir- // |
| 24668 | // cumcenter ('ccent'). Do not split it if 'ccent' encroaches upon any seg- // |
| 24669 | // ment. Instead, one of the encroached segments is split. It is possible // |
| 24670 | // that none of the encroached segments can be split. // |
| 24671 | // // |
| 24672 | // The return value indicates whether a new point is inserted (> 0) or not // |
| 24673 | // (= 0). Furthermore, it is inserted on an encroached segment (= 1) or // |
| 24674 | // in-side the facet (= 2). // |
| 24675 | // // |
| 24676 | // 'encpt' is a vertex encroaching upon this subface, i.e., it causes the // |
| 24677 | // split of this subface. If 'encpt' is NULL, then the cause of the split // |
| 24678 | // this subface is a rejected tet circumcenter 'p', and 'encpt1' is the // |
| 24679 | // parent of 'p'. // |
| 24680 | // // |
| 24681 | /////////////////////////////////////////////////////////////////////////////// |
| 24682 | |
| 24683 | int tetgenmesh::splitsubface(face *splitfac, point encpt, point encpt1, |
| 24684 | int qflag, REAL *ccent, int chkencflag) |
| 24685 | { |
| 24686 | point pa = sorg(*splitfac); |
| 24687 | point pb = sdest(*splitfac); |
| 24688 | point pc = sapex(*splitfac); |
| 24689 | |
| 24690 | |
| 24691 | |
| 24692 | if (b->nobisect) { // With -Y option. |
| 24693 | if (checkconstraints) { |
| 24694 | // Only split if it is allowed to be split. |
| 24695 | // Check if this facet has a non-zero constraint. |
| 24696 | if (areabound(*splitfac) == 0) { |
| 24697 | return 0; // Do not split it. |
| 24698 | } |
| 24699 | } else { |
| 24700 | return 0; |
| 24701 | } |
| 24702 | } // if (b->nobisect) |
| 24703 | |
| 24704 | face searchsh; |
| 24705 | insertvertexflags ivf; |
| 24706 | point newpt; |
| 24707 | REAL rv = 0., rp; // Insertion radius of newpt. |
| 24708 | int i; |
| 24709 | |
| 24710 | // Initialize the inserting point. |
| 24711 | makepoint(&newpt, FREEFACETVERTEX); |
| 24712 | // Split the subface at its circumcenter. |
| 24713 | for (i = 0; i < 3; i++) newpt[i] = ccent[i]; |
| 24714 | |
| 24715 | if (useinsertradius) { |
| 24716 | if (encpt != NULL) { |
| 24717 | rv = distance(newpt, encpt); |
| 24718 | if (pointtype(encpt) == FREESEGVERTEX) { |
| 24719 | face parentseg; |
| 24720 | sdecode(point2sh(encpt), parentseg); |
| 24721 | if (segfacetadjacent(&parentseg, splitfac)) { |
| 24722 | rp = getpointinsradius(encpt); |
| 24723 | if (rv < (sqrt(2.0) * rp)) { |
| 24724 | // This insertion may cause no termination. |
| 24725 | pointdealloc(newpt); |
| 24726 | return 0; // Reject the insertion of newpt. |
| 24727 | } |
| 24728 | } |
| 24729 | } else if (pointtype(encpt) == FREEFACETVERTEX) { |
| 24730 | face parentsh; |
| 24731 | sdecode(point2sh(encpt), parentsh); |
| 24732 | if (facetfacetadjacent(&parentsh, splitfac)) { |
| 24733 | rp = getpointinsradius(encpt); |
| 24734 | if (rv < rp) { |
| 24735 | pointdealloc(newpt); |
| 24736 | return 0; // Reject the insertion of newpt. |
| 24737 | } |
| 24738 | } |
| 24739 | } |
| 24740 | } |
| 24741 | } // if (useinsertradius) |
| 24742 | |
| 24743 | // Search a subface which contains 'newpt'. |
| 24744 | searchsh = *splitfac; |
| 24745 | // Calculate an above point. It lies above the plane containing |
| 24746 | // the subface [a,b,c], and save it in dummypoint. Moreover, |
| 24747 | // the vector cent->dummypoint is the normal of the plane. |
| 24748 | calculateabovepoint4(newpt, pa, pb, pc); |
| 24749 | // Parameters: 'aflag' = 1, - above point exists. |
| 24750 | // 'cflag' = 0, - non-convex, check co-planarity of the result. |
| 24751 | // 'rflag' = 0, - no need to round the locating result. |
| 24752 | ivf.iloc = (int) slocate(newpt, &searchsh, 1, 0, 0); |
| 24753 | |
| 24754 | if (!((ivf.iloc == (int) ONFACE) || (ivf.iloc == (int) ONEDGE))) { |
| 24755 | pointdealloc(newpt); |
| 24756 | return 0; |
| 24757 | } |
| 24758 | |
| 24759 | |
| 24760 | triface searchtet; |
| 24761 | face *paryseg; |
| 24762 | int splitflag; |
| 24763 | |
| 24764 | // Insert the point. |
| 24765 | stpivot(searchsh, searchtet); |
| 24766 | //assert((ivf.iloc == (int) ONFACE) || (ivf.iloc == (int) ONEDGE)); |
| 24767 | // Use Bowyer-Watson algorithm. Preserve subsegments and subfaces; |
| 24768 | ivf.bowywat = 3; |
| 24769 | ivf.lawson = 2; |
| 24770 | ivf.rejflag = 1; // Do check the encroachment of segments. |
| 24771 | if (b->metric) { |
| 24772 | ivf.rejflag |= 4; // Do check encroachment of protecting balls. |
| 24773 | } |
| 24774 | ivf.chkencflag = chkencflag; |
| 24775 | ivf.sloc = (int) INSTAR; // ivf.iloc; |
| 24776 | ivf.sbowywat = 3; // ivf.bowywat; |
| 24777 | ivf.splitbdflag = 1; |
| 24778 | ivf.validflag = 1; |
| 24779 | ivf.respectbdflag = 1; |
| 24780 | ivf.assignmeshsize = b->metric; |
| 24781 | |
| 24782 | ivf.refineflag = 2; |
| 24783 | ivf.refinesh = searchsh; |
| 24784 | ivf.smlenflag = useinsertradius; // Update the insertion radius. |
| 24785 | |
| 24786 | |
| 24787 | if (insertpoint(newpt, &searchtet, &searchsh, NULL, &ivf)) { |
| 24788 | st_facref_count++; |
| 24789 | if (steinerleft > 0) steinerleft--; |
| 24790 | if (useinsertradius) { |
| 24791 | // Update 'rv' (to be the shortest distance). |
| 24792 | rv = ivf.smlen; |
| 24793 | if (pointtype(ivf.parentpt) == FREESEGVERTEX) { |
| 24794 | face parentseg, parentsh; |
| 24795 | sdecode(point2sh(ivf.parentpt), parentseg); |
| 24796 | sdecode(point2sh(newpt), parentsh); |
| 24797 | if (segfacetadjacent(&parentseg, &parentsh)) { |
| 24798 | rp = getpointinsradius(ivf.parentpt); |
| 24799 | if (rv < (sqrt(2.0) * rp)) { |
| 24800 | rv = sqrt(2.0) * rp; // The relaxed insertion radius of 'newpt'. |
| 24801 | } |
| 24802 | } |
| 24803 | } else if (pointtype(ivf.parentpt) == FREEFACETVERTEX) { |
| 24804 | face parentsh1, parentsh2; |
| 24805 | sdecode(point2sh(ivf.parentpt), parentsh1); |
| 24806 | sdecode(point2sh(newpt), parentsh2); |
| 24807 | if (facetfacetadjacent(&parentsh1, &parentsh2)) { |
| 24808 | rp = getpointinsradius(ivf.parentpt); |
| 24809 | if (rv < rp) { |
| 24810 | rv = rp; // The relaxed insertion radius of 'newpt'. |
| 24811 | } |
| 24812 | } |
| 24813 | } |
| 24814 | setpointinsradius(newpt, rv); |
| 24815 | } // if (useinsertradius) |
| 24816 | if (flipstack != NULL) { |
| 24817 | flipconstraints fc; |
| 24818 | fc.chkencflag = chkencflag; |
| 24819 | fc.enqflag = 2; |
| 24820 | lawsonflip3d(&fc); |
| 24821 | unflipqueue->restart(); |
| 24822 | } |
| 24823 | return 1; |
| 24824 | } else { |
| 24825 | // Point was not inserted. |
| 24826 | pointdealloc(newpt); |
| 24827 | if (ivf.iloc == (int) ENCSEGMENT) { |
| 24828 | // Select an encroached segment and split it. |
| 24829 | splitflag = 0; |
| 24830 | for (i = 0; i < encseglist->objects; i++) { |
| 24831 | paryseg = (face *) fastlookup(encseglist, i); |
| 24832 | if (splitsegment(paryseg, NULL, rv, encpt, encpt1, qflag, |
| 24833 | chkencflag | 1)) { |
| 24834 | splitflag = 1; // A point is inserted on a segment. |
| 24835 | break; |
| 24836 | } |
| 24837 | } |
| 24838 | encseglist->restart(); |
| 24839 | if (splitflag) { |
| 24840 | // Some segments may need to be repaired. |
| 24841 | repairencsegs(chkencflag | 1); |
| 24842 | // Queue this subface if it is still alive and not queued. |
| 24843 | //if ((splitfac->sh != NULL) && (splitfac->sh[3] != NULL)) { |
| 24844 | // // Only queue it if 'qflag' is set. |
| 24845 | // if (qflag) { |
| 24846 | // enqueuesubface(badsubfacs, splitfac); |
| 24847 | // } |
| 24848 | //} |
| 24849 | } |
| 24850 | return splitflag; |
| 24851 | } else { |
| 24852 | return 0; |
| 24853 | } |
| 24854 | } |
| 24855 | } |
| 24856 | |
| 24857 | /////////////////////////////////////////////////////////////////////////////// |
| 24858 | // // |
| 24859 | // repairencfacs() Repair encroached subfaces. // |
| 24860 | // // |
| 24861 | /////////////////////////////////////////////////////////////////////////////// |
| 24862 | |
| 24863 | void tetgenmesh::repairencfacs(int chkencflag) |
| 24864 | { |
| 24865 | face *bface; |
| 24866 | point encpt = NULL; |
| 24867 | int qflag = 0; |
| 24868 | REAL ccent[3]; |
| 24869 | |
| 24870 | // Loop until the pool 'badsubfacs' is empty. Note that steinerleft == -1 |
| 24871 | // if an unlimited number of Steiner points is allowed. |
| 24872 | while ((badsubfacs->items > 0) && (steinerleft != 0)) { |
| 24873 | badsubfacs->traversalinit(); |
| 24874 | bface = (face *) badsubfacs->traverse(); |
| 24875 | while ((bface != NULL) && (steinerleft != 0)) { |
| 24876 | // Skip a deleted element. |
| 24877 | if (bface->shver >= 0) { |
| 24878 | // A queued subface may have been deleted (split). |
| 24879 | if ((bface->sh != NULL) && (bface->sh[3] != NULL)) { |
| 24880 | // A queued subface may have been processed. |
| 24881 | if (smarktest2ed(*bface)) { |
| 24882 | sunmarktest2(*bface); |
| 24883 | if (checkfac4split(bface, encpt, qflag, ccent)) { |
| 24884 | splitsubface(bface, encpt, NULL, qflag, ccent, chkencflag); |
| 24885 | } |
| 24886 | } |
| 24887 | } |
| 24888 | bface->shver = -1; // Signal it as a deleted element. |
| 24889 | badsubfacs->dealloc((void *) bface); // Remove this entry from list. |
| 24890 | } |
| 24891 | bface = (face *) badsubfacs->traverse(); |
| 24892 | } |
| 24893 | } |
| 24894 | |
| 24895 | if (badsubfacs->items > 0) { |
| 24896 | if (steinerleft == 0) { |
| 24897 | if (b->verbose) { |
| 24898 | printf("The desired number of Steiner points is reached.\n" ); |
| 24899 | } |
| 24900 | } else { |
| 24901 | assert(0); // Unknown case. |
| 24902 | } |
| 24903 | badsubfacs->traversalinit(); |
| 24904 | bface = (face *) badsubfacs->traverse(); |
| 24905 | while (bface != NULL) { |
| 24906 | // Skip a deleted element. |
| 24907 | if (bface->shver >= 0) { |
| 24908 | if ((bface->sh != NULL) && (bface->sh[3] != NULL)) { |
| 24909 | if (smarktest2ed(*bface)) { |
| 24910 | sunmarktest2(*bface); |
| 24911 | } |
| 24912 | } |
| 24913 | } |
| 24914 | bface = (face *) badsubfacs->traverse(); |
| 24915 | } |
| 24916 | badsubfacs->restart(); |
| 24917 | } |
| 24918 | } |
| 24919 | |
| 24920 | /////////////////////////////////////////////////////////////////////////////// |
| 24921 | // // |
| 24922 | // enqueuetetrahedron() Queue a tetrahedron for quality check. // |
| 24923 | // // |
| 24924 | /////////////////////////////////////////////////////////////////////////////// |
| 24925 | |
| 24926 | void tetgenmesh::enqueuetetrahedron(triface *chktet) |
| 24927 | { |
| 24928 | if (!marktest2ed(*chktet)) { |
| 24929 | marktest2(*chktet); // Only queue it once. |
| 24930 | triface *quetet = (triface *) badtetrahedrons->alloc(); |
| 24931 | *quetet = *chktet; |
| 24932 | } |
| 24933 | } |
| 24934 | |
| 24935 | /////////////////////////////////////////////////////////////////////////////// |
| 24936 | // // |
| 24937 | // checktet4split() Check if the tet needs to be split. // |
| 24938 | // // |
| 24939 | /////////////////////////////////////////////////////////////////////////////// |
| 24940 | |
| 24941 | int tetgenmesh::checktet4split(triface *chktet, int &qflag, REAL *ccent) |
| 24942 | { |
| 24943 | point pa, pb, pc, pd, *ppt; |
| 24944 | REAL vda[3], vdb[3], vdc[3]; |
| 24945 | REAL vab[3], vbc[3], vca[3]; |
| 24946 | REAL N[4][3], L[4], cosd[6], elen[6]; |
| 24947 | REAL maxcosd, vol, volbnd, smlen = 0, rd; |
| 24948 | REAL A[4][4], rhs[4], D; |
| 24949 | int indx[4]; |
| 24950 | int i, j; |
| 24951 | |
| 24952 | if (b->convex) { // -c |
| 24953 | // Skip this tet if it lies in the exterior. |
| 24954 | if (elemattribute(chktet->tet, numelemattrib - 1) == -1.0) { |
| 24955 | return 0; |
| 24956 | } |
| 24957 | } |
| 24958 | |
| 24959 | qflag = 0; |
| 24960 | |
| 24961 | pd = (point) chktet->tet[7]; |
| 24962 | if (pd == dummypoint) { |
| 24963 | return 0; // Do not split a hull tet. |
| 24964 | } |
| 24965 | |
| 24966 | pa = (point) chktet->tet[4]; |
| 24967 | pb = (point) chktet->tet[5]; |
| 24968 | pc = (point) chktet->tet[6]; |
| 24969 | |
| 24970 | // Get the edge vectors vda: d->a, vdb: d->b, vdc: d->c. |
| 24971 | // Set the matrix A = [vda, vdb, vdc]^T. |
| 24972 | for (i = 0; i < 3; i++) A[0][i] = vda[i] = pa[i] - pd[i]; |
| 24973 | for (i = 0; i < 3; i++) A[1][i] = vdb[i] = pb[i] - pd[i]; |
| 24974 | for (i = 0; i < 3; i++) A[2][i] = vdc[i] = pc[i] - pd[i]; |
| 24975 | |
| 24976 | // Get the other edge vectors. |
| 24977 | for (i = 0; i < 3; i++) vab[i] = pb[i] - pa[i]; |
| 24978 | for (i = 0; i < 3; i++) vbc[i] = pc[i] - pb[i]; |
| 24979 | for (i = 0; i < 3; i++) vca[i] = pa[i] - pc[i]; |
| 24980 | |
| 24981 | if (!lu_decmp(A, 3, indx, &D, 0)) { |
| 24982 | // A degenerated tet (vol = 0). |
| 24983 | // This is possible due to the use of exact arithmetic. We temporarily |
| 24984 | // leave this tet. It should be fixed by mesh optimization. |
| 24985 | return 0; |
| 24986 | } |
| 24987 | |
| 24988 | // Check volume if '-a#' and '-a' options are used. |
| 24989 | if (b->varvolume || b->fixedvolume) { |
| 24990 | vol = fabs(A[indx[0]][0] * A[indx[1]][1] * A[indx[2]][2]) / 6.0; |
| 24991 | if (b->fixedvolume) { |
| 24992 | if (vol > b->maxvolume) { |
| 24993 | qflag = 1; |
| 24994 | } |
| 24995 | } |
| 24996 | if (!qflag && b->varvolume) { |
| 24997 | volbnd = volumebound(chktet->tet); |
| 24998 | if ((volbnd > 0.0) && (vol > volbnd)) { |
| 24999 | qflag = 1; |
| 25000 | } |
| 25001 | } |
| 25002 | if (qflag == 1) { |
| 25003 | // Calculate the circumcenter of this tet. |
| 25004 | rhs[0] = 0.5 * dot(vda, vda); |
| 25005 | rhs[1] = 0.5 * dot(vdb, vdb); |
| 25006 | rhs[2] = 0.5 * dot(vdc, vdc); |
| 25007 | lu_solve(A, 3, indx, rhs, 0); |
| 25008 | for (i = 0; i < 3; i++) ccent[i] = pd[i] + rhs[i]; |
| 25009 | return 1; |
| 25010 | } |
| 25011 | } |
| 25012 | |
| 25013 | if (b->metric) { // -m option. Check mesh size. |
| 25014 | // Calculate the circumradius of this tet. |
| 25015 | rhs[0] = 0.5 * dot(vda, vda); |
| 25016 | rhs[1] = 0.5 * dot(vdb, vdb); |
| 25017 | rhs[2] = 0.5 * dot(vdc, vdc); |
| 25018 | lu_solve(A, 3, indx, rhs, 0); |
| 25019 | for (i = 0; i < 3; i++) ccent[i] = pd[i] + rhs[i]; |
| 25020 | rd = sqrt(dot(rhs, rhs)); |
| 25021 | // Check if the ccent lies outside one of the prot.balls at vertices. |
| 25022 | ppt = (point *) &(chktet->tet[4]); |
| 25023 | for (i = 0; i < 4; i++) { |
| 25024 | if (ppt[i][pointmtrindex] > 0) { |
| 25025 | if (rd > ppt[i][pointmtrindex]) { |
| 25026 | qflag = 1; // Enforce mesh size. |
| 25027 | return 1; |
| 25028 | } |
| 25029 | } |
| 25030 | } |
| 25031 | } |
| 25032 | |
| 25033 | if (in->tetunsuitable != NULL) { |
| 25034 | // Execute the user-defined meshing sizing evaluation. |
| 25035 | if ((*(in->tetunsuitable))(pa, pb, pc, pd, NULL, 0)) { |
| 25036 | // Calculate the circumcenter of this tet. |
| 25037 | rhs[0] = 0.5 * dot(vda, vda); |
| 25038 | rhs[1] = 0.5 * dot(vdb, vdb); |
| 25039 | rhs[2] = 0.5 * dot(vdc, vdc); |
| 25040 | lu_solve(A, 3, indx, rhs, 0); |
| 25041 | for (i = 0; i < 3; i++) ccent[i] = pd[i] + rhs[i]; |
| 25042 | return 1; |
| 25043 | } |
| 25044 | } |
| 25045 | |
| 25046 | if (useinsertradius) { |
| 25047 | // Do not split this tet if the shortest edge is shorter than the |
| 25048 | // insertion radius of one of its endpoints. |
| 25049 | triface checkedge; |
| 25050 | point e1, e2; |
| 25051 | REAL rrv, smrrv; |
| 25052 | |
| 25053 | // Get the shortest edge of this tet. |
| 25054 | checkedge.tet = chktet->tet; |
| 25055 | for (i = 0; i < 6; i++) { |
| 25056 | checkedge.ver = edge2ver[i]; |
| 25057 | e1 = org(checkedge); |
| 25058 | e2 = dest(checkedge); |
| 25059 | elen[i] = distance(e1, e2); |
| 25060 | if (i == 0) { |
| 25061 | smlen = elen[i]; |
| 25062 | j = 0; |
| 25063 | } else { |
| 25064 | if (elen[i] < smlen) { |
| 25065 | smlen = elen[i]; |
| 25066 | j = i; |
| 25067 | } |
| 25068 | } |
| 25069 | } |
| 25070 | // Check if the edge is too short. |
| 25071 | checkedge.ver = edge2ver[j]; |
| 25072 | // Get the smallest rrv of e1 and e2. |
| 25073 | // Note: if rrv of e1 and e2 is zero. Do not use it. |
| 25074 | e1 = org(checkedge); |
| 25075 | smrrv = getpointinsradius(e1); |
| 25076 | e2 = dest(checkedge); |
| 25077 | rrv = getpointinsradius(e2); |
| 25078 | if (rrv > 0) { |
| 25079 | if (smrrv > 0) { |
| 25080 | if (rrv < smrrv) { |
| 25081 | smrrv = rrv; |
| 25082 | } |
| 25083 | } else { |
| 25084 | smrrv = rrv; |
| 25085 | } |
| 25086 | } |
| 25087 | if (smrrv > 0) { |
| 25088 | // To avoid rounding error, round smrrv before doing comparison. |
| 25089 | if ((fabs(smrrv - smlen) / smlen) < b->epsilon) { |
| 25090 | smrrv = smlen; |
| 25091 | } |
| 25092 | if (smrrv > smlen) { |
| 25093 | return 0; |
| 25094 | } |
| 25095 | } |
| 25096 | } // if (useinsertradius) |
| 25097 | |
| 25098 | // Check the radius-edge ratio. Set by -q#. |
| 25099 | if (b->minratio > 0) { |
| 25100 | // Calculate the circumcenter and radius of this tet. |
| 25101 | rhs[0] = 0.5 * dot(vda, vda); |
| 25102 | rhs[1] = 0.5 * dot(vdb, vdb); |
| 25103 | rhs[2] = 0.5 * dot(vdc, vdc); |
| 25104 | lu_solve(A, 3, indx, rhs, 0); |
| 25105 | for (i = 0; i < 3; i++) ccent[i] = pd[i] + rhs[i]; |
| 25106 | rd = sqrt(dot(rhs, rhs)); |
| 25107 | if (!useinsertradius) { |
| 25108 | // Calculate the shortest edge length. |
| 25109 | elen[0] = dot(vda, vda); |
| 25110 | elen[1] = dot(vdb, vdb); |
| 25111 | elen[2] = dot(vdc, vdc); |
| 25112 | elen[3] = dot(vab, vab); |
| 25113 | elen[4] = dot(vbc, vbc); |
| 25114 | elen[5] = dot(vca, vca); |
| 25115 | smlen = elen[0]; //sidx = 0; |
| 25116 | for (i = 1; i < 6; i++) { |
| 25117 | if (smlen > elen[i]) { |
| 25118 | smlen = elen[i]; //sidx = i; |
| 25119 | } |
| 25120 | } |
| 25121 | smlen = sqrt(smlen); |
| 25122 | } |
| 25123 | D = rd / smlen; |
| 25124 | if (D > b->minratio) { |
| 25125 | // A bad radius-edge ratio. |
| 25126 | return 1; |
| 25127 | } |
| 25128 | } |
| 25129 | |
| 25130 | // Check the minimum dihedral angle. Set by -qq#. |
| 25131 | if (b->mindihedral > 0) { |
| 25132 | // Compute the 4 face normals (N[0], ..., N[3]). |
| 25133 | for (j = 0; j < 3; j++) { |
| 25134 | for (i = 0; i < 3; i++) N[j][i] = 0.0; |
| 25135 | N[j][j] = 1.0; // Positive means the inside direction |
| 25136 | lu_solve(A, 3, indx, N[j], 0); |
| 25137 | } |
| 25138 | for (i = 0; i < 3; i++) N[3][i] = - N[0][i] - N[1][i] - N[2][i]; |
| 25139 | // Normalize the normals. |
| 25140 | for (i = 0; i < 4; i++) { |
| 25141 | L[i] = sqrt(dot(N[i], N[i])); |
| 25142 | assert(L[i] > 0); |
| 25143 | //if (L[i] > 0.0) { |
| 25144 | for (j = 0; j < 3; j++) N[i][j] /= L[i]; |
| 25145 | //} |
| 25146 | } |
| 25147 | // Calculate the six dihedral angles. |
| 25148 | cosd[0] = -dot(N[0], N[1]); // Edge cd, bd, bc. |
| 25149 | cosd[1] = -dot(N[0], N[2]); |
| 25150 | cosd[2] = -dot(N[0], N[3]); |
| 25151 | cosd[3] = -dot(N[1], N[2]); // Edge ad, ac |
| 25152 | cosd[4] = -dot(N[1], N[3]); |
| 25153 | cosd[5] = -dot(N[2], N[3]); // Edge ab |
| 25154 | // Get the smallest dihedral angle. |
| 25155 | //maxcosd = mincosd = cosd[0]; |
| 25156 | maxcosd = cosd[0]; |
| 25157 | for (i = 1; i < 6; i++) { |
| 25158 | //if (cosd[i] > maxcosd) maxcosd = cosd[i]; |
| 25159 | maxcosd = (cosd[i] > maxcosd ? cosd[i] : maxcosd); |
| 25160 | //mincosd = (cosd[i] < mincosd ? cosd[i] : maxcosd); |
| 25161 | } |
| 25162 | if (maxcosd > cosmindihed) { |
| 25163 | // Calculate the circumcenter of this tet. |
| 25164 | // A bad dihedral angle. |
| 25165 | //if ((b->quality & 1) == 0) { |
| 25166 | rhs[0] = 0.5 * dot(vda, vda); |
| 25167 | rhs[1] = 0.5 * dot(vdb, vdb); |
| 25168 | rhs[2] = 0.5 * dot(vdc, vdc); |
| 25169 | lu_solve(A, 3, indx, rhs, 0); |
| 25170 | for (i = 0; i < 3; i++) ccent[i] = pd[i] + rhs[i]; |
| 25171 | //*rd = sqrt(dot(rhs, rhs)); |
| 25172 | //} |
| 25173 | return 1; |
| 25174 | } |
| 25175 | } |
| 25176 | |
| 25177 | return 0; |
| 25178 | } |
| 25179 | |
| 25180 | /////////////////////////////////////////////////////////////////////////////// |
| 25181 | // // |
| 25182 | // splittetrahedron() Split a tetrahedron. // |
| 25183 | // // |
| 25184 | /////////////////////////////////////////////////////////////////////////////// |
| 25185 | |
| 25186 | int tetgenmesh::splittetrahedron(triface* splittet, int qflag, REAL *ccent, |
| 25187 | int chkencflag) |
| 25188 | { |
| 25189 | triface searchtet; |
| 25190 | face *paryseg; |
| 25191 | point newpt; |
| 25192 | badface *bface; |
| 25193 | insertvertexflags ivf; |
| 25194 | int splitflag; |
| 25195 | int i; |
| 25196 | |
| 25197 | |
| 25198 | |
| 25199 | REAL rv = 0.; // Insertion radius of 'newpt'. |
| 25200 | |
| 25201 | makepoint(&newpt, FREEVOLVERTEX); |
| 25202 | for (i = 0; i < 3; i++) newpt[i] = ccent[i]; |
| 25203 | |
| 25204 | if (useinsertradius) { |
| 25205 | rv = distance(newpt, org(*splittet)); |
| 25206 | setpointinsradius(newpt, rv); |
| 25207 | } |
| 25208 | |
| 25209 | searchtet = *splittet; |
| 25210 | ivf.iloc = (int) OUTSIDE; |
| 25211 | // Use Bowyer-Watson algorithm. Preserve subsegments and subfaces; |
| 25212 | ivf.bowywat = 3; |
| 25213 | ivf.lawson = 2; |
| 25214 | ivf.rejflag = 3; // Do check for encroached segments and subfaces. |
| 25215 | if (b->metric) { |
| 25216 | ivf.rejflag |= 4; // Reject it if it lies in some protecting balls. |
| 25217 | } |
| 25218 | ivf.chkencflag = chkencflag; |
| 25219 | ivf.sloc = ivf.sbowywat = 0; // No use. |
| 25220 | ivf.splitbdflag = 0; // No use. |
| 25221 | ivf.validflag = 1; |
| 25222 | ivf.respectbdflag = 1; |
| 25223 | ivf.assignmeshsize = b->metric; |
| 25224 | |
| 25225 | ivf.refineflag = 1; |
| 25226 | ivf.refinetet = *splittet; |
| 25227 | |
| 25228 | |
| 25229 | if (insertpoint(newpt, &searchtet, NULL, NULL, &ivf)) { |
| 25230 | // Vertex is inserted. |
| 25231 | st_volref_count++; |
| 25232 | if (steinerleft > 0) steinerleft--; |
| 25233 | if (flipstack != NULL) { |
| 25234 | flipconstraints fc; |
| 25235 | fc.chkencflag = chkencflag; |
| 25236 | fc.enqflag = 2; |
| 25237 | lawsonflip3d(&fc); |
| 25238 | unflipqueue->restart(); |
| 25239 | } |
| 25240 | return 1; |
| 25241 | } else { |
| 25242 | // Point is not inserted. |
| 25243 | pointdealloc(newpt); |
| 25244 | // Check if there are encroached segments/subfaces. |
| 25245 | if (ivf.iloc == (int) ENCSEGMENT) { |
| 25246 | splitflag = 0; |
| 25247 | //if (!b->nobisect) { // not -Y option |
| 25248 | if (!b->nobisect || checkconstraints) { |
| 25249 | // Select an encroached segment and split it. |
| 25250 | for (i = 0; i < encseglist->objects; i++) { |
| 25251 | paryseg = (face *) fastlookup(encseglist, i); |
| 25252 | if (splitsegment(paryseg, NULL, rv, org(*splittet), NULL, qflag, |
| 25253 | chkencflag | 3)) { |
| 25254 | splitflag = 1; // A point is inserted on a segment. |
| 25255 | break; |
| 25256 | } |
| 25257 | } |
| 25258 | } // if (!b->nobisect) |
| 25259 | encseglist->restart(); |
| 25260 | if (splitflag) { |
| 25261 | // Some segments may need to be repaired. |
| 25262 | repairencsegs(chkencflag | 3); |
| 25263 | // Some subfaces may need to be repaired. |
| 25264 | repairencfacs(chkencflag | 2); |
| 25265 | // Queue the tet if it is still alive and not queued. |
| 25266 | if ((splittet->tet != NULL) && (splittet->tet[4] != NULL)) { |
| 25267 | enqueuetetrahedron(splittet); |
| 25268 | } |
| 25269 | } |
| 25270 | return splitflag; |
| 25271 | } else if (ivf.iloc == (int) ENCSUBFACE) { |
| 25272 | splitflag = 0; |
| 25273 | //if (!b->nobisect) { // not -Y option |
| 25274 | if (!b->nobisect || checkconstraints) { |
| 25275 | // Select an encroached subface and split it. |
| 25276 | for (i = 0; i < encshlist->objects; i++) { |
| 25277 | bface = (badface *) fastlookup(encshlist, i); |
| 25278 | if (splitsubface(&(bface->ss), NULL, org(*splittet), qflag, |
| 25279 | bface->cent, chkencflag | 2)){ |
| 25280 | splitflag = 1; // A point is inserted on a subface or a segment. |
| 25281 | break; |
| 25282 | } |
| 25283 | } |
| 25284 | } // if (!b->nobisect) |
| 25285 | encshlist->restart(); |
| 25286 | if (splitflag) { |
| 25287 | assert(badsubsegs->items == 0l); |
| 25288 | // Some subfaces may need to be repaired. |
| 25289 | repairencfacs(chkencflag | 2); |
| 25290 | // Queue the tet if it is still alive. |
| 25291 | if ((splittet->tet != NULL) && (splittet->tet[4] != NULL)) { |
| 25292 | enqueuetetrahedron(splittet); |
| 25293 | } |
| 25294 | } |
| 25295 | return splitflag; |
| 25296 | } |
| 25297 | return 0; |
| 25298 | } |
| 25299 | } |
| 25300 | |
| 25301 | /////////////////////////////////////////////////////////////////////////////// |
| 25302 | // // |
| 25303 | // repairbadtets() Repair bad quality tetrahedra. // |
| 25304 | // // |
| 25305 | /////////////////////////////////////////////////////////////////////////////// |
| 25306 | |
| 25307 | void tetgenmesh::repairbadtets(int chkencflag) |
| 25308 | { |
| 25309 | triface *bface; |
| 25310 | REAL ccent[3]; |
| 25311 | int qflag = 0; |
| 25312 | |
| 25313 | |
| 25314 | // Loop until the pool 'badsubfacs' is empty. Note that steinerleft == -1 |
| 25315 | // if an unlimited number of Steiner points is allowed. |
| 25316 | while ((badtetrahedrons->items > 0) && (steinerleft != 0)) { |
| 25317 | badtetrahedrons->traversalinit(); |
| 25318 | bface = (triface *) badtetrahedrons->traverse(); |
| 25319 | while ((bface != NULL) && (steinerleft != 0)) { |
| 25320 | // Skip a deleted element. |
| 25321 | if (bface->ver >= 0) { |
| 25322 | // A queued tet may have been deleted. |
| 25323 | if (!isdeadtet(*bface)) { |
| 25324 | // A queued tet may have been processed. |
| 25325 | if (marktest2ed(*bface)) { |
| 25326 | unmarktest2(*bface); |
| 25327 | if (checktet4split(bface, qflag, ccent)) { |
| 25328 | splittetrahedron(bface, qflag, ccent, chkencflag); |
| 25329 | } |
| 25330 | } |
| 25331 | } |
| 25332 | bface->ver = -1; // Signal it as a deleted element. |
| 25333 | badtetrahedrons->dealloc((void *) bface); |
| 25334 | } |
| 25335 | bface = (triface *) badtetrahedrons->traverse(); |
| 25336 | } |
| 25337 | } |
| 25338 | |
| 25339 | if (badtetrahedrons->items > 0) { |
| 25340 | if (steinerleft == 0) { |
| 25341 | if (b->verbose) { |
| 25342 | printf("The desired number of Steiner points is reached.\n" ); |
| 25343 | } |
| 25344 | } else { |
| 25345 | assert(0); // Unknown case. |
| 25346 | } |
| 25347 | // Unmark all queued tet. |
| 25348 | badtetrahedrons->traversalinit(); |
| 25349 | bface = (triface *) badtetrahedrons->traverse(); |
| 25350 | while (bface != NULL) { |
| 25351 | // Skip a deleted element. |
| 25352 | if (bface->ver >= 0) { |
| 25353 | if (!isdeadtet(*bface)) { |
| 25354 | if (marktest2ed(*bface)) { |
| 25355 | unmarktest2(*bface); |
| 25356 | } |
| 25357 | } |
| 25358 | } |
| 25359 | bface = (triface *) badtetrahedrons->traverse(); |
| 25360 | } |
| 25361 | // Clear the pool. |
| 25362 | badtetrahedrons->restart(); |
| 25363 | } |
| 25364 | } |
| 25365 | |
| 25366 | /////////////////////////////////////////////////////////////////////////////// |
| 25367 | // // |
| 25368 | // delaunayrefinement() Refine the mesh by Delaunay refinement. // |
| 25369 | // // |
| 25370 | /////////////////////////////////////////////////////////////////////////////// |
| 25371 | |
| 25372 | void tetgenmesh::delaunayrefinement() |
| 25373 | { |
| 25374 | triface checktet; |
| 25375 | face checksh; |
| 25376 | face checkseg; |
| 25377 | long steinercount; |
| 25378 | int chkencflag; |
| 25379 | |
| 25380 | long bak_segref_count, bak_facref_count, bak_volref_count; |
| 25381 | long bak_flipcount = flip23count + flip32count + flip44count; |
| 25382 | |
| 25383 | if (!b->quiet) { |
| 25384 | printf("Refining mesh...\n" ); |
| 25385 | } |
| 25386 | |
| 25387 | if (b->verbose) { |
| 25388 | printf(" Min radiu-edge ratio = %g.\n" , b->minratio); |
| 25389 | printf(" Min dihedral angle = %g.\n" , b->mindihedral); |
| 25390 | //printf(" Min Edge length = %g.\n", b->minedgelength); |
| 25391 | } |
| 25392 | |
| 25393 | steinerleft = b->steinerleft; // Upperbound of # Steiner points (by -S#). |
| 25394 | if (steinerleft > 0) { |
| 25395 | // Check if we've already used up the given number of Steiner points. |
| 25396 | steinercount = st_segref_count + st_facref_count + st_volref_count; |
| 25397 | if (steinercount < steinerleft) { |
| 25398 | steinerleft -= steinercount; |
| 25399 | } else { |
| 25400 | if (!b->quiet) { |
| 25401 | printf("\nWarning: " ); |
| 25402 | printf("The desired number of Steiner points (%d) has reached.\n\n" , |
| 25403 | b->steinerleft); |
| 25404 | } |
| 25405 | return; // No more Steiner points. |
| 25406 | } |
| 25407 | } |
| 25408 | |
| 25409 | if (useinsertradius) { |
| 25410 | if ((b->plc && b->nobisect) || b->refine) { // '-pY' or '-r' option. |
| 25411 | makesegmentendpointsmap(); |
| 25412 | } |
| 25413 | makefacetverticesmap(); |
| 25414 | } |
| 25415 | |
| 25416 | |
| 25417 | encseglist = new arraypool(sizeof(face), 8); |
| 25418 | encshlist = new arraypool(sizeof(badface), 8); |
| 25419 | |
| 25420 | |
| 25421 | //if (!b->nobisect) { // if no '-Y' option |
| 25422 | if (!b->nobisect || checkconstraints) { |
| 25423 | if (b->verbose) { |
| 25424 | printf(" Splitting encroached subsegments.\n" ); |
| 25425 | } |
| 25426 | |
| 25427 | chkencflag = 1; // Only check encroaching subsegments. |
| 25428 | steinercount = points->items; |
| 25429 | |
| 25430 | // Initialize the pool of encroached subsegments. |
| 25431 | badsubsegs = new memorypool(sizeof(face), b->shellfaceperblock, |
| 25432 | sizeof(void *), 0); |
| 25433 | |
| 25434 | // Add all segments into the pool. |
| 25435 | subsegs->traversalinit(); |
| 25436 | checkseg.sh = shellfacetraverse(subsegs); |
| 25437 | while (checkseg.sh != (shellface *) NULL) { |
| 25438 | enqueuesubface(badsubsegs, &checkseg); |
| 25439 | checkseg.sh = shellfacetraverse(subsegs); |
| 25440 | } |
| 25441 | |
| 25442 | // Split all encroached segments. |
| 25443 | repairencsegs(chkencflag); |
| 25444 | |
| 25445 | if (b->verbose) { |
| 25446 | printf(" Added %ld Steiner points.\n" , points->items - steinercount); |
| 25447 | } |
| 25448 | |
| 25449 | if (b->reflevel > 1) { // '-D2' option |
| 25450 | if (b->verbose) { |
| 25451 | printf(" Splitting encroached subfaces.\n" ); |
| 25452 | } |
| 25453 | |
| 25454 | chkencflag = 2; // Only check encroaching subfaces. |
| 25455 | steinercount = points->items; |
| 25456 | bak_segref_count = st_segref_count; |
| 25457 | bak_facref_count = st_facref_count; |
| 25458 | |
| 25459 | // Initialize the pool of encroached subfaces. |
| 25460 | badsubfacs = new memorypool(sizeof(face), b->shellfaceperblock, |
| 25461 | sizeof(void *), 0); |
| 25462 | |
| 25463 | // Add all subfaces into the pool. |
| 25464 | subfaces->traversalinit(); |
| 25465 | checksh.sh = shellfacetraverse(subfaces); |
| 25466 | while (checksh.sh != (shellface *) NULL) { |
| 25467 | enqueuesubface(badsubfacs, &checksh); |
| 25468 | checksh.sh = shellfacetraverse(subfaces); |
| 25469 | } |
| 25470 | |
| 25471 | // Split all encroached subfaces. |
| 25472 | repairencfacs(chkencflag); |
| 25473 | |
| 25474 | if (b->verbose) { |
| 25475 | printf(" Added %ld (%ld,%ld) Steiner points.\n" , |
| 25476 | points->items-steinercount, st_segref_count-bak_segref_count, |
| 25477 | st_facref_count-bak_facref_count); |
| 25478 | } |
| 25479 | } // if (b->reflevel > 1) |
| 25480 | } // if (!b->nobisect) |
| 25481 | |
| 25482 | if (b->reflevel > 2) { // '-D3' option (The default option) |
| 25483 | if (b->verbose) { |
| 25484 | printf(" Splitting bad quality tets.\n" ); |
| 25485 | } |
| 25486 | |
| 25487 | chkencflag = 4; // Only check tetrahedra. |
| 25488 | steinercount = points->items; |
| 25489 | bak_segref_count = st_segref_count; |
| 25490 | bak_facref_count = st_facref_count; |
| 25491 | bak_volref_count = st_volref_count; |
| 25492 | |
| 25493 | // The cosine value of the min dihedral angle (-qq) for tetrahedra. |
| 25494 | cosmindihed = cos(b->mindihedral / 180.0 * PI); |
| 25495 | |
| 25496 | // Initialize the pool of bad quality tetrahedra. |
| 25497 | badtetrahedrons = new memorypool(sizeof(triface), b->tetrahedraperblock, |
| 25498 | sizeof(void *), 0); |
| 25499 | // Add all tetrahedra (no hull tets) into the pool. |
| 25500 | tetrahedrons->traversalinit(); |
| 25501 | checktet.tet = tetrahedrontraverse(); |
| 25502 | while (checktet.tet != NULL) { |
| 25503 | enqueuetetrahedron(&checktet); |
| 25504 | checktet.tet = tetrahedrontraverse(); |
| 25505 | } |
| 25506 | |
| 25507 | // Split all bad quality tetrahedra. |
| 25508 | repairbadtets(chkencflag); |
| 25509 | |
| 25510 | if (b->verbose) { |
| 25511 | printf(" Added %ld (%ld,%ld,%ld) Steiner points.\n" , |
| 25512 | points->items - steinercount, |
| 25513 | st_segref_count - bak_segref_count, |
| 25514 | st_facref_count - bak_facref_count, |
| 25515 | st_volref_count - bak_volref_count); |
| 25516 | } |
| 25517 | } // if (b->reflevel > 2) |
| 25518 | |
| 25519 | if (b->verbose) { |
| 25520 | if (flip23count + flip32count + flip44count > bak_flipcount) { |
| 25521 | printf(" Performed %ld flips.\n" , flip23count + flip32count + |
| 25522 | flip44count - bak_flipcount); |
| 25523 | } |
| 25524 | } |
| 25525 | |
| 25526 | if (steinerleft == 0) { |
| 25527 | if (!b->quiet) { |
| 25528 | printf("\nWarnning: " ); |
| 25529 | printf("The desired number of Steiner points (%d) is reached.\n\n" , |
| 25530 | b->steinerleft); |
| 25531 | } |
| 25532 | } |
| 25533 | |
| 25534 | |
| 25535 | delete encseglist; |
| 25536 | delete encshlist; |
| 25537 | |
| 25538 | //if (!b->nobisect) { |
| 25539 | if (!b->nobisect || checkconstraints) { |
| 25540 | totalworkmemory += (badsubsegs->maxitems * badsubsegs->itembytes); |
| 25541 | delete badsubsegs; |
| 25542 | if (b->reflevel > 1) { |
| 25543 | totalworkmemory += (badsubfacs->maxitems * badsubfacs->itembytes); |
| 25544 | delete badsubfacs; |
| 25545 | } |
| 25546 | } |
| 25547 | if (b->reflevel > 2) { |
| 25548 | totalworkmemory += (badtetrahedrons->maxitems*badtetrahedrons->itembytes); |
| 25549 | delete badtetrahedrons; |
| 25550 | } |
| 25551 | } |
| 25552 | |
| 25553 | //// //// |
| 25554 | //// //// |
| 25555 | //// refine_cxx /////////////////////////////////////////////////////////////// |
| 25556 | |
| 25557 | //// optimize_cxx ///////////////////////////////////////////////////////////// |
| 25558 | //// //// |
| 25559 | //// //// |
| 25560 | |
| 25561 | /////////////////////////////////////////////////////////////////////////////// |
| 25562 | // // |
| 25563 | // lawsonflip3d() A three-dimensional Lawson's algorithm. // |
| 25564 | // // |
| 25565 | /////////////////////////////////////////////////////////////////////////////// |
| 25566 | |
| 25567 | long tetgenmesh::lawsonflip3d(flipconstraints *fc) |
| 25568 | { |
| 25569 | triface fliptets[5], neightet, hulltet; |
| 25570 | face checksh, casingout; |
| 25571 | badface *popface, *bface; |
| 25572 | point pd, pe, *pts; |
| 25573 | REAL sign, ori; |
| 25574 | long flipcount, totalcount = 0l; |
| 25575 | long sliver_peels = 0l; |
| 25576 | int t1ver; |
| 25577 | int i; |
| 25578 | |
| 25579 | |
| 25580 | while (1) { |
| 25581 | |
| 25582 | if (b->verbose > 2) { |
| 25583 | printf(" Lawson flip %ld faces.\n" , flippool->items); |
| 25584 | } |
| 25585 | flipcount = 0l; |
| 25586 | |
| 25587 | while (flipstack != (badface *) NULL) { |
| 25588 | // Pop a face from the stack. |
| 25589 | popface = flipstack; |
| 25590 | fliptets[0] = popface->tt; |
| 25591 | flipstack = flipstack->nextitem; // The next top item in stack. |
| 25592 | flippool->dealloc((void *) popface); |
| 25593 | |
| 25594 | // Skip it if it is a dead tet (destroyed by previous flips). |
| 25595 | if (isdeadtet(fliptets[0])) continue; |
| 25596 | // Skip it if it is not the same tet as we saved. |
| 25597 | if (!facemarked(fliptets[0])) continue; |
| 25598 | |
| 25599 | unmarkface(fliptets[0]); |
| 25600 | |
| 25601 | if (ishulltet(fliptets[0])) continue; |
| 25602 | |
| 25603 | fsym(fliptets[0], fliptets[1]); |
| 25604 | if (ishulltet(fliptets[1])) { |
| 25605 | if (nonconvex) { |
| 25606 | // Check if 'fliptets[0]' it is a hull sliver. |
| 25607 | tspivot(fliptets[0], checksh); |
| 25608 | for (i = 0; i < 3; i++) { |
| 25609 | if (!isshsubseg(checksh)) { |
| 25610 | spivot(checksh, casingout); |
| 25611 | //assert(casingout.sh != NULL); |
| 25612 | if (sorg(checksh) != sdest(casingout)) sesymself(casingout); |
| 25613 | stpivot(casingout, neightet); |
| 25614 | if (neightet.tet == fliptets[0].tet) { |
| 25615 | // Found a hull sliver 'neightet'. Let it be [e,d,a,b], where |
| 25616 | // [e,d,a] and [d,e,b] are hull faces. |
| 25617 | edestoppo(neightet, hulltet); // [a,b,e,d] |
| 25618 | fsymself(hulltet); // [b,a,e,#] |
| 25619 | if (oppo(hulltet) == dummypoint) { |
| 25620 | pe = org(neightet); |
| 25621 | if ((pointtype(pe) == FREEFACETVERTEX) || |
| 25622 | (pointtype(pe) == FREESEGVERTEX)) { |
| 25623 | removevertexbyflips(pe); |
| 25624 | } |
| 25625 | } else { |
| 25626 | eorgoppo(neightet, hulltet); // [b,a,d,e] |
| 25627 | fsymself(hulltet); // [a,b,d,#] |
| 25628 | if (oppo(hulltet) == dummypoint) { |
| 25629 | pd = dest(neightet); |
| 25630 | if ((pointtype(pd) == FREEFACETVERTEX) || |
| 25631 | (pointtype(pd) == FREESEGVERTEX)) { |
| 25632 | removevertexbyflips(pd); |
| 25633 | } |
| 25634 | } else { |
| 25635 | // Perform a 3-to-2 flip to remove the sliver. |
| 25636 | fliptets[0] = neightet; // [e,d,a,b] |
| 25637 | fnext(fliptets[0], fliptets[1]); // [e,d,b,c] |
| 25638 | fnext(fliptets[1], fliptets[2]); // [e,d,c,a] |
| 25639 | flip32(fliptets, 1, fc); |
| 25640 | // Update counters. |
| 25641 | flip32count--; |
| 25642 | flip22count--; |
| 25643 | sliver_peels++; |
| 25644 | if (fc->remove_ndelaunay_edge) { |
| 25645 | // Update the volume (must be decreased). |
| 25646 | //assert(fc->tetprism_vol_sum <= 0); |
| 25647 | tetprism_vol_sum += fc->tetprism_vol_sum; |
| 25648 | fc->tetprism_vol_sum = 0.0; // Clear it. |
| 25649 | } |
| 25650 | } |
| 25651 | } |
| 25652 | break; |
| 25653 | } // if (neightet.tet == fliptets[0].tet) |
| 25654 | } // if (!isshsubseg(checksh)) |
| 25655 | senextself(checksh); |
| 25656 | } // i |
| 25657 | } // if (nonconvex) |
| 25658 | continue; |
| 25659 | } |
| 25660 | |
| 25661 | if (checksubfaceflag) { |
| 25662 | // Do not flip if it is a subface. |
| 25663 | if (issubface(fliptets[0])) continue; |
| 25664 | } |
| 25665 | |
| 25666 | // Test whether the face is locally Delaunay or not. |
| 25667 | pts = (point *) fliptets[1].tet; |
| 25668 | sign = insphere_s(pts[4], pts[5], pts[6], pts[7], oppo(fliptets[0])); |
| 25669 | |
| 25670 | if (sign < 0) { |
| 25671 | // A non-Delaunay face. Try to flip it. |
| 25672 | pd = oppo(fliptets[0]); |
| 25673 | pe = oppo(fliptets[1]); |
| 25674 | |
| 25675 | // Check the convexity of its three edges. Stop checking either a |
| 25676 | // locally non-convex edge (ori < 0) or a flat edge (ori = 0) is |
| 25677 | // encountered, and 'fliptet' represents that edge. |
| 25678 | for (i = 0; i < 3; i++) { |
| 25679 | ori = orient3d(org(fliptets[0]), dest(fliptets[0]), pd, pe); |
| 25680 | if (ori <= 0) break; |
| 25681 | enextself(fliptets[0]); |
| 25682 | } |
| 25683 | |
| 25684 | if (ori > 0) { |
| 25685 | // A 2-to-3 flip is found. |
| 25686 | // [0] [a,b,c,d], |
| 25687 | // [1] [b,a,c,e]. no dummypoint. |
| 25688 | flip23(fliptets, 0, fc); |
| 25689 | flipcount++; |
| 25690 | if (fc->remove_ndelaunay_edge) { |
| 25691 | // Update the volume (must be decreased). |
| 25692 | //assert(fc->tetprism_vol_sum <= 0); |
| 25693 | tetprism_vol_sum += fc->tetprism_vol_sum; |
| 25694 | fc->tetprism_vol_sum = 0.0; // Clear it. |
| 25695 | } |
| 25696 | continue; |
| 25697 | } else { // ori <= 0 |
| 25698 | // The edge ('fliptets[0]' = [a',b',c',d]) is non-convex or flat, |
| 25699 | // where the edge [a',b'] is one of [a,b], [b,c], and [c,a]. |
| 25700 | if (checksubsegflag) { |
| 25701 | // Do not flip if it is a segment. |
| 25702 | if (issubseg(fliptets[0])) continue; |
| 25703 | } |
| 25704 | // Check if there are three or four tets sharing at this edge. |
| 25705 | esymself(fliptets[0]); // [b,a,d,c] |
| 25706 | for (i = 0; i < 3; i++) { |
| 25707 | fnext(fliptets[i], fliptets[i+1]); |
| 25708 | } |
| 25709 | if (fliptets[3].tet == fliptets[0].tet) { |
| 25710 | // A 3-to-2 flip is found. (No hull tet.) |
| 25711 | flip32(fliptets, 0, fc); |
| 25712 | flipcount++; |
| 25713 | if (fc->remove_ndelaunay_edge) { |
| 25714 | // Update the volume (must be decreased). |
| 25715 | //assert(fc->tetprism_vol_sum <= 0); |
| 25716 | tetprism_vol_sum += fc->tetprism_vol_sum; |
| 25717 | fc->tetprism_vol_sum = 0.0; // Clear it. |
| 25718 | } |
| 25719 | continue; |
| 25720 | } else { |
| 25721 | // There are more than 3 tets at this edge. |
| 25722 | fnext(fliptets[3], fliptets[4]); |
| 25723 | if (fliptets[4].tet == fliptets[0].tet) { |
| 25724 | // There are exactly 4 tets at this edge. |
| 25725 | if (nonconvex) { |
| 25726 | if (apex(fliptets[3]) == dummypoint) { |
| 25727 | // This edge is locally non-convex on the hull. |
| 25728 | // It can be removed by a 4-to-4 flip. |
| 25729 | ori = 0; |
| 25730 | } |
| 25731 | } // if (nonconvex) |
| 25732 | if (ori == 0) { |
| 25733 | // A 4-to-4 flip is found. (Two hull tets may be involved.) |
| 25734 | // Current tets in 'fliptets': |
| 25735 | // [0] [b,a,d,c] (d may be newpt) |
| 25736 | // [1] [b,a,c,e] |
| 25737 | // [2] [b,a,e,f] (f may be dummypoint) |
| 25738 | // [3] [b,a,f,d] |
| 25739 | esymself(fliptets[0]); // [a,b,c,d] |
| 25740 | // A 2-to-3 flip replaces face [a,b,c] by edge [e,d]. |
| 25741 | // This creates a degenerate tet [e,d,a,b] (tmpfliptets[0]). |
| 25742 | // It will be removed by the followed 3-to-2 flip. |
| 25743 | flip23(fliptets, 0, fc); // No hull tet. |
| 25744 | fnext(fliptets[3], fliptets[1]); |
| 25745 | fnext(fliptets[1], fliptets[2]); |
| 25746 | // Current tets in 'fliptets': |
| 25747 | // [0] [...] |
| 25748 | // [1] [b,a,d,e] (degenerated, d may be new point). |
| 25749 | // [2] [b,a,e,f] (f may be dummypoint) |
| 25750 | // [3] [b,a,f,d] |
| 25751 | // A 3-to-2 flip replaces edge [b,a] by face [d,e,f]. |
| 25752 | // Hull tets may be involved (f may be dummypoint). |
| 25753 | flip32(&(fliptets[1]), (apex(fliptets[3]) == dummypoint), fc); |
| 25754 | flipcount++; |
| 25755 | flip23count--; |
| 25756 | flip32count--; |
| 25757 | flip44count++; |
| 25758 | if (fc->remove_ndelaunay_edge) { |
| 25759 | // Update the volume (must be decreased). |
| 25760 | //assert(fc->tetprism_vol_sum <= 0); |
| 25761 | tetprism_vol_sum += fc->tetprism_vol_sum; |
| 25762 | fc->tetprism_vol_sum = 0.0; // Clear it. |
| 25763 | } |
| 25764 | continue; |
| 25765 | } // if (ori == 0) |
| 25766 | } |
| 25767 | } |
| 25768 | } // if (ori <= 0) |
| 25769 | |
| 25770 | // This non-Delaunay face is unflippable. Save it. |
| 25771 | unflipqueue->newindex((void **) &bface); |
| 25772 | bface->tt = fliptets[0]; |
| 25773 | bface->forg = org(fliptets[0]); |
| 25774 | bface->fdest = dest(fliptets[0]); |
| 25775 | bface->fapex = apex(fliptets[0]); |
| 25776 | } // if (sign < 0) |
| 25777 | } // while (flipstack) |
| 25778 | |
| 25779 | if (b->verbose > 2) { |
| 25780 | if (flipcount > 0) { |
| 25781 | printf(" Performed %ld flips.\n" , flipcount); |
| 25782 | } |
| 25783 | } |
| 25784 | // Accumulate the counter of flips. |
| 25785 | totalcount += flipcount; |
| 25786 | |
| 25787 | assert(flippool->items == 0l); |
| 25788 | // Return if no unflippable faces left. |
| 25789 | if (unflipqueue->objects == 0l) break; |
| 25790 | // Return if no flip has been performed. |
| 25791 | if (flipcount == 0l) break; |
| 25792 | |
| 25793 | // Try to flip the unflippable faces. |
| 25794 | for (i = 0; i < unflipqueue->objects; i++) { |
| 25795 | bface = (badface *) fastlookup(unflipqueue, i); |
| 25796 | if (!isdeadtet(bface->tt) && |
| 25797 | (org(bface->tt) == bface->forg) && |
| 25798 | (dest(bface->tt) == bface->fdest) && |
| 25799 | (apex(bface->tt) == bface->fapex)) { |
| 25800 | flippush(flipstack, &(bface->tt)); |
| 25801 | } |
| 25802 | } |
| 25803 | unflipqueue->restart(); |
| 25804 | |
| 25805 | } // while (1) |
| 25806 | |
| 25807 | if (b->verbose > 2) { |
| 25808 | if (totalcount > 0) { |
| 25809 | printf(" Performed %ld flips.\n" , totalcount); |
| 25810 | } |
| 25811 | if (sliver_peels > 0) { |
| 25812 | printf(" Removed %ld hull slivers.\n" , sliver_peels); |
| 25813 | } |
| 25814 | if (unflipqueue->objects > 0l) { |
| 25815 | printf(" %ld unflippable edges remained.\n" , unflipqueue->objects); |
| 25816 | } |
| 25817 | } |
| 25818 | |
| 25819 | return totalcount + sliver_peels; |
| 25820 | } |
| 25821 | |
| 25822 | /////////////////////////////////////////////////////////////////////////////// |
| 25823 | // // |
| 25824 | // recoverdelaunay() Recovery the locally Delaunay property. // |
| 25825 | // // |
| 25826 | /////////////////////////////////////////////////////////////////////////////// |
| 25827 | |
| 25828 | void tetgenmesh::recoverdelaunay() |
| 25829 | { |
| 25830 | arraypool *flipqueue, *nextflipqueue, *swapqueue; |
| 25831 | triface tetloop, neightet, *parytet; |
| 25832 | badface *bface, *parybface; |
| 25833 | point *ppt; |
| 25834 | flipconstraints fc; |
| 25835 | int i, j; |
| 25836 | |
| 25837 | if (!b->quiet) { |
| 25838 | printf("Recovering Delaunayness...\n" ); |
| 25839 | } |
| 25840 | |
| 25841 | tetprism_vol_sum = 0.0; // Initialize it. |
| 25842 | |
| 25843 | // Put all interior faces of the mesh into 'flipstack'. |
| 25844 | tetrahedrons->traversalinit(); |
| 25845 | tetloop.tet = tetrahedrontraverse(); |
| 25846 | while (tetloop.tet != NULL) { |
| 25847 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
| 25848 | decode(tetloop.tet[tetloop.ver], neightet); |
| 25849 | if (!facemarked(neightet)) { |
| 25850 | flippush(flipstack, &tetloop); |
| 25851 | } |
| 25852 | } |
| 25853 | ppt = (point *) &(tetloop.tet[4]); |
| 25854 | tetprism_vol_sum += tetprismvol(ppt[0], ppt[1], ppt[2], ppt[3]); |
| 25855 | tetloop.tet = tetrahedrontraverse(); |
| 25856 | } |
| 25857 | |
| 25858 | // Calulate a relatively lower bound for small improvement. |
| 25859 | // Used to avoid rounding error in volume calculation. |
| 25860 | fc.bak_tetprism_vol = tetprism_vol_sum * b->epsilon * 1e-3; |
| 25861 | |
| 25862 | if (b->verbose) { |
| 25863 | printf(" Initial obj = %.17g\n" , tetprism_vol_sum); |
| 25864 | } |
| 25865 | |
| 25866 | if (b->verbose > 1) { |
| 25867 | printf(" Recover Delaunay [Lawson] : %ld\n" , flippool->items); |
| 25868 | } |
| 25869 | |
| 25870 | // First only use the basic Lawson's flip. |
| 25871 | fc.remove_ndelaunay_edge = 1; |
| 25872 | fc.enqflag = 2; |
| 25873 | |
| 25874 | lawsonflip3d(&fc); |
| 25875 | |
| 25876 | if (b->verbose > 1) { |
| 25877 | printf(" obj (after Lawson) = %.17g\n" , tetprism_vol_sum); |
| 25878 | } |
| 25879 | |
| 25880 | if (unflipqueue->objects == 0l) { |
| 25881 | return; // The mesh is Delaunay. |
| 25882 | } |
| 25883 | |
| 25884 | fc.unflip = 1; // Unflip if the edge is not flipped. |
| 25885 | fc.collectnewtets = 1; // new tets are returned in 'cavetetlist'. |
| 25886 | fc.enqflag = 0; |
| 25887 | |
| 25888 | autofliplinklevel = 1; // Init level. |
| 25889 | b->fliplinklevel = -1; // No fixed level. |
| 25890 | |
| 25891 | // For efficiency reason, we limit the maximium size of the edge star. |
| 25892 | int bakmaxflipstarsize = b->flipstarsize; |
| 25893 | b->flipstarsize = 10; // default |
| 25894 | |
| 25895 | flipqueue = new arraypool(sizeof(badface), 10); |
| 25896 | nextflipqueue = new arraypool(sizeof(badface), 10); |
| 25897 | |
| 25898 | // Swap the two flip queues. |
| 25899 | swapqueue = flipqueue; |
| 25900 | flipqueue = unflipqueue; |
| 25901 | unflipqueue = swapqueue; |
| 25902 | |
| 25903 | while (flipqueue->objects > 0l) { |
| 25904 | |
| 25905 | if (b->verbose > 1) { |
| 25906 | printf(" Recover Delaunay [level = %2d] #: %ld.\n" , |
| 25907 | autofliplinklevel, flipqueue->objects); |
| 25908 | } |
| 25909 | |
| 25910 | for (i = 0; i < flipqueue->objects; i++) { |
| 25911 | bface = (badface *) fastlookup(flipqueue, i); |
| 25912 | if (getedge(bface->forg, bface->fdest, &bface->tt)) { |
| 25913 | if (removeedgebyflips(&(bface->tt), &fc) == 2) { |
| 25914 | tetprism_vol_sum += fc.tetprism_vol_sum; |
| 25915 | fc.tetprism_vol_sum = 0.0; // Clear it. |
| 25916 | // Queue new faces for flips. |
| 25917 | for (j = 0; j < cavetetlist->objects; j++) { |
| 25918 | parytet = (triface *) fastlookup(cavetetlist, j); |
| 25919 | // A queued new tet may be dead. |
| 25920 | if (!isdeadtet(*parytet)) { |
| 25921 | for (parytet->ver = 0; parytet->ver < 4; parytet->ver++) { |
| 25922 | // Avoid queue a face twice. |
| 25923 | decode(parytet->tet[parytet->ver], neightet); |
| 25924 | if (!facemarked(neightet)) { |
| 25925 | flippush(flipstack, parytet); |
| 25926 | } |
| 25927 | } // parytet->ver |
| 25928 | } |
| 25929 | } // j |
| 25930 | cavetetlist->restart(); |
| 25931 | // Remove locally non-Delaunay faces. New non-Delaunay edges |
| 25932 | // may be found. They are saved in 'unflipqueue'. |
| 25933 | fc.enqflag = 2; |
| 25934 | lawsonflip3d(&fc); |
| 25935 | fc.enqflag = 0; |
| 25936 | // There may be unflipable faces. Add them in flipqueue. |
| 25937 | for (j = 0; j < unflipqueue->objects; j++) { |
| 25938 | bface = (badface *) fastlookup(unflipqueue, j); |
| 25939 | flipqueue->newindex((void **) &parybface); |
| 25940 | *parybface = *bface; |
| 25941 | } |
| 25942 | unflipqueue->restart(); |
| 25943 | } else { |
| 25944 | // Unable to remove this edge. Save it. |
| 25945 | nextflipqueue->newindex((void **) &parybface); |
| 25946 | *parybface = *bface; |
| 25947 | // Normally, it should be zero. |
| 25948 | //assert(fc.tetprism_vol_sum == 0.0); |
| 25949 | // However, due to rounding errors, a tiny value may appear. |
| 25950 | fc.tetprism_vol_sum = 0.0; |
| 25951 | } |
| 25952 | } |
| 25953 | } // i |
| 25954 | |
| 25955 | if (b->verbose > 1) { |
| 25956 | printf(" obj (after level %d) = %.17g.\n" , autofliplinklevel, |
| 25957 | tetprism_vol_sum); |
| 25958 | } |
| 25959 | flipqueue->restart(); |
| 25960 | |
| 25961 | // Swap the two flip queues. |
| 25962 | swapqueue = flipqueue; |
| 25963 | flipqueue = nextflipqueue; |
| 25964 | nextflipqueue = swapqueue; |
| 25965 | |
| 25966 | if (flipqueue->objects > 0l) { |
| 25967 | // default 'b->delmaxfliplevel' is 1. |
| 25968 | if (autofliplinklevel >= b->delmaxfliplevel) { |
| 25969 | // For efficiency reason, we do not search too far. |
| 25970 | break; |
| 25971 | } |
| 25972 | autofliplinklevel+=b->fliplinklevelinc; |
| 25973 | } |
| 25974 | } // while (flipqueue->objects > 0l) |
| 25975 | |
| 25976 | if (flipqueue->objects > 0l) { |
| 25977 | if (b->verbose > 1) { |
| 25978 | printf(" %ld non-Delaunay edges remained.\n" , flipqueue->objects); |
| 25979 | } |
| 25980 | } |
| 25981 | |
| 25982 | if (b->verbose) { |
| 25983 | printf(" Final obj = %.17g\n" , tetprism_vol_sum); |
| 25984 | } |
| 25985 | |
| 25986 | b->flipstarsize = bakmaxflipstarsize; |
| 25987 | delete flipqueue; |
| 25988 | delete nextflipqueue; |
| 25989 | } |
| 25990 | |
| 25991 | /////////////////////////////////////////////////////////////////////////////// |
| 25992 | // // |
| 25993 | // gettetrahedron() Get a tetrahedron which have the given vertices. // |
| 25994 | // // |
| 25995 | /////////////////////////////////////////////////////////////////////////////// |
| 25996 | |
| 25997 | int tetgenmesh::gettetrahedron(point pa, point pb, point pc, point pd, |
| 25998 | triface *searchtet) |
| 25999 | { |
| 26000 | triface spintet; |
| 26001 | int t1ver; |
| 26002 | |
| 26003 | if (getedge(pa, pb, searchtet)) { |
| 26004 | spintet = *searchtet; |
| 26005 | while (1) { |
| 26006 | if (apex(spintet) == pc) { |
| 26007 | *searchtet = spintet; |
| 26008 | break; |
| 26009 | } |
| 26010 | fnextself(spintet); |
| 26011 | if (spintet.tet == searchtet->tet) break; |
| 26012 | } |
| 26013 | if (apex(*searchtet) == pc) { |
| 26014 | if (oppo(*searchtet) == pd) { |
| 26015 | return 1; |
| 26016 | } else { |
| 26017 | fsymself(*searchtet); |
| 26018 | if (oppo(*searchtet) == pd) { |
| 26019 | return 1; |
| 26020 | } |
| 26021 | } |
| 26022 | } |
| 26023 | } |
| 26024 | |
| 26025 | return 0; |
| 26026 | } |
| 26027 | |
| 26028 | /////////////////////////////////////////////////////////////////////////////// |
| 26029 | // // |
| 26030 | // improvequalitybyflips() Improve the mesh quality by flips. // |
| 26031 | // // |
| 26032 | /////////////////////////////////////////////////////////////////////////////// |
| 26033 | |
| 26034 | long tetgenmesh::improvequalitybyflips() |
| 26035 | { |
| 26036 | arraypool *flipqueue, *nextflipqueue, *swapqueue; |
| 26037 | badface *bface, *parybface; |
| 26038 | triface *parytet; |
| 26039 | point *ppt; |
| 26040 | flipconstraints fc; |
| 26041 | REAL *cosdd, ncosdd[6], maxdd; |
| 26042 | long totalremcount, remcount; |
| 26043 | int remflag; |
| 26044 | int n, i, j, k; |
| 26045 | |
| 26046 | //assert(unflipqueue->objects > 0l); |
| 26047 | flipqueue = new arraypool(sizeof(badface), 10); |
| 26048 | nextflipqueue = new arraypool(sizeof(badface), 10); |
| 26049 | |
| 26050 | // Backup flip edge options. |
| 26051 | int bakautofliplinklevel = autofliplinklevel; |
| 26052 | int bakfliplinklevel = b->fliplinklevel; |
| 26053 | int bakmaxflipstarsize = b->flipstarsize; |
| 26054 | |
| 26055 | // Set flip edge options. |
| 26056 | autofliplinklevel = 1; |
| 26057 | b->fliplinklevel = -1; |
| 26058 | b->flipstarsize = 10; // b->optmaxflipstarsize; |
| 26059 | |
| 26060 | fc.remove_large_angle = 1; |
| 26061 | fc.unflip = 1; |
| 26062 | fc.collectnewtets = 1; |
| 26063 | fc.checkflipeligibility = 1; |
| 26064 | |
| 26065 | totalremcount = 0l; |
| 26066 | |
| 26067 | // Swap the two flip queues. |
| 26068 | swapqueue = flipqueue; |
| 26069 | flipqueue = unflipqueue; |
| 26070 | unflipqueue = swapqueue; |
| 26071 | |
| 26072 | while (flipqueue->objects > 0l) { |
| 26073 | |
| 26074 | remcount = 0l; |
| 26075 | |
| 26076 | while (flipqueue->objects > 0l) { |
| 26077 | if (b->verbose > 1) { |
| 26078 | printf(" Improving mesh qualiy by flips [%d]#: %ld.\n" , |
| 26079 | autofliplinklevel, flipqueue->objects); |
| 26080 | } |
| 26081 | |
| 26082 | for (k = 0; k < flipqueue->objects; k++) { |
| 26083 | bface = (badface *) fastlookup(flipqueue, k); |
| 26084 | if (gettetrahedron(bface->forg, bface->fdest, bface->fapex, |
| 26085 | bface->foppo, &bface->tt)) { |
| 26086 | //assert(!ishulltet(bface->tt)); |
| 26087 | // There are bad dihedral angles in this tet. |
| 26088 | if (bface->tt.ver != 11) { |
| 26089 | // The dihedral angles are permuted. |
| 26090 | // Here we simply re-compute them. Slow!!. |
| 26091 | ppt = (point *) & (bface->tt.tet[4]); |
| 26092 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent, |
| 26093 | &bface->key, NULL); |
| 26094 | bface->forg = ppt[0]; |
| 26095 | bface->fdest = ppt[1]; |
| 26096 | bface->fapex = ppt[2]; |
| 26097 | bface->foppo = ppt[3]; |
| 26098 | bface->tt.ver = 11; |
| 26099 | } |
| 26100 | if (bface->key == 0) { |
| 26101 | // Re-comput the quality values. Due to smoothing operations. |
| 26102 | ppt = (point *) & (bface->tt.tet[4]); |
| 26103 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent, |
| 26104 | &bface->key, NULL); |
| 26105 | } |
| 26106 | cosdd = bface->cent; |
| 26107 | remflag = 0; |
| 26108 | for (i = 0; (i < 6) && !remflag; i++) { |
| 26109 | if (cosdd[i] < cosmaxdihed) { |
| 26110 | // Found a large dihedral angle. |
| 26111 | bface->tt.ver = edge2ver[i]; // Go to the edge. |
| 26112 | fc.cosdihed_in = cosdd[i]; |
| 26113 | fc.cosdihed_out = 0.0; // 90 degree. |
| 26114 | n = removeedgebyflips(&(bface->tt), &fc); |
| 26115 | if (n == 2) { |
| 26116 | // Edge is flipped. |
| 26117 | remflag = 1; |
| 26118 | if (fc.cosdihed_out < cosmaxdihed) { |
| 26119 | // Queue new bad tets for further improvements. |
| 26120 | for (j = 0; j < cavetetlist->objects; j++) { |
| 26121 | parytet = (triface *) fastlookup(cavetetlist, j); |
| 26122 | if (!isdeadtet(*parytet)) { |
| 26123 | ppt = (point *) & (parytet->tet[4]); |
| 26124 | // Do not test a hull tet. |
| 26125 | if (ppt[3] != dummypoint) { |
| 26126 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], ncosdd, |
| 26127 | &maxdd, NULL); |
| 26128 | if (maxdd < cosmaxdihed) { |
| 26129 | // There are bad dihedral angles in this tet. |
| 26130 | nextflipqueue->newindex((void **) &parybface); |
| 26131 | parybface->tt.tet = parytet->tet; |
| 26132 | parybface->tt.ver = 11; |
| 26133 | parybface->forg = ppt[0]; |
| 26134 | parybface->fdest = ppt[1]; |
| 26135 | parybface->fapex = ppt[2]; |
| 26136 | parybface->foppo = ppt[3]; |
| 26137 | parybface->key = maxdd; |
| 26138 | for (n = 0; n < 6; n++) { |
| 26139 | parybface->cent[n] = ncosdd[n]; |
| 26140 | } |
| 26141 | } |
| 26142 | } // if (ppt[3] != dummypoint) |
| 26143 | } |
| 26144 | } // j |
| 26145 | } // if (fc.cosdihed_out < cosmaxdihed) |
| 26146 | cavetetlist->restart(); |
| 26147 | remcount++; |
| 26148 | } |
| 26149 | } |
| 26150 | } // i |
| 26151 | if (!remflag) { |
| 26152 | // An unremoved bad tet. Queue it again. |
| 26153 | unflipqueue->newindex((void **) &parybface); |
| 26154 | *parybface = *bface; |
| 26155 | } |
| 26156 | } // if (gettetrahedron(...)) |
| 26157 | } // k |
| 26158 | |
| 26159 | flipqueue->restart(); |
| 26160 | |
| 26161 | // Swap the two flip queues. |
| 26162 | swapqueue = flipqueue; |
| 26163 | flipqueue = nextflipqueue; |
| 26164 | nextflipqueue = swapqueue; |
| 26165 | } // while (flipqueues->objects > 0) |
| 26166 | |
| 26167 | if (b->verbose > 1) { |
| 26168 | printf(" Removed %ld bad tets.\n" , remcount); |
| 26169 | } |
| 26170 | totalremcount += remcount; |
| 26171 | |
| 26172 | if (unflipqueue->objects > 0l) { |
| 26173 | //if (autofliplinklevel >= b->optmaxfliplevel) { |
| 26174 | if (autofliplinklevel >= b->optlevel) { |
| 26175 | break; |
| 26176 | } |
| 26177 | autofliplinklevel+=b->fliplinklevelinc; |
| 26178 | //b->flipstarsize = 10 + (1 << (b->optlevel - 1)); |
| 26179 | } |
| 26180 | |
| 26181 | // Swap the two flip queues. |
| 26182 | swapqueue = flipqueue; |
| 26183 | flipqueue = unflipqueue; |
| 26184 | unflipqueue = swapqueue; |
| 26185 | } // while (flipqueues->objects > 0) |
| 26186 | |
| 26187 | // Restore original flip edge options. |
| 26188 | autofliplinklevel = bakautofliplinklevel; |
| 26189 | b->fliplinklevel = bakfliplinklevel; |
| 26190 | b->flipstarsize = bakmaxflipstarsize; |
| 26191 | |
| 26192 | delete flipqueue; |
| 26193 | delete nextflipqueue; |
| 26194 | |
| 26195 | return totalremcount; |
| 26196 | } |
| 26197 | |
| 26198 | /////////////////////////////////////////////////////////////////////////////// |
| 26199 | // // |
| 26200 | // smoothpoint() Moving a vertex to improve the mesh quality. // |
| 26201 | // // |
| 26202 | // 'smtpt' (p) is a point to be smoothed. Generally, it is a Steiner point. // |
| 26203 | // It may be not a vertex of the mesh. // |
| 26204 | // // |
| 26205 | // This routine tries to move 'p' inside its star until a selected objective // |
| 26206 | // function over all tetrahedra in the star is improved. The function may be // |
| 26207 | // the some quality measures, i.e., aspect ratio, maximum dihedral angel, or // |
| 26208 | // simply the volume of the tetrahedra. // |
| 26209 | // // |
| 26210 | // 'linkfacelist' contains the list of link faces of 'p'. Since a link face // |
| 26211 | // has two orientations, ccw or cw, with respect to 'p'. 'ccw' indicates // |
| 26212 | // the orientation is ccw (1) or not (0). // |
| 26213 | // // |
| 26214 | // 'opm' is a structure contains the parameters of the objective function. // |
| 26215 | // It is needed by the evaluation of the function value. // |
| 26216 | // // |
| 26217 | // The return value indicates weather the point is smoothed or not. // |
| 26218 | // // |
| 26219 | // ASSUMPTION: This routine assumes that all link faces are true faces, i.e, // |
| 26220 | // no face has 'dummypoint' as its vertex. // |
| 26221 | // // |
| 26222 | /////////////////////////////////////////////////////////////////////////////// |
| 26223 | |
| 26224 | int tetgenmesh::smoothpoint(point smtpt, arraypool *linkfacelist, int ccw, |
| 26225 | optparameters *opm) |
| 26226 | { |
| 26227 | triface *parytet, *parytet1, swaptet; |
| 26228 | point pa, pb, pc; |
| 26229 | REAL fcent[3], startpt[3], nextpt[3], bestpt[3]; |
| 26230 | REAL oldval, minval = 0.0, val; |
| 26231 | REAL maxcosd; // oldang, newang; |
| 26232 | REAL ori, diff; |
| 26233 | int numdirs, iter; |
| 26234 | int i, j, k; |
| 26235 | |
| 26236 | // Decide the number of moving directions. |
| 26237 | numdirs = (int) linkfacelist->objects; |
| 26238 | if (numdirs > opm->numofsearchdirs) { |
| 26239 | numdirs = opm->numofsearchdirs; // Maximum search directions. |
| 26240 | } |
| 26241 | |
| 26242 | // Set the initial value. |
| 26243 | if (!opm->max_min_volume) { |
| 26244 | assert(opm->initval >= 0.0); |
| 26245 | } |
| 26246 | opm->imprval = opm->initval; |
| 26247 | iter = 0; |
| 26248 | |
| 26249 | for (i = 0; i < 3; i++) { |
| 26250 | bestpt[i] = startpt[i] = smtpt[i]; |
| 26251 | } |
| 26252 | |
| 26253 | // Iterate until the obj function is not improved. |
| 26254 | while (1) { |
| 26255 | |
| 26256 | // Find the best next location. |
| 26257 | oldval = opm->imprval; |
| 26258 | |
| 26259 | for (i = 0; i < numdirs; i++) { |
| 26260 | // Randomly pick a link face (0 <= k <= objects - i - 1). |
| 26261 | k = (int) randomnation(linkfacelist->objects - i); |
| 26262 | parytet = (triface *) fastlookup(linkfacelist, k); |
| 26263 | // Calculate a new position from 'p' to the center of this face. |
| 26264 | pa = org(*parytet); |
| 26265 | pb = dest(*parytet); |
| 26266 | pc = apex(*parytet); |
| 26267 | for (j = 0; j < 3; j++) { |
| 26268 | fcent[j] = (pa[j] + pb[j] + pc[j]) / 3.0; |
| 26269 | } |
| 26270 | for (j = 0; j < 3; j++) { |
| 26271 | nextpt[j] = startpt[j] + opm->searchstep * (fcent[j] - startpt[j]); |
| 26272 | } |
| 26273 | // Calculate the largest minimum function value for the new location. |
| 26274 | for (j = 0; j < linkfacelist->objects; j++) { |
| 26275 | parytet = (triface *) fastlookup(linkfacelist, j); |
| 26276 | if (ccw) { |
| 26277 | pa = org(*parytet); |
| 26278 | pb = dest(*parytet); |
| 26279 | } else { |
| 26280 | pb = org(*parytet); |
| 26281 | pa = dest(*parytet); |
| 26282 | } |
| 26283 | pc = apex(*parytet); |
| 26284 | ori = orient3d(pa, pb, pc, nextpt); |
| 26285 | if (ori < 0.0) { |
| 26286 | // Calcuate the objective function value. |
| 26287 | if (opm->max_min_volume) { |
| 26288 | //val = -ori; |
| 26289 | val = - orient3dfast(pa, pb, pc, nextpt); |
| 26290 | } else if (opm->max_min_aspectratio) { |
| 26291 | val = tetaspectratio(pa, pb, pc, nextpt); |
| 26292 | } else if (opm->min_max_dihedangle) { |
| 26293 | tetalldihedral(pa, pb, pc, nextpt, NULL, &maxcosd, NULL); |
| 26294 | if (maxcosd < -1) maxcosd = -1.0; // Rounding. |
| 26295 | val = maxcosd + 1.0; // Make it be positive. |
| 26296 | } else { |
| 26297 | // Unknown objective function. |
| 26298 | val = 0.0; |
| 26299 | } |
| 26300 | } else { // ori >= 0.0; |
| 26301 | // An invalid new tet. |
| 26302 | // This may happen if the mesh contains inverted elements. |
| 26303 | if (opm->max_min_volume) { |
| 26304 | //val = -ori; |
| 26305 | val = - orient3dfast(pa, pb, pc, nextpt); |
| 26306 | } else { |
| 26307 | // Discard this point. |
| 26308 | break; // j |
| 26309 | } |
| 26310 | } // if (ori >= 0.0) |
| 26311 | // Stop looping when the object value is not improved. |
| 26312 | if (val <= opm->imprval) { |
| 26313 | break; // j |
| 26314 | } else { |
| 26315 | // Remember the smallest improved value. |
| 26316 | if (j == 0) { |
| 26317 | minval = val; |
| 26318 | } else { |
| 26319 | minval = (val < minval) ? val : minval; |
| 26320 | } |
| 26321 | } |
| 26322 | } // j |
| 26323 | if (j == linkfacelist->objects) { |
| 26324 | // The function value has been improved. |
| 26325 | opm->imprval = minval; |
| 26326 | // Save the new location of the point. |
| 26327 | for (j = 0; j < 3; j++) bestpt[j] = nextpt[j]; |
| 26328 | } |
| 26329 | // Swap k-th and (object-i-1)-th entries. |
| 26330 | j = linkfacelist->objects - i - 1; |
| 26331 | parytet = (triface *) fastlookup(linkfacelist, k); |
| 26332 | parytet1 = (triface *) fastlookup(linkfacelist, j); |
| 26333 | swaptet = *parytet1; |
| 26334 | *parytet1 = *parytet; |
| 26335 | *parytet = swaptet; |
| 26336 | } // i |
| 26337 | |
| 26338 | diff = opm->imprval - oldval; |
| 26339 | if (diff > 0.0) { |
| 26340 | // Is the function value improved effectively? |
| 26341 | if (opm->max_min_volume) { |
| 26342 | //if ((diff / oldval) < b->epsilon) diff = 0.0; |
| 26343 | } else if (opm->max_min_aspectratio) { |
| 26344 | if ((diff / oldval) < 1e-3) diff = 0.0; |
| 26345 | } else if (opm->min_max_dihedangle) { |
| 26346 | //oldang = acos(oldval - 1.0); |
| 26347 | //newang = acos(opm->imprval - 1.0); |
| 26348 | //if ((oldang - newang) < 0.00174) diff = 0.0; // about 0.1 degree. |
| 26349 | } else { |
| 26350 | // Unknown objective function. |
| 26351 | assert(0); // Not possible. |
| 26352 | } |
| 26353 | } |
| 26354 | |
| 26355 | if (diff > 0.0) { |
| 26356 | // Yes, move p to the new location and continue. |
| 26357 | for (j = 0; j < 3; j++) startpt[j] = bestpt[j]; |
| 26358 | iter++; |
| 26359 | if ((opm->maxiter > 0) && (iter >= opm->maxiter)) { |
| 26360 | // Maximum smoothing iterations reached. |
| 26361 | break; |
| 26362 | } |
| 26363 | } else { |
| 26364 | break; |
| 26365 | } |
| 26366 | |
| 26367 | } // while (1) |
| 26368 | |
| 26369 | if (iter > 0) { |
| 26370 | // The point has been smoothed. |
| 26371 | opm->smthiter = iter; // Remember the number of iterations. |
| 26372 | // The point has been smoothed. Update it to its new position. |
| 26373 | for (i = 0; i < 3; i++) smtpt[i] = startpt[i]; |
| 26374 | } |
| 26375 | |
| 26376 | return iter; |
| 26377 | } |
| 26378 | |
| 26379 | |
| 26380 | /////////////////////////////////////////////////////////////////////////////// |
| 26381 | // // |
| 26382 | // improvequalitysmoothing() Improve mesh quality by smoothing. // |
| 26383 | // // |
| 26384 | /////////////////////////////////////////////////////////////////////////////// |
| 26385 | |
| 26386 | long tetgenmesh::improvequalitybysmoothing(optparameters *opm) |
| 26387 | { |
| 26388 | arraypool *flipqueue, *swapqueue; |
| 26389 | triface *parytet; |
| 26390 | badface *bface, *parybface; |
| 26391 | point *ppt; |
| 26392 | long totalsmtcount, smtcount; |
| 26393 | int smtflag; |
| 26394 | int iter, i, j, k; |
| 26395 | |
| 26396 | //assert(unflipqueue->objects > 0l); |
| 26397 | flipqueue = new arraypool(sizeof(badface), 10); |
| 26398 | |
| 26399 | // Swap the two flip queues. |
| 26400 | swapqueue = flipqueue; |
| 26401 | flipqueue = unflipqueue; |
| 26402 | unflipqueue = swapqueue; |
| 26403 | |
| 26404 | totalsmtcount = 0l; |
| 26405 | iter = 0; |
| 26406 | |
| 26407 | while (flipqueue->objects > 0l) { |
| 26408 | |
| 26409 | smtcount = 0l; |
| 26410 | |
| 26411 | if (b->verbose > 1) { |
| 26412 | printf(" Improving mesh quality by smoothing [%d]#: %ld.\n" , |
| 26413 | iter, flipqueue->objects); |
| 26414 | } |
| 26415 | |
| 26416 | for (k = 0; k < flipqueue->objects; k++) { |
| 26417 | bface = (badface *) fastlookup(flipqueue, k); |
| 26418 | if (gettetrahedron(bface->forg, bface->fdest, bface->fapex, |
| 26419 | bface->foppo, &bface->tt)) { |
| 26420 | // Operate on it if it is not in 'unflipqueue'. |
| 26421 | if (!marktested(bface->tt)) { |
| 26422 | // Here we simply re-compute the quality. Since other smoothing |
| 26423 | // operation may have moved the vertices of this tet. |
| 26424 | ppt = (point *) & (bface->tt.tet[4]); |
| 26425 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent, |
| 26426 | &bface->key, NULL); |
| 26427 | if (bface->key < cossmtdihed) { // if (maxdd < cosslidihed) { |
| 26428 | // It is a sliver. Try to smooth its vertices. |
| 26429 | smtflag = 0; |
| 26430 | opm->initval = bface->key + 1.0; |
| 26431 | for (i = 0; (i < 4) && !smtflag; i++) { |
| 26432 | if (pointtype(ppt[i]) == FREEVOLVERTEX) { |
| 26433 | getvertexstar(1, ppt[i], cavetetlist, NULL, NULL); |
| 26434 | opm->searchstep = 0.001; // Search step size |
| 26435 | smtflag = smoothpoint(ppt[i], cavetetlist, 1, opm); |
| 26436 | if (smtflag) { |
| 26437 | while (opm->smthiter == opm->maxiter) { |
| 26438 | opm->searchstep *= 10.0; // Increase the step size. |
| 26439 | opm->initval = opm->imprval; |
| 26440 | opm->smthiter = 0; // reset |
| 26441 | smoothpoint(ppt[i], cavetetlist, 1, opm); |
| 26442 | } |
| 26443 | // This tet is modifed. |
| 26444 | smtcount++; |
| 26445 | if ((opm->imprval - 1.0) < cossmtdihed) { |
| 26446 | // There are slivers in new tets. Queue them. |
| 26447 | for (j = 0; j < cavetetlist->objects; j++) { |
| 26448 | parytet = (triface *) fastlookup(cavetetlist, j); |
| 26449 | assert(!isdeadtet(*parytet)); |
| 26450 | // Operate it if it is not in 'unflipqueue'. |
| 26451 | if (!marktested(*parytet)) { |
| 26452 | // Evaluate its quality. |
| 26453 | // Re-use ppt, bface->key, bface->cent. |
| 26454 | ppt = (point *) & (parytet->tet[4]); |
| 26455 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], |
| 26456 | bface->cent, &bface->key, NULL); |
| 26457 | if (bface->key < cossmtdihed) { |
| 26458 | // A new sliver. Queue it. |
| 26459 | marktest(*parytet); // It is in unflipqueue. |
| 26460 | unflipqueue->newindex((void **) &parybface); |
| 26461 | parybface->tt = *parytet; |
| 26462 | parybface->forg = ppt[0]; |
| 26463 | parybface->fdest = ppt[1]; |
| 26464 | parybface->fapex = ppt[2]; |
| 26465 | parybface->foppo = ppt[3]; |
| 26466 | parybface->tt.ver = 11; |
| 26467 | parybface->key = 0.0; |
| 26468 | } |
| 26469 | } |
| 26470 | } // j |
| 26471 | } // if ((opm->imprval - 1.0) < cossmtdihed) |
| 26472 | } // if (smtflag) |
| 26473 | cavetetlist->restart(); |
| 26474 | } // if (pointtype(ppt[i]) == FREEVOLVERTEX) |
| 26475 | } // i |
| 26476 | if (!smtflag) { |
| 26477 | // Didn't smooth. Queue it again. |
| 26478 | marktest(bface->tt); // It is in unflipqueue. |
| 26479 | unflipqueue->newindex((void **) &parybface); |
| 26480 | parybface->tt = bface->tt; |
| 26481 | parybface->forg = ppt[0]; |
| 26482 | parybface->fdest = ppt[1]; |
| 26483 | parybface->fapex = ppt[2]; |
| 26484 | parybface->foppo = ppt[3]; |
| 26485 | parybface->tt.ver = 11; |
| 26486 | parybface->key = 0.0; |
| 26487 | } |
| 26488 | } // if (maxdd < cosslidihed) |
| 26489 | } // if (!marktested(...)) |
| 26490 | } // if (gettetrahedron(...)) |
| 26491 | } // k |
| 26492 | |
| 26493 | flipqueue->restart(); |
| 26494 | |
| 26495 | // Unmark the tets in unflipqueue. |
| 26496 | for (i = 0; i < unflipqueue->objects; i++) { |
| 26497 | bface = (badface *) fastlookup(unflipqueue, i); |
| 26498 | unmarktest(bface->tt); |
| 26499 | } |
| 26500 | |
| 26501 | if (b->verbose > 1) { |
| 26502 | printf(" Smooth %ld points.\n" , smtcount); |
| 26503 | } |
| 26504 | totalsmtcount += smtcount; |
| 26505 | |
| 26506 | if (smtcount == 0l) { |
| 26507 | // No point has been smoothed. |
| 26508 | break; |
| 26509 | } else { |
| 26510 | iter++; |
| 26511 | if (iter == 2) { //if (iter >= b->optpasses) { |
| 26512 | break; |
| 26513 | } |
| 26514 | } |
| 26515 | |
| 26516 | // Swap the two flip queues. |
| 26517 | swapqueue = flipqueue; |
| 26518 | flipqueue = unflipqueue; |
| 26519 | unflipqueue = swapqueue; |
| 26520 | } // while |
| 26521 | |
| 26522 | delete flipqueue; |
| 26523 | |
| 26524 | return totalsmtcount; |
| 26525 | } |
| 26526 | |
| 26527 | /////////////////////////////////////////////////////////////////////////////// |
| 26528 | // // |
| 26529 | // splitsliver() Split a sliver. // |
| 26530 | // // |
| 26531 | /////////////////////////////////////////////////////////////////////////////// |
| 26532 | |
| 26533 | int tetgenmesh::splitsliver(triface *slitet, REAL cosd, int chkencflag) |
| 26534 | { |
| 26535 | triface *abtets; |
| 26536 | triface searchtet, spintet, *parytet; |
| 26537 | point pa, pb, steinerpt; |
| 26538 | optparameters opm; |
| 26539 | insertvertexflags ivf; |
| 26540 | REAL smtpt[3], midpt[3]; |
| 26541 | int success; |
| 26542 | int t1ver; |
| 26543 | int n, i; |
| 26544 | |
| 26545 | // 'slitet' is [c,d,a,b], where [c,d] has a big dihedral angle. |
| 26546 | // Go to the opposite edge [a,b]. |
| 26547 | edestoppo(*slitet, searchtet); // [a,b,c,d]. |
| 26548 | |
| 26549 | // Do not split a segment. |
| 26550 | if (issubseg(searchtet)) { |
| 26551 | return 0; |
| 26552 | } |
| 26553 | |
| 26554 | // Count the number of tets shared at [a,b]. |
| 26555 | // Do not split it if it is a hull edge. |
| 26556 | spintet = searchtet; |
| 26557 | n = 0; |
| 26558 | while (1) { |
| 26559 | if (ishulltet(spintet)) break; |
| 26560 | n++; |
| 26561 | fnextself(spintet); |
| 26562 | if (spintet.tet == searchtet.tet) break; |
| 26563 | } |
| 26564 | if (ishulltet(spintet)) { |
| 26565 | return 0; // It is a hull edge. |
| 26566 | } |
| 26567 | assert(n >= 3); |
| 26568 | |
| 26569 | // Get all tets at edge [a,b]. |
| 26570 | abtets = new triface[n]; |
| 26571 | spintet = searchtet; |
| 26572 | for (i = 0; i < n; i++) { |
| 26573 | abtets[i] = spintet; |
| 26574 | fnextself(spintet); |
| 26575 | } |
| 26576 | |
| 26577 | // Initialize the list of 2n boundary faces. |
| 26578 | for (i = 0; i < n; i++) { |
| 26579 | eprev(abtets[i], searchtet); |
| 26580 | esymself(searchtet); // [a,p_i,p_i+1]. |
| 26581 | cavetetlist->newindex((void **) &parytet); |
| 26582 | *parytet = searchtet; |
| 26583 | enext(abtets[i], searchtet); |
| 26584 | esymself(searchtet); // [p_i,b,p_i+1]. |
| 26585 | cavetetlist->newindex((void **) &parytet); |
| 26586 | *parytet = searchtet; |
| 26587 | } |
| 26588 | |
| 26589 | // Init the Steiner point at the midpoint of edge [a,b]. |
| 26590 | pa = org(abtets[0]); |
| 26591 | pb = dest(abtets[0]); |
| 26592 | for (i = 0; i < 3; i++) { |
| 26593 | smtpt[i] = midpt[i] = 0.5 * (pa[i] + pb[i]); |
| 26594 | } |
| 26595 | |
| 26596 | // Point smooth options. |
| 26597 | opm.min_max_dihedangle = 1; |
| 26598 | opm.initval = cosd + 1.0; // Initial volume is zero. |
| 26599 | opm.numofsearchdirs = 20; |
| 26600 | opm.searchstep = 0.001; |
| 26601 | opm.maxiter = 100; // Limit the maximum iterations. |
| 26602 | |
| 26603 | success = smoothpoint(smtpt, cavetetlist, 1, &opm); |
| 26604 | |
| 26605 | if (success) { |
| 26606 | while (opm.smthiter == opm.maxiter) { |
| 26607 | // It was relocated and the prescribed maximum iteration reached. |
| 26608 | // Try to increase the search stepsize. |
| 26609 | opm.searchstep *= 10.0; |
| 26610 | //opm.maxiter = 100; // Limit the maximum iterations. |
| 26611 | opm.initval = opm.imprval; |
| 26612 | opm.smthiter = 0; // Init. |
| 26613 | smoothpoint(smtpt, cavetetlist, 1, &opm); |
| 26614 | } |
| 26615 | } // if (success) |
| 26616 | |
| 26617 | cavetetlist->restart(); |
| 26618 | |
| 26619 | if (!success) { |
| 26620 | delete [] abtets; |
| 26621 | return 0; |
| 26622 | } |
| 26623 | |
| 26624 | |
| 26625 | // Insert the Steiner point. |
| 26626 | makepoint(&steinerpt, FREEVOLVERTEX); |
| 26627 | for (i = 0; i < 3; i++) steinerpt[i] = smtpt[i]; |
| 26628 | |
| 26629 | // Insert the created Steiner point. |
| 26630 | for (i = 0; i < n; i++) { |
| 26631 | infect(abtets[i]); |
| 26632 | caveoldtetlist->newindex((void **) &parytet); |
| 26633 | *parytet = abtets[i]; |
| 26634 | } |
| 26635 | |
| 26636 | searchtet = abtets[0]; // No need point location. |
| 26637 | if (b->metric) { |
| 26638 | locate(steinerpt, &searchtet); // For size interpolation. |
| 26639 | } |
| 26640 | |
| 26641 | delete [] abtets; |
| 26642 | |
| 26643 | ivf.iloc = (int) INSTAR; |
| 26644 | ivf.chkencflag = chkencflag; |
| 26645 | ivf.assignmeshsize = b->metric; |
| 26646 | |
| 26647 | |
| 26648 | if (insertpoint(steinerpt, &searchtet, NULL, NULL, &ivf)) { |
| 26649 | // The vertex has been inserted. |
| 26650 | st_volref_count++; |
| 26651 | if (steinerleft > 0) steinerleft--; |
| 26652 | return 1; |
| 26653 | } else { |
| 26654 | // The Steiner point is too close to an existing vertex. Reject it. |
| 26655 | pointdealloc(steinerpt); |
| 26656 | return 0; |
| 26657 | } |
| 26658 | } |
| 26659 | |
| 26660 | /////////////////////////////////////////////////////////////////////////////// |
| 26661 | // // |
| 26662 | // removeslivers() Remove slivers by adding Steiner points. // |
| 26663 | // // |
| 26664 | /////////////////////////////////////////////////////////////////////////////// |
| 26665 | |
| 26666 | long tetgenmesh::removeslivers(int chkencflag) |
| 26667 | { |
| 26668 | arraypool *flipqueue, *swapqueue; |
| 26669 | badface *bface, *parybface; |
| 26670 | triface slitet, *parytet; |
| 26671 | point *ppt; |
| 26672 | REAL cosdd[6], maxcosd; |
| 26673 | long totalsptcount, sptcount; |
| 26674 | int iter, i, j, k; |
| 26675 | |
| 26676 | //assert(unflipqueue->objects > 0l); |
| 26677 | flipqueue = new arraypool(sizeof(badface), 10); |
| 26678 | |
| 26679 | // Swap the two flip queues. |
| 26680 | swapqueue = flipqueue; |
| 26681 | flipqueue = unflipqueue; |
| 26682 | unflipqueue = swapqueue; |
| 26683 | |
| 26684 | totalsptcount = 0l; |
| 26685 | iter = 0; |
| 26686 | |
| 26687 | while ((flipqueue->objects > 0l) && (steinerleft != 0)) { |
| 26688 | |
| 26689 | sptcount = 0l; |
| 26690 | |
| 26691 | if (b->verbose > 1) { |
| 26692 | printf(" Splitting bad quality tets [%d]#: %ld.\n" , |
| 26693 | iter, flipqueue->objects); |
| 26694 | } |
| 26695 | |
| 26696 | for (k = 0; (k < flipqueue->objects) && (steinerleft != 0); k++) { |
| 26697 | bface = (badface *) fastlookup(flipqueue, k); |
| 26698 | if (gettetrahedron(bface->forg, bface->fdest, bface->fapex, |
| 26699 | bface->foppo, &bface->tt)) { |
| 26700 | if ((bface->key == 0) || (bface->tt.ver != 11)) { |
| 26701 | // Here we need to re-compute the quality. Since other smoothing |
| 26702 | // operation may have moved the vertices of this tet. |
| 26703 | ppt = (point *) & (bface->tt.tet[4]); |
| 26704 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent, |
| 26705 | &bface->key, NULL); |
| 26706 | } |
| 26707 | if (bface->key < cosslidihed) { |
| 26708 | // It is a sliver. Try to split it. |
| 26709 | slitet.tet = bface->tt.tet; |
| 26710 | //cosdd = bface->cent; |
| 26711 | for (j = 0; j < 6; j++) { |
| 26712 | if (bface->cent[j] < cosslidihed) { |
| 26713 | // Found a large dihedral angle. |
| 26714 | slitet.ver = edge2ver[j]; // Go to the edge. |
| 26715 | if (splitsliver(&slitet, bface->cent[j], chkencflag)) { |
| 26716 | sptcount++; |
| 26717 | break; |
| 26718 | } |
| 26719 | } |
| 26720 | } // j |
| 26721 | if (j < 6) { |
| 26722 | // A sliver is split. Queue new slivers. |
| 26723 | badtetrahedrons->traversalinit(); |
| 26724 | parytet = (triface *) badtetrahedrons->traverse(); |
| 26725 | while (parytet != NULL) { |
| 26726 | unmarktest2(*parytet); |
| 26727 | ppt = (point *) & (parytet->tet[4]); |
| 26728 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], cosdd, |
| 26729 | &maxcosd, NULL); |
| 26730 | if (maxcosd < cosslidihed) { |
| 26731 | // A new sliver. Queue it. |
| 26732 | unflipqueue->newindex((void **) &parybface); |
| 26733 | parybface->forg = ppt[0]; |
| 26734 | parybface->fdest = ppt[1]; |
| 26735 | parybface->fapex = ppt[2]; |
| 26736 | parybface->foppo = ppt[3]; |
| 26737 | parybface->tt.tet = parytet->tet; |
| 26738 | parybface->tt.ver = 11; |
| 26739 | parybface->key = maxcosd; |
| 26740 | for (i = 0; i < 6; i++) { |
| 26741 | parybface->cent[i] = cosdd[i]; |
| 26742 | } |
| 26743 | } |
| 26744 | parytet = (triface *) badtetrahedrons->traverse(); |
| 26745 | } |
| 26746 | badtetrahedrons->restart(); |
| 26747 | } else { |
| 26748 | // Didn't split. Queue it again. |
| 26749 | unflipqueue->newindex((void **) &parybface); |
| 26750 | *parybface = *bface; |
| 26751 | } // if (j == 6) |
| 26752 | } // if (bface->key < cosslidihed) |
| 26753 | } // if (gettetrahedron(...)) |
| 26754 | } // k |
| 26755 | |
| 26756 | flipqueue->restart(); |
| 26757 | |
| 26758 | if (b->verbose > 1) { |
| 26759 | printf(" Split %ld tets.\n" , sptcount); |
| 26760 | } |
| 26761 | totalsptcount += sptcount; |
| 26762 | |
| 26763 | if (sptcount == 0l) { |
| 26764 | // No point has been smoothed. |
| 26765 | break; |
| 26766 | } else { |
| 26767 | iter++; |
| 26768 | if (iter == 2) { //if (iter >= b->optpasses) { |
| 26769 | break; |
| 26770 | } |
| 26771 | } |
| 26772 | |
| 26773 | // Swap the two flip queues. |
| 26774 | swapqueue = flipqueue; |
| 26775 | flipqueue = unflipqueue; |
| 26776 | unflipqueue = swapqueue; |
| 26777 | } // while |
| 26778 | |
| 26779 | delete flipqueue; |
| 26780 | |
| 26781 | return totalsptcount; |
| 26782 | } |
| 26783 | |
| 26784 | /////////////////////////////////////////////////////////////////////////////// |
| 26785 | // // |
| 26786 | // optimizemesh() Optimize mesh for specified objective functions. // |
| 26787 | // // |
| 26788 | /////////////////////////////////////////////////////////////////////////////// |
| 26789 | |
| 26790 | void tetgenmesh::optimizemesh() |
| 26791 | { |
| 26792 | badface *parybface; |
| 26793 | triface checktet; |
| 26794 | point *ppt; |
| 26795 | int optpasses; |
| 26796 | optparameters opm; |
| 26797 | REAL ncosdd[6], maxdd; |
| 26798 | long totalremcount, remcount; |
| 26799 | long totalsmtcount, smtcount; |
| 26800 | long totalsptcount, sptcount; |
| 26801 | int chkencflag; |
| 26802 | int iter; |
| 26803 | int n; |
| 26804 | |
| 26805 | if (!b->quiet) { |
| 26806 | printf("Optimizing mesh...\n" ); |
| 26807 | } |
| 26808 | |
| 26809 | optpasses = ((1 << b->optlevel) - 1); |
| 26810 | |
| 26811 | if (b->verbose) { |
| 26812 | printf(" Optimization level = %d.\n" , b->optlevel); |
| 26813 | printf(" Optimization scheme = %d.\n" , b->optscheme); |
| 26814 | printf(" Number of iteration = %d.\n" , optpasses); |
| 26815 | printf(" Min_Max dihed angle = %g.\n" , b->optmaxdihedral); |
| 26816 | } |
| 26817 | |
| 26818 | totalsmtcount = totalsptcount = totalremcount = 0l; |
| 26819 | |
| 26820 | cosmaxdihed = cos(b->optmaxdihedral / 180.0 * PI); |
| 26821 | cossmtdihed = cos(b->optminsmtdihed / 180.0 * PI); |
| 26822 | cosslidihed = cos(b->optminslidihed / 180.0 * PI); |
| 26823 | |
| 26824 | int attrnum = numelemattrib - 1; |
| 26825 | |
| 26826 | // Put all bad tetrahedra into array. |
| 26827 | tetrahedrons->traversalinit(); |
| 26828 | checktet.tet = tetrahedrontraverse(); |
| 26829 | while (checktet.tet != NULL) { |
| 26830 | if (b->convex) { // -c |
| 26831 | // Skip this tet if it lies in the exterior. |
| 26832 | if (elemattribute(checktet.tet, attrnum) == -1.0) { |
| 26833 | checktet.tet = tetrahedrontraverse(); |
| 26834 | continue; |
| 26835 | } |
| 26836 | } |
| 26837 | ppt = (point *) & (checktet.tet[4]); |
| 26838 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], ncosdd, &maxdd, NULL); |
| 26839 | if (maxdd < cosmaxdihed) { |
| 26840 | // There are bad dihedral angles in this tet. |
| 26841 | unflipqueue->newindex((void **) &parybface); |
| 26842 | parybface->tt.tet = checktet.tet; |
| 26843 | parybface->tt.ver = 11; |
| 26844 | parybface->forg = ppt[0]; |
| 26845 | parybface->fdest = ppt[1]; |
| 26846 | parybface->fapex = ppt[2]; |
| 26847 | parybface->foppo = ppt[3]; |
| 26848 | parybface->key = maxdd; |
| 26849 | for (n = 0; n < 6; n++) { |
| 26850 | parybface->cent[n] = ncosdd[n]; |
| 26851 | } |
| 26852 | } |
| 26853 | checktet.tet = tetrahedrontraverse(); |
| 26854 | } |
| 26855 | |
| 26856 | totalremcount = improvequalitybyflips(); |
| 26857 | |
| 26858 | if ((unflipqueue->objects > 0l) && |
| 26859 | ((b->optscheme & 2) || (b->optscheme & 4))) { |
| 26860 | // The pool is only used by removeslivers(). |
| 26861 | badtetrahedrons = new memorypool(sizeof(triface), b->tetrahedraperblock, |
| 26862 | sizeof(void *), 0); |
| 26863 | |
| 26864 | // Smoothing options. |
| 26865 | opm.min_max_dihedangle = 1; |
| 26866 | opm.numofsearchdirs = 10; |
| 26867 | // opm.searchstep = 0.001; |
| 26868 | opm.maxiter = 30; // Limit the maximum iterations. |
| 26869 | //opm.checkencflag = 4; // Queue affected tets after smoothing. |
| 26870 | chkencflag = 4; // Queue affected tets after splitting a sliver. |
| 26871 | iter = 0; |
| 26872 | |
| 26873 | while (iter < optpasses) { |
| 26874 | smtcount = sptcount = remcount = 0l; |
| 26875 | if (b->optscheme & 2) { |
| 26876 | smtcount += improvequalitybysmoothing(&opm); |
| 26877 | totalsmtcount += smtcount; |
| 26878 | if (smtcount > 0l) { |
| 26879 | remcount = improvequalitybyflips(); |
| 26880 | totalremcount += remcount; |
| 26881 | } |
| 26882 | } |
| 26883 | if (unflipqueue->objects > 0l) { |
| 26884 | if (b->optscheme & 4) { |
| 26885 | sptcount += removeslivers(chkencflag); |
| 26886 | totalsptcount += sptcount; |
| 26887 | if (sptcount > 0l) { |
| 26888 | remcount = improvequalitybyflips(); |
| 26889 | totalremcount += remcount; |
| 26890 | } |
| 26891 | } |
| 26892 | } |
| 26893 | if (unflipqueue->objects > 0l) { |
| 26894 | if (remcount > 0l) { |
| 26895 | iter++; |
| 26896 | } else { |
| 26897 | break; |
| 26898 | } |
| 26899 | } else { |
| 26900 | break; |
| 26901 | } |
| 26902 | } // while (iter) |
| 26903 | |
| 26904 | delete badtetrahedrons; |
| 26905 | |
| 26906 | } |
| 26907 | |
| 26908 | if (unflipqueue->objects > 0l) { |
| 26909 | if (b->verbose > 1) { |
| 26910 | printf(" %ld bad tets remained.\n" , unflipqueue->objects); |
| 26911 | } |
| 26912 | unflipqueue->restart(); |
| 26913 | } |
| 26914 | |
| 26915 | if (b->verbose) { |
| 26916 | if (totalremcount > 0l) { |
| 26917 | printf(" Removed %ld edges.\n" , totalremcount); |
| 26918 | } |
| 26919 | if (totalsmtcount > 0l) { |
| 26920 | printf(" Smoothed %ld points.\n" , totalsmtcount); |
| 26921 | } |
| 26922 | if (totalsptcount > 0l) { |
| 26923 | printf(" Split %ld slivers.\n" , totalsptcount); |
| 26924 | } |
| 26925 | } |
| 26926 | } |
| 26927 | |
| 26928 | //// //// |
| 26929 | //// //// |
| 26930 | //// optimize_cxx ///////////////////////////////////////////////////////////// |
| 26931 | |
| 26932 | //// meshstat_cxx ///////////////////////////////////////////////////////////// |
| 26933 | //// //// |
| 26934 | //// //// |
| 26935 | |
| 26936 | /////////////////////////////////////////////////////////////////////////////// |
| 26937 | // // |
| 26938 | // printfcomma() Print a (large) number with the 'thousands separator'. // |
| 26939 | // // |
| 26940 | // The following code was simply copied from "stackoverflow". // |
| 26941 | // // |
| 26942 | /////////////////////////////////////////////////////////////////////////////// |
| 26943 | |
| 26944 | void tetgenmesh::printfcomma(unsigned long n) |
| 26945 | { |
| 26946 | unsigned long n2 = 0; |
| 26947 | int scale = 1; |
| 26948 | while (n >= 1000) { |
| 26949 | n2 = n2 + scale * (n % 1000); |
| 26950 | n /= 1000; |
| 26951 | scale *= 1000; |
| 26952 | } |
| 26953 | printf ("%ld" , n); |
| 26954 | while (scale != 1) { |
| 26955 | scale /= 1000; |
| 26956 | n = n2 / scale; |
| 26957 | n2 = n2 % scale; |
| 26958 | printf (",%03ld" , n); |
| 26959 | } |
| 26960 | } |
| 26961 | |
| 26962 | /////////////////////////////////////////////////////////////////////////////// |
| 26963 | // // |
| 26964 | // checkmesh() Test the mesh for topological consistency. // |
| 26965 | // // |
| 26966 | // If 'topoflag' is set, only check the topological connection of the mesh, // |
| 26967 | // i.e., do not report degenerated or inverted elements. // |
| 26968 | // // |
| 26969 | /////////////////////////////////////////////////////////////////////////////// |
| 26970 | |
| 26971 | int tetgenmesh::checkmesh(int topoflag) |
| 26972 | { |
| 26973 | triface tetloop, neightet, symtet; |
| 26974 | point pa, pb, pc, pd; |
| 26975 | REAL ori; |
| 26976 | int horrors, i; |
| 26977 | |
| 26978 | if (!b->quiet) { |
| 26979 | printf(" Checking consistency of mesh...\n" ); |
| 26980 | } |
| 26981 | |
| 26982 | horrors = 0; |
| 26983 | tetloop.ver = 0; |
| 26984 | // Run through the list of tetrahedra, checking each one. |
| 26985 | tetrahedrons->traversalinit(); |
| 26986 | tetloop.tet = alltetrahedrontraverse(); |
| 26987 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 26988 | // Check all four faces of the tetrahedron. |
| 26989 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
| 26990 | pa = org(tetloop); |
| 26991 | pb = dest(tetloop); |
| 26992 | pc = apex(tetloop); |
| 26993 | pd = oppo(tetloop); |
| 26994 | if (tetloop.ver == 0) { // Only test for inversion once. |
| 26995 | if (!ishulltet(tetloop)) { // Only do test if it is not a hull tet. |
| 26996 | if (!topoflag) { |
| 26997 | ori = orient3d(pa, pb, pc, pd); |
| 26998 | if (ori >= 0.0) { |
| 26999 | printf(" !! !! %s " , ori > 0.0 ? "Inverted" : "Degenerated" ); |
| 27000 | printf(" (%d, %d, %d, %d) (ori = %.17g)\n" , pointmark(pa), |
| 27001 | pointmark(pb), pointmark(pc), pointmark(pd), ori); |
| 27002 | horrors++; |
| 27003 | } |
| 27004 | } |
| 27005 | } |
| 27006 | if (infected(tetloop)) { |
| 27007 | // This may be a bug. Report it. |
| 27008 | printf(" !! (%d, %d, %d, %d) is infected.\n" , pointmark(pa), |
| 27009 | pointmark(pb), pointmark(pc), pointmark(pd)); |
| 27010 | horrors++; |
| 27011 | } |
| 27012 | if (marktested(tetloop)) { |
| 27013 | // This may be a bug. Report it. |
| 27014 | printf(" !! (%d, %d, %d, %d) is marked.\n" , pointmark(pa), |
| 27015 | pointmark(pb), pointmark(pc), pointmark(pd)); |
| 27016 | horrors++; |
| 27017 | } |
| 27018 | } |
| 27019 | if (tetloop.tet[tetloop.ver] == NULL) { |
| 27020 | printf(" !! !! No neighbor at face (%d, %d, %d).\n" , pointmark(pa), |
| 27021 | pointmark(pb), pointmark(pc)); |
| 27022 | horrors++; |
| 27023 | } else { |
| 27024 | // Find the neighboring tetrahedron on this face. |
| 27025 | fsym(tetloop, neightet); |
| 27026 | // Check that the tetrahedron's neighbor knows it's a neighbor. |
| 27027 | fsym(neightet, symtet); |
| 27028 | if ((tetloop.tet != symtet.tet) || (tetloop.ver != symtet.ver)) { |
| 27029 | printf(" !! !! Asymmetric tetra-tetra bond:\n" ); |
| 27030 | if (tetloop.tet == symtet.tet) { |
| 27031 | printf(" (Right tetrahedron, wrong orientation)\n" ); |
| 27032 | } |
| 27033 | printf(" First: (%d, %d, %d, %d)\n" , pointmark(pa), |
| 27034 | pointmark(pb), pointmark(pc), pointmark(pd)); |
| 27035 | printf(" Second: (%d, %d, %d, %d)\n" , pointmark(org(neightet)), |
| 27036 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
| 27037 | pointmark(oppo(neightet))); |
| 27038 | horrors++; |
| 27039 | } |
| 27040 | // Check if they have the same edge (the bond() operation). |
| 27041 | if ((org(neightet) != pb) || (dest(neightet) != pa)) { |
| 27042 | printf(" !! !! Wrong edge-edge bond:\n" ); |
| 27043 | printf(" First: (%d, %d, %d, %d)\n" , pointmark(pa), |
| 27044 | pointmark(pb), pointmark(pc), pointmark(pd)); |
| 27045 | printf(" Second: (%d, %d, %d, %d)\n" , pointmark(org(neightet)), |
| 27046 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
| 27047 | pointmark(oppo(neightet))); |
| 27048 | horrors++; |
| 27049 | } |
| 27050 | // Check if they have the same apex. |
| 27051 | if (apex(neightet) != pc) { |
| 27052 | printf(" !! !! Wrong face-face bond:\n" ); |
| 27053 | printf(" First: (%d, %d, %d, %d)\n" , pointmark(pa), |
| 27054 | pointmark(pb), pointmark(pc), pointmark(pd)); |
| 27055 | printf(" Second: (%d, %d, %d, %d)\n" , pointmark(org(neightet)), |
| 27056 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
| 27057 | pointmark(oppo(neightet))); |
| 27058 | horrors++; |
| 27059 | } |
| 27060 | // Check if they have the same opposite. |
| 27061 | if (oppo(neightet) == pd) { |
| 27062 | printf(" !! !! Two identical tetra:\n" ); |
| 27063 | printf(" First: (%d, %d, %d, %d)\n" , pointmark(pa), |
| 27064 | pointmark(pb), pointmark(pc), pointmark(pd)); |
| 27065 | printf(" Second: (%d, %d, %d, %d)\n" , pointmark(org(neightet)), |
| 27066 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
| 27067 | pointmark(oppo(neightet))); |
| 27068 | horrors++; |
| 27069 | } |
| 27070 | } |
| 27071 | if (facemarked(tetloop)) { |
| 27072 | // This may be a bug. Report it. |
| 27073 | printf(" !! tetface (%d, %d, %d) %d is marked.\n" , pointmark(pa), |
| 27074 | pointmark(pb), pointmark(pc), pointmark(pd)); |
| 27075 | } |
| 27076 | } |
| 27077 | // Check the six edges of this tet. |
| 27078 | for (i = 0; i < 6; i++) { |
| 27079 | tetloop.ver = edge2ver[i]; |
| 27080 | if (edgemarked(tetloop)) { |
| 27081 | // This may be a bug. Report it. |
| 27082 | printf(" !! tetedge (%d, %d) %d, %d is marked.\n" , |
| 27083 | pointmark(org(tetloop)), pointmark(dest(tetloop)), |
| 27084 | pointmark(apex(tetloop)), pointmark(oppo(tetloop))); |
| 27085 | } |
| 27086 | } |
| 27087 | tetloop.tet = alltetrahedrontraverse(); |
| 27088 | } |
| 27089 | if (horrors == 0) { |
| 27090 | if (!b->quiet) { |
| 27091 | printf(" In my studied opinion, the mesh appears to be consistent.\n" ); |
| 27092 | } |
| 27093 | } else { |
| 27094 | printf(" !! !! !! !! %d %s witnessed.\n" , horrors, |
| 27095 | horrors > 1 ? "abnormity" : "abnormities" ); |
| 27096 | } |
| 27097 | |
| 27098 | return horrors; |
| 27099 | } |
| 27100 | |
| 27101 | /////////////////////////////////////////////////////////////////////////////// |
| 27102 | // // |
| 27103 | // checkshells() Test the boundary mesh for topological consistency. // |
| 27104 | // // |
| 27105 | /////////////////////////////////////////////////////////////////////////////// |
| 27106 | |
| 27107 | int tetgenmesh::checkshells() |
| 27108 | { |
| 27109 | triface neightet, symtet; |
| 27110 | face shloop, spinsh, nextsh; |
| 27111 | face checkseg; |
| 27112 | point pa, pb; |
| 27113 | int bakcount; |
| 27114 | int horrors, i; |
| 27115 | |
| 27116 | if (!b->quiet) { |
| 27117 | printf(" Checking consistency of the mesh boundary...\n" ); |
| 27118 | } |
| 27119 | horrors = 0; |
| 27120 | |
| 27121 | void **bakpathblock = subfaces->pathblock; |
| 27122 | void *bakpathitem = subfaces->pathitem; |
| 27123 | int bakpathitemsleft = subfaces->pathitemsleft; |
| 27124 | int bakalignbytes = subfaces->alignbytes; |
| 27125 | |
| 27126 | subfaces->traversalinit(); |
| 27127 | shloop.sh = shellfacetraverse(subfaces); |
| 27128 | while (shloop.sh != NULL) { |
| 27129 | shloop.shver = 0; |
| 27130 | for (i = 0; i < 3; i++) { |
| 27131 | // Check the face ring at this edge. |
| 27132 | pa = sorg(shloop); |
| 27133 | pb = sdest(shloop); |
| 27134 | spinsh = shloop; |
| 27135 | spivot(spinsh, nextsh); |
| 27136 | bakcount = horrors; |
| 27137 | while ((nextsh.sh != NULL) && (nextsh.sh != shloop.sh)) { |
| 27138 | if (nextsh.sh[3] == NULL) { |
| 27139 | printf(" !! !! Wrong subface-subface connection (Dead subface).\n" ); |
| 27140 | printf(" First: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) spinsh.sh, |
| 27141 | pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
| 27142 | pointmark(sapex(spinsh))); |
| 27143 | printf(" Second: x%" PRIxPTR " (DEAD)\n" , (uintptr_t) nextsh.sh); |
| 27144 | horrors++; |
| 27145 | break; |
| 27146 | } |
| 27147 | // check if they have the same edge. |
| 27148 | if (!(((sorg(nextsh) == pa) && (sdest(nextsh) == pb)) || |
| 27149 | ((sorg(nextsh) == pb) && (sdest(nextsh) == pa)))) { |
| 27150 | printf(" !! !! Wrong subface-subface connection.\n" ); |
| 27151 | printf(" First: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) spinsh.sh, |
| 27152 | pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
| 27153 | pointmark(sapex(spinsh))); |
| 27154 | printf(" Scond: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) nextsh.sh, |
| 27155 | pointmark(sorg(nextsh)), pointmark(sdest(nextsh)), |
| 27156 | pointmark(sapex(nextsh))); |
| 27157 | horrors++; |
| 27158 | break; |
| 27159 | } |
| 27160 | // Check they should not have the same apex. |
| 27161 | if (sapex(nextsh) == sapex(spinsh)) { |
| 27162 | printf(" !! !! Existing two duplicated subfaces.\n" ); |
| 27163 | printf(" First: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) spinsh.sh, |
| 27164 | pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
| 27165 | pointmark(sapex(spinsh))); |
| 27166 | printf(" Scond: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) nextsh.sh, |
| 27167 | pointmark(sorg(nextsh)), pointmark(sdest(nextsh)), |
| 27168 | pointmark(sapex(nextsh))); |
| 27169 | horrors++; |
| 27170 | break; |
| 27171 | } |
| 27172 | spinsh = nextsh; |
| 27173 | spivot(spinsh, nextsh); |
| 27174 | } |
| 27175 | // Check subface-subseg bond. |
| 27176 | sspivot(shloop, checkseg); |
| 27177 | if (checkseg.sh != NULL) { |
| 27178 | if (checkseg.sh[3] == NULL) { |
| 27179 | printf(" !! !! Wrong subface-subseg connection (Dead subseg).\n" ); |
| 27180 | printf(" Sub: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) shloop.sh, |
| 27181 | pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
| 27182 | pointmark(sapex(shloop))); |
| 27183 | printf(" Sub: x%" PRIxPTR " (Dead)\n" , (uintptr_t) checkseg.sh); |
| 27184 | horrors++; |
| 27185 | } else { |
| 27186 | if (!(((sorg(checkseg) == pa) && (sdest(checkseg) == pb)) || |
| 27187 | ((sorg(checkseg) == pb) && (sdest(checkseg) == pa)))) { |
| 27188 | printf(" !! !! Wrong subface-subseg connection.\n" ); |
| 27189 | printf(" Sub: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) shloop.sh, |
| 27190 | pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
| 27191 | pointmark(sapex(shloop))); |
| 27192 | printf(" Seg: x%" PRIxPTR " (%d, %d).\n" , (uintptr_t) checkseg.sh, |
| 27193 | pointmark(sorg(checkseg)), pointmark(sdest(checkseg))); |
| 27194 | horrors++; |
| 27195 | } |
| 27196 | } |
| 27197 | } |
| 27198 | if (horrors > bakcount) break; // An error detected. |
| 27199 | senextself(shloop); |
| 27200 | } |
| 27201 | // Check tet-subface connection. |
| 27202 | stpivot(shloop, neightet); |
| 27203 | if (neightet.tet != NULL) { |
| 27204 | if (neightet.tet[4] == NULL) { |
| 27205 | printf(" !! !! Wrong sub-to-tet connection (Dead tet)\n" ); |
| 27206 | printf(" Sub: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) shloop.sh, |
| 27207 | pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
| 27208 | pointmark(sapex(shloop))); |
| 27209 | printf(" Tet: x%" PRIxPTR " (DEAD)\n" , (uintptr_t) neightet.tet); |
| 27210 | horrors++; |
| 27211 | } else { |
| 27212 | if (!((sorg(shloop) == org(neightet)) && |
| 27213 | (sdest(shloop) == dest(neightet)))) { |
| 27214 | printf(" !! !! Wrong sub-to-tet connection\n" ); |
| 27215 | printf(" Sub: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) shloop.sh, |
| 27216 | pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
| 27217 | pointmark(sapex(shloop))); |
| 27218 | printf(" Tet: x%" PRIxPTR " (%d, %d, %d, %d).\n" , |
| 27219 | (uintptr_t) neightet.tet, pointmark(org(neightet)), |
| 27220 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
| 27221 | pointmark(oppo(neightet))); |
| 27222 | horrors++; |
| 27223 | } |
| 27224 | tspivot(neightet, spinsh); |
| 27225 | if (!((sorg(spinsh) == org(neightet)) && |
| 27226 | (sdest(spinsh) == dest(neightet)))) { |
| 27227 | printf(" !! !! Wrong tet-sub connection.\n" ); |
| 27228 | printf(" Sub: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) spinsh.sh, |
| 27229 | pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
| 27230 | pointmark(sapex(spinsh))); |
| 27231 | printf(" Tet: x%" PRIxPTR " (%d, %d, %d, %d).\n" , |
| 27232 | (uintptr_t) neightet.tet, pointmark(org(neightet)), |
| 27233 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
| 27234 | pointmark(oppo(neightet))); |
| 27235 | horrors++; |
| 27236 | } |
| 27237 | fsym(neightet, symtet); |
| 27238 | tspivot(symtet, spinsh); |
| 27239 | if (spinsh.sh != NULL) { |
| 27240 | if (!((sorg(spinsh) == org(symtet)) && |
| 27241 | (sdest(spinsh) == dest(symtet)))) { |
| 27242 | printf(" !! !! Wrong tet-sub connection.\n" ); |
| 27243 | printf(" Sub: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) spinsh.sh, |
| 27244 | pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
| 27245 | pointmark(sapex(spinsh))); |
| 27246 | printf(" Tet: x%" PRIxPTR " (%d, %d, %d, %d).\n" , |
| 27247 | (uintptr_t) symtet.tet, pointmark(org(symtet)), |
| 27248 | pointmark(dest(symtet)), pointmark(apex(symtet)), |
| 27249 | pointmark(oppo(symtet))); |
| 27250 | horrors++; |
| 27251 | } |
| 27252 | } else { |
| 27253 | printf(" Warning: Broken tet-sub-tet connection.\n" ); |
| 27254 | } |
| 27255 | } |
| 27256 | } |
| 27257 | if (sinfected(shloop)) { |
| 27258 | // This may be a bug. report it. |
| 27259 | printf(" !! A infected subface: (%d, %d, %d).\n" , |
| 27260 | pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
| 27261 | pointmark(sapex(shloop))); |
| 27262 | } |
| 27263 | if (smarktested(shloop)) { |
| 27264 | // This may be a bug. report it. |
| 27265 | printf(" !! A marked subface: (%d, %d, %d).\n" , pointmark(sorg(shloop)), |
| 27266 | pointmark(sdest(shloop)), pointmark(sapex(shloop))); |
| 27267 | } |
| 27268 | shloop.sh = shellfacetraverse(subfaces); |
| 27269 | } |
| 27270 | |
| 27271 | if (horrors == 0) { |
| 27272 | if (!b->quiet) { |
| 27273 | printf(" Mesh boundaries connected correctly.\n" ); |
| 27274 | } |
| 27275 | } else { |
| 27276 | printf(" !! !! !! !! %d boundary connection viewed with horror.\n" , |
| 27277 | horrors); |
| 27278 | } |
| 27279 | |
| 27280 | subfaces->pathblock = bakpathblock; |
| 27281 | subfaces->pathitem = bakpathitem; |
| 27282 | subfaces->pathitemsleft = bakpathitemsleft; |
| 27283 | subfaces->alignbytes = bakalignbytes; |
| 27284 | |
| 27285 | return horrors; |
| 27286 | } |
| 27287 | |
| 27288 | /////////////////////////////////////////////////////////////////////////////// |
| 27289 | // // |
| 27290 | // checksegments() Check the connections between tetrahedra and segments. // |
| 27291 | // // |
| 27292 | /////////////////////////////////////////////////////////////////////////////// |
| 27293 | |
| 27294 | int tetgenmesh::checksegments() |
| 27295 | { |
| 27296 | triface tetloop, neightet, spintet; |
| 27297 | shellface *segs; |
| 27298 | face neighsh, spinsh, checksh; |
| 27299 | face sseg, checkseg; |
| 27300 | point pa, pb; |
| 27301 | int miscount; |
| 27302 | int t1ver; |
| 27303 | int horrors, i; |
| 27304 | |
| 27305 | |
| 27306 | if (!b->quiet) { |
| 27307 | printf(" Checking tet->seg connections...\n" ); |
| 27308 | } |
| 27309 | |
| 27310 | horrors = 0; |
| 27311 | tetrahedrons->traversalinit(); |
| 27312 | tetloop.tet = tetrahedrontraverse(); |
| 27313 | while (tetloop.tet != NULL) { |
| 27314 | // Loop the six edges of the tet. |
| 27315 | if (tetloop.tet[8] != NULL) { |
| 27316 | segs = (shellface *) tetloop.tet[8]; |
| 27317 | for (i = 0; i < 6; i++) { |
| 27318 | sdecode(segs[i], sseg); |
| 27319 | if (sseg.sh != NULL) { |
| 27320 | // Get the edge of the tet. |
| 27321 | tetloop.ver = edge2ver[i]; |
| 27322 | // Check if they are the same edge. |
| 27323 | pa = (point) sseg.sh[3]; |
| 27324 | pb = (point) sseg.sh[4]; |
| 27325 | if (!(((org(tetloop) == pa) && (dest(tetloop) == pb)) || |
| 27326 | ((org(tetloop) == pb) && (dest(tetloop) == pa)))) { |
| 27327 | printf(" !! Wrong tet-seg connection.\n" ); |
| 27328 | printf(" Tet: x%" PRIxPTR " (%d, %d, %d, %d) - Seg: x%" PRIxPTR " (%d, %d).\n" , |
| 27329 | (uintptr_t) tetloop.tet, pointmark(org(tetloop)), |
| 27330 | pointmark(dest(tetloop)), pointmark(apex(tetloop)), |
| 27331 | pointmark(oppo(tetloop)), (uintptr_t) sseg.sh, |
| 27332 | pointmark(pa), pointmark(pb)); |
| 27333 | horrors++; |
| 27334 | } else { |
| 27335 | // Loop all tets sharing at this edge. |
| 27336 | neightet = tetloop; |
| 27337 | do { |
| 27338 | tsspivot1(neightet, checkseg); |
| 27339 | if (checkseg.sh != sseg.sh) { |
| 27340 | printf(" !! Wrong tet->seg connection.\n" ); |
| 27341 | printf(" Tet: x%" PRIxPTR " (%d, %d, %d, %d) - " , |
| 27342 | (uintptr_t) neightet.tet, pointmark(org(neightet)), |
| 27343 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
| 27344 | pointmark(oppo(neightet))); |
| 27345 | if (checkseg.sh != NULL) { |
| 27346 | printf("Seg x%" PRIxPTR " (%d, %d).\n" , (uintptr_t) checkseg.sh, |
| 27347 | pointmark(sorg(checkseg)),pointmark(sdest(checkseg))); |
| 27348 | } else { |
| 27349 | printf("Seg: NULL.\n" ); |
| 27350 | } |
| 27351 | horrors++; |
| 27352 | } |
| 27353 | fnextself(neightet); |
| 27354 | } while (neightet.tet != tetloop.tet); |
| 27355 | } |
| 27356 | // Check the seg->tet pointer. |
| 27357 | sstpivot1(sseg, neightet); |
| 27358 | if (neightet.tet == NULL) { |
| 27359 | printf(" !! Wrong seg->tet connection (A NULL tet).\n" ); |
| 27360 | horrors++; |
| 27361 | } else { |
| 27362 | if (!(((org(neightet) == pa) && (dest(neightet) == pb)) || |
| 27363 | ((org(neightet) == pb) && (dest(neightet) == pa)))) { |
| 27364 | printf(" !! Wrong seg->tet connection (Wrong edge).\n" ); |
| 27365 | printf(" Tet: x%" PRIxPTR " (%d, %d, %d, %d) - Seg: x%" PRIxPTR " (%d, %d).\n" , |
| 27366 | (uintptr_t) neightet.tet, pointmark(org(neightet)), |
| 27367 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
| 27368 | pointmark(oppo(neightet)), (uintptr_t) sseg.sh, |
| 27369 | pointmark(pa), pointmark(pb)); |
| 27370 | horrors++; |
| 27371 | } |
| 27372 | } |
| 27373 | } |
| 27374 | } |
| 27375 | } |
| 27376 | // Loop the six edge of this tet. |
| 27377 | neightet.tet = tetloop.tet; |
| 27378 | for (i = 0; i < 6; i++) { |
| 27379 | neightet.ver = edge2ver[i]; |
| 27380 | if (edgemarked(neightet)) { |
| 27381 | // A possible bug. Report it. |
| 27382 | printf(" !! A marked edge: (%d, %d, %d, %d) -- x%" PRIxPTR " %d.\n" , |
| 27383 | pointmark(org(neightet)), pointmark(dest(neightet)), |
| 27384 | pointmark(apex(neightet)), pointmark(oppo(neightet)), |
| 27385 | (uintptr_t) neightet.tet, neightet.ver); |
| 27386 | // Check if all tets at the edge are marked. |
| 27387 | spintet = neightet; |
| 27388 | while (1) { |
| 27389 | fnextself(spintet); |
| 27390 | if (!edgemarked(spintet)) { |
| 27391 | printf(" !! !! An unmarked edge (%d, %d, %d, %d) -- x%" PRIxPTR " %d.\n" , |
| 27392 | pointmark(org(spintet)), pointmark(dest(spintet)), |
| 27393 | pointmark(apex(spintet)), pointmark(oppo(spintet)), |
| 27394 | (uintptr_t) spintet.tet, spintet.ver); |
| 27395 | horrors++; |
| 27396 | } |
| 27397 | if (spintet.tet == neightet.tet) break; |
| 27398 | } |
| 27399 | } |
| 27400 | } |
| 27401 | tetloop.tet = tetrahedrontraverse(); |
| 27402 | } |
| 27403 | |
| 27404 | if (!b->quiet) { |
| 27405 | printf(" Checking seg->tet connections...\n" ); |
| 27406 | } |
| 27407 | |
| 27408 | miscount = 0; // Count the number of unrecovered segments. |
| 27409 | subsegs->traversalinit(); |
| 27410 | sseg.shver = 0; |
| 27411 | sseg.sh = shellfacetraverse(subsegs); |
| 27412 | while (sseg.sh != NULL) { |
| 27413 | pa = sorg(sseg); |
| 27414 | pb = sdest(sseg); |
| 27415 | spivot(sseg, neighsh); |
| 27416 | if (neighsh.sh != NULL) { |
| 27417 | spinsh = neighsh; |
| 27418 | while (1) { |
| 27419 | // Check seg-subface bond. |
| 27420 | if (((sorg(spinsh) == pa) && (sdest(spinsh) == pb)) || |
| 27421 | ((sorg(spinsh) == pb) && (sdest(spinsh) == pa))) { |
| 27422 | // Keep the same rotate direction. |
| 27423 | //if (sorg(spinsh) != pa) { |
| 27424 | // sesymself(spinsh); |
| 27425 | // printf(" !! Wrong ori at subface (%d, %d, %d) -- x%lx %d\n", |
| 27426 | // pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
| 27427 | // pointmark(sapex(spinsh)), (uintptr_t) spinsh.sh, |
| 27428 | // spinsh.shver); |
| 27429 | // horrors++; |
| 27430 | //} |
| 27431 | stpivot(spinsh, spintet); |
| 27432 | if (spintet.tet != NULL) { |
| 27433 | // Check if all tets at this segment. |
| 27434 | while (1) { |
| 27435 | tsspivot1(spintet, checkseg); |
| 27436 | if (checkseg.sh == NULL) { |
| 27437 | printf(" !! !! No seg at tet (%d, %d, %d, %d) -- x%" PRIxPTR " %d\n" , |
| 27438 | pointmark(org(spintet)), pointmark(dest(spintet)), |
| 27439 | pointmark(apex(spintet)), pointmark(oppo(spintet)), |
| 27440 | (uintptr_t) spintet.tet, spintet.ver); |
| 27441 | horrors++; |
| 27442 | } |
| 27443 | if (checkseg.sh != sseg.sh) { |
| 27444 | printf(" !! !! Wrong seg (%d, %d) at tet (%d, %d, %d, %d)\n" , |
| 27445 | pointmark(sorg(checkseg)), pointmark(sdest(checkseg)), |
| 27446 | pointmark(org(spintet)), pointmark(dest(spintet)), |
| 27447 | pointmark(apex(spintet)), pointmark(oppo(spintet))); |
| 27448 | horrors++; |
| 27449 | } |
| 27450 | fnextself(spintet); |
| 27451 | // Stop at the next subface. |
| 27452 | tspivot(spintet, checksh); |
| 27453 | if (checksh.sh != NULL) break; |
| 27454 | } // while (1) |
| 27455 | } |
| 27456 | } else { |
| 27457 | printf(" !! Wrong seg-subface (%d, %d, %d) -- x%" PRIxPTR " %d connect\n" , |
| 27458 | pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
| 27459 | pointmark(sapex(spinsh)), (uintptr_t) spinsh.sh, |
| 27460 | spinsh.shver); |
| 27461 | horrors++; |
| 27462 | break; |
| 27463 | } // if pa, pb |
| 27464 | spivotself(spinsh); |
| 27465 | if (spinsh.sh == NULL) break; // A dangling segment. |
| 27466 | if (spinsh.sh == neighsh.sh) break; |
| 27467 | } // while (1) |
| 27468 | } // if (neighsh.sh != NULL) |
| 27469 | // Count the number of "un-recovered" segments. |
| 27470 | sstpivot1(sseg, neightet); |
| 27471 | if (neightet.tet == NULL) { |
| 27472 | miscount++; |
| 27473 | } |
| 27474 | sseg.sh = shellfacetraverse(subsegs); |
| 27475 | } |
| 27476 | |
| 27477 | if (!b->quiet) { |
| 27478 | printf(" Checking seg->seg connections...\n" ); |
| 27479 | } |
| 27480 | |
| 27481 | points->traversalinit(); |
| 27482 | pa = pointtraverse(); |
| 27483 | while (pa != NULL) { |
| 27484 | if (pointtype(pa) == FREESEGVERTEX) { |
| 27485 | // There should be two subsegments connected at 'pa'. |
| 27486 | // Get a subsegment containing 'pa'. |
| 27487 | sdecode(point2sh(pa), sseg); |
| 27488 | if ((sseg.sh == NULL) || sseg.sh[3] == NULL) { |
| 27489 | printf(" !! Dead point-to-seg pointer at point %d.\n" , |
| 27490 | pointmark(pa)); |
| 27491 | horrors++; |
| 27492 | } else { |
| 27493 | sseg.shver = 0; |
| 27494 | if (sorg(sseg) != pa) { |
| 27495 | if (sdest(sseg) != pa) { |
| 27496 | printf(" !! Wrong point-to-seg pointer at point %d.\n" , |
| 27497 | pointmark(pa)); |
| 27498 | horrors++; |
| 27499 | } else { |
| 27500 | // Find the next subsegment at 'pa'. |
| 27501 | senext(sseg, checkseg); |
| 27502 | if ((checkseg.sh == NULL) || (checkseg.sh[3] == NULL)) { |
| 27503 | printf(" !! Dead seg-seg connection at point %d.\n" , |
| 27504 | pointmark(pa)); |
| 27505 | horrors++; |
| 27506 | } else { |
| 27507 | spivotself(checkseg); |
| 27508 | checkseg.shver = 0; |
| 27509 | if (sorg(checkseg) != pa) { |
| 27510 | printf(" !! Wrong seg-seg connection at point %d.\n" , |
| 27511 | pointmark(pa)); |
| 27512 | horrors++; |
| 27513 | } |
| 27514 | } |
| 27515 | } |
| 27516 | } else { |
| 27517 | // Find the previous subsegment at 'pa'. |
| 27518 | senext2(sseg, checkseg); |
| 27519 | if ((checkseg.sh == NULL) || (checkseg.sh[3] == NULL)) { |
| 27520 | printf(" !! Dead seg-seg connection at point %d.\n" , |
| 27521 | pointmark(pa)); |
| 27522 | horrors++; |
| 27523 | } else { |
| 27524 | spivotself(checkseg); |
| 27525 | checkseg.shver = 0; |
| 27526 | if (sdest(checkseg) != pa) { |
| 27527 | printf(" !! Wrong seg-seg connection at point %d.\n" , |
| 27528 | pointmark(pa)); |
| 27529 | horrors++; |
| 27530 | } |
| 27531 | } |
| 27532 | } |
| 27533 | } |
| 27534 | } |
| 27535 | pa = pointtraverse(); |
| 27536 | } |
| 27537 | |
| 27538 | if (horrors == 0) { |
| 27539 | printf(" Segments are connected properly.\n" ); |
| 27540 | } else { |
| 27541 | printf(" !! !! !! !! Found %d missing connections.\n" , horrors); |
| 27542 | } |
| 27543 | if (miscount > 0) { |
| 27544 | printf(" !! !! Found %d missing segments.\n" , miscount); |
| 27545 | } |
| 27546 | |
| 27547 | return horrors; |
| 27548 | } |
| 27549 | |
| 27550 | /////////////////////////////////////////////////////////////////////////////// |
| 27551 | // // |
| 27552 | // checkdelaunay() Ensure that the mesh is (constrained) Delaunay. // |
| 27553 | // // |
| 27554 | /////////////////////////////////////////////////////////////////////////////// |
| 27555 | |
| 27556 | int tetgenmesh::checkdelaunay() |
| 27557 | { |
| 27558 | triface tetloop; |
| 27559 | triface symtet; |
| 27560 | face checksh; |
| 27561 | point pa, pb, pc, pd, pe; |
| 27562 | REAL sign; |
| 27563 | int ndcount; // Count the non-locally Delaunay faces. |
| 27564 | int horrors; |
| 27565 | |
| 27566 | if (!b->quiet) { |
| 27567 | printf(" Checking Delaunay property of the mesh...\n" ); |
| 27568 | } |
| 27569 | |
| 27570 | ndcount = 0; |
| 27571 | horrors = 0; |
| 27572 | tetloop.ver = 0; |
| 27573 | // Run through the list of triangles, checking each one. |
| 27574 | tetrahedrons->traversalinit(); |
| 27575 | tetloop.tet = tetrahedrontraverse(); |
| 27576 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 27577 | // Check all four faces of the tetrahedron. |
| 27578 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
| 27579 | fsym(tetloop, symtet); |
| 27580 | // Only do test if its adjoining tet is not a hull tet or its pointer |
| 27581 | // is larger (to ensure that each pair isn't tested twice). |
| 27582 | if (((point) symtet.tet[7] != dummypoint)&&(tetloop.tet < symtet.tet)) { |
| 27583 | pa = org(tetloop); |
| 27584 | pb = dest(tetloop); |
| 27585 | pc = apex(tetloop); |
| 27586 | pd = oppo(tetloop); |
| 27587 | pe = oppo(symtet); |
| 27588 | sign = insphere_s(pa, pb, pc, pd, pe); |
| 27589 | if (sign < 0.0) { |
| 27590 | ndcount++; |
| 27591 | if (checksubfaceflag) { |
| 27592 | tspivot(tetloop, checksh); |
| 27593 | } |
| 27594 | if (checksh.sh == NULL) { |
| 27595 | printf(" !! Non-locally Delaunay (%d, %d, %d) - %d, %d\n" , |
| 27596 | pointmark(pa), pointmark(pb), pointmark(pc), pointmark(pd), |
| 27597 | pointmark(pe)); |
| 27598 | horrors++; |
| 27599 | } |
| 27600 | } |
| 27601 | } |
| 27602 | } |
| 27603 | tetloop.tet = tetrahedrontraverse(); |
| 27604 | } |
| 27605 | |
| 27606 | if (horrors == 0) { |
| 27607 | if (!b->quiet) { |
| 27608 | if (ndcount > 0) { |
| 27609 | printf(" The mesh is constrained Delaunay.\n" ); |
| 27610 | } else { |
| 27611 | printf(" The mesh is Delaunay.\n" ); |
| 27612 | } |
| 27613 | } |
| 27614 | } else { |
| 27615 | printf(" !! !! !! !! Found %d non-Delaunay faces.\n" , horrors); |
| 27616 | } |
| 27617 | |
| 27618 | return horrors; |
| 27619 | } |
| 27620 | |
| 27621 | /////////////////////////////////////////////////////////////////////////////// |
| 27622 | // // |
| 27623 | // Check if the current tetrahedralization is (constrained) regular. // |
| 27624 | // // |
| 27625 | // The parameter 'type' determines which regularity should be checked: // |
| 27626 | // - 0: check the Delaunay property. // |
| 27627 | // - 1: check the Delaunay property with symbolic perturbation. // |
| 27628 | // - 2: check the regular property, the weights are stored in p[3]. // |
| 27629 | // - 3: check the regular property with symbolic perturbation. // |
| 27630 | // // |
| 27631 | /////////////////////////////////////////////////////////////////////////////// |
| 27632 | |
| 27633 | int tetgenmesh::checkregular(int type) |
| 27634 | { |
| 27635 | triface tetloop; |
| 27636 | triface symtet; |
| 27637 | face checksh; |
| 27638 | point p[5]; |
| 27639 | REAL sign; |
| 27640 | int ndcount; // Count the non-locally Delaunay faces. |
| 27641 | int horrors; |
| 27642 | |
| 27643 | if (!b->quiet) { |
| 27644 | printf(" Checking %s %s property of the mesh...\n" , |
| 27645 | (type & 2) == 0 ? "Delaunay" : "regular" , |
| 27646 | (type & 1) == 0 ? " " : "(s)" ); |
| 27647 | } |
| 27648 | |
| 27649 | // Make sure orient3d(p[1], p[0], p[2], p[3]) > 0; |
| 27650 | // Hence if (insphere(p[1], p[0], p[2], p[3], p[4]) > 0) means that |
| 27651 | // p[4] lies inside the circumsphere of p[1], p[0], p[2], p[3]. |
| 27652 | // The same if orient4d(p[1], p[0], p[2], p[3], p[4]) > 0 means that |
| 27653 | // p[4] lies below the oriented hyperplane passing through |
| 27654 | // p[1], p[0], p[2], p[3]. |
| 27655 | |
| 27656 | ndcount = 0; |
| 27657 | horrors = 0; |
| 27658 | tetloop.ver = 0; |
| 27659 | // Run through the list of triangles, checking each one. |
| 27660 | tetrahedrons->traversalinit(); |
| 27661 | tetloop.tet = tetrahedrontraverse(); |
| 27662 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 27663 | // Check all four faces of the tetrahedron. |
| 27664 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
| 27665 | fsym(tetloop, symtet); |
| 27666 | // Only do test if its adjoining tet is not a hull tet or its pointer |
| 27667 | // is larger (to ensure that each pair isn't tested twice). |
| 27668 | if (((point) symtet.tet[7] != dummypoint)&&(tetloop.tet < symtet.tet)) { |
| 27669 | p[0] = org(tetloop); // pa |
| 27670 | p[1] = dest(tetloop); // pb |
| 27671 | p[2] = apex(tetloop); // pc |
| 27672 | p[3] = oppo(tetloop); // pd |
| 27673 | p[4] = oppo(symtet); // pe |
| 27674 | |
| 27675 | if (type == 0) { |
| 27676 | sign = insphere(p[1], p[0], p[2], p[3], p[4]); |
| 27677 | } else if (type == 1) { |
| 27678 | sign = insphere_s(p[1], p[0], p[2], p[3], p[4]); |
| 27679 | } else if (type == 2) { |
| 27680 | sign = orient4d(p[1], p[0], p[2], p[3], p[4], |
| 27681 | p[1][3], p[0][3], p[2][3], p[3][3], p[4][3]); |
| 27682 | } else { // type == 3 |
| 27683 | sign = orient4d_s(p[1], p[0], p[2], p[3], p[4], |
| 27684 | p[1][3], p[0][3], p[2][3], p[3][3], p[4][3]); |
| 27685 | } |
| 27686 | |
| 27687 | if (sign > 0.0) { |
| 27688 | ndcount++; |
| 27689 | if (checksubfaceflag) { |
| 27690 | tspivot(tetloop, checksh); |
| 27691 | } |
| 27692 | if (checksh.sh == NULL) { |
| 27693 | printf(" !! Non-locally %s (%d, %d, %d) - %d, %d\n" , |
| 27694 | (type & 2) == 0 ? "Delaunay" : "regular" , |
| 27695 | pointmark(p[0]), pointmark(p[1]), pointmark(p[2]), |
| 27696 | pointmark(p[3]), pointmark(p[4])); |
| 27697 | horrors++; |
| 27698 | } |
| 27699 | } |
| 27700 | } |
| 27701 | } |
| 27702 | tetloop.tet = tetrahedrontraverse(); |
| 27703 | } |
| 27704 | |
| 27705 | if (horrors == 0) { |
| 27706 | if (!b->quiet) { |
| 27707 | if (ndcount > 0) { |
| 27708 | printf(" The mesh is constrained %s.\n" , |
| 27709 | (type & 2) == 0 ? "Delaunay" : "regular" ); |
| 27710 | } else { |
| 27711 | printf(" The mesh is %s.\n" , (type & 2) == 0 ? "Delaunay" : "regular" ); |
| 27712 | } |
| 27713 | } |
| 27714 | } else { |
| 27715 | printf(" !! !! !! !! Found %d non-%s faces.\n" , horrors, |
| 27716 | (type & 2) == 0 ? "Delaunay" : "regular" ); |
| 27717 | } |
| 27718 | |
| 27719 | return horrors; |
| 27720 | } |
| 27721 | |
| 27722 | /////////////////////////////////////////////////////////////////////////////// |
| 27723 | // // |
| 27724 | // checkconforming() Ensure that the mesh is conforming Delaunay. // |
| 27725 | // // |
| 27726 | // If 'flag' is 1, only check subsegments. If 'flag' is 2, check subfaces. // |
| 27727 | // If 'flag' is 3, check both subsegments and subfaces. // |
| 27728 | // // |
| 27729 | /////////////////////////////////////////////////////////////////////////////// |
| 27730 | |
| 27731 | int tetgenmesh::checkconforming(int flag) |
| 27732 | { |
| 27733 | triface searchtet, neightet, spintet; |
| 27734 | face shloop; |
| 27735 | face segloop; |
| 27736 | point eorg, edest, eapex, pa, pb, pc; |
| 27737 | REAL cent[3], radius, dist, diff, rd, len; |
| 27738 | bool enq; |
| 27739 | int encsubsegs, encsubfaces; |
| 27740 | int t1ver; |
| 27741 | int i; |
| 27742 | |
| 27743 | REAL A[4][4], rhs[4], D; |
| 27744 | int indx[4]; |
| 27745 | REAL elen[3]; |
| 27746 | |
| 27747 | encsubsegs = 0; |
| 27748 | |
| 27749 | if (flag & 1) { |
| 27750 | if (!b->quiet) { |
| 27751 | printf(" Checking conforming property of segments...\n" ); |
| 27752 | } |
| 27753 | encsubsegs = 0; |
| 27754 | |
| 27755 | // Run through the list of subsegments, check each one. |
| 27756 | subsegs->traversalinit(); |
| 27757 | segloop.sh = shellfacetraverse(subsegs); |
| 27758 | while (segloop.sh != (shellface *) NULL) { |
| 27759 | eorg = (point) segloop.sh[3]; |
| 27760 | edest = (point) segloop.sh[4]; |
| 27761 | radius = 0.5 * distance(eorg, edest); |
| 27762 | for (i = 0; i < 3; i++) cent[i] = 0.5 * (eorg[i] + edest[i]); |
| 27763 | |
| 27764 | enq = false; |
| 27765 | sstpivot1(segloop, neightet); |
| 27766 | if (neightet.tet != NULL) { |
| 27767 | spintet = neightet; |
| 27768 | while (1) { |
| 27769 | eapex= apex(spintet); |
| 27770 | if (eapex != dummypoint) { |
| 27771 | dist = distance(eapex, cent); |
| 27772 | diff = dist - radius; |
| 27773 | if (fabs(diff) / radius <= b->epsilon) diff = 0.0; // Rounding. |
| 27774 | if (diff < 0) { |
| 27775 | enq = true; break; |
| 27776 | } |
| 27777 | } |
| 27778 | fnextself(spintet); |
| 27779 | if (spintet.tet == neightet.tet) break; |
| 27780 | } |
| 27781 | } |
| 27782 | if (enq) { |
| 27783 | printf(" !! !! Non-conforming segment: (%d, %d)\n" , |
| 27784 | pointmark(eorg), pointmark(edest)); |
| 27785 | encsubsegs++; |
| 27786 | } |
| 27787 | segloop.sh = shellfacetraverse(subsegs); |
| 27788 | } |
| 27789 | |
| 27790 | if (encsubsegs == 0) { |
| 27791 | if (!b->quiet) { |
| 27792 | printf(" The segments are conforming Delaunay.\n" ); |
| 27793 | } |
| 27794 | } else { |
| 27795 | printf(" !! !! %d subsegments are non-conforming.\n" , encsubsegs); |
| 27796 | } |
| 27797 | } // if (flag & 1) |
| 27798 | |
| 27799 | encsubfaces = 0; |
| 27800 | |
| 27801 | if (flag & 2) { |
| 27802 | if (!b->quiet) { |
| 27803 | printf(" Checking conforming property of subfaces...\n" ); |
| 27804 | } |
| 27805 | |
| 27806 | // Run through the list of subfaces, check each one. |
| 27807 | subfaces->traversalinit(); |
| 27808 | shloop.sh = shellfacetraverse(subfaces); |
| 27809 | while (shloop.sh != (shellface *) NULL) { |
| 27810 | pa = (point) shloop.sh[3]; |
| 27811 | pb = (point) shloop.sh[4]; |
| 27812 | pc = (point) shloop.sh[5]; |
| 27813 | |
| 27814 | // Compute the coefficient matrix A (3x3). |
| 27815 | A[0][0] = pb[0] - pa[0]; |
| 27816 | A[0][1] = pb[1] - pa[1]; |
| 27817 | A[0][2] = pb[2] - pa[2]; // vector V1 (pa->pb) |
| 27818 | A[1][0] = pc[0] - pa[0]; |
| 27819 | A[1][1] = pc[1] - pa[1]; |
| 27820 | A[1][2] = pc[2] - pa[2]; // vector V2 (pa->pc) |
| 27821 | cross(A[0], A[1], A[2]); // vector V3 (V1 X V2) |
| 27822 | |
| 27823 | // Compute the right hand side vector b (3x1). |
| 27824 | elen[0] = dot(A[0], A[0]); |
| 27825 | elen[1] = dot(A[1], A[1]); |
| 27826 | rhs[0] = 0.5 * elen[0]; |
| 27827 | rhs[1] = 0.5 * elen[1]; |
| 27828 | rhs[2] = 0.0; |
| 27829 | |
| 27830 | if (lu_decmp(A, 3, indx, &D, 0)) { |
| 27831 | lu_solve(A, 3, indx, rhs, 0); |
| 27832 | cent[0] = pa[0] + rhs[0]; |
| 27833 | cent[1] = pa[1] + rhs[1]; |
| 27834 | cent[2] = pa[2] + rhs[2]; |
| 27835 | rd = sqrt(rhs[0] * rhs[0] + rhs[1] * rhs[1] + rhs[2] * rhs[2]); |
| 27836 | |
| 27837 | // Check if this subface is encroached. |
| 27838 | for (i = 0; i < 2; i++) { |
| 27839 | stpivot(shloop, searchtet); |
| 27840 | if (!ishulltet(searchtet)) { |
| 27841 | len = distance(oppo(searchtet), cent); |
| 27842 | if ((fabs(len - rd) / rd) < b->epsilon) len = rd; // Rounding. |
| 27843 | if (len < rd) { |
| 27844 | printf(" !! !! Non-conforming subface: (%d, %d, %d)\n" , |
| 27845 | pointmark(pa), pointmark(pb), pointmark(pc)); |
| 27846 | encsubfaces++; |
| 27847 | enq = true; break; |
| 27848 | } |
| 27849 | } |
| 27850 | sesymself(shloop); |
| 27851 | } |
| 27852 | } |
| 27853 | shloop.sh = shellfacetraverse(subfaces); |
| 27854 | } |
| 27855 | |
| 27856 | if (encsubfaces == 0) { |
| 27857 | if (!b->quiet) { |
| 27858 | printf(" The subfaces are conforming Delaunay.\n" ); |
| 27859 | } |
| 27860 | } else { |
| 27861 | printf(" !! !! %d subfaces are non-conforming.\n" , encsubfaces); |
| 27862 | } |
| 27863 | } // if (flag & 2) |
| 27864 | |
| 27865 | return encsubsegs + encsubfaces; |
| 27866 | } |
| 27867 | |
| 27868 | /////////////////////////////////////////////////////////////////////////////// |
| 27869 | // // |
| 27870 | // qualitystatistics() Print statistics about the quality of the mesh. // |
| 27871 | // // |
| 27872 | /////////////////////////////////////////////////////////////////////////////// |
| 27873 | |
| 27874 | void tetgenmesh::qualitystatistics() |
| 27875 | { |
| 27876 | triface tetloop, neightet; |
| 27877 | point p[4]; |
| 27878 | char sbuf[128]; |
| 27879 | REAL radiusratiotable[12]; |
| 27880 | REAL aspectratiotable[12]; |
| 27881 | REAL A[4][4], rhs[4], D; |
| 27882 | REAL V[6][3], N[4][3], H[4]; // edge-vectors, face-normals, face-heights. |
| 27883 | REAL edgelength[6], alldihed[6], faceangle[3]; |
| 27884 | REAL shortest, longest; |
| 27885 | REAL smallestvolume, biggestvolume; |
| 27886 | REAL smallestratio, biggestratio; |
| 27887 | REAL smallestdiangle, biggestdiangle; |
| 27888 | REAL smallestfaangle, biggestfaangle; |
| 27889 | REAL total_tet_vol, total_tetprism_vol; |
| 27890 | REAL tetvol, minaltitude; |
| 27891 | REAL cirradius, minheightinv; // insradius; |
| 27892 | REAL shortlen, longlen; |
| 27893 | REAL tetaspect, tetradius; |
| 27894 | REAL smalldiangle, bigdiangle; |
| 27895 | REAL smallfaangle, bigfaangle; |
| 27896 | unsigned long radiustable[12]; |
| 27897 | unsigned long aspecttable[16]; |
| 27898 | unsigned long dihedangletable[18]; |
| 27899 | unsigned long faceangletable[18]; |
| 27900 | int indx[4]; |
| 27901 | int radiusindex; |
| 27902 | int aspectindex; |
| 27903 | int tendegree; |
| 27904 | int i, j; |
| 27905 | |
| 27906 | printf("Mesh quality statistics:\n\n" ); |
| 27907 | |
| 27908 | shortlen = longlen = 0.0; |
| 27909 | smalldiangle = bigdiangle = 0.0; |
| 27910 | total_tet_vol = 0.0; |
| 27911 | total_tetprism_vol = 0.0; |
| 27912 | |
| 27913 | radiusratiotable[0] = 0.707; radiusratiotable[1] = 1.0; |
| 27914 | radiusratiotable[2] = 1.1; radiusratiotable[3] = 1.2; |
| 27915 | radiusratiotable[4] = 1.4; radiusratiotable[5] = 1.6; |
| 27916 | radiusratiotable[6] = 1.8; radiusratiotable[7] = 2.0; |
| 27917 | radiusratiotable[8] = 2.5; radiusratiotable[9] = 3.0; |
| 27918 | radiusratiotable[10] = 10.0; radiusratiotable[11] = 0.0; |
| 27919 | |
| 27920 | aspectratiotable[0] = 1.5; aspectratiotable[1] = 2.0; |
| 27921 | aspectratiotable[2] = 2.5; aspectratiotable[3] = 3.0; |
| 27922 | aspectratiotable[4] = 4.0; aspectratiotable[5] = 6.0; |
| 27923 | aspectratiotable[6] = 10.0; aspectratiotable[7] = 15.0; |
| 27924 | aspectratiotable[8] = 25.0; aspectratiotable[9] = 50.0; |
| 27925 | aspectratiotable[10] = 100.0; aspectratiotable[11] = 0.0; |
| 27926 | |
| 27927 | for (i = 0; i < 12; i++) radiustable[i] = 0l; |
| 27928 | for (i = 0; i < 12; i++) aspecttable[i] = 0l; |
| 27929 | for (i = 0; i < 18; i++) dihedangletable[i] = 0l; |
| 27930 | for (i = 0; i < 18; i++) faceangletable[i] = 0l; |
| 27931 | |
| 27932 | minaltitude = xmax - xmin + ymax - ymin + zmax - zmin; |
| 27933 | minaltitude = minaltitude * minaltitude; |
| 27934 | shortest = minaltitude; |
| 27935 | longest = 0.0; |
| 27936 | smallestvolume = minaltitude; |
| 27937 | biggestvolume = 0.0; |
| 27938 | smallestratio = 1e+16; // minaltitude; |
| 27939 | biggestratio = 0.0; |
| 27940 | smallestdiangle = smallestfaangle = 180.0; |
| 27941 | biggestdiangle = biggestfaangle = 0.0; |
| 27942 | |
| 27943 | |
| 27944 | int attrnum = numelemattrib - 1; |
| 27945 | |
| 27946 | // Loop all elements, calculate quality parameters for each element. |
| 27947 | tetrahedrons->traversalinit(); |
| 27948 | tetloop.tet = tetrahedrontraverse(); |
| 27949 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 27950 | |
| 27951 | if (b->convex) { |
| 27952 | // Skip tets in the exterior. |
| 27953 | if (elemattribute(tetloop.tet, attrnum) == -1.0) { |
| 27954 | tetloop.tet = tetrahedrontraverse(); |
| 27955 | continue; |
| 27956 | } |
| 27957 | } |
| 27958 | |
| 27959 | // Get four vertices: p0, p1, p2, p3. |
| 27960 | for (i = 0; i < 4; i++) p[i] = (point) tetloop.tet[4 + i]; |
| 27961 | |
| 27962 | // Get the tet volume. |
| 27963 | tetvol = orient3dfast(p[1], p[0], p[2], p[3]) / 6.0; |
| 27964 | total_tet_vol += tetvol; |
| 27965 | total_tetprism_vol += tetprismvol(p[0], p[1], p[2], p[3]); |
| 27966 | |
| 27967 | // Calculate the largest and smallest volume. |
| 27968 | if (tetvol < smallestvolume) { |
| 27969 | smallestvolume = tetvol; |
| 27970 | } |
| 27971 | if (tetvol > biggestvolume) { |
| 27972 | biggestvolume = tetvol; |
| 27973 | } |
| 27974 | |
| 27975 | // Set the edge vectors: V[0], ..., V[5] |
| 27976 | for (i = 0; i < 3; i++) V[0][i] = p[0][i] - p[3][i]; // V[0]: p3->p0. |
| 27977 | for (i = 0; i < 3; i++) V[1][i] = p[1][i] - p[3][i]; // V[1]: p3->p1. |
| 27978 | for (i = 0; i < 3; i++) V[2][i] = p[2][i] - p[3][i]; // V[2]: p3->p2. |
| 27979 | for (i = 0; i < 3; i++) V[3][i] = p[1][i] - p[0][i]; // V[3]: p0->p1. |
| 27980 | for (i = 0; i < 3; i++) V[4][i] = p[2][i] - p[1][i]; // V[4]: p1->p2. |
| 27981 | for (i = 0; i < 3; i++) V[5][i] = p[0][i] - p[2][i]; // V[5]: p2->p0. |
| 27982 | |
| 27983 | // Get the squares of the edge lengths. |
| 27984 | for (i = 0; i < 6; i++) edgelength[i] = dot(V[i], V[i]); |
| 27985 | |
| 27986 | // Calculate the longest and shortest edge length. |
| 27987 | for (i = 0; i < 6; i++) { |
| 27988 | if (i == 0) { |
| 27989 | shortlen = longlen = edgelength[i]; |
| 27990 | } else { |
| 27991 | shortlen = edgelength[i] < shortlen ? edgelength[i] : shortlen; |
| 27992 | longlen = edgelength[i] > longlen ? edgelength[i] : longlen; |
| 27993 | } |
| 27994 | if (edgelength[i] > longest) { |
| 27995 | longest = edgelength[i]; |
| 27996 | } |
| 27997 | if (edgelength[i] < shortest) { |
| 27998 | shortest = edgelength[i]; |
| 27999 | } |
| 28000 | } |
| 28001 | |
| 28002 | // Set the matrix A = [V[0], V[1], V[2]]^T. |
| 28003 | for (j = 0; j < 3; j++) { |
| 28004 | for (i = 0; i < 3; i++) A[j][i] = V[j][i]; |
| 28005 | } |
| 28006 | |
| 28007 | // Decompose A just once. |
| 28008 | if (lu_decmp(A, 3, indx, &D, 0)) { |
| 28009 | // Get the three faces normals. |
| 28010 | for (j = 0; j < 3; j++) { |
| 28011 | for (i = 0; i < 3; i++) rhs[i] = 0.0; |
| 28012 | rhs[j] = 1.0; // Positive means the inside direction |
| 28013 | lu_solve(A, 3, indx, rhs, 0); |
| 28014 | for (i = 0; i < 3; i++) N[j][i] = rhs[i]; |
| 28015 | } |
| 28016 | // Get the fourth face normal by summing up the first three. |
| 28017 | for (i = 0; i < 3; i++) N[3][i] = - N[0][i] - N[1][i] - N[2][i]; |
| 28018 | // Get the radius of the circumsphere. |
| 28019 | for (i = 0; i < 3; i++) rhs[i] = 0.5 * dot(V[i], V[i]); |
| 28020 | lu_solve(A, 3, indx, rhs, 0); |
| 28021 | cirradius = sqrt(dot(rhs, rhs)); |
| 28022 | // Normalize the face normals. |
| 28023 | for (i = 0; i < 4; i++) { |
| 28024 | // H[i] is the inverse of height of its corresponding face. |
| 28025 | H[i] = sqrt(dot(N[i], N[i])); |
| 28026 | for (j = 0; j < 3; j++) N[i][j] /= H[i]; |
| 28027 | } |
| 28028 | // Get the radius of the inscribed sphere. |
| 28029 | // insradius = 1.0 / (H[0] + H[1] + H[2] + H[3]); |
| 28030 | // Get the biggest H[i] (corresponding to the smallest height). |
| 28031 | minheightinv = H[0]; |
| 28032 | for (i = 1; i < 3; i++) { |
| 28033 | if (H[i] > minheightinv) minheightinv = H[i]; |
| 28034 | } |
| 28035 | } else { |
| 28036 | // A nearly degenerated tet. |
| 28037 | if (tetvol <= 0.0) { |
| 28038 | // assert(tetvol != 0.0); |
| 28039 | printf(" !! Warning: A %s tet (%d,%d,%d,%d).\n" , |
| 28040 | tetvol < 0 ? "inverted" : "degenerated" , pointmark(p[0]), |
| 28041 | pointmark(p[1]), pointmark(p[2]), pointmark(p[3])); |
| 28042 | // Skip it. |
| 28043 | tetloop.tet = tetrahedrontraverse(); |
| 28044 | continue; |
| 28045 | } |
| 28046 | // Calculate the four face normals. |
| 28047 | facenormal(p[2], p[1], p[3], N[0], 1, NULL); |
| 28048 | facenormal(p[0], p[2], p[3], N[1], 1, NULL); |
| 28049 | facenormal(p[1], p[0], p[3], N[2], 1, NULL); |
| 28050 | facenormal(p[0], p[1], p[2], N[3], 1, NULL); |
| 28051 | // Normalize the face normals. |
| 28052 | for (i = 0; i < 4; i++) { |
| 28053 | // H[i] is the twice of the area of the face. |
| 28054 | H[i] = sqrt(dot(N[i], N[i])); |
| 28055 | for (j = 0; j < 3; j++) N[i][j] /= H[i]; |
| 28056 | } |
| 28057 | // Get the biggest H[i] / tetvol (corresponding to the smallest height). |
| 28058 | minheightinv = (H[0] / tetvol); |
| 28059 | for (i = 1; i < 3; i++) { |
| 28060 | if ((H[i] / tetvol) > minheightinv) minheightinv = (H[i] / tetvol); |
| 28061 | } |
| 28062 | // Let the circumradius to be the half of its longest edge length. |
| 28063 | cirradius = 0.5 * sqrt(longlen); |
| 28064 | } |
| 28065 | |
| 28066 | // Get the dihedrals (in degree) at each edges. |
| 28067 | j = 0; |
| 28068 | for (i = 1; i < 4; i++) { |
| 28069 | alldihed[j] = -dot(N[0], N[i]); // Edge cd, bd, bc. |
| 28070 | if (alldihed[j] < -1.0) alldihed[j] = -1; // Rounding. |
| 28071 | else if (alldihed[j] > 1.0) alldihed[j] = 1; |
| 28072 | alldihed[j] = acos(alldihed[j]) / PI * 180.0; |
| 28073 | j++; |
| 28074 | } |
| 28075 | for (i = 2; i < 4; i++) { |
| 28076 | alldihed[j] = -dot(N[1], N[i]); // Edge ad, ac. |
| 28077 | if (alldihed[j] < -1.0) alldihed[j] = -1; // Rounding. |
| 28078 | else if (alldihed[j] > 1.0) alldihed[j] = 1; |
| 28079 | alldihed[j] = acos(alldihed[j]) / PI * 180.0; |
| 28080 | j++; |
| 28081 | } |
| 28082 | alldihed[j] = -dot(N[2], N[3]); // Edge ab. |
| 28083 | if (alldihed[j] < -1.0) alldihed[j] = -1; // Rounding. |
| 28084 | else if (alldihed[j] > 1.0) alldihed[j] = 1; |
| 28085 | alldihed[j] = acos(alldihed[j]) / PI * 180.0; |
| 28086 | |
| 28087 | // Calculate the largest and smallest dihedral angles. |
| 28088 | for (i = 0; i < 6; i++) { |
| 28089 | if (i == 0) { |
| 28090 | smalldiangle = bigdiangle = alldihed[i]; |
| 28091 | } else { |
| 28092 | smalldiangle = alldihed[i] < smalldiangle ? alldihed[i] : smalldiangle; |
| 28093 | bigdiangle = alldihed[i] > bigdiangle ? alldihed[i] : bigdiangle; |
| 28094 | } |
| 28095 | if (alldihed[i] < smallestdiangle) { |
| 28096 | smallestdiangle = alldihed[i]; |
| 28097 | } |
| 28098 | if (alldihed[i] > biggestdiangle) { |
| 28099 | biggestdiangle = alldihed[i]; |
| 28100 | } |
| 28101 | // Accumulate the corresponding number in the dihedral angle histogram. |
| 28102 | if (alldihed[i] < 5.0) { |
| 28103 | tendegree = 0; |
| 28104 | } else if (alldihed[i] >= 5.0 && alldihed[i] < 10.0) { |
| 28105 | tendegree = 1; |
| 28106 | } else if (alldihed[i] >= 80.0 && alldihed[i] < 110.0) { |
| 28107 | tendegree = 9; // Angles between 80 to 110 degree are in one entry. |
| 28108 | } else if (alldihed[i] >= 170.0 && alldihed[i] < 175.0) { |
| 28109 | tendegree = 16; |
| 28110 | } else if (alldihed[i] >= 175.0) { |
| 28111 | tendegree = 17; |
| 28112 | } else { |
| 28113 | tendegree = (int) (alldihed[i] / 10.); |
| 28114 | if (alldihed[i] < 80.0) { |
| 28115 | tendegree++; // In the left column. |
| 28116 | } else { |
| 28117 | tendegree--; // In the right column. |
| 28118 | } |
| 28119 | } |
| 28120 | dihedangletable[tendegree]++; |
| 28121 | } |
| 28122 | |
| 28123 | |
| 28124 | |
| 28125 | // Calculate the largest and smallest face angles. |
| 28126 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
| 28127 | fsym(tetloop, neightet); |
| 28128 | // Only do the calulation once for a face. |
| 28129 | if (((point) neightet.tet[7] == dummypoint) || |
| 28130 | (tetloop.tet < neightet.tet)) { |
| 28131 | p[0] = org(tetloop); |
| 28132 | p[1] = dest(tetloop); |
| 28133 | p[2] = apex(tetloop); |
| 28134 | faceangle[0] = interiorangle(p[0], p[1], p[2], NULL); |
| 28135 | faceangle[1] = interiorangle(p[1], p[2], p[0], NULL); |
| 28136 | faceangle[2] = PI - (faceangle[0] + faceangle[1]); |
| 28137 | // Translate angles into degrees. |
| 28138 | for (i = 0; i < 3; i++) { |
| 28139 | faceangle[i] = (faceangle[i] * 180.0) / PI; |
| 28140 | } |
| 28141 | // Calculate the largest and smallest face angles. |
| 28142 | for (i = 0; i < 3; i++) { |
| 28143 | if (i == 0) { |
| 28144 | smallfaangle = bigfaangle = faceangle[i]; |
| 28145 | } else { |
| 28146 | smallfaangle = faceangle[i] < smallfaangle ? |
| 28147 | faceangle[i] : smallfaangle; |
| 28148 | bigfaangle = faceangle[i] > bigfaangle ? faceangle[i] : bigfaangle; |
| 28149 | } |
| 28150 | if (faceangle[i] < smallestfaangle) { |
| 28151 | smallestfaangle = faceangle[i]; |
| 28152 | } |
| 28153 | if (faceangle[i] > biggestfaangle) { |
| 28154 | biggestfaangle = faceangle[i]; |
| 28155 | } |
| 28156 | tendegree = (int) (faceangle[i] / 10.); |
| 28157 | faceangletable[tendegree]++; |
| 28158 | } |
| 28159 | } |
| 28160 | } |
| 28161 | |
| 28162 | // Calculate aspect ratio and radius-edge ratio for this element. |
| 28163 | tetradius = cirradius / sqrt(shortlen); |
| 28164 | // tetaspect = sqrt(longlen) / (2.0 * insradius); |
| 28165 | tetaspect = sqrt(longlen) * minheightinv; |
| 28166 | // Remember the largest and smallest aspect ratio. |
| 28167 | if (tetaspect < smallestratio) { |
| 28168 | smallestratio = tetaspect; |
| 28169 | } |
| 28170 | if (tetaspect > biggestratio) { |
| 28171 | biggestratio = tetaspect; |
| 28172 | } |
| 28173 | // Accumulate the corresponding number in the aspect ratio histogram. |
| 28174 | aspectindex = 0; |
| 28175 | while ((tetaspect > aspectratiotable[aspectindex]) && (aspectindex < 11)) { |
| 28176 | aspectindex++; |
| 28177 | } |
| 28178 | aspecttable[aspectindex]++; |
| 28179 | radiusindex = 0; |
| 28180 | while ((tetradius > radiusratiotable[radiusindex]) && (radiusindex < 11)) { |
| 28181 | radiusindex++; |
| 28182 | } |
| 28183 | radiustable[radiusindex]++; |
| 28184 | |
| 28185 | tetloop.tet = tetrahedrontraverse(); |
| 28186 | } |
| 28187 | |
| 28188 | shortest = sqrt(shortest); |
| 28189 | longest = sqrt(longest); |
| 28190 | minaltitude = sqrt(minaltitude); |
| 28191 | |
| 28192 | printf(" Smallest volume: %16.5g | Largest volume: %16.5g\n" , |
| 28193 | smallestvolume, biggestvolume); |
| 28194 | printf(" Shortest edge: %16.5g | Longest edge: %16.5g\n" , |
| 28195 | shortest, longest); |
| 28196 | printf(" Smallest asp.ratio: %13.5g | Largest asp.ratio: %13.5g\n" , |
| 28197 | smallestratio, biggestratio); |
| 28198 | sprintf(sbuf, "%.17g" , biggestfaangle); |
| 28199 | if (strlen(sbuf) > 8) { |
| 28200 | sbuf[8] = '\0'; |
| 28201 | } |
| 28202 | printf(" Smallest facangle: %14.5g | Largest facangle: %s\n" , |
| 28203 | smallestfaangle, sbuf); |
| 28204 | sprintf(sbuf, "%.17g" , biggestdiangle); |
| 28205 | if (strlen(sbuf) > 8) { |
| 28206 | sbuf[8] = '\0'; |
| 28207 | } |
| 28208 | printf(" Smallest dihedral: %14.5g | Largest dihedral: %s\n\n" , |
| 28209 | smallestdiangle, sbuf); |
| 28210 | |
| 28211 | printf(" Aspect ratio histogram:\n" ); |
| 28212 | printf(" < %-6.6g : %8ld | %6.6g - %-6.6g : %8ld\n" , |
| 28213 | aspectratiotable[0], aspecttable[0], aspectratiotable[5], |
| 28214 | aspectratiotable[6], aspecttable[6]); |
| 28215 | for (i = 1; i < 5; i++) { |
| 28216 | printf(" %6.6g - %-6.6g : %8ld | %6.6g - %-6.6g : %8ld\n" , |
| 28217 | aspectratiotable[i - 1], aspectratiotable[i], aspecttable[i], |
| 28218 | aspectratiotable[i + 5], aspectratiotable[i + 6], |
| 28219 | aspecttable[i + 6]); |
| 28220 | } |
| 28221 | printf(" %6.6g - %-6.6g : %8ld | %6.6g - : %8ld\n" , |
| 28222 | aspectratiotable[4], aspectratiotable[5], aspecttable[5], |
| 28223 | aspectratiotable[10], aspecttable[11]); |
| 28224 | printf(" (A tetrahedron's aspect ratio is its longest edge length" ); |
| 28225 | printf(" divided by its\n" ); |
| 28226 | printf(" smallest side height)\n\n" ); |
| 28227 | |
| 28228 | printf(" Face angle histogram:\n" ); |
| 28229 | for (i = 0; i < 9; i++) { |
| 28230 | printf(" %3d - %3d degrees: %8ld | %3d - %3d degrees: %8ld\n" , |
| 28231 | i * 10, i * 10 + 10, faceangletable[i], |
| 28232 | i * 10 + 90, i * 10 + 100, faceangletable[i + 9]); |
| 28233 | } |
| 28234 | if (minfaceang != PI) { |
| 28235 | printf(" Minimum input face angle is %g (degree).\n" , |
| 28236 | minfaceang / PI * 180.0); |
| 28237 | } |
| 28238 | printf("\n" ); |
| 28239 | |
| 28240 | printf(" Dihedral angle histogram:\n" ); |
| 28241 | // Print the three two rows: |
| 28242 | printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n" , |
| 28243 | 0, 5, dihedangletable[0], 80, 110, dihedangletable[9]); |
| 28244 | printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n" , |
| 28245 | 5, 10, dihedangletable[1], 110, 120, dihedangletable[10]); |
| 28246 | // Print the third to seventh rows. |
| 28247 | for (i = 2; i < 7; i++) { |
| 28248 | printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n" , |
| 28249 | (i - 1) * 10, (i - 1) * 10 + 10, dihedangletable[i], |
| 28250 | (i - 1) * 10 + 110, (i - 1) * 10 + 120, dihedangletable[i + 9]); |
| 28251 | } |
| 28252 | // Print the last two rows. |
| 28253 | printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n" , |
| 28254 | 60, 70, dihedangletable[7], 170, 175, dihedangletable[16]); |
| 28255 | printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n" , |
| 28256 | 70, 80, dihedangletable[8], 175, 180, dihedangletable[17]); |
| 28257 | if (minfacetdihed != PI) { |
| 28258 | printf(" Minimum input dihedral angle is %g (degree).\n" , |
| 28259 | minfacetdihed / PI * 180.0); |
| 28260 | } |
| 28261 | printf("\n" ); |
| 28262 | |
| 28263 | printf("\n" ); |
| 28264 | } |
| 28265 | |
| 28266 | |
| 28267 | /////////////////////////////////////////////////////////////////////////////// |
| 28268 | // // |
| 28269 | // memorystatistics() Report the memory usage. // |
| 28270 | // // |
| 28271 | /////////////////////////////////////////////////////////////////////////////// |
| 28272 | |
| 28273 | void tetgenmesh::memorystatistics() |
| 28274 | { |
| 28275 | printf("Memory usage statistics:\n\n" ); |
| 28276 | |
| 28277 | // Count the number of blocks of tetrahedra. |
| 28278 | int tetblocks = 0; |
| 28279 | tetrahedrons->pathblock = tetrahedrons->firstblock; |
| 28280 | while (tetrahedrons->pathblock != NULL) { |
| 28281 | tetblocks++; |
| 28282 | tetrahedrons->pathblock = (void **) *(tetrahedrons->pathblock); |
| 28283 | } |
| 28284 | |
| 28285 | // Calculate the total memory (in bytes) used by storing meshes. |
| 28286 | unsigned long totalmeshmemory = 0l, totalt2shmemory = 0l; |
| 28287 | totalmeshmemory = points->maxitems * points->itembytes + |
| 28288 | tetrahedrons->maxitems * tetrahedrons->itembytes; |
| 28289 | if (b->plc || b->refine) { |
| 28290 | totalmeshmemory += (subfaces->maxitems * subfaces->itembytes + |
| 28291 | subsegs->maxitems * subsegs->itembytes); |
| 28292 | totalt2shmemory = (tet2subpool->maxitems * tet2subpool->itembytes + |
| 28293 | tet2segpool->maxitems * tet2segpool->itembytes); |
| 28294 | } |
| 28295 | |
| 28296 | unsigned long totalalgomemory = 0l; |
| 28297 | totalalgomemory = cavetetlist->totalmemory + cavebdrylist->totalmemory + |
| 28298 | caveoldtetlist->totalmemory + |
| 28299 | flippool->maxitems * flippool->itembytes; |
| 28300 | if (b->plc || b->refine) { |
| 28301 | totalalgomemory += (subsegstack->totalmemory + subfacstack->totalmemory + |
| 28302 | subvertstack->totalmemory + |
| 28303 | caveshlist->totalmemory + caveshbdlist->totalmemory + |
| 28304 | cavesegshlist->totalmemory + |
| 28305 | cavetetshlist->totalmemory + |
| 28306 | cavetetseglist->totalmemory + |
| 28307 | caveencshlist->totalmemory + |
| 28308 | caveencseglist->totalmemory + |
| 28309 | cavetetvertlist->totalmemory + |
| 28310 | unflipqueue->totalmemory); |
| 28311 | } |
| 28312 | |
| 28313 | printf(" Maximum number of tetrahedra: %ld\n" , tetrahedrons->maxitems); |
| 28314 | printf(" Maximum number of tet blocks (blocksize = %d): %d\n" , |
| 28315 | b->tetrahedraperblock, tetblocks); |
| 28316 | /* |
| 28317 | if (b->plc || b->refine) { |
| 28318 | printf(" Approximate memory for tetrahedral mesh (bytes): %ld\n", |
| 28319 | totalmeshmemory); |
| 28320 | |
| 28321 | printf(" Approximate memory for extra pointers (bytes): %ld\n", |
| 28322 | totalt2shmemory); |
| 28323 | } else { |
| 28324 | printf(" Approximate memory for tetrahedralization (bytes): %ld\n", |
| 28325 | totalmeshmemory); |
| 28326 | } |
| 28327 | printf(" Approximate memory for algorithms (bytes): %ld\n", |
| 28328 | totalalgomemory); |
| 28329 | printf(" Approximate memory for working arrays (bytes): %ld\n", |
| 28330 | totalworkmemory); |
| 28331 | printf(" Approximate total used memory (bytes): %ld\n", |
| 28332 | totalmeshmemory + totalt2shmemory + totalalgomemory + |
| 28333 | totalworkmemory); |
| 28334 | */ |
| 28335 | if (b->plc || b->refine) { |
| 28336 | printf(" Approximate memory for tetrahedral mesh (bytes): " ); |
| 28337 | printfcomma(totalmeshmemory); printf("\n" ); |
| 28338 | |
| 28339 | printf(" Approximate memory for extra pointers (bytes): " ); |
| 28340 | printfcomma(totalt2shmemory); printf("\n" ); |
| 28341 | } else { |
| 28342 | printf(" Approximate memory for tetrahedralization (bytes): " ); |
| 28343 | printfcomma(totalmeshmemory); printf("\n" ); |
| 28344 | } |
| 28345 | printf(" Approximate memory for algorithms (bytes): " ); |
| 28346 | printfcomma(totalalgomemory); printf("\n" ); |
| 28347 | printf(" Approximate memory for working arrays (bytes): " ); |
| 28348 | printfcomma(totalworkmemory); printf("\n" ); |
| 28349 | printf(" Approximate total used memory (bytes): " ); |
| 28350 | printfcomma(totalmeshmemory + totalt2shmemory + totalalgomemory + |
| 28351 | totalworkmemory); |
| 28352 | printf("\n" ); |
| 28353 | |
| 28354 | printf("\n" ); |
| 28355 | } |
| 28356 | |
| 28357 | /////////////////////////////////////////////////////////////////////////////// |
| 28358 | // // |
| 28359 | // statistics() Print all sorts of cool facts. // |
| 28360 | // // |
| 28361 | /////////////////////////////////////////////////////////////////////////////// |
| 28362 | |
| 28363 | void tetgenmesh::statistics() |
| 28364 | { |
| 28365 | long tetnumber, facenumber; |
| 28366 | |
| 28367 | printf("\nStatistics:\n\n" ); |
| 28368 | printf(" Input points: %d\n" , in->numberofpoints); |
| 28369 | if (b->refine) { |
| 28370 | printf(" Input tetrahedra: %d\n" , in->numberoftetrahedra); |
| 28371 | } |
| 28372 | if (b->plc) { |
| 28373 | printf(" Input facets: %d\n" , in->numberoffacets); |
| 28374 | printf(" Input segments: %ld\n" , insegments); |
| 28375 | printf(" Input holes: %d\n" , in->numberofholes); |
| 28376 | printf(" Input regions: %d\n" , in->numberofregions); |
| 28377 | } |
| 28378 | |
| 28379 | tetnumber = tetrahedrons->items - hullsize; |
| 28380 | facenumber = (tetnumber * 4l + hullsize) / 2l; |
| 28381 | |
| 28382 | if (b->weighted) { // -w option |
| 28383 | printf("\n Mesh points: %ld\n" , points->items - nonregularcount); |
| 28384 | } else { |
| 28385 | printf("\n Mesh points: %ld\n" , points->items); |
| 28386 | } |
| 28387 | printf(" Mesh tetrahedra: %ld\n" , tetnumber); |
| 28388 | printf(" Mesh faces: %ld\n" , facenumber); |
| 28389 | if (meshedges > 0l) { |
| 28390 | printf(" Mesh edges: %ld\n" , meshedges); |
| 28391 | } else { |
| 28392 | if (!nonconvex) { |
| 28393 | long vsize = points->items - dupverts - unuverts; |
| 28394 | if (b->weighted) vsize -= nonregularcount; |
| 28395 | meshedges = vsize + facenumber - tetnumber - 1; |
| 28396 | printf(" Mesh edges: %ld\n" , meshedges); |
| 28397 | } |
| 28398 | } |
| 28399 | |
| 28400 | if (b->plc || b->refine) { |
| 28401 | printf(" Mesh faces on facets: %ld\n" , subfaces->items); |
| 28402 | printf(" Mesh edges on segments: %ld\n" , subsegs->items); |
| 28403 | if (st_volref_count > 0l) { |
| 28404 | printf(" Steiner points inside domain: %ld\n" , st_volref_count); |
| 28405 | } |
| 28406 | if (st_facref_count > 0l) { |
| 28407 | printf(" Steiner points on facets: %ld\n" , st_facref_count); |
| 28408 | } |
| 28409 | if (st_segref_count > 0l) { |
| 28410 | printf(" Steiner points on segments: %ld\n" , st_segref_count); |
| 28411 | } |
| 28412 | } else { |
| 28413 | printf(" Convex hull faces: %ld\n" , hullsize); |
| 28414 | if (meshhulledges > 0l) { |
| 28415 | printf(" Convex hull edges: %ld\n" , meshhulledges); |
| 28416 | } |
| 28417 | } |
| 28418 | if (b->weighted) { // -w option |
| 28419 | printf(" Skipped non-regular points: %ld\n" , nonregularcount); |
| 28420 | } |
| 28421 | printf("\n" ); |
| 28422 | |
| 28423 | |
| 28424 | if (b->verbose > 0) { |
| 28425 | if (b->plc || b->refine) { // -p or -r |
| 28426 | if (tetrahedrons->items > 0l) { |
| 28427 | qualitystatistics(); |
| 28428 | } |
| 28429 | } |
| 28430 | if (tetrahedrons->items > 0l) { |
| 28431 | memorystatistics(); |
| 28432 | } |
| 28433 | } |
| 28434 | } |
| 28435 | |
| 28436 | //// //// |
| 28437 | //// //// |
| 28438 | //// meshstat_cxx ///////////////////////////////////////////////////////////// |
| 28439 | |
| 28440 | //// output_cxx /////////////////////////////////////////////////////////////// |
| 28441 | //// //// |
| 28442 | //// //// |
| 28443 | |
| 28444 | /////////////////////////////////////////////////////////////////////////////// |
| 28445 | // // |
| 28446 | // jettisonnodes() Jettison unused or duplicated vertices. // |
| 28447 | // // |
| 28448 | // Unused points are those input points which are outside the mesh domain or // |
| 28449 | // have no connection (isolated) to the mesh. Duplicated points exist for // |
| 28450 | // example if the input PLC is read from a .stl mesh file (marked during the // |
| 28451 | // Delaunay tetrahedralization step. This routine remove these points from // |
| 28452 | // points list. All existing points are reindexed. // |
| 28453 | // // |
| 28454 | /////////////////////////////////////////////////////////////////////////////// |
| 28455 | |
| 28456 | void tetgenmesh::jettisonnodes() |
| 28457 | { |
| 28458 | point pointloop; |
| 28459 | bool jetflag; |
| 28460 | int oldidx, newidx; |
| 28461 | int remcount; |
| 28462 | |
| 28463 | if (!b->quiet) { |
| 28464 | printf("Jettisoning redundant points.\n" ); |
| 28465 | } |
| 28466 | |
| 28467 | points->traversalinit(); |
| 28468 | pointloop = pointtraverse(); |
| 28469 | oldidx = newidx = 0; // in->firstnumber; |
| 28470 | remcount = 0; |
| 28471 | while (pointloop != (point) NULL) { |
| 28472 | jetflag = (pointtype(pointloop) == DUPLICATEDVERTEX) || |
| 28473 | (pointtype(pointloop) == UNUSEDVERTEX); |
| 28474 | if (jetflag) { |
| 28475 | // It is a duplicated or unused point, delete it. |
| 28476 | pointdealloc(pointloop); |
| 28477 | remcount++; |
| 28478 | } else { |
| 28479 | // Re-index it. |
| 28480 | setpointmark(pointloop, newidx + in->firstnumber); |
| 28481 | if (in->pointmarkerlist != (int *) NULL) { |
| 28482 | if (oldidx < in->numberofpoints) { |
| 28483 | // Re-index the point marker as well. |
| 28484 | in->pointmarkerlist[newidx] = in->pointmarkerlist[oldidx]; |
| 28485 | } |
| 28486 | } |
| 28487 | newidx++; |
| 28488 | } |
| 28489 | oldidx++; |
| 28490 | pointloop = pointtraverse(); |
| 28491 | } |
| 28492 | if (b->verbose) { |
| 28493 | printf(" %ld duplicated vertices are removed.\n" , dupverts); |
| 28494 | printf(" %ld unused vertices are removed.\n" , unuverts); |
| 28495 | } |
| 28496 | dupverts = 0l; |
| 28497 | unuverts = 0l; |
| 28498 | |
| 28499 | // The following line ensures that dead items in the pool of nodes cannot |
| 28500 | // be allocated for the new created nodes. This ensures that the input |
| 28501 | // nodes will occur earlier in the output files, and have lower indices. |
| 28502 | points->deaditemstack = (void *) NULL; |
| 28503 | } |
| 28504 | |
| 28505 | /////////////////////////////////////////////////////////////////////////////// |
| 28506 | // // |
| 28507 | // highorder() Create extra nodes for quadratic subparametric elements. // |
| 28508 | // // |
| 28509 | // 'highordertable' is an array (size = numberoftetrahedra * 6) for storing // |
| 28510 | // high-order nodes of each tetrahedron. This routine is used only when -o2 // |
| 28511 | // switch is used. // |
| 28512 | // // |
| 28513 | /////////////////////////////////////////////////////////////////////////////// |
| 28514 | |
| 28515 | void tetgenmesh::highorder() |
| 28516 | { |
| 28517 | triface tetloop, worktet, spintet; |
| 28518 | point *, *; |
| 28519 | point torg, tdest, newpoint; |
| 28520 | int highorderindex; |
| 28521 | int t1ver; |
| 28522 | int i, j; |
| 28523 | |
| 28524 | if (!b->quiet) { |
| 28525 | printf("Adding vertices for second-order tetrahedra.\n" ); |
| 28526 | } |
| 28527 | |
| 28528 | // Initialize the 'highordertable'. |
| 28529 | highordertable = new point[tetrahedrons->items * 6]; |
| 28530 | if (highordertable == (point *) NULL) { |
| 28531 | terminatetetgen(this, 1); |
| 28532 | } |
| 28533 | |
| 28534 | // This will overwrite the slot for element markers. |
| 28535 | highorderindex = 11; |
| 28536 | |
| 28537 | // The following line ensures that dead items in the pool of nodes cannot |
| 28538 | // be allocated for the extra nodes associated with high order elements. |
| 28539 | // This ensures that the primary nodes (at the corners of elements) will |
| 28540 | // occur earlier in the output files, and have lower indices, than the |
| 28541 | // extra nodes. |
| 28542 | points->deaditemstack = (void *) NULL; |
| 28543 | |
| 28544 | // Assign an entry for each tetrahedron to find its extra nodes. At the |
| 28545 | // mean while, initialize all extra nodes be NULL. |
| 28546 | i = 0; |
| 28547 | tetrahedrons->traversalinit(); |
| 28548 | tetloop.tet = tetrahedrontraverse(); |
| 28549 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 28550 | tetloop.tet[highorderindex] = (tetrahedron) &highordertable[i]; |
| 28551 | for (j = 0; j < 6; j++) { |
| 28552 | highordertable[i + j] = (point) NULL; |
| 28553 | } |
| 28554 | i += 6; |
| 28555 | tetloop.tet = tetrahedrontraverse(); |
| 28556 | } |
| 28557 | |
| 28558 | // To create a unique node on each edge. Loop over all tetrahedra, and |
| 28559 | // look at the six edges of each tetrahedron. If the extra node in |
| 28560 | // the tetrahedron corresponding to this edge is NULL, create a node |
| 28561 | // for this edge, at the same time, set the new node into the extra |
| 28562 | // node lists of all other tetrahedra sharing this edge. |
| 28563 | tetrahedrons->traversalinit(); |
| 28564 | tetloop.tet = tetrahedrontraverse(); |
| 28565 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 28566 | // Get the list of extra nodes. |
| 28567 | extralist = (point *) tetloop.tet[highorderindex]; |
| 28568 | worktet.tet = tetloop.tet; |
| 28569 | for (i = 0; i < 6; i++) { |
| 28570 | if (extralist[i] == (point) NULL) { |
| 28571 | // Go to the ith-edge. |
| 28572 | worktet.ver = edge2ver[i]; |
| 28573 | // Create a new point in the middle of this edge. |
| 28574 | torg = org(worktet); |
| 28575 | tdest = dest(worktet); |
| 28576 | makepoint(&newpoint, FREEVOLVERTEX); |
| 28577 | for (j = 0; j < 3 + numpointattrib; j++) { |
| 28578 | newpoint[j] = 0.5 * (torg[j] + tdest[j]); |
| 28579 | } |
| 28580 | // Interpolate its metrics. |
| 28581 | for (j = 0; j < in->numberofpointmtrs; j++) { |
| 28582 | newpoint[pointmtrindex + j] = |
| 28583 | 0.5 * (torg[pointmtrindex + j] + tdest[pointmtrindex + j]); |
| 28584 | } |
| 28585 | // Set this point into all extra node lists at this edge. |
| 28586 | spintet = worktet; |
| 28587 | while (1) { |
| 28588 | if (!ishulltet(spintet)) { |
| 28589 | adjextralist = (point *) spintet.tet[highorderindex]; |
| 28590 | adjextralist[ver2edge[spintet.ver]] = newpoint; |
| 28591 | } |
| 28592 | fnextself(spintet); |
| 28593 | if (spintet.tet == worktet.tet) break; |
| 28594 | } |
| 28595 | } // if (!extralist[i]) |
| 28596 | } // i |
| 28597 | tetloop.tet = tetrahedrontraverse(); |
| 28598 | } |
| 28599 | } |
| 28600 | |
| 28601 | /////////////////////////////////////////////////////////////////////////////// |
| 28602 | // // |
| 28603 | // numberedges() Count the number of edges, save in "meshedges". // |
| 28604 | // // |
| 28605 | // This routine is called when '-p' or '-r', and '-E' options are used. The // |
| 28606 | // total number of edges depends on the genus of the input surface mesh. // |
| 28607 | // // |
| 28608 | // NOTE: This routine must be called after outelements(). So all elements // |
| 28609 | // have been indexed. // |
| 28610 | // // |
| 28611 | /////////////////////////////////////////////////////////////////////////////// |
| 28612 | |
| 28613 | void tetgenmesh::numberedges() |
| 28614 | { |
| 28615 | triface worktet, spintet; |
| 28616 | int ishulledge; |
| 28617 | int t1ver; |
| 28618 | int i; |
| 28619 | |
| 28620 | meshedges = meshhulledges = 0l; |
| 28621 | |
| 28622 | tetrahedrons->traversalinit(); |
| 28623 | worktet.tet = tetrahedrontraverse(); |
| 28624 | while (worktet.tet != NULL) { |
| 28625 | // Count the number of Voronoi faces. Look at the six edges of this |
| 28626 | // tet. Count an edge only if this tet's index is smaller than |
| 28627 | // those of other non-hull tets which share this edge. |
| 28628 | for (i = 0; i < 6; i++) { |
| 28629 | worktet.ver = edge2ver[i]; |
| 28630 | ishulledge = 0; |
| 28631 | fnext(worktet, spintet); |
| 28632 | do { |
| 28633 | if (!ishulltet(spintet)) { |
| 28634 | if (elemindex(spintet.tet) < elemindex(worktet.tet)) break; |
| 28635 | } else { |
| 28636 | ishulledge = 1; |
| 28637 | } |
| 28638 | fnextself(spintet); |
| 28639 | } while (spintet.tet != worktet.tet); |
| 28640 | // Count this edge if no adjacent tets are smaller than this tet. |
| 28641 | if (spintet.tet == worktet.tet) { |
| 28642 | meshedges++; |
| 28643 | if (ishulledge) meshhulledges++; |
| 28644 | } |
| 28645 | } |
| 28646 | worktet.tet = tetrahedrontraverse(); |
| 28647 | } |
| 28648 | } |
| 28649 | |
| 28650 | /////////////////////////////////////////////////////////////////////////////// |
| 28651 | // // |
| 28652 | // outnodes() Output the points to a .node file or a tetgenio structure. // |
| 28653 | // // |
| 28654 | // Note: each point has already been numbered on input (the first index is // |
| 28655 | // 'in->firstnumber'). // |
| 28656 | // // |
| 28657 | /////////////////////////////////////////////////////////////////////////////// |
| 28658 | |
| 28659 | void tetgenmesh::outnodes(tetgenio* out) |
| 28660 | { |
| 28661 | FILE *outfile = NULL; |
| 28662 | char outnodefilename[FILENAMESIZE]; |
| 28663 | face parentsh; |
| 28664 | point pointloop; |
| 28665 | int , bmark, marker = 0, weightDT = 0; |
| 28666 | int coordindex, attribindex; |
| 28667 | int pointnumber, firstindex; |
| 28668 | int index, i; |
| 28669 | |
| 28670 | if (out == (tetgenio *) NULL) { |
| 28671 | strcpy(outnodefilename, b->outfilename); |
| 28672 | strcat(outnodefilename, ".node" ); |
| 28673 | } |
| 28674 | |
| 28675 | if (!b->quiet) { |
| 28676 | if (out == (tetgenio *) NULL) { |
| 28677 | printf("Writing %s.\n" , outnodefilename); |
| 28678 | } else { |
| 28679 | printf("Writing nodes.\n" ); |
| 28680 | } |
| 28681 | } |
| 28682 | |
| 28683 | nextras = numpointattrib; |
| 28684 | if (b->weighted) { // -w |
| 28685 | if (b->weighted_param == 0) weightDT = 1; // Weighted DT. |
| 28686 | } |
| 28687 | |
| 28688 | bmark = !b->nobound && in->pointmarkerlist; |
| 28689 | |
| 28690 | if (out == (tetgenio *) NULL) { |
| 28691 | outfile = fopen(outnodefilename, "w" ); |
| 28692 | if (outfile == (FILE *) NULL) { |
| 28693 | printf("File I/O Error: Cannot create file %s.\n" , outnodefilename); |
| 28694 | terminatetetgen(this, 1); |
| 28695 | } |
| 28696 | // Number of points, number of dimensions, number of point attributes, |
| 28697 | // and number of boundary markers (zero or one). |
| 28698 | fprintf(outfile, "%ld %d %d %d\n" , points->items, 3, nextras, bmark); |
| 28699 | } else { |
| 28700 | // Allocate space for 'pointlist'; |
| 28701 | out->pointlist = new REAL[points->items * 3]; |
| 28702 | if (out->pointlist == (REAL *) NULL) { |
| 28703 | printf("Error: Out of memory.\n" ); |
| 28704 | terminatetetgen(this, 1); |
| 28705 | } |
| 28706 | // Allocate space for 'pointattributelist' if necessary; |
| 28707 | if (nextras > 0) { |
| 28708 | out->pointattributelist = new REAL[points->items * nextras]; |
| 28709 | if (out->pointattributelist == (REAL *) NULL) { |
| 28710 | printf("Error: Out of memory.\n" ); |
| 28711 | terminatetetgen(this, 1); |
| 28712 | } |
| 28713 | } |
| 28714 | // Allocate space for 'pointmarkerlist' if necessary; |
| 28715 | if (bmark) { |
| 28716 | out->pointmarkerlist = new int[points->items]; |
| 28717 | if (out->pointmarkerlist == (int *) NULL) { |
| 28718 | printf("Error: Out of memory.\n" ); |
| 28719 | terminatetetgen(this, 1); |
| 28720 | } |
| 28721 | } |
| 28722 | if (b->psc) { |
| 28723 | out->pointparamlist = new tetgenio::pointparam[points->items]; |
| 28724 | if (out->pointparamlist == NULL) { |
| 28725 | printf("Error: Out of memory.\n" ); |
| 28726 | terminatetetgen(this, 1); |
| 28727 | } |
| 28728 | } |
| 28729 | out->numberofpoints = points->items; |
| 28730 | out->numberofpointattributes = nextras; |
| 28731 | coordindex = 0; |
| 28732 | attribindex = 0; |
| 28733 | } |
| 28734 | |
| 28735 | // Determine the first index (0 or 1). |
| 28736 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
| 28737 | |
| 28738 | points->traversalinit(); |
| 28739 | pointloop = pointtraverse(); |
| 28740 | pointnumber = firstindex; // in->firstnumber; |
| 28741 | index = 0; |
| 28742 | while (pointloop != (point) NULL) { |
| 28743 | if (bmark) { |
| 28744 | // Default the vertex has a zero marker. |
| 28745 | marker = 0; |
| 28746 | // Is it an input vertex? |
| 28747 | if (index < in->numberofpoints) { |
| 28748 | // Input point's marker is directly copied to output. |
| 28749 | marker = in->pointmarkerlist[index]; |
| 28750 | } else { |
| 28751 | if ((pointtype(pointloop) == FREESEGVERTEX) || |
| 28752 | (pointtype(pointloop) == FREEFACETVERTEX)) { |
| 28753 | sdecode(point2sh(pointloop), parentsh); |
| 28754 | if (parentsh.sh != NULL) { |
| 28755 | marker = shellmark(parentsh); |
| 28756 | if (pointtype(pointloop) == FREEFACETVERTEX) { |
| 28757 | if (in->facetmarkerlist != NULL) { |
| 28758 | marker = in->facetmarkerlist[marker - 1]; |
| 28759 | } |
| 28760 | } |
| 28761 | } |
| 28762 | } // if (pointtype(...)) |
| 28763 | } |
| 28764 | } |
| 28765 | if (out == (tetgenio *) NULL) { |
| 28766 | // Point number, x, y and z coordinates. |
| 28767 | fprintf(outfile, "%4d %.17g %.17g %.17g" , pointnumber, |
| 28768 | pointloop[0], pointloop[1], pointloop[2]); |
| 28769 | for (i = 0; i < nextras; i++) { |
| 28770 | // Write an attribute. |
| 28771 | if ((i == 0) && weightDT) { |
| 28772 | fprintf(outfile, " %.17g" , pointloop[0] * pointloop[0] + |
| 28773 | pointloop[1] * pointloop[1] + pointloop[2] * pointloop[2] |
| 28774 | - pointloop[3 + i]); |
| 28775 | } else { |
| 28776 | fprintf(outfile, " %.17g" , pointloop[3 + i]); |
| 28777 | } |
| 28778 | } |
| 28779 | if (bmark) { |
| 28780 | // Write the boundary marker. |
| 28781 | fprintf(outfile, " %d" , marker); |
| 28782 | } |
| 28783 | if (b->psc) { |
| 28784 | fprintf(outfile, " %.8g %.8g %d" , pointgeomuv(pointloop, 0), |
| 28785 | pointgeomuv(pointloop, 1), pointgeomtag(pointloop)); |
| 28786 | if (pointtype(pointloop) == RIDGEVERTEX) { |
| 28787 | fprintf(outfile, " 0" ); |
| 28788 | } else if (pointtype(pointloop) == ACUTEVERTEX) { |
| 28789 | fprintf(outfile, " 0" ); |
| 28790 | } else if (pointtype(pointloop) == FREESEGVERTEX) { |
| 28791 | fprintf(outfile, " 1" ); |
| 28792 | } else if (pointtype(pointloop) == FREEFACETVERTEX) { |
| 28793 | fprintf(outfile, " 2" ); |
| 28794 | } else if (pointtype(pointloop) == FREEVOLVERTEX) { |
| 28795 | fprintf(outfile, " 3" ); |
| 28796 | } else { |
| 28797 | fprintf(outfile, " -1" ); // Unknown type. |
| 28798 | } |
| 28799 | } |
| 28800 | fprintf(outfile, "\n" ); |
| 28801 | } else { |
| 28802 | // X, y, and z coordinates. |
| 28803 | out->pointlist[coordindex++] = pointloop[0]; |
| 28804 | out->pointlist[coordindex++] = pointloop[1]; |
| 28805 | out->pointlist[coordindex++] = pointloop[2]; |
| 28806 | // Point attributes. |
| 28807 | for (i = 0; i < nextras; i++) { |
| 28808 | // Output an attribute. |
| 28809 | if ((i == 0) && weightDT) { |
| 28810 | out->pointattributelist[attribindex++] = |
| 28811 | pointloop[0] * pointloop[0] + pointloop[1] * pointloop[1] + |
| 28812 | pointloop[2] * pointloop[2] - pointloop[3 + i]; |
| 28813 | } else { |
| 28814 | out->pointattributelist[attribindex++] = pointloop[3 + i]; |
| 28815 | } |
| 28816 | } |
| 28817 | if (bmark) { |
| 28818 | // Output the boundary marker. |
| 28819 | out->pointmarkerlist[index] = marker; |
| 28820 | } |
| 28821 | if (b->psc) { |
| 28822 | out->pointparamlist[index].uv[0] = pointgeomuv(pointloop, 0); |
| 28823 | out->pointparamlist[index].uv[1] = pointgeomuv(pointloop, 1); |
| 28824 | out->pointparamlist[index].tag = pointgeomtag(pointloop); |
| 28825 | if (pointtype(pointloop) == RIDGEVERTEX) { |
| 28826 | out->pointparamlist[index].type = 0; |
| 28827 | } else if (pointtype(pointloop) == ACUTEVERTEX) { |
| 28828 | out->pointparamlist[index].type = 0; |
| 28829 | } else if (pointtype(pointloop) == FREESEGVERTEX) { |
| 28830 | out->pointparamlist[index].type = 1; |
| 28831 | } else if (pointtype(pointloop) == FREEFACETVERTEX) { |
| 28832 | out->pointparamlist[index].type = 2; |
| 28833 | } else if (pointtype(pointloop) == FREEVOLVERTEX) { |
| 28834 | out->pointparamlist[index].type = 3; |
| 28835 | } else { |
| 28836 | out->pointparamlist[index].type = -1; // Unknown type. |
| 28837 | } |
| 28838 | } |
| 28839 | } |
| 28840 | pointloop = pointtraverse(); |
| 28841 | pointnumber++; |
| 28842 | index++; |
| 28843 | } |
| 28844 | |
| 28845 | if (out == (tetgenio *) NULL) { |
| 28846 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 28847 | fclose(outfile); |
| 28848 | } |
| 28849 | } |
| 28850 | |
| 28851 | /////////////////////////////////////////////////////////////////////////////// |
| 28852 | // // |
| 28853 | // outmetrics() Output the metric to a file (*.mtr) or a tetgenio obj. // |
| 28854 | // // |
| 28855 | /////////////////////////////////////////////////////////////////////////////// |
| 28856 | |
| 28857 | void tetgenmesh::outmetrics(tetgenio* out) |
| 28858 | { |
| 28859 | FILE *outfile = NULL; |
| 28860 | char outmtrfilename[FILENAMESIZE]; |
| 28861 | point ptloop; |
| 28862 | int mtrindex; |
| 28863 | |
| 28864 | if (out == (tetgenio *) NULL) { |
| 28865 | strcpy(outmtrfilename, b->outfilename); |
| 28866 | strcat(outmtrfilename, ".mtr" ); |
| 28867 | } |
| 28868 | |
| 28869 | if (!b->quiet) { |
| 28870 | if (out == (tetgenio *) NULL) { |
| 28871 | printf("Writing %s.\n" , outmtrfilename); |
| 28872 | } else { |
| 28873 | printf("Writing metrics.\n" ); |
| 28874 | } |
| 28875 | } |
| 28876 | |
| 28877 | if (out == (tetgenio *) NULL) { |
| 28878 | outfile = fopen(outmtrfilename, "w" ); |
| 28879 | if (outfile == (FILE *) NULL) { |
| 28880 | printf("File I/O Error: Cannot create file %s.\n" , outmtrfilename); |
| 28881 | terminatetetgen(this, 3); |
| 28882 | } |
| 28883 | // Number of points, number of point metrices, |
| 28884 | // fprintf(outfile, "%ld %d\n", points->items, sizeoftensor + 3); |
| 28885 | fprintf(outfile, "%ld %d\n" , points->items, 1); |
| 28886 | } else { |
| 28887 | // Allocate space for 'pointmtrlist' if necessary; |
| 28888 | // out->pointmtrlist = new REAL[points->items * (sizeoftensor + 3)]; |
| 28889 | out->pointmtrlist = new REAL[points->items]; |
| 28890 | if (out->pointmtrlist == (REAL *) NULL) { |
| 28891 | terminatetetgen(this, 1); |
| 28892 | } |
| 28893 | out->numberofpointmtrs = 1; // (sizeoftensor + 3); |
| 28894 | mtrindex = 0; |
| 28895 | } |
| 28896 | |
| 28897 | points->traversalinit(); |
| 28898 | ptloop = pointtraverse(); |
| 28899 | while (ptloop != (point) NULL) { |
| 28900 | if (out == (tetgenio *) NULL) { |
| 28901 | // for (i = 0; i < sizeoftensor; i++) { |
| 28902 | // fprintf(outfile, "%-16.8e ", ptloop[pointmtrindex + i]); |
| 28903 | // } |
| 28904 | fprintf(outfile, "%-16.8e\n" , ptloop[pointmtrindex]); |
| 28905 | } else { |
| 28906 | // for (i = 0; i < sizeoftensor; i++) { |
| 28907 | // out->pointmtrlist[mtrindex++] = ptloop[pointmtrindex + i]; |
| 28908 | // } |
| 28909 | out->pointmtrlist[mtrindex++] = ptloop[pointmtrindex]; |
| 28910 | } |
| 28911 | ptloop = pointtraverse(); |
| 28912 | } |
| 28913 | |
| 28914 | if (out == (tetgenio *) NULL) { |
| 28915 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 28916 | fclose(outfile); |
| 28917 | } |
| 28918 | } |
| 28919 | |
| 28920 | /////////////////////////////////////////////////////////////////////////////// |
| 28921 | // // |
| 28922 | // outelements() Output the tetrahedra to an .ele file or a tetgenio // |
| 28923 | // structure. // |
| 28924 | // // |
| 28925 | // This routine also indexes all tetrahedra (exclusing hull tets) (from in-> // |
| 28926 | // firstnumber). The total number of mesh edges is counted in 'meshedges'. // |
| 28927 | // // |
| 28928 | /////////////////////////////////////////////////////////////////////////////// |
| 28929 | |
| 28930 | void tetgenmesh::outelements(tetgenio* out) |
| 28931 | { |
| 28932 | FILE *outfile = NULL; |
| 28933 | char outelefilename[FILENAMESIZE]; |
| 28934 | tetrahedron* tptr; |
| 28935 | point p1, p2, p3, p4; |
| 28936 | point *; |
| 28937 | REAL *talist = NULL; |
| 28938 | int *tlist = NULL; |
| 28939 | long ntets; |
| 28940 | int firstindex, shift; |
| 28941 | int pointindex, attribindex; |
| 28942 | int highorderindex = 11; |
| 28943 | int elementnumber; |
| 28944 | int ; |
| 28945 | int i; |
| 28946 | |
| 28947 | if (out == (tetgenio *) NULL) { |
| 28948 | strcpy(outelefilename, b->outfilename); |
| 28949 | strcat(outelefilename, ".ele" ); |
| 28950 | } |
| 28951 | |
| 28952 | if (!b->quiet) { |
| 28953 | if (out == (tetgenio *) NULL) { |
| 28954 | printf("Writing %s.\n" , outelefilename); |
| 28955 | } else { |
| 28956 | printf("Writing elements.\n" ); |
| 28957 | } |
| 28958 | } |
| 28959 | |
| 28960 | // The number of tets excluding hull tets. |
| 28961 | ntets = tetrahedrons->items - hullsize; |
| 28962 | |
| 28963 | eextras = numelemattrib; |
| 28964 | if (out == (tetgenio *) NULL) { |
| 28965 | outfile = fopen(outelefilename, "w" ); |
| 28966 | if (outfile == (FILE *) NULL) { |
| 28967 | printf("File I/O Error: Cannot create file %s.\n" , outelefilename); |
| 28968 | terminatetetgen(this, 1); |
| 28969 | } |
| 28970 | // Number of tetras, points per tetra, attributes per tetra. |
| 28971 | fprintf(outfile, "%ld %d %d\n" , ntets, b->order == 1 ? 4 : 10, eextras); |
| 28972 | } else { |
| 28973 | // Allocate memory for output tetrahedra. |
| 28974 | out->tetrahedronlist = new int[ntets * (b->order == 1 ? 4 : 10)]; |
| 28975 | if (out->tetrahedronlist == (int *) NULL) { |
| 28976 | printf("Error: Out of memory.\n" ); |
| 28977 | terminatetetgen(this, 1); |
| 28978 | } |
| 28979 | // Allocate memory for output tetrahedron attributes if necessary. |
| 28980 | if (eextras > 0) { |
| 28981 | out->tetrahedronattributelist = new REAL[ntets * eextras]; |
| 28982 | if (out->tetrahedronattributelist == (REAL *) NULL) { |
| 28983 | printf("Error: Out of memory.\n" ); |
| 28984 | terminatetetgen(this, 1); |
| 28985 | } |
| 28986 | } |
| 28987 | out->numberoftetrahedra = ntets; |
| 28988 | out->numberofcorners = b->order == 1 ? 4 : 10; |
| 28989 | out->numberoftetrahedronattributes = eextras; |
| 28990 | tlist = out->tetrahedronlist; |
| 28991 | talist = out->tetrahedronattributelist; |
| 28992 | pointindex = 0; |
| 28993 | attribindex = 0; |
| 28994 | } |
| 28995 | |
| 28996 | // Determine the first index (0 or 1). |
| 28997 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
| 28998 | shift = 0; // Default no shift. |
| 28999 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
| 29000 | shift = 1; // Shift the output indices by 1. |
| 29001 | } |
| 29002 | |
| 29003 | tetrahedrons->traversalinit(); |
| 29004 | tptr = tetrahedrontraverse(); |
| 29005 | elementnumber = firstindex; // in->firstnumber; |
| 29006 | while (tptr != (tetrahedron *) NULL) { |
| 29007 | if (!b->reversetetori) { |
| 29008 | p1 = (point) tptr[4]; |
| 29009 | p2 = (point) tptr[5]; |
| 29010 | } else { |
| 29011 | p1 = (point) tptr[5]; |
| 29012 | p2 = (point) tptr[4]; |
| 29013 | } |
| 29014 | p3 = (point) tptr[6]; |
| 29015 | p4 = (point) tptr[7]; |
| 29016 | if (out == (tetgenio *) NULL) { |
| 29017 | // Tetrahedron number, indices for four points. |
| 29018 | fprintf(outfile, "%5d %5d %5d %5d %5d" , elementnumber, |
| 29019 | pointmark(p1) - shift, pointmark(p2) - shift, |
| 29020 | pointmark(p3) - shift, pointmark(p4) - shift); |
| 29021 | if (b->order == 2) { |
| 29022 | extralist = (point *) tptr[highorderindex]; |
| 29023 | // indices for six extra points. |
| 29024 | fprintf(outfile, " %5d %5d %5d %5d %5d %5d" , |
| 29025 | pointmark(extralist[0]) - shift, pointmark(extralist[1]) - shift, |
| 29026 | pointmark(extralist[2]) - shift, pointmark(extralist[3]) - shift, |
| 29027 | pointmark(extralist[4]) - shift, pointmark(extralist[5]) - shift); |
| 29028 | } |
| 29029 | for (i = 0; i < eextras; i++) { |
| 29030 | fprintf(outfile, " %.17g" , elemattribute(tptr, i)); |
| 29031 | } |
| 29032 | fprintf(outfile, "\n" ); |
| 29033 | } else { |
| 29034 | tlist[pointindex++] = pointmark(p1) - shift; |
| 29035 | tlist[pointindex++] = pointmark(p2) - shift; |
| 29036 | tlist[pointindex++] = pointmark(p3) - shift; |
| 29037 | tlist[pointindex++] = pointmark(p4) - shift; |
| 29038 | if (b->order == 2) { |
| 29039 | extralist = (point *) tptr[highorderindex]; |
| 29040 | tlist[pointindex++] = pointmark(extralist[0]) - shift; |
| 29041 | tlist[pointindex++] = pointmark(extralist[1]) - shift; |
| 29042 | tlist[pointindex++] = pointmark(extralist[2]) - shift; |
| 29043 | tlist[pointindex++] = pointmark(extralist[3]) - shift; |
| 29044 | tlist[pointindex++] = pointmark(extralist[4]) - shift; |
| 29045 | tlist[pointindex++] = pointmark(extralist[5]) - shift; |
| 29046 | } |
| 29047 | for (i = 0; i < eextras; i++) { |
| 29048 | talist[attribindex++] = elemattribute(tptr, i); |
| 29049 | } |
| 29050 | } |
| 29051 | // Remember the index of this element (for counting edges). |
| 29052 | setelemindex(tptr, elementnumber); |
| 29053 | tptr = tetrahedrontraverse(); |
| 29054 | elementnumber++; |
| 29055 | } |
| 29056 | |
| 29057 | |
| 29058 | if (out == (tetgenio *) NULL) { |
| 29059 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 29060 | fclose(outfile); |
| 29061 | } |
| 29062 | } |
| 29063 | |
| 29064 | /////////////////////////////////////////////////////////////////////////////// |
| 29065 | // // |
| 29066 | // outfaces() Output all faces to a .face file or a tetgenio object. // |
| 29067 | // // |
| 29068 | /////////////////////////////////////////////////////////////////////////////// |
| 29069 | |
| 29070 | void tetgenmesh::outfaces(tetgenio* out) |
| 29071 | { |
| 29072 | FILE *outfile = NULL; |
| 29073 | char facefilename[FILENAMESIZE]; |
| 29074 | triface tface, tsymface; |
| 29075 | face checkmark; |
| 29076 | point torg, tdest, tapex; |
| 29077 | long ntets, faces; |
| 29078 | int *elist = NULL, *emlist = NULL; |
| 29079 | int neigh1 = 0, neigh2 = 0; |
| 29080 | int faceid, marker = 0; |
| 29081 | int firstindex, shift; |
| 29082 | int facenumber; |
| 29083 | int index = 0; |
| 29084 | |
| 29085 | // For -o2 option. |
| 29086 | triface workface; |
| 29087 | point *, pp[3] = {0,0,0}; |
| 29088 | int highorderindex = 11; |
| 29089 | int o2index = 0, i; |
| 29090 | |
| 29091 | if (out == (tetgenio *) NULL) { |
| 29092 | strcpy(facefilename, b->outfilename); |
| 29093 | strcat(facefilename, ".face" ); |
| 29094 | } |
| 29095 | |
| 29096 | if (!b->quiet) { |
| 29097 | if (out == (tetgenio *) NULL) { |
| 29098 | printf("Writing %s.\n" , facefilename); |
| 29099 | } else { |
| 29100 | printf("Writing faces.\n" ); |
| 29101 | } |
| 29102 | } |
| 29103 | |
| 29104 | ntets = tetrahedrons->items - hullsize; |
| 29105 | faces = (ntets * 4l + hullsize) / 2l; |
| 29106 | |
| 29107 | if (out == (tetgenio *) NULL) { |
| 29108 | outfile = fopen(facefilename, "w" ); |
| 29109 | if (outfile == (FILE *) NULL) { |
| 29110 | printf("File I/O Error: Cannot create file %s.\n" , facefilename); |
| 29111 | terminatetetgen(this, 1); |
| 29112 | } |
| 29113 | fprintf(outfile, "%ld %d\n" , faces, !b->nobound); |
| 29114 | } else { |
| 29115 | // Allocate memory for 'trifacelist'. |
| 29116 | out->trifacelist = new int[faces * 3]; |
| 29117 | if (out->trifacelist == (int *) NULL) { |
| 29118 | printf("Error: Out of memory.\n" ); |
| 29119 | terminatetetgen(this, 1); |
| 29120 | } |
| 29121 | if (b->order == 2) { |
| 29122 | out->o2facelist = new int[faces * 3]; |
| 29123 | } |
| 29124 | // Allocate memory for 'trifacemarkerlist' if necessary. |
| 29125 | if (!b->nobound) { |
| 29126 | out->trifacemarkerlist = new int[faces]; |
| 29127 | if (out->trifacemarkerlist == (int *) NULL) { |
| 29128 | printf("Error: Out of memory.\n" ); |
| 29129 | terminatetetgen(this, 1); |
| 29130 | } |
| 29131 | } |
| 29132 | if (b->neighout > 1) { |
| 29133 | // '-nn' switch. |
| 29134 | out->adjtetlist = new int[faces * 2]; |
| 29135 | if (out->adjtetlist == (int *) NULL) { |
| 29136 | printf("Error: Out of memory.\n" ); |
| 29137 | terminatetetgen(this, 1); |
| 29138 | } |
| 29139 | } |
| 29140 | out->numberoftrifaces = faces; |
| 29141 | elist = out->trifacelist; |
| 29142 | emlist = out->trifacemarkerlist; |
| 29143 | } |
| 29144 | |
| 29145 | // Determine the first index (0 or 1). |
| 29146 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
| 29147 | shift = 0; // Default no shiftment. |
| 29148 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
| 29149 | shift = 1; // Shift the output indices by 1. |
| 29150 | } |
| 29151 | |
| 29152 | tetrahedrons->traversalinit(); |
| 29153 | tface.tet = tetrahedrontraverse(); |
| 29154 | facenumber = firstindex; // in->firstnumber; |
| 29155 | // To loop over the set of faces, loop over all tetrahedra, and look at |
| 29156 | // the four faces of each one. If its adjacent tet is a hull tet, |
| 29157 | // operate on the face, otherwise, operate on the face only if the |
| 29158 | // current tet has a smaller index than its neighbor. |
| 29159 | while (tface.tet != (tetrahedron *) NULL) { |
| 29160 | for (tface.ver = 0; tface.ver < 4; tface.ver ++) { |
| 29161 | fsym(tface, tsymface); |
| 29162 | if (ishulltet(tsymface) || |
| 29163 | (elemindex(tface.tet) < elemindex(tsymface.tet))) { |
| 29164 | torg = org(tface); |
| 29165 | tdest = dest(tface); |
| 29166 | tapex = apex(tface); |
| 29167 | if (b->order == 2) { // -o2 |
| 29168 | // Get the three extra vertices on edges. |
| 29169 | extralist = (point *) (tface.tet[highorderindex]); |
| 29170 | // The extra vertices are on edges opposite the corners. |
| 29171 | enext(tface, workface); |
| 29172 | for (i = 0; i < 3; i++) { |
| 29173 | pp[i] = extralist[ver2edge[workface.ver]]; |
| 29174 | enextself(workface); |
| 29175 | } |
| 29176 | } |
| 29177 | if (!b->nobound) { |
| 29178 | // Get the boundary marker of this face. |
| 29179 | if (b->plc || b->refine) { |
| 29180 | // Shell face is used. |
| 29181 | tspivot(tface, checkmark); |
| 29182 | if (checkmark.sh == NULL) { |
| 29183 | marker = 0; // It is an inner face. It's marker is 0. |
| 29184 | } else { |
| 29185 | if (in->facetmarkerlist) { |
| 29186 | // The facet marker is given, get it. |
| 29187 | faceid = shellmark(checkmark) - 1; |
| 29188 | marker = in->facetmarkerlist[faceid]; |
| 29189 | } else { |
| 29190 | marker = 1; // The default marker for subface is 1. |
| 29191 | } |
| 29192 | } |
| 29193 | } else { |
| 29194 | // Shell face is not used, only distinguish outer and inner face. |
| 29195 | marker = (int) ishulltet(tsymface); |
| 29196 | } |
| 29197 | } |
| 29198 | if (b->neighout > 1) { |
| 29199 | // '-nn' switch. Output adjacent tets indices. |
| 29200 | neigh1 = elemindex(tface.tet); |
| 29201 | if (!ishulltet(tsymface)) { |
| 29202 | neigh2 = elemindex(tsymface.tet); |
| 29203 | } else { |
| 29204 | neigh2 = -1; |
| 29205 | } |
| 29206 | } |
| 29207 | if (out == (tetgenio *) NULL) { |
| 29208 | // Face number, indices of three vertices. |
| 29209 | fprintf(outfile, "%5d %4d %4d %4d" , facenumber, |
| 29210 | pointmark(torg) - shift, pointmark(tdest) - shift, |
| 29211 | pointmark(tapex) - shift); |
| 29212 | if (b->order == 2) { // -o2 |
| 29213 | fprintf(outfile, " %4d %4d %4d" , pointmark(pp[0]) - shift, |
| 29214 | pointmark(pp[1]) - shift, pointmark(pp[2]) - shift); |
| 29215 | } |
| 29216 | if (!b->nobound) { |
| 29217 | // Output a boundary marker. |
| 29218 | fprintf(outfile, " %d" , marker); |
| 29219 | } |
| 29220 | if (b->neighout > 1) { |
| 29221 | fprintf(outfile, " %5d %5d" , neigh1, neigh2); |
| 29222 | } |
| 29223 | fprintf(outfile, "\n" ); |
| 29224 | } else { |
| 29225 | // Output indices of three vertices. |
| 29226 | elist[index++] = pointmark(torg) - shift; |
| 29227 | elist[index++] = pointmark(tdest) - shift; |
| 29228 | elist[index++] = pointmark(tapex) - shift; |
| 29229 | if (b->order == 2) { // -o2 |
| 29230 | out->o2facelist[o2index++] = pointmark(pp[0]) - shift; |
| 29231 | out->o2facelist[o2index++] = pointmark(pp[1]) - shift; |
| 29232 | out->o2facelist[o2index++] = pointmark(pp[2]) - shift; |
| 29233 | } |
| 29234 | if (!b->nobound) { |
| 29235 | emlist[facenumber - in->firstnumber] = marker; |
| 29236 | } |
| 29237 | if (b->neighout > 1) { |
| 29238 | out->adjtetlist[(facenumber - in->firstnumber) * 2] = neigh1; |
| 29239 | out->adjtetlist[(facenumber - in->firstnumber) * 2 + 1] = neigh2; |
| 29240 | } |
| 29241 | } |
| 29242 | facenumber++; |
| 29243 | } |
| 29244 | } |
| 29245 | tface.tet = tetrahedrontraverse(); |
| 29246 | } |
| 29247 | |
| 29248 | if (out == (tetgenio *) NULL) { |
| 29249 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 29250 | fclose(outfile); |
| 29251 | } |
| 29252 | } |
| 29253 | |
| 29254 | /////////////////////////////////////////////////////////////////////////////// |
| 29255 | // // |
| 29256 | // outhullfaces() Output hull faces to a .face file or a tetgenio object. // |
| 29257 | // // |
| 29258 | // The normal of each face is pointing to the outside of the domain. // |
| 29259 | // // |
| 29260 | /////////////////////////////////////////////////////////////////////////////// |
| 29261 | |
| 29262 | void tetgenmesh::outhullfaces(tetgenio* out) |
| 29263 | { |
| 29264 | FILE *outfile = NULL; |
| 29265 | char facefilename[FILENAMESIZE]; |
| 29266 | triface hulltet; |
| 29267 | point torg, tdest, tapex; |
| 29268 | int *elist = NULL; |
| 29269 | int firstindex, shift; |
| 29270 | int facenumber; |
| 29271 | int index; |
| 29272 | |
| 29273 | if (out == (tetgenio *) NULL) { |
| 29274 | strcpy(facefilename, b->outfilename); |
| 29275 | strcat(facefilename, ".face" ); |
| 29276 | } |
| 29277 | |
| 29278 | if (!b->quiet) { |
| 29279 | if (out == (tetgenio *) NULL) { |
| 29280 | printf("Writing %s.\n" , facefilename); |
| 29281 | } else { |
| 29282 | printf("Writing faces.\n" ); |
| 29283 | } |
| 29284 | } |
| 29285 | |
| 29286 | if (out == (tetgenio *) NULL) { |
| 29287 | outfile = fopen(facefilename, "w" ); |
| 29288 | if (outfile == (FILE *) NULL) { |
| 29289 | printf("File I/O Error: Cannot create file %s.\n" , facefilename); |
| 29290 | terminatetetgen(this, 1); |
| 29291 | } |
| 29292 | fprintf(outfile, "%ld 0\n" , hullsize); |
| 29293 | } else { |
| 29294 | // Allocate memory for 'trifacelist'. |
| 29295 | out->trifacelist = new int[hullsize * 3]; |
| 29296 | if (out->trifacelist == (int *) NULL) { |
| 29297 | printf("Error: Out of memory.\n" ); |
| 29298 | terminatetetgen(this, 1); |
| 29299 | } |
| 29300 | out->numberoftrifaces = hullsize; |
| 29301 | elist = out->trifacelist; |
| 29302 | index = 0; |
| 29303 | } |
| 29304 | |
| 29305 | // Determine the first index (0 or 1). |
| 29306 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
| 29307 | shift = 0; // Default no shiftment. |
| 29308 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
| 29309 | shift = 1; // Shift the output indices by 1. |
| 29310 | } |
| 29311 | |
| 29312 | tetrahedrons->traversalinit(); |
| 29313 | hulltet.tet = alltetrahedrontraverse(); |
| 29314 | facenumber = firstindex; |
| 29315 | while (hulltet.tet != (tetrahedron *) NULL) { |
| 29316 | if (ishulltet(hulltet)) { |
| 29317 | torg = (point) hulltet.tet[4]; |
| 29318 | tdest = (point) hulltet.tet[5]; |
| 29319 | tapex = (point) hulltet.tet[6]; |
| 29320 | if (out == (tetgenio *) NULL) { |
| 29321 | // Face number, indices of three vertices. |
| 29322 | fprintf(outfile, "%5d %4d %4d %4d" , facenumber, |
| 29323 | pointmark(torg) - shift, pointmark(tdest) - shift, |
| 29324 | pointmark(tapex) - shift); |
| 29325 | fprintf(outfile, "\n" ); |
| 29326 | } else { |
| 29327 | // Output indices of three vertices. |
| 29328 | elist[index++] = pointmark(torg) - shift; |
| 29329 | elist[index++] = pointmark(tdest) - shift; |
| 29330 | elist[index++] = pointmark(tapex) - shift; |
| 29331 | } |
| 29332 | facenumber++; |
| 29333 | } |
| 29334 | hulltet.tet = alltetrahedrontraverse(); |
| 29335 | } |
| 29336 | |
| 29337 | if (out == (tetgenio *) NULL) { |
| 29338 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 29339 | fclose(outfile); |
| 29340 | } |
| 29341 | } |
| 29342 | |
| 29343 | /////////////////////////////////////////////////////////////////////////////// |
| 29344 | // // |
| 29345 | // outsubfaces() Output subfaces (i.e. boundary faces) to a .face file or // |
| 29346 | // a tetgenio structure. // |
| 29347 | // // |
| 29348 | // The boundary faces are found in 'subfaces'. For listing triangle vertices // |
| 29349 | // in the same sense for all triangles in the mesh, the direction determined // |
| 29350 | // by right-hand rule is pointer to the inside of the volume. // |
| 29351 | // // |
| 29352 | /////////////////////////////////////////////////////////////////////////////// |
| 29353 | |
| 29354 | void tetgenmesh::outsubfaces(tetgenio* out) |
| 29355 | { |
| 29356 | FILE *outfile = NULL; |
| 29357 | char facefilename[FILENAMESIZE]; |
| 29358 | int *elist = NULL; |
| 29359 | int *emlist = NULL; |
| 29360 | int index = 0, index1 = 0, index2 = 0; |
| 29361 | triface abuttingtet; |
| 29362 | face faceloop; |
| 29363 | point torg, tdest, tapex; |
| 29364 | int faceid = 0, marker = 0; |
| 29365 | int firstindex, shift; |
| 29366 | int neigh1 = 0, neigh2 = 0; |
| 29367 | int facenumber; |
| 29368 | |
| 29369 | // For -o2 option. |
| 29370 | triface workface; |
| 29371 | point *, pp[3] = {0,0,0}; |
| 29372 | int highorderindex = 11; |
| 29373 | int o2index = 0, i; |
| 29374 | |
| 29375 | int t1ver; // used by fsymself() |
| 29376 | |
| 29377 | if (out == (tetgenio *) NULL) { |
| 29378 | strcpy(facefilename, b->outfilename); |
| 29379 | strcat(facefilename, ".face" ); |
| 29380 | } |
| 29381 | |
| 29382 | if (!b->quiet) { |
| 29383 | if (out == (tetgenio *) NULL) { |
| 29384 | printf("Writing %s.\n" , facefilename); |
| 29385 | } else { |
| 29386 | printf("Writing faces.\n" ); |
| 29387 | } |
| 29388 | } |
| 29389 | |
| 29390 | if (out == (tetgenio *) NULL) { |
| 29391 | outfile = fopen(facefilename, "w" ); |
| 29392 | if (outfile == (FILE *) NULL) { |
| 29393 | printf("File I/O Error: Cannot create file %s.\n" , facefilename); |
| 29394 | terminatetetgen(this, 3); |
| 29395 | } |
| 29396 | // Number of subfaces. |
| 29397 | fprintf(outfile, "%ld %d\n" , subfaces->items, !b->nobound); |
| 29398 | } else { |
| 29399 | // Allocate memory for 'trifacelist'. |
| 29400 | out->trifacelist = new int[subfaces->items * 3]; |
| 29401 | if (out->trifacelist == (int *) NULL) { |
| 29402 | terminatetetgen(this, 1); |
| 29403 | } |
| 29404 | if (b->order == 2) { |
| 29405 | out->o2facelist = new int[subfaces->items * 3]; |
| 29406 | } |
| 29407 | if (!b->nobound) { |
| 29408 | // Allocate memory for 'trifacemarkerlist'. |
| 29409 | out->trifacemarkerlist = new int[subfaces->items]; |
| 29410 | if (out->trifacemarkerlist == (int *) NULL) { |
| 29411 | terminatetetgen(this, 1); |
| 29412 | } |
| 29413 | } |
| 29414 | if (b->neighout > 1) { |
| 29415 | // '-nn' switch. |
| 29416 | out->adjtetlist = new int[subfaces->items * 2]; |
| 29417 | if (out->adjtetlist == (int *) NULL) { |
| 29418 | terminatetetgen(this, 1); |
| 29419 | } |
| 29420 | } |
| 29421 | out->numberoftrifaces = subfaces->items; |
| 29422 | elist = out->trifacelist; |
| 29423 | emlist = out->trifacemarkerlist; |
| 29424 | } |
| 29425 | |
| 29426 | // Determine the first index (0 or 1). |
| 29427 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
| 29428 | shift = 0; // Default no shiftment. |
| 29429 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
| 29430 | shift = 1; // Shift the output indices by 1. |
| 29431 | } |
| 29432 | |
| 29433 | subfaces->traversalinit(); |
| 29434 | faceloop.sh = shellfacetraverse(subfaces); |
| 29435 | facenumber = firstindex; // in->firstnumber; |
| 29436 | while (faceloop.sh != (shellface *) NULL) { |
| 29437 | stpivot(faceloop, abuttingtet); |
| 29438 | // If there is a tetrahedron containing this subface, orient it so |
| 29439 | // that the normal of this face points to inside of the volume by |
| 29440 | // right-hand rule. |
| 29441 | if (abuttingtet.tet != NULL) { |
| 29442 | if (ishulltet(abuttingtet)) { |
| 29443 | fsymself(abuttingtet); |
| 29444 | assert(!ishulltet(abuttingtet)); |
| 29445 | } |
| 29446 | } |
| 29447 | if (abuttingtet.tet != NULL) { |
| 29448 | torg = org(abuttingtet); |
| 29449 | tdest = dest(abuttingtet); |
| 29450 | tapex = apex(abuttingtet); |
| 29451 | if (b->order == 2) { // -o2 |
| 29452 | // Get the three extra vertices on edges. |
| 29453 | extralist = (point *) (abuttingtet.tet[highorderindex]); |
| 29454 | workface = abuttingtet; |
| 29455 | for (i = 0; i < 3; i++) { |
| 29456 | pp[i] = extralist[ver2edge[workface.ver]]; |
| 29457 | enextself(workface); |
| 29458 | } |
| 29459 | } |
| 29460 | } else { |
| 29461 | // This may happen when only a surface mesh be generated. |
| 29462 | torg = sorg(faceloop); |
| 29463 | tdest = sdest(faceloop); |
| 29464 | tapex = sapex(faceloop); |
| 29465 | if (b->order == 2) { // -o2 |
| 29466 | // There is no extra node list available. |
| 29467 | pp[0] = torg; |
| 29468 | pp[1] = tdest; |
| 29469 | pp[2] = tapex; |
| 29470 | } |
| 29471 | } |
| 29472 | if (!b->nobound) { |
| 29473 | if (b->refine) { // -r option. |
| 29474 | if (in->trifacemarkerlist) { |
| 29475 | marker = shellmark(faceloop); |
| 29476 | } else { |
| 29477 | marker = 1; // Default marker for a subface is 1. |
| 29478 | } |
| 29479 | } else { |
| 29480 | if (in->facetmarkerlist) { |
| 29481 | faceid = shellmark(faceloop) - 1; |
| 29482 | marker = in->facetmarkerlist[faceid]; |
| 29483 | } else { |
| 29484 | marker = 1; // Default marker for a subface is 1. |
| 29485 | } |
| 29486 | } |
| 29487 | } |
| 29488 | if (b->neighout > 1) { |
| 29489 | // '-nn' switch. Output adjacent tets indices. |
| 29490 | neigh1 = -1; |
| 29491 | neigh2 = -1; |
| 29492 | stpivot(faceloop, abuttingtet); |
| 29493 | if (abuttingtet.tet != NULL) { |
| 29494 | neigh1 = elemindex(abuttingtet.tet); |
| 29495 | fsymself(abuttingtet); |
| 29496 | if (!ishulltet(abuttingtet)) { |
| 29497 | neigh2 = elemindex(abuttingtet.tet); |
| 29498 | } |
| 29499 | } |
| 29500 | } |
| 29501 | if (out == (tetgenio *) NULL) { |
| 29502 | fprintf(outfile, "%5d %4d %4d %4d" , facenumber, |
| 29503 | pointmark(torg) - shift, pointmark(tdest) - shift, |
| 29504 | pointmark(tapex) - shift); |
| 29505 | if (b->order == 2) { // -o2 |
| 29506 | fprintf(outfile, " %4d %4d %4d" , pointmark(pp[0]) - shift, |
| 29507 | pointmark(pp[1]) - shift, pointmark(pp[2]) - shift); |
| 29508 | } |
| 29509 | if (!b->nobound) { |
| 29510 | fprintf(outfile, " %d" , marker); |
| 29511 | } |
| 29512 | if (b->neighout > 1) { |
| 29513 | fprintf(outfile, " %5d %5d" , neigh1, neigh2); |
| 29514 | } |
| 29515 | fprintf(outfile, "\n" ); |
| 29516 | } else { |
| 29517 | // Output three vertices of this face; |
| 29518 | elist[index++] = pointmark(torg) - shift; |
| 29519 | elist[index++] = pointmark(tdest) - shift; |
| 29520 | elist[index++] = pointmark(tapex) - shift; |
| 29521 | if (b->order == 2) { // -o2 |
| 29522 | out->o2facelist[o2index++] = pointmark(pp[0]) - shift; |
| 29523 | out->o2facelist[o2index++] = pointmark(pp[1]) - shift; |
| 29524 | out->o2facelist[o2index++] = pointmark(pp[2]) - shift; |
| 29525 | } |
| 29526 | if (!b->nobound) { |
| 29527 | emlist[index1++] = marker; |
| 29528 | } |
| 29529 | if (b->neighout > 1) { |
| 29530 | out->adjtetlist[index2++] = neigh1; |
| 29531 | out->adjtetlist[index2++] = neigh2; |
| 29532 | } |
| 29533 | } |
| 29534 | facenumber++; |
| 29535 | faceloop.sh = shellfacetraverse(subfaces); |
| 29536 | } |
| 29537 | |
| 29538 | if (out == (tetgenio *) NULL) { |
| 29539 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 29540 | fclose(outfile); |
| 29541 | } |
| 29542 | } |
| 29543 | |
| 29544 | /////////////////////////////////////////////////////////////////////////////// |
| 29545 | // // |
| 29546 | // outedges() Output all edges to a .edge file or a tetgenio object. // |
| 29547 | // // |
| 29548 | // Note: This routine must be called after outelements(), so that the total // |
| 29549 | // number of edges 'meshedges' has been counted. // |
| 29550 | // // |
| 29551 | /////////////////////////////////////////////////////////////////////////////// |
| 29552 | |
| 29553 | void tetgenmesh::outedges(tetgenio* out) |
| 29554 | { |
| 29555 | FILE *outfile = NULL; |
| 29556 | char edgefilename[FILENAMESIZE]; |
| 29557 | triface tetloop, worktet, spintet; |
| 29558 | face checkseg; |
| 29559 | point torg, tdest; |
| 29560 | int *elist = NULL, *emlist = NULL; |
| 29561 | int ishulledge; |
| 29562 | int firstindex, shift; |
| 29563 | int edgenumber, marker; |
| 29564 | int index = 0, index1 = 0, index2 = 0; |
| 29565 | int t1ver; |
| 29566 | int i; |
| 29567 | |
| 29568 | // For -o2 option. |
| 29569 | point *, pp = NULL; |
| 29570 | int highorderindex = 11; |
| 29571 | int o2index = 0; |
| 29572 | |
| 29573 | if (out == (tetgenio *) NULL) { |
| 29574 | strcpy(edgefilename, b->outfilename); |
| 29575 | strcat(edgefilename, ".edge" ); |
| 29576 | } |
| 29577 | |
| 29578 | if (!b->quiet) { |
| 29579 | if (out == (tetgenio *) NULL) { |
| 29580 | printf("Writing %s.\n" , edgefilename); |
| 29581 | } else { |
| 29582 | printf("Writing edges.\n" ); |
| 29583 | } |
| 29584 | } |
| 29585 | |
| 29586 | if (meshedges == 0l) { |
| 29587 | if (nonconvex) { |
| 29588 | numberedges(); // Count the edges. |
| 29589 | } else { |
| 29590 | // Use Euler's characteristic to get the numbe of edges. |
| 29591 | // It states V - E + F - C = 1, hence E = V + F - C - 1. |
| 29592 | long tsize = tetrahedrons->items - hullsize; |
| 29593 | long fsize = (tsize * 4l + hullsize) / 2l; |
| 29594 | long vsize = points->items - dupverts - unuverts; |
| 29595 | if (b->weighted) vsize -= nonregularcount; |
| 29596 | meshedges = vsize + fsize - tsize - 1; |
| 29597 | } |
| 29598 | } |
| 29599 | |
| 29600 | if (out == (tetgenio *) NULL) { |
| 29601 | outfile = fopen(edgefilename, "w" ); |
| 29602 | if (outfile == (FILE *) NULL) { |
| 29603 | printf("File I/O Error: Cannot create file %s.\n" , edgefilename); |
| 29604 | terminatetetgen(this, 1); |
| 29605 | } |
| 29606 | // Write the number of edges, boundary markers (0 or 1). |
| 29607 | fprintf(outfile, "%ld %d\n" , meshedges, !b->nobound); |
| 29608 | } else { |
| 29609 | // Allocate memory for 'edgelist'. |
| 29610 | out->edgelist = new int[meshedges * 2]; |
| 29611 | if (out->edgelist == (int *) NULL) { |
| 29612 | printf("Error: Out of memory.\n" ); |
| 29613 | terminatetetgen(this, 1); |
| 29614 | } |
| 29615 | if (b->order == 2) { // -o2 switch |
| 29616 | out->o2edgelist = new int[meshedges]; |
| 29617 | } |
| 29618 | if (!b->nobound) { |
| 29619 | out->edgemarkerlist = new int[meshedges]; |
| 29620 | } |
| 29621 | if (b->neighout > 1) { // '-nn' switch. |
| 29622 | out->edgeadjtetlist = new int[meshedges]; |
| 29623 | } |
| 29624 | out->numberofedges = meshedges; |
| 29625 | elist = out->edgelist; |
| 29626 | emlist = out->edgemarkerlist; |
| 29627 | } |
| 29628 | |
| 29629 | // Determine the first index (0 or 1). |
| 29630 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
| 29631 | shift = 0; // Default no shiftment. |
| 29632 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
| 29633 | shift = 1; // Shift (reduce) the output indices by 1. |
| 29634 | } |
| 29635 | |
| 29636 | tetrahedrons->traversalinit(); |
| 29637 | tetloop.tet = tetrahedrontraverse(); |
| 29638 | edgenumber = firstindex; // in->firstnumber; |
| 29639 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 29640 | // Count the number of Voronoi faces. |
| 29641 | worktet.tet = tetloop.tet; |
| 29642 | for (i = 0; i < 6; i++) { |
| 29643 | worktet.ver = edge2ver[i]; |
| 29644 | ishulledge = 0; |
| 29645 | fnext(worktet, spintet); |
| 29646 | do { |
| 29647 | if (!ishulltet(spintet)) { |
| 29648 | if (elemindex(spintet.tet) < elemindex(worktet.tet)) break; |
| 29649 | } else { |
| 29650 | ishulledge = 1; |
| 29651 | } |
| 29652 | fnextself(spintet); |
| 29653 | } while (spintet.tet != worktet.tet); |
| 29654 | // Count this edge if no adjacent tets are smaller than this tet. |
| 29655 | if (spintet.tet == worktet.tet) { |
| 29656 | torg = org(worktet); |
| 29657 | tdest = dest(worktet); |
| 29658 | if (b->order == 2) { // -o2 |
| 29659 | // Get the extra vertex on this edge. |
| 29660 | extralist = (point *) worktet.tet[highorderindex]; |
| 29661 | pp = extralist[ver2edge[worktet.ver]]; |
| 29662 | } |
| 29663 | if (out == (tetgenio *) NULL) { |
| 29664 | fprintf(outfile, "%5d %4d %4d" , edgenumber, |
| 29665 | pointmark(torg) - shift, pointmark(tdest) - shift); |
| 29666 | if (b->order == 2) { // -o2 |
| 29667 | fprintf(outfile, " %4d" , pointmark(pp) - shift); |
| 29668 | } |
| 29669 | } else { |
| 29670 | // Output three vertices of this face; |
| 29671 | elist[index++] = pointmark(torg) - shift; |
| 29672 | elist[index++] = pointmark(tdest) - shift; |
| 29673 | if (b->order == 2) { // -o2 |
| 29674 | out->o2edgelist[o2index++] = pointmark(pp) - shift; |
| 29675 | } |
| 29676 | } |
| 29677 | if (!b->nobound) { |
| 29678 | if (b->plc || b->refine) { |
| 29679 | // Check if the edge is a segment. |
| 29680 | tsspivot1(worktet, checkseg); |
| 29681 | if (checkseg.sh != NULL) { |
| 29682 | marker = shellmark(checkseg); |
| 29683 | if (marker == 0) { // Does it have no marker? |
| 29684 | marker = 1; // Set the default marker for this segment. |
| 29685 | } |
| 29686 | } else { |
| 29687 | marker = 0; // It's not a segment. |
| 29688 | } |
| 29689 | } else { |
| 29690 | // Mark it if it is a hull edge. |
| 29691 | marker = ishulledge ? 1 : 0; |
| 29692 | } |
| 29693 | if (out == (tetgenio *) NULL) { |
| 29694 | fprintf(outfile, " %d" , marker); |
| 29695 | } else { |
| 29696 | emlist[index1++] = marker; |
| 29697 | } |
| 29698 | } |
| 29699 | if (b->neighout > 1) { // '-nn' switch. |
| 29700 | if (out == (tetgenio *) NULL) { |
| 29701 | fprintf(outfile, " %d" , elemindex(tetloop.tet)); |
| 29702 | } else { |
| 29703 | out->edgeadjtetlist[index2++] = elemindex(tetloop.tet); |
| 29704 | } |
| 29705 | } |
| 29706 | if (out == (tetgenio *) NULL) { |
| 29707 | fprintf(outfile, "\n" ); |
| 29708 | } |
| 29709 | edgenumber++; |
| 29710 | } |
| 29711 | } |
| 29712 | tetloop.tet = tetrahedrontraverse(); |
| 29713 | } |
| 29714 | |
| 29715 | if (out == (tetgenio *) NULL) { |
| 29716 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 29717 | fclose(outfile); |
| 29718 | } |
| 29719 | } |
| 29720 | |
| 29721 | /////////////////////////////////////////////////////////////////////////////// |
| 29722 | // // |
| 29723 | // outsubsegments() Output segments to a .edge file or a structure. // |
| 29724 | // // |
| 29725 | /////////////////////////////////////////////////////////////////////////////// |
| 29726 | |
| 29727 | void tetgenmesh::outsubsegments(tetgenio* out) |
| 29728 | { |
| 29729 | FILE *outfile = NULL; |
| 29730 | char edgefilename[FILENAMESIZE]; |
| 29731 | int *elist = NULL; |
| 29732 | int index, i; |
| 29733 | face edgeloop; |
| 29734 | point torg, tdest; |
| 29735 | int firstindex, shift; |
| 29736 | int marker; |
| 29737 | int edgenumber; |
| 29738 | |
| 29739 | // For -o2 option. |
| 29740 | triface workface, spintet; |
| 29741 | point *, pp = NULL; |
| 29742 | int highorderindex = 11; |
| 29743 | int o2index = 0; |
| 29744 | |
| 29745 | // For -nn option. |
| 29746 | int neigh = -1; |
| 29747 | int index2 = 0; |
| 29748 | |
| 29749 | int t1ver; // used by fsymself() |
| 29750 | |
| 29751 | if (out == (tetgenio *) NULL) { |
| 29752 | strcpy(edgefilename, b->outfilename); |
| 29753 | strcat(edgefilename, ".edge" ); |
| 29754 | } |
| 29755 | |
| 29756 | if (!b->quiet) { |
| 29757 | if (out == (tetgenio *) NULL) { |
| 29758 | printf("Writing %s.\n" , edgefilename); |
| 29759 | } else { |
| 29760 | printf("Writing edges.\n" ); |
| 29761 | } |
| 29762 | } |
| 29763 | |
| 29764 | if (out == (tetgenio *) NULL) { |
| 29765 | outfile = fopen(edgefilename, "w" ); |
| 29766 | if (outfile == (FILE *) NULL) { |
| 29767 | printf("File I/O Error: Cannot create file %s.\n" , edgefilename); |
| 29768 | terminatetetgen(this, 3); |
| 29769 | } |
| 29770 | // Number of subsegments. |
| 29771 | fprintf(outfile, "%ld 1\n" , subsegs->items); |
| 29772 | } else { |
| 29773 | // Allocate memory for 'edgelist'. |
| 29774 | out->edgelist = new int[subsegs->items * (b->order == 1 ? 2 : 3)]; |
| 29775 | if (out->edgelist == (int *) NULL) { |
| 29776 | terminatetetgen(this, 1); |
| 29777 | } |
| 29778 | if (b->order == 2) { |
| 29779 | out->o2edgelist = new int[subsegs->items]; |
| 29780 | } |
| 29781 | out->edgemarkerlist = new int[subsegs->items]; |
| 29782 | if (out->edgemarkerlist == (int *) NULL) { |
| 29783 | terminatetetgen(this, 1); |
| 29784 | } |
| 29785 | if (b->neighout > 1) { |
| 29786 | out->edgeadjtetlist = new int[subsegs->items]; |
| 29787 | } |
| 29788 | out->numberofedges = subsegs->items; |
| 29789 | elist = out->edgelist; |
| 29790 | } |
| 29791 | |
| 29792 | // Determine the first index (0 or 1). |
| 29793 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
| 29794 | shift = 0; // Default no shiftment. |
| 29795 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
| 29796 | shift = 1; // Shift the output indices by 1. |
| 29797 | } |
| 29798 | index = 0; |
| 29799 | i = 0; |
| 29800 | |
| 29801 | subsegs->traversalinit(); |
| 29802 | edgeloop.sh = shellfacetraverse(subsegs); |
| 29803 | edgenumber = firstindex; // in->firstnumber; |
| 29804 | while (edgeloop.sh != (shellface *) NULL) { |
| 29805 | torg = sorg(edgeloop); |
| 29806 | tdest = sdest(edgeloop); |
| 29807 | if ((b->order == 2) || (b->neighout > 1)) { |
| 29808 | sstpivot1(edgeloop, workface); |
| 29809 | if (workface.tet != NULL) { |
| 29810 | // We must find a non-hull tet. |
| 29811 | if (ishulltet(workface)) { |
| 29812 | spintet = workface; |
| 29813 | while (1) { |
| 29814 | fnextself(spintet); |
| 29815 | if (!ishulltet(spintet)) break; |
| 29816 | if (spintet.tet == workface.tet) break; |
| 29817 | } |
| 29818 | assert(!ishulltet(spintet)); |
| 29819 | workface = spintet; |
| 29820 | } |
| 29821 | } |
| 29822 | } |
| 29823 | if (b->order == 2) { // -o2 |
| 29824 | // Get the extra vertex on this edge. |
| 29825 | if (workface.tet != NULL) { |
| 29826 | extralist = (point *) workface.tet[highorderindex]; |
| 29827 | pp = extralist[ver2edge[workface.ver]]; |
| 29828 | } else { |
| 29829 | pp = torg; // There is no extra node available. |
| 29830 | } |
| 29831 | } |
| 29832 | if (b->neighout > 1) { // -nn |
| 29833 | if (workface.tet != NULL) { |
| 29834 | neigh = elemindex(workface.tet); |
| 29835 | } else { |
| 29836 | neigh = -1; |
| 29837 | } |
| 29838 | } |
| 29839 | marker = shellmark(edgeloop); |
| 29840 | if (marker == 0) { |
| 29841 | marker = 1; // Default marker of a boundary edge is 1. |
| 29842 | } |
| 29843 | if (out == (tetgenio *) NULL) { |
| 29844 | fprintf(outfile, "%5d %4d %4d" , edgenumber, |
| 29845 | pointmark(torg) - shift, pointmark(tdest) - shift); |
| 29846 | if (b->order == 2) { // -o2 |
| 29847 | fprintf(outfile, " %4d" , pointmark(pp) - shift); |
| 29848 | } |
| 29849 | fprintf(outfile, " %d" , marker); |
| 29850 | if (b->neighout > 1) { // -nn |
| 29851 | fprintf(outfile, " %4d" , neigh); |
| 29852 | } |
| 29853 | fprintf(outfile, "\n" ); |
| 29854 | } else { |
| 29855 | // Output three vertices of this face; |
| 29856 | elist[index++] = pointmark(torg) - shift; |
| 29857 | elist[index++] = pointmark(tdest) - shift; |
| 29858 | if (b->order == 2) { // -o2 |
| 29859 | out->o2edgelist[o2index++] = pointmark(pp) - shift; |
| 29860 | } |
| 29861 | out->edgemarkerlist[i++] = marker; |
| 29862 | if (b->neighout > 1) { // -nn |
| 29863 | out->edgeadjtetlist[index2++] = neigh; |
| 29864 | } |
| 29865 | } |
| 29866 | edgenumber++; |
| 29867 | edgeloop.sh = shellfacetraverse(subsegs); |
| 29868 | } |
| 29869 | |
| 29870 | if (out == (tetgenio *) NULL) { |
| 29871 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 29872 | fclose(outfile); |
| 29873 | } |
| 29874 | } |
| 29875 | |
| 29876 | /////////////////////////////////////////////////////////////////////////////// |
| 29877 | // // |
| 29878 | // outneighbors() Output tet neighbors to a .neigh file or a structure. // |
| 29879 | // // |
| 29880 | /////////////////////////////////////////////////////////////////////////////// |
| 29881 | |
| 29882 | void tetgenmesh::outneighbors(tetgenio* out) |
| 29883 | { |
| 29884 | FILE *outfile = NULL; |
| 29885 | char neighborfilename[FILENAMESIZE]; |
| 29886 | int *nlist = NULL; |
| 29887 | int index = 0; |
| 29888 | triface tetloop, tetsym; |
| 29889 | int neighbori[4]; |
| 29890 | int firstindex; |
| 29891 | int elementnumber; |
| 29892 | long ntets; |
| 29893 | |
| 29894 | if (out == (tetgenio *) NULL) { |
| 29895 | strcpy(neighborfilename, b->outfilename); |
| 29896 | strcat(neighborfilename, ".neigh" ); |
| 29897 | } |
| 29898 | |
| 29899 | if (!b->quiet) { |
| 29900 | if (out == (tetgenio *) NULL) { |
| 29901 | printf("Writing %s.\n" , neighborfilename); |
| 29902 | } else { |
| 29903 | printf("Writing neighbors.\n" ); |
| 29904 | } |
| 29905 | } |
| 29906 | |
| 29907 | ntets = tetrahedrons->items - hullsize; |
| 29908 | |
| 29909 | if (out == (tetgenio *) NULL) { |
| 29910 | outfile = fopen(neighborfilename, "w" ); |
| 29911 | if (outfile == (FILE *) NULL) { |
| 29912 | printf("File I/O Error: Cannot create file %s.\n" , neighborfilename); |
| 29913 | terminatetetgen(this, 1); |
| 29914 | } |
| 29915 | // Number of tetrahedra, four faces per tetrahedron. |
| 29916 | fprintf(outfile, "%ld %d\n" , ntets, 4); |
| 29917 | } else { |
| 29918 | // Allocate memory for 'neighborlist'. |
| 29919 | out->neighborlist = new int[ntets * 4]; |
| 29920 | if (out->neighborlist == (int *) NULL) { |
| 29921 | printf("Error: Out of memory.\n" ); |
| 29922 | terminatetetgen(this, 1); |
| 29923 | } |
| 29924 | nlist = out->neighborlist; |
| 29925 | } |
| 29926 | |
| 29927 | // Determine the first index (0 or 1). |
| 29928 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
| 29929 | |
| 29930 | tetrahedrons->traversalinit(); |
| 29931 | tetloop.tet = tetrahedrontraverse(); |
| 29932 | elementnumber = firstindex; // in->firstnumber; |
| 29933 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 29934 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
| 29935 | fsym(tetloop, tetsym); |
| 29936 | if (!ishulltet(tetsym)) { |
| 29937 | neighbori[tetloop.ver] = elemindex(tetsym.tet); |
| 29938 | } else { |
| 29939 | neighbori[tetloop.ver] = -1; |
| 29940 | } |
| 29941 | } |
| 29942 | if (out == (tetgenio *) NULL) { |
| 29943 | // Tetrahedra number, neighboring tetrahedron numbers. |
| 29944 | fprintf(outfile, "%4d %4d %4d %4d %4d\n" , elementnumber, |
| 29945 | neighbori[0], neighbori[1], neighbori[2], neighbori[3]); |
| 29946 | } else { |
| 29947 | nlist[index++] = neighbori[0]; |
| 29948 | nlist[index++] = neighbori[1]; |
| 29949 | nlist[index++] = neighbori[2]; |
| 29950 | nlist[index++] = neighbori[3]; |
| 29951 | } |
| 29952 | tetloop.tet = tetrahedrontraverse(); |
| 29953 | elementnumber++; |
| 29954 | } |
| 29955 | |
| 29956 | if (out == (tetgenio *) NULL) { |
| 29957 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 29958 | fclose(outfile); |
| 29959 | } |
| 29960 | } |
| 29961 | |
| 29962 | /////////////////////////////////////////////////////////////////////////////// |
| 29963 | // // |
| 29964 | // outvoronoi() Output the Voronoi diagram to .v.node, .v.edge, v.face, // |
| 29965 | // and .v.cell. // |
| 29966 | // // |
| 29967 | // The Voronoi diagram is the geometric dual of the Delaunay triangulation. // |
| 29968 | // The Voronoi vertices are the circumcenters of Delaunay tetrahedra. Each // |
| 29969 | // Voronoi edge connects two Voronoi vertices at two sides of a common Dela- // |
| 29970 | // unay face. At a face of convex hull, it becomes a ray (goto the infinity).// |
| 29971 | // A Voronoi face is the convex hull of all Voronoi vertices around a common // |
| 29972 | // Delaunay edge. It is a closed polygon for any internal Delaunay edge. At a// |
| 29973 | // ridge, it is unbounded. Each Voronoi cell is the convex hull of all Vor- // |
| 29974 | // onoi vertices around a common Delaunay vertex. It is a polytope for any // |
| 29975 | // internal Delaunay vertex. It is an unbounded polyhedron for a Delaunay // |
| 29976 | // vertex belonging to the convex hull. // |
| 29977 | // // |
| 29978 | // NOTE: This routine is only used when the input is only a set of point. // |
| 29979 | // Comment: Special thanks to Victor Liu for finding and fixing few bugs. // |
| 29980 | // // |
| 29981 | /////////////////////////////////////////////////////////////////////////////// |
| 29982 | |
| 29983 | void tetgenmesh::outvoronoi(tetgenio* out) |
| 29984 | { |
| 29985 | FILE *outfile = NULL; |
| 29986 | char outfilename[FILENAMESIZE]; |
| 29987 | tetgenio::voroedge *vedge = NULL; |
| 29988 | tetgenio::vorofacet *vfacet = NULL; |
| 29989 | arraypool *tetlist, *ptlist; |
| 29990 | triface tetloop, worktet, spintet, firsttet; |
| 29991 | point pt[4], ploop, neipt; |
| 29992 | REAL ccent[3], infvec[3], vec1[3], vec2[3], L; |
| 29993 | long ntets, faces, edges; |
| 29994 | int *indexarray, *fidxs, *eidxs; |
| 29995 | int arraysize, *vertarray = NULL; |
| 29996 | int vpointcount, vedgecount, vfacecount, tcount; |
| 29997 | int ishullvert, ishullface; |
| 29998 | int index, shift, end1, end2; |
| 29999 | int i, j; |
| 30000 | |
| 30001 | int t1ver; // used by fsymself() |
| 30002 | |
| 30003 | // Output Voronoi vertices to .v.node file. |
| 30004 | if (out == (tetgenio *) NULL) { |
| 30005 | strcpy(outfilename, b->outfilename); |
| 30006 | strcat(outfilename, ".v.node" ); |
| 30007 | } |
| 30008 | |
| 30009 | if (!b->quiet) { |
| 30010 | if (out == (tetgenio *) NULL) { |
| 30011 | printf("Writing %s.\n" , outfilename); |
| 30012 | } else { |
| 30013 | printf("Writing Voronoi vertices.\n" ); |
| 30014 | } |
| 30015 | } |
| 30016 | |
| 30017 | // Determine the first index (0 or 1). |
| 30018 | shift = (b->zeroindex ? 0 : in->firstnumber); |
| 30019 | |
| 30020 | // Each face and edge of the tetrahedral mesh will be indexed for indexing |
| 30021 | // the Voronoi edges and facets. Indices of faces and edges are saved in |
| 30022 | // each tetrahedron (including hull tets). |
| 30023 | |
| 30024 | // Allocate the total space once. |
| 30025 | indexarray = new int[tetrahedrons->items * 10]; |
| 30026 | |
| 30027 | // Allocate space (10 integers) into each tetrahedron. It re-uses the slot |
| 30028 | // for element markers, flags. |
| 30029 | i = 0; |
| 30030 | tetrahedrons->traversalinit(); |
| 30031 | tetloop.tet = alltetrahedrontraverse(); |
| 30032 | while (tetloop.tet != NULL) { |
| 30033 | tetloop.tet[11] = (tetrahedron) &(indexarray[i * 10]); |
| 30034 | i++; |
| 30035 | tetloop.tet = alltetrahedrontraverse(); |
| 30036 | } |
| 30037 | |
| 30038 | // The number of tetrahedra (excluding hull tets) (Voronoi vertices). |
| 30039 | ntets = tetrahedrons->items - hullsize; |
| 30040 | // The number of Delaunay faces (Voronoi edges). |
| 30041 | faces = (4l * ntets + hullsize) / 2l; |
| 30042 | // The number of Delaunay edges (Voronoi faces). |
| 30043 | long vsize = points->items - dupverts - unuverts; |
| 30044 | if (b->weighted) vsize -= nonregularcount; |
| 30045 | edges = vsize + faces - ntets - 1; |
| 30046 | |
| 30047 | if (out == (tetgenio *) NULL) { |
| 30048 | outfile = fopen(outfilename, "w" ); |
| 30049 | if (outfile == (FILE *) NULL) { |
| 30050 | printf("File I/O Error: Cannot create file %s.\n" , outfilename); |
| 30051 | terminatetetgen(this, 3); |
| 30052 | } |
| 30053 | // Number of voronoi points, 3 dim, no attributes, no marker. |
| 30054 | fprintf(outfile, "%ld 3 0 0\n" , ntets); |
| 30055 | } else { |
| 30056 | // Allocate space for 'vpointlist'. |
| 30057 | out->numberofvpoints = (int) ntets; |
| 30058 | out->vpointlist = new REAL[out->numberofvpoints * 3]; |
| 30059 | if (out->vpointlist == (REAL *) NULL) { |
| 30060 | terminatetetgen(this, 1); |
| 30061 | } |
| 30062 | } |
| 30063 | |
| 30064 | // Output Voronoi vertices (the circumcenters of tetrahedra). |
| 30065 | tetrahedrons->traversalinit(); |
| 30066 | tetloop.tet = tetrahedrontraverse(); |
| 30067 | vpointcount = 0; // The (internal) v-index always starts from 0. |
| 30068 | index = 0; |
| 30069 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 30070 | for (i = 0; i < 4; i++) { |
| 30071 | pt[i] = (point) tetloop.tet[4 + i]; |
| 30072 | setpoint2tet(pt[i], encode(tetloop)); |
| 30073 | } |
| 30074 | if (b->weighted) { |
| 30075 | orthosphere(pt[0], pt[1], pt[2], pt[3], pt[0][3], pt[1][3], pt[2][3], |
| 30076 | pt[3][3], ccent, NULL); |
| 30077 | } else { |
| 30078 | circumsphere(pt[0], pt[1], pt[2], pt[3], ccent, NULL); |
| 30079 | } |
| 30080 | if (out == (tetgenio *) NULL) { |
| 30081 | fprintf(outfile, "%4d %16.8e %16.8e %16.8e\n" , vpointcount + shift, |
| 30082 | ccent[0], ccent[1], ccent[2]); |
| 30083 | } else { |
| 30084 | out->vpointlist[index++] = ccent[0]; |
| 30085 | out->vpointlist[index++] = ccent[1]; |
| 30086 | out->vpointlist[index++] = ccent[2]; |
| 30087 | } |
| 30088 | setelemindex(tetloop.tet, vpointcount); |
| 30089 | vpointcount++; |
| 30090 | tetloop.tet = tetrahedrontraverse(); |
| 30091 | } |
| 30092 | |
| 30093 | if (out == (tetgenio *) NULL) { |
| 30094 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 30095 | fclose(outfile); |
| 30096 | } |
| 30097 | |
| 30098 | // Output Voronoi edges to .v.edge file. |
| 30099 | if (out == (tetgenio *) NULL) { |
| 30100 | strcpy(outfilename, b->outfilename); |
| 30101 | strcat(outfilename, ".v.edge" ); |
| 30102 | } |
| 30103 | |
| 30104 | if (!b->quiet) { |
| 30105 | if (out == (tetgenio *) NULL) { |
| 30106 | printf("Writing %s.\n" , outfilename); |
| 30107 | } else { |
| 30108 | printf("Writing Voronoi edges.\n" ); |
| 30109 | } |
| 30110 | } |
| 30111 | |
| 30112 | if (out == (tetgenio *) NULL) { |
| 30113 | outfile = fopen(outfilename, "w" ); |
| 30114 | if (outfile == (FILE *) NULL) { |
| 30115 | printf("File I/O Error: Cannot create file %s.\n" , outfilename); |
| 30116 | terminatetetgen(this, 3); |
| 30117 | } |
| 30118 | // Number of Voronoi edges, no marker. |
| 30119 | fprintf(outfile, "%ld 0\n" , faces); |
| 30120 | } else { |
| 30121 | // Allocate space for 'vpointlist'. |
| 30122 | out->numberofvedges = (int) faces; |
| 30123 | out->vedgelist = new tetgenio::voroedge[out->numberofvedges]; |
| 30124 | } |
| 30125 | |
| 30126 | // Output the Voronoi edges. |
| 30127 | tetrahedrons->traversalinit(); |
| 30128 | tetloop.tet = tetrahedrontraverse(); |
| 30129 | vedgecount = 0; // D-Face (V-edge) index (from zero). |
| 30130 | index = 0; // The Delaunay-face index. |
| 30131 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 30132 | // Count the number of Voronoi edges. Look at the four faces of each |
| 30133 | // tetrahedron. Count the face if the tetrahedron's index is |
| 30134 | // smaller than its neighbor's or the neighbor is outside. |
| 30135 | end1 = elemindex(tetloop.tet); |
| 30136 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
| 30137 | fsym(tetloop, worktet); |
| 30138 | if (ishulltet(worktet) || |
| 30139 | (elemindex(tetloop.tet) < elemindex(worktet.tet))) { |
| 30140 | // Found a Voronoi edge. Operate on it. |
| 30141 | if (out == (tetgenio *) NULL) { |
| 30142 | fprintf(outfile, "%4d %4d" , vedgecount + shift, end1 + shift); |
| 30143 | } else { |
| 30144 | vedge = &(out->vedgelist[index++]); |
| 30145 | vedge->v1 = end1 + shift; |
| 30146 | } |
| 30147 | if (!ishulltet(worktet)) { |
| 30148 | end2 = elemindex(worktet.tet); |
| 30149 | } else { |
| 30150 | end2 = -1; |
| 30151 | } |
| 30152 | // Note that end2 may be -1 (worktet.tet is outside). |
| 30153 | if (end2 == -1) { |
| 30154 | // Calculate the out normal of this hull face. |
| 30155 | pt[0] = dest(worktet); |
| 30156 | pt[1] = org(worktet); |
| 30157 | pt[2] = apex(worktet); |
| 30158 | for (j = 0; j < 3; j++) vec1[j] = pt[1][j] - pt[0][j]; |
| 30159 | for (j = 0; j < 3; j++) vec2[j] = pt[2][j] - pt[0][j]; |
| 30160 | cross(vec1, vec2, infvec); |
| 30161 | // Normalize it. |
| 30162 | L = sqrt(infvec[0] * infvec[0] + infvec[1] * infvec[1] |
| 30163 | + infvec[2] * infvec[2]); |
| 30164 | if (L > 0) for (j = 0; j < 3; j++) infvec[j] /= L; |
| 30165 | if (out == (tetgenio *) NULL) { |
| 30166 | fprintf(outfile, " -1" ); |
| 30167 | fprintf(outfile, " %g %g %g\n" , infvec[0], infvec[1], infvec[2]); |
| 30168 | } else { |
| 30169 | vedge->v2 = -1; |
| 30170 | vedge->vnormal[0] = infvec[0]; |
| 30171 | vedge->vnormal[1] = infvec[1]; |
| 30172 | vedge->vnormal[2] = infvec[2]; |
| 30173 | } |
| 30174 | } else { |
| 30175 | if (out == (tetgenio *) NULL) { |
| 30176 | fprintf(outfile, " %4d\n" , end2 + shift); |
| 30177 | } else { |
| 30178 | vedge->v2 = end2 + shift; |
| 30179 | vedge->vnormal[0] = 0.0; |
| 30180 | vedge->vnormal[1] = 0.0; |
| 30181 | vedge->vnormal[2] = 0.0; |
| 30182 | } |
| 30183 | } |
| 30184 | // Save the V-edge index in this tet and its neighbor. |
| 30185 | fidxs = (int *) (tetloop.tet[11]); |
| 30186 | fidxs[tetloop.ver] = vedgecount; |
| 30187 | fidxs = (int *) (worktet.tet[11]); |
| 30188 | fidxs[worktet.ver & 3] = vedgecount; |
| 30189 | vedgecount++; |
| 30190 | } |
| 30191 | } // tetloop.ver |
| 30192 | tetloop.tet = tetrahedrontraverse(); |
| 30193 | } |
| 30194 | |
| 30195 | if (out == (tetgenio *) NULL) { |
| 30196 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 30197 | fclose(outfile); |
| 30198 | } |
| 30199 | |
| 30200 | // Output Voronoi faces to .v.face file. |
| 30201 | if (out == (tetgenio *) NULL) { |
| 30202 | strcpy(outfilename, b->outfilename); |
| 30203 | strcat(outfilename, ".v.face" ); |
| 30204 | } |
| 30205 | |
| 30206 | if (!b->quiet) { |
| 30207 | if (out == (tetgenio *) NULL) { |
| 30208 | printf("Writing %s.\n" , outfilename); |
| 30209 | } else { |
| 30210 | printf("Writing Voronoi faces.\n" ); |
| 30211 | } |
| 30212 | } |
| 30213 | |
| 30214 | if (out == (tetgenio *) NULL) { |
| 30215 | outfile = fopen(outfilename, "w" ); |
| 30216 | if (outfile == (FILE *) NULL) { |
| 30217 | printf("File I/O Error: Cannot create file %s.\n" , outfilename); |
| 30218 | terminatetetgen(this, 3); |
| 30219 | } |
| 30220 | // Number of Voronoi faces. |
| 30221 | fprintf(outfile, "%ld 0\n" , edges); |
| 30222 | } else { |
| 30223 | out->numberofvfacets = edges; |
| 30224 | out->vfacetlist = new tetgenio::vorofacet[out->numberofvfacets]; |
| 30225 | if (out->vfacetlist == (tetgenio::vorofacet *) NULL) { |
| 30226 | terminatetetgen(this, 1); |
| 30227 | } |
| 30228 | } |
| 30229 | |
| 30230 | // Output the Voronoi facets. |
| 30231 | tetrahedrons->traversalinit(); |
| 30232 | tetloop.tet = tetrahedrontraverse(); |
| 30233 | vfacecount = 0; // D-edge (V-facet) index (from zero). |
| 30234 | while (tetloop.tet != (tetrahedron *) NULL) { |
| 30235 | // Count the number of Voronoi faces. Look at the six edges of each |
| 30236 | // tetrahedron. Count the edge only if the tetrahedron's index is |
| 30237 | // smaller than those of all other tetrahedra that share the edge. |
| 30238 | worktet.tet = tetloop.tet; |
| 30239 | for (i = 0; i < 6; i++) { |
| 30240 | worktet.ver = edge2ver[i]; |
| 30241 | // Count the number of faces at this edge. If the edge is a hull edge, |
| 30242 | // the face containing dummypoint is also counted. |
| 30243 | //ishulledge = 0; // Is it a hull edge. |
| 30244 | tcount = 0; |
| 30245 | firsttet = worktet; |
| 30246 | spintet = worktet; |
| 30247 | while (1) { |
| 30248 | tcount++; |
| 30249 | fnextself(spintet); |
| 30250 | if (spintet.tet == worktet.tet) break; |
| 30251 | if (!ishulltet(spintet)) { |
| 30252 | if (elemindex(spintet.tet) < elemindex(worktet.tet)) break; |
| 30253 | } else { |
| 30254 | //ishulledge = 1; |
| 30255 | if (apex(spintet) == dummypoint) { |
| 30256 | // We make this V-edge appear in the end of the edge list. |
| 30257 | fnext(spintet, firsttet); |
| 30258 | } |
| 30259 | } |
| 30260 | } // while (1) |
| 30261 | if (spintet.tet == worktet.tet) { |
| 30262 | // Found a Voronoi facet. Operate on it. |
| 30263 | pt[0] = org(worktet); |
| 30264 | pt[1] = dest(worktet); |
| 30265 | end1 = pointmark(pt[0]) - in->firstnumber; // V-cell index |
| 30266 | end2 = pointmark(pt[1]) - in->firstnumber; |
| 30267 | if (out == (tetgenio *) NULL) { |
| 30268 | fprintf(outfile, "%4d %4d %4d %-2d " , vfacecount + shift, |
| 30269 | end1 + shift, end2 + shift, tcount); |
| 30270 | } else { |
| 30271 | vfacet = &(out->vfacetlist[vfacecount]); |
| 30272 | vfacet->c1 = end1 + shift; |
| 30273 | vfacet->c2 = end2 + shift; |
| 30274 | vfacet->elist = new int[tcount + 1]; |
| 30275 | vfacet->elist[0] = tcount; |
| 30276 | index = 1; |
| 30277 | } |
| 30278 | // Output V-edges of this V-facet. |
| 30279 | spintet = firsttet; //worktet; |
| 30280 | while (1) { |
| 30281 | fidxs = (int *) (spintet.tet[11]); |
| 30282 | if (apex(spintet) != dummypoint) { |
| 30283 | vedgecount = fidxs[spintet.ver & 3]; |
| 30284 | ishullface = 0; |
| 30285 | } else { |
| 30286 | ishullface = 1; // It's not a real face. |
| 30287 | } |
| 30288 | if (out == (tetgenio *) NULL) { |
| 30289 | fprintf(outfile, " %d" , !ishullface ? (vedgecount + shift) : -1); |
| 30290 | } else { |
| 30291 | vfacet->elist[index++] = !ishullface ? (vedgecount + shift) : -1; |
| 30292 | } |
| 30293 | // Save the V-facet index in this tet at this edge. |
| 30294 | eidxs = &(fidxs[4]); |
| 30295 | eidxs[ver2edge[spintet.ver]] = vfacecount; |
| 30296 | // Go to the next face. |
| 30297 | fnextself(spintet); |
| 30298 | if (spintet.tet == firsttet.tet) break; |
| 30299 | } // while (1) |
| 30300 | if (out == (tetgenio *) NULL) { |
| 30301 | fprintf(outfile, "\n" ); |
| 30302 | } |
| 30303 | vfacecount++; |
| 30304 | } // if (spintet.tet == worktet.tet) |
| 30305 | } // if (i = 0; i < 6; i++) |
| 30306 | tetloop.tet = tetrahedrontraverse(); |
| 30307 | } |
| 30308 | |
| 30309 | if (out == (tetgenio *) NULL) { |
| 30310 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 30311 | fclose(outfile); |
| 30312 | } |
| 30313 | |
| 30314 | // Output Voronoi cells to .v.cell file. |
| 30315 | if (out == (tetgenio *) NULL) { |
| 30316 | strcpy(outfilename, b->outfilename); |
| 30317 | strcat(outfilename, ".v.cell" ); |
| 30318 | } |
| 30319 | |
| 30320 | if (!b->quiet) { |
| 30321 | if (out == (tetgenio *) NULL) { |
| 30322 | printf("Writing %s.\n" , outfilename); |
| 30323 | } else { |
| 30324 | printf("Writing Voronoi cells.\n" ); |
| 30325 | } |
| 30326 | } |
| 30327 | |
| 30328 | if (out == (tetgenio *) NULL) { |
| 30329 | outfile = fopen(outfilename, "w" ); |
| 30330 | if (outfile == (FILE *) NULL) { |
| 30331 | printf("File I/O Error: Cannot create file %s.\n" , outfilename); |
| 30332 | terminatetetgen(this, 3); |
| 30333 | } |
| 30334 | // Number of Voronoi cells. |
| 30335 | fprintf(outfile, "%ld\n" , points->items - unuverts - dupverts); |
| 30336 | } else { |
| 30337 | out->numberofvcells = points->items - unuverts - dupverts; |
| 30338 | out->vcelllist = new int*[out->numberofvcells]; |
| 30339 | if (out->vcelllist == (int **) NULL) { |
| 30340 | terminatetetgen(this, 1); |
| 30341 | } |
| 30342 | } |
| 30343 | |
| 30344 | // Output Voronoi cells. |
| 30345 | tetlist = cavetetlist; |
| 30346 | ptlist = cavetetvertlist; |
| 30347 | points->traversalinit(); |
| 30348 | ploop = pointtraverse(); |
| 30349 | vpointcount = 0; |
| 30350 | while (ploop != (point) NULL) { |
| 30351 | if ((pointtype(ploop) != UNUSEDVERTEX) && |
| 30352 | (pointtype(ploop) != DUPLICATEDVERTEX) && |
| 30353 | (pointtype(ploop) != NREGULARVERTEX)) { |
| 30354 | getvertexstar(1, ploop, tetlist, ptlist, NULL); |
| 30355 | // Mark all vertices. Check if it is a hull vertex. |
| 30356 | ishullvert = 0; |
| 30357 | for (i = 0; i < ptlist->objects; i++) { |
| 30358 | neipt = * (point *) fastlookup(ptlist, i); |
| 30359 | if (neipt != dummypoint) { |
| 30360 | pinfect(neipt); |
| 30361 | } else { |
| 30362 | ishullvert = 1; |
| 30363 | } |
| 30364 | } |
| 30365 | tcount = (int) ptlist->objects; |
| 30366 | if (out == (tetgenio *) NULL) { |
| 30367 | fprintf(outfile, "%4d %-2d " , vpointcount + shift, tcount); |
| 30368 | } else { |
| 30369 | arraysize = tcount; |
| 30370 | vertarray = new int[arraysize + 1]; |
| 30371 | out->vcelllist[vpointcount] = vertarray; |
| 30372 | vertarray[0] = tcount; |
| 30373 | index = 1; |
| 30374 | } |
| 30375 | // List Voronoi facets bounding this cell. |
| 30376 | for (i = 0; i < tetlist->objects; i++) { |
| 30377 | worktet = * (triface *) fastlookup(tetlist, i); |
| 30378 | // Let 'worktet' be [a,b,c,d] where d = ploop. |
| 30379 | for (j = 0; j < 3; j++) { |
| 30380 | neipt = org(worktet); // neipt is a, or b, or c |
| 30381 | // Skip the dummypoint. |
| 30382 | if (neipt != dummypoint) { |
| 30383 | if (pinfected(neipt)) { |
| 30384 | // It's not processed yet. |
| 30385 | puninfect(neipt); |
| 30386 | // Go to the DT edge [a,d], or [b,d], or [c,d]. |
| 30387 | esym(worktet, spintet); |
| 30388 | enextself(spintet); |
| 30389 | // Get the V-face dual to this edge. |
| 30390 | eidxs = (int *) spintet.tet[11]; |
| 30391 | vfacecount = eidxs[4 + ver2edge[spintet.ver]]; |
| 30392 | if (out == (tetgenio *) NULL) { |
| 30393 | fprintf(outfile, " %d" , vfacecount + shift); |
| 30394 | } else { |
| 30395 | vertarray[index++] = vfacecount + shift; |
| 30396 | } |
| 30397 | } |
| 30398 | } |
| 30399 | enextself(worktet); |
| 30400 | } // j |
| 30401 | } // i |
| 30402 | if (ishullvert) { |
| 30403 | // Add a hull facet (-1) to the facet list. |
| 30404 | if (out == (tetgenio *) NULL) { |
| 30405 | fprintf(outfile, " -1" ); |
| 30406 | } else { |
| 30407 | vertarray[index++] = -1; |
| 30408 | } |
| 30409 | } |
| 30410 | if (out == (tetgenio *) NULL) { |
| 30411 | fprintf(outfile, "\n" ); |
| 30412 | } |
| 30413 | tetlist->restart(); |
| 30414 | ptlist->restart(); |
| 30415 | vpointcount++; |
| 30416 | } |
| 30417 | ploop = pointtraverse(); |
| 30418 | } |
| 30419 | |
| 30420 | // Delete the space for face/edge indices. |
| 30421 | delete [] indexarray; |
| 30422 | |
| 30423 | if (out == (tetgenio *) NULL) { |
| 30424 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 30425 | fclose(outfile); |
| 30426 | } |
| 30427 | } |
| 30428 | |
| 30429 | /////////////////////////////////////////////////////////////////////////////// |
| 30430 | // // |
| 30431 | // outsmesh() Write surface mesh to a .smesh file, which can be read and // |
| 30432 | // tetrahedralized by TetGen. // |
| 30433 | // // |
| 30434 | // You can specify a filename (without suffix) in 'smfilename'. If you don't // |
| 30435 | // supply a filename (let smfilename be NULL), the default name stored in // |
| 30436 | // 'tetgenbehavior' will be used. // |
| 30437 | // // |
| 30438 | /////////////////////////////////////////////////////////////////////////////// |
| 30439 | |
| 30440 | void tetgenmesh::outsmesh(char* smfilename) |
| 30441 | { |
| 30442 | FILE *outfile; |
| 30443 | char nodfilename[FILENAMESIZE]; |
| 30444 | char smefilename[FILENAMESIZE]; |
| 30445 | face faceloop; |
| 30446 | point p1, p2, p3; |
| 30447 | int firstindex, shift; |
| 30448 | int bmark; |
| 30449 | int faceid, marker; |
| 30450 | int i; |
| 30451 | |
| 30452 | if (smfilename != (char *) NULL && smfilename[0] != '\0') { |
| 30453 | strcpy(smefilename, smfilename); |
| 30454 | } else if (b->outfilename[0] != '\0') { |
| 30455 | strcpy(smefilename, b->outfilename); |
| 30456 | } else { |
| 30457 | strcpy(smefilename, "unnamed" ); |
| 30458 | } |
| 30459 | strcpy(nodfilename, smefilename); |
| 30460 | strcat(smefilename, ".smesh" ); |
| 30461 | strcat(nodfilename, ".node" ); |
| 30462 | |
| 30463 | if (!b->quiet) { |
| 30464 | printf("Writing %s.\n" , smefilename); |
| 30465 | } |
| 30466 | outfile = fopen(smefilename, "w" ); |
| 30467 | if (outfile == (FILE *) NULL) { |
| 30468 | printf("File I/O Error: Cannot create file %s.\n" , smefilename); |
| 30469 | return; |
| 30470 | } |
| 30471 | |
| 30472 | // Determine the first index (0 or 1). |
| 30473 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
| 30474 | shift = 0; // Default no shiftment. |
| 30475 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
| 30476 | shift = 1; // Shift the output indices by 1. |
| 30477 | } |
| 30478 | |
| 30479 | fprintf(outfile, "# %s. TetGen's input file.\n" , smefilename); |
| 30480 | fprintf(outfile, "\n# part 1: node list.\n" ); |
| 30481 | fprintf(outfile, "0 3 0 0 # nodes are found in %s.\n" , nodfilename); |
| 30482 | |
| 30483 | marker = 0; // avoid compile warning. |
| 30484 | bmark = !b->nobound && in->facetmarkerlist; |
| 30485 | |
| 30486 | fprintf(outfile, "\n# part 2: facet list.\n" ); |
| 30487 | // Number of facets, boundary marker. |
| 30488 | fprintf(outfile, "%ld %d\n" , subfaces->items, bmark); |
| 30489 | |
| 30490 | subfaces->traversalinit(); |
| 30491 | faceloop.sh = shellfacetraverse(subfaces); |
| 30492 | while (faceloop.sh != (shellface *) NULL) { |
| 30493 | p1 = sorg(faceloop); |
| 30494 | p2 = sdest(faceloop); |
| 30495 | p3 = sapex(faceloop); |
| 30496 | if (bmark) { |
| 30497 | faceid = shellmark(faceloop) - 1; |
| 30498 | if (faceid >= 0) { |
| 30499 | marker = in->facetmarkerlist[faceid]; |
| 30500 | } else { |
| 30501 | marker = 0; // This subface must be added manually later. |
| 30502 | } |
| 30503 | } |
| 30504 | fprintf(outfile, "3 %4d %4d %4d" , pointmark(p1) - shift, |
| 30505 | pointmark(p2) - shift, pointmark(p3) - shift); |
| 30506 | if (bmark) { |
| 30507 | fprintf(outfile, " %d" , marker); |
| 30508 | } |
| 30509 | fprintf(outfile, "\n" ); |
| 30510 | faceloop.sh = shellfacetraverse(subfaces); |
| 30511 | } |
| 30512 | |
| 30513 | // Copy input holelist. |
| 30514 | fprintf(outfile, "\n# part 3: hole list.\n" ); |
| 30515 | fprintf(outfile, "%d\n" , in->numberofholes); |
| 30516 | for (i = 0; i < in->numberofholes; i++) { |
| 30517 | fprintf(outfile, "%d %g %g %g\n" , i + in->firstnumber, |
| 30518 | in->holelist[i * 3], in->holelist[i * 3 + 1], |
| 30519 | in->holelist[i * 3 + 2]); |
| 30520 | } |
| 30521 | |
| 30522 | // Copy input regionlist. |
| 30523 | fprintf(outfile, "\n# part 4: region list.\n" ); |
| 30524 | fprintf(outfile, "%d\n" , in->numberofregions); |
| 30525 | for (i = 0; i < in->numberofregions; i++) { |
| 30526 | fprintf(outfile, "%d %g %g %g %d %g\n" , i + in->firstnumber, |
| 30527 | in->regionlist[i * 5], in->regionlist[i * 5 + 1], |
| 30528 | in->regionlist[i * 5 + 2], (int) in->regionlist[i * 5 + 3], |
| 30529 | in->regionlist[i * 5 + 4]); |
| 30530 | } |
| 30531 | |
| 30532 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
| 30533 | fclose(outfile); |
| 30534 | } |
| 30535 | |
| 30536 | /////////////////////////////////////////////////////////////////////////////// |
| 30537 | // // |
| 30538 | // outmesh2medit() Write mesh to a .mesh file, which can be read and // |
| 30539 | // rendered by Medit (a free mesh viewer from INRIA). // |
| 30540 | // // |
| 30541 | // You can specify a filename (without suffix) in 'mfilename'. If you don't // |
| 30542 | // supply a filename (let mfilename be NULL), the default name stored in // |
| 30543 | // 'tetgenbehavior' will be used. The output file will have the suffix .mesh.// |
| 30544 | // // |
| 30545 | /////////////////////////////////////////////////////////////////////////////// |
| 30546 | |
| 30547 | void tetgenmesh::outmesh2medit(char* mfilename) |
| 30548 | { |
| 30549 | FILE *outfile; |
| 30550 | char mefilename[FILENAMESIZE]; |
| 30551 | tetrahedron* tetptr; |
| 30552 | triface tface, tsymface; |
| 30553 | face segloop, checkmark; |
| 30554 | point ptloop, p1, p2, p3, p4; |
| 30555 | long ntets, faces; |
| 30556 | int pointnumber; |
| 30557 | int faceid, marker; |
| 30558 | int i; |
| 30559 | |
| 30560 | if (mfilename != (char *) NULL && mfilename[0] != '\0') { |
| 30561 | strcpy(mefilename, mfilename); |
| 30562 | } else if (b->outfilename[0] != '\0') { |
| 30563 | strcpy(mefilename, b->outfilename); |
| 30564 | } else { |
| 30565 | strcpy(mefilename, "unnamed" ); |
| 30566 | } |
| 30567 | strcat(mefilename, ".mesh" ); |
| 30568 | |
| 30569 | if (!b->quiet) { |
| 30570 | printf("Writing %s.\n" , mefilename); |
| 30571 | } |
| 30572 | outfile = fopen(mefilename, "w" ); |
| 30573 | if (outfile == (FILE *) NULL) { |
| 30574 | printf("File I/O Error: Cannot create file %s.\n" , mefilename); |
| 30575 | return; |
| 30576 | } |
| 30577 | |
| 30578 | fprintf(outfile, "MeshVersionFormatted 1\n" ); |
| 30579 | fprintf(outfile, "\n" ); |
| 30580 | fprintf(outfile, "Dimension\n" ); |
| 30581 | fprintf(outfile, "3\n" ); |
| 30582 | fprintf(outfile, "\n" ); |
| 30583 | |
| 30584 | fprintf(outfile, "\n# Set of mesh vertices\n" ); |
| 30585 | fprintf(outfile, "Vertices\n" ); |
| 30586 | fprintf(outfile, "%ld\n" , points->items); |
| 30587 | |
| 30588 | points->traversalinit(); |
| 30589 | ptloop = pointtraverse(); |
| 30590 | pointnumber = 1; // Medit need start number form 1. |
| 30591 | while (ptloop != (point) NULL) { |
| 30592 | // Point coordinates. |
| 30593 | fprintf(outfile, "%.17g %.17g %.17g" , ptloop[0], ptloop[1], ptloop[2]); |
| 30594 | if (in->numberofpointattributes > 0) { |
| 30595 | // Write an attribute, ignore others if more than one. |
| 30596 | fprintf(outfile, " %.17g\n" , ptloop[3]); |
| 30597 | } else { |
| 30598 | fprintf(outfile, " 0\n" ); |
| 30599 | } |
| 30600 | setpointmark(ptloop, pointnumber); |
| 30601 | ptloop = pointtraverse(); |
| 30602 | pointnumber++; |
| 30603 | } |
| 30604 | |
| 30605 | // Compute the number of faces. |
| 30606 | ntets = tetrahedrons->items - hullsize; |
| 30607 | faces = (ntets * 4l + hullsize) / 2l; |
| 30608 | |
| 30609 | fprintf(outfile, "\n# Set of Triangles\n" ); |
| 30610 | fprintf(outfile, "Triangles\n" ); |
| 30611 | fprintf(outfile, "%ld\n" , faces); |
| 30612 | |
| 30613 | tetrahedrons->traversalinit(); |
| 30614 | tface.tet = tetrahedrontraverse(); |
| 30615 | while (tface.tet != (tetrahedron *) NULL) { |
| 30616 | for (tface.ver = 0; tface.ver < 4; tface.ver ++) { |
| 30617 | fsym(tface, tsymface); |
| 30618 | if (ishulltet(tsymface) || |
| 30619 | (elemindex(tface.tet) < elemindex(tsymface.tet))) { |
| 30620 | p1 = org (tface); |
| 30621 | p2 = dest(tface); |
| 30622 | p3 = apex(tface); |
| 30623 | fprintf(outfile, "%5d %5d %5d" , |
| 30624 | pointmark(p1), pointmark(p2), pointmark(p3)); |
| 30625 | // Check if it is a subface. |
| 30626 | tspivot(tface, checkmark); |
| 30627 | if (checkmark.sh == NULL) { |
| 30628 | marker = 0; // It is an inner face. It's marker is 0. |
| 30629 | } else { |
| 30630 | if (in->facetmarkerlist) { |
| 30631 | // The facet marker is given, get it. |
| 30632 | faceid = shellmark(checkmark) - 1; |
| 30633 | marker = in->facetmarkerlist[faceid]; |
| 30634 | } else { |
| 30635 | marker = 1; // The default marker for subface is 1. |
| 30636 | } |
| 30637 | } |
| 30638 | fprintf(outfile, " %d\n" , marker); |
| 30639 | } |
| 30640 | } |
| 30641 | tface.tet = tetrahedrontraverse(); |
| 30642 | } |
| 30643 | |
| 30644 | fprintf(outfile, "\n# Set of Tetrahedra\n" ); |
| 30645 | fprintf(outfile, "Tetrahedra\n" ); |
| 30646 | fprintf(outfile, "%ld\n" , ntets); |
| 30647 | |
| 30648 | tetrahedrons->traversalinit(); |
| 30649 | tetptr = tetrahedrontraverse(); |
| 30650 | while (tetptr != (tetrahedron *) NULL) { |
| 30651 | if (!b->reversetetori) { |
| 30652 | p1 = (point) tetptr[4]; |
| 30653 | p2 = (point) tetptr[5]; |
| 30654 | } else { |
| 30655 | p1 = (point) tetptr[5]; |
| 30656 | p2 = (point) tetptr[4]; |
| 30657 | } |
| 30658 | p3 = (point) tetptr[6]; |
| 30659 | p4 = (point) tetptr[7]; |
| 30660 | fprintf(outfile, "%5d %5d %5d %5d" , |
| 30661 | pointmark(p1), pointmark(p2), pointmark(p3), pointmark(p4)); |
| 30662 | if (numelemattrib > 0) { |
| 30663 | fprintf(outfile, " %.17g" , elemattribute(tetptr, 0)); |
| 30664 | } else { |
| 30665 | fprintf(outfile, " 0" ); |
| 30666 | } |
| 30667 | fprintf(outfile, "\n" ); |
| 30668 | tetptr = tetrahedrontraverse(); |
| 30669 | } |
| 30670 | |
| 30671 | fprintf(outfile, "\nCorners\n" ); |
| 30672 | fprintf(outfile, "%d\n" , in->numberofpoints); |
| 30673 | |
| 30674 | for (i = 0; i < in->numberofpoints; i++) { |
| 30675 | fprintf(outfile, "%4d\n" , i + 1); |
| 30676 | } |
| 30677 | |
| 30678 | if (b->plc || b->refine) { |
| 30679 | fprintf(outfile, "\nEdges\n" ); |
| 30680 | fprintf(outfile, "%ld\n" , subsegs->items); |
| 30681 | |
| 30682 | subsegs->traversalinit(); |
| 30683 | segloop.sh = shellfacetraverse(subsegs); |
| 30684 | while (segloop.sh != (shellface *) NULL) { |
| 30685 | p1 = sorg(segloop); |
| 30686 | p2 = sdest(segloop); |
| 30687 | fprintf(outfile, "%5d %5d" , pointmark(p1), pointmark(p2)); |
| 30688 | marker = shellmark(segloop); |
| 30689 | fprintf(outfile, " %d\n" , marker); |
| 30690 | segloop.sh = shellfacetraverse(subsegs); |
| 30691 | } |
| 30692 | } |
| 30693 | |
| 30694 | fprintf(outfile, "\nEnd\n" ); |
| 30695 | fclose(outfile); |
| 30696 | } |
| 30697 | |
| 30698 | |
| 30699 | |
| 30700 | /////////////////////////////////////////////////////////////////////////////// |
| 30701 | // // |
| 30702 | // outmesh2vtk() Save mesh to file in VTK Legacy format. // |
| 30703 | // // |
| 30704 | // This function was contributed by Bryn Llyod from ETH, 2007. // |
| 30705 | // // |
| 30706 | /////////////////////////////////////////////////////////////////////////////// |
| 30707 | |
| 30708 | void tetgenmesh::outmesh2vtk(char* ofilename) |
| 30709 | { |
| 30710 | FILE *outfile; |
| 30711 | char vtkfilename[FILENAMESIZE]; |
| 30712 | point pointloop, p1, p2, p3, p4; |
| 30713 | tetrahedron* tptr; |
| 30714 | double x, y, z; |
| 30715 | int n1, n2, n3, n4; |
| 30716 | int nnodes = 4; |
| 30717 | int celltype = 10; |
| 30718 | |
| 30719 | if (b->order == 2) { |
| 30720 | printf(" Write VTK not implemented for order 2 elements \n" ); |
| 30721 | return; |
| 30722 | } |
| 30723 | |
| 30724 | int NEL = tetrahedrons->items - hullsize; |
| 30725 | int NN = points->items; |
| 30726 | |
| 30727 | if (ofilename != (char *) NULL && ofilename[0] != '\0') { |
| 30728 | strcpy(vtkfilename, ofilename); |
| 30729 | } else if (b->outfilename[0] != '\0') { |
| 30730 | strcpy(vtkfilename, b->outfilename); |
| 30731 | } else { |
| 30732 | strcpy(vtkfilename, "unnamed" ); |
| 30733 | } |
| 30734 | strcat(vtkfilename, ".vtk" ); |
| 30735 | |
| 30736 | if (!b->quiet) { |
| 30737 | printf("Writing %s.\n" , vtkfilename); |
| 30738 | } |
| 30739 | outfile = fopen(vtkfilename, "w" ); |
| 30740 | if (outfile == (FILE *) NULL) { |
| 30741 | printf("File I/O Error: Cannot create file %s.\n" , vtkfilename); |
| 30742 | return; |
| 30743 | } |
| 30744 | |
| 30745 | //always write big endian |
| 30746 | //bool ImALittleEndian = !testIsBigEndian(); |
| 30747 | |
| 30748 | fprintf(outfile, "# vtk DataFile Version 2.0\n" ); |
| 30749 | fprintf(outfile, "Unstructured Grid\n" ); |
| 30750 | fprintf(outfile, "ASCII\n" ); // BINARY |
| 30751 | fprintf(outfile, "DATASET UNSTRUCTURED_GRID\n" ); |
| 30752 | fprintf(outfile, "POINTS %d double\n" , NN); |
| 30753 | |
| 30754 | points->traversalinit(); |
| 30755 | pointloop = pointtraverse(); |
| 30756 | for(int id=0; id<NN && pointloop != (point) NULL; id++){ |
| 30757 | x = pointloop[0]; |
| 30758 | y = pointloop[1]; |
| 30759 | z = pointloop[2]; |
| 30760 | fprintf(outfile, "%.17g %.17g %.17g\n" , x, y, z); |
| 30761 | pointloop = pointtraverse(); |
| 30762 | } |
| 30763 | fprintf(outfile, "\n" ); |
| 30764 | |
| 30765 | fprintf(outfile, "CELLS %d %d\n" , NEL, NEL*(4+1)); |
| 30766 | //NEL rows, each has 1 type id + 4 node id's |
| 30767 | |
| 30768 | tetrahedrons->traversalinit(); |
| 30769 | tptr = tetrahedrontraverse(); |
| 30770 | //elementnumber = firstindex; // in->firstnumber; |
| 30771 | while (tptr != (tetrahedron *) NULL) { |
| 30772 | if (!b->reversetetori) { |
| 30773 | p1 = (point) tptr[4]; |
| 30774 | p2 = (point) tptr[5]; |
| 30775 | } else { |
| 30776 | p1 = (point) tptr[5]; |
| 30777 | p2 = (point) tptr[4]; |
| 30778 | } |
| 30779 | p3 = (point) tptr[6]; |
| 30780 | p4 = (point) tptr[7]; |
| 30781 | n1 = pointmark(p1) - in->firstnumber; |
| 30782 | n2 = pointmark(p2) - in->firstnumber; |
| 30783 | n3 = pointmark(p3) - in->firstnumber; |
| 30784 | n4 = pointmark(p4) - in->firstnumber; |
| 30785 | fprintf(outfile, "%d %4d %4d %4d %4d\n" , nnodes, n1, n2, n3, n4); |
| 30786 | tptr = tetrahedrontraverse(); |
| 30787 | } |
| 30788 | fprintf(outfile, "\n" ); |
| 30789 | |
| 30790 | fprintf(outfile, "CELL_TYPES %d\n" , NEL); |
| 30791 | for(int tid=0; tid<NEL; tid++){ |
| 30792 | fprintf(outfile, "%d\n" , celltype); |
| 30793 | } |
| 30794 | fprintf(outfile, "\n" ); |
| 30795 | |
| 30796 | if (numelemattrib > 0) { |
| 30797 | // Output tetrahedra region attributes. |
| 30798 | fprintf(outfile, "CELL_DATA %d\n" , NEL); |
| 30799 | fprintf(outfile, "SCALARS cell_scalars int 1\n" ); |
| 30800 | fprintf(outfile, "LOOKUP_TABLE default\n" ); |
| 30801 | tetrahedrons->traversalinit(); |
| 30802 | tptr = tetrahedrontraverse(); |
| 30803 | while (tptr != (tetrahedron *) NULL) { |
| 30804 | fprintf(outfile, "%d\n" , (int) elemattribute(tptr, numelemattrib - 1)); |
| 30805 | tptr = tetrahedrontraverse(); |
| 30806 | } |
| 30807 | fprintf(outfile, "\n" ); |
| 30808 | } |
| 30809 | |
| 30810 | fclose(outfile); |
| 30811 | } |
| 30812 | |
| 30813 | //// //// |
| 30814 | //// //// |
| 30815 | //// output_cxx /////////////////////////////////////////////////////////////// |
| 30816 | |
| 30817 | //// main_cxx ///////////////////////////////////////////////////////////////// |
| 30818 | //// //// |
| 30819 | //// //// |
| 30820 | |
| 30821 | /////////////////////////////////////////////////////////////////////////////// |
| 30822 | // // |
| 30823 | // tetrahedralize() The interface for users using TetGen library to // |
| 30824 | // generate tetrahedral meshes with all features. // |
| 30825 | // // |
| 30826 | // The sequence is roughly as follows. Many of these steps can be skipped, // |
| 30827 | // depending on the command line switches. // |
| 30828 | // // |
| 30829 | // - Initialize constants and parse the command line. // |
| 30830 | // - Read the vertices from a file and either // |
| 30831 | // - tetrahedralize them (no -r), or // |
| 30832 | // - read an old mesh from files and reconstruct it (-r). // |
| 30833 | // - Insert the boundary segments and facets (-p or -Y). // |
| 30834 | // - Read the holes (-p), regional attributes (-pA), and regional volume // |
| 30835 | // constraints (-pa). Carve the holes and concavities, and spread the // |
| 30836 | // regional attributes and volume constraints. // |
| 30837 | // - Enforce the constraints on minimum quality bound (-q) and maximum // |
| 30838 | // volume (-a), and a mesh size function (-m). // |
| 30839 | // - Optimize the mesh wrt. specified quality measures (-O and -o). // |
| 30840 | // - Write the output files and print the statistics. // |
| 30841 | // - Check the consistency of the mesh (-C). // |
| 30842 | // // |
| 30843 | /////////////////////////////////////////////////////////////////////////////// |
| 30844 | |
| 30845 | void tetrahedralize(tetgenbehavior *b, tetgenio *in, tetgenio *out, |
| 30846 | tetgenio *addin, tetgenio *bgmin) |
| 30847 | { |
| 30848 | tetgenmesh m; |
| 30849 | clock_t tv[12], ts[5]; // Timing informations (defined in time.h) |
| 30850 | REAL cps = (REAL) CLOCKS_PER_SEC; |
| 30851 | |
| 30852 | tv[0] = clock(); |
| 30853 | |
| 30854 | m.b = b; |
| 30855 | m.in = in; |
| 30856 | m.addin = addin; |
| 30857 | |
| 30858 | if (b->metric && bgmin && (bgmin->numberofpoints > 0)) { |
| 30859 | m.bgm = new tetgenmesh(); // Create an empty background mesh. |
| 30860 | m.bgm->b = b; |
| 30861 | m.bgm->in = bgmin; |
| 30862 | } |
| 30863 | |
| 30864 | m.initializepools(); |
| 30865 | m.transfernodes(); |
| 30866 | |
| 30867 | exactinit(b->verbose, b->noexact, b->nostaticfilter, |
| 30868 | m.xmax - m.xmin, m.ymax - m.ymin, m.zmax - m.zmin); |
| 30869 | |
| 30870 | tv[1] = clock(); |
| 30871 | |
| 30872 | if (b->refine) { // -r |
| 30873 | m.reconstructmesh(); |
| 30874 | } else { // -p |
| 30875 | m.incrementaldelaunay(ts[0]); |
| 30876 | } |
| 30877 | |
| 30878 | tv[2] = clock(); |
| 30879 | |
| 30880 | if (!b->quiet) { |
| 30881 | if (b->refine) { |
| 30882 | printf("Mesh reconstruction seconds: %g\n" , ((REAL)(tv[2]-tv[1])) / cps); |
| 30883 | } else { |
| 30884 | printf("Delaunay seconds: %g\n" , ((REAL)(tv[2]-tv[1])) / cps); |
| 30885 | if (b->verbose) { |
| 30886 | printf(" Point sorting seconds: %g\n" , ((REAL)(ts[0]-tv[1])) / cps); |
| 30887 | } |
| 30888 | } |
| 30889 | } |
| 30890 | |
| 30891 | if (b->plc && !b->refine) { // -p |
| 30892 | m.meshsurface(); |
| 30893 | |
| 30894 | ts[0] = clock(); |
| 30895 | |
| 30896 | if (!b->quiet) { |
| 30897 | printf("Surface mesh seconds: %g\n" , ((REAL)(ts[0]-tv[2])) / cps); |
| 30898 | } |
| 30899 | |
| 30900 | if (b->diagnose) { // -d |
| 30901 | m.detectinterfaces(); |
| 30902 | |
| 30903 | ts[1] = clock(); |
| 30904 | |
| 30905 | if (!b->quiet) { |
| 30906 | printf("Self-intersection seconds: %g\n" , ((REAL)(ts[1]-ts[0])) / cps); |
| 30907 | } |
| 30908 | |
| 30909 | // Only output when self-intersecting faces exist. |
| 30910 | if (m.subfaces->items > 0l) { |
| 30911 | m.outnodes(out); |
| 30912 | m.outsubfaces(out); |
| 30913 | } |
| 30914 | |
| 30915 | return; |
| 30916 | } |
| 30917 | } |
| 30918 | |
| 30919 | tv[3] = clock(); |
| 30920 | |
| 30921 | if ((b->metric) && (m.bgm != NULL)) { // -m |
| 30922 | m.bgm->initializepools(); |
| 30923 | m.bgm->transfernodes(); |
| 30924 | m.bgm->reconstructmesh(); |
| 30925 | |
| 30926 | ts[0] = clock(); |
| 30927 | |
| 30928 | if (!b->quiet) { |
| 30929 | printf("Background mesh reconstruct seconds: %g\n" , |
| 30930 | ((REAL)(ts[0] - tv[3])) / cps); |
| 30931 | } |
| 30932 | |
| 30933 | if (b->metric) { // -m |
| 30934 | m.interpolatemeshsize(); |
| 30935 | |
| 30936 | ts[1] = clock(); |
| 30937 | |
| 30938 | if (!b->quiet) { |
| 30939 | printf("Size interpolating seconds: %g\n" ,((REAL)(ts[1]-ts[0])) / cps); |
| 30940 | } |
| 30941 | } |
| 30942 | } |
| 30943 | |
| 30944 | tv[4] = clock(); |
| 30945 | |
| 30946 | if (b->plc && !b->refine) { // -p |
| 30947 | if (b->nobisect) { // -Y |
| 30948 | m.recoverboundary(ts[0]); |
| 30949 | } else { |
| 30950 | m.constraineddelaunay(ts[0]); |
| 30951 | } |
| 30952 | |
| 30953 | ts[1] = clock(); |
| 30954 | |
| 30955 | if (!b->quiet) { |
| 30956 | if (b->nobisect) { |
| 30957 | printf("Boundary recovery " ); |
| 30958 | } else { |
| 30959 | printf("Constrained Delaunay " ); |
| 30960 | } |
| 30961 | printf("seconds: %g\n" , ((REAL)(ts[1] - tv[4])) / cps); |
| 30962 | if (b->verbose) { |
| 30963 | printf(" Segment recovery seconds: %g\n" ,((REAL)(ts[0]-tv[4]))/ cps); |
| 30964 | printf(" Facet recovery seconds: %g\n" , ((REAL)(ts[1]-ts[0])) / cps); |
| 30965 | } |
| 30966 | } |
| 30967 | |
| 30968 | m.carveholes(); |
| 30969 | |
| 30970 | ts[2] = clock(); |
| 30971 | |
| 30972 | if (!b->quiet) { |
| 30973 | printf("Exterior tets removal seconds: %g\n" ,((REAL)(ts[2]-ts[1]))/cps); |
| 30974 | } |
| 30975 | |
| 30976 | if (b->nobisect) { // -Y |
| 30977 | if (m.subvertstack->objects > 0l) { |
| 30978 | m.suppresssteinerpoints(); |
| 30979 | |
| 30980 | ts[3] = clock(); |
| 30981 | |
| 30982 | if (!b->quiet) { |
| 30983 | printf("Steiner suppression seconds: %g\n" , |
| 30984 | ((REAL)(ts[3]-ts[2]))/cps); |
| 30985 | } |
| 30986 | } |
| 30987 | } |
| 30988 | } |
| 30989 | |
| 30990 | tv[5] = clock(); |
| 30991 | |
| 30992 | if (b->coarsen) { // -R |
| 30993 | m.meshcoarsening(); |
| 30994 | } |
| 30995 | |
| 30996 | tv[6] = clock(); |
| 30997 | |
| 30998 | if (!b->quiet) { |
| 30999 | if (b->coarsen) { |
| 31000 | printf("Mesh coarsening seconds: %g\n" , ((REAL)(tv[6] - tv[5])) / cps); |
| 31001 | } |
| 31002 | } |
| 31003 | |
| 31004 | if ((b->plc && b->nobisect) || b->coarsen) { |
| 31005 | m.recoverdelaunay(); |
| 31006 | } |
| 31007 | |
| 31008 | tv[7] = clock(); |
| 31009 | |
| 31010 | if (!b->quiet) { |
| 31011 | if ((b->plc && b->nobisect) || b->coarsen) { |
| 31012 | printf("Delaunay recovery seconds: %g\n" , ((REAL)(tv[7] - tv[6]))/cps); |
| 31013 | } |
| 31014 | } |
| 31015 | |
| 31016 | if ((b->plc || b->refine) && b->insertaddpoints) { // -i |
| 31017 | if ((addin != NULL) && (addin->numberofpoints > 0)) { |
| 31018 | m.insertconstrainedpoints(addin); |
| 31019 | } |
| 31020 | } |
| 31021 | |
| 31022 | tv[8] = clock(); |
| 31023 | |
| 31024 | if (!b->quiet) { |
| 31025 | if ((b->plc || b->refine) && b->insertaddpoints) { // -i |
| 31026 | if ((addin != NULL) && (addin->numberofpoints > 0)) { |
| 31027 | printf("Constrained points seconds: %g\n" , ((REAL)(tv[8]-tv[7]))/cps); |
| 31028 | } |
| 31029 | } |
| 31030 | } |
| 31031 | |
| 31032 | if (b->quality) { |
| 31033 | m.delaunayrefinement(); |
| 31034 | } |
| 31035 | |
| 31036 | tv[9] = clock(); |
| 31037 | |
| 31038 | if (!b->quiet) { |
| 31039 | if (b->quality) { |
| 31040 | printf("Refinement seconds: %g\n" , ((REAL)(tv[9] - tv[8])) / cps); |
| 31041 | } |
| 31042 | } |
| 31043 | |
| 31044 | if ((b->plc || b->refine) && (b->optlevel > 0)) { |
| 31045 | m.optimizemesh(); |
| 31046 | } |
| 31047 | |
| 31048 | tv[10] = clock(); |
| 31049 | |
| 31050 | if (!b->quiet) { |
| 31051 | if ((b->plc || b->refine) && (b->optlevel > 0)) { |
| 31052 | printf("Optimization seconds: %g\n" , ((REAL)(tv[10] - tv[9])) / cps); |
| 31053 | } |
| 31054 | } |
| 31055 | |
| 31056 | if (!b->nojettison && ((m.dupverts > 0) || (m.unuverts > 0) |
| 31057 | || (b->refine && (in->numberofcorners == 10)))) { |
| 31058 | m.jettisonnodes(); |
| 31059 | } |
| 31060 | |
| 31061 | if ((b->order == 2) && !b->convex) { |
| 31062 | m.highorder(); |
| 31063 | } |
| 31064 | |
| 31065 | if (!b->quiet) { |
| 31066 | printf("\n" ); |
| 31067 | } |
| 31068 | |
| 31069 | if (out != (tetgenio *) NULL) { |
| 31070 | out->firstnumber = in->firstnumber; |
| 31071 | out->mesh_dim = in->mesh_dim; |
| 31072 | } |
| 31073 | |
| 31074 | if (b->nonodewritten || b->noiterationnum) { |
| 31075 | if (!b->quiet) { |
| 31076 | printf("NOT writing a .node file.\n" ); |
| 31077 | } |
| 31078 | } else { |
| 31079 | m.outnodes(out); |
| 31080 | } |
| 31081 | |
| 31082 | if (b->noelewritten) { |
| 31083 | if (!b->quiet) { |
| 31084 | printf("NOT writing an .ele file.\n" ); |
| 31085 | } |
| 31086 | } else { |
| 31087 | if (m.tetrahedrons->items > 0l) { |
| 31088 | m.outelements(out); |
| 31089 | } |
| 31090 | } |
| 31091 | |
| 31092 | if (b->nofacewritten) { |
| 31093 | if (!b->quiet) { |
| 31094 | printf("NOT writing an .face file.\n" ); |
| 31095 | } |
| 31096 | } else { |
| 31097 | if (b->facesout) { |
| 31098 | if (m.tetrahedrons->items > 0l) { |
| 31099 | m.outfaces(out); // Output all faces. |
| 31100 | } |
| 31101 | } else { |
| 31102 | if (b->plc || b->refine) { |
| 31103 | if (m.subfaces->items > 0l) { |
| 31104 | m.outsubfaces(out); // Output boundary faces. |
| 31105 | } |
| 31106 | } else { |
| 31107 | if (m.tetrahedrons->items > 0l) { |
| 31108 | m.outhullfaces(out); // Output convex hull faces. |
| 31109 | } |
| 31110 | } |
| 31111 | } |
| 31112 | } |
| 31113 | |
| 31114 | |
| 31115 | if (b->nofacewritten) { |
| 31116 | if (!b->quiet) { |
| 31117 | printf("NOT writing an .edge file.\n" ); |
| 31118 | } |
| 31119 | } else { |
| 31120 | if (b->edgesout) { // -e |
| 31121 | m.outedges(out); // output all mesh edges. |
| 31122 | } else { |
| 31123 | if (b->plc || b->refine) { |
| 31124 | m.outsubsegments(out); // output subsegments. |
| 31125 | } |
| 31126 | } |
| 31127 | } |
| 31128 | |
| 31129 | if ((b->plc || b->refine) && b->metric) { // -m |
| 31130 | m.outmetrics(out); |
| 31131 | } |
| 31132 | |
| 31133 | if (!out && b->plc && |
| 31134 | ((b->object == tetgenbehavior::OFF) || |
| 31135 | (b->object == tetgenbehavior::PLY) || |
| 31136 | (b->object == tetgenbehavior::STL))) { |
| 31137 | m.outsmesh(b->outfilename); |
| 31138 | } |
| 31139 | |
| 31140 | if (!out && b->meditview) { |
| 31141 | m.outmesh2medit(b->outfilename); |
| 31142 | } |
| 31143 | |
| 31144 | |
| 31145 | if (!out && b->vtkview) { |
| 31146 | m.outmesh2vtk(b->outfilename); |
| 31147 | } |
| 31148 | |
| 31149 | if (b->neighout) { |
| 31150 | m.outneighbors(out); |
| 31151 | } |
| 31152 | |
| 31153 | if ((!(b->plc || b->refine)) && b->voroout) { |
| 31154 | m.outvoronoi(out); |
| 31155 | } |
| 31156 | |
| 31157 | |
| 31158 | tv[11] = clock(); |
| 31159 | |
| 31160 | if (!b->quiet) { |
| 31161 | printf("\nOutput seconds: %g\n" , ((REAL)(tv[11] - tv[10])) / cps); |
| 31162 | printf("Total running seconds: %g\n" , ((REAL)(tv[11] - tv[0])) / cps); |
| 31163 | } |
| 31164 | |
| 31165 | if (b->docheck) { |
| 31166 | m.checkmesh(0); |
| 31167 | if (b->plc || b->refine) { |
| 31168 | m.checkshells(); |
| 31169 | m.checksegments(); |
| 31170 | } |
| 31171 | if (b->docheck > 1) { |
| 31172 | m.checkdelaunay(); |
| 31173 | } |
| 31174 | } |
| 31175 | |
| 31176 | if (!b->quiet) { |
| 31177 | m.statistics(); |
| 31178 | } |
| 31179 | } |
| 31180 | |
| 31181 | #ifndef TETLIBRARY |
| 31182 | |
| 31183 | /////////////////////////////////////////////////////////////////////////////// |
| 31184 | // // |
| 31185 | // main() The command line interface of TetGen. // |
| 31186 | // // |
| 31187 | /////////////////////////////////////////////////////////////////////////////// |
| 31188 | |
| 31189 | int main(int argc, char *argv[]) |
| 31190 | |
| 31191 | #else // with TETLIBRARY |
| 31192 | |
| 31193 | /////////////////////////////////////////////////////////////////////////////// |
| 31194 | // // |
| 31195 | // tetrahedralize() The library interface of TetGen. // |
| 31196 | // // |
| 31197 | /////////////////////////////////////////////////////////////////////////////// |
| 31198 | |
| 31199 | void tetrahedralize(char *switches, tetgenio *in, tetgenio *out, |
| 31200 | tetgenio *addin, tetgenio *bgmin) |
| 31201 | |
| 31202 | #endif // not TETLIBRARY |
| 31203 | |
| 31204 | { |
| 31205 | tetgenbehavior b; |
| 31206 | |
| 31207 | #ifndef TETLIBRARY |
| 31208 | |
| 31209 | tetgenio in, addin, bgmin; |
| 31210 | |
| 31211 | if (!b.parse_commandline(argc, argv)) { |
| 31212 | terminatetetgen(NULL, 10); |
| 31213 | } |
| 31214 | |
| 31215 | // Read input files. |
| 31216 | if (b.refine) { // -r |
| 31217 | if (!in.load_tetmesh(b.infilename, (int) b.object)) { |
| 31218 | terminatetetgen(NULL, 10); |
| 31219 | } |
| 31220 | } else { // -p |
| 31221 | if (!in.load_plc(b.infilename, (int) b.object)) { |
| 31222 | terminatetetgen(NULL, 10); |
| 31223 | } |
| 31224 | } |
| 31225 | if (b.insertaddpoints) { // -i |
| 31226 | // Try to read a .a.node file. |
| 31227 | addin.load_node(b.addinfilename); |
| 31228 | } |
| 31229 | if (b.metric) { // -m |
| 31230 | // Try to read a background mesh in files .b.node, .b.ele. |
| 31231 | bgmin.load_tetmesh(b.bgmeshfilename, (int) b.object); |
| 31232 | } |
| 31233 | |
| 31234 | tetrahedralize(&b, &in, NULL, &addin, &bgmin); |
| 31235 | |
| 31236 | return 0; |
| 31237 | |
| 31238 | #else // with TETLIBRARY |
| 31239 | |
| 31240 | if (!b.parse_commandline(switches)) { |
| 31241 | terminatetetgen(NULL, 10); |
| 31242 | } |
| 31243 | tetrahedralize(&b, in, out, addin, bgmin); |
| 31244 | |
| 31245 | #endif // not TETLIBRARY |
| 31246 | } |
| 31247 | |
| 31248 | //// //// |
| 31249 | //// //// |
| 31250 | //// main_cxx ///////////////////////////////////////////////////////////////// |
| 31251 | |
| 31252 | #ifdef _MSC_VER |
| 31253 | # pragma warning(pop) |
| 31254 | #endif |
| 31255 | |