1 | /////////////////////////////////////////////////////////////////////////////// |
2 | // // |
3 | // TetGen // |
4 | // // |
5 | // A Quality Tetrahedral Mesh Generator and A 3D Delaunay Triangulator // |
6 | // // |
7 | // Version 1.5 // |
8 | // November 4, 2013 // |
9 | // // |
10 | // TetGen is freely available through the website: http://www.tetgen.org. // |
11 | // It may be copied, modified, and redistributed for non-commercial use. // |
12 | // Please consult the file LICENSE for the detailed copyright notices. // |
13 | // // |
14 | /////////////////////////////////////////////////////////////////////////////// |
15 | |
16 | #include "TetGen/tetgen.h" |
17 | #include <inttypes.h> |
18 | |
19 | //// io_cxx /////////////////////////////////////////////////////////////////// |
20 | //// //// |
21 | //// //// |
22 | |
23 | /////////////////////////////////////////////////////////////////////////////// |
24 | // // |
25 | // load_node_call() Read a list of points from a file. // |
26 | // // |
27 | // 'infile' is the file handle contains the node list. It may point to a // |
28 | // .node, or .poly or .smesh file. 'markers' indicates each node contains an // |
29 | // additional marker (integer) or not. 'uvflag' indicates each node contains // |
30 | // u,v coordinates or not. It is reuqired by a PSC. 'infilename' is the name // |
31 | // of the file being read, it is only used in error messages. // |
32 | // // |
33 | // The 'firstnumber' (0 or 1) is automatically determined by the number of // |
34 | // the first index of the first point. // |
35 | // // |
36 | /////////////////////////////////////////////////////////////////////////////// |
37 | |
38 | #ifdef _MSC_VER |
39 | # pragma warning(push) |
40 | # pragma warning(disable: 4996) |
41 | #endif |
42 | |
43 | bool tetgenio::load_node_call(FILE* infile, int markers, int uvflag, |
44 | char* infilename) |
45 | { |
46 | char inputline[INPUTLINESIZE]; |
47 | char *stringptr; |
48 | REAL x, y, z, attrib; |
49 | int firstnode, currentmarker; |
50 | int index, attribindex; |
51 | int i, j; |
52 | |
53 | // Initialize 'pointlist', 'pointattributelist', and 'pointmarkerlist'. |
54 | pointlist = new REAL[numberofpoints * 3]; |
55 | if (pointlist == (REAL *) NULL) { |
56 | terminatetetgen(NULL, 1); |
57 | } |
58 | if (numberofpointattributes > 0) { |
59 | pointattributelist = new REAL[numberofpoints * numberofpointattributes]; |
60 | if (pointattributelist == (REAL *) NULL) { |
61 | terminatetetgen(NULL, 1); |
62 | } |
63 | } |
64 | if (markers) { |
65 | pointmarkerlist = new int[numberofpoints]; |
66 | if (pointmarkerlist == (int *) NULL) { |
67 | terminatetetgen(NULL, 1); |
68 | } |
69 | } |
70 | if (uvflag) { |
71 | pointparamlist = new pointparam[numberofpoints]; |
72 | if (pointparamlist == NULL) { |
73 | terminatetetgen(NULL, 1); |
74 | } |
75 | } |
76 | |
77 | // Read the point section. |
78 | index = 0; |
79 | attribindex = 0; |
80 | for (i = 0; i < numberofpoints; i++) { |
81 | stringptr = readnumberline(inputline, infile, infilename); |
82 | if (useindex) { |
83 | if (i == 0) { |
84 | firstnode = (int) strtol (stringptr, &stringptr, 0); |
85 | if ((firstnode == 0) || (firstnode == 1)) { |
86 | firstnumber = firstnode; |
87 | } |
88 | } |
89 | stringptr = findnextnumber(stringptr); |
90 | } // if (useindex) |
91 | if (*stringptr == '\0') { |
92 | printf("Error: Point %d has no x coordinate.\n" , firstnumber + i); |
93 | break; |
94 | } |
95 | x = (REAL) strtod(stringptr, &stringptr); |
96 | stringptr = findnextnumber(stringptr); |
97 | if (*stringptr == '\0') { |
98 | printf("Error: Point %d has no y coordinate.\n" , firstnumber + i); |
99 | break; |
100 | } |
101 | y = (REAL) strtod(stringptr, &stringptr); |
102 | if (mesh_dim == 3) { |
103 | stringptr = findnextnumber(stringptr); |
104 | if (*stringptr == '\0') { |
105 | printf("Error: Point %d has no z coordinate.\n" , firstnumber + i); |
106 | break; |
107 | } |
108 | z = (REAL) strtod(stringptr, &stringptr); |
109 | } else { |
110 | z = 0.0; // mesh_dim == 2; |
111 | } |
112 | pointlist[index++] = x; |
113 | pointlist[index++] = y; |
114 | pointlist[index++] = z; |
115 | // Read the point attributes. |
116 | for (j = 0; j < numberofpointattributes; j++) { |
117 | stringptr = findnextnumber(stringptr); |
118 | if (*stringptr == '\0') { |
119 | attrib = 0.0; |
120 | } else { |
121 | attrib = (REAL) strtod(stringptr, &stringptr); |
122 | } |
123 | pointattributelist[attribindex++] = attrib; |
124 | } |
125 | if (markers) { |
126 | // Read a point marker. |
127 | stringptr = findnextnumber(stringptr); |
128 | if (*stringptr == '\0') { |
129 | currentmarker = 0; |
130 | } else { |
131 | currentmarker = (int) strtol (stringptr, &stringptr, 0); |
132 | } |
133 | pointmarkerlist[i] = currentmarker; |
134 | } |
135 | if (uvflag) { |
136 | // Read point paramteters. |
137 | stringptr = findnextnumber(stringptr); |
138 | if (*stringptr == '\0') { |
139 | printf("Error: Point %d has no uv[0].\n" , firstnumber + i); |
140 | break; |
141 | } |
142 | pointparamlist[i].uv[0] = (REAL) strtod(stringptr, &stringptr); |
143 | stringptr = findnextnumber(stringptr); |
144 | if (*stringptr == '\0') { |
145 | printf("Error: Point %d has no uv[1].\n" , firstnumber + i); |
146 | break; |
147 | } |
148 | pointparamlist[i].uv[1] = (REAL) strtod(stringptr, &stringptr); |
149 | stringptr = findnextnumber(stringptr); |
150 | if (*stringptr == '\0') { |
151 | printf("Error: Point %d has no tag.\n" , firstnumber + i); |
152 | break; |
153 | } |
154 | pointparamlist[i].tag = (int) strtol (stringptr, &stringptr, 0); |
155 | stringptr = findnextnumber(stringptr); |
156 | if (*stringptr == '\0') { |
157 | printf("Error: Point %d has no type.\n" , firstnumber + i); |
158 | break; |
159 | } |
160 | pointparamlist[i].type = (int) strtol (stringptr, &stringptr, 0); |
161 | if ((pointparamlist[i].type < 0) || (pointparamlist[i].type > 2)) { |
162 | printf("Error: Point %d has an invalid type.\n" , firstnumber + i); |
163 | break; |
164 | } |
165 | } |
166 | } |
167 | if (i < numberofpoints) { |
168 | // Failed to read points due to some error. |
169 | delete [] pointlist; |
170 | pointlist = (REAL *) NULL; |
171 | if (markers) { |
172 | delete [] pointmarkerlist; |
173 | pointmarkerlist = (int *) NULL; |
174 | } |
175 | if (numberofpointattributes > 0) { |
176 | delete [] pointattributelist; |
177 | pointattributelist = (REAL *) NULL; |
178 | } |
179 | if (uvflag) { |
180 | delete [] pointparamlist; |
181 | pointparamlist = NULL; |
182 | } |
183 | numberofpoints = 0; |
184 | return false; |
185 | } |
186 | return true; |
187 | } |
188 | |
189 | /////////////////////////////////////////////////////////////////////////////// |
190 | // // |
191 | // load_node() Load a list of points from a .node file. // |
192 | // // |
193 | /////////////////////////////////////////////////////////////////////////////// |
194 | |
195 | bool tetgenio::load_node(char* filebasename) |
196 | { |
197 | FILE *infile; |
198 | char innodefilename[FILENAMESIZE]; |
199 | char inputline[INPUTLINESIZE]; |
200 | char *stringptr; |
201 | bool okflag; |
202 | int markers; |
203 | int uvflag; // for psc input. |
204 | |
205 | // Assembling the actual file names we want to open. |
206 | strcpy(innodefilename, filebasename); |
207 | strcat(innodefilename, ".node" ); |
208 | |
209 | // Try to open a .node file. |
210 | infile = fopen(innodefilename, "r" ); |
211 | if (infile == (FILE *) NULL) { |
212 | printf(" Cannot access file %s.\n" , innodefilename); |
213 | return false; |
214 | } |
215 | printf("Opening %s.\n" , innodefilename); |
216 | |
217 | // Set initial flags. |
218 | mesh_dim = 3; |
219 | numberofpointattributes = 0; // no point attribute. |
220 | markers = 0; // no boundary marker. |
221 | uvflag = 0; // no uv parameters (required by a PSC). |
222 | |
223 | // Read the first line of the file. |
224 | stringptr = readnumberline(inputline, infile, innodefilename); |
225 | // Does this file contain an index column? |
226 | stringptr = strstr(inputline, "rbox" ); |
227 | if (stringptr == NULL) { |
228 | // Read number of points, number of dimensions, number of point |
229 | // attributes, and number of boundary markers. |
230 | stringptr = inputline; |
231 | numberofpoints = (int) strtol (stringptr, &stringptr, 0); |
232 | stringptr = findnextnumber(stringptr); |
233 | if (*stringptr != '\0') { |
234 | mesh_dim = (int) strtol (stringptr, &stringptr, 0); |
235 | } |
236 | stringptr = findnextnumber(stringptr); |
237 | if (*stringptr != '\0') { |
238 | numberofpointattributes = (int) strtol (stringptr, &stringptr, 0); |
239 | } |
240 | stringptr = findnextnumber(stringptr); |
241 | if (*stringptr != '\0') { |
242 | markers = (int) strtol (stringptr, &stringptr, 0); |
243 | } |
244 | stringptr = findnextnumber(stringptr); |
245 | if (*stringptr != '\0') { |
246 | uvflag = (int) strtol (stringptr, &stringptr, 0); |
247 | } |
248 | } else { |
249 | // It is a rbox (qhull) input file. |
250 | stringptr = inputline; |
251 | // Get the dimension. |
252 | mesh_dim = (int) strtol (stringptr, &stringptr, 0); |
253 | // Get the number of points. |
254 | stringptr = readnumberline(inputline, infile, innodefilename); |
255 | numberofpoints = (int) strtol (stringptr, &stringptr, 0); |
256 | // There is no index column. |
257 | useindex = 0; |
258 | } |
259 | |
260 | // Load the list of nodes. |
261 | okflag = load_node_call(infile, markers, uvflag, innodefilename); |
262 | |
263 | fclose(infile); |
264 | return okflag; |
265 | } |
266 | |
267 | /////////////////////////////////////////////////////////////////////////////// |
268 | // // |
269 | // load_edge() Load a list of edges from a .edge file. // |
270 | // // |
271 | /////////////////////////////////////////////////////////////////////////////// |
272 | |
273 | bool tetgenio::load_edge(char* filebasename) |
274 | { |
275 | FILE *infile; |
276 | char inedgefilename[FILENAMESIZE]; |
277 | char inputline[INPUTLINESIZE]; |
278 | char *stringptr; |
279 | int markers, corner; |
280 | int index; |
281 | int i, j; |
282 | |
283 | strcpy(inedgefilename, filebasename); |
284 | strcat(inedgefilename, ".edge" ); |
285 | |
286 | infile = fopen(inedgefilename, "r" ); |
287 | if (infile != (FILE *) NULL) { |
288 | printf("Opening %s.\n" , inedgefilename); |
289 | } else { |
290 | //printf(" Cannot access file %s.\n", inedgefilename); |
291 | return false; |
292 | } |
293 | |
294 | // Read number of boundary edges. |
295 | stringptr = readnumberline(inputline, infile, inedgefilename); |
296 | numberofedges = (int) strtol (stringptr, &stringptr, 0); |
297 | if (numberofedges > 0) { |
298 | edgelist = new int[numberofedges * 2]; |
299 | if (edgelist == (int *) NULL) { |
300 | terminatetetgen(NULL, 1); |
301 | } |
302 | stringptr = findnextnumber(stringptr); |
303 | if (*stringptr == '\0') { |
304 | markers = 0; // Default value. |
305 | } else { |
306 | markers = (int) strtol (stringptr, &stringptr, 0); |
307 | } |
308 | if (markers > 0) { |
309 | edgemarkerlist = new int[numberofedges]; |
310 | } |
311 | } |
312 | |
313 | // Read the list of edges. |
314 | index = 0; |
315 | for (i = 0; i < numberofedges; i++) { |
316 | // Read edge index and the edge's two endpoints. |
317 | stringptr = readnumberline(inputline, infile, inedgefilename); |
318 | for (j = 0; j < 2; j++) { |
319 | stringptr = findnextnumber(stringptr); |
320 | if (*stringptr == '\0') { |
321 | printf("Error: Edge %d is missing vertex %d in %s.\n" , |
322 | i + firstnumber, j + 1, inedgefilename); |
323 | terminatetetgen(NULL, 1); |
324 | } |
325 | corner = (int) strtol(stringptr, &stringptr, 0); |
326 | if (corner < firstnumber || corner >= numberofpoints + firstnumber) { |
327 | printf("Error: Edge %d has an invalid vertex index.\n" , |
328 | i + firstnumber); |
329 | terminatetetgen(NULL, 1); |
330 | } |
331 | edgelist[index++] = corner; |
332 | } |
333 | if (numberofcorners == 10) { |
334 | // Skip an extra vertex (generated by a previous -o2 option). |
335 | stringptr = findnextnumber(stringptr); |
336 | } |
337 | // Read the edge marker if it has. |
338 | if (markers) { |
339 | stringptr = findnextnumber(stringptr); |
340 | edgemarkerlist[i] = (int) strtol(stringptr, &stringptr, 0); |
341 | } |
342 | } |
343 | |
344 | fclose(infile); |
345 | return true; |
346 | } |
347 | |
348 | /////////////////////////////////////////////////////////////////////////////// |
349 | // // |
350 | // load_face() Load a list of faces (triangles) from a .face file. // |
351 | // // |
352 | /////////////////////////////////////////////////////////////////////////////// |
353 | |
354 | bool tetgenio::load_face(char* filebasename) |
355 | { |
356 | FILE *infile; |
357 | char infilename[FILENAMESIZE]; |
358 | char inputline[INPUTLINESIZE]; |
359 | char *stringptr; |
360 | REAL attrib; |
361 | int markers, corner; |
362 | int index; |
363 | int i, j; |
364 | |
365 | strcpy(infilename, filebasename); |
366 | strcat(infilename, ".face" ); |
367 | |
368 | infile = fopen(infilename, "r" ); |
369 | if (infile != (FILE *) NULL) { |
370 | printf("Opening %s.\n" , infilename); |
371 | } else { |
372 | return false; |
373 | } |
374 | |
375 | // Read number of faces, boundary markers. |
376 | stringptr = readnumberline(inputline, infile, infilename); |
377 | numberoftrifaces = (int) strtol (stringptr, &stringptr, 0); |
378 | stringptr = findnextnumber(stringptr); |
379 | if (mesh_dim == 2) { |
380 | // Skip a number. |
381 | stringptr = findnextnumber(stringptr); |
382 | } |
383 | if (*stringptr == '\0') { |
384 | markers = 0; // Default there is no marker per face. |
385 | } else { |
386 | markers = (int) strtol (stringptr, &stringptr, 0); |
387 | } |
388 | if (numberoftrifaces > 0) { |
389 | trifacelist = new int[numberoftrifaces * 3]; |
390 | if (trifacelist == (int *) NULL) { |
391 | terminatetetgen(NULL, 1); |
392 | } |
393 | if (markers) { |
394 | trifacemarkerlist = new int[numberoftrifaces]; |
395 | if (trifacemarkerlist == (int *) NULL) { |
396 | terminatetetgen(NULL, 1); |
397 | } |
398 | } |
399 | } |
400 | |
401 | // Read the list of faces. |
402 | index = 0; |
403 | for (i = 0; i < numberoftrifaces; i++) { |
404 | // Read face index and the face's three corners. |
405 | stringptr = readnumberline(inputline, infile, infilename); |
406 | for (j = 0; j < 3; j++) { |
407 | stringptr = findnextnumber(stringptr); |
408 | if (*stringptr == '\0') { |
409 | printf("Error: Face %d is missing vertex %d in %s.\n" , |
410 | i + firstnumber, j + 1, infilename); |
411 | terminatetetgen(NULL, 1); |
412 | } |
413 | corner = (int) strtol(stringptr, &stringptr, 0); |
414 | if (corner < firstnumber || corner >= numberofpoints + firstnumber) { |
415 | printf("Error: Face %d has an invalid vertex index.\n" , |
416 | i + firstnumber); |
417 | terminatetetgen(NULL, 1); |
418 | } |
419 | trifacelist[index++] = corner; |
420 | } |
421 | if (numberofcorners == 10) { |
422 | // Skip 3 extra vertices (generated by a previous -o2 option). |
423 | for (j = 0; j < 3; j++) { |
424 | stringptr = findnextnumber(stringptr); |
425 | } |
426 | } |
427 | // Read the boundary marker if it exists. |
428 | if (markers) { |
429 | stringptr = findnextnumber(stringptr); |
430 | if (*stringptr == '\0') { |
431 | attrib = 0.0; |
432 | } else { |
433 | attrib = (REAL) strtod(stringptr, &stringptr); |
434 | } |
435 | trifacemarkerlist[i] = (int) attrib; |
436 | } |
437 | } |
438 | |
439 | fclose(infile); |
440 | |
441 | return true; |
442 | } |
443 | |
444 | /////////////////////////////////////////////////////////////////////////////// |
445 | // // |
446 | // load_tet() Load a list of tetrahedra from a .ele file. // |
447 | // // |
448 | /////////////////////////////////////////////////////////////////////////////// |
449 | |
450 | bool tetgenio::load_tet(char* filebasename) |
451 | { |
452 | FILE *infile; |
453 | char infilename[FILENAMESIZE]; |
454 | char inputline[INPUTLINESIZE]; |
455 | char *stringptr; |
456 | REAL attrib; |
457 | int corner; |
458 | int index, attribindex; |
459 | int i, j; |
460 | |
461 | strcpy(infilename, filebasename); |
462 | strcat(infilename, ".ele" ); |
463 | |
464 | infile = fopen(infilename, "r" ); |
465 | if (infile != (FILE *) NULL) { |
466 | printf("Opening %s.\n" , infilename); |
467 | } else { |
468 | return false; |
469 | } |
470 | |
471 | // Read number of elements, number of corners (4 or 10), number of |
472 | // element attributes. |
473 | stringptr = readnumberline(inputline, infile, infilename); |
474 | numberoftetrahedra = (int) strtol (stringptr, &stringptr, 0); |
475 | if (numberoftetrahedra <= 0) { |
476 | printf("Error: Invalid number of tetrahedra.\n" ); |
477 | fclose(infile); |
478 | return false; |
479 | } |
480 | stringptr = findnextnumber(stringptr); |
481 | if (*stringptr == '\0') { |
482 | numberofcorners = 4; // Default read 4 nodes per element. |
483 | } else { |
484 | numberofcorners = (int) strtol(stringptr, &stringptr, 0); |
485 | } |
486 | stringptr = findnextnumber(stringptr); |
487 | if (*stringptr == '\0') { |
488 | numberoftetrahedronattributes = 0; // Default no attribute. |
489 | } else { |
490 | numberoftetrahedronattributes = (int) strtol(stringptr, &stringptr, 0); |
491 | } |
492 | if (numberofcorners != 4 && numberofcorners != 10) { |
493 | printf("Error: Wrong number of corners %d (should be 4 or 10).\n" , |
494 | numberofcorners); |
495 | fclose(infile); |
496 | return false; |
497 | } |
498 | |
499 | // Allocate memory for tetrahedra. |
500 | tetrahedronlist = new int[numberoftetrahedra * numberofcorners]; |
501 | if (tetrahedronlist == (int *) NULL) { |
502 | terminatetetgen(NULL, 1); |
503 | } |
504 | // Allocate memory for output tetrahedron attributes if necessary. |
505 | if (numberoftetrahedronattributes > 0) { |
506 | tetrahedronattributelist = new REAL[numberoftetrahedra * |
507 | numberoftetrahedronattributes]; |
508 | if (tetrahedronattributelist == (REAL *) NULL) { |
509 | terminatetetgen(NULL, 1); |
510 | } |
511 | } |
512 | |
513 | // Read the list of tetrahedra. |
514 | index = 0; |
515 | attribindex = 0; |
516 | for (i = 0; i < numberoftetrahedra; i++) { |
517 | // Read tetrahedron index and the tetrahedron's corners. |
518 | stringptr = readnumberline(inputline, infile, infilename); |
519 | for (j = 0; j < numberofcorners; j++) { |
520 | stringptr = findnextnumber(stringptr); |
521 | if (*stringptr == '\0') { |
522 | printf("Error: Tetrahedron %d is missing vertex %d in %s.\n" , |
523 | i + firstnumber, j + 1, infilename); |
524 | terminatetetgen(NULL, 1); |
525 | } |
526 | corner = (int) strtol(stringptr, &stringptr, 0); |
527 | if (corner < firstnumber || corner >= numberofpoints + firstnumber) { |
528 | printf("Error: Tetrahedron %d has an invalid vertex index.\n" , |
529 | i + firstnumber); |
530 | terminatetetgen(NULL, 1); |
531 | } |
532 | tetrahedronlist[index++] = corner; |
533 | } |
534 | // Read the tetrahedron's attributes. |
535 | for (j = 0; j < numberoftetrahedronattributes; j++) { |
536 | stringptr = findnextnumber(stringptr); |
537 | if (*stringptr == '\0') { |
538 | attrib = 0.0; |
539 | } else { |
540 | attrib = (REAL) strtod(stringptr, &stringptr); |
541 | } |
542 | tetrahedronattributelist[attribindex++] = attrib; |
543 | } |
544 | } |
545 | |
546 | fclose(infile); |
547 | |
548 | return true; |
549 | } |
550 | |
551 | /////////////////////////////////////////////////////////////////////////////// |
552 | // // |
553 | // load_vol() Load a list of volume constraints from a .vol file. // |
554 | // // |
555 | /////////////////////////////////////////////////////////////////////////////// |
556 | |
557 | bool tetgenio::load_vol(char* filebasename) |
558 | { |
559 | FILE *infile; |
560 | char inelefilename[FILENAMESIZE]; |
561 | char infilename[FILENAMESIZE]; |
562 | char inputline[INPUTLINESIZE]; |
563 | char *stringptr; |
564 | REAL volume; |
565 | int volelements; |
566 | int i; |
567 | |
568 | strcpy(infilename, filebasename); |
569 | strcat(infilename, ".vol" ); |
570 | |
571 | infile = fopen(infilename, "r" ); |
572 | if (infile != (FILE *) NULL) { |
573 | printf("Opening %s.\n" , infilename); |
574 | } else { |
575 | return false; |
576 | } |
577 | |
578 | // Read number of tetrahedra. |
579 | stringptr = readnumberline(inputline, infile, infilename); |
580 | volelements = (int) strtol (stringptr, &stringptr, 0); |
581 | if (volelements != numberoftetrahedra) { |
582 | strcpy(inelefilename, filebasename); |
583 | strcat(infilename, ".ele" ); |
584 | printf("Warning: %s and %s disagree on number of tetrahedra.\n" , |
585 | inelefilename, infilename); |
586 | fclose(infile); |
587 | return false; |
588 | } |
589 | |
590 | tetrahedronvolumelist = new REAL[volelements]; |
591 | if (tetrahedronvolumelist == (REAL *) NULL) { |
592 | terminatetetgen(NULL, 1); |
593 | } |
594 | |
595 | // Read the list of volume constraints. |
596 | for (i = 0; i < volelements; i++) { |
597 | stringptr = readnumberline(inputline, infile, infilename); |
598 | stringptr = findnextnumber(stringptr); |
599 | if (*stringptr == '\0') { |
600 | volume = -1.0; // No constraint on this tetrahedron. |
601 | } else { |
602 | volume = (REAL) strtod(stringptr, &stringptr); |
603 | } |
604 | tetrahedronvolumelist[i] = volume; |
605 | } |
606 | |
607 | fclose(infile); |
608 | |
609 | return true; |
610 | } |
611 | |
612 | /////////////////////////////////////////////////////////////////////////////// |
613 | // // |
614 | // load_var() Load constraints applied on facets, segments, and nodes // |
615 | // from a .var file. // |
616 | // // |
617 | /////////////////////////////////////////////////////////////////////////////// |
618 | |
619 | bool tetgenio::load_var(char* filebasename) |
620 | { |
621 | FILE *infile; |
622 | char varfilename[FILENAMESIZE]; |
623 | char inputline[INPUTLINESIZE]; |
624 | char *stringptr; |
625 | int index; |
626 | int i; |
627 | |
628 | // Variant constraints are saved in file "filename.var". |
629 | strcpy(varfilename, filebasename); |
630 | strcat(varfilename, ".var" ); |
631 | infile = fopen(varfilename, "r" ); |
632 | if (infile != (FILE *) NULL) { |
633 | printf("Opening %s.\n" , varfilename); |
634 | } else { |
635 | return false; |
636 | } |
637 | |
638 | // Read the facet constraint section. |
639 | stringptr = readnumberline(inputline, infile, varfilename); |
640 | if (*stringptr != '\0') { |
641 | numberoffacetconstraints = (int) strtol (stringptr, &stringptr, 0); |
642 | } else { |
643 | numberoffacetconstraints = 0; |
644 | } |
645 | if (numberoffacetconstraints > 0) { |
646 | // Initialize 'facetconstraintlist'. |
647 | facetconstraintlist = new REAL[numberoffacetconstraints * 2]; |
648 | index = 0; |
649 | for (i = 0; i < numberoffacetconstraints; i++) { |
650 | stringptr = readnumberline(inputline, infile, varfilename); |
651 | stringptr = findnextnumber(stringptr); |
652 | if (*stringptr == '\0') { |
653 | printf("Error: facet constraint %d has no facet marker.\n" , |
654 | firstnumber + i); |
655 | break; |
656 | } else { |
657 | facetconstraintlist[index++] = (REAL) strtod(stringptr, &stringptr); |
658 | } |
659 | stringptr = findnextnumber(stringptr); |
660 | if (*stringptr == '\0') { |
661 | printf("Error: facet constraint %d has no maximum area bound.\n" , |
662 | firstnumber + i); |
663 | break; |
664 | } else { |
665 | facetconstraintlist[index++] = (REAL) strtod(stringptr, &stringptr); |
666 | } |
667 | } |
668 | if (i < numberoffacetconstraints) { |
669 | // This must be caused by an error. |
670 | fclose(infile); |
671 | return false; |
672 | } |
673 | } |
674 | |
675 | // Read the segment constraint section. |
676 | stringptr = readnumberline(inputline, infile, varfilename); |
677 | if (*stringptr != '\0') { |
678 | numberofsegmentconstraints = (int) strtol (stringptr, &stringptr, 0); |
679 | } else { |
680 | numberofsegmentconstraints = 0; |
681 | } |
682 | if (numberofsegmentconstraints > 0) { |
683 | // Initialize 'segmentconstraintlist'. |
684 | segmentconstraintlist = new REAL[numberofsegmentconstraints * 3]; |
685 | index = 0; |
686 | for (i = 0; i < numberofsegmentconstraints; i++) { |
687 | stringptr = readnumberline(inputline, infile, varfilename); |
688 | stringptr = findnextnumber(stringptr); |
689 | if (*stringptr == '\0') { |
690 | printf("Error: segment constraint %d has no frist endpoint.\n" , |
691 | firstnumber + i); |
692 | break; |
693 | } else { |
694 | segmentconstraintlist[index++] = (REAL) strtod(stringptr, &stringptr); |
695 | } |
696 | stringptr = findnextnumber(stringptr); |
697 | if (*stringptr == '\0') { |
698 | printf("Error: segment constraint %d has no second endpoint.\n" , |
699 | firstnumber + i); |
700 | break; |
701 | } else { |
702 | segmentconstraintlist[index++] = (REAL) strtod(stringptr, &stringptr); |
703 | } |
704 | stringptr = findnextnumber(stringptr); |
705 | if (*stringptr == '\0') { |
706 | printf("Error: segment constraint %d has no maximum length bound.\n" , |
707 | firstnumber + i); |
708 | break; |
709 | } else { |
710 | segmentconstraintlist[index++] = (REAL) strtod(stringptr, &stringptr); |
711 | } |
712 | } |
713 | if (i < numberofsegmentconstraints) { |
714 | // This must be caused by an error. |
715 | fclose(infile); |
716 | return false; |
717 | } |
718 | } |
719 | |
720 | fclose(infile); |
721 | return true; |
722 | } |
723 | |
724 | /////////////////////////////////////////////////////////////////////////////// |
725 | // // |
726 | // load_mtr() Load a size specification map from a .mtr file. // |
727 | // // |
728 | /////////////////////////////////////////////////////////////////////////////// |
729 | |
730 | bool tetgenio::load_mtr(char* filebasename) |
731 | { |
732 | FILE *infile; |
733 | char mtrfilename[FILENAMESIZE]; |
734 | char inputline[INPUTLINESIZE]; |
735 | char *stringptr; |
736 | REAL mtr; |
737 | int ptnum; |
738 | int mtrindex; |
739 | int i, j; |
740 | |
741 | strcpy(mtrfilename, filebasename); |
742 | strcat(mtrfilename, ".mtr" ); |
743 | infile = fopen(mtrfilename, "r" ); |
744 | if (infile != (FILE *) NULL) { |
745 | printf("Opening %s.\n" , mtrfilename); |
746 | } else { |
747 | return false; |
748 | } |
749 | |
750 | // Read the number of points. |
751 | stringptr = readnumberline(inputline, infile, mtrfilename); |
752 | ptnum = (int) strtol (stringptr, &stringptr, 0); |
753 | if (ptnum != numberofpoints) { |
754 | printf(" !! Point numbers are not equal. Ignored.\n" ); |
755 | fclose(infile); |
756 | return false; |
757 | } |
758 | // Read the number of columns (1, 3, or 6). |
759 | stringptr = findnextnumber(stringptr); // Skip number of points. |
760 | if (*stringptr != '\0') { |
761 | numberofpointmtrs = (int) strtol (stringptr, &stringptr, 0); |
762 | } |
763 | if (numberofpointmtrs == 0) { |
764 | // Column number doesn't match. Set a default number (1). |
765 | numberofpointmtrs = 1; |
766 | } |
767 | |
768 | // Allocate space for pointmtrlist. |
769 | pointmtrlist = new REAL[numberofpoints * numberofpointmtrs]; |
770 | if (pointmtrlist == (REAL *) NULL) { |
771 | terminatetetgen(NULL, 1); |
772 | } |
773 | mtrindex = 0; |
774 | for (i = 0; i < numberofpoints; i++) { |
775 | // Read metrics. |
776 | stringptr = readnumberline(inputline, infile, mtrfilename); |
777 | for (j = 0; j < numberofpointmtrs; j++) { |
778 | if (*stringptr == '\0') { |
779 | printf("Error: Metric %d is missing value #%d in %s.\n" , |
780 | i + firstnumber, j + 1, mtrfilename); |
781 | terminatetetgen(NULL, 1); |
782 | } |
783 | mtr = (REAL) strtod(stringptr, &stringptr); |
784 | pointmtrlist[mtrindex++] = mtr; |
785 | stringptr = findnextnumber(stringptr); |
786 | } |
787 | } |
788 | |
789 | fclose(infile); |
790 | return true; |
791 | } |
792 | |
793 | /////////////////////////////////////////////////////////////////////////////// |
794 | // // |
795 | // load_poly() Load a PL complex from a .poly or a .smesh file. // |
796 | // // |
797 | /////////////////////////////////////////////////////////////////////////////// |
798 | |
799 | bool tetgenio::load_poly(char* filebasename) |
800 | { |
801 | FILE *infile; |
802 | char inpolyfilename[FILENAMESIZE]; |
803 | char insmeshfilename[FILENAMESIZE]; |
804 | char inputline[INPUTLINESIZE]; |
805 | char *stringptr, *infilename; |
806 | int smesh, markers, uvflag, currentmarker; |
807 | int index; |
808 | int i, j, k; |
809 | |
810 | // Assembling the actual file names we want to open. |
811 | strcpy(inpolyfilename, filebasename); |
812 | strcpy(insmeshfilename, filebasename); |
813 | strcat(inpolyfilename, ".poly" ); |
814 | strcat(insmeshfilename, ".smesh" ); |
815 | |
816 | // First assume it is a .poly file. |
817 | smesh = 0; |
818 | // Try to open a .poly file. |
819 | infile = fopen(inpolyfilename, "r" ); |
820 | if (infile == (FILE *) NULL) { |
821 | // .poly doesn't exist! Try to open a .smesh file. |
822 | infile = fopen(insmeshfilename, "r" ); |
823 | if (infile == (FILE *) NULL) { |
824 | printf(" Cannot access file %s and %s.\n" , |
825 | inpolyfilename, insmeshfilename); |
826 | return false; |
827 | } else { |
828 | printf("Opening %s.\n" , insmeshfilename); |
829 | infilename = insmeshfilename; |
830 | } |
831 | smesh = 1; |
832 | } else { |
833 | printf("Opening %s.\n" , inpolyfilename); |
834 | infilename = inpolyfilename; |
835 | } |
836 | |
837 | // Initialize the default values. |
838 | mesh_dim = 3; // Three-dimensional coordinates. |
839 | numberofpointattributes = 0; // no point attribute. |
840 | markers = 0; // no boundary marker. |
841 | uvflag = 0; // no uv parameters (required by a PSC). |
842 | |
843 | // Read number of points, number of dimensions, number of point |
844 | // attributes, and number of boundary markers. |
845 | stringptr = readnumberline(inputline, infile, infilename); |
846 | numberofpoints = (int) strtol (stringptr, &stringptr, 0); |
847 | stringptr = findnextnumber(stringptr); |
848 | if (*stringptr != '\0') { |
849 | mesh_dim = (int) strtol (stringptr, &stringptr, 0); |
850 | } |
851 | stringptr = findnextnumber(stringptr); |
852 | if (*stringptr != '\0') { |
853 | numberofpointattributes = (int) strtol (stringptr, &stringptr, 0); |
854 | } |
855 | stringptr = findnextnumber(stringptr); |
856 | if (*stringptr != '\0') { |
857 | markers = (int) strtol (stringptr, &stringptr, 0); |
858 | } |
859 | if (*stringptr != '\0') { |
860 | uvflag = (int) strtol (stringptr, &stringptr, 0); |
861 | } |
862 | |
863 | if (numberofpoints > 0) { |
864 | // Load the list of nodes. |
865 | if (!load_node_call(infile, markers, uvflag, infilename)) { |
866 | fclose(infile); |
867 | return false; |
868 | } |
869 | } else { |
870 | // If the .poly or .smesh file claims there are zero points, that |
871 | // means the points should be read from a separate .node file. |
872 | if (!load_node(filebasename)) { |
873 | fclose(infile); |
874 | return false; |
875 | } |
876 | } |
877 | |
878 | if ((mesh_dim != 3) && (mesh_dim != 2)) { |
879 | printf("Input error: TetGen only works for 2D & 3D point sets.\n" ); |
880 | fclose(infile); |
881 | return false; |
882 | } |
883 | if (numberofpoints < (mesh_dim + 1)) { |
884 | printf("Input error: TetGen needs at least %d points.\n" , mesh_dim + 1); |
885 | fclose(infile); |
886 | return false; |
887 | } |
888 | |
889 | facet *f; |
890 | polygon *p; |
891 | |
892 | if (mesh_dim == 3) { |
893 | |
894 | // Read number of facets and number of boundary markers. |
895 | stringptr = readnumberline(inputline, infile, infilename); |
896 | if (stringptr == NULL) { |
897 | // No facet list, return. |
898 | fclose(infile); |
899 | return true; |
900 | } |
901 | numberoffacets = (int) strtol (stringptr, &stringptr, 0); |
902 | if (numberoffacets <= 0) { |
903 | // No facet list, return. |
904 | fclose(infile); |
905 | return true; |
906 | } |
907 | stringptr = findnextnumber(stringptr); |
908 | if (*stringptr == '\0') { |
909 | markers = 0; // no boundary marker. |
910 | } else { |
911 | markers = (int) strtol (stringptr, &stringptr, 0); |
912 | } |
913 | |
914 | // Initialize the 'facetlist', 'facetmarkerlist'. |
915 | facetlist = new facet[numberoffacets]; |
916 | if (markers == 1) { |
917 | facetmarkerlist = new int[numberoffacets]; |
918 | } |
919 | |
920 | // Read data into 'facetlist', 'facetmarkerlist'. |
921 | if (smesh == 0) { |
922 | // Facets are in .poly file format. |
923 | for (i = 1; i <= numberoffacets; i++) { |
924 | f = &(facetlist[i - 1]); |
925 | init(f); |
926 | f->numberofholes = 0; |
927 | currentmarker = 0; |
928 | // Read number of polygons, number of holes, and a boundary marker. |
929 | stringptr = readnumberline(inputline, infile, infilename); |
930 | f->numberofpolygons = (int) strtol (stringptr, &stringptr, 0); |
931 | stringptr = findnextnumber(stringptr); |
932 | if (*stringptr != '\0') { |
933 | f->numberofholes = (int) strtol (stringptr, &stringptr, 0); |
934 | if (markers == 1) { |
935 | stringptr = findnextnumber(stringptr); |
936 | if (*stringptr != '\0') { |
937 | currentmarker = (int) strtol(stringptr, &stringptr, 0); |
938 | } |
939 | } |
940 | } |
941 | // Initialize facetmarker if it needs. |
942 | if (markers == 1) { |
943 | facetmarkerlist[i - 1] = currentmarker; |
944 | } |
945 | // Each facet should has at least one polygon. |
946 | if (f->numberofpolygons <= 0) { |
947 | printf("Error: Wrong number of polygon in %d facet.\n" , i); |
948 | break; |
949 | } |
950 | // Initialize the 'f->polygonlist'. |
951 | f->polygonlist = new polygon[f->numberofpolygons]; |
952 | // Go through all polygons, read in their vertices. |
953 | for (j = 1; j <= f->numberofpolygons; j++) { |
954 | p = &(f->polygonlist[j - 1]); |
955 | init(p); |
956 | // Read number of vertices of this polygon. |
957 | stringptr = readnumberline(inputline, infile, infilename); |
958 | p->numberofvertices = (int) strtol(stringptr, &stringptr, 0); |
959 | if (p->numberofvertices < 1) { |
960 | printf("Error: Wrong polygon %d in facet %d\n" , j, i); |
961 | break; |
962 | } |
963 | // Initialize 'p->vertexlist'. |
964 | p->vertexlist = new int[p->numberofvertices]; |
965 | // Read all vertices of this polygon. |
966 | for (k = 1; k <= p->numberofvertices; k++) { |
967 | stringptr = findnextnumber(stringptr); |
968 | if (*stringptr == '\0') { |
969 | // Try to load another non-empty line and continue to read the |
970 | // rest of vertices. |
971 | stringptr = readnumberline(inputline, infile, infilename); |
972 | if (*stringptr == '\0') { |
973 | printf("Error: Missing %d endpoints of polygon %d in facet %d" , |
974 | p->numberofvertices - k, j, i); |
975 | break; |
976 | } |
977 | } |
978 | p->vertexlist[k - 1] = (int) strtol (stringptr, &stringptr, 0); |
979 | } |
980 | } |
981 | if (j <= f->numberofpolygons) { |
982 | // This must be caused by an error. However, there're j - 1 |
983 | // polygons have been read. Reset the 'f->numberofpolygon'. |
984 | if (j == 1) { |
985 | // This is the first polygon. |
986 | delete [] f->polygonlist; |
987 | } |
988 | f->numberofpolygons = j - 1; |
989 | // No hole will be read even it exists. |
990 | f->numberofholes = 0; |
991 | break; |
992 | } |
993 | // If this facet has hole pints defined, read them. |
994 | if (f->numberofholes > 0) { |
995 | // Initialize 'f->holelist'. |
996 | f->holelist = new REAL[f->numberofholes * 3]; |
997 | // Read the holes' coordinates. |
998 | index = 0; |
999 | for (j = 1; j <= f->numberofholes; j++) { |
1000 | stringptr = readnumberline(inputline, infile, infilename); |
1001 | for (k = 1; k <= 3; k++) { |
1002 | stringptr = findnextnumber(stringptr); |
1003 | if (*stringptr == '\0') { |
1004 | printf("Error: Hole %d in facet %d has no coordinates" , j, i); |
1005 | break; |
1006 | } |
1007 | f->holelist[index++] = (REAL) strtod (stringptr, &stringptr); |
1008 | } |
1009 | if (k <= 3) { |
1010 | // This must be caused by an error. |
1011 | break; |
1012 | } |
1013 | } |
1014 | if (j <= f->numberofholes) { |
1015 | // This must be caused by an error. |
1016 | break; |
1017 | } |
1018 | } |
1019 | } |
1020 | if (i <= numberoffacets) { |
1021 | // This must be caused by an error. |
1022 | numberoffacets = i - 1; |
1023 | fclose(infile); |
1024 | return false; |
1025 | } |
1026 | } else { // poly == 0 |
1027 | // Read the facets from a .smesh file. |
1028 | for (i = 1; i <= numberoffacets; i++) { |
1029 | f = &(facetlist[i - 1]); |
1030 | init(f); |
1031 | // Initialize 'f->facetlist'. In a .smesh file, each facetlist only |
1032 | // contains exactly one polygon, no hole. |
1033 | f->numberofpolygons = 1; |
1034 | f->polygonlist = new polygon[f->numberofpolygons]; |
1035 | p = &(f->polygonlist[0]); |
1036 | init(p); |
1037 | // Read number of vertices of this polygon. |
1038 | stringptr = readnumberline(inputline, infile, insmeshfilename); |
1039 | p->numberofvertices = (int) strtol (stringptr, &stringptr, 0); |
1040 | if (p->numberofvertices < 1) { |
1041 | printf("Error: Wrong number of vertex in facet %d\n" , i); |
1042 | break; |
1043 | } |
1044 | // Initialize 'p->vertexlist'. |
1045 | p->vertexlist = new int[p->numberofvertices]; |
1046 | for (k = 1; k <= p->numberofvertices; k++) { |
1047 | stringptr = findnextnumber(stringptr); |
1048 | if (*stringptr == '\0') { |
1049 | // Try to load another non-empty line and continue to read the |
1050 | // rest of vertices. |
1051 | stringptr = readnumberline(inputline, infile, infilename); |
1052 | if (*stringptr == '\0') { |
1053 | printf("Error: Missing %d endpoints in facet %d" , |
1054 | p->numberofvertices - k, i); |
1055 | break; |
1056 | } |
1057 | } |
1058 | p->vertexlist[k - 1] = (int) strtol (stringptr, &stringptr, 0); |
1059 | } |
1060 | if (k <= p->numberofvertices) { |
1061 | // This must be caused by an error. |
1062 | break; |
1063 | } |
1064 | // Read facet's boundary marker at last. |
1065 | if (markers == 1) { |
1066 | stringptr = findnextnumber(stringptr); |
1067 | if (*stringptr == '\0') { |
1068 | currentmarker = 0; |
1069 | } else { |
1070 | currentmarker = (int) strtol(stringptr, &stringptr, 0); |
1071 | } |
1072 | facetmarkerlist[i - 1] = currentmarker; |
1073 | } |
1074 | } |
1075 | if (i <= numberoffacets) { |
1076 | // This must be caused by an error. |
1077 | numberoffacets = i - 1; |
1078 | fclose(infile); |
1079 | return false; |
1080 | } |
1081 | } |
1082 | |
1083 | // Read the hole section. |
1084 | stringptr = readnumberline(inputline, infile, infilename); |
1085 | if (stringptr == NULL) { |
1086 | // No hole list, return. |
1087 | fclose(infile); |
1088 | return true; |
1089 | } |
1090 | if (*stringptr != '\0') { |
1091 | numberofholes = (int) strtol (stringptr, &stringptr, 0); |
1092 | } else { |
1093 | numberofholes = 0; |
1094 | } |
1095 | if (numberofholes > 0) { |
1096 | // Initialize 'holelist'. |
1097 | holelist = new REAL[numberofholes * 3]; |
1098 | for (i = 0; i < 3 * numberofholes; i += 3) { |
1099 | stringptr = readnumberline(inputline, infile, infilename); |
1100 | stringptr = findnextnumber(stringptr); |
1101 | if (*stringptr == '\0') { |
1102 | printf("Error: Hole %d has no x coord.\n" , firstnumber + (i / 3)); |
1103 | break; |
1104 | } else { |
1105 | holelist[i] = (REAL) strtod(stringptr, &stringptr); |
1106 | } |
1107 | stringptr = findnextnumber(stringptr); |
1108 | if (*stringptr == '\0') { |
1109 | printf("Error: Hole %d has no y coord.\n" , firstnumber + (i / 3)); |
1110 | break; |
1111 | } else { |
1112 | holelist[i + 1] = (REAL) strtod(stringptr, &stringptr); |
1113 | } |
1114 | stringptr = findnextnumber(stringptr); |
1115 | if (*stringptr == '\0') { |
1116 | printf("Error: Hole %d has no z coord.\n" , firstnumber + (i / 3)); |
1117 | break; |
1118 | } else { |
1119 | holelist[i + 2] = (REAL) strtod(stringptr, &stringptr); |
1120 | } |
1121 | } |
1122 | if (i < 3 * numberofholes) { |
1123 | // This must be caused by an error. |
1124 | fclose(infile); |
1125 | return false; |
1126 | } |
1127 | } |
1128 | |
1129 | // Read the region section. The 'region' section is optional, if we |
1130 | // don't reach the end-of-file, try read it in. |
1131 | stringptr = readnumberline(inputline, infile, NULL); |
1132 | if (stringptr != (char *) NULL && *stringptr != '\0') { |
1133 | numberofregions = (int) strtol (stringptr, &stringptr, 0); |
1134 | } else { |
1135 | numberofregions = 0; |
1136 | } |
1137 | if (numberofregions > 0) { |
1138 | // Initialize 'regionlist'. |
1139 | regionlist = new REAL[numberofregions * 5]; |
1140 | index = 0; |
1141 | for (i = 0; i < numberofregions; i++) { |
1142 | stringptr = readnumberline(inputline, infile, infilename); |
1143 | stringptr = findnextnumber(stringptr); |
1144 | if (*stringptr == '\0') { |
1145 | printf("Error: Region %d has no x coordinate.\n" , firstnumber + i); |
1146 | break; |
1147 | } else { |
1148 | regionlist[index++] = (REAL) strtod(stringptr, &stringptr); |
1149 | } |
1150 | stringptr = findnextnumber(stringptr); |
1151 | if (*stringptr == '\0') { |
1152 | printf("Error: Region %d has no y coordinate.\n" , firstnumber + i); |
1153 | break; |
1154 | } else { |
1155 | regionlist[index++] = (REAL) strtod(stringptr, &stringptr); |
1156 | } |
1157 | stringptr = findnextnumber(stringptr); |
1158 | if (*stringptr == '\0') { |
1159 | printf("Error: Region %d has no z coordinate.\n" , firstnumber + i); |
1160 | break; |
1161 | } else { |
1162 | regionlist[index++] = (REAL) strtod(stringptr, &stringptr); |
1163 | } |
1164 | stringptr = findnextnumber(stringptr); |
1165 | if (*stringptr == '\0') { |
1166 | printf("Error: Region %d has no region attrib.\n" , firstnumber + i); |
1167 | break; |
1168 | } else { |
1169 | regionlist[index++] = (REAL) strtod(stringptr, &stringptr); |
1170 | } |
1171 | stringptr = findnextnumber(stringptr); |
1172 | if (*stringptr == '\0') { |
1173 | regionlist[index] = regionlist[index - 1]; |
1174 | } else { |
1175 | regionlist[index] = (REAL) strtod(stringptr, &stringptr); |
1176 | } |
1177 | index++; |
1178 | } |
1179 | if (i < numberofregions) { |
1180 | // This must be caused by an error. |
1181 | fclose(infile); |
1182 | return false; |
1183 | } |
1184 | } |
1185 | |
1186 | } else { |
1187 | |
1188 | // Read a PSLG from Triangle's poly file. |
1189 | assert(mesh_dim == 2); |
1190 | // A PSLG is a facet of a PLC. |
1191 | numberoffacets = 1; |
1192 | // Initialize the 'facetlist'. |
1193 | facetlist = new facet[numberoffacets]; |
1194 | facetmarkerlist = (int *) NULL; // No facet markers. |
1195 | f = &(facetlist[0]); |
1196 | init(f); |
1197 | // Read number of segments. |
1198 | stringptr = readnumberline(inputline, infile, infilename); |
1199 | // Segments are degenerate polygons. |
1200 | f->numberofpolygons = (int) strtol (stringptr, &stringptr, 0); |
1201 | if (f->numberofpolygons > 0) { |
1202 | f->polygonlist = new polygon[f->numberofpolygons]; |
1203 | } |
1204 | // Go through all segments, read in their vertices. |
1205 | for (j = 0; j < f->numberofpolygons; j++) { |
1206 | p = &(f->polygonlist[j]); |
1207 | init(p); |
1208 | // Read in a segment. |
1209 | stringptr = readnumberline(inputline, infile, infilename); |
1210 | stringptr = findnextnumber(stringptr); // Skip its index. |
1211 | p->numberofvertices = 2; // A segment always has two vertices. |
1212 | p->vertexlist = new int[p->numberofvertices]; |
1213 | p->vertexlist[0] = (int) strtol (stringptr, &stringptr, 0); |
1214 | stringptr = findnextnumber(stringptr); |
1215 | p->vertexlist[1] = (int) strtol (stringptr, &stringptr, 0); |
1216 | } |
1217 | // Read number of holes. |
1218 | stringptr = readnumberline(inputline, infile, infilename); |
1219 | f->numberofholes = (int) strtol (stringptr, &stringptr, 0); |
1220 | if (f->numberofholes > 0) { |
1221 | // Initialize 'f->holelist'. |
1222 | f->holelist = new REAL[f->numberofholes * 3]; |
1223 | // Read the holes' coordinates. |
1224 | for (j = 0; j < f->numberofholes; j++) { |
1225 | // Read a 2D hole point. |
1226 | stringptr = readnumberline(inputline, infile, infilename); |
1227 | stringptr = findnextnumber(stringptr); // Skip its index. |
1228 | f->holelist[j * 3] = (REAL) strtod (stringptr, &stringptr); |
1229 | stringptr = findnextnumber(stringptr); |
1230 | f->holelist[j * 3 + 1] = (REAL) strtod (stringptr, &stringptr); |
1231 | f->holelist[j * 3 + 2] = 0.0; // The z-coord. |
1232 | } |
1233 | } |
1234 | // The regions are skipped. |
1235 | |
1236 | } |
1237 | |
1238 | // End of reading poly/smesh file. |
1239 | fclose(infile); |
1240 | return true; |
1241 | } |
1242 | |
1243 | /////////////////////////////////////////////////////////////////////////////// |
1244 | // // |
1245 | // load_off() Load a polyhedron from a .off file. // |
1246 | // // |
1247 | // The .off format is one of file formats of the Geomview, an interactive // |
1248 | // program for viewing and manipulating geometric objects. More information // |
1249 | // is available form: http://www.geomview.org. // |
1250 | // // |
1251 | /////////////////////////////////////////////////////////////////////////////// |
1252 | |
1253 | bool tetgenio::load_off(char* filebasename) |
1254 | { |
1255 | FILE *fp; |
1256 | tetgenio::facet *f; |
1257 | tetgenio::polygon *p; |
1258 | char infilename[FILENAMESIZE]; |
1259 | char buffer[INPUTLINESIZE]; |
1260 | char *bufferp; |
1261 | double *coord; |
1262 | int nverts = 0, iverts = 0; |
1263 | int nfaces = 0, ifaces = 0; |
1264 | int nedges = 0; |
1265 | int line_count = 0, i; |
1266 | |
1267 | // Default, the off file's index is from '0'. We check it by remembering the |
1268 | // smallest index we found in the file. It should be either 0 or 1. |
1269 | int smallestidx = 0; |
1270 | |
1271 | strncpy(infilename, filebasename, 1024 - 1); |
1272 | infilename[FILENAMESIZE - 1] = '\0'; |
1273 | if (infilename[0] == '\0') { |
1274 | printf("Error: No filename.\n" ); |
1275 | return false; |
1276 | } |
1277 | if (strcmp(&infilename[strlen(infilename) - 4], ".off" ) != 0) { |
1278 | strcat(infilename, ".off" ); |
1279 | } |
1280 | |
1281 | if (!(fp = fopen(infilename, "r" ))) { |
1282 | printf(" Unable to open file %s\n" , infilename); |
1283 | return false; |
1284 | } |
1285 | printf("Opening %s.\n" , infilename); |
1286 | |
1287 | while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { |
1288 | // Check section |
1289 | if (nverts == 0) { |
1290 | // Read header |
1291 | bufferp = strstr(bufferp, "OFF" ); |
1292 | if (bufferp != NULL) { |
1293 | // Read mesh counts |
1294 | bufferp = findnextnumber(bufferp); // Skip field "OFF". |
1295 | if (*bufferp == '\0') { |
1296 | // Read a non-empty line. |
1297 | bufferp = readline(buffer, fp, &line_count); |
1298 | } |
1299 | if ((sscanf(bufferp, "%d%d%d" , &nverts, &nfaces, &nedges) != 3) |
1300 | || (nverts == 0)) { |
1301 | printf("Syntax error reading header on line %d in file %s\n" , |
1302 | line_count, infilename); |
1303 | fclose(fp); |
1304 | return false; |
1305 | } |
1306 | // Allocate memory for 'tetgenio' |
1307 | if (nverts > 0) { |
1308 | numberofpoints = nverts; |
1309 | pointlist = new REAL[nverts * 3]; |
1310 | smallestidx = nverts + 1; // A bigger enough number. |
1311 | } |
1312 | if (nfaces > 0) { |
1313 | numberoffacets = nfaces; |
1314 | facetlist = new tetgenio::facet[nfaces]; |
1315 | } |
1316 | } |
1317 | } else if (iverts < nverts) { |
1318 | // Read vertex coordinates |
1319 | coord = &pointlist[iverts * 3]; |
1320 | for (i = 0; i < 3; i++) { |
1321 | if (*bufferp == '\0') { |
1322 | printf("Syntax error reading vertex coords on line %d in file %s\n" , |
1323 | line_count, infilename); |
1324 | fclose(fp); |
1325 | return false; |
1326 | } |
1327 | coord[i] = (REAL) strtod(bufferp, &bufferp); |
1328 | bufferp = findnextnumber(bufferp); |
1329 | } |
1330 | iverts++; |
1331 | } else if (ifaces < nfaces) { |
1332 | // Get next face |
1333 | f = &facetlist[ifaces]; |
1334 | init(f); |
1335 | // In .off format, each facet has one polygon, no hole. |
1336 | f->numberofpolygons = 1; |
1337 | f->polygonlist = new tetgenio::polygon[1]; |
1338 | p = &f->polygonlist[0]; |
1339 | init(p); |
1340 | // Read the number of vertices, it should be greater than 0. |
1341 | p->numberofvertices = (int) strtol(bufferp, &bufferp, 0); |
1342 | if (p->numberofvertices == 0) { |
1343 | printf("Syntax error reading polygon on line %d in file %s\n" , |
1344 | line_count, infilename); |
1345 | fclose(fp); |
1346 | return false; |
1347 | } |
1348 | // Allocate memory for face vertices |
1349 | p->vertexlist = new int[p->numberofvertices]; |
1350 | for (i = 0; i < p->numberofvertices; i++) { |
1351 | bufferp = findnextnumber(bufferp); |
1352 | if (*bufferp == '\0') { |
1353 | printf("Syntax error reading polygon on line %d in file %s\n" , |
1354 | line_count, infilename); |
1355 | fclose(fp); |
1356 | return false; |
1357 | } |
1358 | p->vertexlist[i] = (int) strtol(bufferp, &bufferp, 0); |
1359 | // Detect the smallest index. |
1360 | if (p->vertexlist[i] < smallestidx) { |
1361 | smallestidx = p->vertexlist[i]; |
1362 | } |
1363 | } |
1364 | ifaces++; |
1365 | } else { |
1366 | // Should never get here |
1367 | printf("Found extra text starting at line %d in file %s\n" , line_count, |
1368 | infilename); |
1369 | break; |
1370 | } |
1371 | } |
1372 | |
1373 | // Close file |
1374 | fclose(fp); |
1375 | |
1376 | // Decide the firstnumber of the index. |
1377 | if (smallestidx == 0) { |
1378 | firstnumber = 0; |
1379 | } else if (smallestidx == 1) { |
1380 | firstnumber = 1; |
1381 | } else { |
1382 | printf("A wrong smallest index (%d) was detected in file %s\n" , |
1383 | smallestidx, infilename); |
1384 | return false; |
1385 | } |
1386 | |
1387 | if (iverts != nverts) { |
1388 | printf("Expected %d vertices, but read only %d vertices in file %s\n" , |
1389 | nverts, iverts, infilename); |
1390 | return false; |
1391 | } |
1392 | if (ifaces != nfaces) { |
1393 | printf("Expected %d faces, but read only %d faces in file %s\n" , |
1394 | nfaces, ifaces, infilename); |
1395 | return false; |
1396 | } |
1397 | |
1398 | return true; |
1399 | } |
1400 | |
1401 | /////////////////////////////////////////////////////////////////////////////// |
1402 | // // |
1403 | // load_ply() Load a polyhedron from a .ply file. // |
1404 | // // |
1405 | // This is a simplified version of reading .ply files, which only reads the // |
1406 | // set of vertices and the set of faces. Other informations (such as color, // |
1407 | // material, texture, etc) in .ply file are ignored. Complete routines for // |
1408 | // reading and writing ,ply files are available from: http://www.cc.gatech. // |
1409 | // edu/projects/large_models/ply.html. Except the header section, ply file // |
1410 | // format has exactly the same format for listing vertices and polygons as // |
1411 | // off file format. // |
1412 | // // |
1413 | /////////////////////////////////////////////////////////////////////////////// |
1414 | |
1415 | bool tetgenio::load_ply(char* filebasename) |
1416 | { |
1417 | FILE *fp; |
1418 | tetgenio::facet *f; |
1419 | tetgenio::polygon *p; |
1420 | char infilename[FILENAMESIZE]; |
1421 | char buffer[INPUTLINESIZE]; |
1422 | char *bufferp, *str; |
1423 | double *coord; |
1424 | int = 0, format = 0; |
1425 | int nverts = 0, iverts = 0; |
1426 | int nfaces = 0, ifaces = 0; |
1427 | int line_count = 0, i; |
1428 | |
1429 | // Default, the ply file's index is from '0'. We check it by remembering the |
1430 | // smallest index we found in the file. It should be either 0 or 1. |
1431 | int smallestidx = 0; |
1432 | |
1433 | strncpy(infilename, filebasename, FILENAMESIZE - 1); |
1434 | infilename[FILENAMESIZE - 1] = '\0'; |
1435 | if (infilename[0] == '\0') { |
1436 | printf("Error: No filename.\n" ); |
1437 | return false; |
1438 | } |
1439 | if (strcmp(&infilename[strlen(infilename) - 4], ".ply" ) != 0) { |
1440 | strcat(infilename, ".ply" ); |
1441 | } |
1442 | |
1443 | if (!(fp = fopen(infilename, "r" ))) { |
1444 | printf("Error: Unable to open file %s\n" , infilename); |
1445 | return false; |
1446 | } |
1447 | printf("Opening %s.\n" , infilename); |
1448 | |
1449 | while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { |
1450 | if (!endheader) { |
1451 | // Find if it is the keyword "end_header". |
1452 | str = strstr(bufferp, "end_header" ); |
1453 | // strstr() is case sensitive. |
1454 | if (!str) str = strstr(bufferp, "End_header" ); |
1455 | if (!str) str = strstr(bufferp, "End_Header" ); |
1456 | if (str) { |
1457 | // This is the end of the header section. |
1458 | endheader = 1; |
1459 | continue; |
1460 | } |
1461 | // Parse the number of vertices and the number of faces. |
1462 | if (nverts == 0 || nfaces == 0) { |
1463 | // Find if it si the keyword "element". |
1464 | str = strstr(bufferp, "element" ); |
1465 | if (!str) str = strstr(bufferp, "Element" ); |
1466 | if (str) { |
1467 | bufferp = findnextfield(str); |
1468 | if (*bufferp == '\0') { |
1469 | printf("Syntax error reading element type on line%d in file %s\n" , |
1470 | line_count, infilename); |
1471 | fclose(fp); |
1472 | return false; |
1473 | } |
1474 | if (nverts == 0) { |
1475 | // Find if it is the keyword "vertex". |
1476 | str = strstr(bufferp, "vertex" ); |
1477 | if (!str) str = strstr(bufferp, "Vertex" ); |
1478 | if (str) { |
1479 | bufferp = findnextnumber(str); |
1480 | if (*bufferp == '\0') { |
1481 | printf("Syntax error reading vertex number on line" ); |
1482 | printf(" %d in file %s\n" , line_count, infilename); |
1483 | fclose(fp); |
1484 | return false; |
1485 | } |
1486 | nverts = (int) strtol(bufferp, &bufferp, 0); |
1487 | // Allocate memory for 'tetgenio' |
1488 | if (nverts > 0) { |
1489 | numberofpoints = nverts; |
1490 | pointlist = new REAL[nverts * 3]; |
1491 | smallestidx = nverts + 1; // A big enough index. |
1492 | } |
1493 | } |
1494 | } |
1495 | if (nfaces == 0) { |
1496 | // Find if it is the keyword "face". |
1497 | str = strstr(bufferp, "face" ); |
1498 | if (!str) str = strstr(bufferp, "Face" ); |
1499 | if (str) { |
1500 | bufferp = findnextnumber(str); |
1501 | if (*bufferp == '\0') { |
1502 | printf("Syntax error reading face number on line" ); |
1503 | printf(" %d in file %s\n" , line_count, infilename); |
1504 | fclose(fp); |
1505 | return false; |
1506 | } |
1507 | nfaces = (int) strtol(bufferp, &bufferp, 0); |
1508 | // Allocate memory for 'tetgenio' |
1509 | if (nfaces > 0) { |
1510 | numberoffacets = nfaces; |
1511 | facetlist = new tetgenio::facet[nfaces]; |
1512 | } |
1513 | } |
1514 | } |
1515 | } // It is not the string "element". |
1516 | } |
1517 | if (format == 0) { |
1518 | // Find the keyword "format". |
1519 | str = strstr(bufferp, "format" ); |
1520 | if (!str) str = strstr(bufferp, "Format" ); |
1521 | if (str) { |
1522 | format = 1; |
1523 | bufferp = findnextfield(str); |
1524 | // Find if it is the string "ascii". |
1525 | str = strstr(bufferp, "ascii" ); |
1526 | if (!str) str = strstr(bufferp, "ASCII" ); |
1527 | if (!str) { |
1528 | printf("This routine only reads ascii format of ply files.\n" ); |
1529 | printf("Hint: You can convert the binary to ascii format by\n" ); |
1530 | printf(" using the provided ply tools:\n" ); |
1531 | printf(" ply2ascii < %s > ascii_%s\n" , infilename, infilename); |
1532 | fclose(fp); |
1533 | return false; |
1534 | } |
1535 | } |
1536 | } |
1537 | } else if (iverts < nverts) { |
1538 | // Read vertex coordinates |
1539 | coord = &pointlist[iverts * 3]; |
1540 | for (i = 0; i < 3; i++) { |
1541 | if (*bufferp == '\0') { |
1542 | printf("Syntax error reading vertex coords on line %d in file %s\n" , |
1543 | line_count, infilename); |
1544 | fclose(fp); |
1545 | return false; |
1546 | } |
1547 | coord[i] = (REAL) strtod(bufferp, &bufferp); |
1548 | bufferp = findnextnumber(bufferp); |
1549 | } |
1550 | iverts++; |
1551 | } else if (ifaces < nfaces) { |
1552 | // Get next face |
1553 | f = &facetlist[ifaces]; |
1554 | init(f); |
1555 | // In .off format, each facet has one polygon, no hole. |
1556 | f->numberofpolygons = 1; |
1557 | f->polygonlist = new tetgenio::polygon[1]; |
1558 | p = &f->polygonlist[0]; |
1559 | init(p); |
1560 | // Read the number of vertices, it should be greater than 0. |
1561 | p->numberofvertices = (int) strtol(bufferp, &bufferp, 0); |
1562 | if (p->numberofvertices == 0) { |
1563 | printf("Syntax error reading polygon on line %d in file %s\n" , |
1564 | line_count, infilename); |
1565 | fclose(fp); |
1566 | return false; |
1567 | } |
1568 | // Allocate memory for face vertices |
1569 | p->vertexlist = new int[p->numberofvertices]; |
1570 | for (i = 0; i < p->numberofvertices; i++) { |
1571 | bufferp = findnextnumber(bufferp); |
1572 | if (*bufferp == '\0') { |
1573 | printf("Syntax error reading polygon on line %d in file %s\n" , |
1574 | line_count, infilename); |
1575 | fclose(fp); |
1576 | return false; |
1577 | } |
1578 | p->vertexlist[i] = (int) strtol(bufferp, &bufferp, 0); |
1579 | if (p->vertexlist[i] < smallestidx) { |
1580 | smallestidx = p->vertexlist[i]; |
1581 | } |
1582 | } |
1583 | ifaces++; |
1584 | } else { |
1585 | // Should never get here |
1586 | printf("Found extra text starting at line %d in file %s\n" , line_count, |
1587 | infilename); |
1588 | break; |
1589 | } |
1590 | } |
1591 | |
1592 | // Close file |
1593 | fclose(fp); |
1594 | |
1595 | // Decide the firstnumber of the index. |
1596 | if (smallestidx == 0) { |
1597 | firstnumber = 0; |
1598 | } else if (smallestidx == 1) { |
1599 | firstnumber = 1; |
1600 | } else { |
1601 | printf("A wrong smallest index (%d) was detected in file %s\n" , |
1602 | smallestidx, infilename); |
1603 | return false; |
1604 | } |
1605 | |
1606 | if (iverts != nverts) { |
1607 | printf("Expected %d vertices, but read only %d vertices in file %s\n" , |
1608 | nverts, iverts, infilename); |
1609 | return false; |
1610 | } |
1611 | if (ifaces != nfaces) { |
1612 | printf("Expected %d faces, but read only %d faces in file %s\n" , |
1613 | nfaces, ifaces, infilename); |
1614 | return false; |
1615 | } |
1616 | |
1617 | return true; |
1618 | } |
1619 | |
1620 | /////////////////////////////////////////////////////////////////////////////// |
1621 | // // |
1622 | // load_stl() Load a surface mesh from a .stl file. // |
1623 | // // |
1624 | // The .stl or stereolithography format is an ASCII or binary file used in // |
1625 | // manufacturing. It is a list of the triangular surfaces that describe a // |
1626 | // computer generated solid model. This is the standard input for most rapid // |
1627 | // prototyping machines. // |
1628 | // // |
1629 | // Comment: A .stl file many contain many duplicated points. They will be // |
1630 | // unified during the Delaunay tetrahedralization process. // |
1631 | // // |
1632 | /////////////////////////////////////////////////////////////////////////////// |
1633 | |
1634 | bool tetgenio::load_stl(char* filebasename) |
1635 | { |
1636 | FILE *fp; |
1637 | tetgenmesh::arraypool *plist; |
1638 | tetgenio::facet *f; |
1639 | tetgenio::polygon *p; |
1640 | char infilename[FILENAMESIZE]; |
1641 | char buffer[INPUTLINESIZE]; |
1642 | char *bufferp, *str; |
1643 | double *coord; |
1644 | int solid = 0; |
1645 | int nverts = 0, iverts = 0; |
1646 | int nfaces = 0; |
1647 | int line_count = 0, i; |
1648 | |
1649 | strncpy(infilename, filebasename, FILENAMESIZE - 1); |
1650 | infilename[FILENAMESIZE - 1] = '\0'; |
1651 | if (infilename[0] == '\0') { |
1652 | printf("Error: No filename.\n" ); |
1653 | return false; |
1654 | } |
1655 | if (strcmp(&infilename[strlen(infilename) - 4], ".stl" ) != 0) { |
1656 | strcat(infilename, ".stl" ); |
1657 | } |
1658 | |
1659 | if (!(fp = fopen(infilename, "r" ))) { |
1660 | printf("Error: Unable to open file %s\n" , infilename); |
1661 | return false; |
1662 | } |
1663 | printf("Opening %s.\n" , infilename); |
1664 | |
1665 | // STL file has no number of points available. Use a list to read points. |
1666 | plist = new tetgenmesh::arraypool(sizeof(double) * 3, 10); |
1667 | |
1668 | while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { |
1669 | // The ASCII .stl file must start with the lower case keyword solid and |
1670 | // end with endsolid. |
1671 | if (solid == 0) { |
1672 | // Read header |
1673 | bufferp = strstr(bufferp, "solid" ); |
1674 | if (bufferp != NULL) { |
1675 | solid = 1; |
1676 | } |
1677 | } else { |
1678 | // We're inside the block of the solid. |
1679 | str = bufferp; |
1680 | // Is this the end of the solid. |
1681 | bufferp = strstr(bufferp, "endsolid" ); |
1682 | if (bufferp != NULL) { |
1683 | solid = 0; |
1684 | } else { |
1685 | // Read the XYZ coordinates if it is a vertex. |
1686 | bufferp = str; |
1687 | bufferp = strstr(bufferp, "vertex" ); |
1688 | if (bufferp != NULL) { |
1689 | plist->newindex((void **) &coord); |
1690 | for (i = 0; i < 3; i++) { |
1691 | bufferp = findnextnumber(bufferp); |
1692 | if (*bufferp == '\0') { |
1693 | printf("Syntax error reading vertex coords on line %d\n" , |
1694 | line_count); |
1695 | delete plist; |
1696 | fclose(fp); |
1697 | return false; |
1698 | } |
1699 | coord[i] = (REAL) strtod(bufferp, &bufferp); |
1700 | } |
1701 | } |
1702 | } |
1703 | } |
1704 | } |
1705 | fclose(fp); |
1706 | |
1707 | nverts = (int) plist->objects; |
1708 | // nverts should be an integer times 3 (every 3 vertices denote a face). |
1709 | if (nverts == 0 || (nverts % 3 != 0)) { |
1710 | printf("Error: Wrong number of vertices in file %s.\n" , infilename); |
1711 | delete plist; |
1712 | return false; |
1713 | } |
1714 | numberofpoints = nverts; |
1715 | pointlist = new REAL[nverts * 3]; |
1716 | for (i = 0; i < nverts; i++) { |
1717 | coord = (double *) fastlookup(plist, i); |
1718 | iverts = i * 3; |
1719 | pointlist[iverts] = (REAL) coord[0]; |
1720 | pointlist[iverts + 1] = (REAL) coord[1]; |
1721 | pointlist[iverts + 2] = (REAL) coord[2]; |
1722 | } |
1723 | |
1724 | nfaces = (int) (nverts / 3); |
1725 | numberoffacets = nfaces; |
1726 | facetlist = new tetgenio::facet[nfaces]; |
1727 | |
1728 | // Default use '1' as the array starting index. |
1729 | firstnumber = 1; |
1730 | iverts = firstnumber; |
1731 | for (i = 0; i < nfaces; i++) { |
1732 | f = &facetlist[i]; |
1733 | init(f); |
1734 | // In .stl format, each facet has one polygon, no hole. |
1735 | f->numberofpolygons = 1; |
1736 | f->polygonlist = new tetgenio::polygon[1]; |
1737 | p = &f->polygonlist[0]; |
1738 | init(p); |
1739 | // Each polygon has three vertices. |
1740 | p->numberofvertices = 3; |
1741 | p->vertexlist = new int[p->numberofvertices]; |
1742 | p->vertexlist[0] = iverts; |
1743 | p->vertexlist[1] = iverts + 1; |
1744 | p->vertexlist[2] = iverts + 2; |
1745 | iverts += 3; |
1746 | } |
1747 | |
1748 | delete plist; |
1749 | return true; |
1750 | } |
1751 | |
1752 | /////////////////////////////////////////////////////////////////////////////// |
1753 | // // |
1754 | // load_medit() Load a surface mesh from a .mesh file. // |
1755 | // // |
1756 | // The .mesh format is the file format of Medit, a user-friendly interactive // |
1757 | // mesh viewer program. // |
1758 | // // |
1759 | /////////////////////////////////////////////////////////////////////////////// |
1760 | |
1761 | bool tetgenio::load_medit(char* filebasename, int istetmesh) |
1762 | { |
1763 | FILE *fp; |
1764 | tetgenio::facet *tmpflist, *f; |
1765 | tetgenio::polygon *p; |
1766 | char infilename[FILENAMESIZE]; |
1767 | char buffer[INPUTLINESIZE]; |
1768 | char *bufferp, *str; |
1769 | double *coord; |
1770 | int *tmpfmlist; |
1771 | int dimension = 0; |
1772 | int nverts = 0; |
1773 | int nfaces = 0; |
1774 | int ntets = 0; |
1775 | int line_count = 0; |
1776 | int corners = 0; // 3 (triangle) or 4 (quad). |
1777 | int *plist; |
1778 | int i, j; |
1779 | |
1780 | int smallestidx = 0; |
1781 | |
1782 | strncpy(infilename, filebasename, FILENAMESIZE - 1); |
1783 | infilename[FILENAMESIZE - 1] = '\0'; |
1784 | if (infilename[0] == '\0') { |
1785 | printf("Error: No filename.\n" ); |
1786 | return false; |
1787 | } |
1788 | if (strcmp(&infilename[strlen(infilename) - 5], ".mesh" ) != 0) { |
1789 | strcat(infilename, ".mesh" ); |
1790 | } |
1791 | |
1792 | if (!(fp = fopen(infilename, "r" ))) { |
1793 | printf("Error: Unable to open file %s\n" , infilename); |
1794 | return false; |
1795 | } |
1796 | printf("Opening %s.\n" , infilename); |
1797 | |
1798 | while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { |
1799 | if (*bufferp == '#') continue; // A comment line is skipped. |
1800 | if (dimension == 0) { |
1801 | // Find if it is the keyword "Dimension". |
1802 | str = strstr(bufferp, "Dimension" ); |
1803 | if (!str) str = strstr(bufferp, "dimension" ); |
1804 | if (!str) str = strstr(bufferp, "DIMENSION" ); |
1805 | if (str) { |
1806 | // Read the dimensions |
1807 | bufferp = findnextnumber(str); // Skip field "Dimension". |
1808 | if (*bufferp == '\0') { |
1809 | // Read a non-empty line. |
1810 | bufferp = readline(buffer, fp, &line_count); |
1811 | } |
1812 | dimension = (int) strtol(bufferp, &bufferp, 0); |
1813 | if (dimension != 2 && dimension != 3) { |
1814 | printf("Unknown dimension in file on line %d in file %s\n" , |
1815 | line_count, infilename); |
1816 | fclose(fp); |
1817 | return false; |
1818 | } |
1819 | mesh_dim = dimension; |
1820 | } |
1821 | } |
1822 | if (nverts == 0) { |
1823 | // Find if it is the keyword "Vertices". |
1824 | str = strstr(bufferp, "Vertices" ); |
1825 | if (!str) str = strstr(bufferp, "vertices" ); |
1826 | if (!str) str = strstr(bufferp, "VERTICES" ); |
1827 | if (str) { |
1828 | // Read the number of vertices. |
1829 | bufferp = findnextnumber(str); // Skip field "Vertices". |
1830 | if (*bufferp == '\0') { |
1831 | // Read a non-empty line. |
1832 | bufferp = readline(buffer, fp, &line_count); |
1833 | } |
1834 | nverts = (int) strtol(bufferp, &bufferp, 0); |
1835 | // Initialize the smallest index. |
1836 | smallestidx = nverts + 1; |
1837 | // Allocate memory for 'tetgenio' |
1838 | if (nverts > 0) { |
1839 | numberofpoints = nverts; |
1840 | pointlist = new REAL[nverts * 3]; |
1841 | } |
1842 | // Read the follwoing node list. |
1843 | for (i = 0; i < nverts; i++) { |
1844 | bufferp = readline(buffer, fp, &line_count); |
1845 | if (bufferp == NULL) { |
1846 | printf("Unexpected end of file on line %d in file %s\n" , |
1847 | line_count, infilename); |
1848 | fclose(fp); |
1849 | return false; |
1850 | } |
1851 | // Read vertex coordinates |
1852 | coord = &pointlist[i * 3]; |
1853 | for (j = 0; j < 3; j++) { |
1854 | if (*bufferp == '\0') { |
1855 | printf("Syntax error reading vertex coords on line" ); |
1856 | printf(" %d in file %s\n" , line_count, infilename); |
1857 | fclose(fp); |
1858 | return false; |
1859 | } |
1860 | if ((j < 2) || (dimension == 3)) { |
1861 | coord[j] = (REAL) strtod(bufferp, &bufferp); |
1862 | } else { |
1863 | assert((j == 2) && (dimension == 2)); |
1864 | coord[j] = 0.0; |
1865 | } |
1866 | bufferp = findnextnumber(bufferp); |
1867 | } |
1868 | } |
1869 | continue; |
1870 | } |
1871 | } |
1872 | if (ntets == 0) { |
1873 | // Find if it is the keyword "Tetrahedra" |
1874 | corners = 0; |
1875 | str = strstr(bufferp, "Tetrahedra" ); |
1876 | if (!str) str = strstr(bufferp, "tetrahedra" ); |
1877 | if (!str) str = strstr(bufferp, "TETRAHEDRA" ); |
1878 | if (str) { |
1879 | corners = 4; |
1880 | } |
1881 | if (corners == 4) { |
1882 | // Read the number of tetrahedra |
1883 | bufferp = findnextnumber(str); // Skip field "Tetrahedra". |
1884 | if (*bufferp == '\0') { |
1885 | // Read a non-empty line. |
1886 | bufferp = readline(buffer, fp, &line_count); |
1887 | } |
1888 | ntets = strtol(bufferp, &bufferp, 0); |
1889 | if (ntets > 0) { |
1890 | // It is a tetrahedral mesh. |
1891 | numberoftetrahedra = ntets; |
1892 | numberofcorners = 4; |
1893 | numberoftetrahedronattributes = 1; |
1894 | tetrahedronlist = new int[ntets * 4]; |
1895 | tetrahedronattributelist = new REAL[ntets]; |
1896 | } |
1897 | } // if (corners == 4) |
1898 | // Read the list of tetrahedra. |
1899 | for (i = 0; i < numberoftetrahedra; i++) { |
1900 | plist = &(tetrahedronlist[i * 4]); |
1901 | bufferp = readline(buffer, fp, &line_count); |
1902 | if (bufferp == NULL) { |
1903 | printf("Unexpected end of file on line %d in file %s\n" , |
1904 | line_count, infilename); |
1905 | fclose(fp); |
1906 | return false; |
1907 | } |
1908 | // Read the vertices of the tet. |
1909 | for (j = 0; j < corners; j++) { |
1910 | if (*bufferp == '\0') { |
1911 | printf("Syntax error reading face on line %d in file %s\n" , |
1912 | line_count, infilename); |
1913 | fclose(fp); |
1914 | return false; |
1915 | } |
1916 | plist[j] = (int) strtol(bufferp, &bufferp, 0); |
1917 | // Remember the smallest index. |
1918 | if (plist[j] < smallestidx) smallestidx = plist[j]; |
1919 | bufferp = findnextnumber(bufferp); |
1920 | } |
1921 | // Read the attribute of the tet if it exists. |
1922 | tetrahedronattributelist[i] = 0; |
1923 | if (*bufferp != '\0') { |
1924 | tetrahedronattributelist[i] = (REAL) strtol(bufferp, &bufferp, 0); |
1925 | } |
1926 | } // i |
1927 | } // Tetrahedra |
1928 | if (nfaces == 0) { |
1929 | // Find if it is the keyword "Triangles" or "Quadrilaterals". |
1930 | corners = 0; |
1931 | str = strstr(bufferp, "Triangles" ); |
1932 | if (!str) str = strstr(bufferp, "triangles" ); |
1933 | if (!str) str = strstr(bufferp, "TRIANGLES" ); |
1934 | if (str) { |
1935 | corners = 3; |
1936 | } else { |
1937 | str = strstr(bufferp, "Quadrilaterals" ); |
1938 | if (!str) str = strstr(bufferp, "quadrilaterals" ); |
1939 | if (!str) str = strstr(bufferp, "QUADRILATERALS" ); |
1940 | if (str) { |
1941 | corners = 4; |
1942 | } |
1943 | } |
1944 | if (corners == 3 || corners == 4) { |
1945 | // Read the number of triangles (or quadrilaterals). |
1946 | bufferp = findnextnumber(str); // Skip field "Triangles". |
1947 | if (*bufferp == '\0') { |
1948 | // Read a non-empty line. |
1949 | bufferp = readline(buffer, fp, &line_count); |
1950 | } |
1951 | nfaces = strtol(bufferp, &bufferp, 0); |
1952 | // Allocate memory for 'tetgenio' |
1953 | if (nfaces > 0) { |
1954 | if (!istetmesh) { |
1955 | // It is a PLC surface mesh. |
1956 | if (numberoffacets > 0) { |
1957 | // facetlist has already been allocated. Enlarge arrays. |
1958 | // This happens when the surface mesh contains mixed cells. |
1959 | tmpflist = new tetgenio::facet[numberoffacets + nfaces]; |
1960 | tmpfmlist = new int[numberoffacets + nfaces]; |
1961 | // Copy the data of old arrays into new arrays. |
1962 | for (i = 0; i < numberoffacets; i++) { |
1963 | f = &(tmpflist[i]); |
1964 | tetgenio::init(f); |
1965 | *f = facetlist[i]; |
1966 | tmpfmlist[i] = facetmarkerlist[i]; |
1967 | } |
1968 | // Release old arrays. |
1969 | delete [] facetlist; |
1970 | delete [] facetmarkerlist; |
1971 | // Remember the new arrays. |
1972 | facetlist = tmpflist; |
1973 | facetmarkerlist = tmpfmlist; |
1974 | } else { |
1975 | // This is the first time to allocate facetlist. |
1976 | facetlist = new tetgenio::facet[nfaces]; |
1977 | facetmarkerlist = new int[nfaces]; |
1978 | } |
1979 | } else { |
1980 | if (corners == 3) { |
1981 | // It is a surface mesh of a tetrahedral mesh. |
1982 | numberoftrifaces = nfaces; |
1983 | trifacelist = new int[nfaces * 3]; |
1984 | trifacemarkerlist = new int[nfaces]; |
1985 | } |
1986 | } |
1987 | } // if (nfaces > 0) |
1988 | // Read the following list of faces. |
1989 | if (!istetmesh) { |
1990 | for (i = numberoffacets; i < numberoffacets + nfaces; i++) { |
1991 | bufferp = readline(buffer, fp, &line_count); |
1992 | if (bufferp == NULL) { |
1993 | printf("Unexpected end of file on line %d in file %s\n" , |
1994 | line_count, infilename); |
1995 | fclose(fp); |
1996 | return false; |
1997 | } |
1998 | f = &facetlist[i]; |
1999 | tetgenio::init(f); |
2000 | // In .mesh format, each facet has one polygon, no hole. |
2001 | f->numberofpolygons = 1; |
2002 | f->polygonlist = new tetgenio::polygon[1]; |
2003 | p = &f->polygonlist[0]; |
2004 | tetgenio::init(p); |
2005 | p->numberofvertices = corners; |
2006 | // Allocate memory for face vertices |
2007 | p->vertexlist = new int[p->numberofvertices]; |
2008 | // Read the vertices of the face. |
2009 | for (j = 0; j < corners; j++) { |
2010 | if (*bufferp == '\0') { |
2011 | printf("Syntax error reading face on line %d in file %s\n" , |
2012 | line_count, infilename); |
2013 | fclose(fp); |
2014 | return false; |
2015 | } |
2016 | p->vertexlist[j] = (int) strtol(bufferp, &bufferp, 0); |
2017 | // Remember the smallest index. |
2018 | if (p->vertexlist[j] < smallestidx) { |
2019 | smallestidx = p->vertexlist[j]; |
2020 | } |
2021 | bufferp = findnextnumber(bufferp); |
2022 | } |
2023 | // Read the marker of the face if it exists. |
2024 | facetmarkerlist[i] = 0; |
2025 | if (*bufferp != '\0') { |
2026 | facetmarkerlist[i] = (int) strtol(bufferp, &bufferp, 0); |
2027 | } |
2028 | } |
2029 | // Have read in a list of triangles/quads. |
2030 | numberoffacets += nfaces; |
2031 | nfaces = 0; |
2032 | } else { |
2033 | // It is a surface mesh of a tetrahedral mesh. |
2034 | if (corners == 3) { |
2035 | for (i = 0; i < numberoftrifaces; i++) { |
2036 | plist = &(trifacelist[i * 3]); |
2037 | bufferp = readline(buffer, fp, &line_count); |
2038 | if (bufferp == NULL) { |
2039 | printf("Unexpected end of file on line %d in file %s\n" , |
2040 | line_count, infilename); |
2041 | fclose(fp); |
2042 | return false; |
2043 | } |
2044 | // Read the vertices of the face. |
2045 | for (j = 0; j < corners; j++) { |
2046 | if (*bufferp == '\0') { |
2047 | printf("Syntax error reading face on line %d in file %s\n" , |
2048 | line_count, infilename); |
2049 | fclose(fp); |
2050 | return false; |
2051 | } |
2052 | plist[j] = (int) strtol(bufferp, &bufferp, 0); |
2053 | // Remember the smallest index. |
2054 | if (plist[j] < smallestidx) { |
2055 | smallestidx = plist[j]; |
2056 | } |
2057 | bufferp = findnextnumber(bufferp); |
2058 | } |
2059 | // Read the marker of the face if it exists. |
2060 | trifacemarkerlist[i] = 0; |
2061 | if (*bufferp != '\0') { |
2062 | trifacemarkerlist[i] = (int) strtol(bufferp, &bufferp, 0); |
2063 | } |
2064 | } // i |
2065 | } // if (corners == 3) |
2066 | } // if (b->refine) |
2067 | } // if (corners == 3 || corners == 4) |
2068 | } |
2069 | } |
2070 | |
2071 | // Close file |
2072 | fclose(fp); |
2073 | |
2074 | // Decide the firstnumber of the index. |
2075 | if (smallestidx == 0) { |
2076 | firstnumber = 0; |
2077 | } else if (smallestidx == 1) { |
2078 | firstnumber = 1; |
2079 | } else { |
2080 | printf("A wrong smallest index (%d) was detected in file %s\n" , |
2081 | smallestidx, infilename); |
2082 | return false; |
2083 | } |
2084 | |
2085 | return true; |
2086 | } |
2087 | |
2088 | /////////////////////////////////////////////////////////////////////////////// |
2089 | // // |
2090 | // load_vtk() Load VTK surface mesh from file (.vtk ascii or binary). // |
2091 | // // |
2092 | // This function is contributed by: Bryn Lloyd, Computer Vision Laboratory, // |
2093 | // ETH, Zuerich. May 7, 2007. // |
2094 | // // |
2095 | /////////////////////////////////////////////////////////////////////////////// |
2096 | |
2097 | // Two inline functions used in read/write VTK files. |
2098 | |
2099 | void swapBytes(unsigned char* var, int size) |
2100 | { |
2101 | int i = 0; |
2102 | int j = size - 1; |
2103 | char c; |
2104 | |
2105 | while (i < j) { |
2106 | c = var[i]; var[i] = var[j]; var[j] = c; |
2107 | i++, j--; |
2108 | } |
2109 | } |
2110 | |
2111 | bool testIsBigEndian() |
2112 | { |
2113 | short word = 0x4321; |
2114 | if((*(char *)& word) != 0x21) |
2115 | return true; |
2116 | else |
2117 | return false; |
2118 | } |
2119 | |
2120 | |
2121 | bool tetgenio::load_vtk(char* filebasename) |
2122 | { |
2123 | FILE *fp; |
2124 | tetgenio::facet *f; |
2125 | tetgenio::polygon *p; |
2126 | char infilename[FILENAMESIZE]; |
2127 | char line[INPUTLINESIZE]; |
2128 | char mode[128], id[256], fmt[64]; |
2129 | char *bufferp; |
2130 | double *coord; |
2131 | float _x, _y, _z; |
2132 | int nverts = 0; |
2133 | int nfaces = 0; |
2134 | int line_count = 0; |
2135 | int dummy; |
2136 | int id1, id2, id3; |
2137 | int nn = -1; |
2138 | int nn_old = -1; |
2139 | int i, j; |
2140 | bool ImALittleEndian = !testIsBigEndian(); |
2141 | |
2142 | int smallestidx = 0; |
2143 | |
2144 | strncpy(infilename, filebasename, FILENAMESIZE - 1); |
2145 | infilename[FILENAMESIZE - 1] = '\0'; |
2146 | if (infilename[0] == '\0') { |
2147 | printf("Error: No filename.\n" ); |
2148 | return false; |
2149 | } |
2150 | if (strcmp(&infilename[strlen(infilename) - 4], ".vtk" ) != 0) { |
2151 | strcat(infilename, ".vtk" ); |
2152 | } |
2153 | if (!(fp = fopen(infilename, "r" ))) { |
2154 | printf("Error: Unable to open file %s\n" , infilename); |
2155 | return false; |
2156 | } |
2157 | printf("Opening %s.\n" , infilename); |
2158 | |
2159 | // Default uses the index starts from '0'. |
2160 | firstnumber = 0; |
2161 | strcpy(mode, "BINARY" ); |
2162 | |
2163 | while((bufferp = readline(line, fp, &line_count)) != NULL) { |
2164 | if(strlen(line) == 0) continue; |
2165 | //swallow lines beginning with a comment sign or white space |
2166 | if(line[0] == '#' || line[0]=='\n' || line[0] == 10 || line[0] == 13 || |
2167 | line[0] == 32) continue; |
2168 | |
2169 | sscanf(line, "%s" , id); |
2170 | if(!strcmp(id, "ASCII" )) { |
2171 | strcpy(mode, "ASCII" ); |
2172 | } |
2173 | |
2174 | if(!strcmp(id, "POINTS" )) { |
2175 | sscanf(line, "%s %d %s" , id, &nverts, fmt); |
2176 | if (nverts > 0) { |
2177 | numberofpoints = nverts; |
2178 | pointlist = new REAL[nverts * 3]; |
2179 | smallestidx = nverts + 1; |
2180 | } |
2181 | |
2182 | if(!strcmp(mode, "BINARY" )) { |
2183 | for(i = 0; i < nverts; i++) { |
2184 | coord = &pointlist[i * 3]; |
2185 | if(!strcmp(fmt, "double" )) { |
2186 | if(fread((char*)(&(coord[0])), sizeof(double), 1, fp)){}; |
2187 | if(fread((char*)(&(coord[1])), sizeof(double), 1, fp)){}; |
2188 | if(fread((char*)(&(coord[2])), sizeof(double), 1, fp)){}; |
2189 | if(ImALittleEndian){ |
2190 | swapBytes((unsigned char *) &(coord[0]), sizeof(coord[0])); |
2191 | swapBytes((unsigned char *) &(coord[1]), sizeof(coord[1])); |
2192 | swapBytes((unsigned char *) &(coord[2]), sizeof(coord[2])); |
2193 | } |
2194 | } else if(!strcmp(fmt, "float" )) { |
2195 | if(fread((char*)(&_x), sizeof(float), 1, fp)){}; |
2196 | if(fread((char*)(&_y), sizeof(float), 1, fp)){}; |
2197 | if(fread((char*)(&_z), sizeof(float), 1, fp)){}; |
2198 | if(ImALittleEndian){ |
2199 | swapBytes((unsigned char *) &_x, sizeof(_x)); |
2200 | swapBytes((unsigned char *) &_y, sizeof(_y)); |
2201 | swapBytes((unsigned char *) &_z, sizeof(_z)); |
2202 | } |
2203 | coord[0] = double(_x); |
2204 | coord[1] = double(_y); |
2205 | coord[2] = double(_z); |
2206 | } else { |
2207 | printf("Error: Only float or double formats are supported!\n" ); |
2208 | return false; |
2209 | } |
2210 | } |
2211 | } else if(!strcmp(mode, "ASCII" )) { |
2212 | for(i = 0; i < nverts; i++){ |
2213 | bufferp = readline(line, fp, &line_count); |
2214 | if (bufferp == NULL) { |
2215 | printf("Unexpected end of file on line %d in file %s\n" , |
2216 | line_count, infilename); |
2217 | fclose(fp); |
2218 | return false; |
2219 | } |
2220 | // Read vertex coordinates |
2221 | coord = &pointlist[i * 3]; |
2222 | for (j = 0; j < 3; j++) { |
2223 | if (*bufferp == '\0') { |
2224 | printf("Syntax error reading vertex coords on line" ); |
2225 | printf(" %d in file %s\n" , line_count, infilename); |
2226 | fclose(fp); |
2227 | return false; |
2228 | } |
2229 | coord[j] = (REAL) strtod(bufferp, &bufferp); |
2230 | bufferp = findnextnumber(bufferp); |
2231 | } |
2232 | } |
2233 | } |
2234 | continue; |
2235 | } |
2236 | |
2237 | if(!strcmp(id, "POLYGONS" )) { |
2238 | sscanf(line, "%s %d %d" , id, &nfaces, &dummy); |
2239 | if (nfaces > 0) { |
2240 | numberoffacets = nfaces; |
2241 | facetlist = new tetgenio::facet[nfaces]; |
2242 | } |
2243 | |
2244 | if(!strcmp(mode, "BINARY" )) { |
2245 | for(i = 0; i < nfaces; i++){ |
2246 | if(fread((char*)(&nn), sizeof(int), 1, fp)){}; |
2247 | if(ImALittleEndian){ |
2248 | swapBytes((unsigned char *) &nn, sizeof(nn)); |
2249 | } |
2250 | if (i == 0) |
2251 | nn_old = nn; |
2252 | if (nn != nn_old) { |
2253 | printf("Error: No mixed cells are allowed.\n" ); |
2254 | return false; |
2255 | } |
2256 | |
2257 | if(nn == 3){ |
2258 | if(fread((char*)(&id1), sizeof(int), 1, fp)){}; |
2259 | if(fread((char*)(&id2), sizeof(int), 1, fp)){}; |
2260 | if(fread((char*)(&id3), sizeof(int), 1, fp)){}; |
2261 | if(ImALittleEndian){ |
2262 | swapBytes((unsigned char *) &id1, sizeof(id1)); |
2263 | swapBytes((unsigned char *) &id2, sizeof(id2)); |
2264 | swapBytes((unsigned char *) &id3, sizeof(id3)); |
2265 | } |
2266 | f = &facetlist[i]; |
2267 | init(f); |
2268 | // In .off format, each facet has one polygon, no hole. |
2269 | f->numberofpolygons = 1; |
2270 | f->polygonlist = new tetgenio::polygon[1]; |
2271 | p = &f->polygonlist[0]; |
2272 | init(p); |
2273 | // Set number of vertices |
2274 | p->numberofvertices = 3; |
2275 | // Allocate memory for face vertices |
2276 | p->vertexlist = new int[p->numberofvertices]; |
2277 | p->vertexlist[0] = id1; |
2278 | p->vertexlist[1] = id2; |
2279 | p->vertexlist[2] = id3; |
2280 | // Detect the smallest index. |
2281 | for (j = 0; j < 3; j++) { |
2282 | if (p->vertexlist[j] < smallestidx) { |
2283 | smallestidx = p->vertexlist[j]; |
2284 | } |
2285 | } |
2286 | } else { |
2287 | printf("Error: Only triangles are supported\n" ); |
2288 | return false; |
2289 | } |
2290 | } |
2291 | } else if(!strcmp(mode, "ASCII" )) { |
2292 | for(i = 0; i < nfaces; i++) { |
2293 | bufferp = readline(line, fp, &line_count); |
2294 | nn = (int) strtol(bufferp, &bufferp, 0); |
2295 | if (i == 0) |
2296 | nn_old = nn; |
2297 | if (nn != nn_old) { |
2298 | printf("Error: No mixed cells are allowed.\n" ); |
2299 | return false; |
2300 | } |
2301 | |
2302 | if (nn == 3) { |
2303 | bufferp = findnextnumber(bufferp); // Skip the first field. |
2304 | id1 = (int) strtol(bufferp, &bufferp, 0); |
2305 | bufferp = findnextnumber(bufferp); |
2306 | id2 = (int) strtol(bufferp, &bufferp, 0); |
2307 | bufferp = findnextnumber(bufferp); |
2308 | id3 = (int) strtol(bufferp, &bufferp, 0); |
2309 | f = &facetlist[i]; |
2310 | init(f); |
2311 | // In .off format, each facet has one polygon, no hole. |
2312 | f->numberofpolygons = 1; |
2313 | f->polygonlist = new tetgenio::polygon[1]; |
2314 | p = &f->polygonlist[0]; |
2315 | init(p); |
2316 | // Set number of vertices |
2317 | p->numberofvertices = 3; |
2318 | // Allocate memory for face vertices |
2319 | p->vertexlist = new int[p->numberofvertices]; |
2320 | p->vertexlist[0] = id1; |
2321 | p->vertexlist[1] = id2; |
2322 | p->vertexlist[2] = id3; |
2323 | // Detect the smallest index. |
2324 | for (j = 0; j < 3; j++) { |
2325 | if (p->vertexlist[j] < smallestidx) { |
2326 | smallestidx = p->vertexlist[j]; |
2327 | } |
2328 | } |
2329 | } else { |
2330 | printf("Error: Only triangles are supported.\n" ); |
2331 | return false; |
2332 | } |
2333 | } |
2334 | } |
2335 | |
2336 | fclose(fp); |
2337 | |
2338 | // Decide the firstnumber of the index. |
2339 | if (smallestidx == 0) { |
2340 | firstnumber = 0; |
2341 | } else if (smallestidx == 1) { |
2342 | firstnumber = 1; |
2343 | } else { |
2344 | printf("A wrong smallest index (%d) was detected in file %s\n" , |
2345 | smallestidx, infilename); |
2346 | return false; |
2347 | } |
2348 | |
2349 | return true; |
2350 | } |
2351 | |
2352 | if(!strcmp(id,"LINES" ) || !strcmp(id,"CELLS" )){ |
2353 | printf("Warning: load_vtk(): cannot read formats LINES, CELLS.\n" ); |
2354 | } |
2355 | } // while () |
2356 | |
2357 | return true; |
2358 | } |
2359 | |
2360 | /////////////////////////////////////////////////////////////////////////////// |
2361 | // // |
2362 | // load_plc() Load a piecewise linear complex from file(s). // |
2363 | // // |
2364 | /////////////////////////////////////////////////////////////////////////////// |
2365 | |
2366 | bool tetgenio::load_plc(char* filebasename, int object) |
2367 | { |
2368 | bool success; |
2369 | |
2370 | if (object == (int) tetgenbehavior::NODES) { |
2371 | success = load_node(filebasename); |
2372 | } else if (object == (int) tetgenbehavior::POLY) { |
2373 | success = load_poly(filebasename); |
2374 | } else if (object == (int) tetgenbehavior::OFF) { |
2375 | success = load_off(filebasename); |
2376 | } else if (object == (int) tetgenbehavior::PLY) { |
2377 | success = load_ply(filebasename); |
2378 | } else if (object == (int) tetgenbehavior::STL) { |
2379 | success = load_stl(filebasename); |
2380 | } else if (object == (int) tetgenbehavior::MEDIT) { |
2381 | success = load_medit(filebasename, 0); |
2382 | } else if (object == (int) tetgenbehavior::VTK) { |
2383 | success = load_vtk(filebasename); |
2384 | } else { |
2385 | success = load_poly(filebasename); |
2386 | } |
2387 | |
2388 | if (success) { |
2389 | // Try to load the following files (.edge, .var, .mtr). |
2390 | load_edge(filebasename); |
2391 | load_var(filebasename); |
2392 | load_mtr(filebasename); |
2393 | } |
2394 | |
2395 | return success; |
2396 | } |
2397 | |
2398 | /////////////////////////////////////////////////////////////////////////////// |
2399 | // // |
2400 | // load_mesh() Load a tetrahedral mesh from file(s). // |
2401 | // // |
2402 | /////////////////////////////////////////////////////////////////////////////// |
2403 | |
2404 | bool tetgenio::load_tetmesh(char* filebasename, int object) |
2405 | { |
2406 | bool success; |
2407 | |
2408 | if (object == (int) tetgenbehavior::MEDIT) { |
2409 | success = load_medit(filebasename, 1); |
2410 | } else { |
2411 | success = load_node(filebasename); |
2412 | if (success) { |
2413 | success = load_tet(filebasename); |
2414 | } |
2415 | if (success) { |
2416 | // Try to load the following files (.face, .edge, .vol). |
2417 | load_face(filebasename); |
2418 | load_edge(filebasename); |
2419 | load_vol(filebasename); |
2420 | } |
2421 | } |
2422 | |
2423 | if (success) { |
2424 | // Try to load the following files (.var, .mtr). |
2425 | load_var(filebasename); |
2426 | load_mtr(filebasename); |
2427 | } |
2428 | |
2429 | return success; |
2430 | } |
2431 | |
2432 | /////////////////////////////////////////////////////////////////////////////// |
2433 | // // |
2434 | // save_nodes() Save points to a .node file. // |
2435 | // // |
2436 | /////////////////////////////////////////////////////////////////////////////// |
2437 | |
2438 | void tetgenio::save_nodes(char* filebasename) |
2439 | { |
2440 | FILE *fout; |
2441 | char outnodefilename[FILENAMESIZE]; |
2442 | char outmtrfilename[FILENAMESIZE]; |
2443 | int i, j; |
2444 | |
2445 | sprintf(outnodefilename, "%s.node" , filebasename); |
2446 | printf("Saving nodes to %s\n" , outnodefilename); |
2447 | fout = fopen(outnodefilename, "w" ); |
2448 | fprintf(fout, "%d %d %d %d\n" , numberofpoints, mesh_dim, |
2449 | numberofpointattributes, pointmarkerlist != NULL ? 1 : 0); |
2450 | for (i = 0; i < numberofpoints; i++) { |
2451 | if (mesh_dim == 2) { |
2452 | fprintf(fout, "%d %.16g %.16g" , i + firstnumber, pointlist[i * 3], |
2453 | pointlist[i * 3 + 1]); |
2454 | } else { |
2455 | fprintf(fout, "%d %.16g %.16g %.16g" , i + firstnumber, |
2456 | pointlist[i * 3], pointlist[i * 3 + 1], pointlist[i * 3 + 2]); |
2457 | } |
2458 | for (j = 0; j < numberofpointattributes; j++) { |
2459 | fprintf(fout, " %.16g" , |
2460 | pointattributelist[i * numberofpointattributes + j]); |
2461 | } |
2462 | if (pointmarkerlist != NULL) { |
2463 | fprintf(fout, " %d" , pointmarkerlist[i]); |
2464 | } |
2465 | fprintf(fout, "\n" ); |
2466 | } |
2467 | fclose(fout); |
2468 | |
2469 | // If the point metrics exist, output them to a .mtr file. |
2470 | if ((numberofpointmtrs > 0) && (pointmtrlist != (REAL *) NULL)) { |
2471 | sprintf(outmtrfilename, "%s.mtr" , filebasename); |
2472 | printf("Saving metrics to %s\n" , outmtrfilename); |
2473 | fout = fopen(outmtrfilename, "w" ); |
2474 | fprintf(fout, "%d %d\n" , numberofpoints, numberofpointmtrs); |
2475 | for (i = 0; i < numberofpoints; i++) { |
2476 | for (j = 0; j < numberofpointmtrs; j++) { |
2477 | fprintf(fout, "%.16g " , pointmtrlist[i * numberofpointmtrs + j]); |
2478 | } |
2479 | fprintf(fout, "\n" ); |
2480 | } |
2481 | fclose(fout); |
2482 | } |
2483 | } |
2484 | |
2485 | /////////////////////////////////////////////////////////////////////////////// |
2486 | // // |
2487 | // save_elements() Save elements to a .ele file. // |
2488 | // // |
2489 | /////////////////////////////////////////////////////////////////////////////// |
2490 | |
2491 | void tetgenio::save_elements(char* filebasename) |
2492 | { |
2493 | FILE *fout; |
2494 | char outelefilename[FILENAMESIZE]; |
2495 | int i, j; |
2496 | |
2497 | sprintf(outelefilename, "%s.ele" , filebasename); |
2498 | printf("Saving elements to %s\n" , outelefilename); |
2499 | fout = fopen(outelefilename, "w" ); |
2500 | if (mesh_dim == 3) { |
2501 | fprintf(fout, "%d %d %d\n" , numberoftetrahedra, numberofcorners, |
2502 | numberoftetrahedronattributes); |
2503 | for (i = 0; i < numberoftetrahedra; i++) { |
2504 | fprintf(fout, "%d" , i + firstnumber); |
2505 | for (j = 0; j < numberofcorners; j++) { |
2506 | fprintf(fout, " %5d" , tetrahedronlist[i * numberofcorners + j]); |
2507 | } |
2508 | for (j = 0; j < numberoftetrahedronattributes; j++) { |
2509 | fprintf(fout, " %g" , |
2510 | tetrahedronattributelist[i * numberoftetrahedronattributes + j]); |
2511 | } |
2512 | fprintf(fout, "\n" ); |
2513 | } |
2514 | } else { |
2515 | // Save a two-dimensional mesh. |
2516 | fprintf(fout, "%d %d %d\n" ,numberoftrifaces,3,trifacemarkerlist ? 1 : 0); |
2517 | for (i = 0; i < numberoftrifaces; i++) { |
2518 | fprintf(fout, "%d" , i + firstnumber); |
2519 | for (j = 0; j < 3; j++) { |
2520 | fprintf(fout, " %5d" , trifacelist[i * 3 + j]); |
2521 | } |
2522 | if (trifacemarkerlist != NULL) { |
2523 | fprintf(fout, " %d" , trifacemarkerlist[i]); |
2524 | } |
2525 | fprintf(fout, "\n" ); |
2526 | } |
2527 | } |
2528 | |
2529 | fclose(fout); |
2530 | } |
2531 | |
2532 | /////////////////////////////////////////////////////////////////////////////// |
2533 | // // |
2534 | // save_faces() Save faces to a .face file. // |
2535 | // // |
2536 | /////////////////////////////////////////////////////////////////////////////// |
2537 | |
2538 | void tetgenio::save_faces(char* filebasename) |
2539 | { |
2540 | FILE *fout; |
2541 | char outfacefilename[FILENAMESIZE]; |
2542 | int i; |
2543 | |
2544 | sprintf(outfacefilename, "%s.face" , filebasename); |
2545 | printf("Saving faces to %s\n" , outfacefilename); |
2546 | fout = fopen(outfacefilename, "w" ); |
2547 | fprintf(fout, "%d %d\n" , numberoftrifaces, |
2548 | trifacemarkerlist != NULL ? 1 : 0); |
2549 | for (i = 0; i < numberoftrifaces; i++) { |
2550 | fprintf(fout, "%d %5d %5d %5d" , i + firstnumber, trifacelist[i * 3], |
2551 | trifacelist[i * 3 + 1], trifacelist[i * 3 + 2]); |
2552 | if (trifacemarkerlist != NULL) { |
2553 | fprintf(fout, " %d" , trifacemarkerlist[i]); |
2554 | } |
2555 | fprintf(fout, "\n" ); |
2556 | } |
2557 | |
2558 | fclose(fout); |
2559 | } |
2560 | |
2561 | /////////////////////////////////////////////////////////////////////////////// |
2562 | // // |
2563 | // save_edges() Save egdes to a .edge file. // |
2564 | // // |
2565 | /////////////////////////////////////////////////////////////////////////////// |
2566 | |
2567 | void tetgenio::save_edges(char* filebasename) |
2568 | { |
2569 | FILE *fout; |
2570 | char outedgefilename[FILENAMESIZE]; |
2571 | int i; |
2572 | |
2573 | sprintf(outedgefilename, "%s.edge" , filebasename); |
2574 | printf("Saving edges to %s\n" , outedgefilename); |
2575 | fout = fopen(outedgefilename, "w" ); |
2576 | fprintf(fout, "%d %d\n" , numberofedges, edgemarkerlist != NULL ? 1 : 0); |
2577 | for (i = 0; i < numberofedges; i++) { |
2578 | fprintf(fout, "%d %4d %4d" , i + firstnumber, edgelist[i * 2], |
2579 | edgelist[i * 2 + 1]); |
2580 | if (edgemarkerlist != NULL) { |
2581 | fprintf(fout, " %d" , edgemarkerlist[i]); |
2582 | } |
2583 | fprintf(fout, "\n" ); |
2584 | } |
2585 | |
2586 | fclose(fout); |
2587 | } |
2588 | |
2589 | /////////////////////////////////////////////////////////////////////////////// |
2590 | // // |
2591 | // save_neighbors() Save egdes to a .neigh file. // |
2592 | // // |
2593 | /////////////////////////////////////////////////////////////////////////////// |
2594 | |
2595 | void tetgenio::save_neighbors(char* filebasename) |
2596 | { |
2597 | FILE *fout; |
2598 | char outneighborfilename[FILENAMESIZE]; |
2599 | int i; |
2600 | |
2601 | sprintf(outneighborfilename, "%s.neigh" , filebasename); |
2602 | printf("Saving neighbors to %s\n" , outneighborfilename); |
2603 | fout = fopen(outneighborfilename, "w" ); |
2604 | fprintf(fout, "%d %d\n" , numberoftetrahedra, mesh_dim + 1); |
2605 | for (i = 0; i < numberoftetrahedra; i++) { |
2606 | if (mesh_dim == 2) { |
2607 | fprintf(fout, "%d %5d %5d %5d" , i + firstnumber, neighborlist[i * 3], |
2608 | neighborlist[i * 3 + 1], neighborlist[i * 3 + 2]); |
2609 | } else { |
2610 | fprintf(fout, "%d %5d %5d %5d %5d" , i + firstnumber, |
2611 | neighborlist[i * 4], neighborlist[i * 4 + 1], |
2612 | neighborlist[i * 4 + 2], neighborlist[i * 4 + 3]); |
2613 | } |
2614 | fprintf(fout, "\n" ); |
2615 | } |
2616 | |
2617 | fclose(fout); |
2618 | } |
2619 | |
2620 | /////////////////////////////////////////////////////////////////////////////// |
2621 | // // |
2622 | // save_poly() Save segments or facets to a .poly file. // |
2623 | // // |
2624 | // It only save the facets, holes and regions. No .node file is saved. // |
2625 | // // |
2626 | /////////////////////////////////////////////////////////////////////////////// |
2627 | |
2628 | void tetgenio::save_poly(char* filebasename) |
2629 | { |
2630 | FILE *fout; |
2631 | facet *f; |
2632 | polygon *p; |
2633 | char outpolyfilename[FILENAMESIZE]; |
2634 | int i, j, k; |
2635 | |
2636 | sprintf(outpolyfilename, "%s.poly" , filebasename); |
2637 | printf("Saving poly to %s\n" , outpolyfilename); |
2638 | fout = fopen(outpolyfilename, "w" ); |
2639 | |
2640 | // The zero indicates that the vertices are in a separate .node file. |
2641 | // Followed by number of dimensions, number of vertex attributes, |
2642 | // and number of boundary markers (zero or one). |
2643 | fprintf(fout, "%d %d %d %d\n" , 0, mesh_dim, numberofpointattributes, |
2644 | pointmarkerlist != NULL ? 1 : 0); |
2645 | |
2646 | // Save segments or facets. |
2647 | if (mesh_dim == 2) { |
2648 | // Number of segments, number of boundary markers (zero or one). |
2649 | fprintf(fout, "%d %d\n" , numberofedges, edgemarkerlist != NULL ? 1 : 0); |
2650 | for (i = 0; i < numberofedges; i++) { |
2651 | fprintf(fout, "%d %4d %4d" , i + firstnumber, edgelist[i * 2], |
2652 | edgelist[i * 2 + 1]); |
2653 | if (edgemarkerlist != NULL) { |
2654 | fprintf(fout, " %d" , edgemarkerlist[i]); |
2655 | } |
2656 | fprintf(fout, "\n" ); |
2657 | } |
2658 | } else { |
2659 | // Number of facets, number of boundary markers (zero or one). |
2660 | fprintf(fout, "%d %d\n" , numberoffacets, facetmarkerlist != NULL ? 1 : 0); |
2661 | for (i = 0; i < numberoffacets; i++) { |
2662 | f = &(facetlist[i]); |
2663 | fprintf(fout, "%d %d %d # %d\n" , f->numberofpolygons,f->numberofholes, |
2664 | facetmarkerlist != NULL ? facetmarkerlist[i] : 0, i + firstnumber); |
2665 | // Output polygons of this facet. |
2666 | for (j = 0; j < f->numberofpolygons; j++) { |
2667 | p = &(f->polygonlist[j]); |
2668 | fprintf(fout, "%d " , p->numberofvertices); |
2669 | for (k = 0; k < p->numberofvertices; k++) { |
2670 | if (((k + 1) % 10) == 0) { |
2671 | fprintf(fout, "\n " ); |
2672 | } |
2673 | fprintf(fout, " %d" , p->vertexlist[k]); |
2674 | } |
2675 | fprintf(fout, "\n" ); |
2676 | } |
2677 | // Output holes of this facet. |
2678 | for (j = 0; j < f->numberofholes; j++) { |
2679 | fprintf(fout, "%d %.12g %.12g %.12g\n" , j + firstnumber, |
2680 | f->holelist[j * 3], f->holelist[j * 3 + 1], f->holelist[j * 3 + 2]); |
2681 | } |
2682 | } |
2683 | } |
2684 | |
2685 | // Save holes. |
2686 | fprintf(fout, "%d\n" , numberofholes); |
2687 | for (i = 0; i < numberofholes; i++) { |
2688 | // Output x, y coordinates. |
2689 | fprintf(fout, "%d %.12g %.12g" , i + firstnumber, holelist[i * mesh_dim], |
2690 | holelist[i * mesh_dim + 1]); |
2691 | if (mesh_dim == 3) { |
2692 | // Output z coordinate. |
2693 | fprintf(fout, " %.12g" , holelist[i * mesh_dim + 2]); |
2694 | } |
2695 | fprintf(fout, "\n" ); |
2696 | } |
2697 | |
2698 | // Save regions. |
2699 | fprintf(fout, "%d\n" , numberofregions); |
2700 | for (i = 0; i < numberofregions; i++) { |
2701 | if (mesh_dim == 2) { |
2702 | // Output the index, x, y coordinates, attribute (region number) |
2703 | // and maximum area constraint (maybe -1). |
2704 | fprintf(fout, "%d %.12g %.12g %.12g %.12g\n" , i + firstnumber, |
2705 | regionlist[i * 4], regionlist[i * 4 + 1], |
2706 | regionlist[i * 4 + 2], regionlist[i * 4 + 3]); |
2707 | } else { |
2708 | // Output the index, x, y, z coordinates, attribute (region number) |
2709 | // and maximum volume constraint (maybe -1). |
2710 | fprintf(fout, "%d %.12g %.12g %.12g %.12g %.12g\n" , i + firstnumber, |
2711 | regionlist[i * 5], regionlist[i * 5 + 1], |
2712 | regionlist[i * 5 + 2], regionlist[i * 5 + 3], |
2713 | regionlist[i * 5 + 4]); |
2714 | } |
2715 | } |
2716 | |
2717 | fclose(fout); |
2718 | } |
2719 | |
2720 | /////////////////////////////////////////////////////////////////////////////// |
2721 | // // |
2722 | // save_faces2smesh() Save triangular faces to a .smesh file. // |
2723 | // // |
2724 | // It only save the facets. No holes and regions. No .node file. // |
2725 | // // |
2726 | /////////////////////////////////////////////////////////////////////////////// |
2727 | |
2728 | void tetgenio::save_faces2smesh(char* filebasename) |
2729 | { |
2730 | FILE *fout; |
2731 | char outsmeshfilename[FILENAMESIZE]; |
2732 | int i, j; |
2733 | |
2734 | sprintf(outsmeshfilename, "%s.smesh" , filebasename); |
2735 | printf("Saving faces to %s\n" , outsmeshfilename); |
2736 | fout = fopen(outsmeshfilename, "w" ); |
2737 | |
2738 | // The zero indicates that the vertices are in a separate .node file. |
2739 | // Followed by number of dimensions, number of vertex attributes, |
2740 | // and number of boundary markers (zero or one). |
2741 | fprintf(fout, "%d %d %d %d\n" , 0, mesh_dim, numberofpointattributes, |
2742 | pointmarkerlist != NULL ? 1 : 0); |
2743 | |
2744 | // Number of facets, number of boundary markers (zero or one). |
2745 | fprintf(fout, "%d %d\n" , numberoftrifaces, |
2746 | trifacemarkerlist != NULL ? 1 : 0); |
2747 | |
2748 | // Output triangular facets. |
2749 | for (i = 0; i < numberoftrifaces; i++) { |
2750 | j = i * 3; |
2751 | fprintf(fout, "3 %d %d %d" , trifacelist[j], trifacelist[j + 1], |
2752 | trifacelist[j + 2]); |
2753 | if (trifacemarkerlist != NULL) { |
2754 | fprintf(fout, " %d" , trifacemarkerlist[i]); |
2755 | } |
2756 | fprintf(fout, "\n" ); |
2757 | } |
2758 | |
2759 | // No holes and regions. |
2760 | fprintf(fout, "0\n" ); |
2761 | fprintf(fout, "0\n" ); |
2762 | |
2763 | fclose(fout); |
2764 | } |
2765 | |
2766 | /////////////////////////////////////////////////////////////////////////////// |
2767 | // // |
2768 | // readline() Read a nonempty line from a file. // |
2769 | // // |
2770 | // A line is considered "nonempty" if it contains something more than white // |
2771 | // spaces. If a line is considered empty, it will be dropped and the next // |
2772 | // line will be read, this process ends until reaching the end-of-file or a // |
2773 | // non-empty line. Return NULL if it is the end-of-file, otherwise, return // |
2774 | // a pointer to the first non-whitespace character of the line. // |
2775 | // // |
2776 | /////////////////////////////////////////////////////////////////////////////// |
2777 | |
2778 | char* tetgenio::readline(char *string, FILE *infile, int *linenumber) |
2779 | { |
2780 | char *result; |
2781 | |
2782 | // Search for a non-empty line. |
2783 | do { |
2784 | result = fgets(string, INPUTLINESIZE - 1, infile); |
2785 | if (linenumber) (*linenumber)++; |
2786 | if (result == (char *) NULL) { |
2787 | return (char *) NULL; |
2788 | } |
2789 | // Skip white spaces. |
2790 | while ((*result == ' ') || (*result == '\t')) result++; |
2791 | // If it's end of line, read another line and try again. |
2792 | } while ((*result == '\0') || (*result == '\r') || (*result == '\n')); |
2793 | return result; |
2794 | } |
2795 | |
2796 | /////////////////////////////////////////////////////////////////////////////// |
2797 | // // |
2798 | // findnextfield() Find the next field of a string. // |
2799 | // // |
2800 | // Jumps past the current field by searching for whitespace or a comma, then // |
2801 | // jumps past the whitespace or the comma to find the next field. // |
2802 | // // |
2803 | /////////////////////////////////////////////////////////////////////////////// |
2804 | |
2805 | char* tetgenio::findnextfield(char *string) |
2806 | { |
2807 | char *result; |
2808 | |
2809 | result = string; |
2810 | // Skip the current field. Stop upon reaching whitespace or a comma. |
2811 | while ((*result != '\0') && (*result != ' ') && (*result != '\t') && |
2812 | (*result != ',') && (*result != ';')) { |
2813 | result++; |
2814 | } |
2815 | // Now skip the whitespace or the comma, stop at anything else that looks |
2816 | // like a character, or the end of a line. |
2817 | while ((*result == ' ') || (*result == '\t') || (*result == ',') || |
2818 | (*result == ';')) { |
2819 | result++; |
2820 | } |
2821 | return result; |
2822 | } |
2823 | |
2824 | /////////////////////////////////////////////////////////////////////////////// |
2825 | // // |
2826 | // readnumberline() Read a nonempty number line from a file. // |
2827 | // // |
2828 | // A line is considered "nonempty" if it contains something that looks like // |
2829 | // a number. Comments (prefaced by `#') are ignored. // |
2830 | // // |
2831 | /////////////////////////////////////////////////////////////////////////////// |
2832 | |
2833 | char* tetgenio::readnumberline(char *string, FILE *infile, char *infilename) |
2834 | { |
2835 | char *result; |
2836 | |
2837 | // Search for something that looks like a number. |
2838 | do { |
2839 | result = fgets(string, INPUTLINESIZE, infile); |
2840 | if (result == (char *) NULL) { |
2841 | return result; |
2842 | } |
2843 | // Skip anything that doesn't look like a number, a comment, |
2844 | // or the end of a line. |
2845 | while ((*result != '\0') && (*result != '#') |
2846 | && (*result != '.') && (*result != '+') && (*result != '-') |
2847 | && ((*result < '0') || (*result > '9'))) { |
2848 | result++; |
2849 | } |
2850 | // If it's a comment or end of line, read another line and try again. |
2851 | } while ((*result == '#') || (*result == '\0')); |
2852 | return result; |
2853 | } |
2854 | |
2855 | /////////////////////////////////////////////////////////////////////////////// |
2856 | // // |
2857 | // findnextnumber() Find the next field of a number string. // |
2858 | // // |
2859 | // Jumps past the current field by searching for whitespace or a comma, then // |
2860 | // jumps past the whitespace or the comma to find the next field that looks // |
2861 | // like a number. // |
2862 | // // |
2863 | /////////////////////////////////////////////////////////////////////////////// |
2864 | |
2865 | char* tetgenio::findnextnumber(char *string) |
2866 | { |
2867 | char *result; |
2868 | |
2869 | result = string; |
2870 | // Skip the current field. Stop upon reaching whitespace or a comma. |
2871 | while ((*result != '\0') && (*result != '#') && (*result != ' ') && |
2872 | (*result != '\t') && (*result != ',')) { |
2873 | result++; |
2874 | } |
2875 | // Now skip the whitespace and anything else that doesn't look like a |
2876 | // number, a comment, or the end of a line. |
2877 | while ((*result != '\0') && (*result != '#') |
2878 | && (*result != '.') && (*result != '+') && (*result != '-') |
2879 | && ((*result < '0') || (*result > '9'))) { |
2880 | result++; |
2881 | } |
2882 | // Check for a comment (prefixed with `#'). |
2883 | if (*result == '#') { |
2884 | *result = '\0'; |
2885 | } |
2886 | return result; |
2887 | } |
2888 | |
2889 | //// //// |
2890 | //// //// |
2891 | //// io_cxx /////////////////////////////////////////////////////////////////// |
2892 | |
2893 | //// behavior_cxx ///////////////////////////////////////////////////////////// |
2894 | //// //// |
2895 | //// //// |
2896 | |
2897 | /////////////////////////////////////////////////////////////////////////////// |
2898 | // // |
2899 | // syntax() Print list of command line switches. // |
2900 | // // |
2901 | /////////////////////////////////////////////////////////////////////////////// |
2902 | |
2903 | void tetgenbehavior::syntax() |
2904 | { |
2905 | printf(" tetgen [-pYrq_Aa_miO_S_T_XMwcdzfenvgkJBNEFICQVh] input_file\n" ); |
2906 | printf(" -p Tetrahedralizes a piecewise linear complex (PLC).\n" ); |
2907 | printf(" -Y Preserves the input surface mesh (does not modify it).\n" ); |
2908 | printf(" -r Reconstructs a previously generated mesh.\n" ); |
2909 | printf(" -q Refines mesh (to improve mesh quality).\n" ); |
2910 | printf(" -R Mesh coarsening (to reduce the mesh elements).\n" ); |
2911 | printf(" -A Assigns attributes to tetrahedra in different regions.\n" ); |
2912 | printf(" -a Applies a maximum tetrahedron volume constraint.\n" ); |
2913 | printf(" -m Applies a mesh sizing function.\n" ); |
2914 | printf(" -i Inserts a list of additional points.\n" ); |
2915 | printf(" -O Specifies the level of mesh optimization.\n" ); |
2916 | printf(" -S Specifies maximum number of added points.\n" ); |
2917 | printf(" -T Sets a tolerance for coplanar test (default 1e-8).\n" ); |
2918 | printf(" -X Suppresses use of exact arithmetic.\n" ); |
2919 | printf(" -M No merge of coplanar facets or very close vertices.\n" ); |
2920 | printf(" -w Generates weighted Delaunay (regular) triangulation.\n" ); |
2921 | printf(" -c Retains the convex hull of the PLC.\n" ); |
2922 | printf(" -d Detects self-intersections of facets of the PLC.\n" ); |
2923 | printf(" -z Numbers all output items starting from zero.\n" ); |
2924 | printf(" -f Outputs all faces to .face file.\n" ); |
2925 | printf(" -e Outputs all edges to .edge file.\n" ); |
2926 | printf(" -n Outputs tetrahedra neighbors to .neigh file.\n" ); |
2927 | printf(" -v Outputs Voronoi diagram to files.\n" ); |
2928 | printf(" -g Outputs mesh to .mesh file for viewing by Medit.\n" ); |
2929 | printf(" -k Outputs mesh to .vtk file for viewing by Paraview.\n" ); |
2930 | printf(" -J No jettison of unused vertices from output .node file.\n" ); |
2931 | printf(" -B Suppresses output of boundary information.\n" ); |
2932 | printf(" -N Suppresses output of .node file.\n" ); |
2933 | printf(" -E Suppresses output of .ele file.\n" ); |
2934 | printf(" -F Suppresses output of .face and .edge file.\n" ); |
2935 | printf(" -I Suppresses mesh iteration numbers.\n" ); |
2936 | printf(" -C Checks the consistency of the final mesh.\n" ); |
2937 | printf(" -Q Quiet: No terminal output except errors.\n" ); |
2938 | printf(" -V Verbose: Detailed information, more terminal output.\n" ); |
2939 | printf(" -h Help: A brief instruction for using TetGen.\n" ); |
2940 | } |
2941 | |
2942 | /////////////////////////////////////////////////////////////////////////////// |
2943 | // // |
2944 | // usage() Print a brief instruction for using TetGen. // |
2945 | // // |
2946 | /////////////////////////////////////////////////////////////////////////////// |
2947 | |
2948 | void tetgenbehavior::usage() |
2949 | { |
2950 | printf("TetGen\n" ); |
2951 | printf("A Quality Tetrahedral Mesh Generator and 3D Delaunay " ); |
2952 | printf("Triangulator\n" ); |
2953 | printf("Version 1.5\n" ); |
2954 | printf("November 4, 2013\n" ); |
2955 | printf("\n" ); |
2956 | printf("What Can TetGen Do?\n" ); |
2957 | printf("\n" ); |
2958 | printf(" TetGen generates Delaunay tetrahedralizations, constrained\n" ); |
2959 | printf(" Delaunay tetrahedralizations, and quality tetrahedral meshes.\n" ); |
2960 | printf("\n" ); |
2961 | printf("Command Line Syntax:\n" ); |
2962 | printf("\n" ); |
2963 | printf(" Below is the basic command line syntax of TetGen with a list of " ); |
2964 | printf("short\n" ); |
2965 | printf(" descriptions. Underscores indicate that numbers may optionally\n" ); |
2966 | printf(" follow certain switches. Do not leave any space between a " ); |
2967 | printf("switch\n" ); |
2968 | printf(" and its numeric parameter. \'input_file\' contains input data\n" ); |
2969 | printf(" depending on the switches you supplied which may be a " ); |
2970 | printf(" piecewise\n" ); |
2971 | printf(" linear complex or a list of nodes. File formats and detailed\n" ); |
2972 | printf(" description of command line switches are found in user's " ); |
2973 | printf("manual.\n" ); |
2974 | printf("\n" ); |
2975 | syntax(); |
2976 | printf("\n" ); |
2977 | printf("Examples of How to Use TetGen:\n" ); |
2978 | printf("\n" ); |
2979 | printf(" \'tetgen object\' reads vertices from object.node, and writes " ); |
2980 | printf("their\n Delaunay tetrahedralization to object.1.node, " ); |
2981 | printf("object.1.ele\n (tetrahedra), and object.1.face" ); |
2982 | printf(" (convex hull faces).\n" ); |
2983 | printf("\n" ); |
2984 | printf(" \'tetgen -p object\' reads a PLC from object.poly or object." ); |
2985 | printf("smesh (and\n possibly object.node) and writes its constrained " ); |
2986 | printf("Delaunay\n tetrahedralization to object.1.node, object.1.ele, " ); |
2987 | printf("object.1.face,\n" ); |
2988 | printf(" (boundary faces) and object.1.edge (boundary edges).\n" ); |
2989 | printf("\n" ); |
2990 | printf(" \'tetgen -pq1.414a.1 object\' reads a PLC from object.poly or\n" ); |
2991 | printf(" object.smesh (and possibly object.node), generates a mesh " ); |
2992 | printf("whose\n tetrahedra have radius-edge ratio smaller than 1.414 and " ); |
2993 | printf("have volume\n of 0.1 or less, and writes the mesh to " ); |
2994 | printf("object.1.node, object.1.ele,\n object.1.face, and object.1.edge\n" ); |
2995 | printf("\n" ); |
2996 | printf("Please send bugs/comments to Hang Si <si@wias-berlin.de>\n" ); |
2997 | terminatetetgen(NULL, 0); |
2998 | } |
2999 | |
3000 | /////////////////////////////////////////////////////////////////////////////// |
3001 | // // |
3002 | // parse_commandline() Read the command line, identify switches, and set // |
3003 | // up options and file names. // |
3004 | // // |
3005 | // 'argc' and 'argv' are the same parameters passed to the function main() // |
3006 | // of a C/C++ program. They together represent the command line user invoked // |
3007 | // from an environment in which TetGen is running. // |
3008 | // // |
3009 | /////////////////////////////////////////////////////////////////////////////// |
3010 | |
3011 | bool tetgenbehavior::parse_commandline(int argc, char **argv) |
3012 | { |
3013 | int startindex; |
3014 | int increment; |
3015 | int meshnumber; |
3016 | int i, j, k; |
3017 | char workstring[1024]; |
3018 | |
3019 | // First determine the input style of the switches. |
3020 | if (argc == 0) { |
3021 | startindex = 0; // Switches are given without a dash. |
3022 | argc = 1; // For running the following for-loop once. |
3023 | commandline[0] = '\0'; |
3024 | } else { |
3025 | startindex = 1; |
3026 | strcpy(commandline, argv[0]); |
3027 | strcat(commandline, " " ); |
3028 | } |
3029 | |
3030 | for (i = startindex; i < argc; i++) { |
3031 | // Remember the command line for output. |
3032 | strcat(commandline, argv[i]); |
3033 | strcat(commandline, " " ); |
3034 | if (startindex == 1) { |
3035 | // Is this string a filename? |
3036 | if (argv[i][0] != '-') { |
3037 | strncpy(infilename, argv[i], 1024 - 1); |
3038 | infilename[1024 - 1] = '\0'; |
3039 | continue; |
3040 | } |
3041 | } |
3042 | // Parse the individual switch from the string. |
3043 | for (j = startindex; argv[i][j] != '\0'; j++) { |
3044 | if (argv[i][j] == 'p') { |
3045 | plc = 1; |
3046 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3047 | (argv[i][j + 1] == '.')) { |
3048 | k = 0; |
3049 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3050 | (argv[i][j + 1] == '.')) { |
3051 | j++; |
3052 | workstring[k] = argv[i][j]; |
3053 | k++; |
3054 | } |
3055 | workstring[k] = '\0'; |
3056 | facet_ang_tol = (REAL) strtod(workstring, (char **) NULL); |
3057 | } |
3058 | } else if (argv[i][j] == 's') { |
3059 | psc = 1; |
3060 | } else if (argv[i][j] == 'Y') { |
3061 | nobisect = 1; |
3062 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
3063 | nobisect_param = (argv[i][j + 1] - '0'); |
3064 | j++; |
3065 | } |
3066 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
3067 | j++; |
3068 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
3069 | addsteiner_algo = (argv[i][j + 1] - '0'); |
3070 | j++; |
3071 | } |
3072 | } |
3073 | } else if (argv[i][j] == 'r') { |
3074 | refine = 1; |
3075 | } else if (argv[i][j] == 'q') { |
3076 | quality = 1; |
3077 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3078 | (argv[i][j + 1] == '.')) { |
3079 | k = 0; |
3080 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3081 | (argv[i][j + 1] == '.')) { |
3082 | j++; |
3083 | workstring[k] = argv[i][j]; |
3084 | k++; |
3085 | } |
3086 | workstring[k] = '\0'; |
3087 | minratio = (REAL) strtod(workstring, (char **) NULL); |
3088 | } |
3089 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
3090 | j++; |
3091 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3092 | (argv[i][j + 1] == '.')) { |
3093 | k = 0; |
3094 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3095 | (argv[i][j + 1] == '.')) { |
3096 | j++; |
3097 | workstring[k] = argv[i][j]; |
3098 | k++; |
3099 | } |
3100 | workstring[k] = '\0'; |
3101 | mindihedral = (REAL) strtod(workstring, (char **) NULL); |
3102 | } |
3103 | } |
3104 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
3105 | j++; |
3106 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3107 | (argv[i][j + 1] == '.')) { |
3108 | k = 0; |
3109 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3110 | (argv[i][j + 1] == '.')) { |
3111 | j++; |
3112 | workstring[k] = argv[i][j]; |
3113 | k++; |
3114 | } |
3115 | workstring[k] = '\0'; |
3116 | optmaxdihedral = (REAL) strtod(workstring, (char **) NULL); |
3117 | } |
3118 | } |
3119 | } else if (argv[i][j] == 'R') { |
3120 | coarsen = 1; |
3121 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
3122 | coarsen_param = (argv[i][j + 1] - '0'); |
3123 | j++; |
3124 | } |
3125 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
3126 | j++; |
3127 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3128 | (argv[i][j + 1] == '.')) { |
3129 | k = 0; |
3130 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3131 | (argv[i][j + 1] == '.')) { |
3132 | j++; |
3133 | workstring[k] = argv[i][j]; |
3134 | k++; |
3135 | } |
3136 | workstring[k] = '\0'; |
3137 | coarsen_percent = (REAL) strtod(workstring, (char **) NULL); |
3138 | } |
3139 | } |
3140 | } else if (argv[i][j] == 'w') { |
3141 | weighted = 1; |
3142 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
3143 | weighted_param = (argv[i][j + 1] - '0'); |
3144 | j++; |
3145 | } |
3146 | } else if (argv[i][j] == 'b') { |
3147 | // -b(brio_threshold/brio_ratio/hilbert_limit/hilbert_order) |
3148 | brio_hilbert = 1; |
3149 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3150 | (argv[i][j + 1] == '.')) { |
3151 | k = 0; |
3152 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3153 | (argv[i][j + 1] == '.')) { |
3154 | j++; |
3155 | workstring[k] = argv[i][j]; |
3156 | k++; |
3157 | } |
3158 | workstring[k] = '\0'; |
3159 | brio_threshold = (int) strtol(workstring, (char **) &workstring, 0); |
3160 | } |
3161 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
3162 | j++; |
3163 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3164 | (argv[i][j + 1] == '.')) { |
3165 | k = 0; |
3166 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3167 | (argv[i][j + 1] == '.')) { |
3168 | j++; |
3169 | workstring[k] = argv[i][j]; |
3170 | k++; |
3171 | } |
3172 | workstring[k] = '\0'; |
3173 | brio_ratio = (REAL) strtod(workstring, (char **) NULL); |
3174 | } |
3175 | } |
3176 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
3177 | j++; |
3178 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3179 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == '-')) { |
3180 | k = 0; |
3181 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3182 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == '-')) { |
3183 | j++; |
3184 | workstring[k] = argv[i][j]; |
3185 | k++; |
3186 | } |
3187 | workstring[k] = '\0'; |
3188 | hilbert_limit = (int) strtol(workstring, (char **) &workstring, 0); |
3189 | } |
3190 | } |
3191 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
3192 | j++; |
3193 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3194 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == '-')) { |
3195 | k = 0; |
3196 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3197 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == '-')) { |
3198 | j++; |
3199 | workstring[k] = argv[i][j]; |
3200 | k++; |
3201 | } |
3202 | workstring[k] = '\0'; |
3203 | hilbert_order = (int)(REAL) strtod(workstring, (char **) NULL); |
3204 | } |
3205 | } |
3206 | if (brio_threshold == 0) { // -b0 |
3207 | brio_hilbert = 0; // Turn off BRIO-Hilbert sorting. |
3208 | } |
3209 | if (brio_ratio >= 1.0) { // -b/1 |
3210 | no_sort = 1; |
3211 | brio_hilbert = 0; // Turn off BRIO-Hilbert sorting. |
3212 | } |
3213 | } else if (argv[i][j] == 'l') { |
3214 | incrflip = 1; |
3215 | } else if (argv[i][j] == 'L') { |
3216 | flipinsert = 1; |
3217 | } else if (argv[i][j] == 'm') { |
3218 | metric = 1; |
3219 | } else if (argv[i][j] == 'a') { |
3220 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3221 | (argv[i][j + 1] == '.')) { |
3222 | fixedvolume = 1; |
3223 | k = 0; |
3224 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3225 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
3226 | (argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
3227 | j++; |
3228 | workstring[k] = argv[i][j]; |
3229 | k++; |
3230 | } |
3231 | workstring[k] = '\0'; |
3232 | maxvolume = (REAL) strtod(workstring, (char **) NULL); |
3233 | } else { |
3234 | varvolume = 1; |
3235 | } |
3236 | } else if (argv[i][j] == 'A') { |
3237 | regionattrib = 1; |
3238 | } else if (argv[i][j] == 'D') { |
3239 | conforming = 1; |
3240 | if ((argv[i][j + 1] >= '1') && (argv[i][j + 1] <= '3')) { |
3241 | reflevel = (argv[i][j + 1] - '1') + 1; |
3242 | j++; |
3243 | } |
3244 | } else if (argv[i][j] == 'i') { |
3245 | insertaddpoints = 1; |
3246 | } else if (argv[i][j] == 'd') { |
3247 | diagnose = 1; |
3248 | } else if (argv[i][j] == 'c') { |
3249 | convex = 1; |
3250 | } else if (argv[i][j] == 'M') { |
3251 | nomergefacet = 1; |
3252 | nomergevertex = 1; |
3253 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '1')) { |
3254 | nomergefacet = (argv[i][j + 1] - '0'); |
3255 | j++; |
3256 | } |
3257 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
3258 | j++; |
3259 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '1')) { |
3260 | nomergevertex = (argv[i][j + 1] - '0'); |
3261 | j++; |
3262 | } |
3263 | } |
3264 | } else if (argv[i][j] == 'X') { |
3265 | if (argv[i][j + 1] == '1') { |
3266 | nostaticfilter = 1; |
3267 | j++; |
3268 | } else { |
3269 | noexact = 1; |
3270 | } |
3271 | } else if (argv[i][j] == 'z') { |
3272 | zeroindex = 1; |
3273 | } else if (argv[i][j] == 'f') { |
3274 | facesout++; |
3275 | } else if (argv[i][j] == 'e') { |
3276 | edgesout++; |
3277 | } else if (argv[i][j] == 'n') { |
3278 | neighout++; |
3279 | } else if (argv[i][j] == 'v') { |
3280 | voroout = 1; |
3281 | } else if (argv[i][j] == 'g') { |
3282 | meditview = 1; |
3283 | } else if (argv[i][j] == 'k') { |
3284 | vtkview = 1; |
3285 | } else if (argv[i][j] == 'J') { |
3286 | nojettison = 1; |
3287 | } else if (argv[i][j] == 'B') { |
3288 | nobound = 1; |
3289 | } else if (argv[i][j] == 'N') { |
3290 | nonodewritten = 1; |
3291 | } else if (argv[i][j] == 'E') { |
3292 | noelewritten = 1; |
3293 | } else if (argv[i][j] == 'F') { |
3294 | nofacewritten = 1; |
3295 | } else if (argv[i][j] == 'I') { |
3296 | noiterationnum = 1; |
3297 | } else if (argv[i][j] == 'S') { |
3298 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3299 | (argv[i][j + 1] == '.')) { |
3300 | k = 0; |
3301 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3302 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
3303 | (argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
3304 | j++; |
3305 | workstring[k] = argv[i][j]; |
3306 | k++; |
3307 | } |
3308 | workstring[k] = '\0'; |
3309 | steinerleft = (int) strtol(workstring, (char **) NULL, 0); |
3310 | } |
3311 | } else if (argv[i][j] == 'o') { |
3312 | if (argv[i][j + 1] == '2') { |
3313 | order = 2; |
3314 | j++; |
3315 | } |
3316 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
3317 | j++; |
3318 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3319 | (argv[i][j + 1] == '.')) { |
3320 | k = 0; |
3321 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3322 | (argv[i][j + 1] == '.')) { |
3323 | j++; |
3324 | workstring[k] = argv[i][j]; |
3325 | k++; |
3326 | } |
3327 | workstring[k] = '\0'; |
3328 | optmaxdihedral = (REAL) strtod(workstring, (char **) NULL); |
3329 | } |
3330 | } |
3331 | } else if (argv[i][j] == 'O') { |
3332 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
3333 | optlevel = (argv[i][j + 1] - '0'); |
3334 | j++; |
3335 | } |
3336 | if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
3337 | j++; |
3338 | if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '7')) { |
3339 | optscheme = (argv[i][j + 1] - '0'); |
3340 | j++; |
3341 | } |
3342 | } |
3343 | } else if (argv[i][j] == 'T') { |
3344 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3345 | (argv[i][j + 1] == '.')) { |
3346 | k = 0; |
3347 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3348 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
3349 | (argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
3350 | j++; |
3351 | workstring[k] = argv[i][j]; |
3352 | k++; |
3353 | } |
3354 | workstring[k] = '\0'; |
3355 | epsilon = (REAL) strtod(workstring, (char **) NULL); |
3356 | } |
3357 | } else if (argv[i][j] == 'R') { |
3358 | reversetetori = 1; |
3359 | } else if (argv[i][j] == 'C') { |
3360 | docheck++; |
3361 | } else if (argv[i][j] == 'Q') { |
3362 | quiet = 1; |
3363 | } else if (argv[i][j] == 'V') { |
3364 | verbose++; |
3365 | } else if (argv[i][j] == 'x') { |
3366 | if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3367 | (argv[i][j + 1] == '.')) { |
3368 | k = 0; |
3369 | while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
3370 | (argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
3371 | (argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
3372 | j++; |
3373 | workstring[k] = argv[i][j]; |
3374 | k++; |
3375 | } |
3376 | workstring[k] = '\0'; |
3377 | tetrahedraperblock = (int) strtol(workstring, (char **) NULL, 0); |
3378 | if (tetrahedraperblock > 8188) { |
3379 | vertexperblock = tetrahedraperblock / 2; |
3380 | shellfaceperblock = vertexperblock / 2; |
3381 | } else { |
3382 | tetrahedraperblock = 8188; |
3383 | } |
3384 | } |
3385 | } else if ((argv[i][j] == 'h') || (argv[i][j] == 'H') || |
3386 | (argv[i][j] == '?')) { |
3387 | usage(); |
3388 | } else { |
3389 | printf("Warning: Unknown switch -%c.\n" , argv[i][j]); |
3390 | } |
3391 | } |
3392 | } |
3393 | |
3394 | if (startindex == 0) { |
3395 | // Set a temporary filename for debugging output. |
3396 | strcpy(infilename, "tetgen-tmpfile" ); |
3397 | } else { |
3398 | if (infilename[0] == '\0') { |
3399 | // No input file name. Print the syntax and exit. |
3400 | syntax(); |
3401 | terminatetetgen(NULL, 0); |
3402 | } |
3403 | // Recognize the object from file extension if it is available. |
3404 | if (!strcmp(&infilename[strlen(infilename) - 5], ".node" )) { |
3405 | infilename[strlen(infilename) - 5] = '\0'; |
3406 | object = NODES; |
3407 | } else if (!strcmp(&infilename[strlen(infilename) - 5], ".poly" )) { |
3408 | infilename[strlen(infilename) - 5] = '\0'; |
3409 | object = POLY; |
3410 | plc = 1; |
3411 | } else if (!strcmp(&infilename[strlen(infilename) - 6], ".smesh" )) { |
3412 | infilename[strlen(infilename) - 6] = '\0'; |
3413 | object = POLY; |
3414 | plc = 1; |
3415 | } else if (!strcmp(&infilename[strlen(infilename) - 4], ".off" )) { |
3416 | infilename[strlen(infilename) - 4] = '\0'; |
3417 | object = OFF; |
3418 | plc = 1; |
3419 | } else if (!strcmp(&infilename[strlen(infilename) - 4], ".ply" )) { |
3420 | infilename[strlen(infilename) - 4] = '\0'; |
3421 | object = PLY; |
3422 | plc = 1; |
3423 | } else if (!strcmp(&infilename[strlen(infilename) - 4], ".stl" )) { |
3424 | infilename[strlen(infilename) - 4] = '\0'; |
3425 | object = STL; |
3426 | plc = 1; |
3427 | } else if (!strcmp(&infilename[strlen(infilename) - 5], ".mesh" )) { |
3428 | infilename[strlen(infilename) - 5] = '\0'; |
3429 | object = MEDIT; |
3430 | if (!refine) plc = 1; |
3431 | } else if (!strcmp(&infilename[strlen(infilename) - 4], ".vtk" )) { |
3432 | infilename[strlen(infilename) - 4] = '\0'; |
3433 | object = VTK; |
3434 | plc = 1; |
3435 | } else if (!strcmp(&infilename[strlen(infilename) - 4], ".ele" )) { |
3436 | infilename[strlen(infilename) - 4] = '\0'; |
3437 | object = MESH; |
3438 | refine = 1; |
3439 | } |
3440 | } |
3441 | |
3442 | if (nobisect && (!plc && !refine)) { // -Y |
3443 | plc = 1; // Default -p option. |
3444 | } |
3445 | if (quality && (!plc && !refine)) { // -q |
3446 | plc = 1; // Default -p option. |
3447 | } |
3448 | if (diagnose && !plc) { // -d |
3449 | plc = 1; |
3450 | } |
3451 | if (refine && !quality) { // -r only |
3452 | // Reconstruct a mesh, no mesh optimization. |
3453 | optlevel = 0; |
3454 | } |
3455 | if (insertaddpoints && (optlevel == 0)) { // with -i option |
3456 | optlevel = 2; |
3457 | } |
3458 | if (coarsen && (optlevel == 0)) { // with -R option |
3459 | optlevel = 2; |
3460 | } |
3461 | |
3462 | // Detect improper combinations of switches. |
3463 | if ((refine || plc) && weighted) { |
3464 | printf("Error: Switches -w cannot use together with -p or -r.\n" ); |
3465 | return false; |
3466 | } |
3467 | |
3468 | if (convex) { // -c |
3469 | if (plc && !regionattrib) { |
3470 | // -A (region attribute) is needed for marking exterior tets (-1). |
3471 | regionattrib = 1; |
3472 | } |
3473 | } |
3474 | |
3475 | // Note: -A must not used together with -r option. |
3476 | // Be careful not to add an extra attribute to each element unless the |
3477 | // input supports it (PLC in, but not refining a preexisting mesh). |
3478 | if (refine || !plc) { |
3479 | regionattrib = 0; |
3480 | } |
3481 | // Be careful not to allocate space for element area constraints that |
3482 | // will never be assigned any value (other than the default -1.0). |
3483 | if (!refine && !plc) { |
3484 | varvolume = 0; |
3485 | } |
3486 | // If '-a' or '-aa' is in use, enable '-q' option too. |
3487 | if (fixedvolume || varvolume) { |
3488 | if (quality == 0) { |
3489 | quality = 1; |
3490 | if (!plc && !refine) { |
3491 | plc = 1; // enable -p. |
3492 | } |
3493 | } |
3494 | } |
3495 | // No user-specified dihedral angle bound. Use default ones. |
3496 | if (!quality) { |
3497 | if (optmaxdihedral < 179.0) { |
3498 | if (nobisect) { // with -Y option |
3499 | optmaxdihedral = 179.0; |
3500 | } else { // -p only |
3501 | optmaxdihedral = 179.999; |
3502 | } |
3503 | } |
3504 | if (optminsmtdihed < 179.999) { |
3505 | optminsmtdihed = 179.999; |
3506 | } |
3507 | if (optminslidihed < 179.999) { |
3508 | optminslidihed = 179.999; |
3509 | } |
3510 | } |
3511 | |
3512 | increment = 0; |
3513 | strcpy(workstring, infilename); |
3514 | j = 1; |
3515 | while (workstring[j] != '\0') { |
3516 | if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) { |
3517 | increment = j + 1; |
3518 | } |
3519 | j++; |
3520 | } |
3521 | meshnumber = 0; |
3522 | if (increment > 0) { |
3523 | j = increment; |
3524 | do { |
3525 | if ((workstring[j] >= '0') && (workstring[j] <= '9')) { |
3526 | meshnumber = meshnumber * 10 + (int) (workstring[j] - '0'); |
3527 | } else { |
3528 | increment = 0; |
3529 | } |
3530 | j++; |
3531 | } while (workstring[j] != '\0'); |
3532 | } |
3533 | if (noiterationnum) { |
3534 | strcpy(outfilename, infilename); |
3535 | } else if (increment == 0) { |
3536 | strcpy(outfilename, infilename); |
3537 | strcat(outfilename, ".1" ); |
3538 | } else { |
3539 | workstring[increment] = '%'; |
3540 | workstring[increment + 1] = 'd'; |
3541 | workstring[increment + 2] = '\0'; |
3542 | sprintf(outfilename, workstring, meshnumber + 1); |
3543 | } |
3544 | // Additional input file name has the end ".a". |
3545 | strcpy(addinfilename, infilename); |
3546 | strcat(addinfilename, ".a" ); |
3547 | // Background filename has the form "*.b.ele", "*.b.node", ... |
3548 | strcpy(bgmeshfilename, infilename); |
3549 | strcat(bgmeshfilename, ".b" ); |
3550 | |
3551 | return true; |
3552 | } |
3553 | |
3554 | //// //// |
3555 | //// //// |
3556 | //// behavior_cxx ///////////////////////////////////////////////////////////// |
3557 | |
3558 | //// mempool_cxx ////////////////////////////////////////////////////////////// |
3559 | //// //// |
3560 | //// //// |
3561 | |
3562 | // Initialize fast lookup tables for mesh maniplulation primitives. |
3563 | |
3564 | int tetgenmesh::bondtbl[12][12] = {{0,},}; |
3565 | int tetgenmesh::enexttbl[12] = {0,}; |
3566 | int tetgenmesh::eprevtbl[12] = {0,}; |
3567 | int tetgenmesh::enextesymtbl[12] = {0,}; |
3568 | int tetgenmesh::eprevesymtbl[12] = {0,}; |
3569 | int tetgenmesh::eorgoppotbl[12] = {0,}; |
3570 | int tetgenmesh::edestoppotbl[12] = {0,}; |
3571 | int tetgenmesh::fsymtbl[12][12] = {{0,},}; |
3572 | int tetgenmesh::facepivot1[12] = {0,}; |
3573 | int tetgenmesh::facepivot2[12][12] = {{0,},}; |
3574 | int tetgenmesh::tsbondtbl[12][6] = {{0,},}; |
3575 | int tetgenmesh::stbondtbl[12][6] = {{0,},}; |
3576 | int tetgenmesh::tspivottbl[12][6] = {{0,},}; |
3577 | int tetgenmesh::stpivottbl[12][6] = {{0,},}; |
3578 | |
3579 | // Table 'esymtbl' takes an directed edge (version) as input, returns the |
3580 | // inversed edge (version) of it. |
3581 | |
3582 | int tetgenmesh::esymtbl[12] = {9, 6, 11, 4, 3, 7, 1, 5, 10, 0, 8, 2}; |
3583 | |
3584 | // The following four tables give the 12 permutations of the set {0,1,2,3}. |
3585 | // An offset 4 is added to each element for a direct access of the points |
3586 | // in the tetrahedron data structure. |
3587 | |
3588 | int tetgenmesh:: orgpivot[12] = {7, 7, 5, 5, 6, 4, 4, 6, 5, 6, 7, 4}; |
3589 | int tetgenmesh::destpivot[12] = {6, 4, 4, 6, 5, 6, 7, 4, 7, 7, 5, 5}; |
3590 | int tetgenmesh::apexpivot[12] = {5, 6, 7, 4, 7, 7, 5, 5, 6, 4, 4, 6}; |
3591 | int tetgenmesh::oppopivot[12] = {4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}; |
3592 | |
3593 | // The twelve versions correspond to six undirected edges. The following two |
3594 | // tables map a version to an undirected edge and vice versa. |
3595 | |
3596 | int tetgenmesh::ver2edge[12] = {0, 1, 2, 3, 3, 5, 1, 5, 4, 0, 4, 2}; |
3597 | int tetgenmesh::edge2ver[ 6] = {0, 1, 2, 3, 8, 5}; |
3598 | |
3599 | // Edge versions whose apex or opposite may be dummypoint. |
3600 | |
3601 | int tetgenmesh::epivot[12] = {4, 5, 2, 11, 4, 5, 2, 11, 4, 5, 2, 11}; |
3602 | |
3603 | |
3604 | // Table 'snextpivot' takes an edge version as input, returns the next edge |
3605 | // version in the same edge ring. |
3606 | |
3607 | int tetgenmesh::snextpivot[6] = {2, 5, 4, 1, 0, 3}; |
3608 | |
3609 | // The following three tables give the 6 permutations of the set {0,1,2}. |
3610 | // An offset 3 is added to each element for a direct access of the points |
3611 | // in the triangle data structure. |
3612 | |
3613 | int tetgenmesh::sorgpivot [6] = {3, 4, 4, 5, 5, 3}; |
3614 | int tetgenmesh::sdestpivot[6] = {4, 3, 5, 4, 3, 5}; |
3615 | int tetgenmesh::sapexpivot[6] = {5, 5, 3, 3, 4, 4}; |
3616 | |
3617 | /////////////////////////////////////////////////////////////////////////////// |
3618 | // // |
3619 | // inittable() Initialize the look-up tables. // |
3620 | // // |
3621 | /////////////////////////////////////////////////////////////////////////////// |
3622 | |
3623 | void tetgenmesh::inittables() |
3624 | { |
3625 | int i, j; |
3626 | |
3627 | |
3628 | // i = t1.ver; j = t2.ver; |
3629 | for (i = 0; i < 12; i++) { |
3630 | for (j = 0; j < 12; j++) { |
3631 | bondtbl[i][j] = (j & 3) + (((i & 12) + (j & 12)) % 12); |
3632 | } |
3633 | } |
3634 | |
3635 | |
3636 | // i = t1.ver; j = t2.ver |
3637 | for (i = 0; i < 12; i++) { |
3638 | for (j = 0; j < 12; j++) { |
3639 | fsymtbl[i][j] = (j + 12 - (i & 12)) % 12; |
3640 | } |
3641 | } |
3642 | |
3643 | |
3644 | for (i = 0; i < 12; i++) { |
3645 | facepivot1[i] = (esymtbl[i] & 3); |
3646 | } |
3647 | |
3648 | for (i = 0; i < 12; i++) { |
3649 | for (j = 0; j < 12; j++) { |
3650 | facepivot2[i][j] = fsymtbl[esymtbl[i]][j]; |
3651 | } |
3652 | } |
3653 | |
3654 | for (i = 0; i < 12; i++) { |
3655 | enexttbl[i] = (i + 4) % 12; |
3656 | eprevtbl[i] = (i + 8) % 12; |
3657 | } |
3658 | |
3659 | for (i = 0; i < 12; i++) { |
3660 | enextesymtbl[i] = esymtbl[enexttbl[i]]; |
3661 | eprevesymtbl[i] = esymtbl[eprevtbl[i]]; |
3662 | } |
3663 | |
3664 | for (i = 0; i < 12; i++) { |
3665 | eorgoppotbl [i] = eprevtbl[esymtbl[enexttbl[i]]]; |
3666 | edestoppotbl[i] = enexttbl[esymtbl[eprevtbl[i]]]; |
3667 | } |
3668 | |
3669 | int soffset, toffset; |
3670 | |
3671 | // i = t.ver, j = s.shver |
3672 | for (i = 0; i < 12; i++) { |
3673 | for (j = 0; j < 6; j++) { |
3674 | if ((j & 1) == 0) { |
3675 | soffset = (6 - ((i & 12) >> 1)) % 6; |
3676 | toffset = (12 - ((j & 6) << 1)) % 12; |
3677 | } else { |
3678 | soffset = (i & 12) >> 1; |
3679 | toffset = (j & 6) << 1; |
3680 | } |
3681 | tsbondtbl[i][j] = (j & 1) + (((j & 6) + soffset) % 6); |
3682 | stbondtbl[i][j] = (i & 3) + (((i & 12) + toffset) % 12); |
3683 | } |
3684 | } |
3685 | |
3686 | |
3687 | // i = t.ver, j = s.shver |
3688 | for (i = 0; i < 12; i++) { |
3689 | for (j = 0; j < 6; j++) { |
3690 | if ((j & 1) == 0) { |
3691 | soffset = (i & 12) >> 1; |
3692 | toffset = (j & 6) << 1; |
3693 | } else { |
3694 | soffset = (6 - ((i & 12) >> 1)) % 6; |
3695 | toffset = (12 - ((j & 6) << 1)) % 12; |
3696 | } |
3697 | tspivottbl[i][j] = (j & 1) + (((j & 6) + soffset) % 6); |
3698 | stpivottbl[i][j] = (i & 3) + (((i & 12) + toffset) % 12); |
3699 | } |
3700 | } |
3701 | } |
3702 | |
3703 | /////////////////////////////////////////////////////////////////////////////// |
3704 | // // |
3705 | // restart() Deallocate all objects in this pool. // |
3706 | // // |
3707 | // The pool returns to a fresh state, like after it was initialized, except // |
3708 | // that no memory is freed to the operating system. Rather, the previously // |
3709 | // allocated blocks are ready to be used. // |
3710 | // // |
3711 | /////////////////////////////////////////////////////////////////////////////// |
3712 | |
3713 | void tetgenmesh::arraypool::restart() |
3714 | { |
3715 | objects = 0l; |
3716 | } |
3717 | |
3718 | /////////////////////////////////////////////////////////////////////////////// |
3719 | // // |
3720 | // poolinit() Initialize an arraypool for allocation of objects. // |
3721 | // // |
3722 | // Before the pool may be used, it must be initialized by this procedure. // |
3723 | // After initialization, memory can be allocated and freed in this pool. // |
3724 | // // |
3725 | /////////////////////////////////////////////////////////////////////////////// |
3726 | |
3727 | void tetgenmesh::arraypool::poolinit(int sizeofobject, int log2objperblk) |
3728 | { |
3729 | // Each object must be at least one byte long. |
3730 | objectbytes = sizeofobject > 1 ? sizeofobject : 1; |
3731 | |
3732 | log2objectsperblock = log2objperblk; |
3733 | // Compute the number of objects in each block. |
3734 | objectsperblock = ((int) 1) << log2objectsperblock; |
3735 | objectsperblockmark = objectsperblock - 1; |
3736 | |
3737 | // No memory has been allocated. |
3738 | totalmemory = 0l; |
3739 | // The top array has not been allocated yet. |
3740 | toparray = (char **) NULL; |
3741 | toparraylen = 0; |
3742 | |
3743 | // Ready all indices to be allocated. |
3744 | restart(); |
3745 | } |
3746 | |
3747 | /////////////////////////////////////////////////////////////////////////////// |
3748 | // // |
3749 | // arraypool() The constructor and destructor. // |
3750 | // // |
3751 | /////////////////////////////////////////////////////////////////////////////// |
3752 | |
3753 | tetgenmesh::arraypool::arraypool(int sizeofobject, int log2objperblk) |
3754 | { |
3755 | poolinit(sizeofobject, log2objperblk); |
3756 | } |
3757 | |
3758 | tetgenmesh::arraypool::~arraypool() |
3759 | { |
3760 | int i; |
3761 | |
3762 | // Has anything been allocated at all? |
3763 | if (toparray != (char **) NULL) { |
3764 | // Walk through the top array. |
3765 | for (i = 0; i < toparraylen; i++) { |
3766 | // Check every pointer; NULLs may be scattered randomly. |
3767 | if (toparray[i] != (char *) NULL) { |
3768 | // Free an allocated block. |
3769 | free((void *) toparray[i]); |
3770 | } |
3771 | } |
3772 | // Free the top array. |
3773 | free((void *) toparray); |
3774 | } |
3775 | |
3776 | // The top array is no longer allocated. |
3777 | toparray = (char **) NULL; |
3778 | toparraylen = 0; |
3779 | objects = 0; |
3780 | totalmemory = 0; |
3781 | } |
3782 | |
3783 | /////////////////////////////////////////////////////////////////////////////// |
3784 | // // |
3785 | // getblock() Return (and perhaps create) the block containing the object // |
3786 | // with a given index. // |
3787 | // // |
3788 | // This function takes care of allocating or resizing the top array if nece- // |
3789 | // ssary, and of allocating the block if it hasn't yet been allocated. // |
3790 | // // |
3791 | // Return a pointer to the beginning of the block (NOT the object). // |
3792 | // // |
3793 | /////////////////////////////////////////////////////////////////////////////// |
3794 | |
3795 | char* tetgenmesh::arraypool::getblock(int objectindex) |
3796 | { |
3797 | char **newarray; |
3798 | char *block; |
3799 | int newsize; |
3800 | int topindex; |
3801 | int i; |
3802 | |
3803 | // Compute the index in the top array (upper bits). |
3804 | topindex = objectindex >> log2objectsperblock; |
3805 | // Does the top array need to be allocated or resized? |
3806 | if (toparray == (char **) NULL) { |
3807 | // Allocate the top array big enough to hold 'topindex', and NULL out |
3808 | // its contents. |
3809 | newsize = topindex + 128; |
3810 | toparray = (char **) malloc((size_t) (newsize * sizeof(char *))); |
3811 | toparraylen = newsize; |
3812 | for (i = 0; i < newsize; i++) { |
3813 | toparray[i] = (char *) NULL; |
3814 | } |
3815 | // Account for the memory. |
3816 | totalmemory = newsize * (uintptr_t) sizeof(char *); |
3817 | } else if (topindex >= toparraylen) { |
3818 | // Resize the top array, making sure it holds 'topindex'. |
3819 | newsize = 3 * toparraylen; |
3820 | if (topindex >= newsize) { |
3821 | newsize = topindex + 128; |
3822 | } |
3823 | // Allocate the new array, copy the contents, NULL out the rest, and |
3824 | // free the old array. |
3825 | newarray = (char **) malloc((size_t) (newsize * sizeof(char *))); |
3826 | for (i = 0; i < toparraylen; i++) { |
3827 | newarray[i] = toparray[i]; |
3828 | } |
3829 | for (i = toparraylen; i < newsize; i++) { |
3830 | newarray[i] = (char *) NULL; |
3831 | } |
3832 | free(toparray); |
3833 | // Account for the memory. |
3834 | totalmemory += (newsize - toparraylen) * sizeof(char *); |
3835 | toparray = newarray; |
3836 | toparraylen = newsize; |
3837 | } |
3838 | |
3839 | // Find the block, or learn that it hasn't been allocated yet. |
3840 | block = toparray[topindex]; |
3841 | if (block == (char *) NULL) { |
3842 | // Allocate a block at this index. |
3843 | block = (char *) malloc((size_t) (objectsperblock * objectbytes)); |
3844 | toparray[topindex] = block; |
3845 | // Account for the memory. |
3846 | totalmemory += objectsperblock * objectbytes; |
3847 | } |
3848 | |
3849 | // Return a pointer to the block. |
3850 | return block; |
3851 | } |
3852 | |
3853 | /////////////////////////////////////////////////////////////////////////////// |
3854 | // // |
3855 | // lookup() Return the pointer to the object with a given index, or NULL // |
3856 | // if the object's block doesn't exist yet. // |
3857 | // // |
3858 | /////////////////////////////////////////////////////////////////////////////// |
3859 | |
3860 | void* tetgenmesh::arraypool::lookup(int objectindex) |
3861 | { |
3862 | char *block; |
3863 | int topindex; |
3864 | |
3865 | // Has the top array been allocated yet? |
3866 | if (toparray == (char **) NULL) { |
3867 | return (void *) NULL; |
3868 | } |
3869 | |
3870 | // Compute the index in the top array (upper bits). |
3871 | topindex = objectindex >> log2objectsperblock; |
3872 | // Does the top index fit in the top array? |
3873 | if (topindex >= toparraylen) { |
3874 | return (void *) NULL; |
3875 | } |
3876 | |
3877 | // Find the block, or learn that it hasn't been allocated yet. |
3878 | block = toparray[topindex]; |
3879 | if (block == (char *) NULL) { |
3880 | return (void *) NULL; |
3881 | } |
3882 | |
3883 | // Compute a pointer to the object with the given index. Note that |
3884 | // 'objectsperblock' is a power of two, so the & operation is a bit mask |
3885 | // that preserves the lower bits. |
3886 | return (void *)(block + (objectindex & (objectsperblock - 1)) * objectbytes); |
3887 | } |
3888 | |
3889 | /////////////////////////////////////////////////////////////////////////////// |
3890 | // // |
3891 | // newindex() Allocate space for a fresh object from the pool. // |
3892 | // // |
3893 | // 'newptr' returns a pointer to the new object (it must not be a NULL). // |
3894 | // // |
3895 | /////////////////////////////////////////////////////////////////////////////// |
3896 | |
3897 | int tetgenmesh::arraypool::newindex(void **newptr) |
3898 | { |
3899 | // Allocate an object at index 'firstvirgin'. |
3900 | int newindex = objects; |
3901 | *newptr = (void *) (getblock(objects) + |
3902 | (objects & (objectsperblock - 1)) * objectbytes); |
3903 | objects++; |
3904 | |
3905 | return newindex; |
3906 | } |
3907 | |
3908 | |
3909 | /////////////////////////////////////////////////////////////////////////////// |
3910 | // // |
3911 | // memorypool() The constructors of memorypool. // |
3912 | // // |
3913 | /////////////////////////////////////////////////////////////////////////////// |
3914 | |
3915 | tetgenmesh::memorypool::memorypool() |
3916 | { |
3917 | firstblock = nowblock = (void **) NULL; |
3918 | nextitem = (void *) NULL; |
3919 | deaditemstack = (void *) NULL; |
3920 | pathblock = (void **) NULL; |
3921 | pathitem = (void *) NULL; |
3922 | alignbytes = 0; |
3923 | itembytes = itemwords = 0; |
3924 | itemsperblock = 0; |
3925 | items = maxitems = 0l; |
3926 | unallocateditems = 0; |
3927 | pathitemsleft = 0; |
3928 | } |
3929 | |
3930 | tetgenmesh::memorypool::memorypool(int bytecount, int itemcount, int wsize, |
3931 | int alignment) |
3932 | { |
3933 | poolinit(bytecount, itemcount, wsize, alignment); |
3934 | } |
3935 | |
3936 | /////////////////////////////////////////////////////////////////////////////// |
3937 | // // |
3938 | // ~memorypool() Free to the operating system all memory taken by a pool. // |
3939 | // // |
3940 | /////////////////////////////////////////////////////////////////////////////// |
3941 | |
3942 | tetgenmesh::memorypool::~memorypool() |
3943 | { |
3944 | while (firstblock != (void **) NULL) { |
3945 | nowblock = (void **) *(firstblock); |
3946 | free(firstblock); |
3947 | firstblock = nowblock; |
3948 | } |
3949 | } |
3950 | |
3951 | /////////////////////////////////////////////////////////////////////////////// |
3952 | // // |
3953 | // poolinit() Initialize a pool of memory for allocation of items. // |
3954 | // // |
3955 | // A `pool' is created whose records have size at least `bytecount'. Items // |
3956 | // will be allocated in `itemcount'-item blocks. Each item is assumed to be // |
3957 | // a collection of words, and either pointers or floating-point values are // |
3958 | // assumed to be the "primary" word type. (The "primary" word type is used // |
3959 | // to determine alignment of items.) If `alignment' isn't zero, all items // |
3960 | // will be `alignment'-byte aligned in memory. `alignment' must be either a // |
3961 | // multiple or a factor of the primary word size; powers of two are safe. // |
3962 | // `alignment' is normally used to create a few unused bits at the bottom of // |
3963 | // each item's pointer, in which information may be stored. // |
3964 | // // |
3965 | /////////////////////////////////////////////////////////////////////////////// |
3966 | |
3967 | void tetgenmesh::memorypool::poolinit(int bytecount,int itemcount,int wordsize, |
3968 | int alignment) |
3969 | { |
3970 | // Find the proper alignment, which must be at least as large as: |
3971 | // - The parameter `alignment'. |
3972 | // - The primary word type, to avoid unaligned accesses. |
3973 | // - sizeof(void *), so the stack of dead items can be maintained |
3974 | // without unaligned accesses. |
3975 | if (alignment > wordsize) { |
3976 | alignbytes = alignment; |
3977 | } else { |
3978 | alignbytes = wordsize; |
3979 | } |
3980 | if ((int) sizeof(void *) > alignbytes) { |
3981 | alignbytes = (int) sizeof(void *); |
3982 | } |
3983 | itemwords = ((bytecount + alignbytes - 1) / alignbytes) |
3984 | * (alignbytes / wordsize); |
3985 | itembytes = itemwords * wordsize; |
3986 | itemsperblock = itemcount; |
3987 | |
3988 | // Allocate a block of items. Space for `itemsperblock' items and one |
3989 | // pointer (to point to the next block) are allocated, as well as space |
3990 | // to ensure alignment of the items. |
3991 | firstblock = (void **) malloc(itemsperblock * itembytes + sizeof(void *) |
3992 | + alignbytes); |
3993 | if (firstblock == (void **) NULL) { |
3994 | terminatetetgen(NULL, 1); |
3995 | } |
3996 | // Set the next block pointer to NULL. |
3997 | *(firstblock) = (void *) NULL; |
3998 | restart(); |
3999 | } |
4000 | |
4001 | /////////////////////////////////////////////////////////////////////////////// |
4002 | // // |
4003 | // restart() Deallocate all items in this pool. // |
4004 | // // |
4005 | // The pool is returned to its starting state, except that no memory is // |
4006 | // freed to the operating system. Rather, the previously allocated blocks // |
4007 | // are ready to be reused. // |
4008 | // // |
4009 | /////////////////////////////////////////////////////////////////////////////// |
4010 | |
4011 | void tetgenmesh::memorypool::restart() |
4012 | { |
4013 | uintptr_t alignptr; |
4014 | |
4015 | items = 0; |
4016 | maxitems = 0; |
4017 | |
4018 | // Set the currently active block. |
4019 | nowblock = firstblock; |
4020 | // Find the first item in the pool. Increment by the size of (void *). |
4021 | alignptr = (uintptr_t) (nowblock + 1); |
4022 | // Align the item on an `alignbytes'-byte boundary. |
4023 | nextitem = (void *) |
4024 | (alignptr + (uintptr_t) alignbytes - |
4025 | (alignptr % (uintptr_t) alignbytes)); |
4026 | // There are lots of unallocated items left in this block. |
4027 | unallocateditems = itemsperblock; |
4028 | // The stack of deallocated items is empty. |
4029 | deaditemstack = (void *) NULL; |
4030 | } |
4031 | |
4032 | /////////////////////////////////////////////////////////////////////////////// |
4033 | // // |
4034 | // alloc() Allocate space for an item. // |
4035 | // // |
4036 | /////////////////////////////////////////////////////////////////////////////// |
4037 | |
4038 | void* tetgenmesh::memorypool::alloc() |
4039 | { |
4040 | void *newitem; |
4041 | void **newblock; |
4042 | uintptr_t alignptr; |
4043 | |
4044 | // First check the linked list of dead items. If the list is not |
4045 | // empty, allocate an item from the list rather than a fresh one. |
4046 | if (deaditemstack != (void *) NULL) { |
4047 | newitem = deaditemstack; // Take first item in list. |
4048 | deaditemstack = * (void **) deaditemstack; |
4049 | } else { |
4050 | // Check if there are any free items left in the current block. |
4051 | if (unallocateditems == 0) { |
4052 | // Check if another block must be allocated. |
4053 | if (*nowblock == (void *) NULL) { |
4054 | // Allocate a new block of items, pointed to by the previous block. |
4055 | newblock = (void **) malloc(itemsperblock * itembytes + sizeof(void *) |
4056 | + alignbytes); |
4057 | if (newblock == (void **) NULL) { |
4058 | terminatetetgen(NULL, 1); |
4059 | } |
4060 | *nowblock = (void *) newblock; |
4061 | // The next block pointer is NULL. |
4062 | *newblock = (void *) NULL; |
4063 | } |
4064 | // Move to the new block. |
4065 | nowblock = (void **) *nowblock; |
4066 | // Find the first item in the block. |
4067 | // Increment by the size of (void *). |
4068 | alignptr = (uintptr_t) (nowblock + 1); |
4069 | // Align the item on an `alignbytes'-byte boundary. |
4070 | nextitem = (void *) |
4071 | (alignptr + (uintptr_t) alignbytes - |
4072 | (alignptr % (uintptr_t) alignbytes)); |
4073 | // There are lots of unallocated items left in this block. |
4074 | unallocateditems = itemsperblock; |
4075 | } |
4076 | // Allocate a new item. |
4077 | newitem = nextitem; |
4078 | // Advance `nextitem' pointer to next free item in block. |
4079 | nextitem = (void *) ((uintptr_t) nextitem + itembytes); |
4080 | unallocateditems--; |
4081 | maxitems++; |
4082 | } |
4083 | items++; |
4084 | return newitem; |
4085 | } |
4086 | |
4087 | /////////////////////////////////////////////////////////////////////////////// |
4088 | // // |
4089 | // dealloc() Deallocate space for an item. // |
4090 | // // |
4091 | // The deallocated space is stored in a queue for later reuse. // |
4092 | // // |
4093 | /////////////////////////////////////////////////////////////////////////////// |
4094 | |
4095 | void tetgenmesh::memorypool::dealloc(void *dyingitem) |
4096 | { |
4097 | // Push freshly killed item onto stack. |
4098 | *((void **) dyingitem) = deaditemstack; |
4099 | deaditemstack = dyingitem; |
4100 | items--; |
4101 | } |
4102 | |
4103 | /////////////////////////////////////////////////////////////////////////////// |
4104 | // // |
4105 | // traversalinit() Prepare to traverse the entire list of items. // |
4106 | // // |
4107 | // This routine is used in conjunction with traverse(). // |
4108 | // // |
4109 | /////////////////////////////////////////////////////////////////////////////// |
4110 | |
4111 | void tetgenmesh::memorypool::traversalinit() |
4112 | { |
4113 | uintptr_t alignptr; |
4114 | |
4115 | // Begin the traversal in the first block. |
4116 | pathblock = firstblock; |
4117 | // Find the first item in the block. Increment by the size of (void *). |
4118 | alignptr = (uintptr_t) (pathblock + 1); |
4119 | // Align with item on an `alignbytes'-byte boundary. |
4120 | pathitem = (void *) |
4121 | (alignptr + (uintptr_t) alignbytes - |
4122 | (alignptr % (uintptr_t) alignbytes)); |
4123 | // Set the number of items left in the current block. |
4124 | pathitemsleft = itemsperblock; |
4125 | } |
4126 | |
4127 | /////////////////////////////////////////////////////////////////////////////// |
4128 | // // |
4129 | // traverse() Find the next item in the list. // |
4130 | // // |
4131 | // This routine is used in conjunction with traversalinit(). Be forewarned // |
4132 | // that this routine successively returns all items in the list, including // |
4133 | // deallocated ones on the deaditemqueue. It's up to you to figure out which // |
4134 | // ones are actually dead. It can usually be done more space-efficiently by // |
4135 | // a routine that knows something about the structure of the item. // |
4136 | // // |
4137 | /////////////////////////////////////////////////////////////////////////////// |
4138 | |
4139 | void* tetgenmesh::memorypool::traverse() |
4140 | { |
4141 | void *newitem; |
4142 | uintptr_t alignptr; |
4143 | |
4144 | // Stop upon exhausting the list of items. |
4145 | if (pathitem == nextitem) { |
4146 | return (void *) NULL; |
4147 | } |
4148 | // Check whether any untraversed items remain in the current block. |
4149 | if (pathitemsleft == 0) { |
4150 | // Find the next block. |
4151 | pathblock = (void **) *pathblock; |
4152 | // Find the first item in the block. Increment by the size of (void *). |
4153 | alignptr = (uintptr_t) (pathblock + 1); |
4154 | // Align with item on an `alignbytes'-byte boundary. |
4155 | pathitem = (void *) |
4156 | (alignptr + (uintptr_t) alignbytes - |
4157 | (alignptr % (uintptr_t) alignbytes)); |
4158 | // Set the number of items left in the current block. |
4159 | pathitemsleft = itemsperblock; |
4160 | } |
4161 | newitem = pathitem; |
4162 | // Find the next item in the block. |
4163 | pathitem = (void *) ((uintptr_t) pathitem + itembytes); |
4164 | pathitemsleft--; |
4165 | return newitem; |
4166 | } |
4167 | |
4168 | /////////////////////////////////////////////////////////////////////////////// |
4169 | // // |
4170 | // makeindex2pointmap() Create a map from index to vertices. // |
4171 | // // |
4172 | // 'idx2verlist' returns the created map. Traverse all vertices, a pointer // |
4173 | // to each vertex is set into the array. The pointer to the first vertex is // |
4174 | // saved in 'idx2verlist[in->firstnumber]'. // |
4175 | // // |
4176 | /////////////////////////////////////////////////////////////////////////////// |
4177 | |
4178 | void tetgenmesh::makeindex2pointmap(point*& idx2verlist) |
4179 | { |
4180 | point pointloop; |
4181 | int idx; |
4182 | |
4183 | if (b->verbose > 1) { |
4184 | printf(" Constructing mapping from indices to points.\n" ); |
4185 | } |
4186 | |
4187 | idx2verlist = new point[points->items + 1]; |
4188 | |
4189 | points->traversalinit(); |
4190 | pointloop = pointtraverse(); |
4191 | idx = in->firstnumber; |
4192 | while (pointloop != (point) NULL) { |
4193 | idx2verlist[idx++] = pointloop; |
4194 | pointloop = pointtraverse(); |
4195 | } |
4196 | } |
4197 | |
4198 | /////////////////////////////////////////////////////////////////////////////// |
4199 | // // |
4200 | // makesubfacemap() Create a map from vertex to subfaces incident at it. // |
4201 | // // |
4202 | // The map is returned in two arrays 'idx2faclist' and 'facperverlist'. All // |
4203 | // subfaces incident at i-th vertex (i is counted from 0) are found in the // |
4204 | // array facperverlist[j], where idx2faclist[i] <= j < idx2faclist[i + 1]. // |
4205 | // Each entry in facperverlist[j] is a subface whose origin is the vertex. // |
4206 | // // |
4207 | // NOTE: These two arrays will be created inside this routine, don't forget // |
4208 | // to free them after using. // |
4209 | // // |
4210 | /////////////////////////////////////////////////////////////////////////////// |
4211 | |
4212 | void tetgenmesh::makepoint2submap(memorypool* pool, int*& idx2faclist, |
4213 | face*& facperverlist) |
4214 | { |
4215 | face shloop; |
4216 | int i, j, k; |
4217 | |
4218 | if (b->verbose > 1) { |
4219 | printf(" Making a map from points to subfaces.\n" ); |
4220 | } |
4221 | |
4222 | // Initialize 'idx2faclist'. |
4223 | idx2faclist = new int[points->items + 1]; |
4224 | for (i = 0; i < points->items + 1; i++) idx2faclist[i] = 0; |
4225 | |
4226 | // Loop all subfaces, counter the number of subfaces incident at a vertex. |
4227 | pool->traversalinit(); |
4228 | shloop.sh = shellfacetraverse(pool); |
4229 | while (shloop.sh != (shellface *) NULL) { |
4230 | // Increment the number of incident subfaces for each vertex. |
4231 | j = pointmark((point) shloop.sh[3]) - in->firstnumber; |
4232 | idx2faclist[j]++; |
4233 | j = pointmark((point) shloop.sh[4]) - in->firstnumber; |
4234 | idx2faclist[j]++; |
4235 | // Skip the third corner if it is a segment. |
4236 | if (shloop.sh[5] != NULL) { |
4237 | j = pointmark((point) shloop.sh[5]) - in->firstnumber; |
4238 | idx2faclist[j]++; |
4239 | } |
4240 | shloop.sh = shellfacetraverse(pool); |
4241 | } |
4242 | |
4243 | // Calculate the total length of array 'facperverlist'. |
4244 | j = idx2faclist[0]; |
4245 | idx2faclist[0] = 0; // Array starts from 0 element. |
4246 | for (i = 0; i < points->items; i++) { |
4247 | k = idx2faclist[i + 1]; |
4248 | idx2faclist[i + 1] = idx2faclist[i] + j; |
4249 | j = k; |
4250 | } |
4251 | |
4252 | // The total length is in the last unit of idx2faclist. |
4253 | facperverlist = new face[idx2faclist[i]]; |
4254 | |
4255 | // Loop all subfaces again, remember the subfaces at each vertex. |
4256 | pool->traversalinit(); |
4257 | shloop.sh = shellfacetraverse(pool); |
4258 | while (shloop.sh != (shellface *) NULL) { |
4259 | j = pointmark((point) shloop.sh[3]) - in->firstnumber; |
4260 | shloop.shver = 0; // save the origin. |
4261 | facperverlist[idx2faclist[j]] = shloop; |
4262 | idx2faclist[j]++; |
4263 | // Is it a subface or a subsegment? |
4264 | if (shloop.sh[5] != NULL) { |
4265 | j = pointmark((point) shloop.sh[4]) - in->firstnumber; |
4266 | shloop.shver = 2; // save the origin. |
4267 | facperverlist[idx2faclist[j]] = shloop; |
4268 | idx2faclist[j]++; |
4269 | j = pointmark((point) shloop.sh[5]) - in->firstnumber; |
4270 | shloop.shver = 4; // save the origin. |
4271 | facperverlist[idx2faclist[j]] = shloop; |
4272 | idx2faclist[j]++; |
4273 | } else { |
4274 | j = pointmark((point) shloop.sh[4]) - in->firstnumber; |
4275 | shloop.shver = 1; // save the origin. |
4276 | facperverlist[idx2faclist[j]] = shloop; |
4277 | idx2faclist[j]++; |
4278 | } |
4279 | shloop.sh = shellfacetraverse(pool); |
4280 | } |
4281 | |
4282 | // Contents in 'idx2faclist' are shifted, now shift them back. |
4283 | for (i = points->items - 1; i >= 0; i--) { |
4284 | idx2faclist[i + 1] = idx2faclist[i]; |
4285 | } |
4286 | idx2faclist[0] = 0; |
4287 | } |
4288 | |
4289 | /////////////////////////////////////////////////////////////////////////////// |
4290 | // // |
4291 | // tetrahedrondealloc() Deallocate space for a tet., marking it dead. // |
4292 | // // |
4293 | /////////////////////////////////////////////////////////////////////////////// |
4294 | |
4295 | void tetgenmesh::tetrahedrondealloc(tetrahedron *dyingtetrahedron) |
4296 | { |
4297 | // Set tetrahedron's vertices to NULL. This makes it possible to detect |
4298 | // dead tetrahedra when traversing the list of all tetrahedra. |
4299 | dyingtetrahedron[4] = (tetrahedron) NULL; |
4300 | |
4301 | // Dealloc the space to subfaces/subsegments. |
4302 | if (dyingtetrahedron[8] != NULL) { |
4303 | tet2segpool->dealloc((shellface *) dyingtetrahedron[8]); |
4304 | } |
4305 | if (dyingtetrahedron[9] != NULL) { |
4306 | tet2subpool->dealloc((shellface *) dyingtetrahedron[9]); |
4307 | } |
4308 | |
4309 | tetrahedrons->dealloc((void *) dyingtetrahedron); |
4310 | } |
4311 | |
4312 | /////////////////////////////////////////////////////////////////////////////// |
4313 | // // |
4314 | // tetrahedrontraverse() Traverse the tetrahedra, skipping dead ones. // |
4315 | // // |
4316 | /////////////////////////////////////////////////////////////////////////////// |
4317 | |
4318 | tetgenmesh::tetrahedron* tetgenmesh::tetrahedrontraverse() |
4319 | { |
4320 | tetrahedron *newtetrahedron; |
4321 | |
4322 | do { |
4323 | newtetrahedron = (tetrahedron *) tetrahedrons->traverse(); |
4324 | if (newtetrahedron == (tetrahedron *) NULL) { |
4325 | return (tetrahedron *) NULL; |
4326 | } |
4327 | } while ((newtetrahedron[4] == (tetrahedron) NULL) || |
4328 | ((point) newtetrahedron[7] == dummypoint)); |
4329 | return newtetrahedron; |
4330 | } |
4331 | |
4332 | tetgenmesh::tetrahedron* tetgenmesh::alltetrahedrontraverse() |
4333 | { |
4334 | tetrahedron *newtetrahedron; |
4335 | |
4336 | do { |
4337 | newtetrahedron = (tetrahedron *) tetrahedrons->traverse(); |
4338 | if (newtetrahedron == (tetrahedron *) NULL) { |
4339 | return (tetrahedron *) NULL; |
4340 | } |
4341 | } while (newtetrahedron[4] == (tetrahedron) NULL); // Skip dead ones. |
4342 | return newtetrahedron; |
4343 | } |
4344 | |
4345 | /////////////////////////////////////////////////////////////////////////////// |
4346 | // // |
4347 | // shellfacedealloc() Deallocate space for a shellface, marking it dead. // |
4348 | // Used both for dealloc a subface and subsegment. // |
4349 | // // |
4350 | /////////////////////////////////////////////////////////////////////////////// |
4351 | |
4352 | void tetgenmesh::shellfacedealloc(memorypool *pool, shellface *dyingsh) |
4353 | { |
4354 | // Set shellface's vertices to NULL. This makes it possible to detect dead |
4355 | // shellfaces when traversing the list of all shellfaces. |
4356 | dyingsh[3] = (shellface) NULL; |
4357 | pool->dealloc((void *) dyingsh); |
4358 | } |
4359 | |
4360 | /////////////////////////////////////////////////////////////////////////////// |
4361 | // // |
4362 | // shellfacetraverse() Traverse the subfaces, skipping dead ones. Used // |
4363 | // for both subfaces and subsegments pool traverse. // |
4364 | // // |
4365 | /////////////////////////////////////////////////////////////////////////////// |
4366 | |
4367 | tetgenmesh::shellface* tetgenmesh::shellfacetraverse(memorypool *pool) |
4368 | { |
4369 | shellface *newshellface; |
4370 | |
4371 | do { |
4372 | newshellface = (shellface *) pool->traverse(); |
4373 | if (newshellface == (shellface *) NULL) { |
4374 | return (shellface *) NULL; |
4375 | } |
4376 | } while (newshellface[3] == (shellface) NULL); // Skip dead ones. |
4377 | return newshellface; |
4378 | } |
4379 | |
4380 | |
4381 | /////////////////////////////////////////////////////////////////////////////// |
4382 | // // |
4383 | // pointdealloc() Deallocate space for a point, marking it dead. // |
4384 | // // |
4385 | /////////////////////////////////////////////////////////////////////////////// |
4386 | |
4387 | void tetgenmesh::pointdealloc(point dyingpoint) |
4388 | { |
4389 | // Mark the point as dead. This makes it possible to detect dead points |
4390 | // when traversing the list of all points. |
4391 | setpointtype(dyingpoint, DEADVERTEX); |
4392 | points->dealloc((void *) dyingpoint); |
4393 | } |
4394 | |
4395 | /////////////////////////////////////////////////////////////////////////////// |
4396 | // // |
4397 | // pointtraverse() Traverse the points, skipping dead ones. // |
4398 | // // |
4399 | /////////////////////////////////////////////////////////////////////////////// |
4400 | |
4401 | tetgenmesh::point tetgenmesh::pointtraverse() |
4402 | { |
4403 | point newpoint; |
4404 | |
4405 | do { |
4406 | newpoint = (point) points->traverse(); |
4407 | if (newpoint == (point) NULL) { |
4408 | return (point) NULL; |
4409 | } |
4410 | } while (pointtype(newpoint) == DEADVERTEX); // Skip dead ones. |
4411 | return newpoint; |
4412 | } |
4413 | |
4414 | /////////////////////////////////////////////////////////////////////////////// |
4415 | // // |
4416 | // maketetrahedron() Create a new tetrahedron. // |
4417 | // // |
4418 | /////////////////////////////////////////////////////////////////////////////// |
4419 | |
4420 | void tetgenmesh::maketetrahedron(triface *newtet) |
4421 | { |
4422 | newtet->tet = (tetrahedron *) tetrahedrons->alloc(); |
4423 | |
4424 | // Initialize the four adjoining tetrahedra to be "outer space". |
4425 | newtet->tet[0] = NULL; |
4426 | newtet->tet[1] = NULL; |
4427 | newtet->tet[2] = NULL; |
4428 | newtet->tet[3] = NULL; |
4429 | // Four NULL vertices. |
4430 | newtet->tet[4] = NULL; |
4431 | newtet->tet[5] = NULL; |
4432 | newtet->tet[6] = NULL; |
4433 | newtet->tet[7] = NULL; |
4434 | // No attached segments and subfaces yet. |
4435 | newtet->tet[8] = NULL; |
4436 | newtet->tet[9] = NULL; |
4437 | // Initialize the marker (clear all flags). |
4438 | setelemmarker(newtet->tet, 0); |
4439 | for (int i = 0; i < numelemattrib; i++) { |
4440 | setelemattribute(newtet->tet, i, 0.0); |
4441 | } |
4442 | if (b->varvolume) { |
4443 | setvolumebound(newtet->tet, -1.0); |
4444 | } |
4445 | |
4446 | // Initialize the version to be Zero. |
4447 | newtet->ver = 11; |
4448 | } |
4449 | |
4450 | /////////////////////////////////////////////////////////////////////////////// |
4451 | // // |
4452 | // makeshellface() Create a new shellface with version zero. Used for // |
4453 | // both subfaces and subsegments. // |
4454 | // // |
4455 | /////////////////////////////////////////////////////////////////////////////// |
4456 | |
4457 | void tetgenmesh::makeshellface(memorypool *pool, face *newface) |
4458 | { |
4459 | newface->sh = (shellface *) pool->alloc(); |
4460 | |
4461 | // No adjointing subfaces. |
4462 | newface->sh[0] = NULL; |
4463 | newface->sh[1] = NULL; |
4464 | newface->sh[2] = NULL; |
4465 | // Three NULL vertices. |
4466 | newface->sh[3] = NULL; |
4467 | newface->sh[4] = NULL; |
4468 | newface->sh[5] = NULL; |
4469 | // No adjoining subsegments. |
4470 | newface->sh[6] = NULL; |
4471 | newface->sh[7] = NULL; |
4472 | newface->sh[8] = NULL; |
4473 | // No adjoining tetrahedra. |
4474 | newface->sh[9] = NULL; |
4475 | newface->sh[10] = NULL; |
4476 | if (checkconstraints) { |
4477 | // Initialize the maximum area bound. |
4478 | setareabound(*newface, 0.0); |
4479 | } |
4480 | // Clear the infection and marktest bits. |
4481 | ((int *) (newface->sh))[shmarkindex + 1] = 0; |
4482 | if (useinsertradius) { |
4483 | setfacetindex(*newface, 0); |
4484 | } |
4485 | // Set the boundary marker to zero. |
4486 | setshellmark(*newface, 0); |
4487 | |
4488 | newface->shver = 0; |
4489 | } |
4490 | |
4491 | /////////////////////////////////////////////////////////////////////////////// |
4492 | // // |
4493 | // makepoint() Create a new point. // |
4494 | // // |
4495 | /////////////////////////////////////////////////////////////////////////////// |
4496 | |
4497 | void tetgenmesh::makepoint(point* pnewpoint, enum verttype vtype) |
4498 | { |
4499 | int i; |
4500 | |
4501 | *pnewpoint = (point) points->alloc(); |
4502 | |
4503 | // Initialize the point attributes. |
4504 | for (i = 0; i < numpointattrib; i++) { |
4505 | (*pnewpoint)[3 + i] = 0.0; |
4506 | } |
4507 | // Initialize the metric tensor. |
4508 | for (i = 0; i < sizeoftensor; i++) { |
4509 | (*pnewpoint)[pointmtrindex + i] = 0.0; |
4510 | } |
4511 | setpoint2tet(*pnewpoint, NULL); |
4512 | setpoint2ppt(*pnewpoint, NULL); |
4513 | if (b->plc || b->refine) { |
4514 | // Initialize the point-to-simplex field. |
4515 | setpoint2sh(*pnewpoint, NULL); |
4516 | if (b->metric && (bgm != NULL)) { |
4517 | setpoint2bgmtet(*pnewpoint, NULL); |
4518 | } |
4519 | } |
4520 | // Initialize the point marker (starting from in->firstnumber). |
4521 | setpointmark(*pnewpoint, (int) (points->items) - (!in->firstnumber)); |
4522 | // Clear all flags. |
4523 | ((int *) (*pnewpoint))[pointmarkindex + 1] = 0; |
4524 | // Initialize (set) the point type. |
4525 | setpointtype(*pnewpoint, vtype); |
4526 | } |
4527 | |
4528 | /////////////////////////////////////////////////////////////////////////////// |
4529 | // // |
4530 | // initializepools() Calculate the sizes of the point, tetrahedron, and // |
4531 | // subface. Initialize their memory pools. // |
4532 | // // |
4533 | // This routine also computes the indices 'pointmarkindex', 'point2simindex',// |
4534 | // 'point2pbcptindex', 'elemattribindex', and 'volumeboundindex'. They are // |
4535 | // used to find values within each point and tetrahedron, respectively. // |
4536 | // // |
4537 | /////////////////////////////////////////////////////////////////////////////// |
4538 | |
4539 | void tetgenmesh::initializepools() |
4540 | { |
4541 | int pointsize = 0, elesize = 0, shsize = 0; |
4542 | int i; |
4543 | |
4544 | if (b->verbose) { |
4545 | printf(" Initializing memorypools.\n" ); |
4546 | printf(" tetrahedron per block: %d.\n" , b->tetrahedraperblock); |
4547 | } |
4548 | |
4549 | inittables(); |
4550 | |
4551 | // There are three input point lists available, which are in, addin, |
4552 | // and bgm->in. These point lists may have different number of |
4553 | // attributes. Decide the maximum number. |
4554 | numpointattrib = in->numberofpointattributes; |
4555 | if (bgm != NULL) { |
4556 | if (bgm->in->numberofpointattributes > numpointattrib) { |
4557 | numpointattrib = bgm->in->numberofpointattributes; |
4558 | } |
4559 | } |
4560 | if (addin != NULL) { |
4561 | if (addin->numberofpointattributes > numpointattrib) { |
4562 | numpointattrib = addin->numberofpointattributes; |
4563 | } |
4564 | } |
4565 | if (b->weighted || b->flipinsert) { // -w or -L. |
4566 | // The internal number of point attribute needs to be at least 1 |
4567 | // (for storing point weights). |
4568 | if (numpointattrib == 0) { |
4569 | numpointattrib = 1; |
4570 | } |
4571 | } |
4572 | |
4573 | // Default varconstraint = 0; |
4574 | if (in->segmentconstraintlist || in->facetconstraintlist) { |
4575 | checkconstraints = 1; |
4576 | } |
4577 | if (b->plc || b->refine) { |
4578 | // Save the insertion radius for Steiner points if boundaries |
4579 | // are allowed be split. |
4580 | if (!b->nobisect || checkconstraints) { |
4581 | useinsertradius = 1; |
4582 | } |
4583 | } |
4584 | |
4585 | // The index within each point at which its metric tensor is found. |
4586 | // Each vertex has three coordinates. |
4587 | if (b->psc) { |
4588 | // '-s' option (PSC), the u,v coordinates are provided. |
4589 | pointmtrindex = 5 + numpointattrib; |
4590 | // The index within each point at which its u, v coordinates are found. |
4591 | // Comment: They are saved after the list of point attributes. |
4592 | pointparamindex = pointmtrindex - 2; |
4593 | } else { |
4594 | pointmtrindex = 3 + numpointattrib; |
4595 | } |
4596 | // For '-m' option. A tensor field is provided (*.mtr or *.b.mtr file). |
4597 | if (b->metric) { |
4598 | // Decide the size (1, 3, or 6) of the metric tensor. |
4599 | if (bgm != (tetgenmesh *) NULL) { |
4600 | // A background mesh is allocated. It may not exist though. |
4601 | sizeoftensor = (bgm->in != (tetgenio *) NULL) ? |
4602 | bgm->in->numberofpointmtrs : in->numberofpointmtrs; |
4603 | } else { |
4604 | // No given background mesh - Itself is a background mesh. |
4605 | sizeoftensor = in->numberofpointmtrs; |
4606 | } |
4607 | // Make sure sizeoftensor is at least 1. |
4608 | sizeoftensor = (sizeoftensor > 0) ? sizeoftensor : 1; |
4609 | } else { |
4610 | // For '-q' option. Make sure to have space for saving a scalar value. |
4611 | sizeoftensor = b->quality ? 1 : 0; |
4612 | } |
4613 | if (useinsertradius) { |
4614 | // Increase a space (REAL) for saving point insertion radius, it is |
4615 | // saved directly after the metric. |
4616 | sizeoftensor++; |
4617 | } |
4618 | // The index within each point at which an element pointer is found, where |
4619 | // the index is measured in pointers. Ensure the index is aligned to a |
4620 | // sizeof(tetrahedron)-byte address. |
4621 | point2simindex = ((pointmtrindex + sizeoftensor) * sizeof(REAL) |
4622 | + sizeof(tetrahedron) - 1) / sizeof(tetrahedron); |
4623 | if (b->plc || b->refine || b->voroout) { |
4624 | // Increase the point size by three pointers, which are: |
4625 | // - a pointer to a tet, read by point2tet(); |
4626 | // - a pointer to a parent point, read by point2ppt()). |
4627 | // - a pointer to a subface or segment, read by point2sh(); |
4628 | if (b->metric && (bgm != (tetgenmesh *) NULL)) { |
4629 | // Increase one pointer into the background mesh, point2bgmtet(). |
4630 | pointsize = (point2simindex + 4) * sizeof(tetrahedron); |
4631 | } else { |
4632 | pointsize = (point2simindex + 3) * sizeof(tetrahedron); |
4633 | } |
4634 | } else { |
4635 | // Increase the point size by two pointer, which are: |
4636 | // - a pointer to a tet, read by point2tet(); |
4637 | // - a pointer to a parent point, read by point2ppt()). -- Used by btree. |
4638 | pointsize = (point2simindex + 2) * sizeof(tetrahedron); |
4639 | } |
4640 | // The index within each point at which the boundary marker is found, |
4641 | // Ensure the point marker is aligned to a sizeof(int)-byte address. |
4642 | pointmarkindex = (pointsize + sizeof(int) - 1) / sizeof(int); |
4643 | // Now point size is the ints (indicated by pointmarkindex) plus: |
4644 | // - an integer for boundary marker; |
4645 | // - an integer for vertex type; |
4646 | // - an integer for geometry tag (optional, -s option). |
4647 | pointsize = (pointmarkindex + 2 + (b->psc ? 1 : 0)) * sizeof(tetrahedron); |
4648 | |
4649 | // Initialize the pool of vertices. |
4650 | points = new memorypool(pointsize, b->vertexperblock, sizeof(REAL), 0); |
4651 | |
4652 | if (b->verbose) { |
4653 | printf(" Size of a point: %d bytes.\n" , points->itembytes); |
4654 | } |
4655 | |
4656 | // Initialize the infinite vertex. |
4657 | dummypoint = (point) new char[pointsize]; |
4658 | // Initialize all fields of this point. |
4659 | dummypoint[0] = 0.0; |
4660 | dummypoint[1] = 0.0; |
4661 | dummypoint[2] = 0.0; |
4662 | for (i = 0; i < numpointattrib; i++) { |
4663 | dummypoint[3 + i] = 0.0; |
4664 | } |
4665 | // Initialize the metric tensor. |
4666 | for (i = 0; i < sizeoftensor; i++) { |
4667 | dummypoint[pointmtrindex + i] = 0.0; |
4668 | } |
4669 | setpoint2tet(dummypoint, NULL); |
4670 | setpoint2ppt(dummypoint, NULL); |
4671 | if (b->plc || b->psc || b->refine) { |
4672 | // Initialize the point-to-simplex field. |
4673 | setpoint2sh(dummypoint, NULL); |
4674 | if (b->metric && (bgm != NULL)) { |
4675 | setpoint2bgmtet(dummypoint, NULL); |
4676 | } |
4677 | } |
4678 | // Initialize the point marker (starting from in->firstnumber). |
4679 | setpointmark(dummypoint, -1); // The unique marker for dummypoint. |
4680 | // Clear all flags. |
4681 | ((int *) (dummypoint))[pointmarkindex + 1] = 0; |
4682 | // Initialize (set) the point type. |
4683 | setpointtype(dummypoint, UNUSEDVERTEX); // Does not matter. |
4684 | |
4685 | // The number of bytes occupied by a tetrahedron is varying by the user- |
4686 | // specified options. The contents of the first 12 pointers are listed |
4687 | // in the following table: |
4688 | // [0] |__ neighbor at f0 __| |
4689 | // [1] |__ neighbor at f1 __| |
4690 | // [2] |__ neighbor at f2 __| |
4691 | // [3] |__ neighbor at f3 __| |
4692 | // [4] |_____ vertex p0 ____| |
4693 | // [5] |_____ vertex p1 ____| |
4694 | // [6] |_____ vertex p2 ____| |
4695 | // [7] |_____ vertex p3 ____| |
4696 | // [8] |__ segments array __| (used by -p) |
4697 | // [9] |__ subfaces array __| (used by -p) |
4698 | // [10] |_____ reserved _____| |
4699 | // [11] |___ elem marker ____| (used as an integer) |
4700 | |
4701 | elesize = 12 * sizeof(tetrahedron); |
4702 | |
4703 | // The index to find the element markers. An integer containing varies |
4704 | // flags and element counter. |
4705 | assert(sizeof(int) <= sizeof(tetrahedron)); |
4706 | assert((sizeof(tetrahedron) % sizeof(int)) == 0); |
4707 | elemmarkerindex = (elesize - sizeof(tetrahedron)) / sizeof(int); |
4708 | |
4709 | // The actual number of element attributes. Note that if the |
4710 | // `b->regionattrib' flag is set, an additional attribute will be added. |
4711 | numelemattrib = in->numberoftetrahedronattributes + (b->regionattrib > 0); |
4712 | |
4713 | // The index within each element at which its attributes are found, where |
4714 | // the index is measured in REALs. |
4715 | elemattribindex = (elesize + sizeof(REAL) - 1) / sizeof(REAL); |
4716 | // The index within each element at which the maximum volume bound is |
4717 | // found, where the index is measured in REALs. |
4718 | volumeboundindex = elemattribindex + numelemattrib; |
4719 | // If element attributes or an constraint are needed, increase the number |
4720 | // of bytes occupied by an element. |
4721 | if (b->varvolume) { |
4722 | elesize = (volumeboundindex + 1) * sizeof(REAL); |
4723 | } else if (numelemattrib > 0) { |
4724 | elesize = volumeboundindex * sizeof(REAL); |
4725 | } |
4726 | |
4727 | |
4728 | // Having determined the memory size of an element, initialize the pool. |
4729 | tetrahedrons = new memorypool(elesize, b->tetrahedraperblock, sizeof(void *), |
4730 | 16); |
4731 | |
4732 | if (b->verbose) { |
4733 | printf(" Size of a tetrahedron: %d (%d) bytes.\n" , elesize, |
4734 | tetrahedrons->itembytes); |
4735 | } |
4736 | |
4737 | if (b->plc || b->refine) { // if (b->useshelles) { |
4738 | // The number of bytes occupied by a subface. The list of pointers |
4739 | // stored in a subface are: three to other subfaces, three to corners, |
4740 | // three to subsegments, two to tetrahedra. |
4741 | shsize = 11 * sizeof(shellface); |
4742 | // The index within each subface at which the maximum area bound is |
4743 | // found, where the index is measured in REALs. |
4744 | areaboundindex = (shsize + sizeof(REAL) - 1) / sizeof(REAL); |
4745 | // If -q switch is in use, increase the number of bytes occupied by |
4746 | // a subface for saving maximum area bound. |
4747 | if (checkconstraints) { |
4748 | shsize = (areaboundindex + 1) * sizeof(REAL); |
4749 | } else { |
4750 | shsize = areaboundindex * sizeof(REAL); |
4751 | } |
4752 | // The index within subface at which the facet marker is found. Ensure |
4753 | // the marker is aligned to a sizeof(int)-byte address. |
4754 | shmarkindex = (shsize + sizeof(int) - 1) / sizeof(int); |
4755 | // Increase the number of bytes by two or three integers, one for facet |
4756 | // marker, one for shellface type, and optionally one for pbc group. |
4757 | shsize = (shmarkindex + 2) * sizeof(shellface); |
4758 | if (useinsertradius) { |
4759 | // Increase the number of byte by one integer for storing facet index. |
4760 | // set/read by setfacetindex() and getfacetindex. |
4761 | shsize = (shmarkindex + 3) * sizeof(shellface); |
4762 | } |
4763 | |
4764 | // Initialize the pool of subfaces. Each subface record is eight-byte |
4765 | // aligned so it has room to store an edge version (from 0 to 5) in |
4766 | // the least three bits. |
4767 | subfaces = new memorypool(shsize, b->shellfaceperblock, sizeof(void *), 8); |
4768 | |
4769 | if (b->verbose) { |
4770 | printf(" Size of a shellface: %d (%d) bytes.\n" , shsize, |
4771 | subfaces->itembytes); |
4772 | } |
4773 | |
4774 | // Initialize the pool of subsegments. The subsegment's record is same |
4775 | // with subface. |
4776 | subsegs = new memorypool(shsize, b->shellfaceperblock, sizeof(void *), 8); |
4777 | |
4778 | // Initialize the pool for tet-subseg connections. |
4779 | tet2segpool = new memorypool(6 * sizeof(shellface), b->shellfaceperblock, |
4780 | sizeof(void *), 0); |
4781 | // Initialize the pool for tet-subface connections. |
4782 | tet2subpool = new memorypool(4 * sizeof(shellface), b->shellfaceperblock, |
4783 | sizeof(void *), 0); |
4784 | |
4785 | // Initialize arraypools for segment & facet recovery. |
4786 | subsegstack = new arraypool(sizeof(face), 10); |
4787 | subfacstack = new arraypool(sizeof(face), 10); |
4788 | subvertstack = new arraypool(sizeof(point), 8); |
4789 | |
4790 | // Initialize arraypools for surface point insertion/deletion. |
4791 | caveshlist = new arraypool(sizeof(face), 8); |
4792 | caveshbdlist = new arraypool(sizeof(face), 8); |
4793 | cavesegshlist = new arraypool(sizeof(face), 4); |
4794 | |
4795 | cavetetshlist = new arraypool(sizeof(face), 8); |
4796 | cavetetseglist = new arraypool(sizeof(face), 8); |
4797 | caveencshlist = new arraypool(sizeof(face), 8); |
4798 | caveencseglist = new arraypool(sizeof(face), 8); |
4799 | } |
4800 | |
4801 | // Initialize the pools for flips. |
4802 | flippool = new memorypool(sizeof(badface), 1024, sizeof(void *), 0); |
4803 | unflipqueue = new arraypool(sizeof(badface), 10); |
4804 | |
4805 | // Initialize the arraypools for point insertion. |
4806 | cavetetlist = new arraypool(sizeof(triface), 10); |
4807 | cavebdrylist = new arraypool(sizeof(triface), 10); |
4808 | caveoldtetlist = new arraypool(sizeof(triface), 10); |
4809 | cavetetvertlist = new arraypool(sizeof(point), 10); |
4810 | } |
4811 | |
4812 | //// //// |
4813 | //// //// |
4814 | //// mempool_cxx ////////////////////////////////////////////////////////////// |
4815 | |
4816 | //// geom_cxx ///////////////////////////////////////////////////////////////// |
4817 | //// //// |
4818 | //// //// |
4819 | |
4820 | // PI is the ratio of a circle's circumference to its diameter. |
4821 | REAL tetgenmesh::PI = 3.14159265358979323846264338327950288419716939937510582; |
4822 | |
4823 | /////////////////////////////////////////////////////////////////////////////// |
4824 | // // |
4825 | // insphere_s() Insphere test with symbolic perturbation. // |
4826 | // // |
4827 | // Given four points pa, pb, pc, and pd, test if the point pe lies inside or // |
4828 | // outside the circumscribed sphere of the four points. // |
4829 | // // |
4830 | // Here we assume that the 3d orientation of the point sequence {pa, pb, pc, // |
4831 | // pd} is positive (NOT zero), i.e., pd lies above the plane passing through // |
4832 | // points pa, pb, and pc. Otherwise, the returned sign is flipped. // |
4833 | // // |
4834 | // Return a positive value (> 0) if pe lies inside, a negative value (< 0) // |
4835 | // if pe lies outside the sphere, the returned value will not be zero. // |
4836 | // // |
4837 | /////////////////////////////////////////////////////////////////////////////// |
4838 | |
4839 | REAL tetgenmesh::insphere_s(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL* pe) |
4840 | { |
4841 | REAL sign; |
4842 | |
4843 | sign = insphere(pa, pb, pc, pd, pe); |
4844 | if (sign != 0.0) { |
4845 | return sign; |
4846 | } |
4847 | |
4848 | // Symbolic perturbation. |
4849 | point pt[5], swappt; |
4850 | REAL oriA, oriB; |
4851 | int swaps, count; |
4852 | int n, i; |
4853 | |
4854 | pt[0] = pa; |
4855 | pt[1] = pb; |
4856 | pt[2] = pc; |
4857 | pt[3] = pd; |
4858 | pt[4] = pe; |
4859 | |
4860 | // Sort the five points such that their indices are in the increasing |
4861 | // order. An optimized bubble sort algorithm is used, i.e., it has |
4862 | // the worst case O(n^2) runtime, but it is usually much faster. |
4863 | swaps = 0; // Record the total number of swaps. |
4864 | n = 5; |
4865 | do { |
4866 | count = 0; |
4867 | n = n - 1; |
4868 | for (i = 0; i < n; i++) { |
4869 | if (pointmark(pt[i]) > pointmark(pt[i+1])) { |
4870 | swappt = pt[i]; pt[i] = pt[i+1]; pt[i+1] = swappt; |
4871 | count++; |
4872 | } |
4873 | } |
4874 | swaps += count; |
4875 | } while (count > 0); // Continue if some points are swapped. |
4876 | |
4877 | oriA = orient3d(pt[1], pt[2], pt[3], pt[4]); |
4878 | if (oriA != 0.0) { |
4879 | // Flip the sign if there are odd number of swaps. |
4880 | if ((swaps % 2) != 0) oriA = -oriA; |
4881 | return oriA; |
4882 | } |
4883 | |
4884 | oriB = -orient3d(pt[0], pt[2], pt[3], pt[4]); |
4885 | assert(oriB != 0.0); // SELF_CHECK |
4886 | // Flip the sign if there are odd number of swaps. |
4887 | if ((swaps % 2) != 0) oriB = -oriB; |
4888 | return oriB; |
4889 | } |
4890 | |
4891 | /////////////////////////////////////////////////////////////////////////////// |
4892 | // // |
4893 | // orient4d_s() 4d orientation test with symbolic perturbation. // |
4894 | // // |
4895 | // Given four lifted points pa', pb', pc', and pd' in R^4,test if the lifted // |
4896 | // point pe' in R^4 lies below or above the hyperplane passing through the // |
4897 | // four points pa', pb', pc', and pd'. // |
4898 | // // |
4899 | // Here we assume that the 3d orientation of the point sequence {pa, pb, pc, // |
4900 | // pd} is positive (NOT zero), i.e., pd lies above the plane passing through // |
4901 | // the points pa, pb, and pc. Otherwise, the returned sign is flipped. // |
4902 | // // |
4903 | // Return a positive value (> 0) if pe' lies below, a negative value (< 0) // |
4904 | // if pe' lies above the hyperplane, the returned value should not be zero. // |
4905 | // // |
4906 | /////////////////////////////////////////////////////////////////////////////// |
4907 | |
4908 | REAL tetgenmesh::orient4d_s(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL* pe, |
4909 | REAL aheight, REAL bheight, REAL cheight, |
4910 | REAL dheight, REAL eheight) |
4911 | { |
4912 | REAL sign; |
4913 | |
4914 | sign = orient4d(pa, pb, pc, pd, pe, |
4915 | aheight, bheight, cheight, dheight, eheight); |
4916 | if (sign != 0.0) { |
4917 | return sign; |
4918 | } |
4919 | |
4920 | // Symbolic perturbation. |
4921 | point pt[5], swappt; |
4922 | REAL oriA, oriB; |
4923 | int swaps, count; |
4924 | int n, i; |
4925 | |
4926 | pt[0] = pa; |
4927 | pt[1] = pb; |
4928 | pt[2] = pc; |
4929 | pt[3] = pd; |
4930 | pt[4] = pe; |
4931 | |
4932 | // Sort the five points such that their indices are in the increasing |
4933 | // order. An optimized bubble sort algorithm is used, i.e., it has |
4934 | // the worst case O(n^2) runtime, but it is usually much faster. |
4935 | swaps = 0; // Record the total number of swaps. |
4936 | n = 5; |
4937 | do { |
4938 | count = 0; |
4939 | n = n - 1; |
4940 | for (i = 0; i < n; i++) { |
4941 | if (pointmark(pt[i]) > pointmark(pt[i+1])) { |
4942 | swappt = pt[i]; pt[i] = pt[i+1]; pt[i+1] = swappt; |
4943 | count++; |
4944 | } |
4945 | } |
4946 | swaps += count; |
4947 | } while (count > 0); // Continue if some points are swapped. |
4948 | |
4949 | oriA = orient3d(pt[1], pt[2], pt[3], pt[4]); |
4950 | if (oriA != 0.0) { |
4951 | // Flip the sign if there are odd number of swaps. |
4952 | if ((swaps % 2) != 0) oriA = -oriA; |
4953 | return oriA; |
4954 | } |
4955 | |
4956 | oriB = -orient3d(pt[0], pt[2], pt[3], pt[4]); |
4957 | assert(oriB != 0.0); // SELF_CHECK |
4958 | // Flip the sign if there are odd number of swaps. |
4959 | if ((swaps % 2) != 0) oriB = -oriB; |
4960 | return oriB; |
4961 | } |
4962 | |
4963 | /////////////////////////////////////////////////////////////////////////////// |
4964 | // // |
4965 | // tri_edge_test() Triangle-edge intersection test. // |
4966 | // // |
4967 | // This routine takes a triangle T (with vertices A, B, C) and an edge E (P, // |
4968 | // Q) in 3D, and tests if they intersect each other. // |
4969 | // // |
4970 | // If the point 'R' is not NULL, it lies strictly above the plane defined by // |
4971 | // A, B, C. It is used in test when T and E are coplanar. // |
4972 | // // |
4973 | // If T and E intersect each other, they may intersect in different ways. If // |
4974 | // 'level' > 0, their intersection type will be reported 'types' and 'pos'. // |
4975 | // // |
4976 | // The return value indicates one of the following cases: // |
4977 | // - 0, T and E are disjoint. // |
4978 | // - 1, T and E intersect each other. // |
4979 | // - 2, T and E are not coplanar. They intersect at a single point. // |
4980 | // - 4, T and E are coplanar. They intersect at a single point or a line // |
4981 | // segment (if types[1] != DISJOINT). // |
4982 | // // |
4983 | /////////////////////////////////////////////////////////////////////////////// |
4984 | |
4985 | #define SETVECTOR3(V, a0, a1, a2) (V)[0] = (a0); (V)[1] = (a1); (V)[2] = (a2) |
4986 | |
4987 | #define SWAP2(a0, a1, tmp) (tmp) = (a0); (a0) = (a1); (a1) = (tmp) |
4988 | |
4989 | int tetgenmesh::tri_edge_2d(point A, point B, point C, point P, point Q, |
4990 | point R, int level, int *types, int *pos) |
4991 | { |
4992 | point U[3], V[3]; // The permuted vectors of points. |
4993 | int pu[3], pv[3]; // The original positions of points. |
4994 | REAL abovept[3]; |
4995 | REAL sA, sB, sC; |
4996 | REAL s1, s2, s3, s4; |
4997 | int z1; |
4998 | |
4999 | if (R == NULL) { |
5000 | // Calculate a lift point. |
5001 | if (1) { |
5002 | REAL n[3], len; |
5003 | // Calculate a lift point, saved in dummypoint. |
5004 | facenormal(A, B, C, n, 1, NULL); |
5005 | len = sqrt(dot(n, n)); |
5006 | if (len != 0) { |
5007 | n[0] /= len; |
5008 | n[1] /= len; |
5009 | n[2] /= len; |
5010 | len = distance(A, B); |
5011 | len += distance(B, C); |
5012 | len += distance(C, A); |
5013 | len /= 3.0; |
5014 | R = abovept; //dummypoint; |
5015 | R[0] = A[0] + len * n[0]; |
5016 | R[1] = A[1] + len * n[1]; |
5017 | R[2] = A[2] + len * n[2]; |
5018 | } else { |
5019 | // The triangle [A,B,C] is (nearly) degenerate, i.e., it is (close) |
5020 | // to a line. We need a line-line intersection test. |
5021 | //assert(0); |
5022 | // !!! A non-save return value.!!! |
5023 | return 0; // DISJOINT |
5024 | } |
5025 | } |
5026 | } |
5027 | |
5028 | // Test A's, B's, and C's orientations wrt plane PQR. |
5029 | sA = orient3d(P, Q, R, A); |
5030 | sB = orient3d(P, Q, R, B); |
5031 | sC = orient3d(P, Q, R, C); |
5032 | |
5033 | |
5034 | if (sA < 0) { |
5035 | if (sB < 0) { |
5036 | if (sC < 0) { // (---). |
5037 | return 0; |
5038 | } else { |
5039 | if (sC > 0) { // (--+). |
5040 | // All points are in the right positions. |
5041 | SETVECTOR3(U, A, B, C); // I3 |
5042 | SETVECTOR3(V, P, Q, R); // I2 |
5043 | SETVECTOR3(pu, 0, 1, 2); |
5044 | SETVECTOR3(pv, 0, 1, 2); |
5045 | z1 = 0; |
5046 | } else { // (--0). |
5047 | SETVECTOR3(U, A, B, C); // I3 |
5048 | SETVECTOR3(V, P, Q, R); // I2 |
5049 | SETVECTOR3(pu, 0, 1, 2); |
5050 | SETVECTOR3(pv, 0, 1, 2); |
5051 | z1 = 1; |
5052 | } |
5053 | } |
5054 | } else { |
5055 | if (sB > 0) { |
5056 | if (sC < 0) { // (-+-). |
5057 | SETVECTOR3(U, C, A, B); // PT = ST |
5058 | SETVECTOR3(V, P, Q, R); // I2 |
5059 | SETVECTOR3(pu, 2, 0, 1); |
5060 | SETVECTOR3(pv, 0, 1, 2); |
5061 | z1 = 0; |
5062 | } else { |
5063 | if (sC > 0) { // (-++). |
5064 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
5065 | SETVECTOR3(V, Q, P, R); // PL = SL |
5066 | SETVECTOR3(pu, 1, 2, 0); |
5067 | SETVECTOR3(pv, 1, 0, 2); |
5068 | z1 = 0; |
5069 | } else { // (-+0). |
5070 | SETVECTOR3(U, C, A, B); // PT = ST |
5071 | SETVECTOR3(V, P, Q, R); // I2 |
5072 | SETVECTOR3(pu, 2, 0, 1); |
5073 | SETVECTOR3(pv, 0, 1, 2); |
5074 | z1 = 2; |
5075 | } |
5076 | } |
5077 | } else { |
5078 | if (sC < 0) { // (-0-). |
5079 | SETVECTOR3(U, C, A, B); // PT = ST |
5080 | SETVECTOR3(V, P, Q, R); // I2 |
5081 | SETVECTOR3(pu, 2, 0, 1); |
5082 | SETVECTOR3(pv, 0, 1, 2); |
5083 | z1 = 1; |
5084 | } else { |
5085 | if (sC > 0) { // (-0+). |
5086 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
5087 | SETVECTOR3(V, Q, P, R); // PL = SL |
5088 | SETVECTOR3(pu, 1, 2, 0); |
5089 | SETVECTOR3(pv, 1, 0, 2); |
5090 | z1 = 2; |
5091 | } else { // (-00). |
5092 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
5093 | SETVECTOR3(V, Q, P, R); // PL = SL |
5094 | SETVECTOR3(pu, 1, 2, 0); |
5095 | SETVECTOR3(pv, 1, 0, 2); |
5096 | z1 = 3; |
5097 | } |
5098 | } |
5099 | } |
5100 | } |
5101 | } else { |
5102 | if (sA > 0) { |
5103 | if (sB < 0) { |
5104 | if (sC < 0) { // (+--). |
5105 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
5106 | SETVECTOR3(V, P, Q, R); // I2 |
5107 | SETVECTOR3(pu, 1, 2, 0); |
5108 | SETVECTOR3(pv, 0, 1, 2); |
5109 | z1 = 0; |
5110 | } else { |
5111 | if (sC > 0) { // (+-+). |
5112 | SETVECTOR3(U, C, A, B); // PT = ST |
5113 | SETVECTOR3(V, Q, P, R); // PL = SL |
5114 | SETVECTOR3(pu, 2, 0, 1); |
5115 | SETVECTOR3(pv, 1, 0, 2); |
5116 | z1 = 0; |
5117 | } else { // (+-0). |
5118 | SETVECTOR3(U, C, A, B); // PT = ST |
5119 | SETVECTOR3(V, Q, P, R); // PL = SL |
5120 | SETVECTOR3(pu, 2, 0, 1); |
5121 | SETVECTOR3(pv, 1, 0, 2); |
5122 | z1 = 2; |
5123 | } |
5124 | } |
5125 | } else { |
5126 | if (sB > 0) { |
5127 | if (sC < 0) { // (++-). |
5128 | SETVECTOR3(U, A, B, C); // I3 |
5129 | SETVECTOR3(V, Q, P, R); // PL = SL |
5130 | SETVECTOR3(pu, 0, 1, 2); |
5131 | SETVECTOR3(pv, 1, 0, 2); |
5132 | z1 = 0; |
5133 | } else { |
5134 | if (sC > 0) { // (+++). |
5135 | return 0; |
5136 | } else { // (++0). |
5137 | SETVECTOR3(U, A, B, C); // I3 |
5138 | SETVECTOR3(V, Q, P, R); // PL = SL |
5139 | SETVECTOR3(pu, 0, 1, 2); |
5140 | SETVECTOR3(pv, 1, 0, 2); |
5141 | z1 = 1; |
5142 | } |
5143 | } |
5144 | } else { // (+0#) |
5145 | if (sC < 0) { // (+0-). |
5146 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
5147 | SETVECTOR3(V, P, Q, R); // I2 |
5148 | SETVECTOR3(pu, 1, 2, 0); |
5149 | SETVECTOR3(pv, 0, 1, 2); |
5150 | z1 = 2; |
5151 | } else { |
5152 | if (sC > 0) { // (+0+). |
5153 | SETVECTOR3(U, C, A, B); // PT = ST |
5154 | SETVECTOR3(V, Q, P, R); // PL = SL |
5155 | SETVECTOR3(pu, 2, 0, 1); |
5156 | SETVECTOR3(pv, 1, 0, 2); |
5157 | z1 = 1; |
5158 | } else { // (+00). |
5159 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
5160 | SETVECTOR3(V, P, Q, R); // I2 |
5161 | SETVECTOR3(pu, 1, 2, 0); |
5162 | SETVECTOR3(pv, 0, 1, 2); |
5163 | z1 = 3; |
5164 | } |
5165 | } |
5166 | } |
5167 | } |
5168 | } else { |
5169 | if (sB < 0) { |
5170 | if (sC < 0) { // (0--). |
5171 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
5172 | SETVECTOR3(V, P, Q, R); // I2 |
5173 | SETVECTOR3(pu, 1, 2, 0); |
5174 | SETVECTOR3(pv, 0, 1, 2); |
5175 | z1 = 1; |
5176 | } else { |
5177 | if (sC > 0) { // (0-+). |
5178 | SETVECTOR3(U, A, B, C); // I3 |
5179 | SETVECTOR3(V, P, Q, R); // I2 |
5180 | SETVECTOR3(pu, 0, 1, 2); |
5181 | SETVECTOR3(pv, 0, 1, 2); |
5182 | z1 = 2; |
5183 | } else { // (0-0). |
5184 | SETVECTOR3(U, C, A, B); // PT = ST |
5185 | SETVECTOR3(V, Q, P, R); // PL = SL |
5186 | SETVECTOR3(pu, 2, 0, 1); |
5187 | SETVECTOR3(pv, 1, 0, 2); |
5188 | z1 = 3; |
5189 | } |
5190 | } |
5191 | } else { |
5192 | if (sB > 0) { |
5193 | if (sC < 0) { // (0+-). |
5194 | SETVECTOR3(U, A, B, C); // I3 |
5195 | SETVECTOR3(V, Q, P, R); // PL = SL |
5196 | SETVECTOR3(pu, 0, 1, 2); |
5197 | SETVECTOR3(pv, 1, 0, 2); |
5198 | z1 = 2; |
5199 | } else { |
5200 | if (sC > 0) { // (0++). |
5201 | SETVECTOR3(U, B, C, A); // PT = ST x ST |
5202 | SETVECTOR3(V, Q, P, R); // PL = SL |
5203 | SETVECTOR3(pu, 1, 2, 0); |
5204 | SETVECTOR3(pv, 1, 0, 2); |
5205 | z1 = 1; |
5206 | } else { // (0+0). |
5207 | SETVECTOR3(U, C, A, B); // PT = ST |
5208 | SETVECTOR3(V, P, Q, R); // I2 |
5209 | SETVECTOR3(pu, 2, 0, 1); |
5210 | SETVECTOR3(pv, 0, 1, 2); |
5211 | z1 = 3; |
5212 | } |
5213 | } |
5214 | } else { // (00#) |
5215 | if (sC < 0) { // (00-). |
5216 | SETVECTOR3(U, A, B, C); // I3 |
5217 | SETVECTOR3(V, Q, P, R); // PL = SL |
5218 | SETVECTOR3(pu, 0, 1, 2); |
5219 | SETVECTOR3(pv, 1, 0, 2); |
5220 | z1 = 3; |
5221 | } else { |
5222 | if (sC > 0) { // (00+). |
5223 | SETVECTOR3(U, A, B, C); // I3 |
5224 | SETVECTOR3(V, P, Q, R); // I2 |
5225 | SETVECTOR3(pu, 0, 1, 2); |
5226 | SETVECTOR3(pv, 0, 1, 2); |
5227 | z1 = 3; |
5228 | } else { // (000) |
5229 | // Not possible unless ABC is degenerate. |
5230 | // Avoiding compiler warnings. |
5231 | SETVECTOR3(U, A, B, C); // I3 |
5232 | SETVECTOR3(V, P, Q, R); // I2 |
5233 | SETVECTOR3(pu, 0, 1, 2); |
5234 | SETVECTOR3(pv, 0, 1, 2); |
5235 | z1 = 4; |
5236 | } |
5237 | } |
5238 | } |
5239 | } |
5240 | } |
5241 | } |
5242 | |
5243 | s1 = orient3d(U[0], U[2], R, V[1]); // A, C, R, Q |
5244 | s2 = orient3d(U[1], U[2], R, V[0]); // B, C, R, P |
5245 | |
5246 | if (s1 > 0) { |
5247 | return 0; |
5248 | } |
5249 | if (s2 < 0) { |
5250 | return 0; |
5251 | } |
5252 | |
5253 | if (level == 0) { |
5254 | return 1; // They are intersected. |
5255 | } |
5256 | |
5257 | assert(z1 != 4); // SELF_CHECK |
5258 | |
5259 | if (z1 == 1) { |
5260 | if (s1 == 0) { // (0###) |
5261 | // C = Q. |
5262 | types[0] = (int) SHAREVERT; |
5263 | pos[0] = pu[2]; // C |
5264 | pos[1] = pv[1]; // Q |
5265 | types[1] = (int) DISJOINT; |
5266 | } else { |
5267 | if (s2 == 0) { // (#0##) |
5268 | // C = P. |
5269 | types[0] = (int) SHAREVERT; |
5270 | pos[0] = pu[2]; // C |
5271 | pos[1] = pv[0]; // P |
5272 | types[1] = (int) DISJOINT; |
5273 | } else { // (-+##) |
5274 | // C in [P, Q]. |
5275 | types[0] = (int) ACROSSVERT; |
5276 | pos[0] = pu[2]; // C |
5277 | pos[1] = pv[0]; // [P, Q] |
5278 | types[1] = (int) DISJOINT; |
5279 | } |
5280 | } |
5281 | return 4; |
5282 | } |
5283 | |
5284 | s3 = orient3d(U[0], U[2], R, V[0]); // A, C, R, P |
5285 | s4 = orient3d(U[1], U[2], R, V[1]); // B, C, R, Q |
5286 | |
5287 | if (z1 == 0) { // (tritri-03) |
5288 | if (s1 < 0) { |
5289 | if (s3 > 0) { |
5290 | assert(s2 > 0); // SELF_CHECK |
5291 | if (s4 > 0) { |
5292 | // [P, Q] overlaps [k, l] (-+++). |
5293 | types[0] = (int) ACROSSEDGE; |
5294 | pos[0] = pu[2]; // [C, A] |
5295 | pos[1] = pv[0]; // [P, Q] |
5296 | types[1] = (int) TOUCHFACE; |
5297 | pos[2] = 3; // [A, B, C] |
5298 | pos[3] = pv[1]; // Q |
5299 | } else { |
5300 | if (s4 == 0) { |
5301 | // Q = l, [P, Q] contains [k, l] (-++0). |
5302 | types[0] = (int) ACROSSEDGE; |
5303 | pos[0] = pu[2]; // [C, A] |
5304 | pos[1] = pv[0]; // [P, Q] |
5305 | types[1] = (int) TOUCHEDGE; |
5306 | pos[2] = pu[1]; // [B, C] |
5307 | pos[3] = pv[1]; // Q |
5308 | } else { // s4 < 0 |
5309 | // [P, Q] contains [k, l] (-++-). |
5310 | types[0] = (int) ACROSSEDGE; |
5311 | pos[0] = pu[2]; // [C, A] |
5312 | pos[1] = pv[0]; // [P, Q] |
5313 | types[1] = (int) ACROSSEDGE; |
5314 | pos[2] = pu[1]; // [B, C] |
5315 | pos[3] = pv[0]; // [P, Q] |
5316 | } |
5317 | } |
5318 | } else { |
5319 | if (s3 == 0) { |
5320 | assert(s2 > 0); // SELF_CHECK |
5321 | if (s4 > 0) { |
5322 | // P = k, [P, Q] in [k, l] (-+0+). |
5323 | types[0] = (int) TOUCHEDGE; |
5324 | pos[0] = pu[2]; // [C, A] |
5325 | pos[1] = pv[0]; // P |
5326 | types[1] = (int) TOUCHFACE; |
5327 | pos[2] = 3; // [A, B, C] |
5328 | pos[3] = pv[1]; // Q |
5329 | } else { |
5330 | if (s4 == 0) { |
5331 | // [P, Q] = [k, l] (-+00). |
5332 | types[0] = (int) TOUCHEDGE; |
5333 | pos[0] = pu[2]; // [C, A] |
5334 | pos[1] = pv[0]; // P |
5335 | types[1] = (int) TOUCHEDGE; |
5336 | pos[2] = pu[1]; // [B, C] |
5337 | pos[3] = pv[1]; // Q |
5338 | } else { |
5339 | // P = k, [P, Q] contains [k, l] (-+0-). |
5340 | types[0] = (int) TOUCHEDGE; |
5341 | pos[0] = pu[2]; // [C, A] |
5342 | pos[1] = pv[0]; // P |
5343 | types[1] = (int) ACROSSEDGE; |
5344 | pos[2] = pu[1]; // [B, C] |
5345 | pos[3] = pv[0]; // [P, Q] |
5346 | } |
5347 | } |
5348 | } else { // s3 < 0 |
5349 | if (s2 > 0) { |
5350 | if (s4 > 0) { |
5351 | // [P, Q] in [k, l] (-+-+). |
5352 | types[0] = (int) TOUCHFACE; |
5353 | pos[0] = 3; // [A, B, C] |
5354 | pos[1] = pv[0]; // P |
5355 | types[1] = (int) TOUCHFACE; |
5356 | pos[2] = 3; // [A, B, C] |
5357 | pos[3] = pv[1]; // Q |
5358 | } else { |
5359 | if (s4 == 0) { |
5360 | // Q = l, [P, Q] in [k, l] (-+-0). |
5361 | types[0] = (int) TOUCHFACE; |
5362 | pos[0] = 3; // [A, B, C] |
5363 | pos[1] = pv[0]; // P |
5364 | types[1] = (int) TOUCHEDGE; |
5365 | pos[2] = pu[1]; // [B, C] |
5366 | pos[3] = pv[1]; // Q |
5367 | } else { // s4 < 0 |
5368 | // [P, Q] overlaps [k, l] (-+--). |
5369 | types[0] = (int) TOUCHFACE; |
5370 | pos[0] = 3; // [A, B, C] |
5371 | pos[1] = pv[0]; // P |
5372 | types[1] = (int) ACROSSEDGE; |
5373 | pos[2] = pu[1]; // [B, C] |
5374 | pos[3] = pv[0]; // [P, Q] |
5375 | } |
5376 | } |
5377 | } else { // s2 == 0 |
5378 | // P = l (#0##). |
5379 | types[0] = (int) TOUCHEDGE; |
5380 | pos[0] = pu[1]; // [B, C] |
5381 | pos[1] = pv[0]; // P |
5382 | types[1] = (int) DISJOINT; |
5383 | } |
5384 | } |
5385 | } |
5386 | } else { // s1 == 0 |
5387 | // Q = k (0####) |
5388 | types[0] = (int) TOUCHEDGE; |
5389 | pos[0] = pu[2]; // [C, A] |
5390 | pos[1] = pv[1]; // Q |
5391 | types[1] = (int) DISJOINT; |
5392 | } |
5393 | } else if (z1 == 2) { // (tritri-23) |
5394 | if (s1 < 0) { |
5395 | if (s3 > 0) { |
5396 | assert(s2 > 0); // SELF_CHECK |
5397 | if (s4 > 0) { |
5398 | // [P, Q] overlaps [A, l] (-+++). |
5399 | types[0] = (int) ACROSSVERT; |
5400 | pos[0] = pu[0]; // A |
5401 | pos[1] = pv[0]; // [P, Q] |
5402 | types[1] = (int) TOUCHFACE; |
5403 | pos[2] = 3; // [A, B, C] |
5404 | pos[3] = pv[1]; // Q |
5405 | } else { |
5406 | if (s4 == 0) { |
5407 | // Q = l, [P, Q] contains [A, l] (-++0). |
5408 | types[0] = (int) ACROSSVERT; |
5409 | pos[0] = pu[0]; // A |
5410 | pos[1] = pv[0]; // [P, Q] |
5411 | types[1] = (int) TOUCHEDGE; |
5412 | pos[2] = pu[1]; // [B, C] |
5413 | pos[3] = pv[1]; // Q |
5414 | } else { // s4 < 0 |
5415 | // [P, Q] contains [A, l] (-++-). |
5416 | types[0] = (int) ACROSSVERT; |
5417 | pos[0] = pu[0]; // A |
5418 | pos[1] = pv[0]; // [P, Q] |
5419 | types[1] = (int) ACROSSEDGE; |
5420 | pos[2] = pu[1]; // [B, C] |
5421 | pos[3] = pv[0]; // [P, Q] |
5422 | } |
5423 | } |
5424 | } else { |
5425 | if (s3 == 0) { |
5426 | assert(s2 > 0); // SELF_CHECK |
5427 | if (s4 > 0) { |
5428 | // P = A, [P, Q] in [A, l] (-+0+). |
5429 | types[0] = (int) SHAREVERT; |
5430 | pos[0] = pu[0]; // A |
5431 | pos[1] = pv[0]; // P |
5432 | types[1] = (int) TOUCHFACE; |
5433 | pos[2] = 3; // [A, B, C] |
5434 | pos[3] = pv[1]; // Q |
5435 | } else { |
5436 | if (s4 == 0) { |
5437 | // [P, Q] = [A, l] (-+00). |
5438 | types[0] = (int) SHAREVERT; |
5439 | pos[0] = pu[0]; // A |
5440 | pos[1] = pv[0]; // P |
5441 | types[1] = (int) TOUCHEDGE; |
5442 | pos[2] = pu[1]; // [B, C] |
5443 | pos[3] = pv[1]; // Q |
5444 | } else { // s4 < 0 |
5445 | // Q = l, [P, Q] in [A, l] (-+0-). |
5446 | types[0] = (int) SHAREVERT; |
5447 | pos[0] = pu[0]; // A |
5448 | pos[1] = pv[0]; // P |
5449 | types[1] = (int) ACROSSEDGE; |
5450 | pos[2] = pu[1]; // [B, C] |
5451 | pos[3] = pv[0]; // [P, Q] |
5452 | } |
5453 | } |
5454 | } else { // s3 < 0 |
5455 | if (s2 > 0) { |
5456 | if (s4 > 0) { |
5457 | // [P, Q] in [A, l] (-+-+). |
5458 | types[0] = (int) TOUCHFACE; |
5459 | pos[0] = 3; // [A, B, C] |
5460 | pos[1] = pv[0]; // P |
5461 | types[0] = (int) TOUCHFACE; |
5462 | pos[0] = 3; // [A, B, C] |
5463 | pos[1] = pv[1]; // Q |
5464 | } else { |
5465 | if (s4 == 0) { |
5466 | // Q = l, [P, Q] in [A, l] (-+-0). |
5467 | types[0] = (int) TOUCHFACE; |
5468 | pos[0] = 3; // [A, B, C] |
5469 | pos[1] = pv[0]; // P |
5470 | types[0] = (int) TOUCHEDGE; |
5471 | pos[0] = pu[1]; // [B, C] |
5472 | pos[1] = pv[1]; // Q |
5473 | } else { // s4 < 0 |
5474 | // [P, Q] overlaps [A, l] (-+--). |
5475 | types[0] = (int) TOUCHFACE; |
5476 | pos[0] = 3; // [A, B, C] |
5477 | pos[1] = pv[0]; // P |
5478 | types[0] = (int) ACROSSEDGE; |
5479 | pos[0] = pu[1]; // [B, C] |
5480 | pos[1] = pv[0]; // [P, Q] |
5481 | } |
5482 | } |
5483 | } else { // s2 == 0 |
5484 | // P = l (#0##). |
5485 | types[0] = (int) TOUCHEDGE; |
5486 | pos[0] = pu[1]; // [B, C] |
5487 | pos[1] = pv[0]; // P |
5488 | types[1] = (int) DISJOINT; |
5489 | } |
5490 | } |
5491 | } |
5492 | } else { // s1 == 0 |
5493 | // Q = A (0###). |
5494 | types[0] = (int) SHAREVERT; |
5495 | pos[0] = pu[0]; // A |
5496 | pos[1] = pv[1]; // Q |
5497 | types[1] = (int) DISJOINT; |
5498 | } |
5499 | } else if (z1 == 3) { // (tritri-33) |
5500 | if (s1 < 0) { |
5501 | if (s3 > 0) { |
5502 | assert(s2 > 0); // SELF_CHECK |
5503 | if (s4 > 0) { |
5504 | // [P, Q] overlaps [A, B] (-+++). |
5505 | types[0] = (int) ACROSSVERT; |
5506 | pos[0] = pu[0]; // A |
5507 | pos[1] = pv[0]; // [P, Q] |
5508 | types[1] = (int) TOUCHEDGE; |
5509 | pos[2] = pu[0]; // [A, B] |
5510 | pos[3] = pv[1]; // Q |
5511 | } else { |
5512 | if (s4 == 0) { |
5513 | // Q = B, [P, Q] contains [A, B] (-++0). |
5514 | types[0] = (int) ACROSSVERT; |
5515 | pos[0] = pu[0]; // A |
5516 | pos[1] = pv[0]; // [P, Q] |
5517 | types[1] = (int) SHAREVERT; |
5518 | pos[2] = pu[1]; // B |
5519 | pos[3] = pv[1]; // Q |
5520 | } else { // s4 < 0 |
5521 | // [P, Q] contains [A, B] (-++-). |
5522 | types[0] = (int) ACROSSVERT; |
5523 | pos[0] = pu[0]; // A |
5524 | pos[1] = pv[0]; // [P, Q] |
5525 | types[1] = (int) ACROSSVERT; |
5526 | pos[2] = pu[1]; // B |
5527 | pos[3] = pv[0]; // [P, Q] |
5528 | } |
5529 | } |
5530 | } else { |
5531 | if (s3 == 0) { |
5532 | assert(s2 > 0); // SELF_CHECK |
5533 | if (s4 > 0) { |
5534 | // P = A, [P, Q] in [A, B] (-+0+). |
5535 | types[0] = (int) SHAREVERT; |
5536 | pos[0] = pu[0]; // A |
5537 | pos[1] = pv[0]; // P |
5538 | types[1] = (int) TOUCHEDGE; |
5539 | pos[2] = pu[0]; // [A, B] |
5540 | pos[3] = pv[1]; // Q |
5541 | } else { |
5542 | if (s4 == 0) { |
5543 | // [P, Q] = [A, B] (-+00). |
5544 | types[0] = (int) SHAREEDGE; |
5545 | pos[0] = pu[0]; // [A, B] |
5546 | pos[1] = pv[0]; // [P, Q] |
5547 | types[1] = (int) DISJOINT; |
5548 | } else { // s4 < 0 |
5549 | // P= A, [P, Q] in [A, B] (-+0-). |
5550 | types[0] = (int) SHAREVERT; |
5551 | pos[0] = pu[0]; // A |
5552 | pos[1] = pv[0]; // P |
5553 | types[1] = (int) ACROSSVERT; |
5554 | pos[2] = pu[1]; // B |
5555 | pos[3] = pv[0]; // [P, Q] |
5556 | } |
5557 | } |
5558 | } else { // s3 < 0 |
5559 | if (s2 > 0) { |
5560 | if (s4 > 0) { |
5561 | // [P, Q] in [A, B] (-+-+). |
5562 | types[0] = (int) TOUCHEDGE; |
5563 | pos[0] = pu[0]; // [A, B] |
5564 | pos[1] = pv[0]; // P |
5565 | types[1] = (int) TOUCHEDGE; |
5566 | pos[2] = pu[0]; // [A, B] |
5567 | pos[3] = pv[1]; // Q |
5568 | } else { |
5569 | if (s4 == 0) { |
5570 | // Q = B, [P, Q] in [A, B] (-+-0). |
5571 | types[0] = (int) TOUCHEDGE; |
5572 | pos[0] = pu[0]; // [A, B] |
5573 | pos[1] = pv[0]; // P |
5574 | types[1] = (int) SHAREVERT; |
5575 | pos[2] = pu[1]; // B |
5576 | pos[3] = pv[1]; // Q |
5577 | } else { // s4 < 0 |
5578 | // [P, Q] overlaps [A, B] (-+--). |
5579 | types[0] = (int) TOUCHEDGE; |
5580 | pos[0] = pu[0]; // [A, B] |
5581 | pos[1] = pv[0]; // P |
5582 | types[1] = (int) ACROSSVERT; |
5583 | pos[2] = pu[1]; // B |
5584 | pos[3] = pv[0]; // [P, Q] |
5585 | } |
5586 | } |
5587 | } else { // s2 == 0 |
5588 | // P = B (#0##). |
5589 | types[0] = (int) SHAREVERT; |
5590 | pos[0] = pu[1]; // B |
5591 | pos[1] = pv[0]; // P |
5592 | types[1] = (int) DISJOINT; |
5593 | } |
5594 | } |
5595 | } |
5596 | } else { // s1 == 0 |
5597 | // Q = A (0###). |
5598 | types[0] = (int) SHAREVERT; |
5599 | pos[0] = pu[0]; // A |
5600 | pos[1] = pv[1]; // Q |
5601 | types[1] = (int) DISJOINT; |
5602 | } |
5603 | } |
5604 | |
5605 | return 4; |
5606 | } |
5607 | |
5608 | int tetgenmesh::tri_edge_tail(point A,point B,point C,point P,point Q,point R, |
5609 | REAL sP,REAL sQ,int level,int *types,int *pos) |
5610 | { |
5611 | point U[3], V[3]; //, Ptmp; |
5612 | int pu[3], pv[3]; //, itmp; |
5613 | REAL s1, s2, s3; |
5614 | int z1; |
5615 | |
5616 | |
5617 | if (sP < 0) { |
5618 | if (sQ < 0) { // (--) disjoint |
5619 | return 0; |
5620 | } else { |
5621 | if (sQ > 0) { // (-+) |
5622 | SETVECTOR3(U, A, B, C); |
5623 | SETVECTOR3(V, P, Q, R); |
5624 | SETVECTOR3(pu, 0, 1, 2); |
5625 | SETVECTOR3(pv, 0, 1, 2); |
5626 | z1 = 0; |
5627 | } else { // (-0) |
5628 | SETVECTOR3(U, A, B, C); |
5629 | SETVECTOR3(V, P, Q, R); |
5630 | SETVECTOR3(pu, 0, 1, 2); |
5631 | SETVECTOR3(pv, 0, 1, 2); |
5632 | z1 = 1; |
5633 | } |
5634 | } |
5635 | } else { |
5636 | if (sP > 0) { // (+-) |
5637 | if (sQ < 0) { |
5638 | SETVECTOR3(U, A, B, C); |
5639 | SETVECTOR3(V, Q, P, R); // P and Q are flipped. |
5640 | SETVECTOR3(pu, 0, 1, 2); |
5641 | SETVECTOR3(pv, 1, 0, 2); |
5642 | z1 = 0; |
5643 | } else { |
5644 | if (sQ > 0) { // (++) disjoint |
5645 | return 0; |
5646 | } else { // (+0) |
5647 | SETVECTOR3(U, B, A, C); // A and B are flipped. |
5648 | SETVECTOR3(V, P, Q, R); |
5649 | SETVECTOR3(pu, 1, 0, 2); |
5650 | SETVECTOR3(pv, 0, 1, 2); |
5651 | z1 = 1; |
5652 | } |
5653 | } |
5654 | } else { // sP == 0 |
5655 | if (sQ < 0) { // (0-) |
5656 | SETVECTOR3(U, A, B, C); |
5657 | SETVECTOR3(V, Q, P, R); // P and Q are flipped. |
5658 | SETVECTOR3(pu, 0, 1, 2); |
5659 | SETVECTOR3(pv, 1, 0, 2); |
5660 | z1 = 1; |
5661 | } else { |
5662 | if (sQ > 0) { // (0+) |
5663 | SETVECTOR3(U, B, A, C); // A and B are flipped. |
5664 | SETVECTOR3(V, Q, P, R); // P and Q are flipped. |
5665 | SETVECTOR3(pu, 1, 0, 2); |
5666 | SETVECTOR3(pv, 1, 0, 2); |
5667 | z1 = 1; |
5668 | } else { // (00) |
5669 | // A, B, C, P, and Q are coplanar. |
5670 | z1 = 2; |
5671 | } |
5672 | } |
5673 | } |
5674 | } |
5675 | |
5676 | if (z1 == 2) { |
5677 | // The triangle and the edge are coplanar. |
5678 | return tri_edge_2d(A, B, C, P, Q, R, level, types, pos); |
5679 | } |
5680 | |
5681 | s1 = orient3d(U[0], U[1], V[0], V[1]); |
5682 | if (s1 < 0) { |
5683 | return 0; |
5684 | } |
5685 | |
5686 | s2 = orient3d(U[1], U[2], V[0], V[1]); |
5687 | if (s2 < 0) { |
5688 | return 0; |
5689 | } |
5690 | |
5691 | s3 = orient3d(U[2], U[0], V[0], V[1]); |
5692 | if (s3 < 0) { |
5693 | return 0; |
5694 | } |
5695 | |
5696 | if (level == 0) { |
5697 | return 1; // The are intersected. |
5698 | } |
5699 | |
5700 | types[1] = (int) DISJOINT; // No second intersection point. |
5701 | |
5702 | if (z1 == 0) { |
5703 | if (s1 > 0) { |
5704 | if (s2 > 0) { |
5705 | if (s3 > 0) { // (+++) |
5706 | // [P, Q] passes interior of [A, B, C]. |
5707 | types[0] = (int) ACROSSFACE; |
5708 | pos[0] = 3; // interior of [A, B, C] |
5709 | pos[1] = 0; // [P, Q] |
5710 | } else { // s3 == 0 (++0) |
5711 | // [P, Q] intersects [C, A]. |
5712 | types[0] = (int) ACROSSEDGE; |
5713 | pos[0] = pu[2]; // [C, A] |
5714 | pos[1] = 0; // [P, Q] |
5715 | } |
5716 | } else { // s2 == 0 |
5717 | if (s3 > 0) { // (+0+) |
5718 | // [P, Q] intersects [B, C]. |
5719 | types[0] = (int) ACROSSEDGE; |
5720 | pos[0] = pu[1]; // [B, C] |
5721 | pos[1] = 0; // [P, Q] |
5722 | } else { // s3 == 0 (+00) |
5723 | // [P, Q] passes C. |
5724 | types[0] = (int) ACROSSVERT; |
5725 | pos[0] = pu[2]; // C |
5726 | pos[1] = 0; // [P, Q] |
5727 | } |
5728 | } |
5729 | } else { // s1 == 0 |
5730 | if (s2 > 0) { |
5731 | if (s3 > 0) { // (0++) |
5732 | // [P, Q] intersects [A, B]. |
5733 | types[0] = (int) ACROSSEDGE; |
5734 | pos[0] = pu[0]; // [A, B] |
5735 | pos[1] = 0; // [P, Q] |
5736 | } else { // s3 == 0 (0+0) |
5737 | // [P, Q] passes A. |
5738 | types[0] = (int) ACROSSVERT; |
5739 | pos[0] = pu[0]; // A |
5740 | pos[1] = 0; // [P, Q] |
5741 | } |
5742 | } else { // s2 == 0 |
5743 | if (s3 > 0) { // (00+) |
5744 | // [P, Q] passes B. |
5745 | types[0] = (int) ACROSSVERT; |
5746 | pos[0] = pu[1]; // B |
5747 | pos[1] = 0; // [P, Q] |
5748 | } else { // s3 == 0 (000) |
5749 | // Impossible. |
5750 | assert(0); |
5751 | } |
5752 | } |
5753 | } |
5754 | } else { // z1 == 1 |
5755 | if (s1 > 0) { |
5756 | if (s2 > 0) { |
5757 | if (s3 > 0) { // (+++) |
5758 | // Q lies in [A, B, C]. |
5759 | types[0] = (int) TOUCHFACE; |
5760 | pos[0] = 0; // [A, B, C] |
5761 | pos[1] = pv[1]; // Q |
5762 | } else { // s3 == 0 (++0) |
5763 | // Q lies on [C, A]. |
5764 | types[0] = (int) TOUCHEDGE; |
5765 | pos[0] = pu[2]; // [C, A] |
5766 | pos[1] = pv[1]; // Q |
5767 | } |
5768 | } else { // s2 == 0 |
5769 | if (s3 > 0) { // (+0+) |
5770 | // Q lies on [B, C]. |
5771 | types[0] = (int) TOUCHEDGE; |
5772 | pos[0] = pu[1]; // [B, C] |
5773 | pos[1] = pv[1]; // Q |
5774 | } else { // s3 == 0 (+00) |
5775 | // Q = C. |
5776 | types[0] = (int) SHAREVERT; |
5777 | pos[0] = pu[2]; // C |
5778 | pos[1] = pv[1]; // Q |
5779 | } |
5780 | } |
5781 | } else { // s1 == 0 |
5782 | if (s2 > 0) { |
5783 | if (s3 > 0) { // (0++) |
5784 | // Q lies on [A, B]. |
5785 | types[0] = (int) TOUCHEDGE; |
5786 | pos[0] = pu[0]; // [A, B] |
5787 | pos[1] = pv[1]; // Q |
5788 | } else { // s3 == 0 (0+0) |
5789 | // Q = A. |
5790 | types[0] = (int) SHAREVERT; |
5791 | pos[0] = pu[0]; // A |
5792 | pos[1] = pv[1]; // Q |
5793 | } |
5794 | } else { // s2 == 0 |
5795 | if (s3 > 0) { // (00+) |
5796 | // Q = B. |
5797 | types[0] = (int) SHAREVERT; |
5798 | pos[0] = pu[1]; // B |
5799 | pos[1] = pv[1]; // Q |
5800 | } else { // s3 == 0 (000) |
5801 | // Impossible. |
5802 | assert(0); |
5803 | } |
5804 | } |
5805 | } |
5806 | } |
5807 | |
5808 | // T and E intersect in a single point. |
5809 | return 2; |
5810 | } |
5811 | |
5812 | int tetgenmesh::tri_edge_test(point A, point B, point C, point P, point Q, |
5813 | point R, int level, int *types, int *pos) |
5814 | { |
5815 | REAL sP, sQ; |
5816 | |
5817 | // Test the locations of P and Q with respect to ABC. |
5818 | sP = orient3d(A, B, C, P); |
5819 | sQ = orient3d(A, B, C, Q); |
5820 | |
5821 | return tri_edge_tail(A, B, C, P, Q, R, sP, sQ, level, types, pos); |
5822 | } |
5823 | |
5824 | /////////////////////////////////////////////////////////////////////////////// |
5825 | // // |
5826 | // tri_tri_inter() Test whether two triangle (abc) and (opq) are // |
5827 | // intersecting or not. // |
5828 | // // |
5829 | // Return 0 if they are disjoint. Otherwise, return 1. 'type' returns one of // |
5830 | // the four cases: SHAREVERTEX, SHAREEDGE, SHAREFACE, and INTERSECT. // |
5831 | // // |
5832 | /////////////////////////////////////////////////////////////////////////////// |
5833 | |
5834 | int tetgenmesh::tri_edge_inter_tail(REAL* A, REAL* B, REAL* C, REAL* P, |
5835 | REAL* Q, REAL s_p, REAL s_q) |
5836 | { |
5837 | int types[2], pos[4]; |
5838 | int ni; // =0, 2, 4 |
5839 | |
5840 | ni = tri_edge_tail(A, B, C, P, Q, NULL, s_p, s_q, 1, types, pos); |
5841 | |
5842 | if (ni > 0) { |
5843 | if (ni == 2) { |
5844 | // Get the intersection type. |
5845 | if (types[0] == (int) SHAREVERT) { |
5846 | return (int) SHAREVERT; |
5847 | } else { |
5848 | return (int) INTERSECT; |
5849 | } |
5850 | } else if (ni == 4) { |
5851 | // There may be two intersections. |
5852 | if (types[0] == (int) SHAREVERT) { |
5853 | if (types[1] == (int) DISJOINT) { |
5854 | return (int) SHAREVERT; |
5855 | } else { |
5856 | assert(types[1] != (int) SHAREVERT); |
5857 | return (int) INTERSECT; |
5858 | } |
5859 | } else { |
5860 | if (types[0] == (int) SHAREEDGE) { |
5861 | return (int) SHAREEDGE; |
5862 | } else { |
5863 | return (int) INTERSECT; |
5864 | } |
5865 | } |
5866 | } else { |
5867 | assert(0); |
5868 | } |
5869 | } |
5870 | |
5871 | return (int) DISJOINT; |
5872 | } |
5873 | |
5874 | int tetgenmesh::tri_tri_inter(REAL* A,REAL* B,REAL* C,REAL* O,REAL* P,REAL* Q) |
5875 | { |
5876 | REAL s_o, s_p, s_q; |
5877 | REAL s_a, s_b, s_c; |
5878 | |
5879 | s_o = orient3d(A, B, C, O); |
5880 | s_p = orient3d(A, B, C, P); |
5881 | s_q = orient3d(A, B, C, Q); |
5882 | if ((s_o * s_p > 0.0) && (s_o * s_q > 0.0)) { |
5883 | // o, p, q are all in the same halfspace of ABC. |
5884 | return 0; // DISJOINT; |
5885 | } |
5886 | |
5887 | s_a = orient3d(O, P, Q, A); |
5888 | s_b = orient3d(O, P, Q, B); |
5889 | s_c = orient3d(O, P, Q, C); |
5890 | if ((s_a * s_b > 0.0) && (s_a * s_c > 0.0)) { |
5891 | // a, b, c are all in the same halfspace of OPQ. |
5892 | return 0; // DISJOINT; |
5893 | } |
5894 | |
5895 | int abcop, abcpq, abcqo; |
5896 | int shareedge = 0; |
5897 | |
5898 | abcop = tri_edge_inter_tail(A, B, C, O, P, s_o, s_p); |
5899 | if (abcop == (int) INTERSECT) { |
5900 | return (int) INTERSECT; |
5901 | } else if (abcop == (int) SHAREEDGE) { |
5902 | shareedge++; |
5903 | } |
5904 | abcpq = tri_edge_inter_tail(A, B, C, P, Q, s_p, s_q); |
5905 | if (abcpq == (int) INTERSECT) { |
5906 | return (int) INTERSECT; |
5907 | } else if (abcpq == (int) SHAREEDGE) { |
5908 | shareedge++; |
5909 | } |
5910 | abcqo = tri_edge_inter_tail(A, B, C, Q, O, s_q, s_o); |
5911 | if (abcqo == (int) INTERSECT) { |
5912 | return (int) INTERSECT; |
5913 | } else if (abcqo == (int) SHAREEDGE) { |
5914 | shareedge++; |
5915 | } |
5916 | if (shareedge == 3) { |
5917 | // opq are coincident with abc. |
5918 | return (int) SHAREFACE; |
5919 | } |
5920 | |
5921 | // It is only possible either no share edge or one. |
5922 | assert(shareedge == 0 || shareedge == 1); |
5923 | |
5924 | // Continue to detect whether opq and abc are intersecting or not. |
5925 | int opqab, opqbc, opqca; |
5926 | |
5927 | opqab = tri_edge_inter_tail(O, P, Q, A, B, s_a, s_b); |
5928 | if (opqab == (int) INTERSECT) { |
5929 | return (int) INTERSECT; |
5930 | } |
5931 | opqbc = tri_edge_inter_tail(O, P, Q, B, C, s_b, s_c); |
5932 | if (opqbc == (int) INTERSECT) { |
5933 | return (int) INTERSECT; |
5934 | } |
5935 | opqca = tri_edge_inter_tail(O, P, Q, C, A, s_c, s_a); |
5936 | if (opqca == (int) INTERSECT) { |
5937 | return (int) INTERSECT; |
5938 | } |
5939 | |
5940 | // At this point, two triangles are not intersecting and not coincident. |
5941 | // They may be share an edge, or share a vertex, or disjoint. |
5942 | if (abcop == (int) SHAREEDGE) { |
5943 | assert((abcpq == (int) SHAREVERT) && (abcqo == (int) SHAREVERT)); |
5944 | // op is coincident with an edge of abc. |
5945 | return (int) SHAREEDGE; |
5946 | } |
5947 | if (abcpq == (int) SHAREEDGE) { |
5948 | assert((abcop == (int) SHAREVERT) && (abcqo == (int) SHAREVERT)); |
5949 | // pq is coincident with an edge of abc. |
5950 | return (int) SHAREEDGE; |
5951 | } |
5952 | if (abcqo == (int) SHAREEDGE) { |
5953 | assert((abcop == (int) SHAREVERT) && (abcpq == (int) SHAREVERT)); |
5954 | // qo is coincident with an edge of abc. |
5955 | return (int) SHAREEDGE; |
5956 | } |
5957 | |
5958 | // They may share a vertex or disjoint. |
5959 | if (abcop == (int) SHAREVERT) { |
5960 | // o or p is coincident with a vertex of abc. |
5961 | if (abcpq == (int) SHAREVERT) { |
5962 | // p is the coincident vertex. |
5963 | assert(abcqo != (int) SHAREVERT); |
5964 | } else { |
5965 | // o is the coincident vertex. |
5966 | assert(abcqo == (int) SHAREVERT); |
5967 | } |
5968 | return (int) SHAREVERT; |
5969 | } |
5970 | if (abcpq == (int) SHAREVERT) { |
5971 | // q is the coincident vertex. |
5972 | assert(abcqo == (int) SHAREVERT); |
5973 | return (int) SHAREVERT; |
5974 | } |
5975 | |
5976 | // They are disjoint. |
5977 | return (int) DISJOINT; |
5978 | } |
5979 | |
5980 | /////////////////////////////////////////////////////////////////////////////// |
5981 | // // |
5982 | // lu_decmp() Compute the LU decomposition of a matrix. // |
5983 | // // |
5984 | // Compute the LU decomposition of a (non-singular) square matrix A using // |
5985 | // partial pivoting and implicit row exchanges. The result is: // |
5986 | // A = P * L * U, // |
5987 | // where P is a permutation matrix, L is unit lower triangular, and U is // |
5988 | // upper triangular. The factored form of A is used in combination with // |
5989 | // 'lu_solve()' to solve linear equations: Ax = b, or invert a matrix. // |
5990 | // // |
5991 | // The inputs are a square matrix 'lu[N..n+N-1][N..n+N-1]', it's size is 'n'.// |
5992 | // On output, 'lu' is replaced by the LU decomposition of a rowwise permuta- // |
5993 | // tion of itself, 'ps[N..n+N-1]' is an output vector that records the row // |
5994 | // permutation effected by the partial pivoting, effectively, 'ps' array // |
5995 | // tells the user what the permutation matrix P is; 'd' is output as +1/-1 // |
5996 | // depending on whether the number of row interchanges was even or odd, // |
5997 | // respectively. // |
5998 | // // |
5999 | // Return true if the LU decomposition is successfully computed, otherwise, // |
6000 | // return false in case that A is a singular matrix. // |
6001 | // // |
6002 | /////////////////////////////////////////////////////////////////////////////// |
6003 | |
6004 | bool tetgenmesh::lu_decmp(REAL lu[4][4], int n, int* ps, REAL* d, int N) |
6005 | { |
6006 | REAL scales[4]; |
6007 | REAL pivot, biggest, mult, tempf; |
6008 | int pivotindex = 0; |
6009 | int i, j, k; |
6010 | |
6011 | *d = 1.0; // No row interchanges yet. |
6012 | |
6013 | for (i = N; i < n + N; i++) { // For each row. |
6014 | // Find the largest element in each row for row equilibration |
6015 | biggest = 0.0; |
6016 | for (j = N; j < n + N; j++) |
6017 | if (biggest < (tempf = fabs(lu[i][j]))) |
6018 | biggest = tempf; |
6019 | if (biggest != 0.0) |
6020 | scales[i] = 1.0 / biggest; |
6021 | else { |
6022 | scales[i] = 0.0; |
6023 | return false; // Zero row: singular matrix. |
6024 | } |
6025 | ps[i] = i; // Initialize pivot sequence. |
6026 | } |
6027 | |
6028 | for (k = N; k < n + N - 1; k++) { // For each column. |
6029 | // Find the largest element in each column to pivot around. |
6030 | biggest = 0.0; |
6031 | for (i = k; i < n + N; i++) { |
6032 | if (biggest < (tempf = fabs(lu[ps[i]][k]) * scales[ps[i]])) { |
6033 | biggest = tempf; |
6034 | pivotindex = i; |
6035 | } |
6036 | } |
6037 | if (biggest == 0.0) { |
6038 | return false; // Zero column: singular matrix. |
6039 | } |
6040 | if (pivotindex != k) { // Update pivot sequence. |
6041 | j = ps[k]; |
6042 | ps[k] = ps[pivotindex]; |
6043 | ps[pivotindex] = j; |
6044 | *d = -(*d); // ...and change the parity of d. |
6045 | } |
6046 | |
6047 | // Pivot, eliminating an extra variable each time |
6048 | pivot = lu[ps[k]][k]; |
6049 | for (i = k + 1; i < n + N; i++) { |
6050 | lu[ps[i]][k] = mult = lu[ps[i]][k] / pivot; |
6051 | if (mult != 0.0) { |
6052 | for (j = k + 1; j < n + N; j++) |
6053 | lu[ps[i]][j] -= mult * lu[ps[k]][j]; |
6054 | } |
6055 | } |
6056 | } |
6057 | |
6058 | // (lu[ps[n + N - 1]][n + N - 1] == 0.0) ==> A is singular. |
6059 | return lu[ps[n + N - 1]][n + N - 1] != 0.0; |
6060 | } |
6061 | |
6062 | /////////////////////////////////////////////////////////////////////////////// |
6063 | // // |
6064 | // lu_solve() Solves the linear equation: Ax = b, after the matrix A // |
6065 | // has been decomposed into the lower and upper triangular // |
6066 | // matrices L and U, where A = LU. // |
6067 | // // |
6068 | // 'lu[N..n+N-1][N..n+N-1]' is input, not as the matrix 'A' but rather as // |
6069 | // its LU decomposition, computed by the routine 'lu_decmp'; 'ps[N..n+N-1]' // |
6070 | // is input as the permutation vector returned by 'lu_decmp'; 'b[N..n+N-1]' // |
6071 | // is input as the right-hand side vector, and returns with the solution // |
6072 | // vector. 'lu', 'n', and 'ps' are not modified by this routine and can be // |
6073 | // left in place for successive calls with different right-hand sides 'b'. // |
6074 | // // |
6075 | /////////////////////////////////////////////////////////////////////////////// |
6076 | |
6077 | void tetgenmesh::lu_solve(REAL lu[4][4], int n, int* ps, REAL* b, int N) |
6078 | { |
6079 | int i, j; |
6080 | REAL X[4], dot; |
6081 | |
6082 | for (i = N; i < n + N; i++) X[i] = 0.0; |
6083 | |
6084 | // Vector reduction using U triangular matrix. |
6085 | for (i = N; i < n + N; i++) { |
6086 | dot = 0.0; |
6087 | for (j = N; j < i + N; j++) |
6088 | dot += lu[ps[i]][j] * X[j]; |
6089 | X[i] = b[ps[i]] - dot; |
6090 | } |
6091 | |
6092 | // Back substitution, in L triangular matrix. |
6093 | for (i = n + N - 1; i >= N; i--) { |
6094 | dot = 0.0; |
6095 | for (j = i + 1; j < n + N; j++) |
6096 | dot += lu[ps[i]][j] * X[j]; |
6097 | X[i] = (X[i] - dot) / lu[ps[i]][i]; |
6098 | } |
6099 | |
6100 | for (i = N; i < n + N; i++) b[i] = X[i]; |
6101 | } |
6102 | |
6103 | /////////////////////////////////////////////////////////////////////////////// |
6104 | // // |
6105 | // incircle3d() 3D in-circle test. // |
6106 | // // |
6107 | // Return a negative value if pd is inside the circumcircle of the triangle // |
6108 | // pa, pb, and pc. // |
6109 | // // |
6110 | // IMPORTANT: It assumes that [a,b] is the common edge, i.e., the two input // |
6111 | // triangles are [a,b,c] and [b,a,d]. // |
6112 | // // |
6113 | /////////////////////////////////////////////////////////////////////////////// |
6114 | |
6115 | REAL tetgenmesh::incircle3d(point pa, point pb, point pc, point pd) |
6116 | { |
6117 | REAL area2[2], n1[3], n2[3], c[3]; |
6118 | REAL sign, r, d; |
6119 | |
6120 | // Calculate the areas of the two triangles [a, b, c] and [b, a, d]. |
6121 | facenormal(pa, pb, pc, n1, 1, NULL); |
6122 | area2[0] = dot(n1, n1); |
6123 | facenormal(pb, pa, pd, n2, 1, NULL); |
6124 | area2[1] = dot(n2, n2); |
6125 | |
6126 | if (area2[0] > area2[1]) { |
6127 | // Choose [a, b, c] as the base triangle. |
6128 | circumsphere(pa, pb, pc, NULL, c, &r); |
6129 | d = distance(c, pd); |
6130 | } else { |
6131 | // Choose [b, a, d] as the base triangle. |
6132 | if (area2[1] > 0) { |
6133 | circumsphere(pb, pa, pd, NULL, c, &r); |
6134 | d = distance(c, pc); |
6135 | } else { |
6136 | // The four points are collinear. This case only happens on the boundary. |
6137 | return 0; // Return "not inside". |
6138 | } |
6139 | } |
6140 | |
6141 | sign = d - r; |
6142 | if (fabs(sign) / r < b->epsilon) { |
6143 | sign = 0; |
6144 | } |
6145 | |
6146 | return sign; |
6147 | } |
6148 | |
6149 | /////////////////////////////////////////////////////////////////////////////// |
6150 | // // |
6151 | // facenormal() Calculate the normal of the face. // |
6152 | // // |
6153 | // The normal of the face abc can be calculated by the cross product of 2 of // |
6154 | // its 3 edge vectors. A better choice of two edge vectors will reduce the // |
6155 | // numerical error during the calculation. Burdakov proved that the optimal // |
6156 | // basis problem is equivalent to the minimum spanning tree problem with the // |
6157 | // edge length be the functional, see Burdakov, "A greedy algorithm for the // |
6158 | // optimal basis problem", BIT 37:3 (1997), 591-599. If 'pivot' > 0, the two // |
6159 | // short edges in abc are chosen for the calculation. // |
6160 | // // |
6161 | // If 'lav' is not NULL and if 'pivot' is set, the average edge length of // |
6162 | // the edges of the face [a,b,c] is returned. // |
6163 | // // |
6164 | /////////////////////////////////////////////////////////////////////////////// |
6165 | |
6166 | void tetgenmesh::facenormal(point pa, point pb, point pc, REAL *n, int pivot, |
6167 | REAL* lav) |
6168 | { |
6169 | REAL v1[3], v2[3], v3[3], *pv1, *pv2; |
6170 | REAL L1, L2, L3; |
6171 | |
6172 | v1[0] = pb[0] - pa[0]; // edge vector v1: a->b |
6173 | v1[1] = pb[1] - pa[1]; |
6174 | v1[2] = pb[2] - pa[2]; |
6175 | v2[0] = pa[0] - pc[0]; // edge vector v2: c->a |
6176 | v2[1] = pa[1] - pc[1]; |
6177 | v2[2] = pa[2] - pc[2]; |
6178 | |
6179 | // Default, normal is calculated by: v1 x (-v2) (see Fig. fnormal). |
6180 | if (pivot > 0) { |
6181 | // Choose edge vectors by Burdakov's algorithm. |
6182 | v3[0] = pc[0] - pb[0]; // edge vector v3: b->c |
6183 | v3[1] = pc[1] - pb[1]; |
6184 | v3[2] = pc[2] - pb[2]; |
6185 | L1 = dot(v1, v1); |
6186 | L2 = dot(v2, v2); |
6187 | L3 = dot(v3, v3); |
6188 | // Sort the three edge lengths. |
6189 | if (L1 < L2) { |
6190 | if (L2 < L3) { |
6191 | pv1 = v1; pv2 = v2; // n = v1 x (-v2). |
6192 | } else { |
6193 | pv1 = v3; pv2 = v1; // n = v3 x (-v1). |
6194 | } |
6195 | } else { |
6196 | if (L1 < L3) { |
6197 | pv1 = v1; pv2 = v2; // n = v1 x (-v2). |
6198 | } else { |
6199 | pv1 = v2; pv2 = v3; // n = v2 x (-v3). |
6200 | } |
6201 | } |
6202 | if (lav) { |
6203 | // return the average edge length. |
6204 | *lav = (sqrt(L1) + sqrt(L2) + sqrt(L3)) / 3.0; |
6205 | } |
6206 | } else { |
6207 | pv1 = v1; pv2 = v2; // n = v1 x (-v2). |
6208 | } |
6209 | |
6210 | // Calculate the face normal. |
6211 | cross(pv1, pv2, n); |
6212 | // Inverse the direction; |
6213 | n[0] = -n[0]; |
6214 | n[1] = -n[1]; |
6215 | n[2] = -n[2]; |
6216 | } |
6217 | |
6218 | /////////////////////////////////////////////////////////////////////////////// |
6219 | // // |
6220 | // shortdistance() Returns the shortest distance from point p to a line // |
6221 | // defined by two points e1 and e2. // |
6222 | // // |
6223 | // First compute the projection length l_p of the vector v1 = p - e1 along // |
6224 | // the vector v2 = e2 - e1. Then Pythagoras' Theorem is used to compute the // |
6225 | // shortest distance. // |
6226 | // // |
6227 | // This routine allows that p is collinear with the line. In this case, the // |
6228 | // return value is zero. The two points e1 and e2 should not be identical. // |
6229 | // // |
6230 | /////////////////////////////////////////////////////////////////////////////// |
6231 | |
6232 | REAL tetgenmesh::shortdistance(REAL* p, REAL* e1, REAL* e2) |
6233 | { |
6234 | REAL v1[3], v2[3]; |
6235 | REAL len, l_p; |
6236 | |
6237 | v1[0] = e2[0] - e1[0]; |
6238 | v1[1] = e2[1] - e1[1]; |
6239 | v1[2] = e2[2] - e1[2]; |
6240 | v2[0] = p[0] - e1[0]; |
6241 | v2[1] = p[1] - e1[1]; |
6242 | v2[2] = p[2] - e1[2]; |
6243 | |
6244 | len = sqrt(dot(v1, v1)); |
6245 | assert(len != 0.0); |
6246 | |
6247 | v1[0] /= len; |
6248 | v1[1] /= len; |
6249 | v1[2] /= len; |
6250 | l_p = dot(v1, v2); |
6251 | |
6252 | return sqrt(dot(v2, v2) - l_p * l_p); |
6253 | } |
6254 | |
6255 | /////////////////////////////////////////////////////////////////////////////// |
6256 | // // |
6257 | // triarea() Return the area of a triangle. // |
6258 | // // |
6259 | /////////////////////////////////////////////////////////////////////////////// |
6260 | |
6261 | REAL tetgenmesh::triarea(REAL* pa, REAL* pb, REAL* pc) |
6262 | { |
6263 | REAL A[4][4]; |
6264 | |
6265 | // Compute the coefficient matrix A (3x3). |
6266 | A[0][0] = pb[0] - pa[0]; |
6267 | A[0][1] = pb[1] - pa[1]; |
6268 | A[0][2] = pb[2] - pa[2]; // vector V1 (pa->pb) |
6269 | A[1][0] = pc[0] - pa[0]; |
6270 | A[1][1] = pc[1] - pa[1]; |
6271 | A[1][2] = pc[2] - pa[2]; // vector V2 (pa->pc) |
6272 | |
6273 | cross(A[0], A[1], A[2]); // vector V3 (V1 X V2) |
6274 | |
6275 | return 0.5 * sqrt(dot(A[2], A[2])); // The area of [a,b,c]. |
6276 | } |
6277 | |
6278 | REAL tetgenmesh::orient3dfast(REAL *pa, REAL *pb, REAL *pc, REAL *pd) |
6279 | { |
6280 | REAL adx, bdx, cdx; |
6281 | REAL ady, bdy, cdy; |
6282 | REAL adz, bdz, cdz; |
6283 | |
6284 | adx = pa[0] - pd[0]; |
6285 | bdx = pb[0] - pd[0]; |
6286 | cdx = pc[0] - pd[0]; |
6287 | ady = pa[1] - pd[1]; |
6288 | bdy = pb[1] - pd[1]; |
6289 | cdy = pc[1] - pd[1]; |
6290 | adz = pa[2] - pd[2]; |
6291 | bdz = pb[2] - pd[2]; |
6292 | cdz = pc[2] - pd[2]; |
6293 | |
6294 | return adx * (bdy * cdz - bdz * cdy) |
6295 | + bdx * (cdy * adz - cdz * ady) |
6296 | + cdx * (ady * bdz - adz * bdy); |
6297 | } |
6298 | |
6299 | /////////////////////////////////////////////////////////////////////////////// |
6300 | // // |
6301 | // interiorangle() Return the interior angle (0 - 2 * PI) between vectors // |
6302 | // o->p1 and o->p2. // |
6303 | // // |
6304 | // 'n' is the normal of the plane containing face (o, p1, p2). The interior // |
6305 | // angle is the total angle rotating from o->p1 around n to o->p2. Exchange // |
6306 | // the position of p1 and p2 will get the complement angle of the other one. // |
6307 | // i.e., interiorangle(o, p1, p2) = 2 * PI - interiorangle(o, p2, p1). Set // |
6308 | // 'n' be NULL if you only want the interior angle between 0 - PI. // |
6309 | // // |
6310 | /////////////////////////////////////////////////////////////////////////////// |
6311 | |
6312 | REAL tetgenmesh::interiorangle(REAL* o, REAL* p1, REAL* p2, REAL* n) |
6313 | { |
6314 | REAL v1[3], v2[3], np[3]; |
6315 | REAL theta, costheta, lenlen; |
6316 | REAL ori, len1, len2; |
6317 | |
6318 | // Get the interior angle (0 - PI) between o->p1, and o->p2. |
6319 | v1[0] = p1[0] - o[0]; |
6320 | v1[1] = p1[1] - o[1]; |
6321 | v1[2] = p1[2] - o[2]; |
6322 | v2[0] = p2[0] - o[0]; |
6323 | v2[1] = p2[1] - o[1]; |
6324 | v2[2] = p2[2] - o[2]; |
6325 | len1 = sqrt(dot(v1, v1)); |
6326 | len2 = sqrt(dot(v2, v2)); |
6327 | lenlen = len1 * len2; |
6328 | assert(lenlen != 0.0); |
6329 | |
6330 | costheta = dot(v1, v2) / lenlen; |
6331 | if (costheta > 1.0) { |
6332 | costheta = 1.0; // Roundoff. |
6333 | } else if (costheta < -1.0) { |
6334 | costheta = -1.0; // Roundoff. |
6335 | } |
6336 | theta = acos(costheta); |
6337 | if (n != NULL) { |
6338 | // Get a point above the face (o, p1, p2); |
6339 | np[0] = o[0] + n[0]; |
6340 | np[1] = o[1] + n[1]; |
6341 | np[2] = o[2] + n[2]; |
6342 | // Adjust theta (0 - 2 * PI). |
6343 | ori = orient3d(p1, o, np, p2); |
6344 | if (ori > 0.0) { |
6345 | theta = 2 * PI - theta; |
6346 | } |
6347 | } |
6348 | |
6349 | return theta; |
6350 | } |
6351 | |
6352 | /////////////////////////////////////////////////////////////////////////////// |
6353 | // // |
6354 | // projpt2edge() Return the projection point from a point to an edge. // |
6355 | // // |
6356 | /////////////////////////////////////////////////////////////////////////////// |
6357 | |
6358 | void tetgenmesh::projpt2edge(REAL* p, REAL* e1, REAL* e2, REAL* prj) |
6359 | { |
6360 | REAL v1[3], v2[3]; |
6361 | REAL len, l_p; |
6362 | |
6363 | v1[0] = e2[0] - e1[0]; |
6364 | v1[1] = e2[1] - e1[1]; |
6365 | v1[2] = e2[2] - e1[2]; |
6366 | v2[0] = p[0] - e1[0]; |
6367 | v2[1] = p[1] - e1[1]; |
6368 | v2[2] = p[2] - e1[2]; |
6369 | |
6370 | len = sqrt(dot(v1, v1)); |
6371 | assert(len != 0.0); |
6372 | v1[0] /= len; |
6373 | v1[1] /= len; |
6374 | v1[2] /= len; |
6375 | l_p = dot(v1, v2); |
6376 | |
6377 | prj[0] = e1[0] + l_p * v1[0]; |
6378 | prj[1] = e1[1] + l_p * v1[1]; |
6379 | prj[2] = e1[2] + l_p * v1[2]; |
6380 | } |
6381 | |
6382 | /////////////////////////////////////////////////////////////////////////////// |
6383 | // // |
6384 | // projpt2face() Return the projection point from a point to a face. // |
6385 | // // |
6386 | /////////////////////////////////////////////////////////////////////////////// |
6387 | |
6388 | void tetgenmesh::projpt2face(REAL* p, REAL* f1, REAL* f2, REAL* f3, REAL* prj) |
6389 | { |
6390 | REAL fnormal[3], v1[3]; |
6391 | REAL len, dist; |
6392 | |
6393 | // Get the unit face normal. |
6394 | facenormal(f1, f2, f3, fnormal, 1, NULL); |
6395 | len = sqrt(fnormal[0]*fnormal[0] + fnormal[1]*fnormal[1] + |
6396 | fnormal[2]*fnormal[2]); |
6397 | fnormal[0] /= len; |
6398 | fnormal[1] /= len; |
6399 | fnormal[2] /= len; |
6400 | // Get the vector v1 = |p - f1|. |
6401 | v1[0] = p[0] - f1[0]; |
6402 | v1[1] = p[1] - f1[1]; |
6403 | v1[2] = p[2] - f1[2]; |
6404 | // Get the project distance. |
6405 | dist = dot(fnormal, v1); |
6406 | |
6407 | // Get the project point. |
6408 | prj[0] = p[0] - dist * fnormal[0]; |
6409 | prj[1] = p[1] - dist * fnormal[1]; |
6410 | prj[2] = p[2] - dist * fnormal[2]; |
6411 | } |
6412 | |
6413 | /////////////////////////////////////////////////////////////////////////////// |
6414 | // // |
6415 | // facedihedral() Return the dihedral angle (in radian) between two // |
6416 | // adjoining faces. // |
6417 | // // |
6418 | // 'pa', 'pb' are the shared edge of these two faces, 'pc1', and 'pc2' are // |
6419 | // apexes of these two faces. Return the angle (between 0 to 2*pi) between // |
6420 | // the normal of face (pa, pb, pc1) and normal of face (pa, pb, pc2). // |
6421 | // // |
6422 | /////////////////////////////////////////////////////////////////////////////// |
6423 | |
6424 | REAL tetgenmesh::facedihedral(REAL* pa, REAL* pb, REAL* pc1, REAL* pc2) |
6425 | { |
6426 | REAL n1[3], n2[3]; |
6427 | REAL n1len, n2len; |
6428 | REAL costheta, ori; |
6429 | REAL theta; |
6430 | |
6431 | facenormal(pa, pb, pc1, n1, 1, NULL); |
6432 | facenormal(pa, pb, pc2, n2, 1, NULL); |
6433 | n1len = sqrt(dot(n1, n1)); |
6434 | n2len = sqrt(dot(n2, n2)); |
6435 | costheta = dot(n1, n2) / (n1len * n2len); |
6436 | // Be careful rounding error! |
6437 | if (costheta > 1.0) { |
6438 | costheta = 1.0; |
6439 | } else if (costheta < -1.0) { |
6440 | costheta = -1.0; |
6441 | } |
6442 | theta = acos(costheta); |
6443 | ori = orient3d(pa, pb, pc1, pc2); |
6444 | if (ori > 0.0) { |
6445 | theta = 2 * PI - theta; |
6446 | } |
6447 | |
6448 | return theta; |
6449 | } |
6450 | |
6451 | /////////////////////////////////////////////////////////////////////////////// |
6452 | // // |
6453 | // tetalldihedral() Get all (six) dihedral angles of a tet. // |
6454 | // // |
6455 | // If 'cosdd' is not NULL, it returns the cosines of the 6 dihedral angles, // |
6456 | // the edge indices are given in the global array 'edge2ver'. If 'cosmaxd' // |
6457 | // (or 'cosmind') is not NULL, it returns the cosine of the maximal (or // |
6458 | // minimal) dihedral angle. // |
6459 | // // |
6460 | /////////////////////////////////////////////////////////////////////////////// |
6461 | |
6462 | bool tetgenmesh::tetalldihedral(point pa, point pb, point pc, point pd, |
6463 | REAL* cosdd, REAL* cosmaxd, REAL* cosmind) |
6464 | { |
6465 | REAL N[4][3], vol, cosd, len; |
6466 | int f1 = 0, f2 = 0, i, j; |
6467 | |
6468 | vol = 0; // Check if the tet is valid or not. |
6469 | |
6470 | // Get four normals of faces of the tet. |
6471 | tetallnormal(pa, pb, pc, pd, N, &vol); |
6472 | |
6473 | if (vol > 0) { |
6474 | // Normalize the normals. |
6475 | for (i = 0; i < 4; i++) { |
6476 | len = sqrt(dot(N[i], N[i])); |
6477 | if (len != 0.0) { |
6478 | for (j = 0; j < 3; j++) N[i][j] /= len; |
6479 | } else { |
6480 | // There are degeneracies, such as duplicated vertices. |
6481 | vol = 0; //assert(0); |
6482 | } |
6483 | } |
6484 | } |
6485 | |
6486 | if (vol <= 0) { // if (vol == 0.0) { |
6487 | // A degenerated tet or an inverted tet. |
6488 | facenormal(pc, pb, pd, N[0], 1, NULL); |
6489 | facenormal(pa, pc, pd, N[1], 1, NULL); |
6490 | facenormal(pb, pa, pd, N[2], 1, NULL); |
6491 | facenormal(pa, pb, pc, N[3], 1, NULL); |
6492 | // Normalize the normals. |
6493 | for (i = 0; i < 4; i++) { |
6494 | len = sqrt(dot(N[i], N[i])); |
6495 | if (len != 0.0) { |
6496 | for (j = 0; j < 3; j++) N[i][j] /= len; |
6497 | } else { |
6498 | // There are degeneracies, such as duplicated vertices. |
6499 | break; // Not a valid normal. |
6500 | } |
6501 | } |
6502 | if (i < 4) { |
6503 | // Do not calculate dihedral angles. |
6504 | // Set all angles be 0 degree. There will be no quality optimization for |
6505 | // this tet! Use volume optimization to correct it. |
6506 | if (cosdd != NULL) { |
6507 | for (i = 0; i < 6; i++) { |
6508 | cosdd[i] = -1.0; // 180 degree. |
6509 | } |
6510 | } |
6511 | // This tet has zero volume. |
6512 | if (cosmaxd != NULL) { |
6513 | *cosmaxd = -1.0; // 180 degree. |
6514 | } |
6515 | if (cosmind != NULL) { |
6516 | *cosmind = -1.0; // 180 degree. |
6517 | } |
6518 | return false; |
6519 | } |
6520 | } |
6521 | |
6522 | // Calculate the cosine of the dihedral angles of the edges. |
6523 | for (i = 0; i < 6; i++) { |
6524 | switch (i) { |
6525 | case 0: f1 = 0; f2 = 1; break; // [c,d]. |
6526 | case 1: f1 = 1; f2 = 2; break; // [a,d]. |
6527 | case 2: f1 = 2; f2 = 3; break; // [a,b]. |
6528 | case 3: f1 = 0; f2 = 3; break; // [b,c]. |
6529 | case 4: f1 = 2; f2 = 0; break; // [b,d]. |
6530 | case 5: f1 = 1; f2 = 3; break; // [a,c]. |
6531 | } |
6532 | cosd = -dot(N[f1], N[f2]); |
6533 | if (cosd < -1.0) cosd = -1.0; // Rounding. |
6534 | if (cosd > 1.0) cosd = 1.0; // Rounding. |
6535 | if (cosdd) cosdd[i] = cosd; |
6536 | if (cosmaxd || cosmind) { |
6537 | if (i == 0) { |
6538 | if (cosmaxd) *cosmaxd = cosd; |
6539 | if (cosmind) *cosmind = cosd; |
6540 | } else { |
6541 | if (cosmaxd) *cosmaxd = cosd < *cosmaxd ? cosd : *cosmaxd; |
6542 | if (cosmind) *cosmind = cosd > *cosmind ? cosd : *cosmind; |
6543 | } |
6544 | } |
6545 | } |
6546 | |
6547 | return true; |
6548 | } |
6549 | |
6550 | /////////////////////////////////////////////////////////////////////////////// |
6551 | // // |
6552 | // tetallnormal() Get the in-normals of the four faces of a given tet. // |
6553 | // // |
6554 | // Let tet be abcd. N[4][3] returns the four normals, which are: N[0] cbd, // |
6555 | // N[1] acd, N[2] bad, N[3] abc (exactly corresponding to the face indices // |
6556 | // of the mesh data structure). These normals are unnormalized. // |
6557 | // // |
6558 | /////////////////////////////////////////////////////////////////////////////// |
6559 | |
6560 | void tetgenmesh::tetallnormal(point pa, point pb, point pc, point pd, |
6561 | REAL N[4][3], REAL* volume) |
6562 | { |
6563 | REAL A[4][4], rhs[4], D; |
6564 | int indx[4]; |
6565 | int i, j; |
6566 | |
6567 | // get the entries of A[3][3]. |
6568 | for (i = 0; i < 3; i++) A[0][i] = pa[i] - pd[i]; // d->a vec |
6569 | for (i = 0; i < 3; i++) A[1][i] = pb[i] - pd[i]; // d->b vec |
6570 | for (i = 0; i < 3; i++) A[2][i] = pc[i] - pd[i]; // d->c vec |
6571 | |
6572 | // Compute the inverse of matrix A, to get 3 normals of the 4 faces. |
6573 | if (lu_decmp(A, 3, indx, &D, 0)) { // Decompose the matrix just once. |
6574 | if (volume != NULL) { |
6575 | // Get the volume of the tet. |
6576 | *volume = fabs((A[indx[0]][0] * A[indx[1]][1] * A[indx[2]][2])) / 6.0; |
6577 | } |
6578 | for (j = 0; j < 3; j++) { |
6579 | for (i = 0; i < 3; i++) rhs[i] = 0.0; |
6580 | rhs[j] = 1.0; // Positive means the inside direction |
6581 | lu_solve(A, 3, indx, rhs, 0); |
6582 | for (i = 0; i < 3; i++) N[j][i] = rhs[i]; |
6583 | } |
6584 | // Get the fourth normal by summing up the first three. |
6585 | for (i = 0; i < 3; i++) N[3][i] = - N[0][i] - N[1][i] - N[2][i]; |
6586 | } else { |
6587 | // The tet is degenerated. |
6588 | if (volume != NULL) { |
6589 | *volume = 0; |
6590 | } |
6591 | } |
6592 | } |
6593 | |
6594 | /////////////////////////////////////////////////////////////////////////////// |
6595 | // // |
6596 | // tetaspectratio() Calculate the aspect ratio of the tetrahedron. // |
6597 | // // |
6598 | // The aspect ratio of a tet is R/h, where R is the circumradius and h is // |
6599 | // the shortest height of the tet. // |
6600 | // // |
6601 | /////////////////////////////////////////////////////////////////////////////// |
6602 | |
6603 | REAL tetgenmesh::tetaspectratio(point pa, point pb, point pc, point pd) |
6604 | { |
6605 | REAL vda[3], vdb[3], vdc[3]; |
6606 | REAL N[4][3], A[4][4], rhs[4], D; |
6607 | REAL H[4], volume, radius2, minheightinv; |
6608 | int indx[4]; |
6609 | int i, j; |
6610 | |
6611 | // Set the matrix A = [vda, vdb, vdc]^T. |
6612 | for (i = 0; i < 3; i++) A[0][i] = vda[i] = pa[i] - pd[i]; |
6613 | for (i = 0; i < 3; i++) A[1][i] = vdb[i] = pb[i] - pd[i]; |
6614 | for (i = 0; i < 3; i++) A[2][i] = vdc[i] = pc[i] - pd[i]; |
6615 | // Lu-decompose the matrix A. |
6616 | lu_decmp(A, 3, indx, &D, 0); |
6617 | // Get the volume of abcd. |
6618 | volume = (A[indx[0]][0] * A[indx[1]][1] * A[indx[2]][2]) / 6.0; |
6619 | // Check if it is zero. |
6620 | if (volume == 0.0) return 1.0e+200; // A degenerate tet. |
6621 | // if (volume < 0.0) volume = -volume; |
6622 | // Check the radiu-edge ratio of the tet. |
6623 | rhs[0] = 0.5 * dot(vda, vda); |
6624 | rhs[1] = 0.5 * dot(vdb, vdb); |
6625 | rhs[2] = 0.5 * dot(vdc, vdc); |
6626 | lu_solve(A, 3, indx, rhs, 0); |
6627 | // Get the circumcenter. |
6628 | // for (i = 0; i < 3; i++) circumcent[i] = pd[i] + rhs[i]; |
6629 | // Get the square of the circumradius. |
6630 | radius2 = dot(rhs, rhs); |
6631 | |
6632 | // Compute the 4 face normals (N[0], ..., N[3]). |
6633 | for (j = 0; j < 3; j++) { |
6634 | for (i = 0; i < 3; i++) rhs[i] = 0.0; |
6635 | rhs[j] = 1.0; // Positive means the inside direction |
6636 | lu_solve(A, 3, indx, rhs, 0); |
6637 | for (i = 0; i < 3; i++) N[j][i] = rhs[i]; |
6638 | } |
6639 | // Get the fourth normal by summing up the first three. |
6640 | for (i = 0; i < 3; i++) N[3][i] = - N[0][i] - N[1][i] - N[2][i]; |
6641 | // Normalized the normals. |
6642 | for (i = 0; i < 4; i++) { |
6643 | // H[i] is the inverse of the height of its corresponding face. |
6644 | H[i] = sqrt(dot(N[i], N[i])); |
6645 | // if (H[i] > 0.0) { |
6646 | // for (j = 0; j < 3; j++) N[i][j] /= H[i]; |
6647 | // } |
6648 | } |
6649 | // Get the radius of the inscribed sphere. |
6650 | // insradius = 1.0 / (H[0] + H[1] + H[2] + H[3]); |
6651 | // Get the biggest H[i] (corresponding to the smallest height). |
6652 | minheightinv = H[0]; |
6653 | for (i = 1; i < 3; i++) { |
6654 | if (H[i] > minheightinv) minheightinv = H[i]; |
6655 | } |
6656 | |
6657 | return sqrt(radius2) * minheightinv; |
6658 | } |
6659 | |
6660 | /////////////////////////////////////////////////////////////////////////////// |
6661 | // // |
6662 | // circumsphere() Calculate the smallest circumsphere (center and radius) // |
6663 | // of the given three or four points. // |
6664 | // // |
6665 | // The circumsphere of four points (a tetrahedron) is unique if they are not // |
6666 | // degenerate. If 'pd = NULL', the smallest circumsphere of three points is // |
6667 | // the diametral sphere of the triangle if they are not degenerate. // |
6668 | // // |
6669 | // Return TRUE if the input points are not degenerate and the circumcenter // |
6670 | // and circumradius are returned in 'cent' and 'radius' respectively if they // |
6671 | // are not NULLs. Otherwise, return FALSE, the four points are co-planar. // |
6672 | // // |
6673 | /////////////////////////////////////////////////////////////////////////////// |
6674 | |
6675 | bool tetgenmesh::circumsphere(REAL* pa, REAL* pb, REAL* pc, REAL* pd, |
6676 | REAL* cent, REAL* radius) |
6677 | { |
6678 | REAL A[4][4], rhs[4], D; |
6679 | int indx[4]; |
6680 | |
6681 | // Compute the coefficient matrix A (3x3). |
6682 | A[0][0] = pb[0] - pa[0]; |
6683 | A[0][1] = pb[1] - pa[1]; |
6684 | A[0][2] = pb[2] - pa[2]; |
6685 | A[1][0] = pc[0] - pa[0]; |
6686 | A[1][1] = pc[1] - pa[1]; |
6687 | A[1][2] = pc[2] - pa[2]; |
6688 | if (pd != NULL) { |
6689 | A[2][0] = pd[0] - pa[0]; |
6690 | A[2][1] = pd[1] - pa[1]; |
6691 | A[2][2] = pd[2] - pa[2]; |
6692 | } else { |
6693 | cross(A[0], A[1], A[2]); |
6694 | } |
6695 | |
6696 | // Compute the right hand side vector b (3x1). |
6697 | rhs[0] = 0.5 * dot(A[0], A[0]); |
6698 | rhs[1] = 0.5 * dot(A[1], A[1]); |
6699 | if (pd != NULL) { |
6700 | rhs[2] = 0.5 * dot(A[2], A[2]); |
6701 | } else { |
6702 | rhs[2] = 0.0; |
6703 | } |
6704 | |
6705 | // Solve the 3 by 3 equations use LU decomposition with partial pivoting |
6706 | // and backward and forward substitute.. |
6707 | if (!lu_decmp(A, 3, indx, &D, 0)) { |
6708 | if (radius != (REAL *) NULL) *radius = 0.0; |
6709 | return false; |
6710 | } |
6711 | lu_solve(A, 3, indx, rhs, 0); |
6712 | if (cent != (REAL *) NULL) { |
6713 | cent[0] = pa[0] + rhs[0]; |
6714 | cent[1] = pa[1] + rhs[1]; |
6715 | cent[2] = pa[2] + rhs[2]; |
6716 | } |
6717 | if (radius != (REAL *) NULL) { |
6718 | *radius = sqrt(rhs[0] * rhs[0] + rhs[1] * rhs[1] + rhs[2] * rhs[2]); |
6719 | } |
6720 | return true; |
6721 | } |
6722 | |
6723 | /////////////////////////////////////////////////////////////////////////////// |
6724 | // // |
6725 | // orthosphere() Calulcate the orthosphere of four weighted points. // |
6726 | // // |
6727 | // A weighted point (p, P^2) can be interpreted as a sphere centered at the // |
6728 | // point 'p' with a radius 'P'. The 'height' of 'p' is pheight = p[0]^2 + // |
6729 | // p[1]^2 + p[2]^2 - P^2. // |
6730 | // // |
6731 | /////////////////////////////////////////////////////////////////////////////// |
6732 | |
6733 | bool tetgenmesh::orthosphere(REAL* pa, REAL* pb, REAL* pc, REAL* pd, |
6734 | REAL aheight, REAL bheight, REAL cheight, |
6735 | REAL dheight, REAL* orthocent, REAL* radius) |
6736 | { |
6737 | REAL A[4][4], rhs[4], D; |
6738 | int indx[4]; |
6739 | |
6740 | // Set the coefficient matrix A (4 x 4). |
6741 | A[0][0] = 1.0; A[0][1] = pa[0]; A[0][2] = pa[1]; A[0][3] = pa[2]; |
6742 | A[1][0] = 1.0; A[1][1] = pb[0]; A[1][2] = pb[1]; A[1][3] = pb[2]; |
6743 | A[2][0] = 1.0; A[2][1] = pc[0]; A[2][2] = pc[1]; A[2][3] = pc[2]; |
6744 | A[3][0] = 1.0; A[3][1] = pd[0]; A[3][2] = pd[1]; A[3][3] = pd[2]; |
6745 | |
6746 | // Set the right hand side vector (4 x 1). |
6747 | rhs[0] = 0.5 * aheight; |
6748 | rhs[1] = 0.5 * bheight; |
6749 | rhs[2] = 0.5 * cheight; |
6750 | rhs[3] = 0.5 * dheight; |
6751 | |
6752 | // Solve the 4 by 4 equations use LU decomposition with partial pivoting |
6753 | // and backward and forward substitute.. |
6754 | if (!lu_decmp(A, 4, indx, &D, 0)) { |
6755 | if (radius != (REAL *) NULL) *radius = 0.0; |
6756 | return false; |
6757 | } |
6758 | lu_solve(A, 4, indx, rhs, 0); |
6759 | |
6760 | if (orthocent != (REAL *) NULL) { |
6761 | orthocent[0] = rhs[1]; |
6762 | orthocent[1] = rhs[2]; |
6763 | orthocent[2] = rhs[3]; |
6764 | } |
6765 | if (radius != (REAL *) NULL) { |
6766 | // rhs[0] = - rheight / 2; |
6767 | // rheight = - 2 * rhs[0]; |
6768 | // = r[0]^2 + r[1]^2 + r[2]^2 - radius^2 |
6769 | // radius^2 = r[0]^2 + r[1]^2 + r[2]^2 -rheight |
6770 | // = r[0]^2 + r[1]^2 + r[2]^2 + 2 * rhs[0] |
6771 | *radius = sqrt(rhs[1] * rhs[1] + rhs[2] * rhs[2] + rhs[3] * rhs[3] |
6772 | + 2.0 * rhs[0]); |
6773 | } |
6774 | return true; |
6775 | } |
6776 | |
6777 | /////////////////////////////////////////////////////////////////////////////// |
6778 | // // |
6779 | // planelineint() Calculate the intersection of a line and a plane. // |
6780 | // // |
6781 | // The equation of a plane (points P are on the plane with normal N and P3 // |
6782 | // on the plane) can be written as: N dot (P - P3) = 0. The equation of the // |
6783 | // line (points P on the line passing through P1 and P2) can be written as: // |
6784 | // P = P1 + u (P2 - P1). The intersection of these two occurs when: // |
6785 | // N dot (P1 + u (P2 - P1)) = N dot P3. // |
6786 | // Solving for u gives: // |
6787 | // N dot (P3 - P1) // |
6788 | // u = ------------------. // |
6789 | // N dot (P2 - P1) // |
6790 | // If the denominator is 0 then N (the normal to the plane) is perpendicular // |
6791 | // to the line. Thus the line is either parallel to the plane and there are // |
6792 | // no solutions or the line is on the plane in which case there are an infi- // |
6793 | // nite number of solutions. // |
6794 | // // |
6795 | // The plane is given by three points pa, pb, and pc, e1 and e2 defines the // |
6796 | // line. If u is non-zero, The intersection point (if exists) returns in ip. // |
6797 | // // |
6798 | /////////////////////////////////////////////////////////////////////////////// |
6799 | |
6800 | void tetgenmesh::planelineint(REAL* pa, REAL* pb, REAL* pc, REAL* e1, REAL* e2, |
6801 | REAL* ip, REAL* u) |
6802 | { |
6803 | REAL n[3], det, det1; |
6804 | |
6805 | // Calculate N. |
6806 | facenormal(pa, pb, pc, n, 1, NULL); |
6807 | // Calculate N dot (e2 - e1). |
6808 | det = n[0] * (e2[0] - e1[0]) + n[1] * (e2[1] - e1[1]) |
6809 | + n[2] * (e2[2] - e1[2]); |
6810 | if (det != 0.0) { |
6811 | // Calculate N dot (pa - e1) |
6812 | det1 = n[0] * (pa[0] - e1[0]) + n[1] * (pa[1] - e1[1]) |
6813 | + n[2] * (pa[2] - e1[2]); |
6814 | *u = det1 / det; |
6815 | ip[0] = e1[0] + *u * (e2[0] - e1[0]); |
6816 | ip[1] = e1[1] + *u * (e2[1] - e1[1]); |
6817 | ip[2] = e1[2] + *u * (e2[2] - e1[2]); |
6818 | } else { |
6819 | *u = 0.0; |
6820 | } |
6821 | } |
6822 | |
6823 | /////////////////////////////////////////////////////////////////////////////// |
6824 | // // |
6825 | // linelineint() Calculate the intersection(s) of two line segments. // |
6826 | // // |
6827 | // Calculate the line segment [P, Q] that is the shortest route between two // |
6828 | // lines from A to B and C to D. Calculate also the values of tp and tq // |
6829 | // where: P = A + tp (B - A), and Q = C + tq (D - C). // |
6830 | // // |
6831 | // Return 1 if the line segment exists. Otherwise, return 0. // |
6832 | // // |
6833 | /////////////////////////////////////////////////////////////////////////////// |
6834 | |
6835 | int tetgenmesh::linelineint(REAL* A, REAL* B, REAL* C, REAL* D, REAL* P, |
6836 | REAL* Q, REAL* tp, REAL* tq) |
6837 | { |
6838 | REAL vab[3], vcd[3], vca[3]; |
6839 | REAL vab_vab, vcd_vcd, vab_vcd; |
6840 | REAL vca_vab, vca_vcd; |
6841 | REAL det, eps; |
6842 | int i; |
6843 | |
6844 | for (i = 0; i < 3; i++) { |
6845 | vab[i] = B[i] - A[i]; |
6846 | vcd[i] = D[i] - C[i]; |
6847 | vca[i] = A[i] - C[i]; |
6848 | } |
6849 | |
6850 | vab_vab = dot(vab, vab); |
6851 | vcd_vcd = dot(vcd, vcd); |
6852 | vab_vcd = dot(vab, vcd); |
6853 | |
6854 | det = vab_vab * vcd_vcd - vab_vcd * vab_vcd; |
6855 | // Round the result. |
6856 | eps = det / (fabs(vab_vab * vcd_vcd) + fabs(vab_vcd * vab_vcd)); |
6857 | if (eps < b->epsilon) { |
6858 | return 0; |
6859 | } |
6860 | |
6861 | vca_vab = dot(vca, vab); |
6862 | vca_vcd = dot(vca, vcd); |
6863 | |
6864 | *tp = (vcd_vcd * (- vca_vab) + vab_vcd * vca_vcd) / det; |
6865 | *tq = (vab_vcd * (- vca_vab) + vab_vab * vca_vcd) / det; |
6866 | |
6867 | for (i = 0; i < 3; i++) P[i] = A[i] + (*tp) * vab[i]; |
6868 | for (i = 0; i < 3; i++) Q[i] = C[i] + (*tq) * vcd[i]; |
6869 | |
6870 | return 1; |
6871 | } |
6872 | |
6873 | /////////////////////////////////////////////////////////////////////////////// |
6874 | // // |
6875 | // tetprismvol() Calculate the volume of a tetrahedral prism in 4D. // |
6876 | // // |
6877 | // A tetrahedral prism is a convex uniform polychoron (four dimensional poly-// |
6878 | // tope). It has 6 polyhedral cells: 2 tetrahedra connected by 4 triangular // |
6879 | // prisms. It has 14 faces: 8 triangular and 6 square. It has 16 edges and 8 // |
6880 | // vertices. (Wikipedia). // |
6881 | // // |
6882 | // Let 'p0', ..., 'p3' be four affinely independent points in R^3. They form // |
6883 | // the lower tetrahedral facet of the prism. The top tetrahedral facet is // |
6884 | // formed by four vertices, 'p4', ..., 'p7' in R^4, which is obtained by // |
6885 | // lifting each vertex of the lower facet into R^4 by a weight (height). A // |
6886 | // canonical choice of the weights is the square of Euclidean norm of of the // |
6887 | // points (vectors). // |
6888 | // // |
6889 | // // |
6890 | // The return value is (4!) 24 times of the volume of the tetrahedral prism. // |
6891 | // // |
6892 | /////////////////////////////////////////////////////////////////////////////// |
6893 | |
6894 | REAL tetgenmesh::tetprismvol(REAL* p0, REAL* p1, REAL* p2, REAL* p3) |
6895 | { |
6896 | REAL *p4, *p5, *p6, *p7; |
6897 | REAL w4, w5, w6, w7; |
6898 | REAL vol[4]; |
6899 | |
6900 | p4 = p0; |
6901 | p5 = p1; |
6902 | p6 = p2; |
6903 | p7 = p3; |
6904 | |
6905 | // TO DO: these weights can be pre-calculated! |
6906 | w4 = dot(p0, p0); |
6907 | w5 = dot(p1, p1); |
6908 | w6 = dot(p2, p2); |
6909 | w7 = dot(p3, p3); |
6910 | |
6911 | // Calculate the volume of the tet-prism. |
6912 | vol[0] = orient4d(p5, p6, p4, p3, p7, w5, w6, w4, 0, w7); |
6913 | vol[1] = orient4d(p3, p6, p2, p0, p1, 0, w6, 0, 0, 0); |
6914 | vol[2] = orient4d(p4, p6, p3, p0, p1, w4, w6, 0, 0, 0); |
6915 | vol[3] = orient4d(p6, p5, p4, p3, p1, w6, w5, w4, 0, 0); |
6916 | |
6917 | return fabs(vol[0]) + fabs(vol[1]) + fabs(vol[2]) + fabs(vol[3]); |
6918 | } |
6919 | |
6920 | /////////////////////////////////////////////////////////////////////////////// |
6921 | // // |
6922 | // calculateabovepoint() Calculate a point above a facet in 'dummypoint'. // |
6923 | // // |
6924 | /////////////////////////////////////////////////////////////////////////////// |
6925 | |
6926 | bool tetgenmesh::calculateabovepoint(arraypool *facpoints, point *ppa, |
6927 | point *ppb, point *ppc) |
6928 | { |
6929 | point *ppt, pa, pb, pc; |
6930 | REAL v1[3], v2[3], n[3]; |
6931 | REAL lab, len, A, area; |
6932 | REAL x, y, z; |
6933 | int i; |
6934 | |
6935 | ppt = (point *) fastlookup(facpoints, 0); |
6936 | pa = *ppt; // a is the first point. |
6937 | pb = pc = NULL; // Avoid compiler warnings. |
6938 | |
6939 | // Get a point b s.t. the length of [a, b] is maximal. |
6940 | lab = 0; |
6941 | for (i = 1; i < facpoints->objects; i++) { |
6942 | ppt = (point *) fastlookup(facpoints, i); |
6943 | x = (*ppt)[0] - pa[0]; |
6944 | y = (*ppt)[1] - pa[1]; |
6945 | z = (*ppt)[2] - pa[2]; |
6946 | len = x * x + y * y + z * z; |
6947 | if (len > lab) { |
6948 | lab = len; |
6949 | pb = *ppt; |
6950 | } |
6951 | } |
6952 | lab = sqrt(lab); |
6953 | if (lab == 0) { |
6954 | if (!b->quiet) { |
6955 | printf("Warning: All points of a facet are coincident with %d.\n" , |
6956 | pointmark(pa)); |
6957 | } |
6958 | return false; |
6959 | } |
6960 | |
6961 | // Get a point c s.t. the area of [a, b, c] is maximal. |
6962 | v1[0] = pb[0] - pa[0]; |
6963 | v1[1] = pb[1] - pa[1]; |
6964 | v1[2] = pb[2] - pa[2]; |
6965 | A = 0; |
6966 | for (i = 1; i < facpoints->objects; i++) { |
6967 | ppt = (point *) fastlookup(facpoints, i); |
6968 | v2[0] = (*ppt)[0] - pa[0]; |
6969 | v2[1] = (*ppt)[1] - pa[1]; |
6970 | v2[2] = (*ppt)[2] - pa[2]; |
6971 | cross(v1, v2, n); |
6972 | area = dot(n, n); |
6973 | if (area > A) { |
6974 | A = area; |
6975 | pc = *ppt; |
6976 | } |
6977 | } |
6978 | if (A == 0) { |
6979 | // All points are collinear. No above point. |
6980 | if (!b->quiet) { |
6981 | printf("Warning: All points of a facet are collinaer with [%d, %d].\n" , |
6982 | pointmark(pa), pointmark(pb)); |
6983 | } |
6984 | return false; |
6985 | } |
6986 | |
6987 | // Calculate an above point of this facet. |
6988 | facenormal(pa, pb, pc, n, 1, NULL); |
6989 | len = sqrt(dot(n, n)); |
6990 | n[0] /= len; |
6991 | n[1] /= len; |
6992 | n[2] /= len; |
6993 | lab /= 2.0; // Half the maximal length. |
6994 | dummypoint[0] = pa[0] + lab * n[0]; |
6995 | dummypoint[1] = pa[1] + lab * n[1]; |
6996 | dummypoint[2] = pa[2] + lab * n[2]; |
6997 | |
6998 | if (ppa != NULL) { |
6999 | // Return the three points. |
7000 | *ppa = pa; |
7001 | *ppb = pb; |
7002 | *ppc = pc; |
7003 | } |
7004 | |
7005 | return true; |
7006 | } |
7007 | |
7008 | /////////////////////////////////////////////////////////////////////////////// |
7009 | // // |
7010 | // Calculate an above point. It lies above the plane containing the subface // |
7011 | // [a,b,c], and save it in dummypoint. Moreover, the vector pa->dummypoint // |
7012 | // is the normal of the plane. // |
7013 | // // |
7014 | /////////////////////////////////////////////////////////////////////////////// |
7015 | |
7016 | void tetgenmesh::calculateabovepoint4(point pa, point pb, point pc, point pd) |
7017 | { |
7018 | REAL n1[3], n2[3], *norm; |
7019 | REAL len, len1, len2; |
7020 | |
7021 | // Select a base. |
7022 | facenormal(pa, pb, pc, n1, 1, NULL); |
7023 | len1 = sqrt(dot(n1, n1)); |
7024 | facenormal(pa, pb, pd, n2, 1, NULL); |
7025 | len2 = sqrt(dot(n2, n2)); |
7026 | if (len1 > len2) { |
7027 | norm = n1; |
7028 | len = len1; |
7029 | } else { |
7030 | norm = n2; |
7031 | len = len2; |
7032 | } |
7033 | assert(len > 0); |
7034 | norm[0] /= len; |
7035 | norm[1] /= len; |
7036 | norm[2] /= len; |
7037 | len = distance(pa, pb); |
7038 | dummypoint[0] = pa[0] + len * norm[0]; |
7039 | dummypoint[1] = pa[1] + len * norm[1]; |
7040 | dummypoint[2] = pa[2] + len * norm[2]; |
7041 | } |
7042 | |
7043 | //// //// |
7044 | //// //// |
7045 | //// geom_cxx ///////////////////////////////////////////////////////////////// |
7046 | |
7047 | //// flip_cxx ///////////////////////////////////////////////////////////////// |
7048 | //// //// |
7049 | //// //// |
7050 | |
7051 | /////////////////////////////////////////////////////////////////////////////// |
7052 | // // |
7053 | // flip23() Perform a 2-to-3 flip (face-to-edge flip). // |
7054 | // // |
7055 | // 'fliptets' is an array of three tets (handles), where the [0] and [1] are // |
7056 | // [a,b,c,d] and [b,a,c,e]. The three new tets: [e,d,a,b], [e,d,b,c], and // |
7057 | // [e,d,c,a] are returned in [0], [1], and [2] of 'fliptets'. As a result, // |
7058 | // The face [a,b,c] is removed, and the edge [d,e] is created. // |
7059 | // // |
7060 | // If 'hullflag' > 0, hull tets may be involved in this flip, i.e., one of // |
7061 | // the five vertices may be 'dummypoint'. There are two canonical cases: // |
7062 | // (1) d is 'dummypoint', then all three new tets are hull tets. If e is // |
7063 | // 'dummypoint', we reconfigure e to d, i.e., turn it up-side down. // |
7064 | // (2) c is 'dummypoint', then two new tets: [e,d,b,c] and [e,d,c,a], are // |
7065 | // hull tets. If a or b is 'dummypoint', we reconfigure it to c, i.e., // |
7066 | // rotate the three input tets counterclockwisely (right-hand rule) // |
7067 | // until a or b is in c's position. // |
7068 | // // |
7069 | // If 'fc->enqflag' is set, convex hull faces will be queued for flipping. // |
7070 | // In particular, if 'fc->enqflag' is 1, it is called by incrementalflip() // |
7071 | // after the insertion of a new point. It is assumed that 'd' is the new // |
7072 | // point. IN this case, only link faces of 'd' are queued. // |
7073 | // // |
7074 | /////////////////////////////////////////////////////////////////////////////// |
7075 | |
7076 | void tetgenmesh::flip23(triface* fliptets, int hullflag, flipconstraints *fc) |
7077 | { |
7078 | triface topcastets[3], botcastets[3]; |
7079 | triface newface, casface; |
7080 | point pa, pb, pc, pd, pe; |
7081 | REAL attrib, volume; |
7082 | int dummyflag = 0; // range = {-1, 0, 1, 2}. |
7083 | int i; |
7084 | |
7085 | if (hullflag > 0) { |
7086 | // Check if e is dummypoint. |
7087 | if (oppo(fliptets[1]) == dummypoint) { |
7088 | // Swap the two old tets. |
7089 | newface = fliptets[0]; |
7090 | fliptets[0] = fliptets[1]; |
7091 | fliptets[1] = newface; |
7092 | dummyflag = -1; // d is dummypoint. |
7093 | } else { |
7094 | // Check if either a or b is dummypoint. |
7095 | if (org(fliptets[0]) == dummypoint) { |
7096 | dummyflag = 1; // a is dummypoint. |
7097 | enextself(fliptets[0]); |
7098 | eprevself(fliptets[1]); |
7099 | } else if (dest(fliptets[0]) == dummypoint) { |
7100 | dummyflag = 2; // b is dummypoint. |
7101 | eprevself(fliptets[0]); |
7102 | enextself(fliptets[1]); |
7103 | } else { |
7104 | dummyflag = 0; // either c or d may be dummypoint. |
7105 | } |
7106 | } |
7107 | } |
7108 | |
7109 | pa = org(fliptets[0]); |
7110 | pb = dest(fliptets[0]); |
7111 | pc = apex(fliptets[0]); |
7112 | pd = oppo(fliptets[0]); |
7113 | pe = oppo(fliptets[1]); |
7114 | |
7115 | flip23count++; |
7116 | |
7117 | // Get the outer boundary faces. |
7118 | for (i = 0; i < 3; i++) { |
7119 | fnext(fliptets[0], topcastets[i]); |
7120 | enextself(fliptets[0]); |
7121 | } |
7122 | for (i = 0; i < 3; i++) { |
7123 | fnext(fliptets[1], botcastets[i]); |
7124 | eprevself(fliptets[1]); |
7125 | } |
7126 | |
7127 | // Re-use fliptets[0] and fliptets[1]. |
7128 | fliptets[0].ver = 11; |
7129 | fliptets[1].ver = 11; |
7130 | setelemmarker(fliptets[0].tet, 0); // Clear all flags. |
7131 | setelemmarker(fliptets[1].tet, 0); |
7132 | // NOTE: the element attributes and volume constraint remain unchanged. |
7133 | if (checksubsegflag) { |
7134 | // Dealloc the space to subsegments. |
7135 | if (fliptets[0].tet[8] != NULL) { |
7136 | tet2segpool->dealloc((shellface *) fliptets[0].tet[8]); |
7137 | fliptets[0].tet[8] = NULL; |
7138 | } |
7139 | if (fliptets[1].tet[8] != NULL) { |
7140 | tet2segpool->dealloc((shellface *) fliptets[1].tet[8]); |
7141 | fliptets[1].tet[8] = NULL; |
7142 | } |
7143 | } |
7144 | if (checksubfaceflag) { |
7145 | // Dealloc the space to subfaces. |
7146 | if (fliptets[0].tet[9] != NULL) { |
7147 | tet2subpool->dealloc((shellface *) fliptets[0].tet[9]); |
7148 | fliptets[0].tet[9] = NULL; |
7149 | } |
7150 | if (fliptets[1].tet[9] != NULL) { |
7151 | tet2subpool->dealloc((shellface *) fliptets[1].tet[9]); |
7152 | fliptets[1].tet[9] = NULL; |
7153 | } |
7154 | } |
7155 | // Create a new tet. |
7156 | maketetrahedron(&(fliptets[2])); |
7157 | // The new tet have the same attributes from the old tet. |
7158 | for (i = 0; i < numelemattrib; i++) { |
7159 | attrib = elemattribute(fliptets[0].tet, i); |
7160 | setelemattribute(fliptets[2].tet, i, attrib); |
7161 | } |
7162 | if (b->varvolume) { |
7163 | volume = volumebound(fliptets[0].tet); |
7164 | setvolumebound(fliptets[2].tet, volume); |
7165 | } |
7166 | |
7167 | if (hullflag > 0) { |
7168 | // Check if d is dummytet. |
7169 | if (pd != dummypoint) { |
7170 | setvertices(fliptets[0], pe, pd, pa, pb); // [e,d,a,b] * |
7171 | setvertices(fliptets[1], pe, pd, pb, pc); // [e,d,b,c] * |
7172 | // Check if c is dummypoint. |
7173 | if (pc != dummypoint) { |
7174 | setvertices(fliptets[2], pe, pd, pc, pa); // [e,d,c,a] * |
7175 | } else { |
7176 | setvertices(fliptets[2], pd, pe, pa, pc); // [d,e,a,c] |
7177 | esymself(fliptets[2]); // [e,d,c,a] * |
7178 | } |
7179 | // The hullsize does not change. |
7180 | } else { |
7181 | // d is dummypoint. |
7182 | setvertices(fliptets[0], pa, pb, pe, pd); // [a,b,e,d] |
7183 | setvertices(fliptets[1], pb, pc, pe, pd); // [b,c,e,d] |
7184 | setvertices(fliptets[2], pc, pa, pe, pd); // [c,a,e,d] |
7185 | // Adjust the faces to [e,d,a,b], [e,d,b,c], [e,d,c,a] * |
7186 | for (i = 0; i < 3; i++) { |
7187 | eprevesymself(fliptets[i]); |
7188 | enextself(fliptets[i]); |
7189 | } |
7190 | // We deleted one hull tet, and created three hull tets. |
7191 | hullsize += 2; |
7192 | } |
7193 | } else { |
7194 | setvertices(fliptets[0], pe, pd, pa, pb); // [e,d,a,b] * |
7195 | setvertices(fliptets[1], pe, pd, pb, pc); // [e,d,b,c] * |
7196 | setvertices(fliptets[2], pe, pd, pc, pa); // [e,d,c,a] * |
7197 | } |
7198 | |
7199 | if (fc->remove_ndelaunay_edge) { // calc_tetprism_vol |
7200 | REAL volneg[2], volpos[3], vol_diff; |
7201 | if (pd != dummypoint) { |
7202 | if (pc != dummypoint) { |
7203 | volpos[0] = tetprismvol(pe, pd, pa, pb); |
7204 | volpos[1] = tetprismvol(pe, pd, pb, pc); |
7205 | volpos[2] = tetprismvol(pe, pd, pc, pa); |
7206 | volneg[0] = tetprismvol(pa, pb, pc, pd); |
7207 | volneg[1] = tetprismvol(pb, pa, pc, pe); |
7208 | } else { // pc == dummypoint |
7209 | volpos[0] = tetprismvol(pe, pd, pa, pb); |
7210 | volpos[1] = 0.; |
7211 | volpos[2] = 0.; |
7212 | volneg[0] = 0.; |
7213 | volneg[1] = 0.; |
7214 | } |
7215 | } else { // pd == dummypoint. |
7216 | volpos[0] = 0.; |
7217 | volpos[1] = 0.; |
7218 | volpos[2] = 0.; |
7219 | volneg[0] = 0.; |
7220 | volneg[1] = tetprismvol(pb, pa, pc, pe); |
7221 | } |
7222 | vol_diff = volpos[0] + volpos[1] + volpos[2] - volneg[0] - volneg[1]; |
7223 | fc->tetprism_vol_sum += vol_diff; // Update the total sum. |
7224 | } |
7225 | |
7226 | // Bond three new tets together. |
7227 | for (i = 0; i < 3; i++) { |
7228 | esym(fliptets[i], newface); |
7229 | bond(newface, fliptets[(i + 1) % 3]); |
7230 | } |
7231 | // Bond to top outer boundary faces (at [a,b,c,d]). |
7232 | for (i = 0; i < 3; i++) { |
7233 | eorgoppo(fliptets[i], newface); // At edges [b,a], [c,b], [a,c]. |
7234 | bond(newface, topcastets[i]); |
7235 | } |
7236 | // Bond bottom outer boundary faces (at [b,a,c,e]). |
7237 | for (i = 0; i < 3; i++) { |
7238 | edestoppo(fliptets[i], newface); // At edges [a,b], [b,c], [c,a]. |
7239 | bond(newface, botcastets[i]); |
7240 | } |
7241 | |
7242 | if (checksubsegflag) { |
7243 | // Bond subsegments if there are. |
7244 | // Each new tet has 5 edges to be checked (except the edge [e,d]). |
7245 | face checkseg; |
7246 | // The middle three: [a,b], [b,c], [c,a]. |
7247 | for (i = 0; i < 3; i++) { |
7248 | if (issubseg(topcastets[i])) { |
7249 | tsspivot1(topcastets[i], checkseg); |
7250 | eorgoppo(fliptets[i], newface); |
7251 | tssbond1(newface, checkseg); |
7252 | sstbond1(checkseg, newface); |
7253 | if (fc->chkencflag & 1) { |
7254 | enqueuesubface(badsubsegs, &checkseg); |
7255 | } |
7256 | } |
7257 | } |
7258 | // The top three: [d,a], [d,b], [d,c]. Two tets per edge. |
7259 | for (i = 0; i < 3; i++) { |
7260 | eprev(topcastets[i], casface); |
7261 | if (issubseg(casface)) { |
7262 | tsspivot1(casface, checkseg); |
7263 | enext(fliptets[i], newface); |
7264 | tssbond1(newface, checkseg); |
7265 | sstbond1(checkseg, newface); |
7266 | esym(fliptets[(i + 2) % 3], newface); |
7267 | eprevself(newface); |
7268 | tssbond1(newface, checkseg); |
7269 | sstbond1(checkseg, newface); |
7270 | if (fc->chkencflag & 1) { |
7271 | enqueuesubface(badsubsegs, &checkseg); |
7272 | } |
7273 | } |
7274 | } |
7275 | // The bot three: [a,e], [b,e], [c,e]. Two tets per edge. |
7276 | for (i = 0; i < 3; i++) { |
7277 | enext(botcastets[i], casface); |
7278 | if (issubseg(casface)) { |
7279 | tsspivot1(casface, checkseg); |
7280 | eprev(fliptets[i], newface); |
7281 | tssbond1(newface, checkseg); |
7282 | sstbond1(checkseg, newface); |
7283 | esym(fliptets[(i + 2) % 3], newface); |
7284 | enextself(newface); |
7285 | tssbond1(newface, checkseg); |
7286 | sstbond1(checkseg, newface); |
7287 | if (fc->chkencflag & 1) { |
7288 | enqueuesubface(badsubsegs, &checkseg); |
7289 | } |
7290 | } |
7291 | } |
7292 | } // if (checksubsegflag) |
7293 | |
7294 | if (checksubfaceflag) { |
7295 | // Bond 6 subfaces if there are. |
7296 | face checksh; |
7297 | for (i = 0; i < 3; i++) { |
7298 | if (issubface(topcastets[i])) { |
7299 | tspivot(topcastets[i], checksh); |
7300 | eorgoppo(fliptets[i], newface); |
7301 | sesymself(checksh); |
7302 | tsbond(newface, checksh); |
7303 | if (fc->chkencflag & 2) { |
7304 | enqueuesubface(badsubfacs, &checksh); |
7305 | } |
7306 | } |
7307 | } |
7308 | for (i = 0; i < 3; i++) { |
7309 | if (issubface(botcastets[i])) { |
7310 | tspivot(botcastets[i], checksh); |
7311 | edestoppo(fliptets[i], newface); |
7312 | sesymself(checksh); |
7313 | tsbond(newface, checksh); |
7314 | if (fc->chkencflag & 2) { |
7315 | enqueuesubface(badsubfacs, &checksh); |
7316 | } |
7317 | } |
7318 | } |
7319 | } // if (checksubfaceflag) |
7320 | |
7321 | if (fc->chkencflag & 4) { |
7322 | // Put three new tets into check list. |
7323 | for (i = 0; i < 3; i++) { |
7324 | enqueuetetrahedron(&(fliptets[i])); |
7325 | } |
7326 | } |
7327 | |
7328 | // Update the point-to-tet map. |
7329 | setpoint2tet(pa, (tetrahedron) fliptets[0].tet); |
7330 | setpoint2tet(pb, (tetrahedron) fliptets[0].tet); |
7331 | setpoint2tet(pc, (tetrahedron) fliptets[1].tet); |
7332 | setpoint2tet(pd, (tetrahedron) fliptets[0].tet); |
7333 | setpoint2tet(pe, (tetrahedron) fliptets[0].tet); |
7334 | |
7335 | if (hullflag > 0) { |
7336 | if (dummyflag != 0) { |
7337 | // Restore the original position of the points (for flipnm()). |
7338 | if (dummyflag == -1) { |
7339 | // Reverse the edge. |
7340 | for (i = 0; i < 3; i++) { |
7341 | esymself(fliptets[i]); |
7342 | } |
7343 | // Swap the last two new tets. |
7344 | newface = fliptets[1]; |
7345 | fliptets[1] = fliptets[2]; |
7346 | fliptets[2] = newface; |
7347 | } else { |
7348 | // either a or b were swapped. |
7349 | if (dummyflag == 1) { |
7350 | // a is dummypoint. |
7351 | newface = fliptets[0]; |
7352 | fliptets[0] = fliptets[2]; |
7353 | fliptets[2] = fliptets[1]; |
7354 | fliptets[1] = newface; |
7355 | } else { // dummyflag == 2 |
7356 | // b is dummypoint. |
7357 | newface = fliptets[0]; |
7358 | fliptets[0] = fliptets[1]; |
7359 | fliptets[1] = fliptets[2]; |
7360 | fliptets[2] = newface; |
7361 | } |
7362 | } |
7363 | } |
7364 | } |
7365 | |
7366 | if (fc->enqflag > 0) { |
7367 | // Queue faces which may be locally non-Delaunay. |
7368 | for (i = 0; i < 3; i++) { |
7369 | eprevesym(fliptets[i], newface); |
7370 | flippush(flipstack, &newface); |
7371 | } |
7372 | if (fc->enqflag > 1) { |
7373 | for (i = 0; i < 3; i++) { |
7374 | enextesym(fliptets[i], newface); |
7375 | flippush(flipstack, &newface); |
7376 | } |
7377 | } |
7378 | } |
7379 | |
7380 | recenttet = fliptets[0]; |
7381 | } |
7382 | |
7383 | /////////////////////////////////////////////////////////////////////////////// |
7384 | // // |
7385 | // flip32() Perform a 3-to-2 flip (edge-to-face flip). // |
7386 | // // |
7387 | // 'fliptets' is an array of three tets (handles), which are [e,d,a,b], // |
7388 | // [e,d,b,c], and [e,d,c,a]. The two new tets: [a,b,c,d] and [b,a,c,e] are // |
7389 | // returned in [0] and [1] of 'fliptets'. As a result, the edge [e,d] is // |
7390 | // replaced by the face [a,b,c]. // |
7391 | // // |
7392 | // If 'hullflag' > 0, hull tets may be involved in this flip, i.e., one of // |
7393 | // the five vertices may be 'dummypoint'. There are two canonical cases: // |
7394 | // (1) d is 'dummypoint', then [a,b,c,d] is hull tet. If e is 'dummypoint',// |
7395 | // we reconfigure e to d, i.e., turnover it. // |
7396 | // (2) c is 'dummypoint' then both [a,b,c,d] and [b,a,c,e] are hull tets. // |
7397 | // If a or b is 'dummypoint', we reconfigure it to c, i.e., rotate the // |
7398 | // three old tets counterclockwisely (right-hand rule) until a or b // |
7399 | // is in c's position. // |
7400 | // // |
7401 | // If 'fc->enqflag' is set, convex hull faces will be queued for flipping. // |
7402 | // In particular, if 'fc->enqflag' is 1, it is called by incrementalflip() // |
7403 | // after the insertion of a new point. It is assumed that 'a' is the new // |
7404 | // point. In this case, only link faces of 'a' are queued. // |
7405 | // // |
7406 | // If 'checksubfaceflag' is on (global variable), and assume [e,d] is not a // |
7407 | // segment. There may be two (interior) subfaces sharing at [e,d], which are // |
7408 | // [e,d,p] and [e,d,q], where the pair (p,q) may be either (a,b), or (b,c), // |
7409 | // or (c,a) In such case, a 2-to-2 flip is performed on these two subfaces // |
7410 | // and two new subfaces [p,q,e] and [p,q,d] are created. They are inserted // |
7411 | // back into the tetrahedralization. // |
7412 | // // |
7413 | /////////////////////////////////////////////////////////////////////////////// |
7414 | |
7415 | void tetgenmesh::flip32(triface* fliptets, int hullflag, flipconstraints *fc) |
7416 | { |
7417 | triface topcastets[3], botcastets[3]; |
7418 | triface newface, casface; |
7419 | face flipshs[3]; |
7420 | face checkseg; |
7421 | point pa, pb, pc, pd, pe; |
7422 | REAL attrib, volume; |
7423 | int dummyflag = 0; // Rangle = {-1, 0, 1, 2} |
7424 | int spivot = -1, scount = 0; // for flip22() |
7425 | int t1ver; |
7426 | int i, j; |
7427 | |
7428 | if (hullflag > 0) { |
7429 | // Check if e is 'dummypoint'. |
7430 | if (org(fliptets[0]) == dummypoint) { |
7431 | // Reverse the edge. |
7432 | for (i = 0; i < 3; i++) { |
7433 | esymself(fliptets[i]); |
7434 | } |
7435 | // Swap the last two tets. |
7436 | newface = fliptets[1]; |
7437 | fliptets[1] = fliptets[2]; |
7438 | fliptets[2] = newface; |
7439 | dummyflag = -1; // e is dummypoint. |
7440 | } else { |
7441 | // Check if a or b is the 'dummypoint'. |
7442 | if (apex(fliptets[0]) == dummypoint) { |
7443 | dummyflag = 1; // a is dummypoint. |
7444 | newface = fliptets[0]; |
7445 | fliptets[0] = fliptets[1]; |
7446 | fliptets[1] = fliptets[2]; |
7447 | fliptets[2] = newface; |
7448 | } else if (apex(fliptets[1]) == dummypoint) { |
7449 | dummyflag = 2; // b is dummypoint. |
7450 | newface = fliptets[0]; |
7451 | fliptets[0] = fliptets[2]; |
7452 | fliptets[2] = fliptets[1]; |
7453 | fliptets[1] = newface; |
7454 | } else { |
7455 | dummyflag = 0; // either c or d may be dummypoint. |
7456 | } |
7457 | } |
7458 | } |
7459 | |
7460 | pa = apex(fliptets[0]); |
7461 | pb = apex(fliptets[1]); |
7462 | pc = apex(fliptets[2]); |
7463 | pd = dest(fliptets[0]); |
7464 | pe = org(fliptets[0]); |
7465 | |
7466 | flip32count++; |
7467 | |
7468 | // Get the outer boundary faces. |
7469 | for (i = 0; i < 3; i++) { |
7470 | eorgoppo(fliptets[i], casface); |
7471 | fsym(casface, topcastets[i]); |
7472 | } |
7473 | for (i = 0; i < 3; i++) { |
7474 | edestoppo(fliptets[i], casface); |
7475 | fsym(casface, botcastets[i]); |
7476 | } |
7477 | |
7478 | if (checksubfaceflag) { |
7479 | // Check if there are interior subfaces at the edge [e,d]. |
7480 | for (i = 0; i < 3; i++) { |
7481 | tspivot(fliptets[i], flipshs[i]); |
7482 | if (flipshs[i].sh != NULL) { |
7483 | // Found an interior subface. |
7484 | stdissolve(flipshs[i]); // Disconnect the sub-tet bond. |
7485 | scount++; |
7486 | } else { |
7487 | spivot = i; |
7488 | } |
7489 | } |
7490 | } |
7491 | |
7492 | // Re-use fliptets[0] and fliptets[1]. |
7493 | fliptets[0].ver = 11; |
7494 | fliptets[1].ver = 11; |
7495 | setelemmarker(fliptets[0].tet, 0); // Clear all flags. |
7496 | setelemmarker(fliptets[1].tet, 0); |
7497 | if (checksubsegflag) { |
7498 | // Dealloc the space to subsegments. |
7499 | if (fliptets[0].tet[8] != NULL) { |
7500 | tet2segpool->dealloc((shellface *) fliptets[0].tet[8]); |
7501 | fliptets[0].tet[8] = NULL; |
7502 | } |
7503 | if (fliptets[1].tet[8] != NULL) { |
7504 | tet2segpool->dealloc((shellface *) fliptets[1].tet[8]); |
7505 | fliptets[1].tet[8] = NULL; |
7506 | } |
7507 | } |
7508 | if (checksubfaceflag) { |
7509 | // Dealloc the space to subfaces. |
7510 | if (fliptets[0].tet[9] != NULL) { |
7511 | tet2subpool->dealloc((shellface *) fliptets[0].tet[9]); |
7512 | fliptets[0].tet[9] = NULL; |
7513 | } |
7514 | if (fliptets[1].tet[9] != NULL) { |
7515 | tet2subpool->dealloc((shellface *) fliptets[1].tet[9]); |
7516 | fliptets[1].tet[9] = NULL; |
7517 | } |
7518 | } |
7519 | if (checksubfaceflag) { |
7520 | if (scount > 0) { |
7521 | // The element attributes and volume constraint must be set correctly. |
7522 | // There are two subfaces involved in this flip. The three tets are |
7523 | // separated into two different regions, one may be exterior. The |
7524 | // first region has two tets, and the second region has only one. |
7525 | // The two created tets must be in the same region as the first region. |
7526 | // The element attributes and volume constraint must be set correctly. |
7527 | //assert(spivot != -1); |
7528 | // The tet fliptets[spivot] is in the first region. |
7529 | for (j = 0; j < 2; j++) { |
7530 | for (i = 0; i < numelemattrib; i++) { |
7531 | attrib = elemattribute(fliptets[spivot].tet, i); |
7532 | setelemattribute(fliptets[j].tet, i, attrib); |
7533 | } |
7534 | if (b->varvolume) { |
7535 | volume = volumebound(fliptets[spivot].tet); |
7536 | setvolumebound(fliptets[j].tet, volume); |
7537 | } |
7538 | } |
7539 | } |
7540 | } |
7541 | // Delete an old tet. |
7542 | tetrahedrondealloc(fliptets[2].tet); |
7543 | |
7544 | if (hullflag > 0) { |
7545 | // Check if c is dummypointc. |
7546 | if (pc != dummypoint) { |
7547 | // Check if d is dummypoint. |
7548 | if (pd != dummypoint) { |
7549 | // No hull tet is involved. |
7550 | } else { |
7551 | // We deleted three hull tets, and created one hull tet. |
7552 | hullsize -= 2; |
7553 | } |
7554 | setvertices(fliptets[0], pa, pb, pc, pd); |
7555 | setvertices(fliptets[1], pb, pa, pc, pe); |
7556 | } else { |
7557 | // c is dummypoint. The two new tets are hull tets. |
7558 | setvertices(fliptets[0], pb, pa, pd, pc); |
7559 | setvertices(fliptets[1], pa, pb, pe, pc); |
7560 | // Adjust badc -> abcd. |
7561 | esymself(fliptets[0]); |
7562 | // Adjust abec -> bace. |
7563 | esymself(fliptets[1]); |
7564 | // The hullsize does not change. |
7565 | } |
7566 | } else { |
7567 | setvertices(fliptets[0], pa, pb, pc, pd); |
7568 | setvertices(fliptets[1], pb, pa, pc, pe); |
7569 | } |
7570 | |
7571 | if (fc->remove_ndelaunay_edge) { // calc_tetprism_vol |
7572 | REAL volneg[3], volpos[2], vol_diff; |
7573 | if (pc != dummypoint) { |
7574 | if (pd != dummypoint) { |
7575 | volneg[0] = tetprismvol(pe, pd, pa, pb); |
7576 | volneg[1] = tetprismvol(pe, pd, pb, pc); |
7577 | volneg[2] = tetprismvol(pe, pd, pc, pa); |
7578 | volpos[0] = tetprismvol(pa, pb, pc, pd); |
7579 | volpos[1] = tetprismvol(pb, pa, pc, pe); |
7580 | } else { // pd == dummypoint |
7581 | volneg[0] = 0.; |
7582 | volneg[1] = 0.; |
7583 | volneg[2] = 0.; |
7584 | volpos[0] = 0.; |
7585 | volpos[1] = tetprismvol(pb, pa, pc, pe); |
7586 | } |
7587 | } else { // pc == dummypoint. |
7588 | volneg[0] = tetprismvol(pe, pd, pa, pb); |
7589 | volneg[1] = 0.; |
7590 | volneg[2] = 0.; |
7591 | volpos[0] = 0.; |
7592 | volpos[1] = 0.; |
7593 | } |
7594 | vol_diff = volpos[0] + volpos[1] - volneg[0] - volneg[1] - volneg[2]; |
7595 | fc->tetprism_vol_sum += vol_diff; // Update the total sum. |
7596 | } |
7597 | |
7598 | // Bond abcd <==> bace. |
7599 | bond(fliptets[0], fliptets[1]); |
7600 | // Bond new faces to top outer boundary faces (at abcd). |
7601 | for (i = 0; i < 3; i++) { |
7602 | esym(fliptets[0], newface); |
7603 | bond(newface, topcastets[i]); |
7604 | enextself(fliptets[0]); |
7605 | } |
7606 | // Bond new faces to bottom outer boundary faces (at bace). |
7607 | for (i = 0; i < 3; i++) { |
7608 | esym(fliptets[1], newface); |
7609 | bond(newface, botcastets[i]); |
7610 | eprevself(fliptets[1]); |
7611 | } |
7612 | |
7613 | if (checksubsegflag) { |
7614 | // Bond 9 segments to new (flipped) tets. |
7615 | for (i = 0; i < 3; i++) { // edges a->b, b->c, c->a. |
7616 | if (issubseg(topcastets[i])) { |
7617 | tsspivot1(topcastets[i], checkseg); |
7618 | tssbond1(fliptets[0], checkseg); |
7619 | sstbond1(checkseg, fliptets[0]); |
7620 | tssbond1(fliptets[1], checkseg); |
7621 | sstbond1(checkseg, fliptets[1]); |
7622 | if (fc->chkencflag & 1) { |
7623 | enqueuesubface(badsubsegs, &checkseg); |
7624 | } |
7625 | } |
7626 | enextself(fliptets[0]); |
7627 | eprevself(fliptets[1]); |
7628 | } |
7629 | // The three top edges. |
7630 | for (i = 0; i < 3; i++) { // edges b->d, c->d, a->d. |
7631 | esym(fliptets[0], newface); |
7632 | eprevself(newface); |
7633 | enext(topcastets[i], casface); |
7634 | if (issubseg(casface)) { |
7635 | tsspivot1(casface, checkseg); |
7636 | tssbond1(newface, checkseg); |
7637 | sstbond1(checkseg, newface); |
7638 | if (fc->chkencflag & 1) { |
7639 | enqueuesubface(badsubsegs, &checkseg); |
7640 | } |
7641 | } |
7642 | enextself(fliptets[0]); |
7643 | } |
7644 | // The three bot edges. |
7645 | for (i = 0; i < 3; i++) { // edges b<-e, c<-e, a<-e. |
7646 | esym(fliptets[1], newface); |
7647 | enextself(newface); |
7648 | eprev(botcastets[i], casface); |
7649 | if (issubseg(casface)) { |
7650 | tsspivot1(casface, checkseg); |
7651 | tssbond1(newface, checkseg); |
7652 | sstbond1(checkseg, newface); |
7653 | if (fc->chkencflag & 1) { |
7654 | enqueuesubface(badsubsegs, &checkseg); |
7655 | } |
7656 | } |
7657 | eprevself(fliptets[1]); |
7658 | } |
7659 | } // if (checksubsegflag) |
7660 | |
7661 | if (checksubfaceflag) { |
7662 | face checksh; |
7663 | // Bond the top three casing subfaces. |
7664 | for (i = 0; i < 3; i++) { // At edges [b,a], [c,b], [a,c] |
7665 | if (issubface(topcastets[i])) { |
7666 | tspivot(topcastets[i], checksh); |
7667 | esym(fliptets[0], newface); |
7668 | sesymself(checksh); |
7669 | tsbond(newface, checksh); |
7670 | if (fc->chkencflag & 2) { |
7671 | enqueuesubface(badsubfacs, &checksh); |
7672 | } |
7673 | } |
7674 | enextself(fliptets[0]); |
7675 | } |
7676 | // Bond the bottom three casing subfaces. |
7677 | for (i = 0; i < 3; i++) { // At edges [a,b], [b,c], [c,a] |
7678 | if (issubface(botcastets[i])) { |
7679 | tspivot(botcastets[i], checksh); |
7680 | esym(fliptets[1], newface); |
7681 | sesymself(checksh); |
7682 | tsbond(newface, checksh); |
7683 | if (fc->chkencflag & 2) { |
7684 | enqueuesubface(badsubfacs, &checksh); |
7685 | } |
7686 | } |
7687 | eprevself(fliptets[1]); |
7688 | } |
7689 | |
7690 | if (scount > 0) { |
7691 | face flipfaces[2]; |
7692 | // Perform a 2-to-2 flip in subfaces. |
7693 | flipfaces[0] = flipshs[(spivot + 1) % 3]; |
7694 | flipfaces[1] = flipshs[(spivot + 2) % 3]; |
7695 | sesymself(flipfaces[1]); |
7696 | flip22(flipfaces, 0, fc->chkencflag); |
7697 | // Connect the flipped subfaces to flipped tets. |
7698 | // First go to the corresponding flipping edge. |
7699 | // Re-use top- and botcastets[0]. |
7700 | topcastets[0] = fliptets[0]; |
7701 | botcastets[0] = fliptets[1]; |
7702 | for (i = 0; i < ((spivot + 1) % 3); i++) { |
7703 | enextself(topcastets[0]); |
7704 | eprevself(botcastets[0]); |
7705 | } |
7706 | // Connect the top subface to the top tets. |
7707 | esymself(topcastets[0]); |
7708 | sesymself(flipfaces[0]); |
7709 | // Check if there already exists a subface. |
7710 | tspivot(topcastets[0], checksh); |
7711 | if (checksh.sh == NULL) { |
7712 | tsbond(topcastets[0], flipfaces[0]); |
7713 | fsymself(topcastets[0]); |
7714 | sesymself(flipfaces[0]); |
7715 | tsbond(topcastets[0], flipfaces[0]); |
7716 | } else { |
7717 | // An invalid 2-to-2 flip. Report a bug. |
7718 | terminatetetgen(this, 2); |
7719 | } |
7720 | // Connect the bot subface to the bottom tets. |
7721 | esymself(botcastets[0]); |
7722 | sesymself(flipfaces[1]); |
7723 | // Check if there already exists a subface. |
7724 | tspivot(botcastets[0], checksh); |
7725 | if (checksh.sh == NULL) { |
7726 | tsbond(botcastets[0], flipfaces[1]); |
7727 | fsymself(botcastets[0]); |
7728 | sesymself(flipfaces[1]); |
7729 | tsbond(botcastets[0], flipfaces[1]); |
7730 | } else { |
7731 | // An invalid 2-to-2 flip. Report a bug. |
7732 | terminatetetgen(this, 2); |
7733 | } |
7734 | } // if (scount > 0) |
7735 | } // if (checksubfaceflag) |
7736 | |
7737 | if (fc->chkencflag & 4) { |
7738 | // Put two new tets into check list. |
7739 | for (i = 0; i < 2; i++) { |
7740 | enqueuetetrahedron(&(fliptets[i])); |
7741 | } |
7742 | } |
7743 | |
7744 | setpoint2tet(pa, (tetrahedron) fliptets[0].tet); |
7745 | setpoint2tet(pb, (tetrahedron) fliptets[0].tet); |
7746 | setpoint2tet(pc, (tetrahedron) fliptets[0].tet); |
7747 | setpoint2tet(pd, (tetrahedron) fliptets[0].tet); |
7748 | setpoint2tet(pe, (tetrahedron) fliptets[1].tet); |
7749 | |
7750 | if (hullflag > 0) { |
7751 | if (dummyflag != 0) { |
7752 | // Restore the original position of the points (for flipnm()). |
7753 | if (dummyflag == -1) { |
7754 | // e were dummypoint. Swap the two new tets. |
7755 | newface = fliptets[0]; |
7756 | fliptets[0] = fliptets[1]; |
7757 | fliptets[1] = newface; |
7758 | } else { |
7759 | // a or b was dummypoint. |
7760 | if (dummyflag == 1) { |
7761 | eprevself(fliptets[0]); |
7762 | enextself(fliptets[1]); |
7763 | } else { // dummyflag == 2 |
7764 | enextself(fliptets[0]); |
7765 | eprevself(fliptets[1]); |
7766 | } |
7767 | } |
7768 | } |
7769 | } |
7770 | |
7771 | if (fc->enqflag > 0) { |
7772 | // Queue faces which may be locally non-Delaunay. |
7773 | // pa = org(fliptets[0]); // 'a' may be a new vertex. |
7774 | enextesym(fliptets[0], newface); |
7775 | flippush(flipstack, &newface); |
7776 | eprevesym(fliptets[1], newface); |
7777 | flippush(flipstack, &newface); |
7778 | if (fc->enqflag > 1) { |
7779 | //pb = dest(fliptets[0]); |
7780 | eprevesym(fliptets[0], newface); |
7781 | flippush(flipstack, &newface); |
7782 | enextesym(fliptets[1], newface); |
7783 | flippush(flipstack, &newface); |
7784 | //pc = apex(fliptets[0]); |
7785 | esym(fliptets[0], newface); |
7786 | flippush(flipstack, &newface); |
7787 | esym(fliptets[1], newface); |
7788 | flippush(flipstack, &newface); |
7789 | } |
7790 | } |
7791 | |
7792 | recenttet = fliptets[0]; |
7793 | } |
7794 | |
7795 | /////////////////////////////////////////////////////////////////////////////// |
7796 | // // |
7797 | // flip41() Perform a 4-to-1 flip (Remove a vertex). // |
7798 | // // |
7799 | // 'fliptets' is an array of four tetrahedra in the star of the removing // |
7800 | // vertex 'p'. Let the four vertices in the star of p be a, b, c, and d. The // |
7801 | // four tets in 'fliptets' are: [p,d,a,b], [p,d,b,c], [p,d,c,a], and [a,b,c, // |
7802 | // p]. On return, 'fliptets[0]' is the new tet [a,b,c,d]. // |
7803 | // // |
7804 | // If 'hullflag' is set (> 0), one of the five vertices may be 'dummypoint'. // |
7805 | // The 'hullsize' may be changed. Note that p may be dummypoint. In this // |
7806 | // case, four hull tets are replaced by one real tet. // |
7807 | // // |
7808 | // If 'checksubface' flag is set (>0), it is possible that there are three // |
7809 | // interior subfaces connecting at p. If so, a 3-to-1 flip is performed to // |
7810 | // to remove p from the surface triangulation. // |
7811 | // // |
7812 | // If it is called by the routine incrementalflip(), we assume that d is the // |
7813 | // newly inserted vertex. // |
7814 | // // |
7815 | /////////////////////////////////////////////////////////////////////////////// |
7816 | |
7817 | void tetgenmesh::flip41(triface* fliptets, int hullflag, flipconstraints *fc) |
7818 | { |
7819 | triface topcastets[3], botcastet; |
7820 | triface newface, neightet; |
7821 | face flipshs[4]; |
7822 | point pa, pb, pc, pd, pp; |
7823 | int dummyflag = 0; // in {0, 1, 2, 3, 4} |
7824 | int spivot = -1, scount = 0; |
7825 | int t1ver; |
7826 | int i; |
7827 | |
7828 | pa = org(fliptets[3]); |
7829 | pb = dest(fliptets[3]); |
7830 | pc = apex(fliptets[3]); |
7831 | pd = dest(fliptets[0]); |
7832 | pp = org(fliptets[0]); // The removing vertex. |
7833 | |
7834 | flip41count++; |
7835 | |
7836 | // Get the outer boundary faces. |
7837 | for (i = 0; i < 3; i++) { |
7838 | enext(fliptets[i], topcastets[i]); |
7839 | fnextself(topcastets[i]); // [d,a,b,#], [d,b,c,#], [d,c,a,#] |
7840 | enextself(topcastets[i]); // [a,b,d,#], [b,c,d,#], [c,a,d,#] |
7841 | } |
7842 | fsym(fliptets[3], botcastet); // [b,a,c,#] |
7843 | |
7844 | if (checksubfaceflag) { |
7845 | // Check if there are three subfaces at 'p'. |
7846 | // Re-use 'newface'. |
7847 | for (i = 0; i < 3; i++) { |
7848 | fnext(fliptets[3], newface); // [a,b,p,d],[b,c,p,d],[c,a,p,d]. |
7849 | tspivot(newface, flipshs[i]); |
7850 | if (flipshs[i].sh != NULL) { |
7851 | spivot = i; // Remember this subface. |
7852 | scount++; |
7853 | } |
7854 | enextself(fliptets[3]); |
7855 | } |
7856 | if (scount > 0) { |
7857 | // There are three subfaces connecting at p. |
7858 | if (scount < 3) { |
7859 | // The new subface is one of {[a,b,d], [b,c,d], [c,a,d]}. |
7860 | assert(scount == 1); // spivot >= 0 |
7861 | // Go to the tet containing the three subfaces. |
7862 | fsym(topcastets[spivot], neightet); |
7863 | // Get the three subfaces connecting at p. |
7864 | for (i = 0; i < 3; i++) { |
7865 | esym(neightet, newface); |
7866 | tspivot(newface, flipshs[i]); |
7867 | assert(flipshs[i].sh != NULL); |
7868 | eprevself(neightet); |
7869 | } |
7870 | } else { |
7871 | spivot = 3; // The new subface is [a,b,c]. |
7872 | } |
7873 | } |
7874 | } // if (checksubfaceflag) |
7875 | |
7876 | |
7877 | // Re-use fliptets[0] for [a,b,c,d]. |
7878 | fliptets[0].ver = 11; |
7879 | setelemmarker(fliptets[0].tet, 0); // Clean all flags. |
7880 | // NOTE: the element attributes and volume constraint remain unchanged. |
7881 | if (checksubsegflag) { |
7882 | // Dealloc the space to subsegments. |
7883 | if (fliptets[0].tet[8] != NULL) { |
7884 | tet2segpool->dealloc((shellface *) fliptets[0].tet[8]); |
7885 | fliptets[0].tet[8] = NULL; |
7886 | } |
7887 | } |
7888 | if (checksubfaceflag) { |
7889 | // Dealloc the space to subfaces. |
7890 | if (fliptets[0].tet[9] != NULL) { |
7891 | tet2subpool->dealloc((shellface *) fliptets[0].tet[9]); |
7892 | fliptets[0].tet[9] = NULL; |
7893 | } |
7894 | } |
7895 | // Delete the other three tets. |
7896 | for (i = 1; i < 4; i++) { |
7897 | tetrahedrondealloc(fliptets[i].tet); |
7898 | } |
7899 | |
7900 | if (pp != dummypoint) { |
7901 | // Mark the point pp as unused. |
7902 | setpointtype(pp, UNUSEDVERTEX); |
7903 | unuverts++; |
7904 | } |
7905 | |
7906 | // Create the new tet [a,b,c,d]. |
7907 | if (hullflag > 0) { |
7908 | // One of the five vertices may be 'dummypoint'. |
7909 | if (pa == dummypoint) { |
7910 | // pa is dummypoint. |
7911 | setvertices(fliptets[0], pc, pb, pd, pa); |
7912 | esymself(fliptets[0]); // [b,c,a,d] |
7913 | eprevself(fliptets[0]); // [a,b,c,d] |
7914 | dummyflag = 1; |
7915 | } else if (pb == dummypoint) { |
7916 | setvertices(fliptets[0], pa, pc, pd, pb); |
7917 | esymself(fliptets[0]); // [c,a,b,d] |
7918 | enextself(fliptets[0]); // [a,b,c,d] |
7919 | dummyflag = 2; |
7920 | } else if (pc == dummypoint) { |
7921 | setvertices(fliptets[0], pb, pa, pd, pc); |
7922 | esymself(fliptets[0]); // [a,b,c,d] |
7923 | dummyflag = 3; |
7924 | } else if (pd == dummypoint) { |
7925 | setvertices(fliptets[0], pa, pb, pc, pd); |
7926 | dummyflag = 4; |
7927 | } else { |
7928 | setvertices(fliptets[0], pa, pb, pc, pd); |
7929 | if (pp == dummypoint) { |
7930 | dummyflag = -1; |
7931 | } else { |
7932 | dummyflag = 0; |
7933 | } |
7934 | } |
7935 | if (dummyflag > 0) { |
7936 | // We deleted 3 hull tets, and create 1 hull tet. |
7937 | hullsize -= 2; |
7938 | } else if (dummyflag < 0) { |
7939 | // We deleted 4 hull tets. |
7940 | hullsize -= 4; |
7941 | // meshedges does not change. |
7942 | } |
7943 | } else { |
7944 | setvertices(fliptets[0], pa, pb, pc, pd); |
7945 | } |
7946 | |
7947 | if (fc->remove_ndelaunay_edge) { // calc_tetprism_vol |
7948 | REAL volneg[4], volpos[1], vol_diff; |
7949 | if (dummyflag > 0) { |
7950 | if (pa == dummypoint) { |
7951 | volneg[0] = 0.; |
7952 | volneg[1] = tetprismvol(pp, pd, pb, pc); |
7953 | volneg[2] = 0.; |
7954 | volneg[3] = 0.; |
7955 | } else if (pb == dummypoint) { |
7956 | volneg[0] = 0.; |
7957 | volneg[1] = 0.; |
7958 | volneg[2] = tetprismvol(pp, pd, pc, pa); |
7959 | volneg[3] = 0.; |
7960 | } else if (pc == dummypoint) { |
7961 | volneg[0] = tetprismvol(pp, pd, pa, pb); |
7962 | volneg[1] = 0.; |
7963 | volneg[2] = 0.; |
7964 | volneg[3] = 0.; |
7965 | } else { // pd == dummypoint |
7966 | volneg[0] = 0.; |
7967 | volneg[1] = 0.; |
7968 | volneg[2] = 0.; |
7969 | volneg[3] = tetprismvol(pa, pb, pc, pp); |
7970 | } |
7971 | volpos[0] = 0.; |
7972 | } else if (dummyflag < 0) { |
7973 | volneg[0] = 0.; |
7974 | volneg[1] = 0.; |
7975 | volneg[2] = 0.; |
7976 | volneg[3] = 0.; |
7977 | volpos[0] = tetprismvol(pa, pb, pc, pd); |
7978 | } else { |
7979 | volneg[0] = tetprismvol(pp, pd, pa, pb); |
7980 | volneg[1] = tetprismvol(pp, pd, pb, pc); |
7981 | volneg[2] = tetprismvol(pp, pd, pc, pa); |
7982 | volneg[3] = tetprismvol(pa, pb, pc, pp); |
7983 | volpos[0] = tetprismvol(pa, pb, pc, pd); |
7984 | } |
7985 | vol_diff = volpos[0] - volneg[0] - volneg[1] - volneg[2] - volneg[3]; |
7986 | fc->tetprism_vol_sum += vol_diff; // Update the total sum. |
7987 | } |
7988 | |
7989 | // Bond the new tet to adjacent tets. |
7990 | for (i = 0; i < 3; i++) { |
7991 | esym(fliptets[0], newface); // At faces [b,a,d], [c,b,d], [a,c,d]. |
7992 | bond(newface, topcastets[i]); |
7993 | enextself(fliptets[0]); |
7994 | } |
7995 | bond(fliptets[0], botcastet); |
7996 | |
7997 | if (checksubsegflag) { |
7998 | face checkseg; |
7999 | // Bond 6 segments (at edges of [a,b,c,d]) if there there are. |
8000 | for (i = 0; i < 3; i++) { |
8001 | eprev(topcastets[i], newface); // At edges [d,a],[d,b],[d,c]. |
8002 | if (issubseg(newface)) { |
8003 | tsspivot1(newface, checkseg); |
8004 | esym(fliptets[0], newface); |
8005 | enextself(newface); // At edges [a,d], [b,d], [c,d]. |
8006 | tssbond1(newface, checkseg); |
8007 | sstbond1(checkseg, newface); |
8008 | if (fc->chkencflag & 1) { |
8009 | enqueuesubface(badsubsegs, &checkseg); |
8010 | } |
8011 | } |
8012 | enextself(fliptets[0]); |
8013 | } |
8014 | for (i = 0; i < 3; i++) { |
8015 | if (issubseg(topcastets[i])) { |
8016 | tsspivot1(topcastets[i], checkseg); // At edges [a,b],[b,c],[c,a]. |
8017 | tssbond1(fliptets[0], checkseg); |
8018 | sstbond1(checkseg, fliptets[0]); |
8019 | if (fc->chkencflag & 1) { |
8020 | enqueuesubface(badsubsegs, &checkseg); |
8021 | } |
8022 | } |
8023 | enextself(fliptets[0]); |
8024 | } |
8025 | } |
8026 | |
8027 | if (checksubfaceflag) { |
8028 | face checksh; |
8029 | // Bond 4 subfaces (at faces of [a,b,c,d]) if there are. |
8030 | for (i = 0; i < 3; i++) { |
8031 | if (issubface(topcastets[i])) { |
8032 | tspivot(topcastets[i], checksh); // At faces [a,b,d],[b,c,d],[c,a,d] |
8033 | esym(fliptets[0], newface); // At faces [b,a,d],[c,b,d],[a,c,d] |
8034 | sesymself(checksh); |
8035 | tsbond(newface, checksh); |
8036 | if (fc->chkencflag & 2) { |
8037 | enqueuesubface(badsubfacs, &checksh); |
8038 | } |
8039 | } |
8040 | enextself(fliptets[0]); |
8041 | } |
8042 | if (issubface(botcastet)) { |
8043 | tspivot(botcastet, checksh); // At face [b,a,c] |
8044 | sesymself(checksh); |
8045 | tsbond(fliptets[0], checksh); |
8046 | if (fc->chkencflag & 2) { |
8047 | enqueuesubface(badsubfacs, &checksh); |
8048 | } |
8049 | } |
8050 | |
8051 | if (spivot >= 0) { |
8052 | // Perform a 3-to-1 flip in surface triangulation. |
8053 | // Depending on the value of 'spivot', the three subfaces are: |
8054 | // - 0: [a,b,p], [b,d,p], [d,a,p] |
8055 | // - 1: [b,c,p], [c,d,p], [d,b,p] |
8056 | // - 2: [c,a,p], [a,d,p], [d,c,p] |
8057 | // - 3: [a,b,p], [b,c,p], [c,a,p] |
8058 | // Adjust the three subfaces such that their origins are p, i.e., |
8059 | // - 3: [p,a,b], [p,b,c], [p,c,a]. (Required by the flip31()). |
8060 | for (i = 0; i < 3; i++) { |
8061 | senext2self(flipshs[i]); |
8062 | } |
8063 | flip31(flipshs, 0); |
8064 | // Delete the three old subfaces. |
8065 | for (i = 0; i < 3; i++) { |
8066 | shellfacedealloc(subfaces, flipshs[i].sh); |
8067 | } |
8068 | if (spivot < 3) { |
8069 | // // Bond the new subface to the new tet [a,b,c,d]. |
8070 | tsbond(topcastets[spivot], flipshs[3]); |
8071 | fsym(topcastets[spivot], newface); |
8072 | sesym(flipshs[3], checksh); |
8073 | tsbond(newface, checksh); |
8074 | } else { |
8075 | // Bound the new subface [a,b,c] to the new tet [a,b,c,d]. |
8076 | tsbond(fliptets[0], flipshs[3]); |
8077 | fsym(fliptets[0], newface); |
8078 | sesym(flipshs[3], checksh); |
8079 | tsbond(newface, checksh); |
8080 | } |
8081 | } // if (spivot > 0) |
8082 | } // if (checksubfaceflag) |
8083 | |
8084 | if (fc->chkencflag & 4) { |
8085 | enqueuetetrahedron(&(fliptets[0])); |
8086 | } |
8087 | |
8088 | // Update the point-to-tet map. |
8089 | setpoint2tet(pa, (tetrahedron) fliptets[0].tet); |
8090 | setpoint2tet(pb, (tetrahedron) fliptets[0].tet); |
8091 | setpoint2tet(pc, (tetrahedron) fliptets[0].tet); |
8092 | setpoint2tet(pd, (tetrahedron) fliptets[0].tet); |
8093 | |
8094 | if (fc->enqflag > 0) { |
8095 | // Queue faces which may be locally non-Delaunay. |
8096 | flippush(flipstack, &(fliptets[0])); // [a,b,c] (opposite to new point). |
8097 | if (fc->enqflag > 1) { |
8098 | for (i = 0; i < 3; i++) { |
8099 | esym(fliptets[0], newface); |
8100 | flippush(flipstack, &newface); |
8101 | enextself(fliptets[0]); |
8102 | } |
8103 | } |
8104 | } |
8105 | |
8106 | recenttet = fliptets[0]; |
8107 | } |
8108 | |
8109 | /////////////////////////////////////////////////////////////////////////////// |
8110 | // // |
8111 | // flipnm() Flip an edge through a sequence of elementary flips. // |
8112 | // // |
8113 | // 'abtets' is an array of 'n' tets in the star of edge [a,b].These tets are // |
8114 | // ordered in a counterclockwise cycle with respect to the vector a->b, i.e.,// |
8115 | // use the right-hand rule. // |
8116 | // // |
8117 | // 'level' (>= 0) indicates the current link level. If 'level > 0', we are // |
8118 | // flipping a link edge of an edge [a',b'], and 'abedgepivot' indicates // |
8119 | // which link edge, i.e., [c',b'] or [a',c'], is [a,b] These two parameters // |
8120 | // allow us to determine the new tets after a 3-to-2 flip, i.e., tets that // |
8121 | // do not inside the reduced star of edge [a',b']. // |
8122 | // // |
8123 | // If the flag 'fc->unflip' is set, this routine un-does the flips performed // |
8124 | // in flipnm([a,b]) so that the mesh is returned to its original state // |
8125 | // before doing the flipnm([a,b]) operation. // |
8126 | // // |
8127 | // The return value is an integer nn, where nn <= n. If nn is 2, then the // |
8128 | // edge is flipped. The first and the second tets in 'abtets' are new tets. // |
8129 | // Otherwise, nn > 2, the edge is not flipped, and nn is the number of tets // |
8130 | // in the current star of [a,b]. // |
8131 | // // |
8132 | // ASSUMPTIONS: // |
8133 | // - Neither a nor b is 'dummypoint'. // |
8134 | // - [a,b] must not be a segment. // |
8135 | // // |
8136 | /////////////////////////////////////////////////////////////////////////////// |
8137 | |
8138 | int tetgenmesh::flipnm(triface* abtets, int n, int level, int abedgepivot, |
8139 | flipconstraints* fc) |
8140 | { |
8141 | triface fliptets[3], spintet, flipedge; |
8142 | triface *tmpabtets, *parytet; |
8143 | point pa, pb, pc, pd, pe, pf; |
8144 | REAL ori; |
8145 | int hullflag, hulledgeflag; |
8146 | int reducflag, rejflag; |
8147 | int reflexlinkedgecount; |
8148 | int edgepivot; |
8149 | int n1, nn; |
8150 | int t1ver; |
8151 | int i, j; |
8152 | |
8153 | pa = org(abtets[0]); |
8154 | pb = dest(abtets[0]); |
8155 | |
8156 | if (n > 3) { |
8157 | // Try to reduce the size of the Star(ab) by flipping a face in it. |
8158 | reflexlinkedgecount = 0; |
8159 | |
8160 | for (i = 0; i < n; i++) { |
8161 | // Let the face of 'abtets[i]' be [a,b,c]. |
8162 | if (checksubfaceflag) { |
8163 | if (issubface(abtets[i])) { |
8164 | continue; // Skip a subface. |
8165 | } |
8166 | } |
8167 | // Do not flip this face if it is involved in two Stars. |
8168 | if ((elemcounter(abtets[i]) > 1) || |
8169 | (elemcounter(abtets[(i - 1 + n) % n]) > 1)) { |
8170 | continue; |
8171 | } |
8172 | |
8173 | pc = apex(abtets[i]); |
8174 | pd = apex(abtets[(i + 1) % n]); |
8175 | pe = apex(abtets[(i - 1 + n) % n]); |
8176 | if ((pd == dummypoint) || (pe == dummypoint)) { |
8177 | continue; // [a,b,c] is a hull face. |
8178 | } |
8179 | |
8180 | |
8181 | // Decide whether [a,b,c] is flippable or not. |
8182 | reducflag = 0; |
8183 | |
8184 | hullflag = (pc == dummypoint); // pc may be dummypoint. |
8185 | hulledgeflag = 0; |
8186 | if (hullflag == 0) { |
8187 | ori = orient3d(pb, pc, pd, pe); // Is [b,c] locally convex? |
8188 | if (ori > 0) { |
8189 | ori = orient3d(pc, pa, pd, pe); // Is [c,a] locally convex? |
8190 | if (ori > 0) { |
8191 | // Test if [a,b] is locally convex OR flat. |
8192 | ori = orient3d(pa, pb, pd, pe); |
8193 | if (ori > 0) { |
8194 | // Found a 2-to-3 flip: [a,b,c] => [e,d] |
8195 | reducflag = 1; |
8196 | } else if (ori == 0) { |
8197 | // [a,b] is flat. |
8198 | if (n == 4) { |
8199 | // The "flat" tet can be removed immediately by a 3-to-2 flip. |
8200 | reducflag = 1; |
8201 | // Check if [e,d] is a hull edge. |
8202 | pf = apex(abtets[(i + 2) % n]); |
8203 | hulledgeflag = (pf == dummypoint); |
8204 | } |
8205 | } |
8206 | } |
8207 | } |
8208 | if (!reducflag) { |
8209 | reflexlinkedgecount++; |
8210 | } |
8211 | } else { |
8212 | // 'c' is dummypoint. |
8213 | if (n == 4) { |
8214 | // Let the vertex opposite to 'c' is 'f'. |
8215 | // A 4-to-4 flip is possible if the two tets [d,e,f,a] and [e,d,f,b] |
8216 | // are valid tets. |
8217 | // Note: When the mesh is not convex, it is possible that [a,b] is |
8218 | // locally non-convex (at hull faces [a,b,e] and [b,a,d]). |
8219 | // In this case, an edge flip [a,b] to [e,d] is still possible. |
8220 | pf = apex(abtets[(i + 2) % n]); |
8221 | assert(pf != dummypoint); |
8222 | ori = orient3d(pd, pe, pf, pa); |
8223 | if (ori < 0) { |
8224 | ori = orient3d(pe, pd, pf, pb); |
8225 | if (ori < 0) { |
8226 | // Found a 4-to-4 flip: [a,b] => [e,d] |
8227 | reducflag = 1; |
8228 | ori = 0; // Signal as a 4-to-4 flip (like a co-planar case). |
8229 | hulledgeflag = 1; // [e,d] is a hull edge. |
8230 | } |
8231 | } |
8232 | } |
8233 | } // if (hullflag) |
8234 | |
8235 | if (reducflag) { |
8236 | if (nonconvex && hulledgeflag) { |
8237 | // We will create a hull edge [e,d]. Make sure it does not exist. |
8238 | if (getedge(pe, pd, &spintet)) { |
8239 | // The 2-to-3 flip is not a topological valid flip. |
8240 | reducflag = 0; |
8241 | } |
8242 | } |
8243 | } |
8244 | |
8245 | if (reducflag) { |
8246 | // [a,b,c] could be removed by a 2-to-3 flip. |
8247 | rejflag = 0; |
8248 | if (fc->checkflipeligibility) { |
8249 | // Check if the flip can be performed. |
8250 | rejflag = checkflipeligibility(1, pa, pb, pc, pd, pe, level, |
8251 | abedgepivot, fc); |
8252 | } |
8253 | if (!rejflag) { |
8254 | // Do flip: [a,b,c] => [e,d]. |
8255 | fliptets[0] = abtets[i]; |
8256 | fsym(fliptets[0], fliptets[1]); // abtets[i-1]. |
8257 | flip23(fliptets, hullflag, fc); |
8258 | |
8259 | // Shrink the array 'abtets', maintain the original order. |
8260 | // Two tets 'abtets[i-1] ([a,b,e,c])' and 'abtets[i] ([a,b,c,d])' |
8261 | // are flipped, i.e., they do not in Star(ab) anymore. |
8262 | // 'fliptets[0]' ([e,d,a,b]) is in Star(ab), it is saved in |
8263 | // 'abtets[i-1]' (adjust it to be [a,b,e,d]), see below: |
8264 | // |
8265 | // before after |
8266 | // [0] |___________| [0] |___________| |
8267 | // ... |___________| ... |___________| |
8268 | // [i-1] |_[a,b,e,c]_| [i-1] |_[a,b,e,d]_| |
8269 | // [i] |_[a,b,c,d]_| --> [i] |_[a,b,d,#]_| |
8270 | // [i+1] |_[a,b,d,#]_| [i+1] |_[a,b,#,*]_| |
8271 | // ... |___________| ... |___________| |
8272 | // [n-2] |___________| [n-2] |___________| |
8273 | // [n-1] |___________| [n-1] |_[i]_2-t-3_| |
8274 | // |
8275 | edestoppoself(fliptets[0]); // [a,b,e,d] |
8276 | // Increase the counter of this new tet (it is in Star(ab)). |
8277 | increaseelemcounter(fliptets[0]); |
8278 | abtets[(i - 1 + n) % n] = fliptets[0]; |
8279 | for (j = i; j < n - 1; j++) { |
8280 | abtets[j] = abtets[j + 1]; // Upshift |
8281 | } |
8282 | // The last entry 'abtets[n-1]' is empty. It is used in two ways: |
8283 | // (i) it remembers the vertex 'c' (in 'abtets[n-1].tet'), and |
8284 | // (ii) it remembers the position [i] where this flip took place. |
8285 | // These informations let us to either undo this flip or recover |
8286 | // the original edge link (for collecting new created tets). |
8287 | //abtets[n - 1] = fliptets[1]; // [e,d,b,c] is remembered. |
8288 | abtets[n - 1].tet = (tetrahedron *) pc; |
8289 | abtets[n - 1].ver = 0; // Clear it. |
8290 | // 'abtets[n - 1].ver' is in range [0,11] -- only uses 4 bits. |
8291 | // Use the 5th bit in 'abtets[n - 1].ver' to signal a 2-to-3 flip. |
8292 | abtets[n - 1].ver |= (1 << 4); |
8293 | // The poisition [i] of this flip is saved above the 7th bit. |
8294 | abtets[n - 1].ver |= (i << 6); |
8295 | |
8296 | if (fc->collectnewtets) { |
8297 | // Push the two new tets [e,d,b,c] and [e,d,c,a] into a stack. |
8298 | // Re-use the global array 'cavetetlist'. |
8299 | for (j = 1; j < 3; j++) { |
8300 | cavetetlist->newindex((void **) &parytet); |
8301 | *parytet = fliptets[j]; // fliptets[1], fliptets[2]. |
8302 | } |
8303 | } |
8304 | |
8305 | // Star(ab) is reduced. Try to flip the edge [a,b]. |
8306 | nn = flipnm(abtets, n - 1, level, abedgepivot, fc); |
8307 | |
8308 | if (nn == 2) { |
8309 | // The edge has been flipped. |
8310 | return nn; |
8311 | } else { // if (nn > 2) |
8312 | // The edge is not flipped. |
8313 | if (fc->unflip || (ori == 0)) { |
8314 | // Undo the previous 2-to-3 flip, i.e., do a 3-to-2 flip to |
8315 | // transform [e,d] => [a,b,c]. |
8316 | // 'ori == 0' means that the previous flip created a degenerated |
8317 | // tet. It must be removed. |
8318 | // Remember that 'abtets[i-1]' is [a,b,e,d]. We can use it to |
8319 | // find another two tets [e,d,b,c] and [e,d,c,a]. |
8320 | fliptets[0] = abtets[(i-1 + (n-1)) % (n-1)]; // [a,b,e,d] |
8321 | edestoppoself(fliptets[0]); // [e,d,a,b] |
8322 | fnext(fliptets[0], fliptets[1]); // [1] is [e,d,b,c] |
8323 | fnext(fliptets[1], fliptets[2]); // [2] is [e,d,c,a] |
8324 | assert(apex(fliptets[0]) == oppo(fliptets[2])); // SELF_CHECK |
8325 | // Restore the two original tets in Star(ab). |
8326 | flip32(fliptets, hullflag, fc); |
8327 | // Marktest the two restored tets in Star(ab). |
8328 | for (j = 0; j < 2; j++) { |
8329 | increaseelemcounter(fliptets[j]); |
8330 | } |
8331 | // Expand the array 'abtets', maintain the original order. |
8332 | for (j = n - 2; j>= i; j--) { |
8333 | abtets[j + 1] = abtets[j]; // Downshift |
8334 | } |
8335 | // Insert the two new tets 'fliptets[0]' [a,b,c,d] and |
8336 | // 'fliptets[1]' [b,a,c,e] into the (i-1)-th and i-th entries, |
8337 | // respectively. |
8338 | esym(fliptets[1], abtets[(i - 1 + n) % n]); // [a,b,e,c] |
8339 | abtets[i] = fliptets[0]; // [a,b,c,d] |
8340 | nn++; |
8341 | if (fc->collectnewtets) { |
8342 | // Pop two (flipped) tets from the stack. |
8343 | cavetetlist->objects -= 2; |
8344 | } |
8345 | } // if (unflip || (ori == 0)) |
8346 | } // if (nn > 2) |
8347 | |
8348 | if (!fc->unflip) { |
8349 | // The flips are not reversed. The current Star(ab) can not be |
8350 | // further reduced. Return its current size (# of tets). |
8351 | return nn; |
8352 | } |
8353 | // unflip is set. |
8354 | // Continue the search for flips. |
8355 | } |
8356 | } // if (reducflag) |
8357 | } // i |
8358 | |
8359 | // The Star(ab) is not reduced. |
8360 | if (reflexlinkedgecount > 0) { |
8361 | // There are reflex edges in the Link(ab). |
8362 | if (((b->fliplinklevel < 0) && (level < autofliplinklevel)) || |
8363 | ((b->fliplinklevel >= 0) && (level < b->fliplinklevel))) { |
8364 | // Try to reduce the Star(ab) by flipping a reflex edge in Link(ab). |
8365 | for (i = 0; i < n; i++) { |
8366 | // Do not flip this face [a,b,c] if there are two Stars involved. |
8367 | if ((elemcounter(abtets[i]) > 1) || |
8368 | (elemcounter(abtets[(i - 1 + n) % n]) > 1)) { |
8369 | continue; |
8370 | } |
8371 | pc = apex(abtets[i]); |
8372 | if (pc == dummypoint) { |
8373 | continue; // [a,b] is a hull edge. |
8374 | } |
8375 | pd = apex(abtets[(i + 1) % n]); |
8376 | pe = apex(abtets[(i - 1 + n) % n]); |
8377 | if ((pd == dummypoint) || (pe == dummypoint)) { |
8378 | continue; // [a,b,c] is a hull face. |
8379 | } |
8380 | |
8381 | |
8382 | edgepivot = 0; // No edge is selected yet. |
8383 | |
8384 | // Test if [b,c] is locally convex or flat. |
8385 | ori = orient3d(pb, pc, pd, pe); |
8386 | if (ori <= 0) { |
8387 | // Select the edge [c,b]. |
8388 | enext(abtets[i], flipedge); // [b,c,a,d] |
8389 | edgepivot = 1; |
8390 | } |
8391 | if (!edgepivot) { |
8392 | // Test if [c,a] is locally convex or flat. |
8393 | ori = orient3d(pc, pa, pd, pe); |
8394 | if (ori <= 0) { |
8395 | // Select the edge [a,c]. |
8396 | eprev(abtets[i], flipedge); // [c,a,b,d]. |
8397 | edgepivot = 2; |
8398 | } |
8399 | } |
8400 | |
8401 | if (!edgepivot) continue; |
8402 | |
8403 | // An edge is selected. |
8404 | if (checksubsegflag) { |
8405 | // Do not flip it if it is a segment. |
8406 | if (issubseg(flipedge)) { |
8407 | if (fc->collectencsegflag) { |
8408 | face checkseg, *paryseg; |
8409 | tsspivot1(flipedge, checkseg); |
8410 | if (!sinfected(checkseg)) { |
8411 | // Queue this segment in list. |
8412 | sinfect(checkseg); |
8413 | caveencseglist->newindex((void **) &paryseg); |
8414 | *paryseg = checkseg; |
8415 | } |
8416 | } |
8417 | continue; |
8418 | } |
8419 | } |
8420 | |
8421 | // Try to flip the selected edge ([c,b] or [a,c]). |
8422 | esymself(flipedge); |
8423 | // Count the number of tets at the edge. |
8424 | n1 = 0; |
8425 | j = 0; // Sum of the star counters. |
8426 | spintet = flipedge; |
8427 | while (1) { |
8428 | n1++; |
8429 | j += (elemcounter(spintet)); |
8430 | fnextself(spintet); |
8431 | if (spintet.tet == flipedge.tet) break; |
8432 | } |
8433 | assert(n1 >= 3); |
8434 | if (j > 2) { |
8435 | // The Star(flipedge) overlaps other Stars. |
8436 | continue; // Do not flip this edge. |
8437 | } |
8438 | // Only two tets can be marktested. |
8439 | assert(j == 2); |
8440 | |
8441 | if ((b->flipstarsize > 0) && (n1 > b->flipstarsize)) { |
8442 | // The star size exceeds the given limit. |
8443 | continue; // Do not flip it. |
8444 | } |
8445 | |
8446 | // Allocate spaces for Star(flipedge). |
8447 | tmpabtets = new triface[n1]; |
8448 | // Form the Star(flipedge). |
8449 | j = 0; |
8450 | spintet = flipedge; |
8451 | while (1) { |
8452 | tmpabtets[j] = spintet; |
8453 | // Increase the star counter of this tet. |
8454 | increaseelemcounter(tmpabtets[j]); |
8455 | j++; |
8456 | fnextself(spintet); |
8457 | if (spintet.tet == flipedge.tet) break; |
8458 | } |
8459 | |
8460 | // Try to flip the selected edge away. |
8461 | nn = flipnm(tmpabtets, n1, level + 1, edgepivot, fc); |
8462 | |
8463 | if (nn == 2) { |
8464 | // The edge is flipped. Star(ab) is reduced. |
8465 | // Shrink the array 'abtets', maintain the original order. |
8466 | if (edgepivot == 1) { |
8467 | // 'tmpabtets[0]' is [d,a,e,b] => contains [a,b]. |
8468 | spintet = tmpabtets[0]; // [d,a,e,b] |
8469 | enextself(spintet); |
8470 | esymself(spintet); |
8471 | enextself(spintet); // [a,b,e,d] |
8472 | } else { |
8473 | // 'tmpabtets[1]' is [b,d,e,a] => contains [a,b]. |
8474 | spintet = tmpabtets[1]; // [b,d,e,a] |
8475 | eprevself(spintet); |
8476 | esymself(spintet); |
8477 | eprevself(spintet); // [a,b,e,d] |
8478 | } // edgepivot == 2 |
8479 | assert(elemcounter(spintet) == 0); // It's a new tet. |
8480 | increaseelemcounter(spintet); // It is in Star(ab). |
8481 | // Put the new tet at [i-1]-th entry. |
8482 | abtets[(i - 1 + n) % n] = spintet; |
8483 | for (j = i; j < n - 1; j++) { |
8484 | abtets[j] = abtets[j + 1]; // Upshift |
8485 | } |
8486 | // Remember the flips in the last entry of the array 'abtets'. |
8487 | // They can be used to recover the flipped edge. |
8488 | abtets[n - 1].tet = (tetrahedron *) tmpabtets; // The star(fedge). |
8489 | abtets[n - 1].ver = 0; // Clear it. |
8490 | // Use the 1st and 2nd bit to save 'edgepivot' (1 or 2). |
8491 | abtets[n - 1].ver |= edgepivot; |
8492 | // Use the 6th bit to signal this n1-to-m1 flip. |
8493 | abtets[n - 1].ver |= (1 << 5); |
8494 | // The poisition [i] of this flip is saved from 7th to 19th bit. |
8495 | abtets[n - 1].ver |= (i << 6); |
8496 | // The size of the star 'n1' is saved from 20th bit. |
8497 | abtets[n - 1].ver |= (n1 << 19); |
8498 | |
8499 | // Remember the flipped link vertex 'c'. It can be used to recover |
8500 | // the original edge link of [a,b], and to collect new tets. |
8501 | tmpabtets[0].tet = (tetrahedron *) pc; |
8502 | tmpabtets[0].ver = (1 << 5); // Flag it as a vertex handle. |
8503 | |
8504 | // Continue to flip the edge [a,b]. |
8505 | nn = flipnm(abtets, n - 1, level, abedgepivot, fc); |
8506 | |
8507 | if (nn == 2) { |
8508 | // The edge has been flipped. |
8509 | return nn; |
8510 | } else { // if (nn > 2) { |
8511 | // The edge is not flipped. |
8512 | if (fc->unflip) { |
8513 | // Recover the flipped edge ([c,b] or [a,c]). |
8514 | assert(nn == (n - 1)); |
8515 | // The sequence of flips are saved in 'tmpabtets'. |
8516 | // abtets[(i-1) % (n-1)] is [a,b,e,d], i.e., the tet created by |
8517 | // the flipping of edge [c,b] or [a,c].It must still exist in |
8518 | // Star(ab). It is the start tet to recover the flipped edge. |
8519 | if (edgepivot == 1) { |
8520 | // The flip edge is [c,b]. |
8521 | tmpabtets[0] = abtets[((i-1)+(n-1))%(n-1)]; // [a,b,e,d] |
8522 | eprevself(tmpabtets[0]); |
8523 | esymself(tmpabtets[0]); |
8524 | eprevself(tmpabtets[0]); // [d,a,e,b] |
8525 | fsym(tmpabtets[0], tmpabtets[1]); // [a,d,e,c] |
8526 | } else { |
8527 | // The flip edge is [a,c]. |
8528 | tmpabtets[1] = abtets[((i-1)+(n-1))%(n-1)]; // [a,b,e,d] |
8529 | enextself(tmpabtets[1]); |
8530 | esymself(tmpabtets[1]); |
8531 | enextself(tmpabtets[1]); // [b,d,e,a] |
8532 | fsym(tmpabtets[1], tmpabtets[0]); // [d,b,e,c] |
8533 | } // if (edgepivot == 2) |
8534 | |
8535 | // Recover the flipped edge ([c,b] or [a,c]). |
8536 | flipnm_post(tmpabtets, n1, 2, edgepivot, fc); |
8537 | |
8538 | // Insert the two recovered tets into Star(ab). |
8539 | for (j = n - 2; j >= i; j--) { |
8540 | abtets[j + 1] = abtets[j]; // Downshift |
8541 | } |
8542 | if (edgepivot == 1) { |
8543 | // tmpabtets[0] is [c,b,d,a] ==> contains [a,b] |
8544 | // tmpabtets[1] is [c,b,a,e] ==> contains [a,b] |
8545 | // tmpabtets[2] is [c,b,e,d] |
8546 | fliptets[0] = tmpabtets[1]; |
8547 | enextself(fliptets[0]); |
8548 | esymself(fliptets[0]); // [a,b,e,c] |
8549 | fliptets[1] = tmpabtets[0]; |
8550 | esymself(fliptets[1]); |
8551 | eprevself(fliptets[1]); // [a,b,c,d] |
8552 | } else { |
8553 | // tmpabtets[0] is [a,c,d,b] ==> contains [a,b] |
8554 | // tmpabtets[1] is [a,c,b,e] ==> contains [a,b] |
8555 | // tmpabtets[2] is [a,c,e,d] |
8556 | fliptets[0] = tmpabtets[1]; |
8557 | eprevself(fliptets[0]); |
8558 | esymself(fliptets[0]); // [a,b,e,c] |
8559 | fliptets[1] = tmpabtets[0]; |
8560 | esymself(fliptets[1]); |
8561 | enextself(fliptets[1]); // [a,b,c,d] |
8562 | } // edgepivot == 2 |
8563 | for (j = 0; j < 2; j++) { |
8564 | increaseelemcounter(fliptets[j]); |
8565 | } |
8566 | // Insert the two recovered tets into Star(ab). |
8567 | abtets[(i - 1 + n) % n] = fliptets[0]; |
8568 | abtets[i] = fliptets[1]; |
8569 | nn++; |
8570 | // Release the allocated spaces. |
8571 | delete [] tmpabtets; |
8572 | } // if (unflip) |
8573 | } // if (nn > 2) |
8574 | |
8575 | if (!fc->unflip) { |
8576 | // The flips are not reversed. The current Star(ab) can not be |
8577 | // further reduced. Return its size (# of tets). |
8578 | return nn; |
8579 | } |
8580 | // unflip is set. |
8581 | // Continue the search for flips. |
8582 | } else { |
8583 | // The selected edge is not flipped. |
8584 | if (fc->unflip) { |
8585 | // The memory should already be freed. |
8586 | assert(nn == n1); |
8587 | } else { |
8588 | // Release the memory used in this attempted flip. |
8589 | flipnm_post(tmpabtets, n1, nn, edgepivot, fc); |
8590 | } |
8591 | // Decrease the star counters of tets in Star(flipedge). |
8592 | for (j = 0; j < nn; j++) { |
8593 | assert(elemcounter(tmpabtets[j]) > 0); // SELF_CHECK |
8594 | decreaseelemcounter(tmpabtets[j]); |
8595 | } |
8596 | // Release the allocated spaces. |
8597 | delete [] tmpabtets; |
8598 | } |
8599 | } // i |
8600 | } // if (level...) |
8601 | } // if (reflexlinkedgecount > 0) |
8602 | } else { |
8603 | // Check if a 3-to-2 flip is possible. |
8604 | // Let the three apexes be c, d,and e. Hull tets may be involved. If so, |
8605 | // we rearrange them such that the vertex e is dummypoint. |
8606 | hullflag = 0; |
8607 | |
8608 | if (apex(abtets[0]) == dummypoint) { |
8609 | pc = apex(abtets[1]); |
8610 | pd = apex(abtets[2]); |
8611 | pe = apex(abtets[0]); |
8612 | hullflag = 1; |
8613 | } else if (apex(abtets[1]) == dummypoint) { |
8614 | pc = apex(abtets[2]); |
8615 | pd = apex(abtets[0]); |
8616 | pe = apex(abtets[1]); |
8617 | hullflag = 2; |
8618 | } else { |
8619 | pc = apex(abtets[0]); |
8620 | pd = apex(abtets[1]); |
8621 | pe = apex(abtets[2]); |
8622 | hullflag = (pe == dummypoint) ? 3 : 0; |
8623 | } |
8624 | |
8625 | reducflag = 0; |
8626 | rejflag = 0; |
8627 | |
8628 | |
8629 | if (hullflag == 0) { |
8630 | // Make sure that no inverted tet will be created, i.e. the new tets |
8631 | // [d,c,e,a] and [c,d,e,b] must be valid tets. |
8632 | ori = orient3d(pd, pc, pe, pa); |
8633 | if (ori < 0) { |
8634 | ori = orient3d(pc, pd, pe, pb); |
8635 | if (ori < 0) { |
8636 | reducflag = 1; |
8637 | } |
8638 | } |
8639 | } else { |
8640 | // [a,b] is a hull edge. |
8641 | // Note: This can happen when it is in the middle of a 4-to-4 flip. |
8642 | // Note: [a,b] may even be a non-convex hull edge. |
8643 | if (!nonconvex) { |
8644 | // The mesh is convex, only do flip if it is a coplanar hull edge. |
8645 | ori = orient3d(pa, pb, pc, pd); |
8646 | if (ori == 0) { |
8647 | reducflag = 1; |
8648 | } |
8649 | } else { // nonconvex |
8650 | reducflag = 1; |
8651 | } |
8652 | if (reducflag == 1) { |
8653 | // [a,b], [a,b,c] and [a,b,d] are on the convex hull. |
8654 | // Make sure that no inverted tet will be created. |
8655 | point searchpt = NULL, chkpt; |
8656 | REAL bigvol = 0.0, ori1, ori2; |
8657 | // Search an interior vertex which is an apex of edge [c,d]. |
8658 | // In principle, it can be arbitrary interior vertex. To avoid |
8659 | // numerical issue, we choose the vertex which belongs to a tet |
8660 | // 't' at edge [c,d] and 't' has the biggest volume. |
8661 | fliptets[0] = abtets[hullflag % 3]; // [a,b,c,d]. |
8662 | eorgoppoself(fliptets[0]); // [d,c,b,a] |
8663 | spintet = fliptets[0]; |
8664 | while (1) { |
8665 | fnextself(spintet); |
8666 | chkpt = oppo(spintet); |
8667 | if (chkpt == pb) break; |
8668 | if ((chkpt != dummypoint) && (apex(spintet) != dummypoint)) { |
8669 | ori = -orient3d(pd, pc, apex(spintet), chkpt); |
8670 | assert(ori > 0); |
8671 | if (ori > bigvol) { |
8672 | bigvol = ori; |
8673 | searchpt = chkpt; |
8674 | } |
8675 | } |
8676 | } |
8677 | if (searchpt != NULL) { |
8678 | // Now valid the configuration. |
8679 | ori1 = orient3d(pd, pc, searchpt, pa); |
8680 | ori2 = orient3d(pd, pc, searchpt, pb); |
8681 | if (ori1 * ori2 >= 0.0) { |
8682 | reducflag = 0; // Not valid. |
8683 | } else { |
8684 | ori1 = orient3d(pa, pb, searchpt, pc); |
8685 | ori2 = orient3d(pa, pb, searchpt, pd); |
8686 | if (ori1 * ori2 >= 0.0) { |
8687 | reducflag = 0; // Not valid. |
8688 | } |
8689 | } |
8690 | } else { |
8691 | // No valid searchpt is found. |
8692 | reducflag = 0; // Do not flip it. |
8693 | } |
8694 | } // if (reducflag == 1) |
8695 | } // if (hullflag == 1) |
8696 | |
8697 | if (reducflag) { |
8698 | // A 3-to-2 flip is possible. |
8699 | if (checksubfaceflag) { |
8700 | // This edge (must not be a segment) can be flipped ONLY IF it belongs |
8701 | // to either 0 or 2 subfaces. In the latter case, a 2-to-2 flip in |
8702 | // the surface mesh will be automatically performed within the |
8703 | // 3-to-2 flip. |
8704 | nn = 0; |
8705 | edgepivot = -1; // Re-use it. |
8706 | for (j = 0; j < 3; j++) { |
8707 | if (issubface(abtets[j])) { |
8708 | nn++; // Found a subface. |
8709 | } else { |
8710 | edgepivot = j; |
8711 | } |
8712 | } |
8713 | assert(nn < 3); |
8714 | if (nn == 1) { |
8715 | // Found only 1 subface containing this edge. This can happen in |
8716 | // the boundary recovery phase. The neighbor subface is not yet |
8717 | // recovered. This edge should not be flipped at this moment. |
8718 | rejflag = 1; |
8719 | } else if (nn == 2) { |
8720 | // Found two subfaces. A 2-to-2 flip is possible. Validate it. |
8721 | // Below we check if the two faces [p,q,a] and [p,q,b] are subfaces. |
8722 | eorgoppo(abtets[(edgepivot + 1) % 3], spintet); // [q,p,b,a] |
8723 | if (issubface(spintet)) { |
8724 | rejflag = 1; // Conflict to a 2-to-2 flip. |
8725 | } else { |
8726 | esymself(spintet); |
8727 | if (issubface(spintet)) { |
8728 | rejflag = 1; // Conflict to a 2-to-2 flip. |
8729 | } |
8730 | } |
8731 | } |
8732 | } |
8733 | if (!rejflag && fc->checkflipeligibility) { |
8734 | // Here we must exchange 'a' and 'b'. Since in the check... function, |
8735 | // we assume the following point sequence, 'a,b,c,d,e', where |
8736 | // the face [a,b,c] will be flipped and the edge [e,d] will be |
8737 | // created. The two new tets are [a,b,c,d] and [b,a,c,e]. |
8738 | rejflag = checkflipeligibility(2, pc, pd, pe, pb, pa, level, |
8739 | abedgepivot, fc); |
8740 | } |
8741 | if (!rejflag) { |
8742 | // Do flip: [a,b] => [c,d,e] |
8743 | flip32(abtets, hullflag, fc); |
8744 | if (fc->remove_ndelaunay_edge) { |
8745 | if (level == 0) { |
8746 | // It is the desired removing edge. Check if we have improved |
8747 | // the objective function. |
8748 | if ((fc->tetprism_vol_sum >= 0.0) || |
8749 | (fabs(fc->tetprism_vol_sum) < fc->bak_tetprism_vol)) { |
8750 | // No improvement! flip back: [c,d,e] => [a,b]. |
8751 | flip23(abtets, hullflag, fc); |
8752 | // Increase the element counter -- They are in cavity. |
8753 | for (j = 0; j < 3; j++) { |
8754 | increaseelemcounter(abtets[j]); |
8755 | } |
8756 | return 3; |
8757 | } |
8758 | } // if (level == 0) |
8759 | } |
8760 | if (fc->collectnewtets) { |
8761 | // Collect new tets. |
8762 | if (level == 0) { |
8763 | // Push the two new tets into stack. |
8764 | for (j = 0; j < 2; j++) { |
8765 | cavetetlist->newindex((void **) &parytet); |
8766 | *parytet = abtets[j]; |
8767 | } |
8768 | } else { |
8769 | // Only one of the new tets is collected. The other one is inside |
8770 | // the reduced edge star. 'abedgepivot' is either '1' or '2'. |
8771 | cavetetlist->newindex((void **) &parytet); |
8772 | if (abedgepivot == 1) { // [c,b] |
8773 | *parytet = abtets[1]; |
8774 | } else { |
8775 | assert(abedgepivot == 2); // [a,c] |
8776 | *parytet = abtets[0]; |
8777 | } |
8778 | } |
8779 | } // if (fc->collectnewtets) |
8780 | return 2; |
8781 | } |
8782 | } // if (reducflag) |
8783 | } // if (n == 3) |
8784 | |
8785 | // The current (reduced) Star size. |
8786 | return n; |
8787 | } |
8788 | |
8789 | /////////////////////////////////////////////////////////////////////////////// |
8790 | // // |
8791 | // flipnm_post() Post process a n-to-m flip. // |
8792 | // // |
8793 | // IMPORTANT: This routine only works when there is no other flip operation // |
8794 | // is done after flipnm([a,b]) which attempts to remove an edge [a,b]. // |
8795 | // // |
8796 | // 'abtets' is an array of 'n' (>= 3) tets which are in the original star of // |
8797 | // [a,b] before flipnm([a,b]). 'nn' (< n) is the value returned by flipnm. // |
8798 | // If 'nn == 2', the edge [a,b] has been flipped. 'abtets[0]' and 'abtets[1]'// |
8799 | // are [c,d,e,b] and [d,c,e,a], i.e., a 2-to-3 flip can recover the edge [a, // |
8800 | // b] and its initial Star([a,b]). If 'nn >= 3' edge [a,b] still exists in // |
8801 | // current mesh and 'nn' is the current number of tets in Star([a,b]). // |
8802 | // // |
8803 | // Each 'abtets[i]', where nn <= i < n, saves either a 2-to-3 flip or a // |
8804 | // flipnm([p1,p2]) operation ([p1,p2] != [a,b]) which created the tet // |
8805 | // 'abtets[t-1]', where '0 <= t <= i'. These information can be used to // |
8806 | // undo the flips performed in flipnm([a,b]) or to collect new tets created // |
8807 | // by the flipnm([a,b]) operation. // |
8808 | // // |
8809 | // Default, this routine only walks through the flips and frees the spaces // |
8810 | // allocated during the flipnm([a,b]) operation. // |
8811 | // // |
8812 | // If the flag 'fc->unflip' is set, this routine un-does the flips performed // |
8813 | // in flipnm([a,b]) so that the mesh is returned to its original state // |
8814 | // before doing the flipnm([a,b]) operation. // |
8815 | // // |
8816 | // // |
8817 | /////////////////////////////////////////////////////////////////////////////// |
8818 | |
8819 | int tetgenmesh::flipnm_post(triface* abtets, int n, int nn, int abedgepivot, |
8820 | flipconstraints* fc) |
8821 | { |
8822 | triface fliptets[3], flipface; |
8823 | triface *tmpabtets; |
8824 | int fliptype; |
8825 | int edgepivot; |
8826 | int t, n1; |
8827 | int i, j; |
8828 | |
8829 | |
8830 | if (nn == 2) { |
8831 | // The edge [a,b] has been flipped. |
8832 | // 'abtets[0]' is [c,d,e,b] or [#,#,#,b]. |
8833 | // 'abtets[1]' is [d,c,e,a] or [#,#,#,a]. |
8834 | if (fc->unflip) { |
8835 | // Do a 2-to-3 flip to recover the edge [a,b]. There may be hull tets. |
8836 | flip23(abtets, 1, fc); |
8837 | if (fc->collectnewtets) { |
8838 | // Pop up new (flipped) tets from the stack. |
8839 | if (abedgepivot == 0) { |
8840 | // Two new tets were collected. |
8841 | cavetetlist->objects -= 2; |
8842 | } else { |
8843 | // Only one of the two new tets was collected. |
8844 | cavetetlist->objects -= 1; |
8845 | } |
8846 | } |
8847 | } |
8848 | // The initial size of Star(ab) is 3. |
8849 | nn++; |
8850 | } |
8851 | |
8852 | // Walk through the performed flips. |
8853 | for (i = nn; i < n; i++) { |
8854 | // At the beginning of each step 'i', the size of the Star([a,b]) is 'i'. |
8855 | // At the end of this step, the size of the Star([a,b]) is 'i+1'. |
8856 | // The sizes of the Link([a,b]) are the same. |
8857 | fliptype = ((abtets[i].ver >> 4) & 3); // 0, 1, or 2. |
8858 | if (fliptype == 1) { |
8859 | // It was a 2-to-3 flip: [a,b,c]->[e,d]. |
8860 | t = (abtets[i].ver >> 6); |
8861 | assert(t <= i); |
8862 | if (fc->unflip) { |
8863 | if (b->verbose > 2) { |
8864 | printf(" Recover a 2-to-3 flip at f[%d].\n" , t); |
8865 | } |
8866 | // 'abtets[(t-1)%i]' is the tet [a,b,e,d] in current Star(ab), i.e., |
8867 | // it is created by a 2-to-3 flip [a,b,c] => [e,d]. |
8868 | fliptets[0] = abtets[((t - 1) + i) % i]; // [a,b,e,d] |
8869 | eprevself(fliptets[0]); |
8870 | esymself(fliptets[0]); |
8871 | enextself(fliptets[0]); // [e,d,a,b] |
8872 | fnext(fliptets[0], fliptets[1]); // [e,d,b,c] |
8873 | fnext(fliptets[1], fliptets[2]); // [e,d,c,a] |
8874 | // Do a 3-to-2 flip: [e,d] => [a,b,c]. |
8875 | // NOTE: hull tets may be invloved. |
8876 | flip32(fliptets, 1, fc); |
8877 | // Expand the array 'abtets', maintain the original order. |
8878 | // The new array length is (i+1). |
8879 | for (j = i - 1; j >= t; j--) { |
8880 | abtets[j + 1] = abtets[j]; // Downshift |
8881 | } |
8882 | // The tet abtets[(t-1)%i] is deleted. Insert the two new tets |
8883 | // 'fliptets[0]' [a,b,c,d] and 'fliptets[1]' [b,a,c,e] into |
8884 | // the (t-1)-th and t-th entries, respectively. |
8885 | esym(fliptets[1], abtets[((t-1) + (i+1)) % (i+1)]); // [a,b,e,c] |
8886 | abtets[t] = fliptets[0]; // [a,b,c,d] |
8887 | if (fc->collectnewtets) { |
8888 | // Pop up two (flipped) tets from the stack. |
8889 | cavetetlist->objects -= 2; |
8890 | } |
8891 | } |
8892 | } else if (fliptype == 2) { |
8893 | tmpabtets = (triface *) (abtets[i].tet); |
8894 | n1 = ((abtets[i].ver >> 19) & 8191); // \sum_{i=0^12}{2^i} = 8191 |
8895 | edgepivot = (abtets[i].ver & 3); |
8896 | t = ((abtets[i].ver >> 6) & 8191); |
8897 | assert(t <= i); |
8898 | if (fc->unflip) { |
8899 | if (b->verbose > 2) { |
8900 | printf(" Recover a %d-to-m flip at e[%d] of f[%d].\n" , n1, |
8901 | edgepivot, t); |
8902 | } |
8903 | // Recover the flipped edge ([c,b] or [a,c]). |
8904 | // abtets[(t - 1 + i) % i] is [a,b,e,d], i.e., the tet created by |
8905 | // the flipping of edge [c,b] or [a,c]. It must still exist in |
8906 | // Star(ab). Use it to recover the flipped edge. |
8907 | if (edgepivot == 1) { |
8908 | // The flip edge is [c,b]. |
8909 | tmpabtets[0] = abtets[(t - 1 + i) % i]; // [a,b,e,d] |
8910 | eprevself(tmpabtets[0]); |
8911 | esymself(tmpabtets[0]); |
8912 | eprevself(tmpabtets[0]); // [d,a,e,b] |
8913 | fsym(tmpabtets[0], tmpabtets[1]); // [a,d,e,c] |
8914 | } else { |
8915 | // The flip edge is [a,c]. |
8916 | tmpabtets[1] = abtets[(t - 1 + i) % i]; // [a,b,e,d] |
8917 | enextself(tmpabtets[1]); |
8918 | esymself(tmpabtets[1]); |
8919 | enextself(tmpabtets[1]); // [b,d,e,a] |
8920 | fsym(tmpabtets[1], tmpabtets[0]); // [d,b,e,c] |
8921 | } // if (edgepivot == 2) |
8922 | |
8923 | // Do a n1-to-m1 flip to recover the flipped edge ([c,b] or [a,c]). |
8924 | flipnm_post(tmpabtets, n1, 2, edgepivot, fc); |
8925 | |
8926 | // Insert the two recovered tets into the original Star(ab). |
8927 | for (j = i - 1; j >= t; j--) { |
8928 | abtets[j + 1] = abtets[j]; // Downshift |
8929 | } |
8930 | if (edgepivot == 1) { |
8931 | // tmpabtets[0] is [c,b,d,a] ==> contains [a,b] |
8932 | // tmpabtets[1] is [c,b,a,e] ==> contains [a,b] |
8933 | // tmpabtets[2] is [c,b,e,d] |
8934 | fliptets[0] = tmpabtets[1]; |
8935 | enextself(fliptets[0]); |
8936 | esymself(fliptets[0]); // [a,b,e,c] |
8937 | fliptets[1] = tmpabtets[0]; |
8938 | esymself(fliptets[1]); |
8939 | eprevself(fliptets[1]); // [a,b,c,d] |
8940 | } else { |
8941 | // tmpabtets[0] is [a,c,d,b] ==> contains [a,b] |
8942 | // tmpabtets[1] is [a,c,b,e] ==> contains [a,b] |
8943 | // tmpabtets[2] is [a,c,e,d] |
8944 | fliptets[0] = tmpabtets[1]; |
8945 | eprevself(fliptets[0]); |
8946 | esymself(fliptets[0]); // [a,b,e,c] |
8947 | fliptets[1] = tmpabtets[0]; |
8948 | esymself(fliptets[1]); |
8949 | enextself(fliptets[1]); // [a,b,c,d] |
8950 | } // edgepivot == 2 |
8951 | // Insert the two recovered tets into Star(ab). |
8952 | abtets[((t-1) + (i+1)) % (i+1)] = fliptets[0]; |
8953 | abtets[t] = fliptets[1]; |
8954 | } |
8955 | else { |
8956 | // Only free the spaces. |
8957 | flipnm_post(tmpabtets, n1, 2, edgepivot, fc); |
8958 | } // if (!unflip) |
8959 | if (b->verbose > 2) { |
8960 | printf(" Release %d spaces at f[%d].\n" , n1, i); |
8961 | } |
8962 | delete [] tmpabtets; |
8963 | } |
8964 | } // i |
8965 | |
8966 | return 1; |
8967 | } |
8968 | |
8969 | /////////////////////////////////////////////////////////////////////////////// |
8970 | // // |
8971 | // insertpoint() Insert a point into current tetrahedralization. // |
8972 | // // |
8973 | // The Bowyer-Watson (B-W) algorithm is used to add a new point p into the // |
8974 | // tetrahedralization T. It first finds a "cavity", denoted as C, in T, C // |
8975 | // consists of tetrahedra in T that "conflict" with p. If T is a Delaunay // |
8976 | // tetrahedralization, then all boundary faces (triangles) of C are visible // |
8977 | // by p, i.e.,C is star-shaped. We can insert p into T by first deleting all // |
8978 | // tetrahedra in C, then creating new tetrahedra formed by boundary faces of // |
8979 | // C and p. If T is not a DT, then C may be not star-shaped. It must be // |
8980 | // modified so that it becomes star-shaped. // |
8981 | // // |
8982 | /////////////////////////////////////////////////////////////////////////////// |
8983 | |
8984 | int tetgenmesh::insertpoint(point insertpt, triface *searchtet, face *splitsh, |
8985 | face *splitseg, insertvertexflags *ivf) |
8986 | { |
8987 | arraypool *swaplist; |
8988 | triface *cavetet, spintet, neightet, neineitet, *parytet; |
8989 | triface oldtet, newtet, newneitet; |
8990 | face checksh, neighsh, *parysh; |
8991 | face checkseg, *paryseg; |
8992 | point *pts, pa, pb, pc, *parypt; |
8993 | enum locateresult loc = OUTSIDE; |
8994 | REAL sign, ori; |
8995 | REAL attrib, volume; |
8996 | bool enqflag; |
8997 | int t1ver; |
8998 | int i, j, k, s; |
8999 | |
9000 | if (b->verbose > 2) { |
9001 | printf(" Insert point %d\n" , pointmark(insertpt)); |
9002 | } |
9003 | |
9004 | // Locate the point. |
9005 | if (searchtet->tet != NULL) { |
9006 | loc = (enum locateresult) ivf->iloc; |
9007 | } |
9008 | |
9009 | if (loc == OUTSIDE) { |
9010 | if (searchtet->tet == NULL) { |
9011 | if (!b->weighted) { |
9012 | randomsample(insertpt, searchtet); |
9013 | } else { |
9014 | // Weighted DT. There may exist dangling vertex. |
9015 | *searchtet = recenttet; |
9016 | } |
9017 | } |
9018 | // Locate the point. |
9019 | loc = locate(insertpt, searchtet); |
9020 | } |
9021 | |
9022 | ivf->iloc = (int) loc; // The return value. |
9023 | |
9024 | if (b->weighted) { |
9025 | if (loc != OUTSIDE) { |
9026 | // Check if this vertex is regular. |
9027 | pts = (point *) searchtet->tet; |
9028 | assert(pts[7] != dummypoint); |
9029 | sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], insertpt, |
9030 | pts[4][3], pts[5][3], pts[6][3], pts[7][3], |
9031 | insertpt[3]); |
9032 | if (sign > 0) { |
9033 | // This new vertex does not lie below the lower hull. Skip it. |
9034 | setpointtype(insertpt, NREGULARVERTEX); |
9035 | nonregularcount++; |
9036 | ivf->iloc = (int) NONREGULAR; |
9037 | return 0; |
9038 | } |
9039 | } |
9040 | } |
9041 | |
9042 | // Create the initial cavity C(p) which contains all tetrahedra that |
9043 | // intersect p. It may include 1, 2, or n tetrahedra. |
9044 | // If p lies on a segment or subface, also create the initial sub-cavity |
9045 | // sC(p) which contains all subfaces (and segment) which intersect p. |
9046 | |
9047 | if (loc == OUTSIDE) { |
9048 | flip14count++; |
9049 | // The current hull will be enlarged. |
9050 | // Add four adjacent boundary tets into list. |
9051 | for (i = 0; i < 4; i++) { |
9052 | decode(searchtet->tet[i], neightet); |
9053 | neightet.ver = epivot[neightet.ver]; |
9054 | cavebdrylist->newindex((void **) &parytet); |
9055 | *parytet = neightet; |
9056 | } |
9057 | infect(*searchtet); |
9058 | caveoldtetlist->newindex((void **) &parytet); |
9059 | *parytet = *searchtet; |
9060 | } else if (loc == INTETRAHEDRON) { |
9061 | flip14count++; |
9062 | // Add four adjacent boundary tets into list. |
9063 | for (i = 0; i < 4; i++) { |
9064 | decode(searchtet->tet[i], neightet); |
9065 | neightet.ver = epivot[neightet.ver]; |
9066 | cavebdrylist->newindex((void **) &parytet); |
9067 | *parytet = neightet; |
9068 | } |
9069 | infect(*searchtet); |
9070 | caveoldtetlist->newindex((void **) &parytet); |
9071 | *parytet = *searchtet; |
9072 | } else if (loc == ONFACE) { |
9073 | flip26count++; |
9074 | // Add six adjacent boundary tets into list. |
9075 | j = (searchtet->ver & 3); // The current face number. |
9076 | for (i = 1; i < 4; i++) { |
9077 | decode(searchtet->tet[(j + i) % 4], neightet); |
9078 | neightet.ver = epivot[neightet.ver]; |
9079 | cavebdrylist->newindex((void **) &parytet); |
9080 | *parytet = neightet; |
9081 | } |
9082 | decode(searchtet->tet[j], spintet); |
9083 | j = (spintet.ver & 3); // The current face number. |
9084 | for (i = 1; i < 4; i++) { |
9085 | decode(spintet.tet[(j + i) % 4], neightet); |
9086 | neightet.ver = epivot[neightet.ver]; |
9087 | cavebdrylist->newindex((void **) &parytet); |
9088 | *parytet = neightet; |
9089 | } |
9090 | infect(spintet); |
9091 | caveoldtetlist->newindex((void **) &parytet); |
9092 | *parytet = spintet; |
9093 | infect(*searchtet); |
9094 | caveoldtetlist->newindex((void **) &parytet); |
9095 | *parytet = *searchtet; |
9096 | |
9097 | if (ivf->splitbdflag) { |
9098 | if ((splitsh != NULL) && (splitsh->sh != NULL)) { |
9099 | // Create the initial sub-cavity sC(p). |
9100 | smarktest(*splitsh); |
9101 | caveshlist->newindex((void **) &parysh); |
9102 | *parysh = *splitsh; |
9103 | } |
9104 | } // if (splitbdflag) |
9105 | } else if (loc == ONEDGE) { |
9106 | flipn2ncount++; |
9107 | // Add all adjacent boundary tets into list. |
9108 | spintet = *searchtet; |
9109 | while (1) { |
9110 | eorgoppo(spintet, neightet); |
9111 | decode(neightet.tet[neightet.ver & 3], neightet); |
9112 | neightet.ver = epivot[neightet.ver]; |
9113 | cavebdrylist->newindex((void **) &parytet); |
9114 | *parytet = neightet; |
9115 | edestoppo(spintet, neightet); |
9116 | decode(neightet.tet[neightet.ver & 3], neightet); |
9117 | neightet.ver = epivot[neightet.ver]; |
9118 | cavebdrylist->newindex((void **) &parytet); |
9119 | *parytet = neightet; |
9120 | infect(spintet); |
9121 | caveoldtetlist->newindex((void **) &parytet); |
9122 | *parytet = spintet; |
9123 | fnextself(spintet); |
9124 | if (spintet.tet == searchtet->tet) break; |
9125 | } // while (1) |
9126 | |
9127 | if (ivf->splitbdflag) { |
9128 | // Create the initial sub-cavity sC(p). |
9129 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
9130 | smarktest(*splitseg); |
9131 | splitseg->shver = 0; |
9132 | spivot(*splitseg, *splitsh); |
9133 | } |
9134 | if (splitsh != NULL) { |
9135 | if (splitsh->sh != NULL) { |
9136 | // Collect all subfaces share at this edge. |
9137 | pa = sorg(*splitsh); |
9138 | neighsh = *splitsh; |
9139 | while (1) { |
9140 | // Adjust the origin of its edge to be 'pa'. |
9141 | if (sorg(neighsh) != pa) { |
9142 | sesymself(neighsh); |
9143 | } |
9144 | // Add this face into list (in B-W cavity). |
9145 | smarktest(neighsh); |
9146 | caveshlist->newindex((void **) &parysh); |
9147 | *parysh = neighsh; |
9148 | // Add this face into face-at-splitedge list. |
9149 | cavesegshlist->newindex((void **) &parysh); |
9150 | *parysh = neighsh; |
9151 | // Go to the next face at the edge. |
9152 | spivotself(neighsh); |
9153 | // Stop if all faces at the edge have been visited. |
9154 | if (neighsh.sh == splitsh->sh) break; |
9155 | if (neighsh.sh == NULL) break; |
9156 | } // while (1) |
9157 | } // if (not a dangling segment) |
9158 | } |
9159 | } // if (splitbdflag) |
9160 | } else if (loc == INSTAR) { |
9161 | // We assume that all tets in the star are given in 'caveoldtetlist', |
9162 | // and they are all infected. |
9163 | assert(caveoldtetlist->objects > 0); |
9164 | // Collect the boundary faces of the star. |
9165 | for (i = 0; i < caveoldtetlist->objects; i++) { |
9166 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
9167 | // Check its 4 neighbor tets. |
9168 | for (j = 0; j < 4; j++) { |
9169 | decode(cavetet->tet[j], neightet); |
9170 | if (!infected(neightet)) { |
9171 | // It's a boundary face. |
9172 | neightet.ver = epivot[neightet.ver]; |
9173 | cavebdrylist->newindex((void **) &parytet); |
9174 | *parytet = neightet; |
9175 | } |
9176 | } |
9177 | } |
9178 | } else if (loc == ONVERTEX) { |
9179 | // The point already exist. Do nothing and return. |
9180 | return 0; |
9181 | } |
9182 | |
9183 | |
9184 | if (ivf->assignmeshsize) { |
9185 | // Assign mesh size for the new point. |
9186 | if (bgm != NULL) { |
9187 | // Interpolate the mesh size from the background mesh. |
9188 | bgm->decode(point2bgmtet(org(*searchtet)), neightet); |
9189 | int bgmloc = (int) bgm->scoutpoint(insertpt, &neightet, 0); |
9190 | if (bgmloc != (int) OUTSIDE) { |
9191 | insertpt[pointmtrindex] = |
9192 | bgm->getpointmeshsize(insertpt, &neightet, bgmloc); |
9193 | setpoint2bgmtet(insertpt, bgm->encode(neightet)); |
9194 | } |
9195 | } else { |
9196 | insertpt[pointmtrindex] = getpointmeshsize(insertpt,searchtet,(int)loc); |
9197 | } |
9198 | } // if (assignmeshsize) |
9199 | |
9200 | if (ivf->bowywat) { |
9201 | // Update the cavity C(p) using the Bowyer-Watson algorithm. |
9202 | swaplist = cavetetlist; |
9203 | cavetetlist = cavebdrylist; |
9204 | cavebdrylist = swaplist; |
9205 | for (i = 0; i < cavetetlist->objects; i++) { |
9206 | // 'cavetet' is an adjacent tet at outside of the cavity. |
9207 | cavetet = (triface *) fastlookup(cavetetlist, i); |
9208 | // The tet may be tested and included in the (enlarged) cavity. |
9209 | if (!infected(*cavetet)) { |
9210 | // Check for two possible cases for this tet: |
9211 | // (1) It is a cavity tet, or |
9212 | // (2) it is a cavity boundary face. |
9213 | enqflag = false; |
9214 | if (!marktested(*cavetet)) { |
9215 | // Do Delaunay (in-sphere) test. |
9216 | pts = (point *) cavetet->tet; |
9217 | if (pts[7] != dummypoint) { |
9218 | // A volume tet. Operate on it. |
9219 | if (b->weighted) { |
9220 | sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], insertpt, |
9221 | pts[4][3], pts[5][3], pts[6][3], pts[7][3], |
9222 | insertpt[3]); |
9223 | } else { |
9224 | sign = insphere_s(pts[4], pts[5], pts[6], pts[7], insertpt); |
9225 | } |
9226 | enqflag = (sign < 0.0); |
9227 | } else { |
9228 | if (!nonconvex) { |
9229 | // Test if this hull face is visible by the new point. |
9230 | ori = orient3d(pts[4], pts[5], pts[6], insertpt); |
9231 | if (ori < 0) { |
9232 | // A visible hull face. |
9233 | //if (!nonconvex) { |
9234 | // Include it in the cavity. The convex hull will be enlarged. |
9235 | enqflag = true; // (ori < 0.0); |
9236 | //} |
9237 | } else if (ori == 0.0) { |
9238 | // A coplanar hull face. We need to test if this hull face is |
9239 | // Delaunay or not. We test if the adjacent tet (not faked) |
9240 | // of this hull face is Delaunay or not. |
9241 | decode(cavetet->tet[3], neineitet); |
9242 | if (!infected(neineitet)) { |
9243 | if (!marktested(neineitet)) { |
9244 | // Do Delaunay test on this tet. |
9245 | pts = (point *) neineitet.tet; |
9246 | assert(pts[7] != dummypoint); |
9247 | if (b->weighted) { |
9248 | sign = orient4d_s(pts[4],pts[5],pts[6],pts[7], insertpt, |
9249 | pts[4][3], pts[5][3], pts[6][3], |
9250 | pts[7][3], insertpt[3]); |
9251 | } else { |
9252 | sign = insphere_s(pts[4],pts[5],pts[6],pts[7], insertpt); |
9253 | } |
9254 | enqflag = (sign < 0.0); |
9255 | } |
9256 | } else { |
9257 | // The adjacent tet is non-Delaunay. The hull face is non- |
9258 | // Delaunay as well. Include it in the cavity. |
9259 | enqflag = true; |
9260 | } // if (!infected(neineitet)) |
9261 | } // if (ori == 0.0) |
9262 | } else { |
9263 | // A hull face (must be a subface). |
9264 | // We FIRST include it in the initial cavity if the adjacent tet |
9265 | // (not faked) of this hull face is not Delaunay wrt p. |
9266 | // Whether it belongs to the final cavity will be determined |
9267 | // during the validation process. 'validflag'. |
9268 | decode(cavetet->tet[3], neineitet); |
9269 | if (!infected(neineitet)) { |
9270 | if (!marktested(neineitet)) { |
9271 | // Do Delaunay test on this tet. |
9272 | pts = (point *) neineitet.tet; |
9273 | assert(pts[7] != dummypoint); |
9274 | if (b->weighted) { |
9275 | sign = orient4d_s(pts[4],pts[5],pts[6],pts[7], insertpt, |
9276 | pts[4][3], pts[5][3], pts[6][3], |
9277 | pts[7][3], insertpt[3]); |
9278 | } else { |
9279 | sign = insphere_s(pts[4],pts[5],pts[6],pts[7], insertpt); |
9280 | } |
9281 | enqflag = (sign < 0.0); |
9282 | } |
9283 | } else { |
9284 | // The adjacent tet is non-Delaunay. The hull face is non- |
9285 | // Delaunay as well. Include it in the cavity. |
9286 | enqflag = true; |
9287 | } // if (infected(neineitet)) |
9288 | } // if (nonconvex) |
9289 | } // if (pts[7] != dummypoint) |
9290 | marktest(*cavetet); // Only test it once. |
9291 | } // if (!marktested(*cavetet)) |
9292 | |
9293 | if (enqflag) { |
9294 | // Found a tet in the cavity. Put other three faces in check list. |
9295 | k = (cavetet->ver & 3); // The current face number |
9296 | for (j = 1; j < 4; j++) { |
9297 | decode(cavetet->tet[(j + k) % 4], neightet); |
9298 | cavetetlist->newindex((void **) &parytet); |
9299 | *parytet = neightet; |
9300 | } |
9301 | infect(*cavetet); |
9302 | caveoldtetlist->newindex((void **) &parytet); |
9303 | *parytet = *cavetet; |
9304 | } else { |
9305 | // Found a boundary face of the cavity. |
9306 | cavetet->ver = epivot[cavetet->ver]; |
9307 | cavebdrylist->newindex((void **) &parytet); |
9308 | *parytet = *cavetet; |
9309 | } |
9310 | } // if (!infected(*cavetet)) |
9311 | } // i |
9312 | |
9313 | cavetetlist->restart(); // Clear the working list. |
9314 | } // if (ivf->bowywat) |
9315 | |
9316 | if (checksubsegflag) { |
9317 | // Collect all segments of C(p). |
9318 | shellface *ssptr; |
9319 | for (i = 0; i < caveoldtetlist->objects; i++) { |
9320 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
9321 | if ((ssptr = (shellface*) cavetet->tet[8]) != NULL) { |
9322 | for (j = 0; j < 6; j++) { |
9323 | if (ssptr[j]) { |
9324 | sdecode(ssptr[j], checkseg); |
9325 | if (!sinfected(checkseg)) { |
9326 | sinfect(checkseg); |
9327 | cavetetseglist->newindex((void **) &paryseg); |
9328 | *paryseg = checkseg; |
9329 | } |
9330 | } |
9331 | } // j |
9332 | } |
9333 | } // i |
9334 | // Uninfect collected segments. |
9335 | for (i = 0; i < cavetetseglist->objects; i++) { |
9336 | paryseg = (face *) fastlookup(cavetetseglist, i); |
9337 | suninfect(*paryseg); |
9338 | } |
9339 | |
9340 | if (ivf->rejflag & 1) { |
9341 | // Reject this point if it encroaches upon any segment. |
9342 | face *paryseg1; |
9343 | for (i = 0; i < cavetetseglist->objects; i++) { |
9344 | paryseg1 = (face *) fastlookup(cavetetseglist, i); |
9345 | if (checkseg4encroach((point) paryseg1->sh[3], (point) paryseg1->sh[4], |
9346 | insertpt)) { |
9347 | encseglist->newindex((void **) &paryseg); |
9348 | *paryseg = *paryseg1; |
9349 | } |
9350 | } // i |
9351 | if (encseglist->objects > 0) { |
9352 | insertpoint_abort(splitseg, ivf); |
9353 | ivf->iloc = (int) ENCSEGMENT; |
9354 | return 0; |
9355 | } |
9356 | } |
9357 | } // if (checksubsegflag) |
9358 | |
9359 | if (checksubfaceflag) { |
9360 | // Collect all subfaces of C(p). |
9361 | shellface *sptr; |
9362 | for (i = 0; i < caveoldtetlist->objects; i++) { |
9363 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
9364 | if ((sptr = (shellface*) cavetet->tet[9]) != NULL) { |
9365 | for (j = 0; j < 4; j++) { |
9366 | if (sptr[j]) { |
9367 | sdecode(sptr[j], checksh); |
9368 | if (!sinfected(checksh)) { |
9369 | sinfect(checksh); |
9370 | cavetetshlist->newindex((void **) &parysh); |
9371 | *parysh = checksh; |
9372 | } |
9373 | } |
9374 | } // j |
9375 | } |
9376 | } // i |
9377 | // Uninfect collected subfaces. |
9378 | for (i = 0; i < cavetetshlist->objects; i++) { |
9379 | parysh = (face *) fastlookup(cavetetshlist, i); |
9380 | suninfect(*parysh); |
9381 | } |
9382 | |
9383 | if (ivf->rejflag & 2) { |
9384 | REAL rd, cent[3]; |
9385 | badface *bface; |
9386 | // Reject this point if it encroaches upon any subface. |
9387 | for (i = 0; i < cavetetshlist->objects; i++) { |
9388 | parysh = (face *) fastlookup(cavetetshlist, i); |
9389 | if (checkfac4encroach((point) parysh->sh[3], (point) parysh->sh[4], |
9390 | (point) parysh->sh[5], insertpt, cent, &rd)) { |
9391 | encshlist->newindex((void **) &bface); |
9392 | bface->ss = *parysh; |
9393 | bface->forg = (point) parysh->sh[3]; // Not a dad one. |
9394 | for (j = 0; j < 3; j++) bface->cent[j] = cent[j]; |
9395 | bface->key = rd; |
9396 | } |
9397 | } |
9398 | if (encshlist->objects > 0) { |
9399 | insertpoint_abort(splitseg, ivf); |
9400 | ivf->iloc = (int) ENCSUBFACE; |
9401 | return 0; |
9402 | } |
9403 | } |
9404 | } // if (checksubfaceflag) |
9405 | |
9406 | if ((ivf->iloc == (int) OUTSIDE) && ivf->refineflag) { |
9407 | // The vertex lies outside of the domain. And it does not encroach |
9408 | // upon any boundary segment or subface. Do not insert it. |
9409 | insertpoint_abort(splitseg, ivf); |
9410 | return 0; |
9411 | } |
9412 | |
9413 | if (ivf->splitbdflag) { |
9414 | // The new point locates in surface mesh. Update the sC(p). |
9415 | // We have already 'smarktested' the subfaces which directly intersect |
9416 | // with p in 'caveshlist'. From them, we 'smarktest' their neighboring |
9417 | // subfaces which are included in C(p). Do not across a segment. |
9418 | for (i = 0; i < caveshlist->objects; i++) { |
9419 | parysh = (face *) fastlookup(caveshlist, i); |
9420 | assert(smarktested(*parysh)); |
9421 | checksh = *parysh; |
9422 | for (j = 0; j < 3; j++) { |
9423 | if (!isshsubseg(checksh)) { |
9424 | spivot(checksh, neighsh); |
9425 | assert(neighsh.sh != NULL); |
9426 | if (!smarktested(neighsh)) { |
9427 | stpivot(neighsh, neightet); |
9428 | if (infected(neightet)) { |
9429 | fsymself(neightet); |
9430 | if (infected(neightet)) { |
9431 | // This subface is inside C(p). |
9432 | // Check if its diametrical circumsphere encloses 'p'. |
9433 | // The purpose of this check is to avoid forming invalid |
9434 | // subcavity in surface mesh. |
9435 | sign = incircle3d(sorg(neighsh), sdest(neighsh), |
9436 | sapex(neighsh), insertpt); |
9437 | if (sign < 0) { |
9438 | smarktest(neighsh); |
9439 | caveshlist->newindex((void **) &parysh); |
9440 | *parysh = neighsh; |
9441 | } |
9442 | } |
9443 | } |
9444 | } |
9445 | } |
9446 | senextself(checksh); |
9447 | } // j |
9448 | } // i |
9449 | } // if (ivf->splitbdflag) |
9450 | |
9451 | if (ivf->validflag) { |
9452 | // Validate C(p) and update it if it is not star-shaped. |
9453 | int cutcount = 0; |
9454 | |
9455 | if (ivf->respectbdflag) { |
9456 | // The initial cavity may include subfaces which are not on the facets |
9457 | // being splitting. Find them and make them as boundary of C(p). |
9458 | // Comment: We have already 'smarktested' the subfaces in sC(p). They |
9459 | // are completely inside C(p). |
9460 | for (i = 0; i < cavetetshlist->objects; i++) { |
9461 | parysh = (face *) fastlookup(cavetetshlist, i); |
9462 | stpivot(*parysh, neightet); |
9463 | if (infected(neightet)) { |
9464 | fsymself(neightet); |
9465 | if (infected(neightet)) { |
9466 | // Found a subface inside C(p). |
9467 | if (!smarktested(*parysh)) { |
9468 | // It is possible that this face is a boundary subface. |
9469 | // Check if it is a hull face. |
9470 | //assert(apex(neightet) != dummypoint); |
9471 | if (oppo(neightet) != dummypoint) { |
9472 | fsymself(neightet); |
9473 | } |
9474 | if (oppo(neightet) != dummypoint) { |
9475 | ori = orient3d(org(neightet), dest(neightet), apex(neightet), |
9476 | insertpt); |
9477 | if (ori < 0) { |
9478 | // A visible face, get its neighbor face. |
9479 | fsymself(neightet); |
9480 | ori = -ori; // It must be invisible by p. |
9481 | } |
9482 | } else { |
9483 | // A hull tet. It needs to be cut. |
9484 | ori = 1; |
9485 | } |
9486 | // Cut this tet if it is either invisible by or coplanar with p. |
9487 | if (ori >= 0) { |
9488 | uninfect(neightet); |
9489 | unmarktest(neightet); |
9490 | cutcount++; |
9491 | neightet.ver = epivot[neightet.ver]; |
9492 | cavebdrylist->newindex((void **) &parytet); |
9493 | *parytet = neightet; |
9494 | // Add three new faces to find new boundaries. |
9495 | for (j = 0; j < 3; j++) { |
9496 | esym(neightet, neineitet); |
9497 | neineitet.ver = epivot[neineitet.ver]; |
9498 | cavebdrylist->newindex((void **) &parytet); |
9499 | *parytet = neineitet; |
9500 | enextself(neightet); |
9501 | } |
9502 | } // if (ori >= 0) |
9503 | } |
9504 | } |
9505 | } |
9506 | } // i |
9507 | |
9508 | // The initial cavity may include segments in its interior. We need to |
9509 | // Update the cavity so that these segments are on the boundary of |
9510 | // the cavity. |
9511 | for (i = 0; i < cavetetseglist->objects; i++) { |
9512 | paryseg = (face *) fastlookup(cavetetseglist, i); |
9513 | // Check this segment if it is not a splitting segment. |
9514 | if (!smarktested(*paryseg)) { |
9515 | sstpivot1(*paryseg, neightet); |
9516 | spintet = neightet; |
9517 | while (1) { |
9518 | if (!infected(spintet)) break; |
9519 | fnextself(spintet); |
9520 | if (spintet.tet == neightet.tet) break; |
9521 | } |
9522 | if (infected(spintet)) { |
9523 | // Find an adjacent tet at this segment such that both faces |
9524 | // at this segment are not visible by p. |
9525 | pa = org(neightet); |
9526 | pb = dest(neightet); |
9527 | spintet = neightet; |
9528 | j = 0; |
9529 | while (1) { |
9530 | // Check if this face is visible by p. |
9531 | pc = apex(spintet); |
9532 | if (pc != dummypoint) { |
9533 | ori = orient3d(pa, pb, pc, insertpt); |
9534 | if (ori >= 0) { |
9535 | // Not visible. Check another face in this tet. |
9536 | esym(spintet, neineitet); |
9537 | pc = apex(neineitet); |
9538 | if (pc != dummypoint) { |
9539 | ori = orient3d(pb, pa, pc, insertpt); |
9540 | if (ori >= 0) { |
9541 | // Not visible. Found this face. |
9542 | j = 1; // Flag that it is found. |
9543 | break; |
9544 | } |
9545 | } |
9546 | } |
9547 | } |
9548 | fnextself(spintet); |
9549 | if (spintet.tet == neightet.tet) break; |
9550 | } |
9551 | if (j == 0) { |
9552 | // Not found such a face. |
9553 | assert(0); // debug this case. |
9554 | } |
9555 | neightet = spintet; |
9556 | if (b->verbose > 3) { |
9557 | printf(" Cut tet (%d, %d, %d, %d)\n" , |
9558 | pointmark(org(neightet)), pointmark(dest(neightet)), |
9559 | pointmark(apex(neightet)), pointmark(oppo(neightet))); |
9560 | } |
9561 | uninfect(neightet); |
9562 | unmarktest(neightet); |
9563 | cutcount++; |
9564 | neightet.ver = epivot[neightet.ver]; |
9565 | cavebdrylist->newindex((void **) &parytet); |
9566 | *parytet = neightet; |
9567 | // Add three new faces to find new boundaries. |
9568 | for (j = 0; j < 3; j++) { |
9569 | esym(neightet, neineitet); |
9570 | neineitet.ver = epivot[neineitet.ver]; |
9571 | cavebdrylist->newindex((void **) &parytet); |
9572 | *parytet = neineitet; |
9573 | enextself(neightet); |
9574 | } |
9575 | } |
9576 | } |
9577 | } // i |
9578 | } // if (ivf->respectbdflag) |
9579 | |
9580 | // Update the cavity by removing invisible faces until it is star-shaped. |
9581 | for (i = 0; i < cavebdrylist->objects; i++) { |
9582 | cavetet = (triface *) fastlookup(cavebdrylist, i); |
9583 | // 'cavetet' is an exterior tet adjacent to the cavity. |
9584 | // Check if its neighbor is inside C(p). |
9585 | fsym(*cavetet, neightet); |
9586 | if (infected(neightet)) { |
9587 | if (apex(*cavetet) != dummypoint) { |
9588 | // It is a cavity boundary face. Check its visibility. |
9589 | if (oppo(neightet) != dummypoint) { |
9590 | ori = orient3d(org(*cavetet), dest(*cavetet), apex(*cavetet), |
9591 | insertpt); |
9592 | enqflag = (ori > 0); |
9593 | // Comment: if ori == 0 (coplanar case), we also cut the tet. |
9594 | } else { |
9595 | // It is a hull face. And its adjacent tet (at inside of the |
9596 | // domain) has been cut from the cavity. Cut it as well. |
9597 | //assert(nonconvex); |
9598 | enqflag = false; |
9599 | } |
9600 | } else { |
9601 | enqflag = true; // A hull edge. |
9602 | } |
9603 | if (enqflag) { |
9604 | // This face is valid, save it. |
9605 | cavetetlist->newindex((void **) &parytet); |
9606 | *parytet = *cavetet; |
9607 | } else { |
9608 | uninfect(neightet); |
9609 | unmarktest(neightet); |
9610 | cutcount++; |
9611 | // Add three new faces to find new boundaries. |
9612 | for (j = 0; j < 3; j++) { |
9613 | esym(neightet, neineitet); |
9614 | neineitet.ver = epivot[neineitet.ver]; |
9615 | cavebdrylist->newindex((void **) &parytet); |
9616 | *parytet = neineitet; |
9617 | enextself(neightet); |
9618 | } |
9619 | // 'cavetet' is not on the cavity boundary anymore. |
9620 | unmarktest(*cavetet); |
9621 | } |
9622 | } else { |
9623 | // 'cavetet' is not on the cavity boundary anymore. |
9624 | unmarktest(*cavetet); |
9625 | } |
9626 | } // i |
9627 | |
9628 | if (cutcount > 0) { |
9629 | // The cavity has been updated. |
9630 | // Update the cavity boundary faces. |
9631 | cavebdrylist->restart(); |
9632 | for (i = 0; i < cavetetlist->objects; i++) { |
9633 | cavetet = (triface *) fastlookup(cavetetlist, i); |
9634 | // 'cavetet' was an exterior tet adjacent to the cavity. |
9635 | fsym(*cavetet, neightet); |
9636 | if (infected(neightet)) { |
9637 | // It is a cavity boundary face. |
9638 | cavebdrylist->newindex((void **) &parytet); |
9639 | *parytet = *cavetet; |
9640 | } else { |
9641 | // Not a cavity boundary face. |
9642 | unmarktest(*cavetet); |
9643 | } |
9644 | } |
9645 | |
9646 | // Update the list of old tets. |
9647 | cavetetlist->restart(); |
9648 | for (i = 0; i < caveoldtetlist->objects; i++) { |
9649 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
9650 | if (infected(*cavetet)) { |
9651 | cavetetlist->newindex((void **) &parytet); |
9652 | *parytet = *cavetet; |
9653 | } |
9654 | } |
9655 | // Swap 'cavetetlist' and 'caveoldtetlist'. |
9656 | swaplist = caveoldtetlist; |
9657 | caveoldtetlist = cavetetlist; |
9658 | cavetetlist = swaplist; |
9659 | |
9660 | // The cavity should contain at least one tet. |
9661 | if (caveoldtetlist->objects == 0l) { |
9662 | insertpoint_abort(splitseg, ivf); |
9663 | ivf->iloc = (int) BADELEMENT; |
9664 | return 0; |
9665 | } |
9666 | |
9667 | if (ivf->splitbdflag) { |
9668 | int cutshcount = 0; |
9669 | // Update the sub-cavity sC(p). |
9670 | for (i = 0; i < caveshlist->objects; i++) { |
9671 | parysh = (face *) fastlookup(caveshlist, i); |
9672 | if (smarktested(*parysh)) { |
9673 | enqflag = false; |
9674 | stpivot(*parysh, neightet); |
9675 | if (infected(neightet)) { |
9676 | fsymself(neightet); |
9677 | if (infected(neightet)) { |
9678 | enqflag = true; |
9679 | } |
9680 | } |
9681 | if (!enqflag) { |
9682 | sunmarktest(*parysh); |
9683 | // Use the last entry of this array to fill this entry. |
9684 | j = caveshlist->objects - 1; |
9685 | checksh = * (face *) fastlookup(caveshlist, j); |
9686 | *parysh = checksh; |
9687 | cutshcount++; |
9688 | caveshlist->objects--; // The list is shrinked. |
9689 | i--; |
9690 | } |
9691 | } |
9692 | } |
9693 | |
9694 | if (cutshcount > 0) { |
9695 | i = 0; // Count the number of invalid subfaces/segments. |
9696 | // Valid the updated sub-cavity sC(p). |
9697 | if (loc == ONFACE) { |
9698 | if ((splitsh != NULL) && (splitsh->sh != NULL)) { |
9699 | // The to-be split subface should be in sC(p). |
9700 | if (!smarktested(*splitsh)) i++; |
9701 | } |
9702 | } else if (loc == ONEDGE) { |
9703 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
9704 | // The to-be split segment should be in sC(p). |
9705 | if (!smarktested(*splitseg)) i++; |
9706 | } |
9707 | if ((splitsh != NULL) && (splitsh->sh != NULL)) { |
9708 | // All subfaces at this edge should be in sC(p). |
9709 | pa = sorg(*splitsh); |
9710 | neighsh = *splitsh; |
9711 | while (1) { |
9712 | // Adjust the origin of its edge to be 'pa'. |
9713 | if (sorg(neighsh) != pa) { |
9714 | sesymself(neighsh); |
9715 | } |
9716 | // Add this face into list (in B-W cavity). |
9717 | if (!smarktested(neighsh)) i++; |
9718 | // Go to the next face at the edge. |
9719 | spivotself(neighsh); |
9720 | // Stop if all faces at the edge have been visited. |
9721 | if (neighsh.sh == splitsh->sh) break; |
9722 | if (neighsh.sh == NULL) break; |
9723 | } // while (1) |
9724 | } |
9725 | } |
9726 | |
9727 | if (i > 0) { |
9728 | // The updated sC(p) is invalid. Do not insert this vertex. |
9729 | insertpoint_abort(splitseg, ivf); |
9730 | ivf->iloc = (int) BADELEMENT; |
9731 | return 0; |
9732 | } |
9733 | } // if (cutshcount > 0) |
9734 | } // if (ivf->splitbdflag) |
9735 | } // if (cutcount > 0) |
9736 | |
9737 | } // if (ivf->validflag) |
9738 | |
9739 | if (ivf->refineflag) { |
9740 | // The new point is inserted by Delaunay refinement, i.e., it is the |
9741 | // circumcenter of a tetrahedron, or a subface, or a segment. |
9742 | // Do not insert this point if the tetrahedron, or subface, or segment |
9743 | // is not inside the final cavity. |
9744 | if (((ivf->refineflag == 1) && !infected(ivf->refinetet)) || |
9745 | ((ivf->refineflag == 2) && !smarktested(ivf->refinesh))) { |
9746 | insertpoint_abort(splitseg, ivf); |
9747 | ivf->iloc = (int) BADELEMENT; |
9748 | return 0; |
9749 | } |
9750 | } // if (ivf->refineflag) |
9751 | |
9752 | if (b->plc && (loc != INSTAR)) { |
9753 | // Reject the new point if it lies too close to an existing point (b->plc), |
9754 | // or it lies inside a protecting ball of near vertex (ivf->rejflag & 4). |
9755 | // Collect the list of vertices of the initial cavity. |
9756 | if (loc == OUTSIDE) { |
9757 | pts = (point *) &(searchtet->tet[4]); |
9758 | for (i = 0; i < 3; i++) { |
9759 | cavetetvertlist->newindex((void **) &parypt); |
9760 | *parypt = pts[i]; |
9761 | } |
9762 | } else if (loc == INTETRAHEDRON) { |
9763 | pts = (point *) &(searchtet->tet[4]); |
9764 | for (i = 0; i < 4; i++) { |
9765 | cavetetvertlist->newindex((void **) &parypt); |
9766 | *parypt = pts[i]; |
9767 | } |
9768 | } else if (loc == ONFACE) { |
9769 | pts = (point *) &(searchtet->tet[4]); |
9770 | for (i = 0; i < 3; i++) { |
9771 | cavetetvertlist->newindex((void **) &parypt); |
9772 | *parypt = pts[i]; |
9773 | } |
9774 | if (pts[3] != dummypoint) { |
9775 | cavetetvertlist->newindex((void **) &parypt); |
9776 | *parypt = pts[3]; |
9777 | } |
9778 | fsym(*searchtet, spintet); |
9779 | if (oppo(spintet) != dummypoint) { |
9780 | cavetetvertlist->newindex((void **) &parypt); |
9781 | *parypt = oppo(spintet); |
9782 | } |
9783 | } else if (loc == ONEDGE) { |
9784 | spintet = *searchtet; |
9785 | cavetetvertlist->newindex((void **) &parypt); |
9786 | *parypt = org(spintet); |
9787 | cavetetvertlist->newindex((void **) &parypt); |
9788 | *parypt = dest(spintet); |
9789 | while (1) { |
9790 | if (apex(spintet) != dummypoint) { |
9791 | cavetetvertlist->newindex((void **) &parypt); |
9792 | *parypt = apex(spintet); |
9793 | } |
9794 | fnextself(spintet); |
9795 | if (spintet.tet == searchtet->tet) break; |
9796 | } |
9797 | } |
9798 | |
9799 | int rejptflag = (ivf->rejflag & 4); |
9800 | REAL rd; |
9801 | pts = NULL; |
9802 | |
9803 | for (i = 0; i < cavetetvertlist->objects; i++) { |
9804 | parypt = (point *) fastlookup(cavetetvertlist, i); |
9805 | rd = distance(*parypt, insertpt); |
9806 | // Is the point very close to an existing point? |
9807 | if (rd < b->minedgelength) { |
9808 | pts = parypt; |
9809 | loc = NEARVERTEX; |
9810 | break; |
9811 | } |
9812 | if (rejptflag) { |
9813 | // Is the point encroaches upon an existing point? |
9814 | if (rd < (0.5 * (*parypt)[pointmtrindex])) { |
9815 | pts = parypt; |
9816 | loc = ENCVERTEX; |
9817 | break; |
9818 | } |
9819 | } |
9820 | } |
9821 | cavetetvertlist->restart(); // Clear the work list. |
9822 | |
9823 | if (pts != NULL) { |
9824 | // The point is either too close to an existing vertex (NEARVERTEX) |
9825 | // or encroaches upon (inside the protecting ball) of that vertex. |
9826 | if (loc == NEARVERTEX) { |
9827 | if (b->nomergevertex) { // -M0/1 option. |
9828 | // In this case, we still insert this vertex. Although it is very |
9829 | // close to an existing vertex. Give a warning, anyway. |
9830 | if (!b->quiet) { |
9831 | printf("Warning: Two points, %d and %d, are very close.\n" , |
9832 | pointmark(insertpt), pointmark(*pts)); |
9833 | printf(" Creating a very short edge (len = %g) (< %g).\n" , |
9834 | rd, b->minedgelength); |
9835 | printf(" You may try a smaller tolerance (-T) (current is %g)\n" , |
9836 | b->epsilon); |
9837 | printf(" to avoid this warning.\n" ); |
9838 | } |
9839 | } else { |
9840 | insertpt[3] = rd; // Only for reporting. |
9841 | setpoint2ppt(insertpt, *pts); |
9842 | insertpoint_abort(splitseg, ivf); |
9843 | ivf->iloc = (int) loc; |
9844 | return 0; |
9845 | } |
9846 | } else { // loc == ENCVERTEX |
9847 | // The point lies inside the protection ball. |
9848 | setpoint2ppt(insertpt, *pts); |
9849 | insertpoint_abort(splitseg, ivf); |
9850 | ivf->iloc = (int) loc; |
9851 | return 0; |
9852 | } |
9853 | } |
9854 | } // if (b->plc && (loc != INSTAR)) |
9855 | |
9856 | if (b->weighted || ivf->cdtflag || ivf->smlenflag |
9857 | ) { |
9858 | // There may be other vertices inside C(p). We need to find them. |
9859 | // Collect all vertices of C(p). |
9860 | for (i = 0; i < caveoldtetlist->objects; i++) { |
9861 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
9862 | //assert(infected(*cavetet)); |
9863 | pts = (point *) &(cavetet->tet[4]); |
9864 | for (j = 0; j < 4; j++) { |
9865 | if (pts[j] != dummypoint) { |
9866 | if (!pinfected(pts[j])) { |
9867 | pinfect(pts[j]); |
9868 | cavetetvertlist->newindex((void **) &parypt); |
9869 | *parypt = pts[j]; |
9870 | } |
9871 | } |
9872 | } // j |
9873 | } // i |
9874 | // Uninfect all collected (cavity) vertices. |
9875 | for (i = 0; i < cavetetvertlist->objects; i++) { |
9876 | parypt = (point *) fastlookup(cavetetvertlist, i); |
9877 | puninfect(*parypt); |
9878 | } |
9879 | if (ivf->smlenflag) { |
9880 | REAL len; |
9881 | // Get the length of the shortest edge connecting to 'newpt'. |
9882 | parypt = (point *) fastlookup(cavetetvertlist, 0); |
9883 | ivf->smlen = distance(*parypt, insertpt); |
9884 | ivf->parentpt = *parypt; |
9885 | for (i = 1; i < cavetetvertlist->objects; i++) { |
9886 | parypt = (point *) fastlookup(cavetetvertlist, i); |
9887 | len = distance(*parypt, insertpt); |
9888 | if (len < ivf->smlen) { |
9889 | ivf->smlen = len; |
9890 | ivf->parentpt = *parypt; |
9891 | } |
9892 | } |
9893 | } |
9894 | } |
9895 | |
9896 | |
9897 | if (ivf->cdtflag) { |
9898 | // Unmark tets. |
9899 | for (i = 0; i < caveoldtetlist->objects; i++) { |
9900 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
9901 | unmarktest(*cavetet); |
9902 | } |
9903 | for (i = 0; i < cavebdrylist->objects; i++) { |
9904 | cavetet = (triface *) fastlookup(cavebdrylist, i); |
9905 | unmarktest(*cavetet); |
9906 | } |
9907 | // Clean up arrays which are not needed. |
9908 | cavetetlist->restart(); |
9909 | if (checksubsegflag) { |
9910 | cavetetseglist->restart(); |
9911 | } |
9912 | if (checksubfaceflag) { |
9913 | cavetetshlist->restart(); |
9914 | } |
9915 | return 1; |
9916 | } |
9917 | |
9918 | // Before re-mesh C(p). Process the segments and subfaces which are on the |
9919 | // boundary of C(p). Make sure that each such segment or subface is |
9920 | // connecting to a tet outside C(p). So we can re-connect them to the |
9921 | // new tets inside the C(p) later. |
9922 | |
9923 | if (checksubsegflag) { |
9924 | for (i = 0; i < cavetetseglist->objects; i++) { |
9925 | paryseg = (face *) fastlookup(cavetetseglist, i); |
9926 | // Operate on it if it is not the splitting segment, i.e., in sC(p). |
9927 | if (!smarktested(*paryseg)) { |
9928 | // Check if the segment is inside the cavity. |
9929 | // 'j' counts the num of adjacent tets of this seg. |
9930 | // 'k' counts the num of adjacent tets which are 'sinfected'. |
9931 | j = k = 0; |
9932 | sstpivot1(*paryseg, neightet); |
9933 | spintet = neightet; |
9934 | while (1) { |
9935 | j++; |
9936 | if (!infected(spintet)) { |
9937 | neineitet = spintet; // An outer tet. Remember it. |
9938 | } else { |
9939 | k++; // An in tet. |
9940 | } |
9941 | fnextself(spintet); |
9942 | if (spintet.tet == neightet.tet) break; |
9943 | } |
9944 | // assert(j > 0); |
9945 | if (k == 0) { |
9946 | // The segment is not connect to C(p) anymore. Remove it by |
9947 | // Replacing it by the last entry of this list. |
9948 | s = cavetetseglist->objects - 1; |
9949 | checkseg = * (face *) fastlookup(cavetetseglist, s); |
9950 | *paryseg = checkseg; |
9951 | cavetetseglist->objects--; |
9952 | i--; |
9953 | } else if (k < j) { |
9954 | // The segment is on the boundary of C(p). |
9955 | sstbond1(*paryseg, neineitet); |
9956 | } else { // k == j |
9957 | // The segment is inside C(p). |
9958 | if (!ivf->splitbdflag) { |
9959 | checkseg = *paryseg; |
9960 | sinfect(checkseg); // Flag it as an interior segment. |
9961 | caveencseglist->newindex((void **) &paryseg); |
9962 | *paryseg = checkseg; |
9963 | } else { |
9964 | assert(0); // Not possible. |
9965 | } |
9966 | } |
9967 | } else { |
9968 | // assert(smarktested(*paryseg)); |
9969 | // Flag it as an interior segment. Do not queue it, since it will |
9970 | // be deleted after the segment splitting. |
9971 | sinfect(*paryseg); |
9972 | } |
9973 | } // i |
9974 | } // if (checksubsegflag) |
9975 | |
9976 | if (checksubfaceflag) { |
9977 | for (i = 0; i < cavetetshlist->objects; i++) { |
9978 | parysh = (face *) fastlookup(cavetetshlist, i); |
9979 | // Operate on it if it is not inside the sub-cavity sC(p). |
9980 | if (!smarktested(*parysh)) { |
9981 | // Check if this subface is inside the cavity. |
9982 | k = 0; |
9983 | for (j = 0; j < 2; j++) { |
9984 | stpivot(*parysh, neightet); |
9985 | if (!infected(neightet)) { |
9986 | checksh = *parysh; // Remember this side. |
9987 | } else { |
9988 | k++; |
9989 | } |
9990 | sesymself(*parysh); |
9991 | } |
9992 | if (k == 0) { |
9993 | // The subface is not connected to C(p). Remove it. |
9994 | s = cavetetshlist->objects - 1; |
9995 | checksh = * (face *) fastlookup(cavetetshlist, s); |
9996 | *parysh = checksh; |
9997 | cavetetshlist->objects--; |
9998 | i--; |
9999 | } else if (k == 1) { |
10000 | // This side is the outer boundary of C(p). |
10001 | *parysh = checksh; |
10002 | } else { // k == 2 |
10003 | if (!ivf->splitbdflag) { |
10004 | checksh = *parysh; |
10005 | sinfect(checksh); // Flag it. |
10006 | caveencshlist->newindex((void **) &parysh); |
10007 | *parysh = checksh; |
10008 | } else { |
10009 | assert(0); // Not possible. |
10010 | } |
10011 | } |
10012 | } else { |
10013 | // assert(smarktested(*parysh)); |
10014 | // Flag it as an interior subface. Do not queue it. It will be |
10015 | // deleted after the facet point insertion. |
10016 | sinfect(*parysh); |
10017 | } |
10018 | } // i |
10019 | } // if (checksubfaceflag) |
10020 | |
10021 | // Create new tetrahedra to fill the cavity. |
10022 | |
10023 | for (i = 0; i < cavebdrylist->objects; i++) { |
10024 | cavetet = (triface *) fastlookup(cavebdrylist, i); |
10025 | neightet = *cavetet; |
10026 | unmarktest(neightet); // Unmark it. |
10027 | // Get the oldtet (inside the cavity). |
10028 | fsym(neightet, oldtet); |
10029 | if (apex(neightet) != dummypoint) { |
10030 | // Create a new tet in the cavity. |
10031 | maketetrahedron(&newtet); |
10032 | setorg(newtet, dest(neightet)); |
10033 | setdest(newtet, org(neightet)); |
10034 | setapex(newtet, apex(neightet)); |
10035 | setoppo(newtet, insertpt); |
10036 | } else { |
10037 | // Create a new hull tet. |
10038 | hullsize++; |
10039 | maketetrahedron(&newtet); |
10040 | setorg(newtet, org(neightet)); |
10041 | setdest(newtet, dest(neightet)); |
10042 | setapex(newtet, insertpt); |
10043 | setoppo(newtet, dummypoint); // It must opposite to face 3. |
10044 | // Adjust back to the cavity bounday face. |
10045 | esymself(newtet); |
10046 | } |
10047 | // The new tet inherits attribtes from the old tet. |
10048 | for (j = 0; j < numelemattrib; j++) { |
10049 | attrib = elemattribute(oldtet.tet, j); |
10050 | setelemattribute(newtet.tet, j, attrib); |
10051 | } |
10052 | if (b->varvolume) { |
10053 | volume = volumebound(oldtet.tet); |
10054 | setvolumebound(newtet.tet, volume); |
10055 | } |
10056 | // Connect newtet <==> neightet, this also disconnect the old bond. |
10057 | bond(newtet, neightet); |
10058 | // oldtet still connects to neightet. |
10059 | *cavetet = oldtet; // *cavetet = newtet; |
10060 | } // i |
10061 | |
10062 | // Set a handle for speeding point location. |
10063 | recenttet = newtet; |
10064 | //setpoint2tet(insertpt, encode(newtet)); |
10065 | setpoint2tet(insertpt, (tetrahedron) (newtet.tet)); |
10066 | |
10067 | // Re-use this list to save new interior cavity faces. |
10068 | cavetetlist->restart(); |
10069 | |
10070 | // Connect adjacent new tetrahedra together. |
10071 | for (i = 0; i < cavebdrylist->objects; i++) { |
10072 | cavetet = (triface *) fastlookup(cavebdrylist, i); |
10073 | // cavtet is an oldtet, get the newtet at this face. |
10074 | oldtet = *cavetet; |
10075 | fsym(oldtet, neightet); |
10076 | fsym(neightet, newtet); |
10077 | // Comment: oldtet and newtet must be at the same directed edge. |
10078 | // Connect the three other faces of this newtet. |
10079 | for (j = 0; j < 3; j++) { |
10080 | esym(newtet, neightet); // Go to the face. |
10081 | if (neightet.tet[neightet.ver & 3] == NULL) { |
10082 | // Find the adjacent face of this newtet. |
10083 | spintet = oldtet; |
10084 | while (1) { |
10085 | fnextself(spintet); |
10086 | if (!infected(spintet)) break; |
10087 | } |
10088 | fsym(spintet, newneitet); |
10089 | esymself(newneitet); |
10090 | assert(newneitet.tet[newneitet.ver & 3] == NULL); |
10091 | bond(neightet, newneitet); |
10092 | if (ivf->lawson > 1) { |
10093 | cavetetlist->newindex((void **) &parytet); |
10094 | *parytet = neightet; |
10095 | } |
10096 | } |
10097 | //setpoint2tet(org(newtet), encode(newtet)); |
10098 | setpoint2tet(org(newtet), (tetrahedron) (newtet.tet)); |
10099 | enextself(newtet); |
10100 | enextself(oldtet); |
10101 | } |
10102 | *cavetet = newtet; // Save the new tet. |
10103 | } // i |
10104 | |
10105 | if (checksubfaceflag) { |
10106 | // Connect subfaces on the boundary of the cavity to the new tets. |
10107 | for (i = 0; i < cavetetshlist->objects; i++) { |
10108 | parysh = (face *) fastlookup(cavetetshlist, i); |
10109 | // Connect it if it is not a missing subface. |
10110 | if (!sinfected(*parysh)) { |
10111 | stpivot(*parysh, neightet); |
10112 | fsym(neightet, spintet); |
10113 | sesymself(*parysh); |
10114 | tsbond(spintet, *parysh); |
10115 | } |
10116 | } |
10117 | } |
10118 | |
10119 | if (checksubsegflag) { |
10120 | // Connect segments on the boundary of the cavity to the new tets. |
10121 | for (i = 0; i < cavetetseglist->objects; i++) { |
10122 | paryseg = (face *) fastlookup(cavetetseglist, i); |
10123 | // Connect it if it is not a missing segment. |
10124 | if (!sinfected(*paryseg)) { |
10125 | sstpivot1(*paryseg, neightet); |
10126 | spintet = neightet; |
10127 | while (1) { |
10128 | tssbond1(spintet, *paryseg); |
10129 | fnextself(spintet); |
10130 | if (spintet.tet == neightet.tet) break; |
10131 | } |
10132 | } |
10133 | } |
10134 | } |
10135 | |
10136 | if (((splitsh != NULL) && (splitsh->sh != NULL)) || |
10137 | ((splitseg != NULL) && (splitseg->sh != NULL))) { |
10138 | // Split a subface or a segment. |
10139 | sinsertvertex(insertpt, splitsh, splitseg, ivf->sloc, ivf->sbowywat, 0); |
10140 | } |
10141 | |
10142 | if (checksubfaceflag) { |
10143 | if (ivf->splitbdflag) { |
10144 | // Recover new subfaces in C(p). |
10145 | for (i = 0; i < caveshbdlist->objects; i++) { |
10146 | // Get an old subface at edge [a, b]. |
10147 | parysh = (face *) fastlookup(caveshbdlist, i); |
10148 | spivot(*parysh, checksh); // The new subface [a, b, p]. |
10149 | // Do not recover a deleted new face (degenerated). |
10150 | if (checksh.sh[3] != NULL) { |
10151 | // Note that the old subface still connects to adjacent old tets |
10152 | // of C(p), which still connect to the tets outside C(p). |
10153 | stpivot(*parysh, neightet); |
10154 | assert(infected(neightet)); |
10155 | // Find the adjacent tet containing the edge [a,b] outside C(p). |
10156 | spintet = neightet; |
10157 | while (1) { |
10158 | fnextself(spintet); |
10159 | if (!infected(spintet)) break; |
10160 | assert(spintet.tet != neightet.tet); |
10161 | } |
10162 | // The adjacent tet connects to a new tet in C(p). |
10163 | fsym(spintet, neightet); |
10164 | assert(!infected(neightet)); |
10165 | // Find the tet containing the face [a, b, p]. |
10166 | spintet = neightet; |
10167 | while (1) { |
10168 | fnextself(spintet); |
10169 | if (apex(spintet) == insertpt) break; |
10170 | assert(spintet.tet != neightet.tet); |
10171 | } |
10172 | // Adjust the edge direction in spintet and checksh. |
10173 | if (sorg(checksh) != org(spintet)) { |
10174 | sesymself(checksh); |
10175 | assert(sorg(checksh) == org(spintet)); |
10176 | } |
10177 | assert(sdest(checksh) == dest(spintet)); |
10178 | // Connect the subface to two adjacent tets. |
10179 | tsbond(spintet, checksh); |
10180 | fsymself(spintet); |
10181 | sesymself(checksh); |
10182 | tsbond(spintet, checksh); |
10183 | } // if (checksh.sh[3] != NULL) |
10184 | } |
10185 | // There should be no missing interior subfaces in C(p). |
10186 | assert(caveencshlist->objects == 0l); |
10187 | } else { |
10188 | // The Boundary recovery phase. |
10189 | // Put all new subfaces into stack for recovery. |
10190 | for (i = 0; i < caveshbdlist->objects; i++) { |
10191 | // Get an old subface at edge [a, b]. |
10192 | parysh = (face *) fastlookup(caveshbdlist, i); |
10193 | spivot(*parysh, checksh); // The new subface [a, b, p]. |
10194 | // Do not recover a deleted new face (degenerated). |
10195 | if (checksh.sh[3] != NULL) { |
10196 | subfacstack->newindex((void **) &parysh); |
10197 | *parysh = checksh; |
10198 | } |
10199 | } |
10200 | // Put all interior subfaces into stack for recovery. |
10201 | for (i = 0; i < caveencshlist->objects; i++) { |
10202 | parysh = (face *) fastlookup(caveencshlist, i); |
10203 | assert(sinfected(*parysh)); |
10204 | // Some subfaces inside C(p) might be split in sinsertvertex(). |
10205 | // Only queue those faces which are not split. |
10206 | if (!smarktested(*parysh)) { |
10207 | checksh = *parysh; |
10208 | suninfect(checksh); |
10209 | stdissolve(checksh); // Detach connections to old tets. |
10210 | subfacstack->newindex((void **) &parysh); |
10211 | *parysh = checksh; |
10212 | } |
10213 | } |
10214 | } |
10215 | } // if (checksubfaceflag) |
10216 | |
10217 | if (checksubsegflag) { |
10218 | if (ivf->splitbdflag) { |
10219 | if (splitseg != NULL) { |
10220 | // Recover the two new subsegments in C(p). |
10221 | for (i = 0; i < cavesegshlist->objects; i++) { |
10222 | paryseg = (face *) fastlookup(cavesegshlist, i); |
10223 | // Insert this subsegment into C(p). |
10224 | checkseg = *paryseg; |
10225 | // Get the adjacent new subface. |
10226 | checkseg.shver = 0; |
10227 | spivot(checkseg, checksh); |
10228 | if (checksh.sh != NULL) { |
10229 | // Get the adjacent new tetrahedron. |
10230 | stpivot(checksh, neightet); |
10231 | } else { |
10232 | // It's a dangling segment. |
10233 | point2tetorg(sorg(checkseg), neightet); |
10234 | finddirection(&neightet, sdest(checkseg)); |
10235 | assert(dest(neightet) == sdest(checkseg)); |
10236 | } |
10237 | assert(!infected(neightet)); |
10238 | sstbond1(checkseg, neightet); |
10239 | spintet = neightet; |
10240 | while (1) { |
10241 | tssbond1(spintet, checkseg); |
10242 | fnextself(spintet); |
10243 | if (spintet.tet == neightet.tet) break; |
10244 | } |
10245 | } |
10246 | } // if (splitseg != NULL) |
10247 | // There should be no interior segment in C(p). |
10248 | assert(caveencseglist->objects == 0l); |
10249 | } else { |
10250 | // The Boundary Recovery Phase. |
10251 | // Queue missing segments in C(p) for recovery. |
10252 | if (splitseg != NULL) { |
10253 | // Queue two new subsegments in C(p) for recovery. |
10254 | for (i = 0; i < cavesegshlist->objects; i++) { |
10255 | paryseg = (face *) fastlookup(cavesegshlist, i); |
10256 | checkseg = *paryseg; |
10257 | //sstdissolve1(checkseg); // It has not been connected yet. |
10258 | s = randomnation(subsegstack->objects + 1); |
10259 | subsegstack->newindex((void **) &paryseg); |
10260 | *paryseg = * (face *) fastlookup(subsegstack, s); |
10261 | paryseg = (face *) fastlookup(subsegstack, s); |
10262 | *paryseg = checkseg; |
10263 | } |
10264 | } // if (splitseg != NULL) |
10265 | for (i = 0; i < caveencseglist->objects; i++) { |
10266 | paryseg = (face *) fastlookup(caveencseglist, i); |
10267 | assert(sinfected(*paryseg)); |
10268 | if (!smarktested(*paryseg)) { // It may be split. |
10269 | checkseg = *paryseg; |
10270 | suninfect(checkseg); |
10271 | sstdissolve1(checkseg); // Detach connections to old tets. |
10272 | s = randomnation(subsegstack->objects + 1); |
10273 | subsegstack->newindex((void **) &paryseg); |
10274 | *paryseg = * (face *) fastlookup(subsegstack, s); |
10275 | paryseg = (face *) fastlookup(subsegstack, s); |
10276 | *paryseg = checkseg; |
10277 | } |
10278 | } |
10279 | } |
10280 | } // if (checksubsegflag) |
10281 | |
10282 | if (b->weighted |
10283 | ) { |
10284 | // Some vertices may be completed inside the cavity. They must be |
10285 | // detected and added to recovering list. |
10286 | // Since every "live" vertex must contain a pointer to a non-dead |
10287 | // tetrahedron, we can check for each vertex this pointer. |
10288 | for (i = 0; i < cavetetvertlist->objects; i++) { |
10289 | pts = (point *) fastlookup(cavetetvertlist, i); |
10290 | decode(point2tet(*pts), *searchtet); |
10291 | assert(searchtet->tet != NULL); // No tet has been deleted yet. |
10292 | if (infected(*searchtet)) { |
10293 | if (b->weighted) { |
10294 | if (b->verbose > 1) { |
10295 | printf(" Point #%d is non-regular after the insertion of #%d.\n" , |
10296 | pointmark(*pts), pointmark(insertpt)); |
10297 | } |
10298 | setpointtype(*pts, NREGULARVERTEX); |
10299 | nonregularcount++; |
10300 | } |
10301 | } |
10302 | } |
10303 | } |
10304 | |
10305 | if (ivf->chkencflag & 1) { |
10306 | // Queue all segment outside C(p). |
10307 | for (i = 0; i < cavetetseglist->objects; i++) { |
10308 | paryseg = (face *) fastlookup(cavetetseglist, i); |
10309 | // Skip if it is the split segment. |
10310 | if (!sinfected(*paryseg)) { |
10311 | enqueuesubface(badsubsegs, paryseg); |
10312 | } |
10313 | } |
10314 | if (splitseg != NULL) { |
10315 | // Queue the two new subsegments inside C(p). |
10316 | for (i = 0; i < cavesegshlist->objects; i++) { |
10317 | paryseg = (face *) fastlookup(cavesegshlist, i); |
10318 | enqueuesubface(badsubsegs, paryseg); |
10319 | } |
10320 | } |
10321 | } // if (chkencflag & 1) |
10322 | |
10323 | if (ivf->chkencflag & 2) { |
10324 | // Queue all subfaces outside C(p). |
10325 | for (i = 0; i < cavetetshlist->objects; i++) { |
10326 | parysh = (face *) fastlookup(cavetetshlist, i); |
10327 | // Skip if it is a split subface. |
10328 | if (!sinfected(*parysh)) { |
10329 | enqueuesubface(badsubfacs, parysh); |
10330 | } |
10331 | } |
10332 | // Queue all new subfaces inside C(p). |
10333 | for (i = 0; i < caveshbdlist->objects; i++) { |
10334 | // Get an old subface at edge [a, b]. |
10335 | parysh = (face *) fastlookup(caveshbdlist, i); |
10336 | spivot(*parysh, checksh); // checksh is a new subface [a, b, p]. |
10337 | // Do not recover a deleted new face (degenerated). |
10338 | if (checksh.sh[3] != NULL) { |
10339 | enqueuesubface(badsubfacs, &checksh); |
10340 | } |
10341 | } |
10342 | } // if (chkencflag & 2) |
10343 | |
10344 | if (ivf->chkencflag & 4) { |
10345 | // Queue all new tetrahedra in C(p). |
10346 | for (i = 0; i < cavebdrylist->objects; i++) { |
10347 | cavetet = (triface *) fastlookup(cavebdrylist, i); |
10348 | enqueuetetrahedron(cavetet); |
10349 | } |
10350 | } |
10351 | |
10352 | // C(p) is re-meshed successfully. |
10353 | |
10354 | // Delete the old tets in C(p). |
10355 | for (i = 0; i < caveoldtetlist->objects; i++) { |
10356 | searchtet = (triface *) fastlookup(caveoldtetlist, i); |
10357 | if (ishulltet(*searchtet)) { |
10358 | hullsize--; |
10359 | } |
10360 | tetrahedrondealloc(searchtet->tet); |
10361 | } |
10362 | |
10363 | if (((splitsh != NULL) && (splitsh->sh != NULL)) || |
10364 | ((splitseg != NULL) && (splitseg->sh != NULL))) { |
10365 | // Delete the old subfaces in sC(p). |
10366 | for (i = 0; i < caveshlist->objects; i++) { |
10367 | parysh = (face *) fastlookup(caveshlist, i); |
10368 | if (checksubfaceflag) {//if (bowywat == 2) { |
10369 | // It is possible that this subface still connects to adjacent |
10370 | // tets which are not in C(p). If so, clear connections in the |
10371 | // adjacent tets at this subface. |
10372 | stpivot(*parysh, neightet); |
10373 | if (neightet.tet != NULL) { |
10374 | if (neightet.tet[4] != NULL) { |
10375 | // Found an adjacent tet. It must be not in C(p). |
10376 | assert(!infected(neightet)); |
10377 | tsdissolve(neightet); |
10378 | fsymself(neightet); |
10379 | assert(!infected(neightet)); |
10380 | tsdissolve(neightet); |
10381 | } |
10382 | } |
10383 | } |
10384 | shellfacedealloc(subfaces, parysh->sh); |
10385 | } |
10386 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
10387 | // Delete the old segment in sC(p). |
10388 | shellfacedealloc(subsegs, splitseg->sh); |
10389 | } |
10390 | } |
10391 | |
10392 | if (ivf->lawson) { |
10393 | for (i = 0; i < cavebdrylist->objects; i++) { |
10394 | searchtet = (triface *) fastlookup(cavebdrylist, i); |
10395 | flippush(flipstack, searchtet); |
10396 | } |
10397 | if (ivf->lawson > 1) { |
10398 | for (i = 0; i < cavetetlist->objects; i++) { |
10399 | searchtet = (triface *) fastlookup(cavetetlist, i); |
10400 | flippush(flipstack, searchtet); |
10401 | } |
10402 | } |
10403 | } |
10404 | |
10405 | |
10406 | // Clean the working lists. |
10407 | |
10408 | caveoldtetlist->restart(); |
10409 | cavebdrylist->restart(); |
10410 | cavetetlist->restart(); |
10411 | |
10412 | if (checksubsegflag) { |
10413 | cavetetseglist->restart(); |
10414 | caveencseglist->restart(); |
10415 | } |
10416 | |
10417 | if (checksubfaceflag) { |
10418 | cavetetshlist->restart(); |
10419 | caveencshlist->restart(); |
10420 | } |
10421 | |
10422 | if (b->weighted || ivf->validflag) { |
10423 | cavetetvertlist->restart(); |
10424 | } |
10425 | |
10426 | if (((splitsh != NULL) && (splitsh->sh != NULL)) || |
10427 | ((splitseg != NULL) && (splitseg->sh != NULL))) { |
10428 | caveshlist->restart(); |
10429 | caveshbdlist->restart(); |
10430 | cavesegshlist->restart(); |
10431 | } |
10432 | |
10433 | return 1; // Point is inserted. |
10434 | } |
10435 | |
10436 | /////////////////////////////////////////////////////////////////////////////// |
10437 | // // |
10438 | // insertpoint_abort() Abort the insertion of a new vertex. // |
10439 | // // |
10440 | // The cavity will be restored. All working lists are cleared. // |
10441 | // // |
10442 | /////////////////////////////////////////////////////////////////////////////// |
10443 | |
10444 | void tetgenmesh::insertpoint_abort(face *splitseg, insertvertexflags *ivf) |
10445 | { |
10446 | triface *cavetet; |
10447 | face *parysh; |
10448 | int i; |
10449 | |
10450 | for (i = 0; i < caveoldtetlist->objects; i++) { |
10451 | cavetet = (triface *) fastlookup(caveoldtetlist, i); |
10452 | uninfect(*cavetet); |
10453 | unmarktest(*cavetet); |
10454 | } |
10455 | for (i = 0; i < cavebdrylist->objects; i++) { |
10456 | cavetet = (triface *) fastlookup(cavebdrylist, i); |
10457 | unmarktest(*cavetet); |
10458 | } |
10459 | cavetetlist->restart(); |
10460 | cavebdrylist->restart(); |
10461 | caveoldtetlist->restart(); |
10462 | cavetetseglist->restart(); |
10463 | cavetetshlist->restart(); |
10464 | if (ivf->splitbdflag) { |
10465 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
10466 | sunmarktest(*splitseg); |
10467 | } |
10468 | for (i = 0; i < caveshlist->objects; i++) { |
10469 | parysh = (face *) fastlookup(caveshlist, i); |
10470 | assert(smarktested(*parysh)); |
10471 | sunmarktest(*parysh); |
10472 | } |
10473 | caveshlist->restart(); |
10474 | cavesegshlist->restart(); |
10475 | } |
10476 | } |
10477 | |
10478 | //// //// |
10479 | //// //// |
10480 | //// flip_cxx ///////////////////////////////////////////////////////////////// |
10481 | |
10482 | //// delaunay_cxx ///////////////////////////////////////////////////////////// |
10483 | //// //// |
10484 | //// //// |
10485 | |
10486 | /////////////////////////////////////////////////////////////////////////////// |
10487 | // // |
10488 | // transfernodes() Read the vertices from the input (tetgenio). // |
10489 | // // |
10490 | // Transferring all points from input ('in->pointlist') to TetGen's 'points'.// |
10491 | // All points are indexed (the first point index is 'in->firstnumber'). Each // |
10492 | // point's type is initialized as UNUSEDVERTEX. The bounding box (xmax, xmin,// |
10493 | // ...) and the diameter (longest) of the point set are calculated. // |
10494 | // // |
10495 | /////////////////////////////////////////////////////////////////////////////// |
10496 | |
10497 | void tetgenmesh::transfernodes() |
10498 | { |
10499 | point pointloop; |
10500 | REAL x, y, z, w; |
10501 | int coordindex; |
10502 | int attribindex; |
10503 | int mtrindex; |
10504 | int i, j; |
10505 | |
10506 | if (b->psc) { |
10507 | assert(in->pointparamlist != NULL); |
10508 | } |
10509 | |
10510 | // Read the points. |
10511 | coordindex = 0; |
10512 | attribindex = 0; |
10513 | mtrindex = 0; |
10514 | for (i = 0; i < in->numberofpoints; i++) { |
10515 | makepoint(&pointloop, UNUSEDVERTEX); |
10516 | // Read the point coordinates. |
10517 | x = pointloop[0] = in->pointlist[coordindex++]; |
10518 | y = pointloop[1] = in->pointlist[coordindex++]; |
10519 | z = pointloop[2] = in->pointlist[coordindex++]; |
10520 | // Read the point attributes. (Including point weights.) |
10521 | for (j = 0; j < in->numberofpointattributes; j++) { |
10522 | pointloop[3 + j] = in->pointattributelist[attribindex++]; |
10523 | } |
10524 | // Read the point metric tensor. |
10525 | for (j = 0; j < in->numberofpointmtrs; j++) { |
10526 | pointloop[pointmtrindex + j] = in->pointmtrlist[mtrindex++]; |
10527 | } |
10528 | if (b->weighted) { // -w option |
10529 | if (in->numberofpointattributes > 0) { |
10530 | // The first point attribute is its weight. |
10531 | //w = in->pointattributelist[in->numberofpointattributes * i]; |
10532 | w = pointloop[3]; |
10533 | } else { |
10534 | // No given weight available. Default choose the maximum |
10535 | // absolute value among its coordinates. |
10536 | w = fabs(x); |
10537 | if (w < fabs(y)) w = fabs(y); |
10538 | if (w < fabs(z)) w = fabs(z); |
10539 | } |
10540 | if (b->weighted_param == 0) { |
10541 | pointloop[3] = x * x + y * y + z * z - w; // Weighted DT. |
10542 | } else { // -w1 option |
10543 | pointloop[3] = w; // Regular tetrahedralization. |
10544 | } |
10545 | } |
10546 | // Determine the smallest and largest x, y and z coordinates. |
10547 | if (i == 0) { |
10548 | xmin = xmax = x; |
10549 | ymin = ymax = y; |
10550 | zmin = zmax = z; |
10551 | } else { |
10552 | xmin = (x < xmin) ? x : xmin; |
10553 | xmax = (x > xmax) ? x : xmax; |
10554 | ymin = (y < ymin) ? y : ymin; |
10555 | ymax = (y > ymax) ? y : ymax; |
10556 | zmin = (z < zmin) ? z : zmin; |
10557 | zmax = (z > zmax) ? z : zmax; |
10558 | } |
10559 | if (b->psc) { |
10560 | // Read the geometry parameters. |
10561 | setpointgeomuv(pointloop, 0, in->pointparamlist[i].uv[0]); |
10562 | setpointgeomuv(pointloop, 1, in->pointparamlist[i].uv[1]); |
10563 | setpointgeomtag(pointloop, in->pointparamlist[i].tag); |
10564 | if (in->pointparamlist[i].type == 0) { |
10565 | setpointtype(pointloop, RIDGEVERTEX); |
10566 | } else if (in->pointparamlist[i].type == 1) { |
10567 | setpointtype(pointloop, FREESEGVERTEX); |
10568 | } else if (in->pointparamlist[i].type == 2) { |
10569 | setpointtype(pointloop, FREEFACETVERTEX); |
10570 | } else if (in->pointparamlist[i].type == 3) { |
10571 | setpointtype(pointloop, FREEVOLVERTEX); |
10572 | } |
10573 | } |
10574 | } |
10575 | |
10576 | // 'longest' is the largest possible edge length formed by input vertices. |
10577 | x = xmax - xmin; |
10578 | y = ymax - ymin; |
10579 | z = zmax - zmin; |
10580 | longest = sqrt(x * x + y * y + z * z); |
10581 | if (longest == 0.0) { |
10582 | printf("Error: The point set is trivial.\n" ); |
10583 | terminatetetgen(this, 3); |
10584 | } |
10585 | |
10586 | // Two identical points are distinguished by 'lengthlimit'. |
10587 | if (b->minedgelength == 0.0) { |
10588 | b->minedgelength = longest * b->epsilon; |
10589 | } |
10590 | } |
10591 | |
10592 | /////////////////////////////////////////////////////////////////////////////// |
10593 | // // |
10594 | // hilbert_init() Initialize the Gray code permutation table. // |
10595 | // // |
10596 | // The table 'transgc' has 8 x 3 x 8 entries. It contains all possible Gray // |
10597 | // code sequences traveled by the 1st order Hilbert curve in 3 dimensions. // |
10598 | // The first column is the Gray code of the entry point of the curve, and // |
10599 | // the second column is the direction (0, 1, or 2, 0 means the x-axis) where // |
10600 | // the exit point of curve lies. // |
10601 | // // |
10602 | // The table 'tsb1mod3' contains the numbers of trailing set '1' bits of the // |
10603 | // indices from 0 to 7, modulo by '3'. The code for generating this table is // |
10604 | // from: http://graphics.stanford.edu/~seander/bithacks.html. // |
10605 | // // |
10606 | /////////////////////////////////////////////////////////////////////////////// |
10607 | |
10608 | void tetgenmesh::hilbert_init(int n) |
10609 | { |
10610 | int gc[8], N, mask, travel_bit; |
10611 | int e, d, f, k, g; |
10612 | int v, c; |
10613 | int i; |
10614 | |
10615 | N = (n == 2) ? 4 : 8; |
10616 | mask = (n == 2) ? 3 : 7; |
10617 | |
10618 | // Generate the Gray code sequence. |
10619 | for (i = 0; i < N; i++) { |
10620 | gc[i] = i ^ (i >> 1); |
10621 | } |
10622 | |
10623 | for (e = 0; e < N; e++) { |
10624 | for (d = 0; d < n; d++) { |
10625 | // Calculate the end point (f). |
10626 | f = e ^ (1 << d); // Toggle the d-th bit of 'e'. |
10627 | // travel_bit = 2**p, the bit we want to travel. |
10628 | travel_bit = e ^ f; |
10629 | for (i = 0; i < N; i++) { |
10630 | // // Rotate gc[i] left by (p + 1) % n bits. |
10631 | k = gc[i] * (travel_bit * 2); |
10632 | g = ((k | (k / N)) & mask); |
10633 | // Calculate the permuted Gray code by xor with the start point (e). |
10634 | transgc[e][d][i] = (g ^ e); |
10635 | } |
10636 | assert(transgc[e][d][0] == e); |
10637 | assert(transgc[e][d][N - 1] == f); |
10638 | } // d |
10639 | } // e |
10640 | |
10641 | // Count the consecutive '1' bits (trailing) on the right. |
10642 | tsb1mod3[0] = 0; |
10643 | for (i = 1; i < N; i++) { |
10644 | v = ~i; // Count the 0s. |
10645 | v = (v ^ (v - 1)) >> 1; // Set v's trailing 0s to 1s and zero rest |
10646 | for (c = 0; v; c++) { |
10647 | v >>= 1; |
10648 | } |
10649 | tsb1mod3[i] = c % n; |
10650 | } |
10651 | } |
10652 | |
10653 | /////////////////////////////////////////////////////////////////////////////// |
10654 | // // |
10655 | // hilbert_sort3() Sort points using the 3d Hilbert curve. // |
10656 | // // |
10657 | /////////////////////////////////////////////////////////////////////////////// |
10658 | |
10659 | int tetgenmesh::hilbert_split(point* vertexarray,int arraysize,int gc0,int gc1, |
10660 | REAL bxmin, REAL bxmax, REAL bymin, REAL bymax, |
10661 | REAL bzmin, REAL bzmax) |
10662 | { |
10663 | point swapvert; |
10664 | int axis, d; |
10665 | REAL split; |
10666 | int i, j; |
10667 | |
10668 | |
10669 | // Find the current splitting axis. 'axis' is a value 0, or 1, or 2, which |
10670 | // correspoding to x-, or y- or z-axis. |
10671 | axis = (gc0 ^ gc1) >> 1; |
10672 | |
10673 | // Calulate the split position along the axis. |
10674 | if (axis == 0) { |
10675 | split = 0.5 * (bxmin + bxmax); |
10676 | } else if (axis == 1) { |
10677 | split = 0.5 * (bymin + bymax); |
10678 | } else { // == 2 |
10679 | split = 0.5 * (bzmin + bzmax); |
10680 | } |
10681 | |
10682 | // Find the direction (+1 or -1) of the axis. If 'd' is +1, the direction |
10683 | // of the axis is to the positive of the axis, otherwise, it is -1. |
10684 | d = ((gc0 & (1<<axis)) == 0) ? 1 : -1; |
10685 | |
10686 | |
10687 | // Partition the vertices into left- and right-arrays such that left points |
10688 | // have Hilbert indices lower than the right points. |
10689 | i = 0; |
10690 | j = arraysize - 1; |
10691 | |
10692 | // Partition the vertices into left- and right-arrays. |
10693 | if (d > 0) { |
10694 | do { |
10695 | for (; i < arraysize; i++) { |
10696 | if (vertexarray[i][axis] >= split) break; |
10697 | } |
10698 | for (; j >= 0; j--) { |
10699 | if (vertexarray[j][axis] < split) break; |
10700 | } |
10701 | // Is the partition finished? |
10702 | if (i == (j + 1)) break; |
10703 | // Swap i-th and j-th vertices. |
10704 | swapvert = vertexarray[i]; |
10705 | vertexarray[i] = vertexarray[j]; |
10706 | vertexarray[j] = swapvert; |
10707 | // Continue patitioning the array; |
10708 | } while (true); |
10709 | } else { |
10710 | do { |
10711 | for (; i < arraysize; i++) { |
10712 | if (vertexarray[i][axis] <= split) break; |
10713 | } |
10714 | for (; j >= 0; j--) { |
10715 | if (vertexarray[j][axis] > split) break; |
10716 | } |
10717 | // Is the partition finished? |
10718 | if (i == (j + 1)) break; |
10719 | // Swap i-th and j-th vertices. |
10720 | swapvert = vertexarray[i]; |
10721 | vertexarray[i] = vertexarray[j]; |
10722 | vertexarray[j] = swapvert; |
10723 | // Continue patitioning the array; |
10724 | } while (true); |
10725 | } |
10726 | |
10727 | return i; |
10728 | } |
10729 | |
10730 | void tetgenmesh::hilbert_sort3(point* vertexarray, int arraysize, int e, int d, |
10731 | REAL bxmin, REAL bxmax, REAL bymin, REAL bymax, |
10732 | REAL bzmin, REAL bzmax, int depth) |
10733 | { |
10734 | REAL x1, x2, y1, y2, z1, z2; |
10735 | int p[9], w, e_w, d_w, k, ei, di; |
10736 | int n = 3, mask = 7; |
10737 | |
10738 | p[0] = 0; |
10739 | p[8] = arraysize; |
10740 | |
10741 | // Sort the points according to the 1st order Hilbert curve in 3d. |
10742 | p[4] = hilbert_split(vertexarray, p[8], transgc[e][d][3], transgc[e][d][4], |
10743 | bxmin, bxmax, bymin, bymax, bzmin, bzmax); |
10744 | p[2] = hilbert_split(vertexarray, p[4], transgc[e][d][1], transgc[e][d][2], |
10745 | bxmin, bxmax, bymin, bymax, bzmin, bzmax); |
10746 | p[1] = hilbert_split(vertexarray, p[2], transgc[e][d][0], transgc[e][d][1], |
10747 | bxmin, bxmax, bymin, bymax, bzmin, bzmax); |
10748 | p[3] = hilbert_split(&(vertexarray[p[2]]), p[4] - p[2], |
10749 | transgc[e][d][2], transgc[e][d][3], |
10750 | bxmin, bxmax, bymin, bymax, bzmin, bzmax) + p[2]; |
10751 | p[6] = hilbert_split(&(vertexarray[p[4]]), p[8] - p[4], |
10752 | transgc[e][d][5], transgc[e][d][6], |
10753 | bxmin, bxmax, bymin, bymax, bzmin, bzmax) + p[4]; |
10754 | p[5] = hilbert_split(&(vertexarray[p[4]]), p[6] - p[4], |
10755 | transgc[e][d][4], transgc[e][d][5], |
10756 | bxmin, bxmax, bymin, bymax, bzmin, bzmax) + p[4]; |
10757 | p[7] = hilbert_split(&(vertexarray[p[6]]), p[8] - p[6], |
10758 | transgc[e][d][6], transgc[e][d][7], |
10759 | bxmin, bxmax, bymin, bymax, bzmin, bzmax) + p[6]; |
10760 | |
10761 | if (b->hilbert_order > 0) { |
10762 | // A maximum order is prescribed. |
10763 | if ((depth + 1) == b->hilbert_order) { |
10764 | // The maximum prescribed order is reached. |
10765 | return; |
10766 | } |
10767 | } |
10768 | |
10769 | // Recursively sort the points in sub-boxes. |
10770 | for (w = 0; w < 8; w++) { |
10771 | // w is the local Hilbert index (NOT Gray code). |
10772 | // Sort into the sub-box either there are more than 2 points in it, or |
10773 | // the prescribed order of the curve is not reached yet. |
10774 | //if ((p[w+1] - p[w] > b->hilbert_limit) || (b->hilbert_order > 0)) { |
10775 | if ((p[w+1] - p[w]) > b->hilbert_limit) { |
10776 | // Calculcate the start point (ei) of the curve in this sub-box. |
10777 | // update e = e ^ (e(w) left_rotate (d+1)). |
10778 | if (w == 0) { |
10779 | e_w = 0; |
10780 | } else { |
10781 | // calculate e(w) = gc(2 * floor((w - 1) / 2)). |
10782 | k = 2 * ((w - 1) / 2); |
10783 | e_w = k ^ (k >> 1); // = gc(k). |
10784 | } |
10785 | k = e_w; |
10786 | e_w = ((k << (d+1)) & mask) | ((k >> (n-d-1)) & mask); |
10787 | ei = e ^ e_w; |
10788 | // Calulcate the direction (di) of the curve in this sub-box. |
10789 | // update d = (d + d(w) + 1) % n |
10790 | if (w == 0) { |
10791 | d_w = 0; |
10792 | } else { |
10793 | d_w = ((w % 2) == 0) ? tsb1mod3[w - 1] : tsb1mod3[w]; |
10794 | } |
10795 | di = (d + d_w + 1) % n; |
10796 | // Calculate the bounding box of the sub-box. |
10797 | if (transgc[e][d][w] & 1) { // x-axis |
10798 | x1 = 0.5 * (bxmin + bxmax); |
10799 | x2 = bxmax; |
10800 | } else { |
10801 | x1 = bxmin; |
10802 | x2 = 0.5 * (bxmin + bxmax); |
10803 | } |
10804 | if (transgc[e][d][w] & 2) { // y-axis |
10805 | y1 = 0.5 * (bymin + bymax); |
10806 | y2 = bymax; |
10807 | } else { |
10808 | y1 = bymin; |
10809 | y2 = 0.5 * (bymin + bymax); |
10810 | } |
10811 | if (transgc[e][d][w] & 4) { // z-axis |
10812 | z1 = 0.5 * (bzmin + bzmax); |
10813 | z2 = bzmax; |
10814 | } else { |
10815 | z1 = bzmin; |
10816 | z2 = 0.5 * (bzmin + bzmax); |
10817 | } |
10818 | hilbert_sort3(&(vertexarray[p[w]]), p[w+1] - p[w], ei, di, |
10819 | x1, x2, y1, y2, z1, z2, depth+1); |
10820 | } // if (p[w+1] - p[w] > 1) |
10821 | } // w |
10822 | } |
10823 | |
10824 | /////////////////////////////////////////////////////////////////////////////// |
10825 | // // |
10826 | // brio_multiscale_sort() Sort the points using BRIO and Hilbert curve. // |
10827 | // // |
10828 | /////////////////////////////////////////////////////////////////////////////// |
10829 | |
10830 | void tetgenmesh::brio_multiscale_sort(point* vertexarray, int arraysize, |
10831 | int threshold, REAL ratio, int *depth) |
10832 | { |
10833 | int middle; |
10834 | |
10835 | middle = 0; |
10836 | if (arraysize >= threshold) { |
10837 | (*depth)++; |
10838 | middle = (int)(arraysize * ratio); |
10839 | brio_multiscale_sort(vertexarray, middle, threshold, ratio, depth); |
10840 | } |
10841 | // Sort the right-array (rnd-th round) using the Hilbert curve. |
10842 | hilbert_sort3(&(vertexarray[middle]), arraysize - middle, 0, 0, // e, d |
10843 | xmin, xmax, ymin, ymax, zmin, zmax, 0); // depth. |
10844 | } |
10845 | |
10846 | /////////////////////////////////////////////////////////////////////////////// |
10847 | // // |
10848 | // randomnation() Generate a random number between 0 and 'choices' - 1. // |
10849 | // // |
10850 | /////////////////////////////////////////////////////////////////////////////// |
10851 | |
10852 | unsigned long tetgenmesh::randomnation(unsigned int choices) |
10853 | { |
10854 | unsigned long newrandom; |
10855 | |
10856 | if (choices >= 714025l) { |
10857 | newrandom = (randomseed * 1366l + 150889l) % 714025l; |
10858 | randomseed = (newrandom * 1366l + 150889l) % 714025l; |
10859 | newrandom = newrandom * (choices / 714025l) + randomseed; |
10860 | if (newrandom >= choices) { |
10861 | return newrandom - choices; |
10862 | } else { |
10863 | return newrandom; |
10864 | } |
10865 | } else { |
10866 | randomseed = (randomseed * 1366l + 150889l) % 714025l; |
10867 | return randomseed % choices; |
10868 | } |
10869 | } |
10870 | |
10871 | /////////////////////////////////////////////////////////////////////////////// |
10872 | // // |
10873 | // randomsample() Randomly sample the tetrahedra for point loation. // |
10874 | // // |
10875 | // Searching begins from one of handles: the input 'searchtet', a recently // |
10876 | // encountered tetrahedron 'recenttet', or from one chosen from a random // |
10877 | // sample. The choice is made by determining which one's origin is closest // |
10878 | // to the point we are searching for. // |
10879 | // // |
10880 | /////////////////////////////////////////////////////////////////////////////// |
10881 | |
10882 | void tetgenmesh::randomsample(point searchpt,triface *searchtet) |
10883 | { |
10884 | tetrahedron *firsttet, *tetptr; |
10885 | point torg; |
10886 | void **sampleblock; |
10887 | uintptr_t alignptr; |
10888 | long sampleblocks, samplesperblock, samplenum; |
10889 | long tetblocks, i, j; |
10890 | REAL searchdist, dist; |
10891 | |
10892 | if (b->verbose > 2) { |
10893 | printf(" Random sampling tetrahedra for searching point %d.\n" , |
10894 | pointmark(searchpt)); |
10895 | } |
10896 | |
10897 | if (!nonconvex) { |
10898 | if (searchtet->tet == NULL) { |
10899 | // A null tet. Choose the recenttet as the starting tet. |
10900 | *searchtet = recenttet; |
10901 | // Recenttet should not be dead. |
10902 | assert(recenttet.tet[4] != NULL); |
10903 | } |
10904 | |
10905 | // 'searchtet' should be a valid tetrahedron. Choose the base face |
10906 | // whose vertices must not be 'dummypoint'. |
10907 | searchtet->ver = 3; |
10908 | // Record the distance from its origin to the searching point. |
10909 | torg = org(*searchtet); |
10910 | searchdist = (searchpt[0] - torg[0]) * (searchpt[0] - torg[0]) + |
10911 | (searchpt[1] - torg[1]) * (searchpt[1] - torg[1]) + |
10912 | (searchpt[2] - torg[2]) * (searchpt[2] - torg[2]); |
10913 | |
10914 | // If a recently encountered tetrahedron has been recorded and has not |
10915 | // been deallocated, test it as a good starting point. |
10916 | if (recenttet.tet != searchtet->tet) { |
10917 | recenttet.ver = 3; |
10918 | torg = org(recenttet); |
10919 | dist = (searchpt[0] - torg[0]) * (searchpt[0] - torg[0]) + |
10920 | (searchpt[1] - torg[1]) * (searchpt[1] - torg[1]) + |
10921 | (searchpt[2] - torg[2]) * (searchpt[2] - torg[2]); |
10922 | if (dist < searchdist) { |
10923 | *searchtet = recenttet; |
10924 | searchdist = dist; |
10925 | } |
10926 | } |
10927 | } else { |
10928 | // The mesh is non-convex. Do not use 'recenttet'. |
10929 | assert(samples >= 1l); // Make sure at least 1 sample. |
10930 | searchdist = longest; |
10931 | } |
10932 | |
10933 | // Select "good" candidate using k random samples, taking the closest one. |
10934 | // The number of random samples taken is proportional to the fourth root |
10935 | // of the number of tetrahedra in the mesh. |
10936 | while (samples * samples * samples * samples < tetrahedrons->items) { |
10937 | samples++; |
10938 | } |
10939 | // Find how much blocks in current tet pool. |
10940 | tetblocks = (tetrahedrons->maxitems + b->tetrahedraperblock - 1) |
10941 | / b->tetrahedraperblock; |
10942 | // Find the average samples per block. Each block at least have 1 sample. |
10943 | samplesperblock = 1 + (samples / tetblocks); |
10944 | sampleblocks = samples / samplesperblock; |
10945 | sampleblock = tetrahedrons->firstblock; |
10946 | for (i = 0; i < sampleblocks; i++) { |
10947 | alignptr = (uintptr_t) (sampleblock + 1); |
10948 | firsttet = (tetrahedron *) |
10949 | (alignptr + (uintptr_t) tetrahedrons->alignbytes |
10950 | - (alignptr % (uintptr_t) tetrahedrons->alignbytes)); |
10951 | for (j = 0; j < samplesperblock; j++) { |
10952 | if (i == tetblocks - 1) { |
10953 | // This is the last block. |
10954 | samplenum = randomnation((int) |
10955 | (tetrahedrons->maxitems - (i * b->tetrahedraperblock))); |
10956 | } else { |
10957 | samplenum = randomnation(b->tetrahedraperblock); |
10958 | } |
10959 | tetptr = (tetrahedron *) |
10960 | (firsttet + (samplenum * tetrahedrons->itemwords)); |
10961 | torg = (point) tetptr[4]; |
10962 | if (torg != (point) NULL) { |
10963 | dist = (searchpt[0] - torg[0]) * (searchpt[0] - torg[0]) + |
10964 | (searchpt[1] - torg[1]) * (searchpt[1] - torg[1]) + |
10965 | (searchpt[2] - torg[2]) * (searchpt[2] - torg[2]); |
10966 | if (dist < searchdist) { |
10967 | searchtet->tet = tetptr; |
10968 | searchtet->ver = 11; // torg = org(t); |
10969 | searchdist = dist; |
10970 | } |
10971 | } else { |
10972 | // A dead tet. Re-sample it. |
10973 | if (i != tetblocks - 1) j--; |
10974 | } |
10975 | } |
10976 | sampleblock = (void **) *sampleblock; |
10977 | } |
10978 | } |
10979 | |
10980 | /////////////////////////////////////////////////////////////////////////////// |
10981 | // // |
10982 | // locate() Find a tetrahedron containing a given point. // |
10983 | // // |
10984 | // Begins its search from 'searchtet', assume there is a line segment L from // |
10985 | // a vertex of 'searchtet' to the query point 'searchpt', and simply walk // |
10986 | // towards 'searchpt' by traversing all faces intersected by L. // |
10987 | // // |
10988 | // On completion, 'searchtet' is a tetrahedron that contains 'searchpt'. The // |
10989 | // returned value indicates one of the following cases: // |
10990 | // - ONVERTEX, the search point lies on the origin of 'searchtet'. // |
10991 | // - ONEDGE, the search point lies on an edge of 'searchtet'. // |
10992 | // - ONFACE, the search point lies on a face of 'searchtet'. // |
10993 | // - INTET, the search point lies in the interior of 'searchtet'. // |
10994 | // - OUTSIDE, the search point lies outside the mesh. 'searchtet' is a // |
10995 | // hull face which is visible by the search point. // |
10996 | // // |
10997 | // WARNING: This routine is designed for convex triangulations, and will not // |
10998 | // generally work after the holes and concavities have been carved. // |
10999 | // // |
11000 | /////////////////////////////////////////////////////////////////////////////// |
11001 | |
11002 | enum tetgenmesh::locateresult tetgenmesh::locate(point searchpt, |
11003 | triface* searchtet) |
11004 | { |
11005 | point torg, tdest, tapex, toppo; |
11006 | enum {ORGMOVE, DESTMOVE, APEXMOVE} nextmove; |
11007 | REAL ori, oriorg, oridest, oriapex; |
11008 | enum locateresult loc = OUTSIDE; |
11009 | int t1ver; |
11010 | int s; |
11011 | |
11012 | if (searchtet->tet == NULL) { |
11013 | // A null tet. Choose the recenttet as the starting tet. |
11014 | searchtet->tet = recenttet.tet; |
11015 | } |
11016 | |
11017 | // Check if we are in the outside of the convex hull. |
11018 | if (ishulltet(*searchtet)) { |
11019 | // Get its adjacent tet (inside the hull). |
11020 | searchtet->ver = 3; |
11021 | fsymself(*searchtet); |
11022 | } |
11023 | |
11024 | // Let searchtet be the face such that 'searchpt' lies above to it. |
11025 | for (searchtet->ver = 0; searchtet->ver < 4; searchtet->ver++) { |
11026 | torg = org(*searchtet); |
11027 | tdest = dest(*searchtet); |
11028 | tapex = apex(*searchtet); |
11029 | ori = orient3d(torg, tdest, tapex, searchpt); |
11030 | if (ori < 0.0) break; |
11031 | } |
11032 | assert(searchtet->ver != 4); |
11033 | |
11034 | // Walk through tetrahedra to locate the point. |
11035 | while (true) { |
11036 | |
11037 | toppo = oppo(*searchtet); |
11038 | |
11039 | // Check if the vertex is we seek. |
11040 | if (toppo == searchpt) { |
11041 | // Adjust the origin of searchtet to be searchpt. |
11042 | esymself(*searchtet); |
11043 | eprevself(*searchtet); |
11044 | loc = ONVERTEX; // return ONVERTEX; |
11045 | break; |
11046 | } |
11047 | |
11048 | // We enter from one of serarchtet's faces, which face do we exit? |
11049 | oriorg = orient3d(tdest, tapex, toppo, searchpt); |
11050 | oridest = orient3d(tapex, torg, toppo, searchpt); |
11051 | oriapex = orient3d(torg, tdest, toppo, searchpt); |
11052 | |
11053 | // Now decide which face to move. It is possible there are more than one |
11054 | // faces are viable moves. If so, randomly choose one. |
11055 | if (oriorg < 0) { |
11056 | if (oridest < 0) { |
11057 | if (oriapex < 0) { |
11058 | // All three faces are possible. |
11059 | s = randomnation(3); // 's' is in {0,1,2}. |
11060 | if (s == 0) { |
11061 | nextmove = ORGMOVE; |
11062 | } else if (s == 1) { |
11063 | nextmove = DESTMOVE; |
11064 | } else { |
11065 | nextmove = APEXMOVE; |
11066 | } |
11067 | } else { |
11068 | // Two faces, opposite to origin and destination, are viable. |
11069 | //s = randomnation(2); // 's' is in {0,1}. |
11070 | if (randomnation(2)) { |
11071 | nextmove = ORGMOVE; |
11072 | } else { |
11073 | nextmove = DESTMOVE; |
11074 | } |
11075 | } |
11076 | } else { |
11077 | if (oriapex < 0) { |
11078 | // Two faces, opposite to origin and apex, are viable. |
11079 | //s = randomnation(2); // 's' is in {0,1}. |
11080 | if (randomnation(2)) { |
11081 | nextmove = ORGMOVE; |
11082 | } else { |
11083 | nextmove = APEXMOVE; |
11084 | } |
11085 | } else { |
11086 | // Only the face opposite to origin is viable. |
11087 | nextmove = ORGMOVE; |
11088 | } |
11089 | } |
11090 | } else { |
11091 | if (oridest < 0) { |
11092 | if (oriapex < 0) { |
11093 | // Two faces, opposite to destination and apex, are viable. |
11094 | //s = randomnation(2); // 's' is in {0,1}. |
11095 | if (randomnation(2)) { |
11096 | nextmove = DESTMOVE; |
11097 | } else { |
11098 | nextmove = APEXMOVE; |
11099 | } |
11100 | } else { |
11101 | // Only the face opposite to destination is viable. |
11102 | nextmove = DESTMOVE; |
11103 | } |
11104 | } else { |
11105 | if (oriapex < 0) { |
11106 | // Only the face opposite to apex is viable. |
11107 | nextmove = APEXMOVE; |
11108 | } else { |
11109 | // The point we seek must be on the boundary of or inside this |
11110 | // tetrahedron. Check for boundary cases. |
11111 | if (oriorg == 0) { |
11112 | // Go to the face opposite to origin. |
11113 | enextesymself(*searchtet); |
11114 | if (oridest == 0) { |
11115 | eprevself(*searchtet); // edge oppo->apex |
11116 | if (oriapex == 0) { |
11117 | // oppo is duplicated with p. |
11118 | loc = ONVERTEX; // return ONVERTEX; |
11119 | break; |
11120 | } |
11121 | loc = ONEDGE; // return ONEDGE; |
11122 | break; |
11123 | } |
11124 | if (oriapex == 0) { |
11125 | enextself(*searchtet); // edge dest->oppo |
11126 | loc = ONEDGE; // return ONEDGE; |
11127 | break; |
11128 | } |
11129 | loc = ONFACE; // return ONFACE; |
11130 | break; |
11131 | } |
11132 | if (oridest == 0) { |
11133 | // Go to the face opposite to destination. |
11134 | eprevesymself(*searchtet); |
11135 | if (oriapex == 0) { |
11136 | eprevself(*searchtet); // edge oppo->org |
11137 | loc = ONEDGE; // return ONEDGE; |
11138 | break; |
11139 | } |
11140 | loc = ONFACE; // return ONFACE; |
11141 | break; |
11142 | } |
11143 | if (oriapex == 0) { |
11144 | // Go to the face opposite to apex |
11145 | esymself(*searchtet); |
11146 | loc = ONFACE; // return ONFACE; |
11147 | break; |
11148 | } |
11149 | loc = INTETRAHEDRON; // return INTETRAHEDRON; |
11150 | break; |
11151 | } |
11152 | } |
11153 | } |
11154 | |
11155 | // Move to the selected face. |
11156 | if (nextmove == ORGMOVE) { |
11157 | enextesymself(*searchtet); |
11158 | } else if (nextmove == DESTMOVE) { |
11159 | eprevesymself(*searchtet); |
11160 | } else { |
11161 | esymself(*searchtet); |
11162 | } |
11163 | // Move to the adjacent tetrahedron (maybe a hull tetrahedron). |
11164 | fsymself(*searchtet); |
11165 | if (oppo(*searchtet) == dummypoint) { |
11166 | loc = OUTSIDE; // return OUTSIDE; |
11167 | break; |
11168 | } |
11169 | |
11170 | // Retreat the three vertices of the base face. |
11171 | torg = org(*searchtet); |
11172 | tdest = dest(*searchtet); |
11173 | tapex = apex(*searchtet); |
11174 | |
11175 | } // while (true) |
11176 | |
11177 | return loc; |
11178 | } |
11179 | |
11180 | /////////////////////////////////////////////////////////////////////////////// |
11181 | // // |
11182 | // flippush() Push a face (possibly will be flipped) into flipstack. // |
11183 | // // |
11184 | // The face is marked. The flag is used to check the validity of the face on // |
11185 | // its popup. Some other flips may change it already. // |
11186 | // // |
11187 | /////////////////////////////////////////////////////////////////////////////// |
11188 | |
11189 | void tetgenmesh::flippush(badface*& fstack, triface* flipface) |
11190 | { |
11191 | if (!facemarked(*flipface)) { |
11192 | badface *newflipface = (badface *) flippool->alloc(); |
11193 | newflipface->tt = *flipface; |
11194 | markface(newflipface->tt); |
11195 | // Push this face into stack. |
11196 | newflipface->nextitem = fstack; |
11197 | fstack = newflipface; |
11198 | } |
11199 | } |
11200 | |
11201 | /////////////////////////////////////////////////////////////////////////////// |
11202 | // // |
11203 | // incrementalflip() Incrementally flipping to construct DT. // |
11204 | // // |
11205 | // Faces need to be checked for flipping are already queued in 'flipstack'. // |
11206 | // Return the total number of performed flips. // |
11207 | // // |
11208 | // Comment: This routine should be only used in the incremental Delaunay // |
11209 | // construction. In other cases, lawsonflip3d() should be used. // |
11210 | // // |
11211 | // If the new point lies outside of the convex hull ('hullflag' is set). The // |
11212 | // incremental flip algorithm still works as usual. However, we must ensure // |
11213 | // that every flip (2-to-3 or 3-to-2) does not create a duplicated (existing)// |
11214 | // edge or face. Otherwise, the underlying space of the triangulation becomes// |
11215 | // non-manifold and it is not possible to flip further. // |
11216 | // Thanks to Joerg Rambau and Frank Lutz for helping in this issue. // |
11217 | // // |
11218 | /////////////////////////////////////////////////////////////////////////////// |
11219 | |
11220 | int tetgenmesh::incrementalflip(point newpt, int hullflag, flipconstraints *fc) |
11221 | { |
11222 | badface *popface; |
11223 | triface fliptets[5], *parytet; |
11224 | point *pts, *parypt, pe; |
11225 | REAL sign, ori; |
11226 | int flipcount = 0; |
11227 | int t1ver; |
11228 | int i; |
11229 | |
11230 | if (b->verbose > 2) { |
11231 | printf(" Lawson flip (%ld faces).\n" , flippool->items); |
11232 | } |
11233 | |
11234 | if (hullflag) { |
11235 | // 'newpt' lies in the outside of the convex hull. |
11236 | // Mark all hull vertices which are connecting to it. |
11237 | popface = flipstack; |
11238 | while (popface != NULL) { |
11239 | pts = (point *) popface->tt.tet; |
11240 | for (i = 4; i < 8; i++) { |
11241 | if ((pts[i] != newpt) && (pts[i] != dummypoint)) { |
11242 | if (!pinfected(pts[i])) { |
11243 | pinfect(pts[i]); |
11244 | cavetetvertlist->newindex((void **) &parypt); |
11245 | *parypt = pts[i]; |
11246 | } |
11247 | } |
11248 | } |
11249 | popface = popface->nextitem; |
11250 | } |
11251 | } |
11252 | |
11253 | // Loop until the queue is empty. |
11254 | while (flipstack != NULL) { |
11255 | |
11256 | // Pop a face from the stack. |
11257 | popface = flipstack; |
11258 | fliptets[0] = popface->tt; |
11259 | flipstack = flipstack->nextitem; // The next top item in stack. |
11260 | flippool->dealloc((void *) popface); |
11261 | |
11262 | // Skip it if it is a dead tet (destroyed by previous flips). |
11263 | if (isdeadtet(fliptets[0])) continue; |
11264 | // Skip it if it is not the same tet as we saved. |
11265 | if (!facemarked(fliptets[0])) continue; |
11266 | |
11267 | unmarkface(fliptets[0]); |
11268 | |
11269 | if ((point) fliptets[0].tet[7] == dummypoint) { |
11270 | // It must be a hull edge. |
11271 | fliptets[0].ver = epivot[fliptets[0].ver]; |
11272 | // A hull edge. The current convex hull may be enlarged. |
11273 | fsym(fliptets[0], fliptets[1]); |
11274 | pts = (point *) fliptets[1].tet; |
11275 | ori = orient3d(pts[4], pts[5], pts[6], newpt); |
11276 | if (ori < 0) { |
11277 | // Visible. The convex hull will be enlarged. |
11278 | // Decide which flip (2-to-3, 3-to-2, or 4-to-1) to use. |
11279 | // Check if the tet [a,c,e,d] or [c,b,e,d] exists. |
11280 | enext(fliptets[1], fliptets[2]); |
11281 | eprev(fliptets[1], fliptets[3]); |
11282 | fnextself(fliptets[2]); // [a,c,e,*] |
11283 | fnextself(fliptets[3]); // [c,b,e,*] |
11284 | if (oppo(fliptets[2]) == newpt) { |
11285 | if (oppo(fliptets[3]) == newpt) { |
11286 | // Both tets exist! A 4-to-1 flip is found. |
11287 | terminatetetgen(this, 2); // Report a bug. |
11288 | } else { |
11289 | esym(fliptets[2], fliptets[0]); |
11290 | fnext(fliptets[0], fliptets[1]); |
11291 | fnext(fliptets[1], fliptets[2]); |
11292 | // Perform a 3-to-2 flip. Replace edge [c,a] by face [d,e,b]. |
11293 | // This corresponds to my standard labels, where edge [e,d] is |
11294 | // repalced by face [a,b,c], and a is the new vertex. |
11295 | // [0] [c,a,d,e] (d = newpt) |
11296 | // [1] [c,a,e,b] (c = dummypoint) |
11297 | // [2] [c,a,b,d] |
11298 | flip32(fliptets, 1, fc); |
11299 | } |
11300 | } else { |
11301 | if (oppo(fliptets[3]) == newpt) { |
11302 | fnext(fliptets[3], fliptets[0]); |
11303 | fnext(fliptets[0], fliptets[1]); |
11304 | fnext(fliptets[1], fliptets[2]); |
11305 | // Perform a 3-to-2 flip. Replace edge [c,b] by face [d,a,e]. |
11306 | // [0] [c,b,d,a] (d = newpt) |
11307 | // [1] [c,b,a,e] (c = dummypoint) |
11308 | // [2] [c,b,e,d] |
11309 | flip32(fliptets, 1, fc); |
11310 | } else { |
11311 | if (hullflag) { |
11312 | // Reject this flip if pe is already marked. |
11313 | pe = oppo(fliptets[1]); |
11314 | if (!pinfected(pe)) { |
11315 | pinfect(pe); |
11316 | cavetetvertlist->newindex((void **) &parypt); |
11317 | *parypt = pe; |
11318 | // Perform a 2-to-3 flip. |
11319 | flip23(fliptets, 1, fc); |
11320 | } else { |
11321 | // Reject this flip. |
11322 | flipcount--; |
11323 | } |
11324 | } else { |
11325 | // Perform a 2-to-3 flip. Replace face [a,b,c] by edge [e,d]. |
11326 | // [0] [a,b,c,d], d = newpt. |
11327 | // [1] [b,a,c,e], c = dummypoint. |
11328 | flip23(fliptets, 1, fc); |
11329 | } |
11330 | } |
11331 | } |
11332 | flipcount++; |
11333 | } |
11334 | continue; |
11335 | } // if (dummypoint) |
11336 | |
11337 | fsym(fliptets[0], fliptets[1]); |
11338 | if ((point) fliptets[1].tet[7] == dummypoint) { |
11339 | // A hull face is locally Delaunay. |
11340 | continue; |
11341 | } |
11342 | // Check if the adjacent tet has already been tested. |
11343 | if (marktested(fliptets[1])) { |
11344 | // It has been tested and it is Delaunay. |
11345 | continue; |
11346 | } |
11347 | |
11348 | // Test whether the face is locally Delaunay or not. |
11349 | pts = (point *) fliptets[1].tet; |
11350 | if (b->weighted) { |
11351 | sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], newpt, |
11352 | pts[4][3], pts[5][3], pts[6][3], pts[7][3], |
11353 | newpt[3]); |
11354 | } else { |
11355 | sign = insphere_s(pts[4], pts[5], pts[6], pts[7], newpt); |
11356 | } |
11357 | |
11358 | |
11359 | if (sign < 0) { |
11360 | point pd = newpt; |
11361 | point pe = oppo(fliptets[1]); |
11362 | // Check the convexity of its three edges. Stop checking either a |
11363 | // locally non-convex edge (ori < 0) or a flat edge (ori = 0) is |
11364 | // encountered, and 'fliptet' represents that edge. |
11365 | for (i = 0; i < 3; i++) { |
11366 | ori = orient3d(org(fliptets[0]), dest(fliptets[0]), pd, pe); |
11367 | if (ori <= 0) break; |
11368 | enextself(fliptets[0]); |
11369 | } |
11370 | if (ori > 0) { |
11371 | // A 2-to-3 flip is found. |
11372 | // [0] [a,b,c,d], |
11373 | // [1] [b,a,c,e]. no dummypoint. |
11374 | flip23(fliptets, 0, fc); |
11375 | flipcount++; |
11376 | } else { // ori <= 0 |
11377 | // The edge ('fliptets[0]' = [a',b',c',d]) is non-convex or flat, |
11378 | // where the edge [a',b'] is one of [a,b], [b,c], and [c,a]. |
11379 | // Check if there are three or four tets sharing at this edge. |
11380 | esymself(fliptets[0]); // [b,a,d,c] |
11381 | for (i = 0; i < 3; i++) { |
11382 | fnext(fliptets[i], fliptets[i+1]); |
11383 | } |
11384 | if (fliptets[3].tet == fliptets[0].tet) { |
11385 | // A 3-to-2 flip is found. (No hull tet.) |
11386 | flip32(fliptets, 0, fc); |
11387 | flipcount++; |
11388 | } else { |
11389 | // There are more than 3 tets at this edge. |
11390 | fnext(fliptets[3], fliptets[4]); |
11391 | if (fliptets[4].tet == fliptets[0].tet) { |
11392 | if (ori == 0) { |
11393 | // A 4-to-4 flip is found. (Two hull tets may be involved.) |
11394 | // Current tets in 'fliptets': |
11395 | // [0] [b,a,d,c] (d may be newpt) |
11396 | // [1] [b,a,c,e] |
11397 | // [2] [b,a,e,f] (f may be dummypoint) |
11398 | // [3] [b,a,f,d] |
11399 | esymself(fliptets[0]); // [a,b,c,d] |
11400 | // A 2-to-3 flip replaces face [a,b,c] by edge [e,d]. |
11401 | // This creates a degenerate tet [e,d,a,b] (tmpfliptets[0]). |
11402 | // It will be removed by the followed 3-to-2 flip. |
11403 | flip23(fliptets, 0, fc); // No hull tet. |
11404 | fnext(fliptets[3], fliptets[1]); |
11405 | fnext(fliptets[1], fliptets[2]); |
11406 | // Current tets in 'fliptets': |
11407 | // [0] [...] |
11408 | // [1] [b,a,d,e] (degenerated, d may be new point). |
11409 | // [2] [b,a,e,f] (f may be dummypoint) |
11410 | // [3] [b,a,f,d] |
11411 | // A 3-to-2 flip replaces edge [b,a] by face [d,e,f]. |
11412 | // Hull tets may be involved (f may be dummypoint). |
11413 | flip32(&(fliptets[1]), (apex(fliptets[3]) == dummypoint), fc); |
11414 | flipcount++; |
11415 | } |
11416 | } |
11417 | } |
11418 | } // ori |
11419 | } else { |
11420 | // The adjacent tet is Delaunay. Mark it to avoid testing it again. |
11421 | marktest(fliptets[1]); |
11422 | // Save it for unmarking it later. |
11423 | cavebdrylist->newindex((void **) &parytet); |
11424 | *parytet = fliptets[1]; |
11425 | } |
11426 | |
11427 | } // while (flipstack) |
11428 | |
11429 | // Unmark saved tetrahedra. |
11430 | for (i = 0; i < cavebdrylist->objects; i++) { |
11431 | parytet = (triface *) fastlookup(cavebdrylist, i); |
11432 | unmarktest(*parytet); |
11433 | } |
11434 | cavebdrylist->restart(); |
11435 | |
11436 | if (hullflag) { |
11437 | // Unmark infected vertices. |
11438 | for (i = 0; i < cavetetvertlist->objects; i++) { |
11439 | parypt = (point *) fastlookup(cavetetvertlist, i); |
11440 | puninfect(*parypt); |
11441 | } |
11442 | cavetetvertlist->restart(); |
11443 | } |
11444 | |
11445 | |
11446 | return flipcount; |
11447 | } |
11448 | |
11449 | /////////////////////////////////////////////////////////////////////////////// |
11450 | // // |
11451 | // initialdelaunay() Create an initial Delaunay tetrahedralization. // |
11452 | // // |
11453 | // The tetrahedralization contains only one tetrahedron abcd, and four hull // |
11454 | // tetrahedra. The points pa, pb, pc, and pd must be linearly independent. // |
11455 | // // |
11456 | /////////////////////////////////////////////////////////////////////////////// |
11457 | |
11458 | void tetgenmesh::initialdelaunay(point pa, point pb, point pc, point pd) |
11459 | { |
11460 | triface firsttet, tetopa, tetopb, tetopc, tetopd; |
11461 | triface worktet, worktet1; |
11462 | |
11463 | if (b->verbose > 2) { |
11464 | printf(" Create init tet (%d, %d, %d, %d)\n" , pointmark(pa), |
11465 | pointmark(pb), pointmark(pc), pointmark(pd)); |
11466 | } |
11467 | |
11468 | // Create the first tetrahedron. |
11469 | maketetrahedron(&firsttet); |
11470 | setvertices(firsttet, pa, pb, pc, pd); |
11471 | // Create four hull tetrahedra. |
11472 | maketetrahedron(&tetopa); |
11473 | setvertices(tetopa, pb, pc, pd, dummypoint); |
11474 | maketetrahedron(&tetopb); |
11475 | setvertices(tetopb, pc, pa, pd, dummypoint); |
11476 | maketetrahedron(&tetopc); |
11477 | setvertices(tetopc, pa, pb, pd, dummypoint); |
11478 | maketetrahedron(&tetopd); |
11479 | setvertices(tetopd, pb, pa, pc, dummypoint); |
11480 | hullsize += 4; |
11481 | |
11482 | // Connect hull tetrahedra to firsttet (at four faces of firsttet). |
11483 | bond(firsttet, tetopd); |
11484 | esym(firsttet, worktet); |
11485 | bond(worktet, tetopc); // ab |
11486 | enextesym(firsttet, worktet); |
11487 | bond(worktet, tetopa); // bc |
11488 | eprevesym(firsttet, worktet); |
11489 | bond(worktet, tetopb); // ca |
11490 | |
11491 | // Connect hull tetrahedra together (at six edges of firsttet). |
11492 | esym(tetopc, worktet); |
11493 | esym(tetopd, worktet1); |
11494 | bond(worktet, worktet1); // ab |
11495 | esym(tetopa, worktet); |
11496 | eprevesym(tetopd, worktet1); |
11497 | bond(worktet, worktet1); // bc |
11498 | esym(tetopb, worktet); |
11499 | enextesym(tetopd, worktet1); |
11500 | bond(worktet, worktet1); // ca |
11501 | eprevesym(tetopc, worktet); |
11502 | enextesym(tetopb, worktet1); |
11503 | bond(worktet, worktet1); // da |
11504 | eprevesym(tetopa, worktet); |
11505 | enextesym(tetopc, worktet1); |
11506 | bond(worktet, worktet1); // db |
11507 | eprevesym(tetopb, worktet); |
11508 | enextesym(tetopa, worktet1); |
11509 | bond(worktet, worktet1); // dc |
11510 | |
11511 | // Set the vertex type. |
11512 | if (pointtype(pa) == UNUSEDVERTEX) { |
11513 | setpointtype(pa, VOLVERTEX); |
11514 | } |
11515 | if (pointtype(pb) == UNUSEDVERTEX) { |
11516 | setpointtype(pb, VOLVERTEX); |
11517 | } |
11518 | if (pointtype(pc) == UNUSEDVERTEX) { |
11519 | setpointtype(pc, VOLVERTEX); |
11520 | } |
11521 | if (pointtype(pd) == UNUSEDVERTEX) { |
11522 | setpointtype(pd, VOLVERTEX); |
11523 | } |
11524 | |
11525 | setpoint2tet(pa, encode(firsttet)); |
11526 | setpoint2tet(pb, encode(firsttet)); |
11527 | setpoint2tet(pc, encode(firsttet)); |
11528 | setpoint2tet(pd, encode(firsttet)); |
11529 | |
11530 | // Remember the first tetrahedron. |
11531 | recenttet = firsttet; |
11532 | } |
11533 | |
11534 | /////////////////////////////////////////////////////////////////////////////// |
11535 | // // |
11536 | // incrementaldelaunay() Create a Delaunay tetrahedralization by // |
11537 | // the incremental approach. // |
11538 | // // |
11539 | /////////////////////////////////////////////////////////////////////////////// |
11540 | |
11541 | |
11542 | void tetgenmesh::incrementaldelaunay(clock_t& tv) |
11543 | { |
11544 | triface searchtet; |
11545 | point *permutarray, swapvertex; |
11546 | REAL v1[3], v2[3], n[3]; |
11547 | REAL bboxsize, bboxsize2, bboxsize3, ori; |
11548 | int randindex; |
11549 | int ngroup = 0; |
11550 | int i, j; |
11551 | |
11552 | if (!b->quiet) { |
11553 | printf("Delaunizing vertices...\n" ); |
11554 | } |
11555 | |
11556 | // Form a random permuation (uniformly at random) of the set of vertices. |
11557 | permutarray = new point[in->numberofpoints]; |
11558 | points->traversalinit(); |
11559 | |
11560 | if (b->no_sort) { |
11561 | if (b->verbose) { |
11562 | printf(" Using the input order.\n" ); |
11563 | } |
11564 | for (i = 0; i < in->numberofpoints; i++) { |
11565 | permutarray[i] = (point) points->traverse(); |
11566 | } |
11567 | } else { |
11568 | if (b->verbose) { |
11569 | printf(" Permuting vertices.\n" ); |
11570 | } |
11571 | srand(in->numberofpoints); |
11572 | for (i = 0; i < in->numberofpoints; i++) { |
11573 | randindex = rand() % (i + 1); // randomnation(i + 1); |
11574 | permutarray[i] = permutarray[randindex]; |
11575 | permutarray[randindex] = (point) points->traverse(); |
11576 | } |
11577 | if (b->brio_hilbert) { // -b option |
11578 | if (b->verbose) { |
11579 | printf(" Sorting vertices.\n" ); |
11580 | } |
11581 | hilbert_init(in->mesh_dim); |
11582 | brio_multiscale_sort(permutarray, in->numberofpoints, b->brio_threshold, |
11583 | b->brio_ratio, &ngroup); |
11584 | } |
11585 | } |
11586 | |
11587 | tv = clock(); // Remember the time for sorting points. |
11588 | |
11589 | // Calculate the diagonal size of its bounding box. |
11590 | bboxsize = sqrt(norm2(xmax - xmin, ymax - ymin, zmax - zmin)); |
11591 | bboxsize2 = bboxsize * bboxsize; |
11592 | bboxsize3 = bboxsize2 * bboxsize; |
11593 | |
11594 | // Make sure the second vertex is not identical with the first one. |
11595 | i = 1; |
11596 | while ((distance(permutarray[0],permutarray[i])/bboxsize)<b->epsilon) { |
11597 | i++; |
11598 | if (i == in->numberofpoints - 1) { |
11599 | printf("Exception: All vertices are (nearly) identical (Tol = %g).\n" , |
11600 | b->epsilon); |
11601 | terminatetetgen(this, 10); |
11602 | } |
11603 | } |
11604 | if (i > 1) { |
11605 | // Swap to move the non-identical vertex from index i to index 1. |
11606 | swapvertex = permutarray[i]; |
11607 | permutarray[i] = permutarray[1]; |
11608 | permutarray[1] = swapvertex; |
11609 | } |
11610 | |
11611 | // Make sure the third vertex is not collinear with the first two. |
11612 | // Acknowledgement: Thanks Jan Pomplun for his correction by using |
11613 | // epsilon^2 and epsilon^3 (instead of epsilon). 2013-08-15. |
11614 | i = 2; |
11615 | for (j = 0; j < 3; j++) { |
11616 | v1[j] = permutarray[1][j] - permutarray[0][j]; |
11617 | v2[j] = permutarray[i][j] - permutarray[0][j]; |
11618 | } |
11619 | cross(v1, v2, n); |
11620 | while ((sqrt(norm2(n[0], n[1], n[2])) / bboxsize2) < |
11621 | (b->epsilon * b->epsilon)) { |
11622 | i++; |
11623 | if (i == in->numberofpoints - 1) { |
11624 | printf("Exception: All vertices are (nearly) collinear (Tol = %g).\n" , |
11625 | b->epsilon); |
11626 | terminatetetgen(this, 10); |
11627 | } |
11628 | for (j = 0; j < 3; j++) { |
11629 | v2[j] = permutarray[i][j] - permutarray[0][j]; |
11630 | } |
11631 | cross(v1, v2, n); |
11632 | } |
11633 | if (i > 2) { |
11634 | // Swap to move the non-identical vertex from index i to index 1. |
11635 | swapvertex = permutarray[i]; |
11636 | permutarray[i] = permutarray[2]; |
11637 | permutarray[2] = swapvertex; |
11638 | } |
11639 | |
11640 | // Make sure the fourth vertex is not coplanar with the first three. |
11641 | i = 3; |
11642 | ori = orient3dfast(permutarray[0], permutarray[1], permutarray[2], |
11643 | permutarray[i]); |
11644 | while ((fabs(ori) / bboxsize3) < (b->epsilon * b->epsilon * b->epsilon)) { |
11645 | i++; |
11646 | if (i == in->numberofpoints) { |
11647 | printf("Exception: All vertices are coplanar (Tol = %g).\n" , |
11648 | b->epsilon); |
11649 | terminatetetgen(this, 10); |
11650 | } |
11651 | ori = orient3dfast(permutarray[0], permutarray[1], permutarray[2], |
11652 | permutarray[i]); |
11653 | } |
11654 | if (i > 3) { |
11655 | // Swap to move the non-identical vertex from index i to index 1. |
11656 | swapvertex = permutarray[i]; |
11657 | permutarray[i] = permutarray[3]; |
11658 | permutarray[3] = swapvertex; |
11659 | } |
11660 | |
11661 | // Orient the first four vertices in permutarray so that they follow the |
11662 | // right-hand rule. |
11663 | if (ori > 0.0) { |
11664 | // Swap the first two vertices. |
11665 | swapvertex = permutarray[0]; |
11666 | permutarray[0] = permutarray[1]; |
11667 | permutarray[1] = swapvertex; |
11668 | } |
11669 | |
11670 | // Create the initial Delaunay tetrahedralization. |
11671 | initialdelaunay(permutarray[0], permutarray[1], permutarray[2], |
11672 | permutarray[3]); |
11673 | |
11674 | if (b->verbose) { |
11675 | printf(" Incrementally inserting vertices.\n" ); |
11676 | } |
11677 | insertvertexflags ivf; |
11678 | flipconstraints fc; |
11679 | |
11680 | // Choose algorithm: Bowyer-Watson (default) or Incremental Flip |
11681 | if (b->incrflip) { |
11682 | ivf.bowywat = 0; |
11683 | ivf.lawson = 1; |
11684 | fc.enqflag = 1; |
11685 | } else { |
11686 | ivf.bowywat = 1; |
11687 | ivf.lawson = 0; |
11688 | } |
11689 | |
11690 | |
11691 | for (i = 4; i < in->numberofpoints; i++) { |
11692 | if (pointtype(permutarray[i]) == UNUSEDVERTEX) { |
11693 | setpointtype(permutarray[i], VOLVERTEX); |
11694 | } |
11695 | if (b->brio_hilbert || b->no_sort) { // -b or -b/1 |
11696 | // Start the last updated tet. |
11697 | searchtet.tet = recenttet.tet; |
11698 | } else { // -b0 |
11699 | // Randomly choose the starting tet for point location. |
11700 | searchtet.tet = NULL; |
11701 | } |
11702 | ivf.iloc = (int) OUTSIDE; |
11703 | // Insert the vertex. |
11704 | if (insertpoint(permutarray[i], &searchtet, NULL, NULL, &ivf)) { |
11705 | if (flipstack != NULL) { |
11706 | // Perform flip to recover Delaunayness. |
11707 | incrementalflip(permutarray[i], (ivf.iloc == (int) OUTSIDE), &fc); |
11708 | } |
11709 | } else { |
11710 | if (ivf.iloc == (int) ONVERTEX) { |
11711 | // The point already exists. Mark it and do nothing on it. |
11712 | swapvertex = org(searchtet); |
11713 | assert(swapvertex != permutarray[i]); // SELF_CHECK |
11714 | if (b->object != tetgenbehavior::STL) { |
11715 | if (!b->quiet) { |
11716 | printf("Warning: Point #%d is coincident with #%d. Ignored!\n" , |
11717 | pointmark(permutarray[i]), pointmark(swapvertex)); |
11718 | } |
11719 | } |
11720 | setpoint2ppt(permutarray[i], swapvertex); |
11721 | setpointtype(permutarray[i], DUPLICATEDVERTEX); |
11722 | dupverts++; |
11723 | } else if (ivf.iloc == (int) NEARVERTEX) { |
11724 | swapvertex = point2ppt(permutarray[i]); |
11725 | if (!b->quiet) { |
11726 | printf("Warning: Point %d is replaced by point %d.\n" , |
11727 | pointmark(permutarray[i]), pointmark(swapvertex)); |
11728 | printf(" Avoid creating a very short edge (len = %g) (< %g).\n" , |
11729 | permutarray[i][3], b->minedgelength); |
11730 | printf(" You may try a smaller tolerance (-T) (current is %g)\n" , |
11731 | b->epsilon); |
11732 | printf(" or use the option -M0/1 to avoid such replacement.\n" ); |
11733 | } |
11734 | // Remember it is a duplicated point. |
11735 | setpointtype(permutarray[i], DUPLICATEDVERTEX); |
11736 | // Count the number of duplicated points. |
11737 | dupverts++; |
11738 | } |
11739 | } |
11740 | } |
11741 | |
11742 | |
11743 | |
11744 | delete [] permutarray; |
11745 | } |
11746 | |
11747 | //// //// |
11748 | //// //// |
11749 | //// delaunay_cxx ///////////////////////////////////////////////////////////// |
11750 | |
11751 | //// surface_cxx ////////////////////////////////////////////////////////////// |
11752 | //// //// |
11753 | //// //// |
11754 | |
11755 | /////////////////////////////////////////////////////////////////////////////// |
11756 | // // |
11757 | // flipshpush() Push a facet edge into flip stack. // |
11758 | // // |
11759 | /////////////////////////////////////////////////////////////////////////////// |
11760 | |
11761 | void tetgenmesh::flipshpush(face* flipedge) |
11762 | { |
11763 | badface *newflipface; |
11764 | |
11765 | newflipface = (badface *) flippool->alloc(); |
11766 | newflipface->ss = *flipedge; |
11767 | newflipface->forg = sorg(*flipedge); |
11768 | newflipface->fdest = sdest(*flipedge); |
11769 | newflipface->nextitem = flipstack; |
11770 | flipstack = newflipface; |
11771 | } |
11772 | |
11773 | /////////////////////////////////////////////////////////////////////////////// |
11774 | // // |
11775 | // flip22() Perform a 2-to-2 flip in surface mesh. // |
11776 | // // |
11777 | // 'flipfaces' is an array of two subfaces. On input, they are [a,b,c] and // |
11778 | // [b,a,d]. On output, they are [c,d,b] and [d,c,a]. As a result, edge [a,b] // |
11779 | // is replaced by edge [c,d]. // |
11780 | // // |
11781 | /////////////////////////////////////////////////////////////////////////////// |
11782 | |
11783 | void tetgenmesh::flip22(face* flipfaces, int flipflag, int chkencflag) |
11784 | { |
11785 | face bdedges[4], outfaces[4], infaces[4]; |
11786 | face bdsegs[4]; |
11787 | face checkface; |
11788 | point pa, pb, pc, pd; |
11789 | int i; |
11790 | |
11791 | pa = sorg(flipfaces[0]); |
11792 | pb = sdest(flipfaces[0]); |
11793 | pc = sapex(flipfaces[0]); |
11794 | pd = sapex(flipfaces[1]); |
11795 | |
11796 | if (sorg(flipfaces[1]) != pb) { |
11797 | sesymself(flipfaces[1]); |
11798 | } |
11799 | |
11800 | flip22count++; |
11801 | |
11802 | // Collect the four boundary edges. |
11803 | senext(flipfaces[0], bdedges[0]); |
11804 | senext2(flipfaces[0], bdedges[1]); |
11805 | senext(flipfaces[1], bdedges[2]); |
11806 | senext2(flipfaces[1], bdedges[3]); |
11807 | |
11808 | // Collect outer boundary faces. |
11809 | for (i = 0; i < 4; i++) { |
11810 | spivot(bdedges[i], outfaces[i]); |
11811 | infaces[i] = outfaces[i]; |
11812 | sspivot(bdedges[i], bdsegs[i]); |
11813 | if (outfaces[i].sh != NULL) { |
11814 | if (isshsubseg(bdedges[i])) { |
11815 | spivot(infaces[i], checkface); |
11816 | while (checkface.sh != bdedges[i].sh) { |
11817 | infaces[i] = checkface; |
11818 | spivot(infaces[i], checkface); |
11819 | } |
11820 | } |
11821 | } |
11822 | } |
11823 | |
11824 | // The flags set in these two subfaces do not change. |
11825 | // Shellmark does not change. |
11826 | // area constraint does not change. |
11827 | |
11828 | // Transform [a,b,c] -> [c,d,b]. |
11829 | setshvertices(flipfaces[0], pc, pd, pb); |
11830 | // Transform [b,a,d] -> [d,c,a]. |
11831 | setshvertices(flipfaces[1], pd, pc, pa); |
11832 | |
11833 | // Update the point-to-subface map. |
11834 | if (pointtype(pa) == FREEFACETVERTEX) { |
11835 | setpoint2sh(pa, sencode(flipfaces[1])); |
11836 | } |
11837 | if (pointtype(pb) == FREEFACETVERTEX) { |
11838 | setpoint2sh(pb, sencode(flipfaces[0])); |
11839 | } |
11840 | if (pointtype(pc) == FREEFACETVERTEX) { |
11841 | setpoint2sh(pc, sencode(flipfaces[0])); |
11842 | } |
11843 | if (pointtype(pd) == FREEFACETVERTEX) { |
11844 | setpoint2sh(pd, sencode(flipfaces[0])); |
11845 | } |
11846 | |
11847 | // Reconnect boundary edges to outer boundary faces. |
11848 | for (i = 0; i < 4; i++) { |
11849 | if (outfaces[(3 + i) % 4].sh != NULL) { |
11850 | // Make sure that the subface has the ori as the segment. |
11851 | if (bdsegs[(3 + i) % 4].sh != NULL) { |
11852 | bdsegs[(3 + i) % 4].shver = 0; |
11853 | if (sorg(bdedges[i]) != sorg(bdsegs[(3 + i) % 4])) { |
11854 | sesymself(bdedges[i]); |
11855 | } |
11856 | } |
11857 | sbond1(bdedges[i], outfaces[(3 + i) % 4]); |
11858 | sbond1(infaces[(3 + i) % 4], bdedges[i]); |
11859 | } else { |
11860 | sdissolve(bdedges[i]); |
11861 | } |
11862 | if (bdsegs[(3 + i) % 4].sh != NULL) { |
11863 | ssbond(bdedges[i], bdsegs[(3 + i) % 4]); |
11864 | if (chkencflag & 1) { |
11865 | // Queue this segment for encroaching check. |
11866 | enqueuesubface(badsubsegs, &(bdsegs[(3 + i) % 4])); |
11867 | } |
11868 | } else { |
11869 | ssdissolve(bdedges[i]); |
11870 | } |
11871 | } |
11872 | |
11873 | if (chkencflag & 2) { |
11874 | // Queue the flipped subfaces for quality/encroaching checks. |
11875 | for (i = 0; i < 2; i++) { |
11876 | enqueuesubface(badsubfacs, &(flipfaces[i])); |
11877 | } |
11878 | } |
11879 | |
11880 | recentsh = flipfaces[0]; |
11881 | |
11882 | if (flipflag) { |
11883 | // Put the boundary edges into flip stack. |
11884 | for (i = 0; i < 4; i++) { |
11885 | flipshpush(&(bdedges[i])); |
11886 | } |
11887 | } |
11888 | } |
11889 | |
11890 | /////////////////////////////////////////////////////////////////////////////// |
11891 | // // |
11892 | // flip31() Remove a vertex by transforming 3-to-1 subfaces. // |
11893 | // // |
11894 | // 'flipfaces' is an array of subfaces. Its length is at least 4. On input, // |
11895 | // the first three faces are: [p,a,b], [p,b,c], and [p,c,a]. This routine // |
11896 | // replaces them by one face [a,b,c], it is returned in flipfaces[3]. // |
11897 | // // |
11898 | // NOTE: The three old subfaces are not deleted within this routine. They // |
11899 | // still hold pointers to their adjacent subfaces. These informations are // |
11900 | // needed by the routine 'sremovevertex()' for recovering a segment. // |
11901 | // The caller of this routine must delete the old subfaces after their uses. // |
11902 | // // |
11903 | /////////////////////////////////////////////////////////////////////////////// |
11904 | |
11905 | void tetgenmesh::flip31(face* flipfaces, int flipflag) |
11906 | { |
11907 | face bdedges[3], outfaces[3], infaces[3]; |
11908 | face bdsegs[3]; |
11909 | face checkface; |
11910 | point pa, pb, pc; |
11911 | int i; |
11912 | |
11913 | pa = sdest(flipfaces[0]); |
11914 | pb = sdest(flipfaces[1]); |
11915 | pc = sdest(flipfaces[2]); |
11916 | |
11917 | flip31count++; |
11918 | |
11919 | // Collect all infos at the three boundary edges. |
11920 | for (i = 0; i < 3; i++) { |
11921 | senext(flipfaces[i], bdedges[i]); |
11922 | spivot(bdedges[i], outfaces[i]); |
11923 | infaces[i] = outfaces[i]; |
11924 | sspivot(bdedges[i], bdsegs[i]); |
11925 | if (outfaces[i].sh != NULL) { |
11926 | if (isshsubseg(bdedges[i])) { |
11927 | spivot(infaces[i], checkface); |
11928 | while (checkface.sh != bdedges[i].sh) { |
11929 | infaces[i] = checkface; |
11930 | spivot(infaces[i], checkface); |
11931 | } |
11932 | } |
11933 | } |
11934 | } // i |
11935 | |
11936 | // Create a new subface. |
11937 | makeshellface(subfaces, &(flipfaces[3])); |
11938 | setshvertices(flipfaces[3], pa, pb,pc); |
11939 | setshellmark(flipfaces[3], shellmark(flipfaces[0])); |
11940 | if (checkconstraints) { |
11941 | //area = areabound(flipfaces[0]); |
11942 | setareabound(flipfaces[3], areabound(flipfaces[0])); |
11943 | } |
11944 | if (useinsertradius) { |
11945 | setfacetindex(flipfaces[3], getfacetindex(flipfaces[0])); |
11946 | } |
11947 | |
11948 | // Update the point-to-subface map. |
11949 | if (pointtype(pa) == FREEFACETVERTEX) { |
11950 | setpoint2sh(pa, sencode(flipfaces[3])); |
11951 | } |
11952 | if (pointtype(pb) == FREEFACETVERTEX) { |
11953 | setpoint2sh(pb, sencode(flipfaces[3])); |
11954 | } |
11955 | if (pointtype(pc) == FREEFACETVERTEX) { |
11956 | setpoint2sh(pc, sencode(flipfaces[3])); |
11957 | } |
11958 | |
11959 | // Update the three new boundary edges. |
11960 | bdedges[0] = flipfaces[3]; // [a,b] |
11961 | senext(flipfaces[3], bdedges[1]); // [b,c] |
11962 | senext2(flipfaces[3], bdedges[2]); // [c,a] |
11963 | |
11964 | // Reconnect boundary edges to outer boundary faces. |
11965 | for (i = 0; i < 3; i++) { |
11966 | if (outfaces[i].sh != NULL) { |
11967 | // Make sure that the subface has the ori as the segment. |
11968 | if (bdsegs[i].sh != NULL) { |
11969 | bdsegs[i].shver = 0; |
11970 | if (sorg(bdedges[i]) != sorg(bdsegs[i])) { |
11971 | sesymself(bdedges[i]); |
11972 | } |
11973 | } |
11974 | sbond1(bdedges[i], outfaces[i]); |
11975 | sbond1(infaces[i], bdedges[i]); |
11976 | } |
11977 | if (bdsegs[i].sh != NULL) { |
11978 | ssbond(bdedges[i], bdsegs[i]); |
11979 | } |
11980 | } |
11981 | |
11982 | recentsh = flipfaces[3]; |
11983 | |
11984 | if (flipflag) { |
11985 | // Put the boundary edges into flip stack. |
11986 | for (i = 0; i < 3; i++) { |
11987 | flipshpush(&(bdedges[i])); |
11988 | } |
11989 | } |
11990 | } |
11991 | |
11992 | /////////////////////////////////////////////////////////////////////////////// |
11993 | // // |
11994 | // lawsonflip() Flip non-locally Delaunay edges. // |
11995 | // // |
11996 | /////////////////////////////////////////////////////////////////////////////// |
11997 | |
11998 | long tetgenmesh::lawsonflip() |
11999 | { |
12000 | badface *popface; |
12001 | face flipfaces[2]; |
12002 | point pa, pb, pc, pd; |
12003 | REAL sign; |
12004 | long flipcount = 0; |
12005 | |
12006 | if (b->verbose > 2) { |
12007 | printf(" Lawson flip %ld edges.\n" , flippool->items); |
12008 | } |
12009 | |
12010 | while (flipstack != (badface *) NULL) { |
12011 | |
12012 | // Pop an edge from the stack. |
12013 | popface = flipstack; |
12014 | flipfaces[0] = popface->ss; |
12015 | pa = popface->forg; |
12016 | pb = popface->fdest; |
12017 | flipstack = popface->nextitem; // The next top item in stack. |
12018 | flippool->dealloc((void *) popface); |
12019 | |
12020 | // Skip it if it is dead. |
12021 | if (flipfaces[0].sh[3] == NULL) continue; |
12022 | // Skip it if it is not the same edge as we saved. |
12023 | if ((sorg(flipfaces[0]) != pa) || (sdest(flipfaces[0]) != pb)) continue; |
12024 | // Skip it if it is a subsegment. |
12025 | if (isshsubseg(flipfaces[0])) continue; |
12026 | |
12027 | // Get the adjacent face. |
12028 | spivot(flipfaces[0], flipfaces[1]); |
12029 | if (flipfaces[1].sh == NULL) continue; // Skip a hull edge. |
12030 | pc = sapex(flipfaces[0]); |
12031 | pd = sapex(flipfaces[1]); |
12032 | |
12033 | sign = incircle3d(pa, pb, pc, pd); |
12034 | |
12035 | if (sign < 0) { |
12036 | // It is non-locally Delaunay. Flip it. |
12037 | flip22(flipfaces, 1, 0); |
12038 | flipcount++; |
12039 | } |
12040 | } |
12041 | |
12042 | if (b->verbose > 2) { |
12043 | printf(" Performed %ld flips.\n" , flipcount); |
12044 | } |
12045 | |
12046 | return flipcount; |
12047 | } |
12048 | |
12049 | /////////////////////////////////////////////////////////////////////////////// |
12050 | // // |
12051 | // sinsertvertex() Insert a vertex into a triangulation of a facet. // |
12052 | // // |
12053 | // This function uses three global arrays: 'caveshlist', 'caveshbdlist', and // |
12054 | // 'caveshseglist'. On return, 'caveshlist' contains old subfaces in C(p), // |
12055 | // 'caveshbdlist' contains new subfaces in C(p). If the new point lies on a // |
12056 | // segment, 'cavesegshlist' returns the two new subsegments. // |
12057 | // // |
12058 | // 'iloc' suggests the location of the point. If it is OUTSIDE, this routine // |
12059 | // will first locate the point. It starts searching from 'searchsh' or 'rec- // |
12060 | // entsh' if 'searchsh' is NULL. // |
12061 | // // |
12062 | // If 'bowywat' is set (1), the Bowyer-Watson algorithm is used to insert // |
12063 | // the vertex. Otherwise, only insert the vertex in the initial cavity. // |
12064 | // // |
12065 | // If 'iloc' is 'INSTAR', this means the cavity of this vertex was already // |
12066 | // provided in the list 'caveshlist'. // |
12067 | // // |
12068 | // If 'splitseg' is not NULL, the new vertex lies on the segment and it will // |
12069 | // be split. 'iloc' must be either 'ONEDGE' or 'INSTAR'. // |
12070 | // // |
12071 | // 'rflag' (rounding) is a parameter passed to slocate() function. If it is // |
12072 | // set, after the location of the point is found, either ONEDGE or ONFACE, // |
12073 | // round the result using an epsilon. // |
12074 | // // |
12075 | // NOTE: the old subfaces in C(p) are not deleted. They're needed in case we // |
12076 | // want to remove the new point immediately. // |
12077 | // // |
12078 | /////////////////////////////////////////////////////////////////////////////// |
12079 | |
12080 | int tetgenmesh::sinsertvertex(point insertpt, face *searchsh, face *splitseg, |
12081 | int iloc, int bowywat, int rflag) |
12082 | { |
12083 | face cavesh, neighsh, *parysh; |
12084 | face newsh, casout, casin; |
12085 | face checkseg; |
12086 | point pa, pb; |
12087 | enum locateresult loc = OUTSIDE; |
12088 | REAL sign, ori; |
12089 | int i, j; |
12090 | |
12091 | if (b->verbose > 2) { |
12092 | printf(" Insert facet point %d.\n" , pointmark(insertpt)); |
12093 | } |
12094 | |
12095 | if (bowywat == 3) { |
12096 | loc = INSTAR; |
12097 | } |
12098 | |
12099 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
12100 | // A segment is going to be split, no point location. |
12101 | spivot(*splitseg, *searchsh); |
12102 | if (loc != INSTAR) loc = ONEDGE; |
12103 | } else { |
12104 | if (loc != INSTAR) loc = (enum locateresult) iloc; |
12105 | if (loc == OUTSIDE) { |
12106 | // Do point location in surface mesh. |
12107 | if (searchsh->sh == NULL) { |
12108 | *searchsh = recentsh; |
12109 | } |
12110 | // Search the vertex. An above point must be provided ('aflag' = 1). |
12111 | loc = slocate(insertpt, searchsh, 1, 1, rflag); |
12112 | } |
12113 | } |
12114 | |
12115 | |
12116 | // Form the initial sC(p). |
12117 | if (loc == ONFACE) { |
12118 | // Add the face into list (in B-W cavity). |
12119 | smarktest(*searchsh); |
12120 | caveshlist->newindex((void **) &parysh); |
12121 | *parysh = *searchsh; |
12122 | } else if (loc == ONEDGE) { |
12123 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
12124 | splitseg->shver = 0; |
12125 | pa = sorg(*splitseg); |
12126 | } else { |
12127 | pa = sorg(*searchsh); |
12128 | } |
12129 | if (searchsh->sh != NULL) { |
12130 | // Collect all subfaces share at this edge. |
12131 | neighsh = *searchsh; |
12132 | while (1) { |
12133 | // Adjust the origin of its edge to be 'pa'. |
12134 | if (sorg(neighsh) != pa) sesymself(neighsh); |
12135 | // Add this face into list (in B-W cavity). |
12136 | smarktest(neighsh); |
12137 | caveshlist->newindex((void **) &parysh); |
12138 | *parysh = neighsh; |
12139 | // Add this face into face-at-splitedge list. |
12140 | cavesegshlist->newindex((void **) &parysh); |
12141 | *parysh = neighsh; |
12142 | // Go to the next face at the edge. |
12143 | spivotself(neighsh); |
12144 | // Stop if all faces at the edge have been visited. |
12145 | if (neighsh.sh == searchsh->sh) break; |
12146 | if (neighsh.sh == NULL) break; |
12147 | } |
12148 | } // If (not a non-dangling segment). |
12149 | } else if (loc == ONVERTEX) { |
12150 | return (int) loc; |
12151 | } else if (loc == OUTSIDE) { |
12152 | // Comment: This should only happen during the surface meshing step. |
12153 | // Enlarge the convex hull of the triangulation by including p. |
12154 | // An above point of the facet is set in 'dummypoint' to replace |
12155 | // orient2d tests by orient3d tests. |
12156 | // Imagine that the current edge a->b (in 'searchsh') is horizontal in a |
12157 | // plane, and a->b is directed from left to right, p lies above a->b. |
12158 | // Find the right-most edge of the triangulation which is visible by p. |
12159 | neighsh = *searchsh; |
12160 | while (1) { |
12161 | senext2self(neighsh); |
12162 | spivot(neighsh, casout); |
12163 | if (casout.sh == NULL) { |
12164 | // A convex hull edge. Is it visible by p. |
12165 | ori = orient3d(sorg(neighsh), sdest(neighsh), dummypoint, insertpt); |
12166 | if (ori < 0) { |
12167 | *searchsh = neighsh; // Visible, update 'searchsh'. |
12168 | } else { |
12169 | break; // 'searchsh' is the right-most visible edge. |
12170 | } |
12171 | } else { |
12172 | if (sorg(casout) != sdest(neighsh)) sesymself(casout); |
12173 | neighsh = casout; |
12174 | } |
12175 | } |
12176 | // Create new triangles for all visible edges of p (from right to left). |
12177 | casin.sh = NULL; // No adjacent face at right. |
12178 | pa = sorg(*searchsh); |
12179 | pb = sdest(*searchsh); |
12180 | while (1) { |
12181 | // Create a new subface on top of the (visible) edge. |
12182 | makeshellface(subfaces, &newsh); |
12183 | setshvertices(newsh, pb, pa, insertpt); |
12184 | setshellmark(newsh, shellmark(*searchsh)); |
12185 | if (checkconstraints) { |
12186 | //area = areabound(*searchsh); |
12187 | setareabound(newsh, areabound(*searchsh)); |
12188 | } |
12189 | if (useinsertradius) { |
12190 | setfacetindex(newsh, getfacetindex(*searchsh)); |
12191 | } |
12192 | // Connect the new subface to the bottom subfaces. |
12193 | sbond1(newsh, *searchsh); |
12194 | sbond1(*searchsh, newsh); |
12195 | // Connect the new subface to its right-adjacent subface. |
12196 | if (casin.sh != NULL) { |
12197 | senext(newsh, casout); |
12198 | sbond1(casout, casin); |
12199 | sbond1(casin, casout); |
12200 | } |
12201 | // The left-adjacent subface has not been created yet. |
12202 | senext2(newsh, casin); |
12203 | // Add the new face into list (inside the B-W cavity). |
12204 | smarktest(newsh); |
12205 | caveshlist->newindex((void **) &parysh); |
12206 | *parysh = newsh; |
12207 | // Move to the convex hull edge at the left of 'searchsh'. |
12208 | neighsh = *searchsh; |
12209 | while (1) { |
12210 | senextself(neighsh); |
12211 | spivot(neighsh, casout); |
12212 | if (casout.sh == NULL) { |
12213 | *searchsh = neighsh; |
12214 | break; |
12215 | } |
12216 | if (sorg(casout) != sdest(neighsh)) sesymself(casout); |
12217 | neighsh = casout; |
12218 | } |
12219 | // A convex hull edge. Is it visible by p. |
12220 | pa = sorg(*searchsh); |
12221 | pb = sdest(*searchsh); |
12222 | ori = orient3d(pa, pb, dummypoint, insertpt); |
12223 | // Finish the process if p is not visible by the hull edge. |
12224 | if (ori >= 0) break; |
12225 | } |
12226 | } else if (loc == INSTAR) { |
12227 | // Under this case, the sub-cavity sC(p) has already been formed in |
12228 | // insertvertex(). |
12229 | } |
12230 | |
12231 | // Form the Bowyer-Watson cavity sC(p). |
12232 | for (i = 0; i < caveshlist->objects; i++) { |
12233 | cavesh = * (face *) fastlookup(caveshlist, i); |
12234 | for (j = 0; j < 3; j++) { |
12235 | if (!isshsubseg(cavesh)) { |
12236 | spivot(cavesh, neighsh); |
12237 | if (neighsh.sh != NULL) { |
12238 | // The adjacent face exists. |
12239 | if (!smarktested(neighsh)) { |
12240 | if (bowywat) { |
12241 | if (loc == INSTAR) { // if (bowywat > 2) { |
12242 | // It must be a boundary edge. |
12243 | sign = 1; |
12244 | } else { |
12245 | // Check if this subface is connected to adjacent tet(s). |
12246 | if (!isshtet(neighsh)) { |
12247 | // Check if the subface is non-Delaunay wrt. the new pt. |
12248 | sign = incircle3d(sorg(neighsh), sdest(neighsh), |
12249 | sapex(neighsh), insertpt); |
12250 | } else { |
12251 | // It is connected to an adjacent tet. A boundary edge. |
12252 | sign = 1; |
12253 | } |
12254 | } |
12255 | if (sign < 0) { |
12256 | // Add the adjacent face in list (in B-W cavity). |
12257 | smarktest(neighsh); |
12258 | caveshlist->newindex((void **) &parysh); |
12259 | *parysh = neighsh; |
12260 | } |
12261 | } else { |
12262 | sign = 1; // A boundary edge. |
12263 | } |
12264 | } else { |
12265 | sign = -1; // Not a boundary edge. |
12266 | } |
12267 | } else { |
12268 | // No adjacent face. It is a hull edge. |
12269 | if (loc == OUTSIDE) { |
12270 | // It is a boundary edge if it does not contain p. |
12271 | if ((sorg(cavesh) == insertpt) || (sdest(cavesh) == insertpt)) { |
12272 | sign = -1; // Not a boundary edge. |
12273 | } else { |
12274 | sign = 1; // A boundary edge. |
12275 | } |
12276 | } else { |
12277 | sign = 1; // A boundary edge. |
12278 | } |
12279 | } |
12280 | } else { |
12281 | // Do not across a segment. It is a boundary edge. |
12282 | sign = 1; |
12283 | } |
12284 | if (sign >= 0) { |
12285 | // Add a boundary edge. |
12286 | caveshbdlist->newindex((void **) &parysh); |
12287 | *parysh = cavesh; |
12288 | } |
12289 | senextself(cavesh); |
12290 | } // j |
12291 | } // i |
12292 | |
12293 | |
12294 | // Creating new subfaces. |
12295 | for (i = 0; i < caveshbdlist->objects; i++) { |
12296 | parysh = (face *) fastlookup(caveshbdlist, i); |
12297 | sspivot(*parysh, checkseg); |
12298 | if ((parysh->shver & 01) != 0) sesymself(*parysh); |
12299 | pa = sorg(*parysh); |
12300 | pb = sdest(*parysh); |
12301 | // Create a new subface. |
12302 | makeshellface(subfaces, &newsh); |
12303 | setshvertices(newsh, pa, pb, insertpt); |
12304 | setshellmark(newsh, shellmark(*parysh)); |
12305 | if (checkconstraints) { |
12306 | //area = areabound(*parysh); |
12307 | setareabound(newsh, areabound(*parysh)); |
12308 | } |
12309 | if (useinsertradius) { |
12310 | setfacetindex(newsh, getfacetindex(*parysh)); |
12311 | } |
12312 | // Update the point-to-subface map. |
12313 | if (pointtype(pa) == FREEFACETVERTEX) { |
12314 | setpoint2sh(pa, sencode(newsh)); |
12315 | } |
12316 | if (pointtype(pb) == FREEFACETVERTEX) { |
12317 | setpoint2sh(pb, sencode(newsh)); |
12318 | } |
12319 | // Connect newsh to outer subfaces. |
12320 | spivot(*parysh, casout); |
12321 | if (casout.sh != NULL) { |
12322 | casin = casout; |
12323 | if (checkseg.sh != NULL) { |
12324 | // Make sure that newsh has the right ori at this segment. |
12325 | checkseg.shver = 0; |
12326 | if (sorg(newsh) != sorg(checkseg)) { |
12327 | sesymself(newsh); |
12328 | sesymself(*parysh); // This side should also be inverse. |
12329 | } |
12330 | spivot(casin, neighsh); |
12331 | while (neighsh.sh != parysh->sh) { |
12332 | casin = neighsh; |
12333 | spivot(casin, neighsh); |
12334 | } |
12335 | } |
12336 | sbond1(newsh, casout); |
12337 | sbond1(casin, newsh); |
12338 | } |
12339 | if (checkseg.sh != NULL) { |
12340 | ssbond(newsh, checkseg); |
12341 | } |
12342 | // Connect oldsh <== newsh (for connecting adjacent new subfaces). |
12343 | // *parysh and newsh point to the same edge and the same ori. |
12344 | sbond1(*parysh, newsh); |
12345 | } |
12346 | |
12347 | if (newsh.sh != NULL) { |
12348 | // Set a handle for searching. |
12349 | recentsh = newsh; |
12350 | } |
12351 | |
12352 | // Update the point-to-subface map. |
12353 | if (pointtype(insertpt) == FREEFACETVERTEX) { |
12354 | setpoint2sh(insertpt, sencode(newsh)); |
12355 | } |
12356 | |
12357 | // Connect adjacent new subfaces together. |
12358 | for (i = 0; i < caveshbdlist->objects; i++) { |
12359 | // Get an old subface at edge [a, b]. |
12360 | parysh = (face *) fastlookup(caveshbdlist, i); |
12361 | spivot(*parysh, newsh); // The new subface [a, b, p]. |
12362 | senextself(newsh); // At edge [b, p]. |
12363 | spivot(newsh, neighsh); |
12364 | if (neighsh.sh == NULL) { |
12365 | // Find the adjacent new subface at edge [b, p]. |
12366 | pb = sdest(*parysh); |
12367 | neighsh = *parysh; |
12368 | while (1) { |
12369 | senextself(neighsh); |
12370 | spivotself(neighsh); |
12371 | if (neighsh.sh == NULL) break; |
12372 | if (!smarktested(neighsh)) break; |
12373 | if (sdest(neighsh) != pb) sesymself(neighsh); |
12374 | } |
12375 | if (neighsh.sh != NULL) { |
12376 | // Now 'neighsh' is a new subface at edge [b, #]. |
12377 | if (sorg(neighsh) != pb) sesymself(neighsh); |
12378 | senext2self(neighsh); // Go to the open edge [p, b]. |
12379 | sbond(newsh, neighsh); |
12380 | } else { |
12381 | // There is no adjacent new face at this side. |
12382 | assert(loc == OUTSIDE); // SELF_CHECK |
12383 | } |
12384 | } |
12385 | spivot(*parysh, newsh); // The new subface [a, b, p]. |
12386 | senext2self(newsh); // At edge [p, a]. |
12387 | spivot(newsh, neighsh); |
12388 | if (neighsh.sh == NULL) { |
12389 | // Find the adjacent new subface at edge [p, a]. |
12390 | pa = sorg(*parysh); |
12391 | neighsh = *parysh; |
12392 | while (1) { |
12393 | senext2self(neighsh); |
12394 | spivotself(neighsh); |
12395 | if (neighsh.sh == NULL) break; |
12396 | if (!smarktested(neighsh)) break; |
12397 | if (sorg(neighsh) != pa) sesymself(neighsh); |
12398 | } |
12399 | if (neighsh.sh != NULL) { |
12400 | // Now 'neighsh' is a new subface at edge [#, a]. |
12401 | if (sdest(neighsh) != pa) sesymself(neighsh); |
12402 | senextself(neighsh); // Go to the open edge [a, p]. |
12403 | sbond(newsh, neighsh); |
12404 | } else { |
12405 | // There is no adjacent new face at this side. |
12406 | assert(loc == OUTSIDE); // SELF_CHECK |
12407 | } |
12408 | } |
12409 | } |
12410 | |
12411 | if ((loc == ONEDGE) || ((splitseg != NULL) && (splitseg->sh != NULL)) |
12412 | || (cavesegshlist->objects > 0l)) { |
12413 | // An edge is being split. We distinguish two cases: |
12414 | // (1) the edge is not on the boundary of the cavity; |
12415 | // (2) the edge is on the boundary of the cavity. |
12416 | // In case (2), the edge is either a segment or a hull edge. There are |
12417 | // degenerated new faces in the cavity. They must be removed. |
12418 | face aseg, bseg, aoutseg, boutseg; |
12419 | |
12420 | for (i = 0; i < cavesegshlist->objects; i++) { |
12421 | // Get the saved old subface. |
12422 | parysh = (face *) fastlookup(cavesegshlist, i); |
12423 | // Get a possible new degenerated subface. |
12424 | spivot(*parysh, cavesh); |
12425 | if (sapex(cavesh) == insertpt) { |
12426 | // Found a degenerated new subface, i.e., case (2). |
12427 | if (cavesegshlist->objects > 1) { |
12428 | // There are more than one subface share at this edge. |
12429 | j = (i + 1) % (int) cavesegshlist->objects; |
12430 | parysh = (face *) fastlookup(cavesegshlist, j); |
12431 | spivot(*parysh, neighsh); |
12432 | // Adjust cavesh and neighsh both at edge a->b, and has p as apex. |
12433 | if (sorg(neighsh) != sorg(cavesh)) { |
12434 | sesymself(neighsh); |
12435 | assert(sorg(neighsh) == sorg(cavesh)); // SELF_CHECK |
12436 | } |
12437 | assert(sapex(neighsh) == insertpt); // SELF_CHECK |
12438 | // Connect adjacent faces at two other edges of cavesh and neighsh. |
12439 | // As a result, the two degenerated new faces are squeezed from the |
12440 | // new triangulation of the cavity. Note that the squeezed faces |
12441 | // still hold the adjacent informations which will be used in |
12442 | // re-connecting subsegments (if they exist). |
12443 | for (j = 0; j < 2; j++) { |
12444 | senextself(cavesh); |
12445 | senextself(neighsh); |
12446 | spivot(cavesh, newsh); |
12447 | spivot(neighsh, casout); |
12448 | sbond1(newsh, casout); // newsh <- casout. |
12449 | } |
12450 | } else { |
12451 | // There is only one subface containing this edge [a,b]. Squeeze the |
12452 | // degenerated new face [a,b,c] by disconnecting it from its two |
12453 | // adjacent subfaces at edges [b,c] and [c,a]. Note that the face |
12454 | // [a,b,c] still hold the connection to them. |
12455 | for (j = 0; j < 2; j++) { |
12456 | senextself(cavesh); |
12457 | spivot(cavesh, newsh); |
12458 | sdissolve(newsh); |
12459 | } |
12460 | } |
12461 | //recentsh = newsh; |
12462 | // Update the point-to-subface map. |
12463 | if (pointtype(insertpt) == FREEFACETVERTEX) { |
12464 | setpoint2sh(insertpt, sencode(newsh)); |
12465 | } |
12466 | } |
12467 | } |
12468 | |
12469 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
12470 | if (loc != INSTAR) { // if (bowywat < 3) { |
12471 | smarktest(*splitseg); // Mark it as being processed. |
12472 | } |
12473 | |
12474 | aseg = *splitseg; |
12475 | pa = sorg(*splitseg); |
12476 | pb = sdest(*splitseg); |
12477 | |
12478 | // Insert the new point p. |
12479 | makeshellface(subsegs, &aseg); |
12480 | makeshellface(subsegs, &bseg); |
12481 | |
12482 | setshvertices(aseg, pa, insertpt, NULL); |
12483 | setshvertices(bseg, insertpt, pb, NULL); |
12484 | setshellmark(aseg, shellmark(*splitseg)); |
12485 | setshellmark(bseg, shellmark(*splitseg)); |
12486 | if (checkconstraints) { |
12487 | setareabound(aseg, areabound(*splitseg)); |
12488 | setareabound(bseg, areabound(*splitseg)); |
12489 | } |
12490 | if (useinsertradius) { |
12491 | setfacetindex(aseg, getfacetindex(*splitseg)); |
12492 | setfacetindex(bseg, getfacetindex(*splitseg)); |
12493 | } |
12494 | |
12495 | // Connect [#, a]<->[a, p]. |
12496 | senext2(*splitseg, boutseg); // Temporarily use boutseg. |
12497 | spivotself(boutseg); |
12498 | if (boutseg.sh != NULL) { |
12499 | senext2(aseg, aoutseg); |
12500 | sbond(boutseg, aoutseg); |
12501 | } |
12502 | // Connect [p, b]<->[b, #]. |
12503 | senext(*splitseg, aoutseg); |
12504 | spivotself(aoutseg); |
12505 | if (aoutseg.sh != NULL) { |
12506 | senext(bseg, boutseg); |
12507 | sbond(boutseg, aoutseg); |
12508 | } |
12509 | // Connect [a, p] <-> [p, b]. |
12510 | senext(aseg, aoutseg); |
12511 | senext2(bseg, boutseg); |
12512 | sbond(aoutseg, boutseg); |
12513 | |
12514 | // Connect subsegs [a, p] and [p, b] to adjacent new subfaces. |
12515 | // Although the degenerated new faces have been squeezed. They still |
12516 | // hold the connections to the actual new faces. |
12517 | for (i = 0; i < cavesegshlist->objects; i++) { |
12518 | parysh = (face *) fastlookup(cavesegshlist, i); |
12519 | spivot(*parysh, neighsh); |
12520 | // neighsh is a degenerated new face. |
12521 | if (sorg(neighsh) != pa) { |
12522 | sesymself(neighsh); |
12523 | } |
12524 | senext2(neighsh, newsh); |
12525 | spivotself(newsh); // The edge [p, a] in newsh |
12526 | ssbond(newsh, aseg); |
12527 | senext(neighsh, newsh); |
12528 | spivotself(newsh); // The edge [b, p] in newsh |
12529 | ssbond(newsh, bseg); |
12530 | } |
12531 | |
12532 | |
12533 | // Let the point remember the segment it lies on. |
12534 | if (pointtype(insertpt) == FREESEGVERTEX) { |
12535 | setpoint2sh(insertpt, sencode(aseg)); |
12536 | } |
12537 | // Update the point-to-seg map. |
12538 | if (pointtype(pa) == FREESEGVERTEX) { |
12539 | setpoint2sh(pa, sencode(aseg)); |
12540 | } |
12541 | if (pointtype(pb) == FREESEGVERTEX) { |
12542 | setpoint2sh(pb, sencode(bseg)); |
12543 | } |
12544 | } // if ((splitseg != NULL) && (splitseg->sh != NULL)) |
12545 | |
12546 | // Delete all degenerated new faces. |
12547 | for (i = 0; i < cavesegshlist->objects; i++) { |
12548 | parysh = (face *) fastlookup(cavesegshlist, i); |
12549 | spivotself(*parysh); |
12550 | if (sapex(*parysh) == insertpt) { |
12551 | shellfacedealloc(subfaces, parysh->sh); |
12552 | } |
12553 | } |
12554 | cavesegshlist->restart(); |
12555 | |
12556 | if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
12557 | // Return the two new subsegments (for further process). |
12558 | // Re-use 'cavesegshlist'. |
12559 | cavesegshlist->newindex((void **) &parysh); |
12560 | *parysh = aseg; |
12561 | cavesegshlist->newindex((void **) &parysh); |
12562 | *parysh = bseg; |
12563 | } |
12564 | } // if (loc == ONEDGE) |
12565 | |
12566 | |
12567 | return (int) loc; |
12568 | } |
12569 | |
12570 | /////////////////////////////////////////////////////////////////////////////// |
12571 | // // |
12572 | // sremovevertex() Remove a vertex from the surface mesh. // |
12573 | // // |
12574 | // 'delpt' (p) is the vertex to be removed. If 'parentseg' is not NULL, p is // |
12575 | // a segment vertex, and the origin of 'parentseg' is p. Otherwise, p is a // |
12576 | // facet vertex, and the origin of 'parentsh' is p. // |
12577 | // // |
12578 | // Within each facet, we first use a sequence of 2-to-2 flips to flip any // |
12579 | // edge at p, finally use a 3-to-1 flip to remove p. // |
12580 | // // |
12581 | // All new created subfaces are returned in the global array 'caveshbdlist'. // |
12582 | // The new segment (when p is on segment) is returned in 'parentseg'. // |
12583 | // // |
12584 | // If 'lawson' > 0, the Lawson flip algorithm is used to recover Delaunay- // |
12585 | // ness after p is removed. // |
12586 | // // |
12587 | /////////////////////////////////////////////////////////////////////////////// |
12588 | |
12589 | int tetgenmesh::sremovevertex(point delpt, face* parentsh, face* parentseg, |
12590 | int lawson) |
12591 | { |
12592 | face flipfaces[4], spinsh, *parysh; |
12593 | point pa, pb, pc, pd; |
12594 | REAL ori1, ori2; |
12595 | int it, i, j; |
12596 | |
12597 | if (parentseg != NULL) { |
12598 | // 'delpt' (p) should be a Steiner point inserted in a segment [a,b], |
12599 | // where 'parentseg' should be [p,b]. Find the segment [a,p]. |
12600 | face startsh, neighsh, nextsh; |
12601 | face abseg, prevseg, checkseg; |
12602 | face adjseg1, adjseg2; |
12603 | face fakesh; |
12604 | senext2(*parentseg, prevseg); |
12605 | spivotself(prevseg); |
12606 | prevseg.shver = 0; |
12607 | assert(sdest(prevseg) == delpt); |
12608 | // Restore the original segment [a,b]. |
12609 | pa = sorg(prevseg); |
12610 | pb = sdest(*parentseg); |
12611 | if (b->verbose > 2) { |
12612 | printf(" Remove vertex %d from segment [%d, %d].\n" , |
12613 | pointmark(delpt), pointmark(pa), pointmark(pb)); |
12614 | } |
12615 | makeshellface(subsegs, &abseg); |
12616 | setshvertices(abseg, pa, pb, NULL); |
12617 | setshellmark(abseg, shellmark(*parentseg)); |
12618 | if (checkconstraints) { |
12619 | setareabound(abseg, areabound(*parentseg)); |
12620 | } |
12621 | if (useinsertradius) { |
12622 | setfacetindex(abseg, getfacetindex(*parentseg)); |
12623 | } |
12624 | // Connect [#, a]<->[a, b]. |
12625 | senext2(prevseg, adjseg1); |
12626 | spivotself(adjseg1); |
12627 | if (adjseg1.sh != NULL) { |
12628 | adjseg1.shver = 0; |
12629 | assert(sdest(adjseg1) == pa); |
12630 | senextself(adjseg1); |
12631 | senext2(abseg, adjseg2); |
12632 | sbond(adjseg1, adjseg2); |
12633 | } |
12634 | // Connect [a, b]<->[b, #]. |
12635 | senext(*parentseg, adjseg1); |
12636 | spivotself(adjseg1); |
12637 | if (adjseg1.sh != NULL) { |
12638 | adjseg1.shver = 0; |
12639 | assert(sorg(adjseg1) == pb); |
12640 | senext2self(adjseg1); |
12641 | senext(abseg, adjseg2); |
12642 | sbond(adjseg1, adjseg2); |
12643 | } |
12644 | // Update the point-to-segment map. |
12645 | setpoint2sh(pa, sencode(abseg)); |
12646 | setpoint2sh(pb, sencode(abseg)); |
12647 | |
12648 | // Get the faces in face ring at segment [p, b]. |
12649 | // Re-use array 'caveshlist'. |
12650 | spivot(*parentseg, *parentsh); |
12651 | if (parentsh->sh != NULL) { |
12652 | spinsh = *parentsh; |
12653 | while (1) { |
12654 | // Save this face in list. |
12655 | caveshlist->newindex((void **) &parysh); |
12656 | *parysh = spinsh; |
12657 | // Go to the next face in the ring. |
12658 | spivotself(spinsh); |
12659 | if (spinsh.sh == parentsh->sh) break; |
12660 | } |
12661 | } |
12662 | |
12663 | // Create the face ring of the new segment [a,b]. Each face in the ring |
12664 | // is [a,b,p] (degenerated!). It will be removed (automatically). |
12665 | for (i = 0; i < caveshlist->objects; i++) { |
12666 | parysh = (face *) fastlookup(caveshlist, i); |
12667 | startsh = *parysh; |
12668 | if (sorg(startsh) != delpt) { |
12669 | sesymself(startsh); |
12670 | assert(sorg(startsh) == delpt); |
12671 | } |
12672 | // startsh is [p, b, #1], find the subface [a, p, #2]. |
12673 | neighsh = startsh; |
12674 | while (1) { |
12675 | senext2self(neighsh); |
12676 | sspivot(neighsh, checkseg); |
12677 | if (checkseg.sh != NULL) { |
12678 | // It must be the segment [a, p]. |
12679 | assert(checkseg.sh == prevseg.sh); |
12680 | break; |
12681 | } |
12682 | spivotself(neighsh); |
12683 | assert(neighsh.sh != NULL); |
12684 | if (sorg(neighsh) != delpt) sesymself(neighsh); |
12685 | } |
12686 | // Now neighsh is [a, p, #2]. |
12687 | if (neighsh.sh != startsh.sh) { |
12688 | // Detach the two subsegments [a,p] and [p,b] from subfaces. |
12689 | ssdissolve(startsh); |
12690 | ssdissolve(neighsh); |
12691 | // Create a degenerated subface [a,b,p]. It is used to: (1) hold the |
12692 | // new segment [a,b]; (2) connect to the two adjacent subfaces |
12693 | // [p,b,#] and [a,p,#]. |
12694 | makeshellface(subfaces, &fakesh); |
12695 | setshvertices(fakesh, pa, pb, delpt); |
12696 | setshellmark(fakesh, shellmark(startsh)); |
12697 | // Connect fakesh to the segment [a,b]. |
12698 | ssbond(fakesh, abseg); |
12699 | // Connect fakesh to adjacent subfaces: [p,b,#1] and [a,p,#2]. |
12700 | senext(fakesh, nextsh); |
12701 | sbond(nextsh, startsh); |
12702 | senext2(fakesh, nextsh); |
12703 | sbond(nextsh, neighsh); |
12704 | smarktest(fakesh); // Mark it as faked. |
12705 | } else { |
12706 | // Special case. There exists already a degenerated face [a,b,p]! |
12707 | // There is no need to create a faked subface here. |
12708 | senext2self(neighsh); // [a,b,p] |
12709 | assert(sapex(neighsh) == delpt); |
12710 | // Since we will re-connect the face ring using the faked subfaces. |
12711 | // We put the adjacent face of [a,b,p] to the list. |
12712 | spivot(neighsh, startsh); // The original adjacent subface. |
12713 | if (sorg(startsh) != pa) sesymself(startsh); |
12714 | sdissolve(startsh); |
12715 | // Connect fakesh to the segment [a,b]. |
12716 | ssbond(startsh, abseg); |
12717 | fakesh = startsh; // Do not mark it! |
12718 | // Delete the degenerated subface. |
12719 | shellfacedealloc(subfaces, neighsh.sh); |
12720 | } |
12721 | // Save the fakesh in list (for re-creating the face ring). |
12722 | cavesegshlist->newindex((void **) &parysh); |
12723 | *parysh = fakesh; |
12724 | } // i |
12725 | caveshlist->restart(); |
12726 | |
12727 | // Re-create the face ring. |
12728 | if (cavesegshlist->objects > 1) { |
12729 | for (i = 0; i < cavesegshlist->objects; i++) { |
12730 | parysh = (face *) fastlookup(cavesegshlist, i); |
12731 | fakesh = *parysh; |
12732 | // Get the next face in the ring. |
12733 | j = (i + 1) % cavesegshlist->objects; |
12734 | parysh = (face *) fastlookup(cavesegshlist, j); |
12735 | nextsh = *parysh; |
12736 | sbond1(fakesh, nextsh); |
12737 | } |
12738 | } |
12739 | |
12740 | // Delete the two subsegments containing p. |
12741 | shellfacedealloc(subsegs, parentseg->sh); |
12742 | shellfacedealloc(subsegs, prevseg.sh); |
12743 | // Return the new segment. |
12744 | *parentseg = abseg; |
12745 | } else { |
12746 | // p is inside the surface. |
12747 | if (b->verbose > 2) { |
12748 | printf(" Remove vertex %d from surface.\n" , pointmark(delpt)); |
12749 | } |
12750 | assert(sorg(*parentsh) == delpt); |
12751 | // Let 'delpt' be its apex. |
12752 | senextself(*parentsh); |
12753 | // For unifying the code, we add parentsh to list. |
12754 | cavesegshlist->newindex((void **) &parysh); |
12755 | *parysh = *parentsh; |
12756 | } |
12757 | |
12758 | // Remove the point (p). |
12759 | |
12760 | for (it = 0; it < cavesegshlist->objects; it++) { |
12761 | parentsh = (face *) fastlookup(cavesegshlist, it); // [a,b,p] |
12762 | senextself(*parentsh); // [b,p,a]. |
12763 | spivotself(*parentsh); |
12764 | if (sorg(*parentsh) != delpt) sesymself(*parentsh); |
12765 | // now parentsh is [p,b,#]. |
12766 | if (sorg(*parentsh) != delpt) { |
12767 | // The vertex has already been removed in above special case. |
12768 | assert(!smarktested(*parentsh)); |
12769 | continue; |
12770 | } |
12771 | |
12772 | while (1) { |
12773 | // Initialize the flip edge list. Re-use 'caveshlist'. |
12774 | spinsh = *parentsh; // [p, b, #] |
12775 | while (1) { |
12776 | caveshlist->newindex((void **) &parysh); |
12777 | *parysh = spinsh; |
12778 | senext2self(spinsh); |
12779 | spivotself(spinsh); |
12780 | assert(spinsh.sh != NULL); |
12781 | if (spinsh.sh == parentsh->sh) break; |
12782 | if (sorg(spinsh) != delpt) sesymself(spinsh); |
12783 | assert(sorg(spinsh) == delpt); |
12784 | } // while (1) |
12785 | |
12786 | if (caveshlist->objects == 3) { |
12787 | // Delete the point by a 3-to-1 flip. |
12788 | for (i = 0; i < 3; i++) { |
12789 | parysh = (face *) fastlookup(caveshlist, i); |
12790 | flipfaces[i] = *parysh; |
12791 | } |
12792 | flip31(flipfaces, lawson); |
12793 | for (i = 0; i < 3; i++) { |
12794 | shellfacedealloc(subfaces, flipfaces[i].sh); |
12795 | } |
12796 | caveshlist->restart(); |
12797 | // Save the new subface. |
12798 | caveshbdlist->newindex((void **) &parysh); |
12799 | *parysh = flipfaces[3]; |
12800 | // The vertex is removed. |
12801 | break; |
12802 | } |
12803 | |
12804 | // Search an edge to flip. |
12805 | for (i = 0; i < caveshlist->objects; i++) { |
12806 | parysh = (face *) fastlookup(caveshlist, i); |
12807 | flipfaces[0] = *parysh; |
12808 | spivot(flipfaces[0], flipfaces[1]); |
12809 | if (sorg(flipfaces[0]) != sdest(flipfaces[1])) |
12810 | sesymself(flipfaces[1]); |
12811 | // Skip this edge if it belongs to a faked subface. |
12812 | if (!smarktested(flipfaces[0]) && !smarktested(flipfaces[1])) { |
12813 | pa = sorg(flipfaces[0]); |
12814 | pb = sdest(flipfaces[0]); |
12815 | pc = sapex(flipfaces[0]); |
12816 | pd = sapex(flipfaces[1]); |
12817 | calculateabovepoint4(pa, pb, pc, pd); |
12818 | // Check if a 2-to-2 flip is possible. |
12819 | ori1 = orient3d(pc, pd, dummypoint, pa); |
12820 | ori2 = orient3d(pc, pd, dummypoint, pb); |
12821 | if (ori1 * ori2 < 0) { |
12822 | // A 2-to-2 flip is found. |
12823 | flip22(flipfaces, lawson, 0); |
12824 | // The i-th edge is flipped. The i-th and (i-1)-th subfaces are |
12825 | // changed. The 'flipfaces[1]' contains p as its apex. |
12826 | senext2(flipfaces[1], *parentsh); |
12827 | // Save the new subface. |
12828 | caveshbdlist->newindex((void **) &parysh); |
12829 | *parysh = flipfaces[0]; |
12830 | break; |
12831 | } |
12832 | } // |
12833 | } // i |
12834 | |
12835 | if (i == caveshlist->objects) { |
12836 | // This can happen only if there are 4 edges at p, and they are |
12837 | // orthogonal to each other, see Fig. 2010-11-01. |
12838 | assert(caveshlist->objects == 4); |
12839 | // Do a flip22 and a flip31 to remove p. |
12840 | parysh = (face *) fastlookup(caveshlist, 0); |
12841 | flipfaces[0] = *parysh; |
12842 | spivot(flipfaces[0], flipfaces[1]); |
12843 | if (sorg(flipfaces[0]) != sdest(flipfaces[1])) { |
12844 | sesymself(flipfaces[1]); |
12845 | } |
12846 | flip22(flipfaces, lawson, 0); |
12847 | senext2(flipfaces[1], *parentsh); |
12848 | // Save the new subface. |
12849 | caveshbdlist->newindex((void **) &parysh); |
12850 | *parysh = flipfaces[0]; |
12851 | } |
12852 | |
12853 | // The edge list at p are changed. |
12854 | caveshlist->restart(); |
12855 | } // while (1) |
12856 | |
12857 | } // it |
12858 | |
12859 | cavesegshlist->restart(); |
12860 | |
12861 | if (b->verbose > 2) { |
12862 | printf(" Created %ld new subfaces.\n" , caveshbdlist->objects); |
12863 | } |
12864 | |
12865 | |
12866 | if (lawson) { |
12867 | lawsonflip(); |
12868 | } |
12869 | |
12870 | return 0; |
12871 | } |
12872 | |
12873 | /////////////////////////////////////////////////////////////////////////////// |
12874 | // // |
12875 | // slocate() Locate a point in a surface triangulation. // |
12876 | // // |
12877 | // Staring the search from 'searchsh'(it should not be NULL). Perform a line // |
12878 | // walk search for a subface containing the point (p). // |
12879 | // // |
12880 | // If 'aflag' is set, the 'dummypoint' is pre-calculated so that it lies // |
12881 | // above the 'searchsh' in its current orientation. The test if c is CCW to // |
12882 | // the line a->b can be done by the test if c is below the oriented plane // |
12883 | // a->b->dummypoint. // |
12884 | // // |
12885 | // If 'cflag' is not TRUE, the triangulation may not be convex. Stop search // |
12886 | // when a segment is met and return OUTSIDE. // |
12887 | // // |
12888 | // If 'rflag' (rounding) is set, after the location of the point is found, // |
12889 | // either ONEDGE or ONFACE, round the result using an epsilon. // |
12890 | // // |
12891 | // The returned value indicates the following cases: // |
12892 | // - ONVERTEX, p is the origin of 'searchsh'. // |
12893 | // - ONEDGE, p lies on the edge of 'searchsh'. // |
12894 | // - ONFACE, p lies in the interior of 'searchsh'. // |
12895 | // - OUTSIDE, p lies outside of the triangulation, p is on the left-hand // |
12896 | // side of the edge 'searchsh'(s), i.e., org(s), dest(s), p are CW. // |
12897 | // // |
12898 | /////////////////////////////////////////////////////////////////////////////// |
12899 | |
12900 | enum tetgenmesh::locateresult tetgenmesh::slocate(point searchpt, |
12901 | face* searchsh, int aflag, int cflag, int rflag) |
12902 | { |
12903 | face neighsh; |
12904 | point pa, pb, pc; |
12905 | enum locateresult loc; |
12906 | enum {MOVE_BC, MOVE_CA} nextmove; |
12907 | REAL ori, ori_bc, ori_ca; |
12908 | int i; |
12909 | |
12910 | pa = sorg(*searchsh); |
12911 | pb = sdest(*searchsh); |
12912 | pc = sapex(*searchsh); |
12913 | |
12914 | if (!aflag) { |
12915 | // No above point is given. Calculate an above point for this facet. |
12916 | calculateabovepoint4(pa, pb, pc, searchpt); |
12917 | } |
12918 | |
12919 | // 'dummypoint' is given. Make sure it is above [a,b,c] |
12920 | ori = orient3d(pa, pb, pc, dummypoint); |
12921 | assert(ori != 0); // SELF_CHECK |
12922 | if (ori > 0) { |
12923 | sesymself(*searchsh); // Reverse the face orientation. |
12924 | } |
12925 | |
12926 | // Find an edge of the face s.t. p lies on its right-hand side (CCW). |
12927 | for (i = 0; i < 3; i++) { |
12928 | pa = sorg(*searchsh); |
12929 | pb = sdest(*searchsh); |
12930 | ori = orient3d(pa, pb, dummypoint, searchpt); |
12931 | if (ori > 0) break; |
12932 | senextself(*searchsh); |
12933 | } |
12934 | assert(i < 3); // SELF_CHECK |
12935 | |
12936 | pc = sapex(*searchsh); |
12937 | |
12938 | if (pc == searchpt) { |
12939 | senext2self(*searchsh); |
12940 | return ONVERTEX; |
12941 | } |
12942 | |
12943 | while (1) { |
12944 | |
12945 | ori_bc = orient3d(pb, pc, dummypoint, searchpt); |
12946 | ori_ca = orient3d(pc, pa, dummypoint, searchpt); |
12947 | |
12948 | if (ori_bc < 0) { |
12949 | if (ori_ca < 0) { // (--) |
12950 | // Any of the edges is a viable move. |
12951 | if (randomnation(2)) { |
12952 | nextmove = MOVE_CA; |
12953 | } else { |
12954 | nextmove = MOVE_BC; |
12955 | } |
12956 | } else { // (-#) |
12957 | // Edge [b, c] is viable. |
12958 | nextmove = MOVE_BC; |
12959 | } |
12960 | } else { |
12961 | if (ori_ca < 0) { // (#-) |
12962 | // Edge [c, a] is viable. |
12963 | nextmove = MOVE_CA; |
12964 | } else { |
12965 | if (ori_bc > 0) { |
12966 | if (ori_ca > 0) { // (++) |
12967 | loc = ONFACE; // Inside [a, b, c]. |
12968 | break; |
12969 | } else { // (+0) |
12970 | senext2self(*searchsh); // On edge [c, a]. |
12971 | loc = ONEDGE; |
12972 | break; |
12973 | } |
12974 | } else { // ori_bc == 0 |
12975 | if (ori_ca > 0) { // (0+) |
12976 | senextself(*searchsh); // On edge [b, c]. |
12977 | loc = ONEDGE; |
12978 | break; |
12979 | } else { // (00) |
12980 | // p is coincident with vertex c. |
12981 | senext2self(*searchsh); |
12982 | return ONVERTEX; |
12983 | } |
12984 | } |
12985 | } |
12986 | } |
12987 | |
12988 | // Move to the next face. |
12989 | if (nextmove == MOVE_BC) { |
12990 | senextself(*searchsh); |
12991 | } else { |
12992 | senext2self(*searchsh); |
12993 | } |
12994 | if (!cflag) { |
12995 | // NON-convex case. Check if we will cross a boundary. |
12996 | if (isshsubseg(*searchsh)) { |
12997 | return ENCSEGMENT; |
12998 | } |
12999 | } |
13000 | spivot(*searchsh, neighsh); |
13001 | if (neighsh.sh == NULL) { |
13002 | return OUTSIDE; // A hull edge. |
13003 | } |
13004 | // Adjust the edge orientation. |
13005 | if (sorg(neighsh) != sdest(*searchsh)) { |
13006 | sesymself(neighsh); |
13007 | } |
13008 | assert(sorg(neighsh) == sdest(*searchsh)); // SELF_CHECK |
13009 | |
13010 | // Update the newly discovered face and its endpoints. |
13011 | *searchsh = neighsh; |
13012 | pa = sorg(*searchsh); |
13013 | pb = sdest(*searchsh); |
13014 | pc = sapex(*searchsh); |
13015 | |
13016 | if (pc == searchpt) { |
13017 | senext2self(*searchsh); |
13018 | return ONVERTEX; |
13019 | } |
13020 | |
13021 | } // while (1) |
13022 | |
13023 | // assert(loc == ONFACE || loc == ONEDGE); |
13024 | |
13025 | |
13026 | if (rflag) { |
13027 | // Round the locate result before return. |
13028 | REAL n[3], area_abc, area_abp, area_bcp, area_cap; |
13029 | |
13030 | pa = sorg(*searchsh); |
13031 | pb = sdest(*searchsh); |
13032 | pc = sapex(*searchsh); |
13033 | |
13034 | facenormal(pa, pb, pc, n, 1, NULL); |
13035 | area_abc = sqrt(dot(n, n)); |
13036 | |
13037 | facenormal(pb, pc, searchpt, n, 1, NULL); |
13038 | area_bcp = sqrt(dot(n, n)); |
13039 | if ((area_bcp / area_abc) < b->epsilon) { |
13040 | area_bcp = 0; // Rounding. |
13041 | } |
13042 | |
13043 | facenormal(pc, pa, searchpt, n, 1, NULL); |
13044 | area_cap = sqrt(dot(n, n)); |
13045 | if ((area_cap / area_abc) < b->epsilon) { |
13046 | area_cap = 0; // Rounding |
13047 | } |
13048 | |
13049 | if ((loc == ONFACE) || (loc == OUTSIDE)) { |
13050 | facenormal(pa, pb, searchpt, n, 1, NULL); |
13051 | area_abp = sqrt(dot(n, n)); |
13052 | if ((area_abp / area_abc) < b->epsilon) { |
13053 | area_abp = 0; // Rounding |
13054 | } |
13055 | } else { // loc == ONEDGE |
13056 | area_abp = 0; |
13057 | } |
13058 | |
13059 | if (area_abp == 0) { |
13060 | if (area_bcp == 0) { |
13061 | assert(area_cap != 0); |
13062 | senextself(*searchsh); |
13063 | loc = ONVERTEX; // p is close to b. |
13064 | } else { |
13065 | if (area_cap == 0) { |
13066 | loc = ONVERTEX; // p is close to a. |
13067 | } else { |
13068 | loc = ONEDGE; // p is on edge [a,b]. |
13069 | } |
13070 | } |
13071 | } else if (area_bcp == 0) { |
13072 | if (area_cap == 0) { |
13073 | senext2self(*searchsh); |
13074 | loc = ONVERTEX; // p is close to c. |
13075 | } else { |
13076 | senextself(*searchsh); |
13077 | loc = ONEDGE; // p is on edge [b,c]. |
13078 | } |
13079 | } else if (area_cap == 0) { |
13080 | senext2self(*searchsh); |
13081 | loc = ONEDGE; // p is on edge [c,a]. |
13082 | } else { |
13083 | loc = ONFACE; // p is on face [a,b,c]. |
13084 | } |
13085 | } // if (rflag) |
13086 | |
13087 | return loc; |
13088 | } |
13089 | |
13090 | /////////////////////////////////////////////////////////////////////////////// |
13091 | // // |
13092 | // sscoutsegment() Look for a segment in surface triangulation. // |
13093 | // // |
13094 | // The segment is given by the origin of 'searchsh' and 'endpt'. Assume the // |
13095 | // orientation of 'searchsh' is CCW w.r.t. the above point. // |
13096 | // // |
13097 | // If an edge in T is found matching this segment, the segment is "locked" // |
13098 | // in T at the edge. Otherwise, flip the first edge in T that the segment // |
13099 | // crosses. Continue the search from the flipped face. // |
13100 | // // |
13101 | /////////////////////////////////////////////////////////////////////////////// |
13102 | |
13103 | enum tetgenmesh::interresult tetgenmesh::sscoutsegment(face *searchsh, |
13104 | point endpt) |
13105 | { |
13106 | face flipshs[2], neighsh; |
13107 | face newseg; |
13108 | point startpt, pa, pb, pc, pd; |
13109 | enum interresult dir; |
13110 | enum {MOVE_AB, MOVE_CA} nextmove; |
13111 | REAL ori_ab, ori_ca, len; |
13112 | |
13113 | // The origin of 'searchsh' is fixed. |
13114 | startpt = sorg(*searchsh); // pa = startpt; |
13115 | nextmove = MOVE_AB; // Avoid compiler warning. |
13116 | |
13117 | if (b->verbose > 2) { |
13118 | printf(" Scout segment (%d, %d).\n" , pointmark(startpt), |
13119 | pointmark(endpt)); |
13120 | } |
13121 | len = distance(startpt, endpt); |
13122 | |
13123 | // Search an edge in 'searchsh' on the path of this segment. |
13124 | while (1) { |
13125 | |
13126 | pb = sdest(*searchsh); |
13127 | if (pb == endpt) { |
13128 | dir = SHAREEDGE; // Found! |
13129 | break; |
13130 | } |
13131 | |
13132 | pc = sapex(*searchsh); |
13133 | if (pc == endpt) { |
13134 | senext2self(*searchsh); |
13135 | sesymself(*searchsh); |
13136 | dir = SHAREEDGE; // Found! |
13137 | break; |
13138 | } |
13139 | |
13140 | // Round the results. |
13141 | if ((sqrt(triarea(startpt, pb, endpt)) / len) < b->epsilon) { |
13142 | ori_ab = 0.0; |
13143 | } else { |
13144 | ori_ab = orient3d(startpt, pb, dummypoint, endpt); |
13145 | } |
13146 | if ((sqrt(triarea(pc, startpt, endpt)) / len) < b->epsilon) { |
13147 | ori_ca = 0.0; |
13148 | } else { |
13149 | ori_ca = orient3d(pc, startpt, dummypoint, endpt); |
13150 | } |
13151 | |
13152 | if (ori_ab < 0) { |
13153 | if (ori_ca < 0) { // (--) |
13154 | // Both sides are viable moves. |
13155 | if (randomnation(2)) { |
13156 | nextmove = MOVE_CA; |
13157 | } else { |
13158 | nextmove = MOVE_AB; |
13159 | } |
13160 | } else { // (-#) |
13161 | nextmove = MOVE_AB; |
13162 | } |
13163 | } else { |
13164 | if (ori_ca < 0) { // (#-) |
13165 | nextmove = MOVE_CA; |
13166 | } else { |
13167 | if (ori_ab > 0) { |
13168 | if (ori_ca > 0) { // (++) |
13169 | // The segment intersects with edge [b, c]. |
13170 | dir = ACROSSEDGE; |
13171 | break; |
13172 | } else { // (+0) |
13173 | // The segment collinear with edge [c, a]. |
13174 | senext2self(*searchsh); |
13175 | sesymself(*searchsh); |
13176 | dir = ACROSSVERT; |
13177 | break; |
13178 | } |
13179 | } else { |
13180 | if (ori_ca > 0) { // (0+) |
13181 | // The segment collinear with edge [a, b]. |
13182 | dir = ACROSSVERT; |
13183 | break; |
13184 | } else { // (00) |
13185 | // startpt == endpt. Not possible. |
13186 | assert(0); // SELF_CHECK |
13187 | } |
13188 | } |
13189 | } |
13190 | } |
13191 | |
13192 | // Move 'searchsh' to the next face, keep the origin unchanged. |
13193 | if (nextmove == MOVE_AB) { |
13194 | spivot(*searchsh, neighsh); |
13195 | if (neighsh.sh != NULL) { |
13196 | if (sorg(neighsh) != pb) sesymself(neighsh); |
13197 | senext(neighsh, *searchsh); |
13198 | } else { |
13199 | // This side (startpt->pb) is outside. It is caused by rounding error. |
13200 | // Try the next side, i.e., (pc->startpt). |
13201 | senext2(*searchsh, neighsh); |
13202 | spivotself(neighsh); |
13203 | assert(neighsh.sh != NULL); |
13204 | if (sdest(neighsh) != pc) sesymself(neighsh); |
13205 | *searchsh = neighsh; |
13206 | } |
13207 | } else { |
13208 | senext2(*searchsh, neighsh); |
13209 | spivotself(neighsh); |
13210 | if (neighsh.sh != NULL) { |
13211 | if (sdest(neighsh) != pc) sesymself(neighsh); |
13212 | *searchsh = neighsh; |
13213 | } else { |
13214 | // The same reason as above. |
13215 | // Try the next side, i.e., (startpt->pb). |
13216 | spivot(*searchsh, neighsh); |
13217 | assert(neighsh.sh != NULL); |
13218 | if (sorg(neighsh) != pb) sesymself(neighsh); |
13219 | senext(neighsh, *searchsh); |
13220 | } |
13221 | } |
13222 | assert(sorg(*searchsh) == startpt); // SELF_CHECK |
13223 | |
13224 | } // while |
13225 | |
13226 | if (dir == SHAREEDGE) { |
13227 | // Insert the segment into the triangulation. |
13228 | makeshellface(subsegs, &newseg); |
13229 | setshvertices(newseg, startpt, endpt, NULL); |
13230 | // Set the default segment marker. |
13231 | setshellmark(newseg, 1); |
13232 | ssbond(*searchsh, newseg); |
13233 | spivot(*searchsh, neighsh); |
13234 | if (neighsh.sh != NULL) { |
13235 | ssbond(neighsh, newseg); |
13236 | } |
13237 | return dir; |
13238 | } |
13239 | |
13240 | if (dir == ACROSSVERT) { |
13241 | // A point is found collinear with this segment. |
13242 | return dir; |
13243 | } |
13244 | |
13245 | if (dir == ACROSSEDGE) { |
13246 | // Edge [b, c] intersects with the segment. |
13247 | senext(*searchsh, flipshs[0]); |
13248 | if (isshsubseg(flipshs[0])) { |
13249 | printf("Error: Invalid PLC.\n" ); |
13250 | pb = sorg(flipshs[0]); |
13251 | pc = sdest(flipshs[0]); |
13252 | printf(" Two segments (%d, %d) and (%d, %d) intersect.\n" , |
13253 | pointmark(startpt), pointmark(endpt), pointmark(pb), pointmark(pc)); |
13254 | terminatetetgen(this, 3); |
13255 | } |
13256 | // Flip edge [b, c], queue unflipped edges (for Delaunay checks). |
13257 | spivot(flipshs[0], flipshs[1]); |
13258 | assert(flipshs[1].sh != NULL); // SELF_CHECK |
13259 | if (sorg(flipshs[1]) != sdest(flipshs[0])) sesymself(flipshs[1]); |
13260 | flip22(flipshs, 1, 0); |
13261 | // The flip may create an inverted triangle, check it. |
13262 | pa = sapex(flipshs[1]); |
13263 | pb = sapex(flipshs[0]); |
13264 | pc = sorg(flipshs[0]); |
13265 | pd = sdest(flipshs[0]); |
13266 | // Check if pa and pb are on the different sides of [pc, pd]. |
13267 | // Re-use ori_ab, ori_ca for the tests. |
13268 | ori_ab = orient3d(pc, pd, dummypoint, pb); |
13269 | ori_ca = orient3d(pd, pc, dummypoint, pa); |
13270 | //assert(ori_ab * ori_ca != 0); // SELF_CHECK |
13271 | if (ori_ab < 0) { |
13272 | flipshpush(&(flipshs[0])); // push it to 'flipstack' |
13273 | } else if (ori_ca < 0) { |
13274 | flipshpush(&(flipshs[1])); // // push it to 'flipstack' |
13275 | } |
13276 | // Set 'searchsh' s.t. its origin is 'startpt'. |
13277 | *searchsh = flipshs[0]; |
13278 | assert(sorg(*searchsh) == startpt); |
13279 | } |
13280 | |
13281 | return sscoutsegment(searchsh, endpt); |
13282 | } |
13283 | |
13284 | /////////////////////////////////////////////////////////////////////////////// |
13285 | // // |
13286 | // scarveholes() Remove triangles not in the facet. // |
13287 | // // |
13288 | // This routine re-uses the two global arrays: caveshlist and caveshbdlist. // |
13289 | // // |
13290 | /////////////////////////////////////////////////////////////////////////////// |
13291 | |
13292 | void tetgenmesh::scarveholes(int holes, REAL* holelist) |
13293 | { |
13294 | face *parysh, searchsh, neighsh; |
13295 | enum locateresult loc; |
13296 | int i, j; |
13297 | |
13298 | // Get all triangles. Infect unprotected convex hull triangles. |
13299 | smarktest(recentsh); |
13300 | caveshlist->newindex((void **) &parysh); |
13301 | *parysh = recentsh; |
13302 | for (i = 0; i < caveshlist->objects; i++) { |
13303 | parysh = (face *) fastlookup(caveshlist, i); |
13304 | searchsh = *parysh; |
13305 | searchsh.shver = 0; |
13306 | for (j = 0; j < 3; j++) { |
13307 | spivot(searchsh, neighsh); |
13308 | // Is this side on the convex hull? |
13309 | if (neighsh.sh != NULL) { |
13310 | if (!smarktested(neighsh)) { |
13311 | smarktest(neighsh); |
13312 | caveshlist->newindex((void **) &parysh); |
13313 | *parysh = neighsh; |
13314 | } |
13315 | } else { |
13316 | // A hull side. Check if it is protected by a segment. |
13317 | if (!isshsubseg(searchsh)) { |
13318 | // Not protected. Save this face. |
13319 | if (!sinfected(searchsh)) { |
13320 | sinfect(searchsh); |
13321 | caveshbdlist->newindex((void **) &parysh); |
13322 | *parysh = searchsh; |
13323 | } |
13324 | } |
13325 | } |
13326 | senextself(searchsh); |
13327 | } |
13328 | } |
13329 | |
13330 | // Infect the triangles in the holes. |
13331 | for (i = 0; i < 3 * holes; i += 3) { |
13332 | searchsh = recentsh; |
13333 | loc = slocate(&(holelist[i]), &searchsh, 1, 1, 0); |
13334 | if (loc != OUTSIDE) { |
13335 | sinfect(searchsh); |
13336 | caveshbdlist->newindex((void **) &parysh); |
13337 | *parysh = searchsh; |
13338 | } |
13339 | } |
13340 | |
13341 | // Find and infect all exterior triangles. |
13342 | for (i = 0; i < caveshbdlist->objects; i++) { |
13343 | parysh = (face *) fastlookup(caveshbdlist, i); |
13344 | searchsh = *parysh; |
13345 | searchsh.shver = 0; |
13346 | for (j = 0; j < 3; j++) { |
13347 | spivot(searchsh, neighsh); |
13348 | if (neighsh.sh != NULL) { |
13349 | if (!isshsubseg(searchsh)) { |
13350 | if (!sinfected(neighsh)) { |
13351 | sinfect(neighsh); |
13352 | caveshbdlist->newindex((void **) &parysh); |
13353 | *parysh = neighsh; |
13354 | } |
13355 | } else { |
13356 | sdissolve(neighsh); // Disconnect a protected face. |
13357 | } |
13358 | } |
13359 | senextself(searchsh); |
13360 | } |
13361 | } |
13362 | |
13363 | // Delete exterior triangles, unmark interior triangles. |
13364 | for (i = 0; i < caveshlist->objects; i++) { |
13365 | parysh = (face *) fastlookup(caveshlist, i); |
13366 | if (sinfected(*parysh)) { |
13367 | shellfacedealloc(subfaces, parysh->sh); |
13368 | } else { |
13369 | sunmarktest(*parysh); |
13370 | } |
13371 | } |
13372 | |
13373 | caveshlist->restart(); |
13374 | caveshbdlist->restart(); |
13375 | } |
13376 | |
13377 | /////////////////////////////////////////////////////////////////////////////// |
13378 | // // |
13379 | // triangulate() Create a CDT for the facet. // |
13380 | // // |
13381 | // All vertices of the triangulation have type FACETVERTEX. The actual type // |
13382 | // of boundary vertices are set by the routine unifysements(). // |
13383 | // // |
13384 | /////////////////////////////////////////////////////////////////////////////// |
13385 | |
13386 | void tetgenmesh::triangulate(int shmark, arraypool* ptlist, arraypool* conlist, |
13387 | int holes, REAL* holelist) |
13388 | { |
13389 | face searchsh, newsh, *parysh; |
13390 | face newseg; |
13391 | point pa, pb, pc, *ppt, *cons; |
13392 | int iloc; |
13393 | int i, j; |
13394 | |
13395 | if (b->verbose > 2) { |
13396 | printf(" f%d: %ld vertices, %ld segments" , shmark, ptlist->objects, |
13397 | conlist->objects); |
13398 | if (holes > 0) { |
13399 | printf(", %d holes" , holes); |
13400 | } |
13401 | printf(".\n" ); |
13402 | } |
13403 | |
13404 | if (ptlist->objects < 2l) { |
13405 | // Not a segment or a facet. |
13406 | return; |
13407 | } |
13408 | |
13409 | if (ptlist->objects == 2l) { |
13410 | pa = * (point *) fastlookup(ptlist, 0); |
13411 | pb = * (point *) fastlookup(ptlist, 1); |
13412 | if (distance(pa, pb) > 0) { |
13413 | // It is a single segment. |
13414 | makeshellface(subsegs, &newseg); |
13415 | setshvertices(newseg, pa, pb, NULL); |
13416 | // Set the default segment marker '1'. |
13417 | setshellmark(newseg, 1); |
13418 | } |
13419 | if (pointtype(pa) == VOLVERTEX) { |
13420 | setpointtype(pa, FACETVERTEX); |
13421 | } |
13422 | if (pointtype(pb) == VOLVERTEX) { |
13423 | setpointtype(pb, FACETVERTEX); |
13424 | } |
13425 | return; |
13426 | } |
13427 | |
13428 | |
13429 | if (ptlist->objects == 3) { |
13430 | pa = * (point *) fastlookup(ptlist, 0); |
13431 | pb = * (point *) fastlookup(ptlist, 1); |
13432 | pc = * (point *) fastlookup(ptlist, 2); |
13433 | } else { |
13434 | // Calculate an above point of this facet. |
13435 | if (!calculateabovepoint(ptlist, &pa, &pb, &pc)) { |
13436 | return; // The point set is degenerate. |
13437 | } |
13438 | } |
13439 | |
13440 | // Create an initial triangulation. |
13441 | makeshellface(subfaces, &newsh); |
13442 | setshvertices(newsh, pa, pb, pc); |
13443 | setshellmark(newsh, shmark); |
13444 | recentsh = newsh; |
13445 | |
13446 | if (pointtype(pa) == VOLVERTEX) { |
13447 | setpointtype(pa, FACETVERTEX); |
13448 | } |
13449 | if (pointtype(pb) == VOLVERTEX) { |
13450 | setpointtype(pb, FACETVERTEX); |
13451 | } |
13452 | if (pointtype(pc) == VOLVERTEX) { |
13453 | setpointtype(pc, FACETVERTEX); |
13454 | } |
13455 | |
13456 | // Are there area constraints? |
13457 | if (b->quality && (in->facetconstraintlist != (REAL *) NULL)) { |
13458 | int idx, fmarker; |
13459 | REAL area; |
13460 | idx = in->facetmarkerlist[shmark - 1]; // The actual facet marker. |
13461 | for (i = 0; i < in->numberoffacetconstraints; i++) { |
13462 | fmarker = (int) in->facetconstraintlist[i * 2]; |
13463 | if (fmarker == idx) { |
13464 | area = in->facetconstraintlist[i * 2 + 1]; |
13465 | setareabound(newsh, area); |
13466 | break; |
13467 | } |
13468 | } |
13469 | } |
13470 | |
13471 | if (ptlist->objects == 3) { |
13472 | // The triangulation only has one element. |
13473 | for (i = 0; i < 3; i++) { |
13474 | makeshellface(subsegs, &newseg); |
13475 | setshvertices(newseg, sorg(newsh), sdest(newsh), NULL); |
13476 | // Set the default segment marker '1'. |
13477 | setshellmark(newseg, 1); |
13478 | ssbond(newsh, newseg); |
13479 | senextself(newsh); |
13480 | } |
13481 | return; |
13482 | } |
13483 | |
13484 | // Incrementally build the triangulation. |
13485 | pinfect(pa); |
13486 | pinfect(pb); |
13487 | pinfect(pc); |
13488 | for (i = 0; i < ptlist->objects; i++) { |
13489 | ppt = (point *) fastlookup(ptlist, i); |
13490 | if (!pinfected(*ppt)) { |
13491 | searchsh = recentsh; // Start from 'recentsh'. |
13492 | iloc = (int) OUTSIDE; |
13493 | // Insert the vertex. Use Bowyer-Watson algo. Round the location. |
13494 | iloc = sinsertvertex(*ppt, &searchsh, NULL, iloc, 1, 1); |
13495 | if (pointtype(*ppt) == VOLVERTEX) { |
13496 | setpointtype(*ppt, FACETVERTEX); |
13497 | } |
13498 | // Delete all removed subfaces. |
13499 | for (j = 0; j < caveshlist->objects; j++) { |
13500 | parysh = (face *) fastlookup(caveshlist, j); |
13501 | shellfacedealloc(subfaces, parysh->sh); |
13502 | } |
13503 | // Clear the global lists. |
13504 | caveshbdlist->restart(); |
13505 | caveshlist->restart(); |
13506 | cavesegshlist->restart(); |
13507 | } else { |
13508 | puninfect(*ppt); // This point has inserted. |
13509 | } |
13510 | } |
13511 | |
13512 | // Insert the segments. |
13513 | for (i = 0; i < conlist->objects; i++) { |
13514 | cons = (point *) fastlookup(conlist, i); |
13515 | searchsh = recentsh; |
13516 | iloc = (int) slocate(cons[0], &searchsh, 1, 1, 0); |
13517 | if (iloc != (enum locateresult) ONVERTEX) { |
13518 | // Not found due to roundoff errors. Do a brute-force search. |
13519 | subfaces->traversalinit(); |
13520 | searchsh.sh = shellfacetraverse(subfaces); |
13521 | while (searchsh.sh != NULL) { |
13522 | // Only search the subface in the same facet. |
13523 | if (shellmark(searchsh) == shmark) { |
13524 | if ((point) searchsh.sh[3] == cons[0]) { |
13525 | searchsh.shver = 0; break; |
13526 | } else if ((point) searchsh.sh[4] == cons[0]) { |
13527 | searchsh.shver = 2; break; |
13528 | } else if ((point) searchsh.sh[5] == cons[0]) { |
13529 | searchsh.shver = 4; break; |
13530 | } |
13531 | } |
13532 | searchsh.sh = shellfacetraverse(subfaces); |
13533 | } |
13534 | assert(searchsh.sh != NULL); |
13535 | } |
13536 | // Recover the segment. Some edges may be flipped. |
13537 | sscoutsegment(&searchsh, cons[1]); |
13538 | if (flipstack != NULL) { |
13539 | // Recover locally Delaunay edges. |
13540 | lawsonflip(); |
13541 | } |
13542 | } |
13543 | |
13544 | // Remove exterior and hole triangles. |
13545 | scarveholes(holes, holelist); |
13546 | } |
13547 | |
13548 | /////////////////////////////////////////////////////////////////////////////// |
13549 | // // |
13550 | // unifysubfaces() Unify two identical subfaces. // |
13551 | // // |
13552 | // Two subfaces, f1 [a, b, c] and f2 [a, b, d], share the same edge [a, b]. // |
13553 | // If c = d, then f1 and f2 are identical. Otherwise, these two subfaces // |
13554 | // intersect, and the mesher is stopped. // |
13555 | // // |
13556 | // If the two subfaces are identical, we try to replace f2 by f1, i.e, all // |
13557 | // neighbors of f2 are re-connected to f1. // |
13558 | // // |
13559 | /////////////////////////////////////////////////////////////////////////////// |
13560 | |
13561 | void tetgenmesh::unifysubfaces(face *f1, face *f2) |
13562 | { |
13563 | if (b->psc) { |
13564 | // In this case, it is possible that two subfaces are identical. |
13565 | // While they must belong to two different surfaces. |
13566 | return; |
13567 | } |
13568 | |
13569 | point pa, pb, pc, pd; |
13570 | |
13571 | pa = sorg(*f1); |
13572 | pb = sdest(*f1); |
13573 | pc = sapex(*f1); |
13574 | pd = sapex(*f2); |
13575 | |
13576 | if (pc != pd) { |
13577 | printf("Found two facets intersect each other.\n" ); |
13578 | printf(" 1st: [%d, %d, %d] #%d\n" , |
13579 | pointmark(pa), pointmark(pb), pointmark(pc), shellmark(*f1)); |
13580 | printf(" 2nd: [%d, %d, %d] #%d\n" , |
13581 | pointmark(pa), pointmark(pb), pointmark(pd), shellmark(*f2)); |
13582 | terminatetetgen(this, 3); |
13583 | } else { |
13584 | printf("Found two duplicated facets.\n" ); |
13585 | printf(" 1st: [%d, %d, %d] #%d\n" , |
13586 | pointmark(pa), pointmark(pb), pointmark(pc), shellmark(*f1)); |
13587 | printf(" 2nd: [%d, %d, %d] #%d\n" , |
13588 | pointmark(pa), pointmark(pb), pointmark(pd), shellmark(*f2)); |
13589 | terminatetetgen(this, 3); |
13590 | } |
13591 | |
13592 | } |
13593 | |
13594 | /////////////////////////////////////////////////////////////////////////////// |
13595 | // // |
13596 | // unifysegments() Remove redundant segments and create face links. // |
13597 | // // |
13598 | // After this routine, although segments are unique, but some of them may be // |
13599 | // removed later by mergefacet(). All vertices still have type FACETVERTEX. // |
13600 | // // |
13601 | /////////////////////////////////////////////////////////////////////////////// |
13602 | |
13603 | void tetgenmesh::unifysegments() |
13604 | { |
13605 | badface *facelink = NULL, *newlinkitem, *f1, *f2; |
13606 | face *facperverlist, sface; |
13607 | face subsegloop, testseg; |
13608 | point torg, tdest; |
13609 | REAL ori1, ori2, ori3; |
13610 | REAL n1[3], n2[3]; |
13611 | int *idx2faclist; |
13612 | int idx, k, m; |
13613 | |
13614 | if (b->verbose > 1) { |
13615 | printf(" Unifying segments.\n" ); |
13616 | } |
13617 | |
13618 | // Create a mapping from vertices to subfaces. |
13619 | makepoint2submap(subfaces, idx2faclist, facperverlist); |
13620 | |
13621 | if (b->psc) { |
13622 | face sface1; |
13623 | face seg, seg1; |
13624 | int fmarker, fmarker1; |
13625 | // First only connect subfaces which belong to the same surfaces. |
13626 | subsegloop.shver = 0; |
13627 | subsegs->traversalinit(); |
13628 | subsegloop.sh = shellfacetraverse(subsegs); |
13629 | while (subsegloop.sh != (shellface *) NULL) { |
13630 | torg = sorg(subsegloop); |
13631 | tdest = sdest(subsegloop); |
13632 | |
13633 | idx = pointmark(torg) - in->firstnumber; |
13634 | for (k = idx2faclist[idx]; k < idx2faclist[idx + 1]; k++) { |
13635 | sface = facperverlist[k]; |
13636 | // The face may be deleted if it is a duplicated face. |
13637 | if (sface.sh[3] == NULL) continue; |
13638 | // Search the edge torg->tdest. |
13639 | assert(sorg(sface) == torg); // SELF_CHECK |
13640 | if (sdest(sface) != tdest) { |
13641 | senext2self(sface); |
13642 | sesymself(sface); |
13643 | } |
13644 | if (sdest(sface) != tdest) continue; |
13645 | |
13646 | sspivot(sface, seg); |
13647 | if (seg.sh == NULL) continue; |
13648 | // assert(seg.sh != NULL); It may or may not be subsegloop. |
13649 | |
13650 | // Find the adjacent subface on the same facet. |
13651 | fmarker = in->facetmarkerlist[shellmark(sface) - 1]; |
13652 | sface1.sh = NULL; |
13653 | k++; |
13654 | for (; k < idx2faclist[idx + 1]; k++) { |
13655 | sface1 = facperverlist[k]; |
13656 | // The face may be deleted if it is a duplicated face. |
13657 | if (sface1.sh[3] == NULL) continue; |
13658 | // Search the edge torg->tdest. |
13659 | assert(sorg(sface1) == torg); // SELF_CHECK |
13660 | if (sdest(sface1) != tdest) { |
13661 | senext2self(sface1); |
13662 | sesymself(sface1); |
13663 | } |
13664 | if (sdest(sface1) != tdest) continue; |
13665 | // Found a subface sharing at the same edge. |
13666 | fmarker1 = in->facetmarkerlist[shellmark(sface1) - 1]; |
13667 | if (fmarker1 == fmarker) { |
13668 | // Found a pair of adjacent subfaces. Connect them. |
13669 | // Delete a redundent segment. |
13670 | sspivot(sface1, seg1); |
13671 | assert(seg1.sh != NULL); // SELF_CHECK |
13672 | shellfacedealloc(subsegs, seg.sh); |
13673 | shellfacedealloc(subsegs, seg1.sh); |
13674 | ssdissolve(sface); |
13675 | ssdissolve(sface1); |
13676 | // Connect them. |
13677 | sbond(sface, sface1); |
13678 | // Set Steiner point -to- subface map. |
13679 | if (pointtype(torg) == FREEFACETVERTEX) { |
13680 | setpoint2sh(torg, sencode(sface)); |
13681 | } |
13682 | if (pointtype(tdest) == FREEFACETVERTEX) { |
13683 | setpoint2sh(tdest, sencode(sface)); |
13684 | } |
13685 | break; |
13686 | } |
13687 | } |
13688 | break; |
13689 | } |
13690 | subsegloop.sh = shellfacetraverse(subsegs); |
13691 | } |
13692 | } // if (b->psc) |
13693 | |
13694 | subsegloop.shver = 0; |
13695 | subsegs->traversalinit(); |
13696 | subsegloop.sh = shellfacetraverse(subsegs); |
13697 | while (subsegloop.sh != (shellface *) NULL) { |
13698 | torg = sorg(subsegloop); |
13699 | tdest = sdest(subsegloop); |
13700 | |
13701 | idx = pointmark(torg) - in->firstnumber; |
13702 | // Loop through the set of subfaces containing 'torg'. Get all the |
13703 | // subfaces containing the edge (torg, tdest). Save and order them |
13704 | // in 'sfacelist', the ordering is defined by the right-hand rule |
13705 | // with thumb points from torg to tdest. |
13706 | for (k = idx2faclist[idx]; k < idx2faclist[idx + 1]; k++) { |
13707 | sface = facperverlist[k]; |
13708 | // The face may be deleted if it is a duplicated face. |
13709 | if (sface.sh[3] == NULL) continue; |
13710 | // Search the edge torg->tdest. |
13711 | assert(sorg(sface) == torg); // SELF_CHECK |
13712 | if (sdest(sface) != tdest) { |
13713 | senext2self(sface); |
13714 | sesymself(sface); |
13715 | } |
13716 | if (sdest(sface) != tdest) continue; |
13717 | |
13718 | // Save the face f in facelink. |
13719 | if (flippool->items >= 2) { |
13720 | f1 = facelink; |
13721 | for (m = 0; m < flippool->items - 1; m++) { |
13722 | f2 = f1->nextitem; |
13723 | ori1 = orient3d(torg, tdest, sapex(f1->ss), sapex(f2->ss)); |
13724 | ori2 = orient3d(torg, tdest, sapex(f1->ss), sapex(sface)); |
13725 | if (ori1 > 0) { |
13726 | // apex(f2) is below f1. |
13727 | if (ori2 > 0) { |
13728 | // apex(f) is below f1 (see Fig.1). |
13729 | ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface)); |
13730 | if (ori3 > 0) { |
13731 | // apex(f) is below f2, insert it. |
13732 | break; |
13733 | } else if (ori3 < 0) { |
13734 | // apex(f) is above f2, continue. |
13735 | } else { // ori3 == 0; |
13736 | // f is coplanar and codirection with f2. |
13737 | unifysubfaces(&(f2->ss), &sface); |
13738 | break; |
13739 | } |
13740 | } else if (ori2 < 0) { |
13741 | // apex(f) is above f1 below f2, inset it (see Fig. 2). |
13742 | break; |
13743 | } else { // ori2 == 0; |
13744 | // apex(f) is coplanar with f1 (see Fig. 5). |
13745 | ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface)); |
13746 | if (ori3 > 0) { |
13747 | // apex(f) is below f2, insert it. |
13748 | break; |
13749 | } else { |
13750 | // f is coplanar and codirection with f1. |
13751 | unifysubfaces(&(f1->ss), &sface); |
13752 | break; |
13753 | } |
13754 | } |
13755 | } else if (ori1 < 0) { |
13756 | // apex(f2) is above f1. |
13757 | if (ori2 > 0) { |
13758 | // apex(f) is below f1, continue (see Fig. 3). |
13759 | } else if (ori2 < 0) { |
13760 | // apex(f) is above f1 (see Fig.4). |
13761 | ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface)); |
13762 | if (ori3 > 0) { |
13763 | // apex(f) is below f2, insert it. |
13764 | break; |
13765 | } else if (ori3 < 0) { |
13766 | // apex(f) is above f2, continue. |
13767 | } else { // ori3 == 0; |
13768 | // f is coplanar and codirection with f2. |
13769 | unifysubfaces(&(f2->ss), &sface); |
13770 | break; |
13771 | } |
13772 | } else { // ori2 == 0; |
13773 | // f is coplanar and with f1 (see Fig. 6). |
13774 | ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface)); |
13775 | if (ori3 > 0) { |
13776 | // f is also codirection with f1. |
13777 | unifysubfaces(&(f1->ss), &sface); |
13778 | break; |
13779 | } else { |
13780 | // f is above f2, continue. |
13781 | } |
13782 | } |
13783 | } else { // ori1 == 0; |
13784 | // apex(f2) is coplanar with f1. By assumption, f1 is not |
13785 | // coplanar and codirection with f2. |
13786 | if (ori2 > 0) { |
13787 | // apex(f) is below f1, continue (see Fig. 7). |
13788 | } else if (ori2 < 0) { |
13789 | // apex(f) is above f1, insert it (see Fig. 7). |
13790 | break; |
13791 | } else { // ori2 == 0. |
13792 | // apex(f) is coplanar with f1 (see Fig. 8). |
13793 | // f is either codirection with f1 or is codirection with f2. |
13794 | facenormal(torg, tdest, sapex(f1->ss), n1, 1, NULL); |
13795 | facenormal(torg, tdest, sapex(sface), n2, 1, NULL); |
13796 | if (dot(n1, n2) > 0) { |
13797 | unifysubfaces(&(f1->ss), &sface); |
13798 | } else { |
13799 | unifysubfaces(&(f2->ss), &sface); |
13800 | } |
13801 | break; |
13802 | } |
13803 | } |
13804 | // Go to the next item; |
13805 | f1 = f2; |
13806 | } // for (m = 0; ...) |
13807 | if (sface.sh[3] != NULL) { |
13808 | // Insert sface between f1 and f2. |
13809 | newlinkitem = (badface *) flippool->alloc(); |
13810 | newlinkitem->ss = sface; |
13811 | newlinkitem->nextitem = f1->nextitem; |
13812 | f1->nextitem = newlinkitem; |
13813 | } |
13814 | } else if (flippool->items == 1) { |
13815 | f1 = facelink; |
13816 | // Make sure that f is not coplanar and codirection with f1. |
13817 | ori1 = orient3d(torg, tdest, sapex(f1->ss), sapex(sface)); |
13818 | if (ori1 == 0) { |
13819 | // f is coplanar with f1 (see Fig. 8). |
13820 | facenormal(torg, tdest, sapex(f1->ss), n1, 1, NULL); |
13821 | facenormal(torg, tdest, sapex(sface), n2, 1, NULL); |
13822 | if (dot(n1, n2) > 0) { |
13823 | // The two faces are codirectional as well. |
13824 | unifysubfaces(&(f1->ss), &sface); |
13825 | } |
13826 | } |
13827 | // Add this face to link if it is not deleted. |
13828 | if (sface.sh[3] != NULL) { |
13829 | // Add this face into link. |
13830 | newlinkitem = (badface *) flippool->alloc(); |
13831 | newlinkitem->ss = sface; |
13832 | newlinkitem->nextitem = NULL; |
13833 | f1->nextitem = newlinkitem; |
13834 | } |
13835 | } else { |
13836 | // The first face. |
13837 | newlinkitem = (badface *) flippool->alloc(); |
13838 | newlinkitem->ss = sface; |
13839 | newlinkitem->nextitem = NULL; |
13840 | facelink = newlinkitem; |
13841 | } |
13842 | } // for (k = idx2faclist[idx]; ...) |
13843 | |
13844 | if (b->psc) { |
13845 | // Set Steiner point -to- segment map. |
13846 | if (pointtype(torg) == FREESEGVERTEX) { |
13847 | setpoint2sh(torg, sencode(subsegloop)); |
13848 | } |
13849 | if (pointtype(tdest) == FREESEGVERTEX) { |
13850 | setpoint2sh(tdest, sencode(subsegloop)); |
13851 | } |
13852 | } |
13853 | |
13854 | // Set the connection between this segment and faces containing it, |
13855 | // at the same time, remove redundant segments. |
13856 | f1 = facelink; |
13857 | for (k = 0; k < flippool->items; k++) { |
13858 | sspivot(f1->ss, testseg); |
13859 | // If 'testseg' is not 'subsegloop' and is not dead, it is redundant. |
13860 | if ((testseg.sh != subsegloop.sh) && (testseg.sh[3] != NULL)) { |
13861 | shellfacedealloc(subsegs, testseg.sh); |
13862 | } |
13863 | // Bonds the subface and the segment together. |
13864 | ssbond(f1->ss, subsegloop); |
13865 | f1 = f1->nextitem; |
13866 | } |
13867 | |
13868 | // Create the face ring at the segment. |
13869 | if (flippool->items > 1) { |
13870 | f1 = facelink; |
13871 | for (k = 1; k <= flippool->items; k++) { |
13872 | k < flippool->items ? f2 = f1->nextitem : f2 = facelink; |
13873 | sbond1(f1->ss, f2->ss); |
13874 | f1 = f2; |
13875 | } |
13876 | } |
13877 | |
13878 | // All identified segments has an init marker "0". |
13879 | flippool->restart(); |
13880 | |
13881 | // Are there length constraints? |
13882 | if (b->quality && (in->segmentconstraintlist != (REAL *) NULL)) { |
13883 | int e1, e2; |
13884 | REAL len; |
13885 | for (k = 0; k < in->numberofsegmentconstraints; k++) { |
13886 | e1 = (int) in->segmentconstraintlist[k * 3]; |
13887 | e2 = (int) in->segmentconstraintlist[k * 3 + 1]; |
13888 | if (((pointmark(torg) == e1) && (pointmark(tdest) == e2)) || |
13889 | ((pointmark(torg) == e2) && (pointmark(tdest) == e1))) { |
13890 | len = in->segmentconstraintlist[k * 3 + 2]; |
13891 | setareabound(subsegloop, len); |
13892 | break; |
13893 | } |
13894 | } |
13895 | } |
13896 | |
13897 | subsegloop.sh = shellfacetraverse(subsegs); |
13898 | } |
13899 | |
13900 | delete [] idx2faclist; |
13901 | delete [] facperverlist; |
13902 | } |
13903 | |
13904 | /////////////////////////////////////////////////////////////////////////////// |
13905 | // // |
13906 | // mergefacets() Merge adjacent facets. // |
13907 | // // |
13908 | /////////////////////////////////////////////////////////////////////////////// |
13909 | |
13910 | void tetgenmesh::mergefacets() |
13911 | { |
13912 | face parentsh, neighsh, neineish; |
13913 | face segloop; |
13914 | point pa, pb, pc, pd; |
13915 | REAL ang_tol, ang; |
13916 | int remsegcount; |
13917 | int fidx1, fidx2; |
13918 | int fmrk1, fmrk2; |
13919 | |
13920 | if (b->verbose > 1) { |
13921 | printf(" Merging adjacent facets.\n" ); |
13922 | } |
13923 | |
13924 | // The dihedral angle bound for two different facets. |
13925 | // Set by -p option. Default is 179 degree. |
13926 | ang_tol = b->facet_ang_tol / 180.0 * PI; |
13927 | remsegcount = 0; |
13928 | |
13929 | // Loop all segments, merge adjacent coplanar facets. |
13930 | subsegs->traversalinit(); |
13931 | segloop.sh = shellfacetraverse(subsegs); |
13932 | while (segloop.sh != (shellface *) NULL) { |
13933 | spivot(segloop, parentsh); |
13934 | if (parentsh.sh != NULL) { |
13935 | spivot(parentsh, neighsh); |
13936 | if (neighsh.sh != NULL) { |
13937 | spivot(neighsh, neineish); |
13938 | if (neineish.sh == parentsh.sh) { |
13939 | // Exactly two subfaces at this segment. |
13940 | fidx1 = shellmark(parentsh) - 1; |
13941 | fidx2 = shellmark(neighsh) - 1; |
13942 | // Only merge them if they are in different facet. |
13943 | if (fidx1 != fidx2) { |
13944 | // The two subfaces are not in the same facet. |
13945 | if (in->facetmarkerlist != NULL) { |
13946 | fmrk1 = in->facetmarkerlist[fidx1]; |
13947 | fmrk2 = in->facetmarkerlist[fidx2]; |
13948 | } else { |
13949 | fmrk1 = fmrk2 = 0; |
13950 | } |
13951 | // Only merge them if they have the same boundary marker. |
13952 | if (fmrk1 == fmrk2) { |
13953 | pa = sorg(segloop); |
13954 | pb = sdest(segloop); |
13955 | pc = sapex(parentsh); |
13956 | pd = sapex(neighsh); |
13957 | // Calculate the dihedral angle at the segment [a,b]. |
13958 | ang = facedihedral(pa, pb, pc, pd); |
13959 | if (ang > PI) ang = (2 * PI - ang); |
13960 | if (ang > ang_tol) { |
13961 | remsegcount++; |
13962 | ssdissolve(parentsh); |
13963 | ssdissolve(neighsh); |
13964 | shellfacedealloc(subsegs, segloop.sh); |
13965 | // Add the edge to flip stack. |
13966 | flipshpush(&parentsh); |
13967 | } // if (ang > ang_tol) |
13968 | } // if (fmrk1 == fmrk2) |
13969 | } // if (fidx1 != fidx2) |
13970 | } // if (neineish.sh == parentsh.sh) |
13971 | } |
13972 | } |
13973 | segloop.sh = shellfacetraverse(subsegs); |
13974 | } |
13975 | |
13976 | if (flipstack != NULL) { |
13977 | lawsonflip(); // Recover Delaunayness. |
13978 | } |
13979 | |
13980 | if (b->verbose > 1) { |
13981 | printf(" %d segments are removed.\n" , remsegcount); |
13982 | } |
13983 | } |
13984 | |
13985 | /////////////////////////////////////////////////////////////////////////////// |
13986 | // // |
13987 | // identifypscedges() Identify PSC edges. // |
13988 | // // |
13989 | // The set of PSC edges are provided in the 'in->edgelist'. Each edge should // |
13990 | // also be an edge in the surface mesh. We find the corresponding edges in // |
13991 | // the surface mesh and make them segments of the mesh. // |
13992 | // // |
13993 | // It is possible to give an edge which is not in any facet, i.e., it is a // |
13994 | // dangling edge inside the volume. // |
13995 | // // |
13996 | /////////////////////////////////////////////////////////////////////////////// |
13997 | |
13998 | void tetgenmesh::identifypscedges(point *idx2verlist) |
13999 | { |
14000 | face* shperverlist; |
14001 | int* idx2shlist; |
14002 | face searchsh, neighsh; |
14003 | face segloop, checkseg, newseg; |
14004 | point checkpt, pa = NULL, pb = NULL; |
14005 | int *endpts; |
14006 | int edgemarker; |
14007 | int idx, i, j; |
14008 | |
14009 | int e1, e2; |
14010 | REAL len; |
14011 | |
14012 | if (!b->quiet) { |
14013 | printf("Inserting edges ...\n" ); |
14014 | } |
14015 | |
14016 | // All identified segments have the initial marker '1'. |
14017 | // All segments inserted here should have a marker 'k >= 0'. |
14018 | |
14019 | if (b->psc) { |
14020 | // First mark all segments of the mesh with a marker '-1'. |
14021 | subsegs->traversalinit(); |
14022 | segloop.sh = shellfacetraverse(subsegs); |
14023 | while (segloop.sh != NULL) { |
14024 | setshellmark(segloop, -1); |
14025 | segloop.sh = shellfacetraverse(subsegs); |
14026 | } |
14027 | } |
14028 | |
14029 | // Construct a map from points to subfaces. |
14030 | makepoint2submap(subfaces, idx2shlist, shperverlist); |
14031 | |
14032 | // Process the set of PSC edges. |
14033 | for (i = 0; i < in->numberofedges; i++) { |
14034 | endpts = &(in->edgelist[(i << 1)]); |
14035 | edgemarker = in->edgemarkerlist ? in->edgemarkerlist[i] : 0; |
14036 | |
14037 | // Find a face contains the edge. |
14038 | newseg.sh = NULL; |
14039 | searchsh.sh = NULL; |
14040 | idx = endpts[0] - in->firstnumber; |
14041 | for (j = idx2shlist[idx]; j < idx2shlist[idx + 1]; j++) { |
14042 | checkpt = sdest(shperverlist[j]); |
14043 | if (pointmark(checkpt) == endpts[1]) { |
14044 | searchsh = shperverlist[j]; |
14045 | break; // Found. |
14046 | } else { |
14047 | checkpt = sapex(shperverlist[j]); |
14048 | if (pointmark(checkpt) == endpts[1]) { |
14049 | senext2(shperverlist[j], searchsh); |
14050 | sesymself(searchsh); |
14051 | break; |
14052 | } |
14053 | } |
14054 | } // j |
14055 | |
14056 | if (searchsh.sh != NULL) { |
14057 | // Check if this edge is already a segment of the mesh. |
14058 | sspivot(searchsh, checkseg); |
14059 | if (checkseg.sh != NULL) { |
14060 | // This segment already exist. |
14061 | newseg = checkseg; |
14062 | } else { |
14063 | // Create a new segment at this edge. |
14064 | pa = sorg(searchsh); |
14065 | pb = sdest(searchsh); |
14066 | makeshellface(subsegs, &newseg); |
14067 | setshvertices(newseg, pa, pb, NULL); |
14068 | ssbond(searchsh, newseg); |
14069 | spivot(searchsh, neighsh); |
14070 | if (neighsh.sh != NULL) { |
14071 | ssbond(neighsh, newseg); |
14072 | } |
14073 | if (b->psc) { |
14074 | if (pointtype(pa) == FREESEGVERTEX) { |
14075 | setpoint2sh(pa, sencode(newseg)); |
14076 | } |
14077 | if (pointtype(pb) == FREESEGVERTEX) { |
14078 | setpoint2sh(pb, sencode(newseg)); |
14079 | } |
14080 | } |
14081 | } |
14082 | } else { |
14083 | // It is a dangling segment (not belong to any facets). |
14084 | // Get the two endpoints of this segment. |
14085 | pa = idx2verlist[endpts[0]]; |
14086 | pb = idx2verlist[endpts[1]]; |
14087 | // Check if segment [a,b] already exists. |
14088 | // TODO: Change the brute-force search. Slow! |
14089 | point *ppt; |
14090 | subsegs->traversalinit(); |
14091 | segloop.sh = shellfacetraverse(subsegs); |
14092 | while (segloop.sh != NULL) { |
14093 | ppt = (point *) &(segloop.sh[3]); |
14094 | if (((ppt[0] == pa) && (ppt[1] == pb)) || |
14095 | ((ppt[0] == pb) && (ppt[1] == pa))) { |
14096 | // Found! |
14097 | newseg = segloop; |
14098 | break; |
14099 | } |
14100 | segloop.sh = shellfacetraverse(subsegs); |
14101 | } |
14102 | if (newseg.sh == NULL) { |
14103 | makeshellface(subsegs, &newseg); |
14104 | setshvertices(newseg, pa, pb, NULL); |
14105 | if (b->psc) { |
14106 | if (pointtype(pa) == FREESEGVERTEX) { |
14107 | setpoint2sh(pa, sencode(newseg)); |
14108 | } |
14109 | if (pointtype(pb) == FREESEGVERTEX) { |
14110 | setpoint2sh(pb, sencode(newseg)); |
14111 | } |
14112 | } |
14113 | } |
14114 | } |
14115 | |
14116 | setshellmark(newseg, edgemarker); |
14117 | |
14118 | if (b->quality && (in->segmentconstraintlist != (REAL *) NULL)) { |
14119 | for (i = 0; i < in->numberofsegmentconstraints; i++) { |
14120 | e1 = (int) in->segmentconstraintlist[i * 3]; |
14121 | e2 = (int) in->segmentconstraintlist[i * 3 + 1]; |
14122 | if (((pointmark(pa) == e1) && (pointmark(pb) == e2)) || |
14123 | ((pointmark(pa) == e2) && (pointmark(pb) == e1))) { |
14124 | len = in->segmentconstraintlist[i * 3 + 2]; |
14125 | setareabound(newseg, len); |
14126 | break; |
14127 | } |
14128 | } |
14129 | } |
14130 | } // i |
14131 | |
14132 | |
14133 | delete [] shperverlist; |
14134 | delete [] idx2shlist; |
14135 | |
14136 | if (b->psc) { |
14137 | // Removing all segments with a marker '-1'. |
14138 | subsegs->traversalinit(); |
14139 | segloop.sh = shellfacetraverse(subsegs); |
14140 | while (segloop.sh != NULL) { |
14141 | if (shellmark(segloop) == -1) { |
14142 | shellfacedealloc(subsegs, segloop.sh); |
14143 | } |
14144 | segloop.sh = shellfacetraverse(subsegs); |
14145 | } |
14146 | |
14147 | // Connecting subsegments at Steiner points. |
14148 | face seg1, seg2; |
14149 | // Re-use 'idx2shlist' and 'shperverlist'. |
14150 | makepoint2submap(subsegs, idx2shlist, shperverlist); |
14151 | |
14152 | points->traversalinit(); |
14153 | pa = pointtraverse(); |
14154 | while (pa != NULL) { |
14155 | if (pointtype(pa) == FREESEGVERTEX) { |
14156 | idx = pointmark(pa) - in->firstnumber; |
14157 | // There must be only two segments containing this vertex. |
14158 | assert((idx2shlist[idx + 1] - idx2shlist[idx]) == 2); |
14159 | i = idx2shlist[idx]; |
14160 | seg1 = shperverlist[i]; |
14161 | seg2 = shperverlist[i+1]; |
14162 | senextself(seg1); |
14163 | senextself(seg2); |
14164 | sbond(seg1, seg2); |
14165 | } |
14166 | pa = pointtraverse(); |
14167 | } |
14168 | |
14169 | delete [] shperverlist; |
14170 | delete [] idx2shlist; |
14171 | } |
14172 | } |
14173 | |
14174 | /////////////////////////////////////////////////////////////////////////////// |
14175 | // // |
14176 | // meshsurface() Create a surface mesh of the input PLC. // |
14177 | // // |
14178 | /////////////////////////////////////////////////////////////////////////////// |
14179 | |
14180 | void tetgenmesh::meshsurface() |
14181 | { |
14182 | arraypool *ptlist, *conlist; |
14183 | point *idx2verlist; |
14184 | point tstart, tend, *pnewpt, *cons; |
14185 | tetgenio::facet *f; |
14186 | tetgenio::polygon *p; |
14187 | int end1, end2; |
14188 | int shmark, i, j; |
14189 | |
14190 | if (!b->quiet) { |
14191 | printf("Creating surface mesh ...\n" ); |
14192 | } |
14193 | |
14194 | // Create a map from indices to points. |
14195 | makeindex2pointmap(idx2verlist); |
14196 | |
14197 | // Initialize arrays (block size: 2^8 = 256). |
14198 | ptlist = new arraypool(sizeof(point *), 8); |
14199 | conlist = new arraypool(2 * sizeof(point *), 8); |
14200 | |
14201 | // Loop the facet list, triangulate each facet. |
14202 | for (shmark = 1; shmark <= in->numberoffacets; shmark++) { |
14203 | |
14204 | // Get a facet F. |
14205 | f = &in->facetlist[shmark - 1]; |
14206 | |
14207 | // Process the duplicated points first, they are marked with type |
14208 | // DUPLICATEDVERTEX. If p and q are duplicated, and p'index > q's, |
14209 | // then p is substituted by q. |
14210 | if (dupverts > 0l) { |
14211 | // Loop all polygons of this facet. |
14212 | for (i = 0; i < f->numberofpolygons; i++) { |
14213 | p = &(f->polygonlist[i]); |
14214 | // Loop other vertices of this polygon. |
14215 | for (j = 0; j < p->numberofvertices; j++) { |
14216 | end1 = p->vertexlist[j]; |
14217 | tstart = idx2verlist[end1]; |
14218 | if (pointtype(tstart) == DUPLICATEDVERTEX) { |
14219 | // Reset the index of vertex-j. |
14220 | tend = point2ppt(tstart); |
14221 | end2 = pointmark(tend); |
14222 | p->vertexlist[j] = end2; |
14223 | } |
14224 | } |
14225 | } |
14226 | } |
14227 | |
14228 | // Loop polygons of F, get the set of vertices and segments. |
14229 | for (i = 0; i < f->numberofpolygons; i++) { |
14230 | // Get a polygon. |
14231 | p = &(f->polygonlist[i]); |
14232 | // Get the first vertex. |
14233 | end1 = p->vertexlist[0]; |
14234 | if ((end1 < in->firstnumber) || |
14235 | (end1 >= in->firstnumber + in->numberofpoints)) { |
14236 | if (!b->quiet) { |
14237 | printf("Warning: Invalid the 1st vertex %d of polygon" , end1); |
14238 | printf(" %d in facet %d.\n" , i + 1, shmark); |
14239 | } |
14240 | continue; // Skip this polygon. |
14241 | } |
14242 | tstart = idx2verlist[end1]; |
14243 | // Add tstart to V if it haven't been added yet. |
14244 | if (!pinfected(tstart)) { |
14245 | pinfect(tstart); |
14246 | ptlist->newindex((void **) &pnewpt); |
14247 | *pnewpt = tstart; |
14248 | } |
14249 | // Loop other vertices of this polygon. |
14250 | for (j = 1; j <= p->numberofvertices; j++) { |
14251 | // get a vertex. |
14252 | if (j < p->numberofvertices) { |
14253 | end2 = p->vertexlist[j]; |
14254 | } else { |
14255 | end2 = p->vertexlist[0]; // Form a loop from last to first. |
14256 | } |
14257 | if ((end2 < in->firstnumber) || |
14258 | (end2 >= in->firstnumber + in->numberofpoints)) { |
14259 | if (!b->quiet) { |
14260 | printf("Warning: Invalid vertex %d in polygon %d" , end2, i + 1); |
14261 | printf(" in facet %d.\n" , shmark); |
14262 | } |
14263 | } else { |
14264 | if (end1 != end2) { |
14265 | // 'end1' and 'end2' form a segment. |
14266 | tend = idx2verlist[end2]; |
14267 | // Add tstart to V if it haven't been added yet. |
14268 | if (!pinfected(tend)) { |
14269 | pinfect(tend); |
14270 | ptlist->newindex((void **) &pnewpt); |
14271 | *pnewpt = tend; |
14272 | } |
14273 | // Save the segment in S (conlist). |
14274 | conlist->newindex((void **) &cons); |
14275 | cons[0] = tstart; |
14276 | cons[1] = tend; |
14277 | // Set the start for next continuous segment. |
14278 | end1 = end2; |
14279 | tstart = tend; |
14280 | } else { |
14281 | // Two identical vertices mean an isolated vertex of F. |
14282 | if (p->numberofvertices > 2) { |
14283 | // This may be an error in the input, anyway, we can continue |
14284 | // by simply skipping this segment. |
14285 | if (!b->quiet) { |
14286 | printf("Warning: Polygon %d has two identical verts" , i + 1); |
14287 | printf(" in facet %d.\n" , shmark); |
14288 | } |
14289 | } |
14290 | // Ignore this vertex. |
14291 | } |
14292 | } |
14293 | // Is the polygon degenerate (a segment or a vertex)? |
14294 | if (p->numberofvertices == 2) break; |
14295 | } |
14296 | } |
14297 | // Unmark vertices. |
14298 | for (i = 0; i < ptlist->objects; i++) { |
14299 | pnewpt = (point *) fastlookup(ptlist, i); |
14300 | puninfect(*pnewpt); |
14301 | } |
14302 | |
14303 | // Triangulate F into a CDT. |
14304 | triangulate(shmark, ptlist, conlist, f->numberofholes, f->holelist); |
14305 | |
14306 | // Clear working lists. |
14307 | ptlist->restart(); |
14308 | conlist->restart(); |
14309 | } |
14310 | |
14311 | if (!b->diagnose) { |
14312 | // Remove redundant segments and build the face links. |
14313 | unifysegments(); |
14314 | if (!b->psc && !b->nomergefacet && !b->nobisect) { |
14315 | // Merge adjacent coplanar facets. |
14316 | mergefacets(); |
14317 | } |
14318 | if (in->numberofedges > 0) { // if (b->psc) |
14319 | // There are segments specified by the user. Read and create them. |
14320 | identifypscedges(idx2verlist); |
14321 | } |
14322 | if (!b->psc) { |
14323 | // Mark all segment vertices to be RIDGEVERTEX. |
14324 | face segloop; |
14325 | point *ppt; |
14326 | subsegs->traversalinit(); |
14327 | segloop.sh = shellfacetraverse(subsegs); |
14328 | while (segloop.sh != NULL) { |
14329 | ppt = (point *) &(segloop.sh[3]); |
14330 | setpointtype(ppt[0], RIDGEVERTEX); |
14331 | setpointtype(ppt[1], RIDGEVERTEX); |
14332 | segloop.sh = shellfacetraverse(subsegs); |
14333 | } |
14334 | } |
14335 | } |
14336 | |
14337 | if (b->object == tetgenbehavior::STL) { |
14338 | // Remove redundant vertices (for .stl input mesh). |
14339 | jettisonnodes(); |
14340 | } |
14341 | |
14342 | if (b->verbose) { |
14343 | printf(" %ld (%ld) subfaces (segments).\n" , subfaces->items, |
14344 | subsegs->items); |
14345 | } |
14346 | |
14347 | // The total number of iunput segments. |
14348 | insegments = subsegs->items; |
14349 | |
14350 | delete [] idx2verlist; |
14351 | delete ptlist; |
14352 | delete conlist; |
14353 | } |
14354 | |
14355 | /////////////////////////////////////////////////////////////////////////////// |
14356 | // // |
14357 | // interecursive() Recursively do intersection test on a set of triangles.// |
14358 | // // |
14359 | // Recursively split the set 'subfacearray' of subfaces into two sets using // |
14360 | // a cut plane parallel to x-, or, y-, or z-axis. The split criteria are // |
14361 | // follows. Assume the cut plane is H, and H+ denotes the left halfspace of // |
14362 | // H, and H- denotes the right halfspace of H; and s be a subface: // |
14363 | // // |
14364 | // (1) If all points of s lie at H+, put it into left array; // |
14365 | // (2) If all points of s lie at H-, put it into right array; // |
14366 | // (3) If some points of s lie at H+ and some of lie at H-, or some // |
14367 | // points lie on H, put it into both arraies. // |
14368 | // // |
14369 | // Partitions by x-axis if axis == '0'; by y-axis if axis == '1'; by z-axis // |
14370 | // if axis == '2'. If current cut plane is parallel to the x-axis, the next // |
14371 | // one will be parallel to y-axis, and the next one after the next is z-axis,// |
14372 | // and then alternately return back to x-axis. // |
14373 | // // |
14374 | // Stop splitting when the number of triangles of the input array is not // |
14375 | // decreased anymore. Do tests on the current set. // |
14376 | // // |
14377 | /////////////////////////////////////////////////////////////////////////////// |
14378 | |
14379 | void tetgenmesh::interecursive(shellface** subfacearray, int arraysize, |
14380 | int axis, REAL bxmin, REAL bxmax, REAL bymin, |
14381 | REAL bymax, REAL bzmin, REAL bzmax, |
14382 | int* internum) |
14383 | { |
14384 | shellface **leftarray, **rightarray; |
14385 | face sface1, sface2; |
14386 | point p1, p2, p3; |
14387 | point p4, p5, p6; |
14388 | enum interresult intersect; |
14389 | REAL split; |
14390 | bool toleft, toright; |
14391 | int leftsize, rightsize; |
14392 | int i, j; |
14393 | |
14394 | if (b->verbose > 2) { |
14395 | printf(" Recur %d faces. Bbox (%g, %g, %g),(%g, %g, %g). %s-axis\n" , |
14396 | arraysize, bxmin, bymin, bzmin, bxmax, bymax, bzmax, |
14397 | axis == 0 ? "x" : (axis == 1 ? "y" : "z" )); |
14398 | } |
14399 | |
14400 | leftarray = new shellface*[arraysize]; |
14401 | if (leftarray == NULL) { |
14402 | terminatetetgen(this, 1); |
14403 | } |
14404 | rightarray = new shellface*[arraysize]; |
14405 | if (rightarray == NULL) { |
14406 | terminatetetgen(this, 1); |
14407 | } |
14408 | leftsize = rightsize = 0; |
14409 | |
14410 | if (axis == 0) { |
14411 | // Split along x-axis. |
14412 | split = 0.5 * (bxmin + bxmax); |
14413 | } else if (axis == 1) { |
14414 | // Split along y-axis. |
14415 | split = 0.5 * (bymin + bymax); |
14416 | } else { |
14417 | // Split along z-axis. |
14418 | split = 0.5 * (bzmin + bzmax); |
14419 | } |
14420 | |
14421 | for (i = 0; i < arraysize; i++) { |
14422 | sface1.sh = subfacearray[i]; |
14423 | p1 = (point) sface1.sh[3]; |
14424 | p2 = (point) sface1.sh[4]; |
14425 | p3 = (point) sface1.sh[5]; |
14426 | toleft = toright = false; |
14427 | if (p1[axis] < split) { |
14428 | toleft = true; |
14429 | if (p2[axis] >= split || p3[axis] >= split) { |
14430 | toright = true; |
14431 | } |
14432 | } else if (p1[axis] > split) { |
14433 | toright = true; |
14434 | if (p2[axis] <= split || p3[axis] <= split) { |
14435 | toleft = true; |
14436 | } |
14437 | } else { |
14438 | // p1[axis] == split; |
14439 | toleft = true; |
14440 | toright = true; |
14441 | } |
14442 | // At least one is true; |
14443 | assert(!(toleft == false && toright == false)); |
14444 | if (toleft) { |
14445 | leftarray[leftsize] = sface1.sh; |
14446 | leftsize++; |
14447 | } |
14448 | if (toright) { |
14449 | rightarray[rightsize] = sface1.sh; |
14450 | rightsize++; |
14451 | } |
14452 | } |
14453 | |
14454 | if (leftsize < arraysize && rightsize < arraysize) { |
14455 | // Continue to partition the input set. Now 'subfacearray' has been |
14456 | // split into two sets, it's memory can be freed. 'leftarray' and |
14457 | // 'rightarray' will be freed in the next recursive (after they're |
14458 | // partitioned again or performing tests). |
14459 | delete [] subfacearray; |
14460 | // Continue to split these two sets. |
14461 | if (axis == 0) { |
14462 | interecursive(leftarray, leftsize, 1, bxmin, split, bymin, bymax, |
14463 | bzmin, bzmax, internum); |
14464 | interecursive(rightarray, rightsize, 1, split, bxmax, bymin, bymax, |
14465 | bzmin, bzmax, internum); |
14466 | } else if (axis == 1) { |
14467 | interecursive(leftarray, leftsize, 2, bxmin, bxmax, bymin, split, |
14468 | bzmin, bzmax, internum); |
14469 | interecursive(rightarray, rightsize, 2, bxmin, bxmax, split, bymax, |
14470 | bzmin, bzmax, internum); |
14471 | } else { |
14472 | interecursive(leftarray, leftsize, 0, bxmin, bxmax, bymin, bymax, |
14473 | bzmin, split, internum); |
14474 | interecursive(rightarray, rightsize, 0, bxmin, bxmax, bymin, bymax, |
14475 | split, bzmax, internum); |
14476 | } |
14477 | } else { |
14478 | if (b->verbose > 1) { |
14479 | printf(" Checking intersecting faces.\n" ); |
14480 | } |
14481 | // Perform a brute-force compare on the set. |
14482 | for (i = 0; i < arraysize; i++) { |
14483 | sface1.sh = subfacearray[i]; |
14484 | p1 = (point) sface1.sh[3]; |
14485 | p2 = (point) sface1.sh[4]; |
14486 | p3 = (point) sface1.sh[5]; |
14487 | for (j = i + 1; j < arraysize; j++) { |
14488 | sface2.sh = subfacearray[j]; |
14489 | p4 = (point) sface2.sh[3]; |
14490 | p5 = (point) sface2.sh[4]; |
14491 | p6 = (point) sface2.sh[5]; |
14492 | intersect = (enum interresult) tri_tri_inter(p1, p2, p3, p4, p5, p6); |
14493 | if (intersect == INTERSECT || intersect == SHAREFACE) { |
14494 | if (!b->quiet) { |
14495 | if (intersect == INTERSECT) { |
14496 | printf(" Facet #%d intersects facet #%d at triangles:\n" , |
14497 | shellmark(sface1), shellmark(sface2)); |
14498 | printf(" (%4d, %4d, %4d) and (%4d, %4d, %4d)\n" , |
14499 | pointmark(p1), pointmark(p2), pointmark(p3), |
14500 | pointmark(p4), pointmark(p5), pointmark(p6)); |
14501 | } else { |
14502 | printf(" Facet #%d duplicates facet #%d at triangle:\n" , |
14503 | shellmark(sface1), shellmark(sface2)); |
14504 | printf(" (%4d, %4d, %4d) and (%4d, %4d, %4d)\n" , |
14505 | pointmark(p1), pointmark(p2), pointmark(p3), |
14506 | pointmark(p4), pointmark(p5), pointmark(p6)); |
14507 | } |
14508 | } |
14509 | // Increase the number of intersecting pairs. |
14510 | (*internum)++; |
14511 | // Infect these two faces (although they may already be infected). |
14512 | sinfect(sface1); |
14513 | sinfect(sface2); |
14514 | } |
14515 | } |
14516 | } |
14517 | // Don't forget to free all three arrays. No further partition. |
14518 | delete [] leftarray; |
14519 | delete [] rightarray; |
14520 | delete [] subfacearray; |
14521 | } |
14522 | } |
14523 | |
14524 | /////////////////////////////////////////////////////////////////////////////// |
14525 | // // |
14526 | // detectinterfaces() Detect intersecting triangles. // |
14527 | // // |
14528 | // Given a set of triangles, find the pairs of intersecting triangles from // |
14529 | // them. Here the set of triangles is in 'subfaces' which is a surface mesh // |
14530 | // of a PLC (.poly or .smesh). // |
14531 | // // |
14532 | // To detect whether two triangles are intersecting is done by the routine // |
14533 | // 'tri_tri_inter()'. The algorithm for the test is very simple and stable. // |
14534 | // It is based on geometric orientation test which uses exact arithmetics. // |
14535 | // // |
14536 | // Use divide-and-conquer algorithm for reducing the number of intersection // |
14537 | // tests. Start from the bounding box of the input point set, recursively // |
14538 | // partition the box into smaller boxes, until the number of triangles in a // |
14539 | // box is not decreased anymore. Then perform triangle-triangle tests on the // |
14540 | // remaining set of triangles. The memory allocated in the input set is // |
14541 | // freed immediately after it has been partitioned into two arrays. So it // |
14542 | // can be re-used for the consequent partitions. // |
14543 | // // |
14544 | // On return, the pool 'subfaces' will be cleared, and only the intersecting // |
14545 | // triangles remain for output (to a .face file). // |
14546 | // // |
14547 | /////////////////////////////////////////////////////////////////////////////// |
14548 | |
14549 | void tetgenmesh::detectinterfaces() |
14550 | { |
14551 | shellface **subfacearray; |
14552 | face shloop; |
14553 | int internum; |
14554 | int i; |
14555 | |
14556 | if (!b->quiet) { |
14557 | printf("Detecting self-intersecting facets...\n" ); |
14558 | } |
14559 | |
14560 | // Construct a map from indices to subfaces; |
14561 | subfacearray = new shellface*[subfaces->items]; |
14562 | subfaces->traversalinit(); |
14563 | shloop.sh = shellfacetraverse(subfaces); |
14564 | i = 0; |
14565 | while (shloop.sh != (shellface *) NULL) { |
14566 | subfacearray[i] = shloop.sh; |
14567 | shloop.sh = shellfacetraverse(subfaces); |
14568 | i++; |
14569 | } |
14570 | |
14571 | internum = 0; |
14572 | // Recursively split the set of triangles into two sets using a cut plane |
14573 | // parallel to x-, or, y-, or z-axis. Stop splitting when the number |
14574 | // of subfaces is not decreasing anymore. Do tests on the current set. |
14575 | interecursive(subfacearray, subfaces->items, 0, xmin, xmax, ymin, ymax, |
14576 | zmin, zmax, &internum); |
14577 | |
14578 | if (!b->quiet) { |
14579 | if (internum > 0) { |
14580 | printf("\n!! Found %d pairs of faces are intersecting.\n\n" , internum); |
14581 | } else { |
14582 | printf("\nNo faces are intersecting.\n\n" ); |
14583 | } |
14584 | } |
14585 | |
14586 | if (internum > 0) { |
14587 | // Traverse all subfaces, deallocate those have not been infected (they |
14588 | // are not intersecting faces). Uninfect those have been infected. |
14589 | // After this loop, only intersecting faces remain. |
14590 | subfaces->traversalinit(); |
14591 | shloop.sh = shellfacetraverse(subfaces); |
14592 | while (shloop.sh != (shellface *) NULL) { |
14593 | if (sinfected(shloop)) { |
14594 | suninfect(shloop); |
14595 | } else { |
14596 | shellfacedealloc(subfaces, shloop.sh); |
14597 | } |
14598 | shloop.sh = shellfacetraverse(subfaces); |
14599 | } |
14600 | } else { |
14601 | // Deallocate all subfaces. |
14602 | subfaces->restart(); |
14603 | } |
14604 | } |
14605 | |
14606 | //// //// |
14607 | //// //// |
14608 | //// surface_cxx ////////////////////////////////////////////////////////////// |
14609 | |
14610 | //// constrained_cxx ////////////////////////////////////////////////////////// |
14611 | //// //// |
14612 | //// //// |
14613 | |
14614 | /////////////////////////////////////////////////////////////////////////////// |
14615 | // // |
14616 | // makesegmentendpointsmap() Create a map from a segment to its endpoints.// |
14617 | // // |
14618 | // The map is saved in the array 'segmentendpointslist'. The length of this // |
14619 | // array is twice the number of segments. Each segment is assigned a unique // |
14620 | // index (starting from 0). // |
14621 | // // |
14622 | /////////////////////////////////////////////////////////////////////////////// |
14623 | |
14624 | void tetgenmesh::makesegmentendpointsmap() |
14625 | { |
14626 | arraypool *segptlist; |
14627 | face segloop, prevseg, nextseg; |
14628 | point eorg, edest, *parypt; |
14629 | int segindex = 0, idx = 0; |
14630 | int i; |
14631 | |
14632 | if (b->verbose > 0) { |
14633 | printf(" Creating the segment-endpoints map.\n" ); |
14634 | } |
14635 | |
14636 | segptlist = new arraypool(2 * sizeof(point), 10); |
14637 | |
14638 | // A segment s may have been split into many subsegments. Operate the one |
14639 | // which contains the origin of s. Then mark the rest of subsegments. |
14640 | subsegs->traversalinit(); |
14641 | segloop.sh = shellfacetraverse(subsegs); |
14642 | segloop.shver = 0; |
14643 | while (segloop.sh != NULL) { |
14644 | senext2(segloop, prevseg); |
14645 | spivotself(prevseg); |
14646 | if (prevseg.sh == NULL) { |
14647 | eorg = sorg(segloop); |
14648 | edest = sdest(segloop); |
14649 | setfacetindex(segloop, segindex); |
14650 | senext(segloop, nextseg); |
14651 | spivotself(nextseg); |
14652 | while (nextseg.sh != NULL) { |
14653 | setfacetindex(nextseg, segindex); |
14654 | nextseg.shver = 0; |
14655 | if (sorg(nextseg) != edest) sesymself(nextseg); |
14656 | assert(sorg(nextseg) == edest); |
14657 | edest = sdest(nextseg); |
14658 | // Go the next connected subsegment at edest. |
14659 | senextself(nextseg); |
14660 | spivotself(nextseg); |
14661 | } |
14662 | segptlist->newindex((void **) &parypt); |
14663 | parypt[0] = eorg; |
14664 | parypt[1] = edest; |
14665 | segindex++; |
14666 | } |
14667 | segloop.sh = shellfacetraverse(subsegs); |
14668 | } |
14669 | |
14670 | if (b->verbose) { |
14671 | printf(" Found %ld segments.\n" , segptlist->objects); |
14672 | } |
14673 | |
14674 | segmentendpointslist = new point[segptlist->objects * 2]; |
14675 | |
14676 | totalworkmemory += (segptlist->objects * 2) * sizeof(point *); |
14677 | |
14678 | for (i = 0; i < segptlist->objects; i++) { |
14679 | parypt = (point *) fastlookup(segptlist, i); |
14680 | segmentendpointslist[idx++] = parypt[0]; |
14681 | segmentendpointslist[idx++] = parypt[1]; |
14682 | } |
14683 | |
14684 | delete segptlist; |
14685 | } |
14686 | |
14687 | |
14688 | /////////////////////////////////////////////////////////////////////////////// |
14689 | // // |
14690 | // finddirection() Find the tet on the path from one point to another. // |
14691 | // // |
14692 | // The path starts from 'searchtet''s origin and ends at 'endpt'. On finish, // |
14693 | // 'searchtet' contains a tet on the path, its origin does not change. // |
14694 | // // |
14695 | // The return value indicates one of the following cases (let 'searchtet' be // |
14696 | // abcd, a is the origin of the path): // |
14697 | // - ACROSSVERT, edge ab is collinear with the path; // |
14698 | // - ACROSSEDGE, edge bc intersects with the path; // |
14699 | // - ACROSSFACE, face bcd intersects with the path. // |
14700 | // // |
14701 | // WARNING: This routine is designed for convex triangulations, and will not // |
14702 | // generally work after the holes and concavities have been carved. // |
14703 | // // |
14704 | /////////////////////////////////////////////////////////////////////////////// |
14705 | |
14706 | enum tetgenmesh::interresult |
14707 | tetgenmesh::finddirection(triface* searchtet, point endpt) |
14708 | { |
14709 | triface neightet; |
14710 | point pa, pb, pc, pd; |
14711 | enum {HMOVE, RMOVE, LMOVE} nextmove; |
14712 | REAL hori, rori, lori; |
14713 | int t1ver; |
14714 | int s; |
14715 | |
14716 | // The origin is fixed. |
14717 | pa = org(*searchtet); |
14718 | if ((point) searchtet->tet[7] == dummypoint) { |
14719 | // A hull tet. Choose the neighbor of its base face. |
14720 | decode(searchtet->tet[3], *searchtet); |
14721 | // Reset the origin to be pa. |
14722 | if ((point) searchtet->tet[4] == pa) { |
14723 | searchtet->ver = 11; |
14724 | } else if ((point) searchtet->tet[5] == pa) { |
14725 | searchtet->ver = 3; |
14726 | } else if ((point) searchtet->tet[6] == pa) { |
14727 | searchtet->ver = 7; |
14728 | } else { |
14729 | assert((point) searchtet->tet[7] == pa); |
14730 | searchtet->ver = 0; |
14731 | } |
14732 | } |
14733 | |
14734 | pb = dest(*searchtet); |
14735 | // Check whether the destination or apex is 'endpt'. |
14736 | if (pb == endpt) { |
14737 | // pa->pb is the search edge. |
14738 | return ACROSSVERT; |
14739 | } |
14740 | |
14741 | pc = apex(*searchtet); |
14742 | if (pc == endpt) { |
14743 | // pa->pc is the search edge. |
14744 | eprevesymself(*searchtet); |
14745 | return ACROSSVERT; |
14746 | } |
14747 | |
14748 | // Walk through tets around pa until the right one is found. |
14749 | while (1) { |
14750 | |
14751 | pd = oppo(*searchtet); |
14752 | // Check whether the opposite vertex is 'endpt'. |
14753 | if (pd == endpt) { |
14754 | // pa->pd is the search edge. |
14755 | esymself(*searchtet); |
14756 | enextself(*searchtet); |
14757 | return ACROSSVERT; |
14758 | } |
14759 | // Check if we have entered outside of the domain. |
14760 | if (pd == dummypoint) { |
14761 | // This is possible when the mesh is non-convex. |
14762 | assert(nonconvex); |
14763 | return ACROSSSUB; // Hit a bounday. |
14764 | } |
14765 | |
14766 | // Now assume that the base face abc coincides with the horizon plane, |
14767 | // and d lies above the horizon. The search point 'endpt' may lie |
14768 | // above or below the horizon. We test the orientations of 'endpt' |
14769 | // with respect to three planes: abc (horizon), bad (right plane), |
14770 | // and acd (left plane). |
14771 | hori = orient3d(pa, pb, pc, endpt); |
14772 | rori = orient3d(pb, pa, pd, endpt); |
14773 | lori = orient3d(pa, pc, pd, endpt); |
14774 | |
14775 | // Now decide the tet to move. It is possible there are more than one |
14776 | // tets are viable moves. Is so, randomly choose one. |
14777 | if (hori > 0) { |
14778 | if (rori > 0) { |
14779 | if (lori > 0) { |
14780 | // Any of the three neighbors is a viable move. |
14781 | s = randomnation(3); |
14782 | if (s == 0) { |
14783 | nextmove = HMOVE; |
14784 | } else if (s == 1) { |
14785 | nextmove = RMOVE; |
14786 | } else { |
14787 | nextmove = LMOVE; |
14788 | } |
14789 | } else { |
14790 | // Two tets, below horizon and below right, are viable. |
14791 | //s = randomnation(2); |
14792 | if (randomnation(2)) { |
14793 | nextmove = HMOVE; |
14794 | } else { |
14795 | nextmove = RMOVE; |
14796 | } |
14797 | } |
14798 | } else { |
14799 | if (lori > 0) { |
14800 | // Two tets, below horizon and below left, are viable. |
14801 | //s = randomnation(2); |
14802 | if (randomnation(2)) { |
14803 | nextmove = HMOVE; |
14804 | } else { |
14805 | nextmove = LMOVE; |
14806 | } |
14807 | } else { |
14808 | // The tet below horizon is chosen. |
14809 | nextmove = HMOVE; |
14810 | } |
14811 | } |
14812 | } else { |
14813 | if (rori > 0) { |
14814 | if (lori > 0) { |
14815 | // Two tets, below right and below left, are viable. |
14816 | //s = randomnation(2); |
14817 | if (randomnation(2)) { |
14818 | nextmove = RMOVE; |
14819 | } else { |
14820 | nextmove = LMOVE; |
14821 | } |
14822 | } else { |
14823 | // The tet below right is chosen. |
14824 | nextmove = RMOVE; |
14825 | } |
14826 | } else { |
14827 | if (lori > 0) { |
14828 | // The tet below left is chosen. |
14829 | nextmove = LMOVE; |
14830 | } else { |
14831 | // 'endpt' lies either on the plane(s) or across face bcd. |
14832 | if (hori == 0) { |
14833 | if (rori == 0) { |
14834 | // pa->'endpt' is COLLINEAR with pa->pb. |
14835 | return ACROSSVERT; |
14836 | } |
14837 | if (lori == 0) { |
14838 | // pa->'endpt' is COLLINEAR with pa->pc. |
14839 | eprevesymself(*searchtet); // // [a,c,d] |
14840 | return ACROSSVERT; |
14841 | } |
14842 | // pa->'endpt' crosses the edge pb->pc. |
14843 | return ACROSSEDGE; |
14844 | } |
14845 | if (rori == 0) { |
14846 | if (lori == 0) { |
14847 | // pa->'endpt' is COLLINEAR with pa->pd. |
14848 | esymself(*searchtet); // face bad. |
14849 | enextself(*searchtet); // face [a,d,b] |
14850 | return ACROSSVERT; |
14851 | } |
14852 | // pa->'endpt' crosses the edge pb->pd. |
14853 | esymself(*searchtet); // face bad. |
14854 | enextself(*searchtet); // face adb |
14855 | return ACROSSEDGE; |
14856 | } |
14857 | if (lori == 0) { |
14858 | // pa->'endpt' crosses the edge pc->pd. |
14859 | eprevesymself(*searchtet); // [a,c,d] |
14860 | return ACROSSEDGE; |
14861 | } |
14862 | // pa->'endpt' crosses the face bcd. |
14863 | return ACROSSFACE; |
14864 | } |
14865 | } |
14866 | } |
14867 | |
14868 | // Move to the next tet, fix pa as its origin. |
14869 | if (nextmove == RMOVE) { |
14870 | fnextself(*searchtet); |
14871 | } else if (nextmove == LMOVE) { |
14872 | eprevself(*searchtet); |
14873 | fnextself(*searchtet); |
14874 | enextself(*searchtet); |
14875 | } else { // HMOVE |
14876 | fsymself(*searchtet); |
14877 | enextself(*searchtet); |
14878 | } |
14879 | assert(org(*searchtet) == pa); |
14880 | pb = dest(*searchtet); |
14881 | pc = apex(*searchtet); |
14882 | |
14883 | } // while (1) |
14884 | |
14885 | } |
14886 | |
14887 | /////////////////////////////////////////////////////////////////////////////// |
14888 | // // |
14889 | // scoutsegment() Search an edge in the tetrahedralization. // |
14890 | // // |
14891 | // If the edge is found, it returns SHAREEDGE, and 'searchtet' returns the // |
14892 | // edge from startpt to endpt. // |
14893 | // // |
14894 | // If the edge is missing, it returns either ACROSSEDGE or ACROSSFACE, which // |
14895 | // indicates that the edge intersects an edge or a face. If 'refpt' is NULL,// |
14896 | // 'searchtet' returns the edge or face. If 'refpt' is not NULL, it returns // |
14897 | // a vertex which encroaches upon this edge, and 'searchtet' returns a tet // |
14898 | // which containing 'refpt'. // |
14899 | // // |
14900 | // The following cases can happen when the input PLC is not valid. // |
14901 | // - ACROSSVERT, the edge intersects a vertex return by the origin of // |
14902 | // 'searchtet'. // |
14903 | // - ACROSSSEG, the edge intersects a segment returned by 'searchtet'. // |
14904 | // - ACROSSSUB, the edge intersects a subface returned by 'searchtet'. // |
14905 | // // |
14906 | /////////////////////////////////////////////////////////////////////////////// |
14907 | |
14908 | enum tetgenmesh::interresult |
14909 | tetgenmesh::scoutsegment(point startpt, point endpt, triface* searchtet, |
14910 | point* refpt, arraypool* intfacelist) |
14911 | { |
14912 | point pd; |
14913 | enum interresult dir; |
14914 | int t1ver; |
14915 | |
14916 | if (b->verbose > 2) { |
14917 | printf(" Scout seg (%d, %d).\n" ,pointmark(startpt),pointmark(endpt)); |
14918 | } |
14919 | |
14920 | point2tetorg(startpt, *searchtet); |
14921 | dir = finddirection(searchtet, endpt); |
14922 | |
14923 | if (dir == ACROSSVERT) { |
14924 | pd = dest(*searchtet); |
14925 | if (pd == endpt) { |
14926 | // The job is done. |
14927 | return SHAREEDGE; |
14928 | } else { |
14929 | // A point is on the path. |
14930 | // Let the origin of the searchtet be the vertex. |
14931 | enextself(*searchtet); |
14932 | if (refpt) *refpt = pd; |
14933 | return ACROSSVERT; |
14934 | } |
14935 | } // if (dir == ACROSSVERT) |
14936 | |
14937 | // dir is either ACROSSEDGE or ACROSSFACE. |
14938 | |
14939 | enextesymself(*searchtet); // Go to the opposite face. |
14940 | fsymself(*searchtet); // Enter the adjacent tet. |
14941 | |
14942 | if (dir == ACROSSEDGE) { |
14943 | // Check whether two segments are intersecting. |
14944 | if (issubseg(*searchtet)) { |
14945 | return ACROSSSEG; |
14946 | } |
14947 | } else if (dir == ACROSSFACE) { |
14948 | if (checksubfaceflag) { |
14949 | // Check whether a segment and a subface are intersecting. |
14950 | if (issubface(*searchtet)) { |
14951 | return ACROSSSUB; |
14952 | } |
14953 | } |
14954 | } |
14955 | |
14956 | if (refpt == NULL) { |
14957 | // Do not need a reference point. Return. |
14958 | return dir; |
14959 | } |
14960 | |
14961 | triface neightet, reftet; |
14962 | point pa, pb, pc; |
14963 | REAL angmax, ang; |
14964 | int types[2], poss[4]; |
14965 | int pos = 0, i, j; |
14966 | |
14967 | pa = org(*searchtet); |
14968 | angmax = interiorangle(pa, startpt, endpt, NULL); |
14969 | *refpt = pa; |
14970 | pb = dest(*searchtet); |
14971 | ang = interiorangle(pb, startpt, endpt, NULL); |
14972 | if (ang > angmax) { |
14973 | angmax = ang; |
14974 | *refpt = pb; |
14975 | } |
14976 | pc = apex(*searchtet); |
14977 | ang = interiorangle(pc, startpt, endpt, NULL); |
14978 | if (ang > angmax) { |
14979 | angmax = ang; |
14980 | *refpt = pc; |
14981 | } |
14982 | reftet = *searchtet; // Save the tet containing the refpt. |
14983 | |
14984 | // Search intersecting faces along the segment. |
14985 | while (1) { |
14986 | |
14987 | |
14988 | pd = oppo(*searchtet); |
14989 | assert(pd != dummypoint); // SELF_CHECK |
14990 | |
14991 | |
14992 | // Stop if we meet 'endpt'. |
14993 | if (pd == endpt) break; |
14994 | |
14995 | ang = interiorangle(pd, startpt, endpt, NULL); |
14996 | if (ang > angmax) { |
14997 | angmax = ang; |
14998 | *refpt = pd; |
14999 | reftet = *searchtet; |
15000 | } |
15001 | |
15002 | // Find a face intersecting the segment. |
15003 | if (dir == ACROSSFACE) { |
15004 | // One of the three oppo faces in 'searchtet' intersects the segment. |
15005 | neightet = *searchtet; |
15006 | j = (neightet.ver & 3); // j is the current face number. |
15007 | for (i = j + 1; i < j + 4; i++) { |
15008 | neightet.ver = (i % 4); |
15009 | pa = org(neightet); |
15010 | pb = dest(neightet); |
15011 | pc = apex(neightet); |
15012 | pd = oppo(neightet); // The above point. |
15013 | if (tri_edge_test(pa, pb, pc, startpt, endpt, pd, 1, types, poss)) { |
15014 | dir = (enum interresult) types[0]; |
15015 | pos = poss[0]; |
15016 | break; |
15017 | } else { |
15018 | dir = DISJOINT; |
15019 | pos = 0; |
15020 | } |
15021 | } |
15022 | assert(dir != DISJOINT); // SELF_CHECK |
15023 | } else { // dir == ACROSSEDGE |
15024 | // Check the two opposite faces (of the edge) in 'searchtet'. |
15025 | for (i = 0; i < 2; i++) { |
15026 | if (i == 0) { |
15027 | enextesym(*searchtet, neightet); |
15028 | } else { |
15029 | eprevesym(*searchtet, neightet); |
15030 | } |
15031 | pa = org(neightet); |
15032 | pb = dest(neightet); |
15033 | pc = apex(neightet); |
15034 | pd = oppo(neightet); // The above point. |
15035 | if (tri_edge_test(pa, pb, pc, startpt, endpt, pd, 1, types, poss)) { |
15036 | dir = (enum interresult) types[0]; |
15037 | pos = poss[0]; |
15038 | break; |
15039 | } else { |
15040 | dir = DISJOINT; |
15041 | pos = 0; |
15042 | } |
15043 | } |
15044 | if (dir == DISJOINT) { |
15045 | // No intersection. Rotate to the next tet at the edge. |
15046 | dir = ACROSSEDGE; |
15047 | fnextself(*searchtet); |
15048 | continue; |
15049 | } |
15050 | } |
15051 | |
15052 | if (dir == ACROSSVERT) { |
15053 | // This segment passing a vertex. Choose it and return. |
15054 | for (i = 0; i < pos; i++) { |
15055 | enextself(neightet); |
15056 | } |
15057 | pd = org(neightet); |
15058 | *refpt = pd; |
15059 | // break; |
15060 | return ACROSSVERT; |
15061 | } else if (dir == ACROSSEDGE) { |
15062 | // Get the edge intersects with the segment. |
15063 | for (i = 0; i < pos; i++) { |
15064 | enextself(neightet); |
15065 | } |
15066 | } |
15067 | // Go to the next tet. |
15068 | fsym(neightet, *searchtet); |
15069 | |
15070 | if (dir == ACROSSEDGE) { |
15071 | // Check whether two segments are intersecting. |
15072 | if (issubseg(*searchtet)) { |
15073 | return ACROSSSEG; |
15074 | } |
15075 | } else if (dir == ACROSSFACE) { |
15076 | if (checksubfaceflag) { |
15077 | // Check whether a segment and a subface are intersecting. |
15078 | if (issubface(*searchtet)) { |
15079 | return ACROSSSUB; |
15080 | } |
15081 | } |
15082 | } |
15083 | |
15084 | } // while (1) |
15085 | |
15086 | // A valid reference point should inside the diametrial circumsphere of |
15087 | // the missing segment, i.e., it encroaches upon it. |
15088 | if (2.0 * angmax < PI) { |
15089 | *refpt = NULL; |
15090 | } |
15091 | |
15092 | |
15093 | *searchtet = reftet; |
15094 | return dir; |
15095 | } |
15096 | |
15097 | /////////////////////////////////////////////////////////////////////////////// |
15098 | // // |
15099 | // getsteinerpointonsegment() Get a Steiner point on a segment. // |
15100 | // // |
15101 | // Return '1' if 'refpt' lies on an adjacent segment of this segment. Other- // |
15102 | // wise, return '0'. // |
15103 | // // |
15104 | /////////////////////////////////////////////////////////////////////////////// |
15105 | |
15106 | int tetgenmesh::getsteinerptonsegment(face* seg, point refpt, point steinpt) |
15107 | { |
15108 | point ei = sorg(*seg); |
15109 | point ej = sdest(*seg); |
15110 | int adjflag = 0, i; |
15111 | |
15112 | if (refpt != NULL) { |
15113 | REAL L, L1, t; |
15114 | |
15115 | if (pointtype(refpt) == FREESEGVERTEX) { |
15116 | face parentseg; |
15117 | sdecode(point2sh(refpt), parentseg); |
15118 | int sidx1 = getfacetindex(parentseg); |
15119 | point far_pi = segmentendpointslist[sidx1 * 2]; |
15120 | point far_pj = segmentendpointslist[sidx1 * 2 + 1]; |
15121 | int sidx2 = getfacetindex(*seg); |
15122 | point far_ei = segmentendpointslist[sidx2 * 2]; |
15123 | point far_ej = segmentendpointslist[sidx2 * 2 + 1]; |
15124 | if ((far_pi == far_ei) || (far_pj == far_ei)) { |
15125 | // Create a Steiner point at the intersection of the segment |
15126 | // [far_ei, far_ej] and the sphere centered at far_ei with |
15127 | // radius |far_ei - refpt|. |
15128 | L = distance(far_ei, far_ej); |
15129 | L1 = distance(far_ei, refpt); |
15130 | t = L1 / L; |
15131 | for (i = 0; i < 3; i++) { |
15132 | steinpt[i] = far_ei[i] + t * (far_ej[i] - far_ei[i]); |
15133 | } |
15134 | adjflag = 1; |
15135 | } else if ((far_pi == far_ej) || (far_pj == far_ej)) { |
15136 | L = distance(far_ei, far_ej); |
15137 | L1 = distance(far_ej, refpt); |
15138 | t = L1 / L; |
15139 | for (i = 0; i < 3; i++) { |
15140 | steinpt[i] = far_ej[i] + t * (far_ei[i] - far_ej[i]); |
15141 | } |
15142 | adjflag = 1; |
15143 | } else { |
15144 | // Cut the segment by the projection point of refpt. |
15145 | projpt2edge(refpt, ei, ej, steinpt); |
15146 | } |
15147 | } else { |
15148 | // Cut the segment by the projection point of refpt. |
15149 | projpt2edge(refpt, ei, ej, steinpt); |
15150 | } |
15151 | |
15152 | // Make sure that steinpt is not too close to ei and ej. |
15153 | L = distance(ei, ej); |
15154 | L1 = distance(steinpt, ei); |
15155 | t = L1 / L; |
15156 | if ((t < 0.2) || (t > 0.8)) { |
15157 | // Split the point at the middle. |
15158 | for (i = 0; i < 3; i++) { |
15159 | steinpt[i] = ei[i] + 0.5 * (ej[i] - ei[i]); |
15160 | } |
15161 | } |
15162 | } else { |
15163 | // Split the point at the middle. |
15164 | for (i = 0; i < 3; i++) { |
15165 | steinpt[i] = ei[i] + 0.5 * (ej[i] - ei[i]); |
15166 | } |
15167 | } |
15168 | |
15169 | |
15170 | return adjflag; |
15171 | } |
15172 | |
15173 | |
15174 | |
15175 | /////////////////////////////////////////////////////////////////////////////// |
15176 | // // |
15177 | // delaunizesegments() Recover segments in a DT. // |
15178 | // // |
15179 | // All segments need to be recovered are in 'subsegstack' (Q). They will be // |
15180 | // be recovered one by one (in a random order). // |
15181 | // // |
15182 | // Given a segment s in the Q, this routine first queries s in the DT, if s // |
15183 | // matches an edge in DT, it is 'locked' at the edge. Otherwise, s is split // |
15184 | // by inserting a new point p in both the DT and itself. The two new subseg- // |
15185 | // ments of s are queued in Q. The process continues until Q is empty. // |
15186 | // // |
15187 | /////////////////////////////////////////////////////////////////////////////// |
15188 | |
15189 | void tetgenmesh::delaunizesegments() |
15190 | { |
15191 | triface searchtet, spintet; |
15192 | face searchsh; |
15193 | face sseg, *psseg; |
15194 | point refpt, newpt; |
15195 | enum interresult dir; |
15196 | insertvertexflags ivf; |
15197 | int t1ver; |
15198 | |
15199 | |
15200 | ivf.bowywat = 1; // Use Bowyer-Watson insertion. |
15201 | ivf.assignmeshsize = b->metric; |
15202 | ivf.sloc = (int) ONEDGE; // on 'sseg'. |
15203 | ivf.sbowywat = 1; // Use Bowyer-Watson insertion. |
15204 | |
15205 | // Loop until 'subsegstack' is empty. |
15206 | while (subsegstack->objects > 0l) { |
15207 | // seglist is used as a stack. |
15208 | subsegstack->objects--; |
15209 | psseg = (face *) fastlookup(subsegstack, subsegstack->objects); |
15210 | sseg = *psseg; |
15211 | |
15212 | // Check if this segment has been recovered. |
15213 | sstpivot1(sseg, searchtet); |
15214 | if (searchtet.tet != NULL) { |
15215 | continue; // Not a missing segment. |
15216 | } |
15217 | |
15218 | // Search the segment. |
15219 | dir = scoutsegment(sorg(sseg), sdest(sseg), &searchtet, &refpt, NULL); |
15220 | |
15221 | if (dir == SHAREEDGE) { |
15222 | // Found this segment, insert it. |
15223 | if (!issubseg(searchtet)) { |
15224 | // Let the segment remember an adjacent tet. |
15225 | sstbond1(sseg, searchtet); |
15226 | // Bond the segment to all tets containing it. |
15227 | spintet = searchtet; |
15228 | do { |
15229 | tssbond1(spintet, sseg); |
15230 | fnextself(spintet); |
15231 | } while (spintet.tet != searchtet.tet); |
15232 | } else { |
15233 | // Collision! Maybe a bug. |
15234 | assert(0); |
15235 | } |
15236 | } else { |
15237 | if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
15238 | // The segment is missing. Split it. |
15239 | // Create a new point. |
15240 | makepoint(&newpt, FREESEGVERTEX); |
15241 | //setpointtype(newpt, FREESEGVERTEX); |
15242 | getsteinerptonsegment(&sseg, refpt, newpt); |
15243 | |
15244 | // Start searching from 'searchtet'. |
15245 | ivf.iloc = (int) OUTSIDE; |
15246 | // Insert the new point into the tetrahedralization T. |
15247 | // Missing segments and subfaces are queued for recovery. |
15248 | // Note that T is convex (nonconvex = 0). |
15249 | if (insertpoint(newpt, &searchtet, &searchsh, &sseg, &ivf)) { |
15250 | // The new point has been inserted. |
15251 | st_segref_count++; |
15252 | if (steinerleft > 0) steinerleft--; |
15253 | } else { |
15254 | assert (ivf.iloc == (enum locateresult) NEARVERTEX); |
15255 | terminatetetgen(this, 4); |
15256 | } |
15257 | } else { |
15258 | // Indicate it is an input problem. |
15259 | terminatetetgen(this, 3); |
15260 | } |
15261 | } |
15262 | } // while |
15263 | } |
15264 | |
15265 | /////////////////////////////////////////////////////////////////////////////// |
15266 | // // |
15267 | // scoutsubface() Search subface in the tetrahedralization. // |
15268 | // // |
15269 | // 'searchsh' is searched in T. If it exists, it is 'locked' at the face in // |
15270 | // T. 'searchtet' refers to the face. Otherwise, it is missing. // |
15271 | // // |
15272 | // The return value indicates one of the following cases: // |
15273 | // - SHAREFACE, 'searchsh' exists and is inserted in T. // |
15274 | // - COLLISIONFACE, 'searchsh' exists in T, but it conflicts with another // |
15275 | // subface which was inserted earlier. It is not inserted. // |
15276 | // // |
15277 | /////////////////////////////////////////////////////////////////////////////// |
15278 | |
15279 | enum tetgenmesh::interresult |
15280 | tetgenmesh::scoutsubface(face* searchsh, triface* searchtet) |
15281 | { |
15282 | triface spintet; |
15283 | point pa, pb, pc; |
15284 | enum interresult dir; |
15285 | int t1ver; |
15286 | |
15287 | pa = sorg(*searchsh); |
15288 | pb = sdest(*searchsh); |
15289 | |
15290 | |
15291 | // Get a tet whose origin is a. |
15292 | point2tetorg(pa, *searchtet); |
15293 | // Search the edge [a,b]. |
15294 | dir = finddirection(searchtet, pb); |
15295 | if (dir == ACROSSVERT) { |
15296 | // Check validity of a PLC. |
15297 | if (dest(*searchtet) != pb) { |
15298 | // A vertex lies on the search edge. |
15299 | enextself(*searchtet); |
15300 | // It is possible a PLC self-intersection problem. |
15301 | terminatetetgen(this, 3); |
15302 | return TOUCHEDGE; |
15303 | } |
15304 | // The edge exists. Check if the face exists. |
15305 | pc = sapex(*searchsh); |
15306 | // Searchtet holds edge [a,b]. Search a face with apex c. |
15307 | spintet = *searchtet; |
15308 | while (1) { |
15309 | if (apex(spintet) == pc) { |
15310 | // Found a face matching to 'searchsh'! |
15311 | if (!issubface(spintet)) { |
15312 | // Insert 'searchsh'. |
15313 | tsbond(spintet, *searchsh); |
15314 | fsymself(spintet); |
15315 | sesymself(*searchsh); |
15316 | tsbond(spintet, *searchsh); |
15317 | *searchtet = spintet; |
15318 | return SHAREFACE; |
15319 | } else { |
15320 | // Another subface is already inserted. |
15321 | face checksh; |
15322 | tspivot(spintet, checksh); |
15323 | assert(checksh.sh != searchsh->sh); // SELF_CHECK |
15324 | // This is possibly an input problem, i.e., two facets overlap. |
15325 | // Report this problem and exit. |
15326 | printf("Warning: Found two facets nearly overlap.\n" ); |
15327 | terminatetetgen(this, 5); |
15328 | // unifysubfaces(&checksh, searchsh); |
15329 | *searchtet = spintet; |
15330 | return COLLISIONFACE; |
15331 | } |
15332 | } |
15333 | fnextself(spintet); |
15334 | if (spintet.tet == searchtet->tet) break; |
15335 | } |
15336 | } |
15337 | |
15338 | // dir is either ACROSSEDGE or ACROSSFACE. |
15339 | return dir; |
15340 | } |
15341 | |
15342 | /////////////////////////////////////////////////////////////////////////////// |
15343 | // // |
15344 | // formregion() Form the missing region of a missing subface. // |
15345 | // // |
15346 | // 'missh' is a missing subface. From it we form a missing region R which is // |
15347 | // a connected region formed by a set of missing subfaces of a facet. // |
15348 | // Comment: There should be no segment inside R. // |
15349 | // // |
15350 | // 'missingshs' returns the list of subfaces in R. All subfaces in this list // |
15351 | // are oriented as the 'missh'. 'missingshbds' returns the list of boundary // |
15352 | // edges (tetrahedral handles) of R. 'missingshverts' returns all vertices // |
15353 | // of R. They are all pmarktested. // |
15354 | // // |
15355 | // Except the first one (which is 'missh') in 'missingshs', each subface in // |
15356 | // this list represents an internal edge of R, i.e., it is missing in the // |
15357 | // tetrahedralization. Since R may contain interior vertices, not all miss- // |
15358 | // ing edges can be found by this way. // |
15359 | /////////////////////////////////////////////////////////////////////////////// |
15360 | |
15361 | void tetgenmesh::formregion(face* missh, arraypool* missingshs, |
15362 | arraypool* missingshbds, arraypool* missingshverts) |
15363 | { |
15364 | triface searchtet, spintet; |
15365 | face neighsh, *parysh; |
15366 | face neighseg, fakeseg; |
15367 | point pa, pb, *parypt; |
15368 | enum interresult dir; |
15369 | int t1ver; |
15370 | int i, j; |
15371 | |
15372 | smarktest(*missh); |
15373 | missingshs->newindex((void **) &parysh); |
15374 | *parysh = *missh; |
15375 | |
15376 | // Incrementally find other missing subfaces. |
15377 | for (i = 0; i < missingshs->objects; i++) { |
15378 | missh = (face *) fastlookup(missingshs, i); |
15379 | for (j = 0; j < 3; j++) { |
15380 | pa = sorg(*missh); |
15381 | pb = sdest(*missh); |
15382 | point2tetorg(pa, searchtet); |
15383 | dir = finddirection(&searchtet, pb); |
15384 | if (dir != ACROSSVERT) { |
15385 | // This edge is missing. Its neighbor is a missing subface. |
15386 | spivot(*missh, neighsh); |
15387 | if (!smarktested(neighsh)) { |
15388 | // Adjust the face orientation. |
15389 | if (sorg(neighsh) != pb) sesymself(neighsh); |
15390 | smarktest(neighsh); |
15391 | missingshs->newindex((void **) &parysh); |
15392 | *parysh = neighsh; |
15393 | } |
15394 | } else { |
15395 | if (dest(searchtet) != pb) { |
15396 | // This might be a self-intersection problem. |
15397 | terminatetetgen(this, 3); |
15398 | } |
15399 | } |
15400 | // Collect the vertices of R. |
15401 | if (!pmarktested(pa)) { |
15402 | pmarktest(pa); |
15403 | missingshverts->newindex((void **) &parypt); |
15404 | *parypt = pa; |
15405 | } |
15406 | senextself(*missh); |
15407 | } // j |
15408 | } // i |
15409 | |
15410 | // Get the boundary edges of R. |
15411 | for (i = 0; i < missingshs->objects; i++) { |
15412 | missh = (face *) fastlookup(missingshs, i); |
15413 | for (j = 0; j < 3; j++) { |
15414 | spivot(*missh, neighsh); |
15415 | if ((neighsh.sh == NULL) || !smarktested(neighsh)) { |
15416 | // A boundary edge of R. |
15417 | // Let the segment point to the adjacent tet. |
15418 | point2tetorg(sorg(*missh), searchtet); |
15419 | finddirection(&searchtet, sdest(*missh)); |
15420 | missingshbds->newindex((void **) &parysh); |
15421 | *parysh = *missh; |
15422 | // Check if this edge is a segment. |
15423 | sspivot(*missh, neighseg); |
15424 | if (neighseg.sh == NULL) { |
15425 | // Temporarily create a segment at this edge. |
15426 | makeshellface(subsegs, &fakeseg); |
15427 | setsorg(fakeseg, sorg(*missh)); |
15428 | setsdest(fakeseg, sdest(*missh)); |
15429 | sinfect(fakeseg); // Mark it as faked. |
15430 | // Connect it to all tets at this edge. |
15431 | spintet = searchtet; |
15432 | while (1) { |
15433 | tssbond1(spintet, fakeseg); |
15434 | fnextself(spintet); |
15435 | if (spintet.tet == searchtet.tet) break; |
15436 | } |
15437 | neighseg = fakeseg; |
15438 | } |
15439 | // Let the segment and the boundary edge point to each other. |
15440 | ssbond(*missh, neighseg); |
15441 | sstbond1(neighseg, searchtet); |
15442 | } |
15443 | senextself(*missh); |
15444 | } // j |
15445 | } // i |
15446 | |
15447 | |
15448 | // Unmarktest collected missing subfaces. |
15449 | for (i = 0; i < missingshs->objects; i++) { |
15450 | parysh = (face *) fastlookup(missingshs, i); |
15451 | sunmarktest(*parysh); |
15452 | } |
15453 | } |
15454 | |
15455 | /////////////////////////////////////////////////////////////////////////////// |
15456 | // // |
15457 | // scoutcrossedge() Search an edge that crosses the missing region. // |
15458 | // // |
15459 | // Return 1 if a crossing edge is found. It is returned by 'crosstet'. More- // |
15460 | // over, the edge is oriented such that its origin lies below R. Return 0 // |
15461 | // if no such edge is found. // |
15462 | // // |
15463 | // Assumption: All vertices of the missing region are marktested. // |
15464 | // // |
15465 | /////////////////////////////////////////////////////////////////////////////// |
15466 | |
15467 | int tetgenmesh::scoutcrossedge(triface& crosstet, arraypool* missingshbds, |
15468 | arraypool* missingshs) |
15469 | { |
15470 | triface searchtet, spintet; |
15471 | face *parysh; |
15472 | face neighseg; |
15473 | point pa, pb, pc, pd, pe; |
15474 | enum interresult dir; |
15475 | REAL ori; |
15476 | int types[2], poss[4]; |
15477 | int searchflag, interflag; |
15478 | int t1ver; |
15479 | int i, j; |
15480 | |
15481 | searchflag = 0; |
15482 | |
15483 | for (j = 0; j < missingshbds->objects && !searchflag; j++) { |
15484 | parysh = (face *) fastlookup(missingshbds, j); |
15485 | sspivot(*parysh, neighseg); |
15486 | sstpivot1(neighseg, searchtet); |
15487 | interflag = 0; |
15488 | // Let 'spintet' be [#,#,d,e] where [#,#] is the boundary edge of R. |
15489 | spintet = searchtet; |
15490 | while (1) { |
15491 | pd = apex(spintet); |
15492 | pe = oppo(spintet); |
15493 | // Skip a hull edge. |
15494 | if ((pd != dummypoint) && (pe != dummypoint)) { |
15495 | // Skip an edge containing a vertex of R. |
15496 | if (!pmarktested(pd) && !pmarktested(pe)) { |
15497 | // Check if [d,e] intersects R. |
15498 | for (i = 0; i < missingshs->objects && !interflag; i++) { |
15499 | parysh = (face *) fastlookup(missingshs, i); |
15500 | pa = sorg(*parysh); |
15501 | pb = sdest(*parysh); |
15502 | pc = sapex(*parysh); |
15503 | interflag=tri_edge_test(pa, pb, pc, pd, pe, NULL, 1, types, poss); |
15504 | if (interflag > 0) { |
15505 | if (interflag == 2) { |
15506 | // They intersect at a single point. |
15507 | dir = (enum interresult) types[0]; |
15508 | if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
15509 | //pos = poss[0]; |
15510 | // Go to the crossing edge [d,e,#,#]. |
15511 | edestoppo(spintet, crosstet); // // [d,e,#,#]. |
15512 | // Check if it is a segment. |
15513 | if (issubseg(crosstet)) { |
15514 | //face checkseg; |
15515 | //tsspivot1(crosstet, checkseg); |
15516 | //reportselfintersect(&checkseg, parysh); |
15517 | terminatetetgen(this, 3); |
15518 | } |
15519 | // Adjust the edge such that d lies below [a,b,c]. |
15520 | ori = orient3d(pa, pb, pc, pd); |
15521 | assert(ori != 0); |
15522 | if (ori < 0) { |
15523 | esymself(crosstet); |
15524 | } |
15525 | searchflag = 1; |
15526 | } |
15527 | } |
15528 | break; |
15529 | } // if (interflag > 0) |
15530 | } |
15531 | } |
15532 | } |
15533 | // Leave search at this bdry edge if an intersection is found. |
15534 | if (interflag > 0) break; |
15535 | // Go to the next tetrahedron. |
15536 | fnextself(spintet); |
15537 | if (spintet.tet == searchtet.tet) break; |
15538 | } // while (1) |
15539 | } // j |
15540 | |
15541 | return searchflag; |
15542 | } |
15543 | |
15544 | /////////////////////////////////////////////////////////////////////////////// |
15545 | // // |
15546 | // formcavity() Form the cavity of a missing region. // |
15547 | // // |
15548 | // The missing region R is formed by a set of missing subfaces 'missingshs'. // |
15549 | // In the following, we assume R is horizontal and oriented. (All subfaces // |
15550 | // of R are oriented in the same way.) 'searchtet' is a tetrahedron [d,e,#, // |
15551 | // #] which intersects R in its interior, where the edge [d,e] intersects R, // |
15552 | // and d lies below R. // |
15553 | // // |
15554 | // 'crosstets' returns the set of crossing tets. Every tet in it has the // |
15555 | // form [d,e,#,#] where [d,e] is a crossing edge, and d lies below R. The // |
15556 | // set of tets form the cavity C, which is divided into two parts by R, one // |
15557 | // at top and one at bottom. 'topfaces' and 'botfaces' return the upper and // |
15558 | // lower boundary faces of C. 'toppoints' contains vertices of 'crosstets' // |
15559 | // in the top part of C, and so does 'botpoints'. Both 'toppoints' and // |
15560 | // 'botpoints' contain vertices of R. // |
15561 | // // |
15562 | // Important: This routine assumes all vertices of the facet containing this // |
15563 | // subface are marked, i.e., pmarktested(p) returns true. // |
15564 | // // |
15565 | /////////////////////////////////////////////////////////////////////////////// |
15566 | |
15567 | bool tetgenmesh::formcavity(triface* searchtet, arraypool* missingshs, |
15568 | arraypool* crosstets, arraypool* topfaces, |
15569 | arraypool* botfaces, arraypool* toppoints, |
15570 | arraypool* botpoints) |
15571 | { |
15572 | arraypool *crossedges; |
15573 | triface spintet, neightet, *parytet; |
15574 | face *parysh = NULL; |
15575 | point pa, pd, pe, *parypt; |
15576 | enum interresult dir; |
15577 | bool testflag, invalidflag; |
15578 | int types[2], poss[4]; |
15579 | int t1ver; |
15580 | int i, j, k; |
15581 | |
15582 | // Temporarily re-use 'topfaces' for all crossing edges. |
15583 | crossedges = topfaces; |
15584 | |
15585 | if (b->verbose > 2) { |
15586 | printf(" Form the cavity of a missing region.\n" ); |
15587 | } |
15588 | // Mark this edge to avoid testing it later. |
15589 | markedge(*searchtet); |
15590 | crossedges->newindex((void **) &parytet); |
15591 | *parytet = *searchtet; |
15592 | |
15593 | invalidflag = 0; |
15594 | |
15595 | // Collect all crossing tets. Each cross tet is saved in the standard |
15596 | // form [d,e,#,#], where [d,e] is a crossing edge, d lies below R. |
15597 | // NEITHER d NOR e is a vertex of R (!pmarktested). |
15598 | for (i = 0; i < crossedges->objects; i++) { |
15599 | // Get a crossing edge [d,e,#,#]. |
15600 | searchtet = (triface *) fastlookup(crossedges, i); |
15601 | |
15602 | // Sort vertices into the bottom and top arrays. |
15603 | pd = org(*searchtet); |
15604 | if (!pinfected(pd)) { |
15605 | pinfect(pd); |
15606 | botpoints->newindex((void **) &parypt); |
15607 | *parypt = pd; |
15608 | } |
15609 | pe = dest(*searchtet); |
15610 | if (!pinfected(pe)) { |
15611 | pinfect(pe); |
15612 | toppoints->newindex((void **) &parypt); |
15613 | *parypt = pe; |
15614 | } |
15615 | |
15616 | // All tets sharing this edge are crossing tets. |
15617 | spintet = *searchtet; |
15618 | while (1) { |
15619 | if (!infected(spintet)) { |
15620 | infect(spintet); |
15621 | crosstets->newindex((void **) &parytet); |
15622 | *parytet = spintet; |
15623 | } |
15624 | // Go to the next crossing tet. |
15625 | fnextself(spintet); |
15626 | if (spintet.tet == searchtet->tet) break; |
15627 | } // while (1) |
15628 | |
15629 | // Detect new crossing edges. |
15630 | spintet = *searchtet; |
15631 | while (1) { |
15632 | // spintet is [d,e,a,#], where d lies below R, and e lies above R. |
15633 | pa = apex(spintet); |
15634 | if (pa != dummypoint) { |
15635 | if (!pmarktested(pa)) { |
15636 | // There exists a crossing edge, either [e,a] or [a,d]. First check |
15637 | // if the crossing edge has already be added, i.e., check if a |
15638 | // tetrahedron at this edge is marked. |
15639 | testflag = true; |
15640 | for (j = 0; j < 2 && testflag; j++) { |
15641 | if (j == 0) { |
15642 | enext(spintet, neightet); |
15643 | } else { |
15644 | eprev(spintet, neightet); |
15645 | } |
15646 | while (1) { |
15647 | if (edgemarked(neightet)) { |
15648 | // This crossing edge has already been tested. Skip it. |
15649 | testflag = false; |
15650 | break; |
15651 | } |
15652 | fnextself(neightet); |
15653 | if (neightet.tet == spintet.tet) break; |
15654 | } |
15655 | } // j |
15656 | if (testflag) { |
15657 | // Test if [e,a] or [a,d] intersects R. |
15658 | // Do a brute-force search in the set of subfaces of R. Slow! |
15659 | // Need to be improved! |
15660 | pd = org(spintet); |
15661 | pe = dest(spintet); |
15662 | for (k = 0; k < missingshs->objects; k++) { |
15663 | parysh = (face *) fastlookup(missingshs, k); |
15664 | if (tri_edge_test(sorg(*parysh), sdest(*parysh), sapex(*parysh), |
15665 | pe, pa, NULL, 1, types, poss)) { |
15666 | // Found intersection. 'a' lies below R. |
15667 | enext(spintet, neightet); |
15668 | dir = (enum interresult) types[0]; |
15669 | if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
15670 | // A valid intersection. |
15671 | } else { |
15672 | // A non-valid intersection. Maybe a PLC problem. |
15673 | invalidflag = 1; |
15674 | } |
15675 | break; |
15676 | } |
15677 | if (tri_edge_test(sorg(*parysh), sdest(*parysh), sapex(*parysh), |
15678 | pa, pd, NULL, 1, types, poss)) { |
15679 | // Found intersection. 'a' lies above R. |
15680 | eprev(spintet, neightet); |
15681 | dir = (enum interresult) types[0]; |
15682 | if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
15683 | // A valid intersection. |
15684 | } else { |
15685 | // A non-valid intersection. Maybe a PLC problem. |
15686 | invalidflag = 1; |
15687 | } |
15688 | break; |
15689 | } |
15690 | } // k |
15691 | if (k < missingshs->objects) { |
15692 | // Found a pair of triangle - edge intersection. |
15693 | if (invalidflag) { |
15694 | if (!b->quiet) { |
15695 | printf("Warning: A non-valid facet - edge intersection\n" ); |
15696 | printf(" subface: (%d, %d, %d) edge: (%d, %d)\n" , |
15697 | pointmark(sorg(*parysh)), pointmark(sdest(*parysh)), |
15698 | pointmark(sapex(*parysh)), pointmark(org(neightet)), |
15699 | pointmark(dest(neightet))); |
15700 | } |
15701 | // It may be a PLC problem. |
15702 | terminatetetgen(this, 3); |
15703 | } |
15704 | // Adjust the edge direction, so that its origin lies below R, |
15705 | // and its destination lies above R. |
15706 | esymself(neightet); |
15707 | // Check if this edge is a segment. |
15708 | if (issubseg(neightet)) { |
15709 | // Invalid PLC! |
15710 | //face checkseg; |
15711 | //tsspivot1(neightet, checkseg); |
15712 | //reportselfintersect(&checkseg, parysh); |
15713 | terminatetetgen(this, 3); |
15714 | } |
15715 | // Mark this edge to avoid testing it again. |
15716 | markedge(neightet); |
15717 | crossedges->newindex((void **) &parytet); |
15718 | *parytet = neightet; |
15719 | } else { |
15720 | // No intersection is found. It may be a PLC problem. |
15721 | invalidflag = 1; |
15722 | // Split the subface intersecting [d,e]. |
15723 | for (k = 0; k < missingshs->objects; k++) { |
15724 | parysh = (face *) fastlookup(missingshs, k); |
15725 | // Test if this face intersects [e,a]. |
15726 | if (tri_edge_test(sorg(*parysh),sdest(*parysh),sapex(*parysh), |
15727 | pd, pe, NULL, 1, types, poss)) { |
15728 | break; |
15729 | } |
15730 | } // k |
15731 | if (k == missingshs->objects) { |
15732 | // Not found such an edge. |
15733 | // Arbitrarily choose an edge (except the first) to split. |
15734 | k = randomnation(missingshs->objects - 1); |
15735 | parysh = (face *) fastlookup(missingshs, k + 1); |
15736 | } |
15737 | recentsh = *parysh; |
15738 | recenttet = spintet; // For point location. |
15739 | break; // the while (1) loop |
15740 | } // if (k == missingshs->objects) |
15741 | } // if (testflag) |
15742 | } // if (!pmarktested(pa) || b->psc) |
15743 | } // if (pa != dummypoint) |
15744 | // Go to the next crossing tet. |
15745 | fnextself(spintet); |
15746 | if (spintet.tet == searchtet->tet) break; |
15747 | } // while (1) |
15748 | |
15749 | //if (b->psc) { |
15750 | if (invalidflag) break; |
15751 | //} |
15752 | } // i |
15753 | |
15754 | if (b->verbose > 2) { |
15755 | printf(" Formed cavity: %ld (%ld) cross tets (edges).\n" , |
15756 | crosstets->objects, crossedges->objects); |
15757 | } |
15758 | |
15759 | // Unmark all marked edges. |
15760 | for (i = 0; i < crossedges->objects; i++) { |
15761 | searchtet = (triface *) fastlookup(crossedges, i); |
15762 | assert(edgemarked(*searchtet)); // SELF_CHECK |
15763 | unmarkedge(*searchtet); |
15764 | } |
15765 | crossedges->restart(); |
15766 | |
15767 | |
15768 | if (invalidflag) { |
15769 | // Unmark all collected tets. |
15770 | for (i = 0; i < crosstets->objects; i++) { |
15771 | searchtet = (triface *) fastlookup(crosstets, i); |
15772 | uninfect(*searchtet); |
15773 | } |
15774 | // Unmark all collected vertices. |
15775 | for (i = 0; i < botpoints->objects; i++) { |
15776 | parypt = (point *) fastlookup(botpoints, i); |
15777 | puninfect(*parypt); |
15778 | } |
15779 | for (i = 0; i < toppoints->objects; i++) { |
15780 | parypt = (point *) fastlookup(toppoints, i); |
15781 | puninfect(*parypt); |
15782 | } |
15783 | crosstets->restart(); |
15784 | botpoints->restart(); |
15785 | toppoints->restart(); |
15786 | |
15787 | // Randomly split an interior edge of R. |
15788 | i = randomnation(missingshs->objects - 1); |
15789 | recentsh = * (face *) fastlookup(missingshs, i); |
15790 | return false; |
15791 | } |
15792 | |
15793 | |
15794 | // Collect the top and bottom faces and the middle vertices. Since all top |
15795 | // and bottom vertices have been infected. Uninfected vertices must be |
15796 | // middle vertices (i.e., the vertices of R). |
15797 | // NOTE 1: Hull tets may be collected. Process them as a normal one. |
15798 | // NOTE 2: Some previously recovered subfaces may be completely inside the |
15799 | // cavity. In such case, we remove these subfaces from the cavity and put |
15800 | // them into 'subfacstack'. They will be recovered later. |
15801 | // NOTE 3: Some segments may be completely inside the cavity, e.g., they |
15802 | // attached to a subface which is inside the cavity. Such segments are |
15803 | // put in 'subsegstack'. They will be recovered later. |
15804 | // NOTE4 : The interior subfaces and segments mentioned in NOTE 2 and 3 |
15805 | // are identified in the routine "carvecavity()". |
15806 | |
15807 | for (i = 0; i < crosstets->objects; i++) { |
15808 | searchtet = (triface *) fastlookup(crosstets, i); |
15809 | // searchtet is [d,e,a,b]. |
15810 | eorgoppo(*searchtet, spintet); |
15811 | fsym(spintet, neightet); // neightet is [a,b,e,#] |
15812 | if (!infected(neightet)) { |
15813 | // A top face. |
15814 | topfaces->newindex((void **) &parytet); |
15815 | *parytet = neightet; |
15816 | } |
15817 | edestoppo(*searchtet, spintet); |
15818 | fsym(spintet, neightet); // neightet is [b,a,d,#] |
15819 | if (!infected(neightet)) { |
15820 | // A bottom face. |
15821 | botfaces->newindex((void **) &parytet); |
15822 | *parytet = neightet; |
15823 | } |
15824 | // Add middle vertices if there are (skip dummypoint). |
15825 | pa = org(neightet); |
15826 | if (!pinfected(pa)) { |
15827 | if (pa != dummypoint) { |
15828 | pinfect(pa); |
15829 | botpoints->newindex((void **) &parypt); |
15830 | *parypt = pa; |
15831 | toppoints->newindex((void **) &parypt); |
15832 | *parypt = pa; |
15833 | } |
15834 | } |
15835 | pa = dest(neightet); |
15836 | if (!pinfected(pa)) { |
15837 | if (pa != dummypoint) { |
15838 | pinfect(pa); |
15839 | botpoints->newindex((void **) &parypt); |
15840 | *parypt = pa; |
15841 | toppoints->newindex((void **) &parypt); |
15842 | *parypt = pa; |
15843 | } |
15844 | } |
15845 | } // i |
15846 | |
15847 | // Uninfect all collected top, bottom, and middle vertices. |
15848 | for (i = 0; i < toppoints->objects; i++) { |
15849 | parypt = (point *) fastlookup(toppoints, i); |
15850 | puninfect(*parypt); |
15851 | } |
15852 | for (i = 0; i < botpoints->objects; i++) { |
15853 | parypt = (point *) fastlookup(botpoints, i); |
15854 | puninfect(*parypt); |
15855 | } |
15856 | cavitycount++; |
15857 | |
15858 | return true; |
15859 | } |
15860 | |
15861 | /////////////////////////////////////////////////////////////////////////////// |
15862 | // // |
15863 | // delaunizecavity() Fill a cavity by Delaunay tetrahedra. // |
15864 | // // |
15865 | // The cavity C to be tetrahedralized is the top or bottom part of a whole // |
15866 | // cavity. 'cavfaces' contains the boundary faces of C. NOTE: faces in 'cav- // |
15867 | // faces' do not form a closed polyhedron. The "open" side are subfaces of // |
15868 | // the missing facet. These faces will be recovered later in fillcavity(). // |
15869 | // // |
15870 | // This routine first constructs the DT of the vertices. Then it identifies // |
15871 | // the half boundary faces of the cavity in DT. Possiblely the cavity C will // |
15872 | // be enlarged. // |
15873 | // // |
15874 | // The DT is returned in 'newtets'. // |
15875 | // // |
15876 | /////////////////////////////////////////////////////////////////////////////// |
15877 | |
15878 | void tetgenmesh::delaunizecavity(arraypool *cavpoints, arraypool *cavfaces, |
15879 | arraypool *cavshells, arraypool *newtets, |
15880 | arraypool *crosstets, arraypool *misfaces) |
15881 | { |
15882 | triface searchtet, neightet, *parytet, *parytet1; |
15883 | face tmpsh, *parysh; |
15884 | point pa, pb, pc, pd, pt[3], *parypt; |
15885 | enum interresult dir; |
15886 | insertvertexflags ivf; |
15887 | REAL ori; |
15888 | long baknum, bakhullsize; |
15889 | int bakchecksubsegflag, bakchecksubfaceflag; |
15890 | int t1ver; |
15891 | int i, j; |
15892 | |
15893 | if (b->verbose > 2) { |
15894 | printf(" Delaunizing cavity: %ld points, %ld faces.\n" , |
15895 | cavpoints->objects, cavfaces->objects); |
15896 | } |
15897 | // Remember the current number of crossing tets. It may be enlarged later. |
15898 | baknum = crosstets->objects; |
15899 | bakhullsize = hullsize; |
15900 | bakchecksubsegflag = checksubsegflag; |
15901 | bakchecksubfaceflag = checksubfaceflag; |
15902 | hullsize = 0l; |
15903 | checksubsegflag = 0; |
15904 | checksubfaceflag = 0; |
15905 | b->verbose--; // Suppress informations for creating Delaunay tetra. |
15906 | b->plc = 0; // Do not check near vertices. |
15907 | |
15908 | ivf.bowywat = 1; // Use Bowyer-Watson algorithm. |
15909 | |
15910 | // Get four non-coplanar points (no dummypoint). |
15911 | pa = pb = pc = NULL; |
15912 | for (i = 0; i < cavfaces->objects; i++) { |
15913 | parytet = (triface *) fastlookup(cavfaces, i); |
15914 | parytet->ver = epivot[parytet->ver]; |
15915 | if (apex(*parytet) != dummypoint) { |
15916 | pa = org(*parytet); |
15917 | pb = dest(*parytet); |
15918 | pc = apex(*parytet); |
15919 | break; |
15920 | } |
15921 | } |
15922 | pd = NULL; |
15923 | for (; i < cavfaces->objects; i++) { |
15924 | parytet = (triface *) fastlookup(cavfaces, i); |
15925 | pt[0] = org(*parytet); |
15926 | pt[1] = dest(*parytet); |
15927 | pt[2] = apex(*parytet); |
15928 | for (j = 0; j < 3; j++) { |
15929 | if (pt[j] != dummypoint) { // Do not include a hull point. |
15930 | ori = orient3d(pa, pb, pc, pt[j]); |
15931 | if (ori != 0) { |
15932 | pd = pt[j]; |
15933 | if (ori > 0) { // Swap pa and pb. |
15934 | pt[j] = pa; pa = pb; pb = pt[j]; |
15935 | } |
15936 | break; |
15937 | } |
15938 | } |
15939 | } |
15940 | if (pd != NULL) break; |
15941 | } |
15942 | assert(i < cavfaces->objects); // SELF_CHECK |
15943 | |
15944 | // Create an init DT. |
15945 | initialdelaunay(pa, pb, pc, pd); |
15946 | |
15947 | // Incrementally insert the vertices (duplicated vertices are ignored). |
15948 | for (i = 0; i < cavpoints->objects; i++) { |
15949 | pt[0] = * (point *) fastlookup(cavpoints, i); |
15950 | searchtet = recenttet; |
15951 | ivf.iloc = (int) OUTSIDE; |
15952 | insertpoint(pt[0], &searchtet, NULL, NULL, &ivf); |
15953 | } |
15954 | |
15955 | if (b->verbose > 2) { |
15956 | printf(" Identifying %ld boundary faces of the cavity.\n" , |
15957 | cavfaces->objects); |
15958 | } |
15959 | |
15960 | while (1) { |
15961 | |
15962 | // Identify boundary faces. Mark interior tets. Save missing faces. |
15963 | for (i = 0; i < cavfaces->objects; i++) { |
15964 | parytet = (triface *) fastlookup(cavfaces, i); |
15965 | // Skip an interior face (due to the enlargement of the cavity). |
15966 | if (infected(*parytet)) continue; |
15967 | parytet->ver = epivot[parytet->ver]; |
15968 | pt[0] = org(*parytet); |
15969 | pt[1] = dest(*parytet); |
15970 | pt[2] = apex(*parytet); |
15971 | // Create a temp subface. |
15972 | makeshellface(subfaces, &tmpsh); |
15973 | setshvertices(tmpsh, pt[0], pt[1], pt[2]); |
15974 | // Insert tmpsh in DT. |
15975 | searchtet.tet = NULL; |
15976 | dir = scoutsubface(&tmpsh, &searchtet); |
15977 | if (dir == SHAREFACE) { |
15978 | // Inserted! 'tmpsh' must face toward the inside of the cavity. |
15979 | // Remember the boundary tet (outside the cavity) in tmpsh |
15980 | // (use the adjacent tet slot). |
15981 | tmpsh.sh[0] = (shellface) encode(*parytet); |
15982 | // Save this subface. |
15983 | cavshells->newindex((void **) &parysh); |
15984 | *parysh = tmpsh; |
15985 | } |
15986 | else { |
15987 | // This boundary face is missing. |
15988 | shellfacedealloc(subfaces, tmpsh.sh); |
15989 | // Save this face in list. |
15990 | misfaces->newindex((void **) &parytet1); |
15991 | *parytet1 = *parytet; |
15992 | } |
15993 | } // i |
15994 | |
15995 | if (misfaces->objects > 0) { |
15996 | if (b->verbose > 2) { |
15997 | printf(" Enlarging the cavity. %ld missing bdry faces\n" , |
15998 | misfaces->objects); |
15999 | } |
16000 | |
16001 | // Removing all temporary subfaces. |
16002 | for (i = 0; i < cavshells->objects; i++) { |
16003 | parysh = (face *) fastlookup(cavshells, i); |
16004 | stpivot(*parysh, neightet); |
16005 | tsdissolve(neightet); // Detach it from adj. tets. |
16006 | fsymself(neightet); |
16007 | tsdissolve(neightet); |
16008 | shellfacedealloc(subfaces, parysh->sh); |
16009 | } |
16010 | cavshells->restart(); |
16011 | |
16012 | // Infect the points which are of the cavity. |
16013 | for (i = 0; i < cavpoints->objects; i++) { |
16014 | pt[0] = * (point *) fastlookup(cavpoints, i); |
16015 | pinfect(pt[0]); // Mark it as inserted. |
16016 | } |
16017 | |
16018 | // Enlarge the cavity. |
16019 | for (i = 0; i < misfaces->objects; i++) { |
16020 | // Get a missing face. |
16021 | parytet = (triface *) fastlookup(misfaces, i); |
16022 | if (!infected(*parytet)) { |
16023 | // Put it into crossing tet list. |
16024 | infect(*parytet); |
16025 | crosstets->newindex((void **) &parytet1); |
16026 | *parytet1 = *parytet; |
16027 | // Insert the opposite point if it is not in DT. |
16028 | pd = oppo(*parytet); |
16029 | if (!pinfected(pd)) { |
16030 | searchtet = recenttet; |
16031 | ivf.iloc = (int) OUTSIDE; |
16032 | insertpoint(pd, &searchtet, NULL, NULL, &ivf); |
16033 | pinfect(pd); |
16034 | cavpoints->newindex((void **) &parypt); |
16035 | *parypt = pd; |
16036 | } |
16037 | // Add three opposite faces into the boundary list. |
16038 | for (j = 0; j < 3; j++) { |
16039 | esym(*parytet, neightet); |
16040 | fsymself(neightet); |
16041 | if (!infected(neightet)) { |
16042 | cavfaces->newindex((void **) &parytet1); |
16043 | *parytet1 = neightet; |
16044 | } |
16045 | enextself(*parytet); |
16046 | } // j |
16047 | } // if (!infected(parytet)) |
16048 | } // i |
16049 | |
16050 | // Uninfect the points which are of the cavity. |
16051 | for (i = 0; i < cavpoints->objects; i++) { |
16052 | pt[0] = * (point *) fastlookup(cavpoints, i); |
16053 | puninfect(pt[0]); |
16054 | } |
16055 | |
16056 | misfaces->restart(); |
16057 | continue; |
16058 | } // if (misfaces->objects > 0) |
16059 | |
16060 | break; |
16061 | |
16062 | } // while (1) |
16063 | |
16064 | // Collect all tets of the DT. All new tets are marktested. |
16065 | marktest(recenttet); |
16066 | newtets->newindex((void **) &parytet); |
16067 | *parytet = recenttet; |
16068 | for (i = 0; i < newtets->objects; i++) { |
16069 | searchtet = * (triface *) fastlookup(newtets, i); |
16070 | for (j = 0; j < 4; j++) { |
16071 | decode(searchtet.tet[j], neightet); |
16072 | if (!marktested(neightet)) { |
16073 | marktest(neightet); |
16074 | newtets->newindex((void **) &parytet); |
16075 | *parytet = neightet; |
16076 | } |
16077 | } |
16078 | } |
16079 | |
16080 | cavpoints->restart(); |
16081 | cavfaces->restart(); |
16082 | |
16083 | if (crosstets->objects > baknum) { |
16084 | // The cavity has been enlarged. |
16085 | cavityexpcount++; |
16086 | } |
16087 | |
16088 | // Restore the original values. |
16089 | hullsize = bakhullsize; |
16090 | checksubsegflag = bakchecksubsegflag; |
16091 | checksubfaceflag = bakchecksubfaceflag; |
16092 | b->verbose++; |
16093 | b->plc = 1; |
16094 | } |
16095 | |
16096 | /////////////////////////////////////////////////////////////////////////////// |
16097 | // // |
16098 | // fillcavity() Fill new tets into the cavity. // |
16099 | // // |
16100 | // The new tets are stored in two disjoint sets(which share the same facet). // |
16101 | // 'topfaces' and 'botfaces' are the boundaries of these two sets, respect- // |
16102 | // ively. 'midfaces' is empty on input, and will store faces in the facet. // |
16103 | // // |
16104 | // Important: This routine assumes all vertices of the missing region R are // |
16105 | // marktested, i.e., pmarktested(p) returns true. // |
16106 | // // |
16107 | /////////////////////////////////////////////////////////////////////////////// |
16108 | |
16109 | bool tetgenmesh::fillcavity(arraypool* topshells, arraypool* botshells, |
16110 | arraypool* midfaces, arraypool* missingshs, |
16111 | arraypool* topnewtets, arraypool* botnewtets, |
16112 | triface* crossedge) |
16113 | { |
16114 | arraypool *cavshells; |
16115 | triface bdrytet, neightet, *parytet; |
16116 | triface searchtet, spintet; |
16117 | face *parysh; |
16118 | face checkseg; |
16119 | point pa, pb, pc; |
16120 | bool mflag; |
16121 | int t1ver; |
16122 | int i, j; |
16123 | |
16124 | // Connect newtets to tets outside the cavity. These connections are needed |
16125 | // for identifying the middle faces (which belong to R). |
16126 | for (j = 0; j < 2; j++) { |
16127 | cavshells = (j == 0 ? topshells : botshells); |
16128 | if (cavshells != NULL) { |
16129 | for (i = 0; i < cavshells->objects; i++) { |
16130 | // Get a temp subface. |
16131 | parysh = (face *) fastlookup(cavshells, i); |
16132 | // Get the boundary tet outside the cavity (saved in sh[0]). |
16133 | decode(parysh->sh[0], bdrytet); |
16134 | pa = org(bdrytet); |
16135 | pb = dest(bdrytet); |
16136 | pc = apex(bdrytet); |
16137 | // Get the adjacent new tet inside the cavity. |
16138 | stpivot(*parysh, neightet); |
16139 | // Mark neightet as an interior tet of this cavity. |
16140 | infect(neightet); |
16141 | // Connect the two tets (the old connections are replaced). |
16142 | bond(bdrytet, neightet); |
16143 | tsdissolve(neightet); // Clear the pointer to tmpsh. |
16144 | // Update the point-to-tets map. |
16145 | setpoint2tet(pa, (tetrahedron) neightet.tet); |
16146 | setpoint2tet(pb, (tetrahedron) neightet.tet); |
16147 | setpoint2tet(pc, (tetrahedron) neightet.tet); |
16148 | } // i |
16149 | } // if (cavshells != NULL) |
16150 | } // j |
16151 | |
16152 | if (crossedge != NULL) { |
16153 | // Glue top and bottom tets at their common facet. |
16154 | triface toptet, bottet, spintet, *midface; |
16155 | point pd, pe; |
16156 | REAL ori; |
16157 | int types[2], poss[4]; |
16158 | int interflag; |
16159 | int bflag; |
16160 | |
16161 | mflag = false; |
16162 | pd = org(*crossedge); |
16163 | pe = dest(*crossedge); |
16164 | |
16165 | // Search the first (middle) face in R. |
16166 | // Since R may be non-convex, we must make sure that the face is in the |
16167 | // interior of R. We search a face in 'topnewtets' whose three vertices |
16168 | // are on R and it intersects 'crossedge' in its interior. Then search |
16169 | // a matching face in 'botnewtets'. |
16170 | for (i = 0; i < topnewtets->objects && !mflag; i++) { |
16171 | searchtet = * (triface *) fastlookup(topnewtets, i); |
16172 | for (searchtet.ver = 0; searchtet.ver < 4 && !mflag; searchtet.ver++) { |
16173 | pa = org(searchtet); |
16174 | if (pmarktested(pa)) { |
16175 | pb = dest(searchtet); |
16176 | if (pmarktested(pb)) { |
16177 | pc = apex(searchtet); |
16178 | if (pmarktested(pc)) { |
16179 | // Check if this face intersects [d,e]. |
16180 | interflag = tri_edge_test(pa,pb,pc,pd,pe,NULL,1,types,poss); |
16181 | if (interflag == 2) { |
16182 | // They intersect at a single point. Found. |
16183 | toptet = searchtet; |
16184 | // The face lies in the interior of R. |
16185 | // Get the tet (in topnewtets) which lies above R. |
16186 | ori = orient3d(pa, pb, pc, pd); |
16187 | assert(ori != 0); |
16188 | if (ori < 0) { |
16189 | fsymself(toptet); |
16190 | pa = org(toptet); |
16191 | pb = dest(toptet); |
16192 | } |
16193 | // Search the face [b,a,c] in 'botnewtets'. |
16194 | for (j = 0; j < botnewtets->objects; j++) { |
16195 | neightet = * (triface *) fastlookup(botnewtets, j); |
16196 | // Is neightet contains 'b'. |
16197 | if ((point) neightet.tet[4] == pb) { |
16198 | neightet.ver = 11; |
16199 | } else if ((point) neightet.tet[5] == pb) { |
16200 | neightet.ver = 3; |
16201 | } else if ((point) neightet.tet[6] == pb) { |
16202 | neightet.ver = 7; |
16203 | } else if ((point) neightet.tet[7] == pb) { |
16204 | neightet.ver = 0; |
16205 | } else { |
16206 | continue; |
16207 | } |
16208 | // Is the 'neightet' contains edge [b,a]. |
16209 | if (dest(neightet) == pa) { |
16210 | // 'neightet' is just the edge. |
16211 | } else if (apex(neightet) == pa) { |
16212 | eprevesymself(neightet); |
16213 | } else if (oppo(neightet) == pa) { |
16214 | esymself(neightet); |
16215 | enextself(neightet); |
16216 | } else { |
16217 | continue; |
16218 | } |
16219 | // Is 'neightet' the face [b,a,c]. |
16220 | if (apex(neightet) == pc) { |
16221 | bottet = neightet; |
16222 | mflag = true; |
16223 | break; |
16224 | } |
16225 | } // j |
16226 | } // if (interflag == 2) |
16227 | } // pc |
16228 | } // pb |
16229 | } // pa |
16230 | } // toptet.ver |
16231 | } // i |
16232 | |
16233 | if (mflag) { |
16234 | // Found a pair of matched faces in 'toptet' and 'bottet'. |
16235 | bond(toptet, bottet); |
16236 | // Both are interior tets. |
16237 | infect(toptet); |
16238 | infect(bottet); |
16239 | // Add this face into search list. |
16240 | markface(toptet); |
16241 | midfaces->newindex((void **) &parytet); |
16242 | *parytet = toptet; |
16243 | } else { |
16244 | // No pair of 'toptet' and 'bottet'. |
16245 | toptet.tet = NULL; |
16246 | // Randomly split an interior edge of R. |
16247 | i = randomnation(missingshs->objects - 1); |
16248 | recentsh = * (face *) fastlookup(missingshs, i); |
16249 | } |
16250 | |
16251 | // Find other middle faces, connect top and bottom tets. |
16252 | for (i = 0; i < midfaces->objects && mflag; i++) { |
16253 | // Get a matched middle face [a, b, c] |
16254 | midface = (triface *) fastlookup(midfaces, i); |
16255 | // The tet must be a new created tet (marktested). |
16256 | assert(marktested(*midface)); // SELF_CHECK |
16257 | // Check the neighbors at the edges of this face. |
16258 | for (j = 0; j < 3 && mflag; j++) { |
16259 | toptet = *midface; |
16260 | bflag = false; |
16261 | while (1) { |
16262 | // Go to the next face in the same tet. |
16263 | esymself(toptet); |
16264 | pc = apex(toptet); |
16265 | if (pmarktested(pc)) { |
16266 | break; // Find a subface. |
16267 | } |
16268 | if (pc == dummypoint) { |
16269 | assert(0); // Check this case. |
16270 | break; // Find a subface. |
16271 | } |
16272 | // Go to the adjacent tet. |
16273 | fsymself(toptet); |
16274 | // Do we walk outside the cavity? |
16275 | if (!marktested(toptet)) { |
16276 | // Yes, the adjacent face is not a middle face. |
16277 | bflag = true; break; |
16278 | } |
16279 | } |
16280 | if (!bflag) { |
16281 | // assert(marktested(toptet)); // SELF_CHECK |
16282 | if (!facemarked(toptet)) { |
16283 | fsym(*midface, bottet); |
16284 | spintet = bottet; |
16285 | while (1) { |
16286 | esymself(bottet); |
16287 | pd = apex(bottet); |
16288 | if (pd == pc) break; // Face matched. |
16289 | fsymself(bottet); |
16290 | if (bottet.tet == spintet.tet) { |
16291 | // Not found a matched bottom face. |
16292 | mflag = false; |
16293 | break; |
16294 | } |
16295 | } // while (1) |
16296 | if (mflag) { |
16297 | if (marktested(bottet)) { |
16298 | // Connect two tets together. |
16299 | bond(toptet, bottet); |
16300 | // Both are interior tets. |
16301 | infect(toptet); |
16302 | infect(bottet); |
16303 | // Add this face into list. |
16304 | markface(toptet); |
16305 | midfaces->newindex((void **) &parytet); |
16306 | *parytet = toptet; |
16307 | } |
16308 | } else { // mflag == false |
16309 | // Adjust 'toptet' and 'bottet' to be the crossing edges. |
16310 | fsym(*midface, bottet); |
16311 | spintet = bottet; |
16312 | while (1) { |
16313 | esymself(bottet); |
16314 | pd = apex(bottet); |
16315 | if (pmarktested(pd)) { |
16316 | // assert(pd != pc); |
16317 | // Let 'toptet' be [a,b,c,#], and 'bottet' be [b,a,d,*]. |
16318 | // Adjust 'toptet' and 'bottet' to be the crossing edges. |
16319 | // Test orient3d(b,c,#,d). |
16320 | ori = orient3d(dest(toptet), pc, oppo(toptet), pd); |
16321 | if (ori < 0) { |
16322 | // Edges [a,d] and [b,c] cross each other. |
16323 | enextself(toptet); // [b,c] |
16324 | enextself(bottet); // [a,d] |
16325 | } else if (ori > 0) { |
16326 | // Edges [a,c] and [b,d] cross each other. |
16327 | eprevself(toptet); // [c,a] |
16328 | eprevself(bottet); // [d,b] |
16329 | } else { |
16330 | // b,c,#,and d are coplanar!. |
16331 | assert(0); |
16332 | } |
16333 | break; // Not matched |
16334 | } |
16335 | fsymself(bottet); |
16336 | assert (bottet.tet != spintet.tet); |
16337 | } |
16338 | } // if (!mflag) |
16339 | } // if (!facemarked(toptet)) |
16340 | } // if (!bflag) |
16341 | enextself(*midface); |
16342 | } // j |
16343 | } // i |
16344 | |
16345 | if (mflag) { |
16346 | if (b->verbose > 2) { |
16347 | printf(" Found %ld middle subfaces.\n" , midfaces->objects); |
16348 | } |
16349 | face oldsh, newsh, casout, casin, neighsh; |
16350 | |
16351 | oldsh = * (face *) fastlookup(missingshs, 0); |
16352 | |
16353 | // Create new subfaces to fill the region R. |
16354 | for (i = 0; i < midfaces->objects; i++) { |
16355 | // Get a matched middle face [a, b, c] |
16356 | midface = (triface *) fastlookup(midfaces, i); |
16357 | unmarkface(*midface); |
16358 | makeshellface(subfaces, &newsh); |
16359 | setsorg(newsh, org(*midface)); |
16360 | setsdest(newsh, dest(*midface)); |
16361 | setsapex(newsh, apex(*midface)); |
16362 | // The new subface gets its markers from the old one. |
16363 | setshellmark(newsh, shellmark(oldsh)); |
16364 | if (checkconstraints) { |
16365 | setareabound(newsh, areabound(oldsh)); |
16366 | } |
16367 | // Connect the new subface to adjacent tets. |
16368 | tsbond(*midface, newsh); |
16369 | fsym(*midface, neightet); |
16370 | sesymself(newsh); |
16371 | tsbond(neightet, newsh); |
16372 | } |
16373 | |
16374 | // Connect new subfaces together and to the bdry of R. |
16375 | // Delete faked segments. |
16376 | for (i = 0; i < midfaces->objects; i++) { |
16377 | // Get a matched middle face [a, b, c] |
16378 | midface = (triface *) fastlookup(midfaces, i); |
16379 | for (j = 0; j < 3; j++) { |
16380 | tspivot(*midface, newsh); |
16381 | spivot(newsh, casout); |
16382 | if (casout.sh == NULL) { |
16383 | // Search its neighbor. |
16384 | fnext(*midface, searchtet); |
16385 | while (1) { |
16386 | // (1) First check if this side is a bdry edge of R. |
16387 | tsspivot1(searchtet, checkseg); |
16388 | if (checkseg.sh != NULL) { |
16389 | // It's a bdry edge of R. |
16390 | assert(!infected(searchtet)); // It must not be a cavity tet. |
16391 | // Get the old subface. |
16392 | checkseg.shver = 0; |
16393 | spivot(checkseg, oldsh); |
16394 | if (sinfected(checkseg)) { |
16395 | // It's a faked segment. Delete it. |
16396 | spintet = searchtet; |
16397 | while (1) { |
16398 | tssdissolve1(spintet); |
16399 | fnextself(spintet); |
16400 | if (spintet.tet == searchtet.tet) break; |
16401 | } |
16402 | shellfacedealloc(subsegs, checkseg.sh); |
16403 | ssdissolve(oldsh); |
16404 | checkseg.sh = NULL; |
16405 | } |
16406 | spivot(oldsh, casout); |
16407 | if (casout.sh != NULL) { |
16408 | casin = casout; |
16409 | if (checkseg.sh != NULL) { |
16410 | // Make sure that the subface has the right ori at the |
16411 | // segment. |
16412 | checkseg.shver = 0; |
16413 | if (sorg(newsh) != sorg(checkseg)) { |
16414 | sesymself(newsh); |
16415 | } |
16416 | spivot(casin, neighsh); |
16417 | while (neighsh.sh != oldsh.sh) { |
16418 | casin = neighsh; |
16419 | spivot(casin, neighsh); |
16420 | } |
16421 | } |
16422 | sbond1(newsh, casout); |
16423 | sbond1(casin, newsh); |
16424 | } |
16425 | if (checkseg.sh != NULL) { |
16426 | ssbond(newsh, checkseg); |
16427 | } |
16428 | break; |
16429 | } // if (checkseg.sh != NULL) |
16430 | // (2) Second check if this side is an interior edge of R. |
16431 | tspivot(searchtet, neighsh); |
16432 | if (neighsh.sh != NULL) { |
16433 | // Found an adjacent subface of newsh (an interior edge). |
16434 | sbond(newsh, neighsh); |
16435 | break; |
16436 | } |
16437 | fnextself(searchtet); |
16438 | assert(searchtet.tet != midface->tet); |
16439 | } // while (1) |
16440 | } // if (casout.sh == NULL) |
16441 | enextself(*midface); |
16442 | } // j |
16443 | } // i |
16444 | |
16445 | // Delete old subfaces. |
16446 | for (i = 0; i < missingshs->objects; i++) { |
16447 | parysh = (face *) fastlookup(missingshs, i); |
16448 | shellfacedealloc(subfaces, parysh->sh); |
16449 | } |
16450 | } else { |
16451 | if (toptet.tet != NULL) { |
16452 | // Faces at top and bottom are not matched. |
16453 | // Choose a Steiner point in R. |
16454 | // Split one of the crossing edges. |
16455 | pa = org(toptet); |
16456 | pb = dest(toptet); |
16457 | pc = org(bottet); |
16458 | pd = dest(bottet); |
16459 | // Search an edge in R which is either [a,b] or [c,d]. |
16460 | // Reminder: Subfaces in this list 'missingshs', except the first |
16461 | // one, represents an interior edge of R. |
16462 | for (i = 1; i < missingshs->objects; i++) { |
16463 | parysh = (face *) fastlookup(missingshs, i); |
16464 | if (((sorg(*parysh) == pa) && (sdest(*parysh) == pb)) || |
16465 | ((sorg(*parysh) == pb) && (sdest(*parysh) == pa))) break; |
16466 | if (((sorg(*parysh) == pc) && (sdest(*parysh) == pd)) || |
16467 | ((sorg(*parysh) == pd) && (sdest(*parysh) == pc))) break; |
16468 | } |
16469 | if (i < missingshs->objects) { |
16470 | // Found. Return it. |
16471 | recentsh = *parysh; |
16472 | } else { |
16473 | assert(0); |
16474 | } |
16475 | } |
16476 | } |
16477 | |
16478 | midfaces->restart(); |
16479 | } else { |
16480 | mflag = true; |
16481 | } |
16482 | |
16483 | // Delete the temp subfaces. |
16484 | for (j = 0; j < 2; j++) { |
16485 | cavshells = (j == 0 ? topshells : botshells); |
16486 | if (cavshells != NULL) { |
16487 | for (i = 0; i < cavshells->objects; i++) { |
16488 | parysh = (face *) fastlookup(cavshells, i); |
16489 | shellfacedealloc(subfaces, parysh->sh); |
16490 | } |
16491 | } |
16492 | } |
16493 | |
16494 | topshells->restart(); |
16495 | if (botshells != NULL) { |
16496 | botshells->restart(); |
16497 | } |
16498 | |
16499 | return mflag; |
16500 | } |
16501 | |
16502 | /////////////////////////////////////////////////////////////////////////////// |
16503 | // // |
16504 | // carvecavity() Delete old tets and outer new tets of the cavity. // |
16505 | // // |
16506 | /////////////////////////////////////////////////////////////////////////////// |
16507 | |
16508 | void tetgenmesh::carvecavity(arraypool *crosstets, arraypool *topnewtets, |
16509 | arraypool *botnewtets) |
16510 | { |
16511 | arraypool *newtets; |
16512 | shellface *sptr, *ssptr; |
16513 | triface *parytet, *pnewtet, newtet, neightet, spintet; |
16514 | face checksh, *parysh; |
16515 | face checkseg, *paryseg; |
16516 | int t1ver; |
16517 | int i, j; |
16518 | |
16519 | if (b->verbose > 2) { |
16520 | printf(" Carve cavity: %ld old tets.\n" , crosstets->objects); |
16521 | } |
16522 | |
16523 | // First process subfaces and segments which are adjacent to the cavity. |
16524 | // They must be re-connected to new tets in the cavity. |
16525 | // Comment: It is possible that some subfaces and segments are completely |
16526 | // inside the cavity. This can happen even if the cavity is not enlarged. |
16527 | // Before deleting the old tets, find and queue all interior subfaces |
16528 | // and segments. They will be recovered later. 2010-05-06. |
16529 | |
16530 | // Collect all subfaces and segments which attached to the old tets. |
16531 | for (i = 0; i < crosstets->objects; i++) { |
16532 | parytet = (triface *) fastlookup(crosstets, i); |
16533 | if ((sptr = (shellface*) parytet->tet[9]) != NULL) { |
16534 | for (j = 0; j < 4; j++) { |
16535 | if (sptr[j]) { |
16536 | sdecode(sptr[j], checksh); |
16537 | if (!sinfected(checksh)) { |
16538 | sinfect(checksh); |
16539 | cavetetshlist->newindex((void **) &parysh); |
16540 | *parysh = checksh; |
16541 | } |
16542 | } |
16543 | } // j |
16544 | } |
16545 | if ((ssptr = (shellface*) parytet->tet[8]) != NULL) { |
16546 | for (j = 0; j < 6; j++) { |
16547 | if (ssptr[j]) { |
16548 | sdecode(ssptr[j], checkseg); |
16549 | // Skip a deleted segment (was a faked segment) |
16550 | if (checkseg.sh[3] != NULL) { |
16551 | if (!sinfected(checkseg)) { |
16552 | sinfect(checkseg); |
16553 | cavetetseglist->newindex((void **) &paryseg); |
16554 | *paryseg = checkseg; |
16555 | } |
16556 | } |
16557 | } |
16558 | } // j |
16559 | } |
16560 | } // i |
16561 | |
16562 | // Uninfect collected subfaces. |
16563 | for (i = 0; i < cavetetshlist->objects; i++) { |
16564 | parysh = (face *) fastlookup(cavetetshlist, i); |
16565 | suninfect(*parysh); |
16566 | } |
16567 | // Uninfect collected segments. |
16568 | for (i = 0; i < cavetetseglist->objects; i++) { |
16569 | paryseg = (face *) fastlookup(cavetetseglist, i); |
16570 | suninfect(*paryseg); |
16571 | } |
16572 | |
16573 | // Connect subfaces to new tets. |
16574 | for (i = 0; i < cavetetshlist->objects; i++) { |
16575 | parysh = (face *) fastlookup(cavetetshlist, i); |
16576 | // Get an adjacent tet at this subface. |
16577 | stpivot(*parysh, neightet); |
16578 | // Does this tet lie inside the cavity. |
16579 | if (infected(neightet)) { |
16580 | // Yes. Get the other adjacent tet at this subface. |
16581 | sesymself(*parysh); |
16582 | stpivot(*parysh, neightet); |
16583 | // Does this tet lie inside the cavity. |
16584 | if (infected(neightet)) { |
16585 | checksh = *parysh; |
16586 | stdissolve(checksh); |
16587 | caveencshlist->newindex((void **) &parysh); |
16588 | *parysh = checksh; |
16589 | } |
16590 | } |
16591 | if (!infected(neightet)) { |
16592 | // Found an outside tet. Re-connect this subface to a new tet. |
16593 | fsym(neightet, newtet); |
16594 | assert(marktested(newtet)); // It's a new tet. |
16595 | sesymself(*parysh); |
16596 | tsbond(newtet, *parysh); |
16597 | } |
16598 | } // i |
16599 | |
16600 | |
16601 | for (i = 0; i < cavetetseglist->objects; i++) { |
16602 | checkseg = * (face *) fastlookup(cavetetseglist, i); |
16603 | // Check if the segment is inside the cavity. |
16604 | sstpivot1(checkseg, neightet); |
16605 | spintet = neightet; |
16606 | while (1) { |
16607 | if (!infected(spintet)) { |
16608 | // This segment is on the boundary of the cavity. |
16609 | break; |
16610 | } |
16611 | fnextself(spintet); |
16612 | if (spintet.tet == neightet.tet) { |
16613 | sstdissolve1(checkseg); |
16614 | caveencseglist->newindex((void **) &paryseg); |
16615 | *paryseg = checkseg; |
16616 | break; |
16617 | } |
16618 | } |
16619 | if (!infected(spintet)) { |
16620 | // A boundary segment. Connect this segment to the new tets. |
16621 | sstbond1(checkseg, spintet); |
16622 | neightet = spintet; |
16623 | while (1) { |
16624 | tssbond1(spintet, checkseg); |
16625 | fnextself(spintet); |
16626 | if (spintet.tet == neightet.tet) break; |
16627 | } |
16628 | } |
16629 | } // i |
16630 | |
16631 | |
16632 | cavetetshlist->restart(); |
16633 | cavetetseglist->restart(); |
16634 | |
16635 | // Delete the old tets in cavity. |
16636 | for (i = 0; i < crosstets->objects; i++) { |
16637 | parytet = (triface *) fastlookup(crosstets, i); |
16638 | if (ishulltet(*parytet)) { |
16639 | hullsize--; |
16640 | } |
16641 | tetrahedrondealloc(parytet->tet); |
16642 | } |
16643 | |
16644 | crosstets->restart(); // crosstets will be re-used. |
16645 | |
16646 | // Collect new tets in cavity. Some new tets have already been found |
16647 | // (and infected) in the fillcavity(). We first collect them. |
16648 | for (j = 0; j < 2; j++) { |
16649 | newtets = (j == 0 ? topnewtets : botnewtets); |
16650 | if (newtets != NULL) { |
16651 | for (i = 0; i < newtets->objects; i++) { |
16652 | parytet = (triface *) fastlookup(newtets, i); |
16653 | if (infected(*parytet)) { |
16654 | crosstets->newindex((void **) &pnewtet); |
16655 | *pnewtet = *parytet; |
16656 | } |
16657 | } // i |
16658 | } |
16659 | } // j |
16660 | |
16661 | // Now we collect all new tets in cavity. |
16662 | for (i = 0; i < crosstets->objects; i++) { |
16663 | parytet = (triface *) fastlookup(crosstets, i); |
16664 | for (j = 0; j < 4; j++) { |
16665 | decode(parytet->tet[j], neightet); |
16666 | if (marktested(neightet)) { // Is it a new tet? |
16667 | if (!infected(neightet)) { |
16668 | // Find an interior tet. |
16669 | //assert((point) neightet.tet[7] != dummypoint); // SELF_CHECK |
16670 | infect(neightet); |
16671 | crosstets->newindex((void **) &pnewtet); |
16672 | *pnewtet = neightet; |
16673 | } |
16674 | } |
16675 | } // j |
16676 | } // i |
16677 | |
16678 | parytet = (triface *) fastlookup(crosstets, 0); |
16679 | recenttet = *parytet; // Remember a live handle. |
16680 | |
16681 | // Delete outer new tets. |
16682 | for (j = 0; j < 2; j++) { |
16683 | newtets = (j == 0 ? topnewtets : botnewtets); |
16684 | if (newtets != NULL) { |
16685 | for (i = 0; i < newtets->objects; i++) { |
16686 | parytet = (triface *) fastlookup(newtets, i); |
16687 | if (infected(*parytet)) { |
16688 | // This is an interior tet. |
16689 | uninfect(*parytet); |
16690 | unmarktest(*parytet); |
16691 | if (ishulltet(*parytet)) { |
16692 | hullsize++; |
16693 | } |
16694 | } else { |
16695 | // An outer tet. Delete it. |
16696 | tetrahedrondealloc(parytet->tet); |
16697 | } |
16698 | } |
16699 | } |
16700 | } |
16701 | |
16702 | crosstets->restart(); |
16703 | topnewtets->restart(); |
16704 | if (botnewtets != NULL) { |
16705 | botnewtets->restart(); |
16706 | } |
16707 | } |
16708 | |
16709 | /////////////////////////////////////////////////////////////////////////////// |
16710 | // // |
16711 | // restorecavity() Reconnect old tets and delete new tets of the cavity. // |
16712 | // // |
16713 | /////////////////////////////////////////////////////////////////////////////// |
16714 | |
16715 | void tetgenmesh::restorecavity(arraypool *crosstets, arraypool *topnewtets, |
16716 | arraypool *botnewtets, arraypool *missingshbds) |
16717 | { |
16718 | triface *parytet, neightet, spintet; |
16719 | face *parysh; |
16720 | face checkseg; |
16721 | point *ppt; |
16722 | int t1ver; |
16723 | int i, j; |
16724 | |
16725 | // Reconnect crossing tets to cavity boundary. |
16726 | for (i = 0; i < crosstets->objects; i++) { |
16727 | parytet = (triface *) fastlookup(crosstets, i); |
16728 | assert(infected(*parytet)); // SELF_CHECK |
16729 | parytet->ver = 0; |
16730 | for (parytet->ver = 0; parytet->ver < 4; parytet->ver++) { |
16731 | fsym(*parytet, neightet); |
16732 | if (!infected(neightet)) { |
16733 | // Restore the old connections of tets. |
16734 | bond(*parytet, neightet); |
16735 | } |
16736 | } |
16737 | // Update the point-to-tet map. |
16738 | parytet->ver = 0; |
16739 | ppt = (point *) &(parytet->tet[4]); |
16740 | for (j = 0; j < 4; j++) { |
16741 | setpoint2tet(ppt[j], encode(*parytet)); |
16742 | } |
16743 | } |
16744 | |
16745 | // Uninfect all crossing tets. |
16746 | for (i = 0; i < crosstets->objects; i++) { |
16747 | parytet = (triface *) fastlookup(crosstets, i); |
16748 | uninfect(*parytet); |
16749 | } |
16750 | |
16751 | // Remember a live handle. |
16752 | recenttet = * (triface *) fastlookup(crosstets, 0); |
16753 | |
16754 | // Delete faked segments. |
16755 | for (i = 0; i < missingshbds->objects; i++) { |
16756 | parysh = (face *) fastlookup(missingshbds, i); |
16757 | sspivot(*parysh, checkseg); |
16758 | assert(checkseg.sh != NULL); |
16759 | if (checkseg.sh[3] != NULL) { |
16760 | if (sinfected(checkseg)) { |
16761 | // It's a faked segment. Delete it. |
16762 | sstpivot1(checkseg, neightet); |
16763 | spintet = neightet; |
16764 | while (1) { |
16765 | tssdissolve1(spintet); |
16766 | fnextself(spintet); |
16767 | if (spintet.tet == neightet.tet) break; |
16768 | } |
16769 | shellfacedealloc(subsegs, checkseg.sh); |
16770 | ssdissolve(*parysh); |
16771 | //checkseg.sh = NULL; |
16772 | } |
16773 | } |
16774 | } // i |
16775 | |
16776 | // Delete new tets. |
16777 | for (i = 0; i < topnewtets->objects; i++) { |
16778 | parytet = (triface *) fastlookup(topnewtets, i); |
16779 | tetrahedrondealloc(parytet->tet); |
16780 | } |
16781 | |
16782 | if (botnewtets != NULL) { |
16783 | for (i = 0; i < botnewtets->objects; i++) { |
16784 | parytet = (triface *) fastlookup(botnewtets, i); |
16785 | tetrahedrondealloc(parytet->tet); |
16786 | } |
16787 | } |
16788 | |
16789 | crosstets->restart(); |
16790 | topnewtets->restart(); |
16791 | if (botnewtets != NULL) { |
16792 | botnewtets->restart(); |
16793 | } |
16794 | } |
16795 | |
16796 | /////////////////////////////////////////////////////////////////////////////// |
16797 | // // |
16798 | // flipcertify() Insert a crossing face into priority queue. // |
16799 | // // |
16800 | // A crossing face of a facet must have at least one top and one bottom ver- // |
16801 | // tex of the facet. // |
16802 | // // |
16803 | /////////////////////////////////////////////////////////////////////////////// |
16804 | |
16805 | void tetgenmesh::flipcertify(triface *chkface,badface **pqueue,point plane_pa, |
16806 | point plane_pb, point plane_pc) |
16807 | { |
16808 | badface *parybf, *prevbf, *nextbf; |
16809 | triface neightet; |
16810 | face checksh; |
16811 | point p[5]; |
16812 | REAL w[5]; |
16813 | REAL insph, ori4; |
16814 | int topi, boti; |
16815 | int i; |
16816 | |
16817 | // Compute the flip time \tau. |
16818 | fsym(*chkface, neightet); |
16819 | |
16820 | p[0] = org(*chkface); |
16821 | p[1] = dest(*chkface); |
16822 | p[2] = apex(*chkface); |
16823 | p[3] = oppo(*chkface); |
16824 | p[4] = oppo(neightet); |
16825 | |
16826 | // Check if the face is a crossing face. |
16827 | topi = boti = 0; |
16828 | for (i = 0; i < 3; i++) { |
16829 | if (pmarktest2ed(p[i])) topi++; |
16830 | if (pmarktest3ed(p[i])) boti++; |
16831 | } |
16832 | if ((topi == 0) || (boti == 0)) { |
16833 | // It is not a crossing face. |
16834 | // return; |
16835 | for (i = 3; i < 5; i++) { |
16836 | if (pmarktest2ed(p[i])) topi++; |
16837 | if (pmarktest3ed(p[i])) boti++; |
16838 | } |
16839 | if ((topi == 0) || (boti == 0)) { |
16840 | // The two tets sharing at this face are on one side of the facet. |
16841 | // Check if this face is locally Delaunay (due to rounding error). |
16842 | if ((p[3] != dummypoint) && (p[4] != dummypoint)) { |
16843 | // Do not check it if it is a subface. |
16844 | tspivot(*chkface, checksh); |
16845 | if (checksh.sh == NULL) { |
16846 | insph = insphere_s(p[1], p[0], p[2], p[3], p[4]); |
16847 | assert(insph != 0); |
16848 | if (insph > 0) { |
16849 | // Add the face into queue. |
16850 | if (b->verbose > 2) { |
16851 | printf(" A locally non-Delanay face (%d, %d, %d)-%d,%d\n" , |
16852 | pointmark(p[0]), pointmark(p[1]), pointmark(p[2]), |
16853 | pointmark(p[3]), pointmark(p[4])); |
16854 | } |
16855 | parybf = (badface *) flippool->alloc(); |
16856 | parybf->key = 0.; // tau = 0, do immediately. |
16857 | parybf->tt = *chkface; |
16858 | parybf->forg = p[0]; |
16859 | parybf->fdest = p[1]; |
16860 | parybf->fapex = p[2]; |
16861 | parybf->foppo = p[3]; |
16862 | parybf->noppo = p[4]; |
16863 | // Add it at the top of the priority queue. |
16864 | if (*pqueue == NULL) { |
16865 | *pqueue = parybf; |
16866 | parybf->nextitem = NULL; |
16867 | } else { |
16868 | parybf->nextitem = *pqueue; |
16869 | *pqueue = parybf; |
16870 | } |
16871 | } // if (insph > 0) |
16872 | } // if (checksh.sh == NULL) |
16873 | } |
16874 | //return; |
16875 | } |
16876 | return; // Test: omit this face. |
16877 | } |
16878 | |
16879 | // Decide the "height" for each point. |
16880 | for (i = 0; i < 5; i++) { |
16881 | if (pmarktest2ed(p[i])) { |
16882 | // A top point has a positive weight. |
16883 | w[i] = orient3dfast(plane_pa, plane_pb, plane_pc, p[i]); |
16884 | if (w[i] < 0) w[i] = -w[i]; |
16885 | assert(w[i] != 0); |
16886 | } else { |
16887 | w[i] = 0; |
16888 | } |
16889 | } |
16890 | |
16891 | // Make sure orient3d(p[1], p[0], p[2], p[3]) > 0; |
16892 | // Hence if (insphere(p[1], p[0], p[2], p[3], p[4]) > 0) means that |
16893 | // p[4] lies inside the circumsphere of p[1], p[0], p[2], p[3]. |
16894 | // The same if orient4d(p[1], p[0], p[2], p[3], p[4]) > 0 means that |
16895 | // p[4] lies below the oriented hyperplane passing through |
16896 | // p[1], p[0], p[2], p[3]. |
16897 | |
16898 | insph = insphere(p[1], p[0], p[2], p[3], p[4]); |
16899 | ori4 = orient4d(p[1], p[0], p[2], p[3], p[4], w[1], w[0], w[2], w[3], w[4]); |
16900 | |
16901 | if (b->verbose > 2) { |
16902 | printf(" Heights: (%g, %g, %g, %g, %g)\n" , w[0],w[1],w[2],w[3],w[4]); |
16903 | printf(" Insph: %g, ori4: %g, tau = %g\n" , insph, ori4, -insph/ori4); |
16904 | } |
16905 | |
16906 | if (ori4 > 0) { |
16907 | // Add the face into queue. |
16908 | if (b->verbose > 2) { |
16909 | printf(" Insert face (%d, %d, %d) - %d, %d\n" , pointmark(p[0]), |
16910 | pointmark(p[1]), pointmark(p[2]), pointmark(p[3]), pointmark(p[4])); |
16911 | } |
16912 | |
16913 | parybf = (badface *) flippool->alloc(); |
16914 | |
16915 | parybf->key = -insph / ori4; |
16916 | parybf->tt = *chkface; |
16917 | parybf->forg = p[0]; |
16918 | parybf->fdest = p[1]; |
16919 | parybf->fapex = p[2]; |
16920 | parybf->foppo = p[3]; |
16921 | parybf->noppo = p[4]; |
16922 | |
16923 | // Push the face into priority queue. |
16924 | //pq.push(bface); |
16925 | if (*pqueue == NULL) { |
16926 | *pqueue = parybf; |
16927 | parybf->nextitem = NULL; |
16928 | } else { |
16929 | // Search an item whose key is larger or equal to current key. |
16930 | prevbf = NULL; |
16931 | nextbf = *pqueue; |
16932 | //if (!b->flipinsert_random) { // Default use a priority queue. |
16933 | // Insert the item into priority queue. |
16934 | while (nextbf != NULL) { |
16935 | if (nextbf->key < parybf->key) { |
16936 | prevbf = nextbf; |
16937 | nextbf = nextbf->nextitem; |
16938 | } else { |
16939 | break; |
16940 | } |
16941 | } |
16942 | //} // if (!b->flipinsert_random) |
16943 | // Insert the new item between prev and next items. |
16944 | if (prevbf == NULL) { |
16945 | *pqueue = parybf; |
16946 | } else { |
16947 | prevbf->nextitem = parybf; |
16948 | } |
16949 | parybf->nextitem = nextbf; |
16950 | } |
16951 | } else if (ori4 == 0) { |
16952 | |
16953 | } |
16954 | } |
16955 | |
16956 | /////////////////////////////////////////////////////////////////////////////// |
16957 | // // |
16958 | // flipinsertfacet() Insert a facet into a CDT by flips. // |
16959 | // // |
16960 | // The algorithm is described in Shewchuk's paper "Updating and Constructing // |
16961 | // Constrained Delaunay and Constrained Regular Triangulations by Flips", in // |
16962 | // Proc. 19th Ann. Symp. on Comput. Geom., 86--95, 2003. // |
16963 | // // |
16964 | // 'crosstets' contains the set of crossing tetrahedra (infected) of the // |
16965 | // facet. 'toppoints' and 'botpoints' are points lies above and below the // |
16966 | // facet, not on the facet. // |
16967 | // // |
16968 | /////////////////////////////////////////////////////////////////////////////// |
16969 | |
16970 | void tetgenmesh::flipinsertfacet(arraypool *crosstets, arraypool *toppoints, |
16971 | arraypool *botpoints, arraypool *midpoints) |
16972 | { |
16973 | arraypool *crossfaces, *bfacearray; |
16974 | triface fliptets[6], baktets[2], fliptet, newface; |
16975 | triface neightet, *parytet; |
16976 | face checksh; |
16977 | face checkseg; |
16978 | badface *pqueue; |
16979 | badface *popbf, bface; |
16980 | point plane_pa, plane_pb, plane_pc; |
16981 | point p1, p2, pd, pe; |
16982 | point *parypt; |
16983 | flipconstraints fc; |
16984 | REAL ori[3]; |
16985 | int convcount, copcount; |
16986 | int flipflag, fcount; |
16987 | int n, i; |
16988 | long f23count, f32count, f44count; |
16989 | long totalfcount; |
16990 | |
16991 | f23count = flip23count; |
16992 | f32count = flip32count; |
16993 | f44count = flip44count; |
16994 | |
16995 | // Get three affinely independent vertices in the missing region R. |
16996 | calculateabovepoint(midpoints, &plane_pa, &plane_pb, &plane_pc); |
16997 | |
16998 | // Mark top and bottom points. Do not mark midpoints. |
16999 | for (i = 0; i < toppoints->objects; i++) { |
17000 | parypt = (point *) fastlookup(toppoints, i); |
17001 | if (!pmarktested(*parypt)) { |
17002 | pmarktest2(*parypt); |
17003 | } |
17004 | } |
17005 | for (i = 0; i < botpoints->objects; i++) { |
17006 | parypt = (point *) fastlookup(botpoints, i); |
17007 | if (!pmarktested(*parypt)) { |
17008 | pmarktest3(*parypt); |
17009 | } |
17010 | } |
17011 | |
17012 | // Collect crossing faces. |
17013 | crossfaces = cavetetlist; // Re-use array 'cavetetlist'. |
17014 | |
17015 | // Each crossing face contains at least one bottom vertex and |
17016 | // one top vertex. |
17017 | for (i = 0; i < crosstets->objects; i++) { |
17018 | parytet = (triface *) fastlookup(crosstets, i); |
17019 | fliptet = *parytet; |
17020 | for (fliptet.ver = 0; fliptet.ver < 4; fliptet.ver++) { |
17021 | fsym(fliptet, neightet); |
17022 | if (infected(neightet)) { // It is an interior face. |
17023 | if (!marktested(neightet)) { // It is an unprocessed face. |
17024 | crossfaces->newindex((void **) &parytet); |
17025 | *parytet = fliptet; |
17026 | } |
17027 | } |
17028 | } |
17029 | marktest(fliptet); |
17030 | } |
17031 | |
17032 | if (b->verbose > 1) { |
17033 | printf(" Found %ld crossing faces.\n" , crossfaces->objects); |
17034 | } |
17035 | |
17036 | for (i = 0; i < crosstets->objects; i++) { |
17037 | parytet = (triface *) fastlookup(crosstets, i); |
17038 | unmarktest(*parytet); |
17039 | uninfect(*parytet); |
17040 | } |
17041 | |
17042 | // Initialize the priority queue. |
17043 | pqueue = NULL; |
17044 | |
17045 | for (i = 0; i < crossfaces->objects; i++) { |
17046 | parytet = (triface *) fastlookup(crossfaces, i); |
17047 | flipcertify(parytet, &pqueue, plane_pa, plane_pb, plane_pc); |
17048 | } |
17049 | crossfaces->restart(); |
17050 | |
17051 | // The list for temporarily storing unflipable faces. |
17052 | bfacearray = new arraypool(sizeof(triface), 4); |
17053 | |
17054 | |
17055 | fcount = 0; // Count the number of flips. |
17056 | |
17057 | // Flip insert the facet. |
17058 | while (pqueue != NULL) { |
17059 | |
17060 | // Pop a face from the priority queue. |
17061 | popbf = pqueue; |
17062 | bface = *popbf; |
17063 | |
17064 | // Update the queue. |
17065 | pqueue = pqueue->nextitem; |
17066 | |
17067 | // Delete the popped item from the pool. |
17068 | flippool->dealloc((void *) popbf); |
17069 | |
17070 | if (!isdeadtet(bface.tt)) { |
17071 | if ((org(bface.tt) == bface.forg) && (dest(bface.tt) == bface.fdest) && |
17072 | (apex(bface.tt) == bface.fapex) && (oppo(bface.tt) == bface.foppo)) { |
17073 | // It is still a crossing face of R. |
17074 | fliptet = bface.tt; |
17075 | fsym(fliptet, neightet); |
17076 | assert(!isdeadtet(neightet)); |
17077 | if (oppo(neightet) == bface.noppo) { |
17078 | pd = oppo(fliptet); |
17079 | pe = oppo(neightet); |
17080 | |
17081 | if (b->verbose > 2) { |
17082 | printf(" Get face (%d, %d, %d) - %d, %d, tau = %.17g\n" , |
17083 | pointmark(bface.forg), pointmark(bface.fdest), |
17084 | pointmark(bface.fapex), pointmark(bface.foppo), |
17085 | pointmark(bface.noppo), bface.key); |
17086 | } |
17087 | flipflag = 0; |
17088 | |
17089 | // Check for which type of flip can we do. |
17090 | convcount = 3; |
17091 | copcount = 0; |
17092 | for (i = 0; i < 3; i++) { |
17093 | p1 = org(fliptet); |
17094 | p2 = dest(fliptet); |
17095 | ori[i] = orient3d(p1, p2, pd, pe); |
17096 | if (ori[i] < 0) { |
17097 | convcount--; |
17098 | //break; |
17099 | } else if (ori[i] == 0) { |
17100 | convcount--; // Possible 4-to-4 flip. |
17101 | copcount++; |
17102 | //break; |
17103 | } |
17104 | enextself(fliptet); |
17105 | } |
17106 | |
17107 | if (convcount == 3) { |
17108 | // A 2-to-3 flip is found. |
17109 | // The face should not be a subface. |
17110 | tspivot(fliptet, checksh); |
17111 | assert(checksh.sh == NULL); |
17112 | |
17113 | fliptets[0] = fliptet; // abcd, d may be the new vertex. |
17114 | fliptets[1] = neightet; // bace. |
17115 | flip23(fliptets, 1, &fc); |
17116 | // Put the link faces into check list. |
17117 | for (i = 0; i < 3; i++) { |
17118 | eprevesym(fliptets[i], newface); |
17119 | crossfaces->newindex((void **) &parytet); |
17120 | *parytet = newface; |
17121 | } |
17122 | for (i = 0; i < 3; i++) { |
17123 | enextesym(fliptets[i], newface); |
17124 | crossfaces->newindex((void **) &parytet); |
17125 | *parytet = newface; |
17126 | } |
17127 | flipflag = 1; |
17128 | } else if (convcount == 2) { |
17129 | assert(copcount <= 1); |
17130 | //if (copcount <= 1) { |
17131 | // A 3-to-2 or 4-to-4 may be possible. |
17132 | // Get the edge which is locally non-convex or flat. |
17133 | for (i = 0; i < 3; i++) { |
17134 | if (ori[i] <= 0) break; |
17135 | enextself(fliptet); |
17136 | } |
17137 | // The edge should not be a segment. |
17138 | tsspivot1(fliptet, checkseg); |
17139 | assert(checkseg.sh == NULL); |
17140 | |
17141 | // Collect tets sharing at this edge. |
17142 | // NOTE: This operation may collect tets which lie outside the |
17143 | // cavity, e.g., when the edge lies on the boundary of the |
17144 | // cavity. Do not flip if there are outside tets at this edge. |
17145 | // 2012-07-27. |
17146 | esym(fliptet, fliptets[0]); // [b,a,d,c] |
17147 | n = 0; |
17148 | do { |
17149 | p1 = apex(fliptets[n]); |
17150 | if (!(pmarktested(p1) || pmarktest2ed(p1) || pmarktest3ed(p1))) { |
17151 | // This apex is not on the cavity. Hence the face does not |
17152 | // lie inside the cavity. Do not flip this edge. |
17153 | n = 1000; break; |
17154 | } |
17155 | fnext(fliptets[n], fliptets[n + 1]); |
17156 | n++; |
17157 | } while ((fliptets[n].tet != fliptet.tet) && (n < 5)); |
17158 | |
17159 | if (n == 3) { |
17160 | // Found a 3-to-2 flip. |
17161 | flip32(fliptets, 1, &fc); |
17162 | // Put the link faces into check list. |
17163 | for (i = 0; i < 3; i++) { |
17164 | esym(fliptets[0], newface); |
17165 | crossfaces->newindex((void **) &parytet); |
17166 | *parytet = newface; |
17167 | enextself(fliptets[0]); |
17168 | } |
17169 | for (i = 0; i < 3; i++) { |
17170 | esym(fliptets[1], newface); |
17171 | crossfaces->newindex((void **) &parytet); |
17172 | *parytet = newface; |
17173 | enextself(fliptets[1]); |
17174 | } |
17175 | flipflag = 1; |
17176 | } else if (n == 4) { |
17177 | if (copcount == 1) { |
17178 | // Found a 4-to-4 flip. |
17179 | // Let the six vertices are: a,b,c,d,e,f, where |
17180 | // fliptets[0] = [b,a,d,c] |
17181 | // [1] = [b,a,c,e] |
17182 | // [2] = [b,a,e,f] |
17183 | // [3] = [b,a,f,d] |
17184 | // After the 4-to-4 flip, edge [a,b] is flipped, edge [e,d] |
17185 | // is created. |
17186 | // First do a 2-to-3 flip. |
17187 | // Comment: This flip temporarily creates a degenerated |
17188 | // tet (whose volume is zero). It will be removed by the |
17189 | // followed 3-to-2 flip. |
17190 | fliptets[0] = fliptet; // = [a,b,c,d], d is the new vertex. |
17191 | // fliptets[1]; // = [b,a,c,e]. |
17192 | baktets[0] = fliptets[2]; // = [b,a,e,f] |
17193 | baktets[1] = fliptets[3]; // = [b,a,f,d] |
17194 | // The flip may involve hull tets. |
17195 | flip23(fliptets, 1, &fc); |
17196 | // Put the "outer" link faces into check list. |
17197 | // fliptets[0] = [e,d,a,b] => will be flipped, so |
17198 | // [a,b,d] and [a,b,e] are not "outer" link faces. |
17199 | for (i = 1; i < 3; i++) { |
17200 | eprevesym(fliptets[i], newface); |
17201 | crossfaces->newindex((void **) &parytet); |
17202 | *parytet = newface; |
17203 | } |
17204 | for (i = 1; i < 3; i++) { |
17205 | enextesym(fliptets[i], newface); |
17206 | crossfaces->newindex((void **) &parytet); |
17207 | *parytet = newface; |
17208 | } |
17209 | // Then do a 3-to-2 flip. |
17210 | enextesymself(fliptets[0]); // fliptets[0] is [e,d,a,b]. |
17211 | eprevself(fliptets[0]); // = [b,a,d,c], d is the new vertex. |
17212 | fliptets[1] = baktets[0]; // = [b,a,e,f] |
17213 | fliptets[2] = baktets[1]; // = [b,a,f,d] |
17214 | flip32(fliptets, 1, &fc); |
17215 | // Put the "outer" link faces into check list. |
17216 | // fliptets[0] = [d,e,f,a] |
17217 | // fliptets[1] = [e,d,f,b] |
17218 | // Faces [a,b,d] and [a,b,e] are not "outer" link faces. |
17219 | enextself(fliptets[0]); |
17220 | for (i = 1; i < 3; i++) { |
17221 | esym(fliptets[0], newface); |
17222 | crossfaces->newindex((void **) &parytet); |
17223 | *parytet = newface; |
17224 | enextself(fliptets[0]); |
17225 | } |
17226 | enextself(fliptets[1]); |
17227 | for (i = 1; i < 3; i++) { |
17228 | esym(fliptets[1], newface); |
17229 | crossfaces->newindex((void **) &parytet); |
17230 | *parytet = newface; |
17231 | enextself(fliptets[1]); |
17232 | } |
17233 | flip23count--; |
17234 | flip32count--; |
17235 | flip44count++; |
17236 | flipflag = 1; |
17237 | } else { |
17238 | //n == 4, convflag != 0; assert(0); |
17239 | } |
17240 | } else { |
17241 | // n > 4 => unflipable. //assert(0); |
17242 | } |
17243 | } else { |
17244 | // There are more than 1 non-convex or coplanar cases. |
17245 | flipflag = -1; // Ignore this face. |
17246 | if (b->verbose > 2) { |
17247 | printf(" Ignore face (%d, %d, %d) - %d, %d, tau = %.17g\n" , |
17248 | pointmark(bface.forg), pointmark(bface.fdest), |
17249 | pointmark(bface.fapex), pointmark(bface.foppo), |
17250 | pointmark(bface.noppo), bface.key); |
17251 | } |
17252 | } // if (convcount == 1) |
17253 | |
17254 | if (flipflag == 1) { |
17255 | // Update the priority queue. |
17256 | for (i = 0; i < crossfaces->objects; i++) { |
17257 | parytet = (triface *) fastlookup(crossfaces, i); |
17258 | flipcertify(parytet, &pqueue, plane_pa, plane_pb, plane_pc); |
17259 | } |
17260 | crossfaces->restart(); |
17261 | if (1) { // if (!b->flipinsert_random) { |
17262 | // Insert all queued unflipped faces. |
17263 | for (i = 0; i < bfacearray->objects; i++) { |
17264 | parytet = (triface *) fastlookup(bfacearray, i); |
17265 | // This face may be changed. |
17266 | if (!isdeadtet(*parytet)) { |
17267 | flipcertify(parytet, &pqueue, plane_pa, plane_pb, plane_pc); |
17268 | } |
17269 | } |
17270 | bfacearray->restart(); |
17271 | } |
17272 | fcount++; |
17273 | } else if (flipflag == 0) { |
17274 | // Queue an unflippable face. To process it later. |
17275 | bfacearray->newindex((void **) &parytet); |
17276 | *parytet = fliptet; |
17277 | } |
17278 | } // if (pe == bface.noppo) |
17279 | } // if ((pa == bface.forg) && ...) |
17280 | } // if (bface.tt != NULL) |
17281 | |
17282 | } // while (pqueue != NULL) |
17283 | |
17284 | if (bfacearray->objects > 0) { |
17285 | if (fcount == 0) { |
17286 | printf("!! No flip is found in %ld faces.\n" , bfacearray->objects); |
17287 | assert(0); |
17288 | } |
17289 | } |
17290 | |
17291 | // 'bfacearray' may be not empty (for what reason ??). |
17292 | //dbg_unflip_facecount += bfacearray->objects; |
17293 | |
17294 | assert(flippool->items == 0l); |
17295 | delete bfacearray; |
17296 | |
17297 | // Un-mark top and bottom points. |
17298 | for (i = 0; i < toppoints->objects; i++) { |
17299 | parypt = (point *) fastlookup(toppoints, i); |
17300 | punmarktest2(*parypt); |
17301 | } |
17302 | for (i = 0; i < botpoints->objects; i++) { |
17303 | parypt = (point *) fastlookup(botpoints, i); |
17304 | punmarktest3(*parypt); |
17305 | } |
17306 | |
17307 | f23count = flip23count - f23count; |
17308 | f32count = flip32count - f32count; |
17309 | f44count = flip44count - f44count; |
17310 | totalfcount = f23count + f32count + f44count; |
17311 | if (b->verbose > 2) { |
17312 | printf(" Total %ld flips. f23(%ld), f32(%ld), f44(%ld).\n" , |
17313 | totalfcount, f23count, f32count, f44count); |
17314 | } |
17315 | } |
17316 | |
17317 | /////////////////////////////////////////////////////////////////////////////// |
17318 | // // |
17319 | // fillregion() Fill the missing region by a set of new subfaces. // |
17320 | // // |
17321 | // 'missingshs' contains the list of subfaces in R. Moreover, each subface // |
17322 | // (except the first one) in this list represents an interior edge of R. // |
17323 | // // |
17324 | // Note: We assume that all vertices of R are marktested so we can detect // |
17325 | // new subface by checking the flag in apexes. // |
17326 | // // |
17327 | /////////////////////////////////////////////////////////////////////////////// |
17328 | |
17329 | bool tetgenmesh::fillregion(arraypool* missingshs, arraypool* missingshbds, |
17330 | arraypool* newshs) |
17331 | { |
17332 | badface *newflipface, *popface; |
17333 | triface searchtet, spintet, neightet; |
17334 | face oldsh, newsh, opensh, *parysh; |
17335 | face casout, casin, neighsh, checksh; |
17336 | face neighseg, checkseg; |
17337 | point pc; |
17338 | int success; |
17339 | int t1ver; |
17340 | int i, j; |
17341 | |
17342 | |
17343 | // Search the first new subface to fill the region. |
17344 | for (i = 0; i < missingshbds->objects; i++) { |
17345 | parysh = (face *) fastlookup(missingshbds, i); |
17346 | sspivot(*parysh, neighseg); |
17347 | sstpivot1(neighseg, searchtet); |
17348 | j = 0; // Count the number of passes of R. |
17349 | spintet = searchtet; |
17350 | while (1) { |
17351 | pc = apex(spintet); |
17352 | if (pmarktested(pc)) { |
17353 | neightet = spintet; |
17354 | j++; |
17355 | } |
17356 | fnextself(spintet); |
17357 | if (spintet.tet == searchtet.tet) break; |
17358 | } |
17359 | assert(j >= 1); |
17360 | if (j == 1) { |
17361 | // Found an interior new subface. |
17362 | searchtet = neightet; |
17363 | oldsh = *parysh; |
17364 | break; |
17365 | } |
17366 | } // i |
17367 | |
17368 | if (i == missingshbds->objects) { |
17369 | // Failed to find any interior subface. |
17370 | // Need Steiner points. |
17371 | return false; |
17372 | } |
17373 | |
17374 | makeshellface(subfaces, &newsh); |
17375 | setsorg(newsh, org(searchtet)); |
17376 | setsdest(newsh, dest(searchtet)); |
17377 | setsapex(newsh, apex(searchtet)); |
17378 | // The new subface gets its markers from the old one. |
17379 | setshellmark(newsh, shellmark(oldsh)); |
17380 | if (checkconstraints) { |
17381 | setareabound(newsh, areabound(oldsh)); |
17382 | } |
17383 | // Connect the new subface to adjacent tets. |
17384 | tsbond(searchtet, newsh); |
17385 | fsymself(searchtet); |
17386 | sesymself(newsh); |
17387 | tsbond(searchtet, newsh); |
17388 | // Connect newsh to outer subfaces. |
17389 | sspivot(oldsh, checkseg); |
17390 | if (sinfected(checkseg)) { |
17391 | // It's a faked segment. Delete it. |
17392 | spintet = searchtet; |
17393 | while (1) { |
17394 | tssdissolve1(spintet); |
17395 | fnextself(spintet); |
17396 | if (spintet.tet == searchtet.tet) break; |
17397 | } |
17398 | shellfacedealloc(subsegs, checkseg.sh); |
17399 | ssdissolve(oldsh); |
17400 | checkseg.sh = NULL; |
17401 | } |
17402 | spivot(oldsh, casout); |
17403 | if (casout.sh != NULL) { |
17404 | casin = casout; |
17405 | if (checkseg.sh != NULL) { |
17406 | // Make sure that the subface has the right ori at the segment. |
17407 | checkseg.shver = 0; |
17408 | if (sorg(newsh) != sorg(checkseg)) { |
17409 | sesymself(newsh); |
17410 | } |
17411 | spivot(casin, neighsh); |
17412 | while (neighsh.sh != oldsh.sh) { |
17413 | casin = neighsh; |
17414 | spivot(casin, neighsh); |
17415 | } |
17416 | } |
17417 | sbond1(newsh, casout); |
17418 | sbond1(casin, newsh); |
17419 | } |
17420 | if (checkseg.sh != NULL) { |
17421 | ssbond(newsh, checkseg); |
17422 | } |
17423 | // Add this new subface into list. |
17424 | sinfect(newsh); |
17425 | newshs->newindex((void **) &parysh); |
17426 | *parysh = newsh; |
17427 | |
17428 | // Push two "open" side of the new subface into stack. |
17429 | for (i = 0; i < 2; i++) { |
17430 | senextself(newsh); |
17431 | newflipface = (badface *) flippool->alloc(); |
17432 | newflipface->ss = newsh; |
17433 | newflipface->nextitem = flipstack; |
17434 | flipstack = newflipface; |
17435 | } |
17436 | |
17437 | success = 1; |
17438 | |
17439 | // Loop until 'flipstack' is empty. |
17440 | while ((flipstack != NULL) && success) { |
17441 | // Pop an "open" side from the stack. |
17442 | popface = flipstack; |
17443 | opensh = popface->ss; |
17444 | flipstack = popface->nextitem; // The next top item in stack. |
17445 | flippool->dealloc((void *) popface); |
17446 | |
17447 | // opensh is either (1) an interior edge or (2) a bdry edge. |
17448 | stpivot(opensh, searchtet); |
17449 | tsspivot1(searchtet, checkseg); |
17450 | if (checkseg.sh == NULL) { |
17451 | // No segment. It is an interior edge of R. |
17452 | // Search for a new face in R. |
17453 | spintet = searchtet; |
17454 | fnextself(spintet); // Skip the current face. |
17455 | while (1) { |
17456 | pc = apex(spintet); |
17457 | if (pmarktested(pc)) { |
17458 | // 'opensh' is an interior edge. |
17459 | if (!issubface(spintet)) { |
17460 | // Create a new subface. |
17461 | makeshellface(subfaces, &newsh); |
17462 | setsorg(newsh, org(spintet)); |
17463 | setsdest(newsh, dest(spintet)); |
17464 | setsapex(newsh, pc); |
17465 | // The new subface gets its markers from its neighbor. |
17466 | setshellmark(newsh, shellmark(opensh)); |
17467 | if (checkconstraints) { |
17468 | setareabound(newsh, areabound(opensh)); |
17469 | } |
17470 | // Connect the new subface to adjacent tets. |
17471 | tsbond(spintet, newsh); |
17472 | fsymself(spintet); |
17473 | sesymself(newsh); |
17474 | tsbond(spintet, newsh); |
17475 | // Connect newsh to its adjacent subface. |
17476 | sbond(newsh, opensh); |
17477 | // Add this new subface into list. |
17478 | sinfect(newsh); |
17479 | newshs->newindex((void **) &parysh); |
17480 | *parysh = newsh; |
17481 | // Push two "open" side of the new subface into stack. |
17482 | for (i = 0; i < 2; i++) { |
17483 | senextself(newsh); |
17484 | newflipface = (badface *) flippool->alloc(); |
17485 | newflipface->ss = newsh; |
17486 | newflipface->nextitem = flipstack; |
17487 | flipstack = newflipface; |
17488 | } |
17489 | } else { |
17490 | // Connect to another open edge. |
17491 | tspivot(spintet, checksh); |
17492 | sbond(opensh, checksh); |
17493 | } |
17494 | break; |
17495 | } // if (pmarktested(pc)) |
17496 | fnextself(spintet); |
17497 | if (spintet.tet == searchtet.tet) { |
17498 | // Not find any face to fill in R at this side. |
17499 | // Suggest a point to split the edge. |
17500 | success = 0; |
17501 | break; |
17502 | } |
17503 | } // while (1) |
17504 | } else { |
17505 | // This side coincident with a boundary edge of R. |
17506 | checkseg.shver = 0; |
17507 | spivot(checkseg, oldsh); |
17508 | if (sinfected(checkseg)) { |
17509 | // It's a faked segment. Delete it. |
17510 | spintet = searchtet; |
17511 | while (1) { |
17512 | tssdissolve1(spintet); |
17513 | fnextself(spintet); |
17514 | if (spintet.tet == searchtet.tet) break; |
17515 | } |
17516 | shellfacedealloc(subsegs, checkseg.sh); |
17517 | ssdissolve(oldsh); |
17518 | checkseg.sh = NULL; |
17519 | } |
17520 | spivot(oldsh, casout); |
17521 | if (casout.sh != NULL) { |
17522 | casin = casout; |
17523 | if (checkseg.sh != NULL) { |
17524 | // Make sure that the subface has the right ori at the segment. |
17525 | checkseg.shver = 0; |
17526 | if (sorg(opensh) != sorg(checkseg)) { |
17527 | sesymself(opensh); |
17528 | } |
17529 | spivot(casin, neighsh); |
17530 | while (neighsh.sh != oldsh.sh) { |
17531 | casin = neighsh; |
17532 | spivot(casin, neighsh); |
17533 | } |
17534 | } |
17535 | sbond1(opensh, casout); |
17536 | sbond1(casin, opensh); |
17537 | } |
17538 | if (checkseg.sh != NULL) { |
17539 | ssbond(opensh, checkseg); |
17540 | } |
17541 | } // if (checkseg.sh != NULL) |
17542 | } // while ((flipstack != NULL) && success) |
17543 | |
17544 | if (success) { |
17545 | // Uninfect all new subfaces. |
17546 | for (i = 0; i < newshs->objects; i++) { |
17547 | parysh = (face *) fastlookup(newshs, i); |
17548 | suninfect(*parysh); |
17549 | } |
17550 | // Delete old subfaces. |
17551 | for (i = 0; i < missingshs->objects; i++) { |
17552 | parysh = (face *) fastlookup(missingshs, i); |
17553 | shellfacedealloc(subfaces, parysh->sh); |
17554 | } |
17555 | fillregioncount++; |
17556 | } else { |
17557 | // Failed to fill the region. |
17558 | // Re-connect old subfaces at boundaries of R. |
17559 | // Also delete fake segments. |
17560 | for (i = 0; i < missingshbds->objects; i++) { |
17561 | parysh = (face *) fastlookup(missingshbds, i); |
17562 | // It still connect to 'casout'. |
17563 | // Re-connect 'casin' to it. |
17564 | spivot(*parysh, casout); |
17565 | casin = casout; |
17566 | spivot(casin, neighsh); |
17567 | while (1) { |
17568 | if (sinfected(neighsh)) break; |
17569 | if (neighsh.sh == parysh->sh) break; |
17570 | casin = neighsh; |
17571 | spivot(casin, neighsh); |
17572 | } |
17573 | if (sinfected(neighsh)) { |
17574 | sbond1(casin, *parysh); |
17575 | } |
17576 | sspivot(*parysh, checkseg); |
17577 | if (checkseg.sh != NULL) { |
17578 | if (checkseg.sh[3] != NULL) { |
17579 | if (sinfected(checkseg)) { |
17580 | sstpivot1(checkseg, searchtet); |
17581 | spintet = searchtet; |
17582 | while (1) { |
17583 | tssdissolve1(spintet); |
17584 | fnextself(spintet); |
17585 | if (spintet.tet == searchtet.tet) break; |
17586 | } |
17587 | ssdissolve(*parysh); |
17588 | shellfacedealloc(subsegs, checkseg.sh); |
17589 | } |
17590 | } |
17591 | } |
17592 | } |
17593 | // Delete all new subfaces. |
17594 | for (i = 0; i < newshs->objects; i++) { |
17595 | parysh = (face *) fastlookup(newshs, i); |
17596 | shellfacedealloc(subfaces, parysh->sh); |
17597 | } |
17598 | // Clear the flip pool. |
17599 | flippool->restart(); |
17600 | flipstack = NULL; |
17601 | |
17602 | // Choose an interior edge of R to split. |
17603 | assert(missingshs->objects > 1); |
17604 | // Skip the first subface in 'missingshs'. |
17605 | i = randomnation(missingshs->objects - 1) + 1; |
17606 | parysh = (face *) fastlookup(missingshs, i); |
17607 | recentsh = *parysh; |
17608 | } |
17609 | |
17610 | newshs->restart(); |
17611 | |
17612 | return success > 0 ? true : false; |
17613 | } |
17614 | |
17615 | /////////////////////////////////////////////////////////////////////////////// |
17616 | // // |
17617 | // insertpoint_cdt() Insert a new point into a CDT. // |
17618 | // // |
17619 | /////////////////////////////////////////////////////////////////////////////// |
17620 | |
17621 | int tetgenmesh::insertpoint_cdt(point newpt, triface *searchtet, face *splitsh, |
17622 | face *splitseg, insertvertexflags *ivf, |
17623 | arraypool *cavpoints, arraypool *cavfaces, |
17624 | arraypool *cavshells, arraypool *newtets, |
17625 | arraypool *crosstets, arraypool *misfaces) |
17626 | { |
17627 | triface neightet, *parytet; |
17628 | face checksh, *parysh, *parysh1; |
17629 | face *paryseg, *paryseg1; |
17630 | point *parypt; |
17631 | int t1ver; |
17632 | int i; |
17633 | |
17634 | if (b->verbose > 2) { |
17635 | printf(" Insert point %d into CDT\n" , pointmark(newpt)); |
17636 | } |
17637 | |
17638 | if (!insertpoint(newpt, searchtet, NULL, NULL, ivf)) { |
17639 | // Point is not inserted. Check ivf->iloc for reason. |
17640 | return 0; |
17641 | } |
17642 | |
17643 | |
17644 | for (i = 0; i < cavetetvertlist->objects; i++) { |
17645 | cavpoints->newindex((void **) &parypt); |
17646 | *parypt = * (point *) fastlookup(cavetetvertlist, i); |
17647 | } |
17648 | // Add the new point into the point list. |
17649 | cavpoints->newindex((void **) &parypt); |
17650 | *parypt = newpt; |
17651 | |
17652 | for (i = 0; i < cavebdrylist->objects; i++) { |
17653 | cavfaces->newindex((void **) &parytet); |
17654 | *parytet = * (triface *) fastlookup(cavebdrylist, i); |
17655 | } |
17656 | |
17657 | for (i = 0; i < caveoldtetlist->objects; i++) { |
17658 | crosstets->newindex((void **) &parytet); |
17659 | *parytet = * (triface *) fastlookup(caveoldtetlist, i); |
17660 | } |
17661 | |
17662 | cavetetvertlist->restart(); |
17663 | cavebdrylist->restart(); |
17664 | caveoldtetlist->restart(); |
17665 | |
17666 | // Insert the point using the cavity algorithm. |
17667 | delaunizecavity(cavpoints, cavfaces, cavshells, newtets, crosstets, |
17668 | misfaces); |
17669 | fillcavity(cavshells, NULL, NULL, NULL, NULL, NULL, NULL); |
17670 | carvecavity(crosstets, newtets, NULL); |
17671 | |
17672 | if ((splitsh != NULL) || (splitseg != NULL)) { |
17673 | // Insert the point into the surface mesh. |
17674 | sinsertvertex(newpt, splitsh, splitseg, ivf->sloc, ivf->sbowywat, 0); |
17675 | |
17676 | // Put all new subfaces into stack. |
17677 | for (i = 0; i < caveshbdlist->objects; i++) { |
17678 | // Get an old subface at edge [a, b]. |
17679 | parysh = (face *) fastlookup(caveshbdlist, i); |
17680 | spivot(*parysh, checksh); // The new subface [a, b, p]. |
17681 | // Do not recover a deleted new face (degenerated). |
17682 | if (checksh.sh[3] != NULL) { |
17683 | subfacstack->newindex((void **) &parysh); |
17684 | *parysh = checksh; |
17685 | } |
17686 | } |
17687 | |
17688 | if (splitseg != NULL) { |
17689 | // Queue two new subsegments in C(p) for recovery. |
17690 | for (i = 0; i < cavesegshlist->objects; i++) { |
17691 | paryseg = (face *) fastlookup(cavesegshlist, i); |
17692 | subsegstack->newindex((void **) &paryseg1); |
17693 | *paryseg1 = *paryseg; |
17694 | } |
17695 | } // if (splitseg != NULL) |
17696 | |
17697 | // Delete the old subfaces in sC(p). |
17698 | for (i = 0; i < caveshlist->objects; i++) { |
17699 | parysh = (face *) fastlookup(caveshlist, i); |
17700 | if (checksubfaceflag) { |
17701 | // It is possible that this subface still connects to adjacent |
17702 | // tets which are not in C(p). If so, clear connections in the |
17703 | // adjacent tets at this subface. |
17704 | stpivot(*parysh, neightet); |
17705 | if (neightet.tet != NULL) { |
17706 | if (neightet.tet[4] != NULL) { |
17707 | // Found an adjacent tet. It must be not in C(p). |
17708 | assert(!infected(neightet)); |
17709 | tsdissolve(neightet); |
17710 | fsymself(neightet); |
17711 | assert(!infected(neightet)); |
17712 | tsdissolve(neightet); |
17713 | } |
17714 | } |
17715 | } |
17716 | shellfacedealloc(subfaces, parysh->sh); |
17717 | } |
17718 | if (splitseg != NULL) { |
17719 | // Delete the old segment in sC(p). |
17720 | shellfacedealloc(subsegs, splitseg->sh); |
17721 | } |
17722 | |
17723 | // Clear working lists. |
17724 | caveshlist->restart(); |
17725 | caveshbdlist->restart(); |
17726 | cavesegshlist->restart(); |
17727 | } // if ((splitsh != NULL) || (splitseg != NULL)) |
17728 | |
17729 | // Put all interior subfaces into stack for recovery. |
17730 | // They were collected in carvecavity(). |
17731 | // Note: Some collected subfaces may be deleted by sinsertvertex(). |
17732 | for (i = 0; i < caveencshlist->objects; i++) { |
17733 | parysh = (face *) fastlookup(caveencshlist, i); |
17734 | if (parysh->sh[3] != NULL) { |
17735 | subfacstack->newindex((void **) &parysh1); |
17736 | *parysh1 = *parysh; |
17737 | } |
17738 | } |
17739 | |
17740 | // Put all interior segments into stack for recovery. |
17741 | // They were collected in carvecavity(). |
17742 | // Note: Some collected segments may be deleted by sinsertvertex(). |
17743 | for (i = 0; i < caveencseglist->objects; i++) { |
17744 | paryseg = (face *) fastlookup(caveencseglist, i); |
17745 | if (paryseg->sh[3] != NULL) { |
17746 | subsegstack->newindex((void **) &paryseg1); |
17747 | *paryseg1 = *paryseg; |
17748 | } |
17749 | } |
17750 | |
17751 | caveencshlist->restart(); |
17752 | caveencseglist->restart(); |
17753 | |
17754 | return 1; |
17755 | } |
17756 | |
17757 | /////////////////////////////////////////////////////////////////////////////// |
17758 | // // |
17759 | // refineregion() Refine a missing region by inserting points. // |
17760 | // // |
17761 | // 'splitsh' represents an edge of the facet to be split. It must be not a // |
17762 | // segment. |
17763 | // // |
17764 | // Assumption: The current mesh is a CDT and is convex. // |
17765 | // // |
17766 | /////////////////////////////////////////////////////////////////////////////// |
17767 | |
17768 | void tetgenmesh::refineregion(face &splitsh, arraypool *cavpoints, |
17769 | arraypool *cavfaces, arraypool *cavshells, |
17770 | arraypool *newtets, arraypool *crosstets, |
17771 | arraypool *misfaces) |
17772 | { |
17773 | triface searchtet, spintet; |
17774 | face splitseg, *paryseg; |
17775 | point steinpt, pa, pb, refpt; |
17776 | insertvertexflags ivf; |
17777 | enum interresult dir; |
17778 | long baknum = points->items; |
17779 | int t1ver; |
17780 | int i; |
17781 | |
17782 | if (b->verbose > 2) { |
17783 | printf(" Refining region at edge (%d, %d, %d).\n" , |
17784 | pointmark(sorg(splitsh)), pointmark(sdest(splitsh)), |
17785 | pointmark(sapex(splitsh))); |
17786 | } |
17787 | |
17788 | // Add the Steiner point at the barycenter of the face. |
17789 | pa = sorg(splitsh); |
17790 | pb = sdest(splitsh); |
17791 | // Create a new point. |
17792 | makepoint(&steinpt, FREEFACETVERTEX); |
17793 | for (i = 0; i < 3; i++) { |
17794 | steinpt[i] = 0.5 * (pa[i] + pb[i]); |
17795 | } |
17796 | |
17797 | ivf.bowywat = 1; // Use the Bowyer-Watson algorrithm. |
17798 | ivf.cdtflag = 1; // Only create the initial cavity. |
17799 | ivf.sloc = (int) ONEDGE; |
17800 | ivf.sbowywat = 1; |
17801 | ivf.assignmeshsize = b->metric; |
17802 | |
17803 | point2tetorg(pa, searchtet); // Start location from it. |
17804 | ivf.iloc = (int) OUTSIDE; |
17805 | |
17806 | ivf.rejflag = 1; // Reject it if it encroaches upon any segment. |
17807 | if (!insertpoint_cdt(steinpt, &searchtet, &splitsh, NULL, &ivf, cavpoints, |
17808 | cavfaces, cavshells, newtets, crosstets, misfaces)) { |
17809 | if (ivf.iloc == (int) ENCSEGMENT) { |
17810 | pointdealloc(steinpt); |
17811 | // Split an encroached segment. |
17812 | assert(encseglist->objects > 0); |
17813 | i = randomnation(encseglist->objects); |
17814 | paryseg = (face *) fastlookup(encseglist, i); |
17815 | splitseg = *paryseg; |
17816 | encseglist->restart(); |
17817 | |
17818 | // Split the segment. |
17819 | pa = sorg(splitseg); |
17820 | pb = sdest(splitseg); |
17821 | // Create a new point. |
17822 | makepoint(&steinpt, FREESEGVERTEX); |
17823 | for (i = 0; i < 3; i++) { |
17824 | steinpt[i] = 0.5 * (pa[i] + pb[i]); |
17825 | } |
17826 | point2tetorg(pa, searchtet); |
17827 | ivf.iloc = (int) OUTSIDE; |
17828 | ivf.rejflag = 0; |
17829 | if (!insertpoint_cdt(steinpt, &searchtet, &splitsh, &splitseg, &ivf, |
17830 | cavpoints, cavfaces, cavshells, newtets, |
17831 | crosstets, misfaces)) { |
17832 | assert(0); |
17833 | } |
17834 | st_segref_count++; |
17835 | if (steinerleft > 0) steinerleft--; |
17836 | } else { |
17837 | assert(0); |
17838 | } |
17839 | } else { |
17840 | st_facref_count++; |
17841 | if (steinerleft > 0) steinerleft--; |
17842 | } |
17843 | |
17844 | while (subsegstack->objects > 0l) { |
17845 | // seglist is used as a stack. |
17846 | subsegstack->objects--; |
17847 | paryseg = (face *) fastlookup(subsegstack, subsegstack->objects); |
17848 | splitseg = *paryseg; |
17849 | |
17850 | // Check if this segment has been recovered. |
17851 | sstpivot1(splitseg, searchtet); |
17852 | if (searchtet.tet != NULL) continue; |
17853 | |
17854 | // Search the segment. |
17855 | dir = scoutsegment(sorg(splitseg), sdest(splitseg), &searchtet, &refpt, |
17856 | NULL); |
17857 | if (dir == SHAREEDGE) { |
17858 | // Found this segment, insert it. |
17859 | if (!issubseg(searchtet)) { |
17860 | // Let the segment remember an adjacent tet. |
17861 | sstbond1(splitseg, searchtet); |
17862 | // Bond the segment to all tets containing it. |
17863 | spintet = searchtet; |
17864 | do { |
17865 | tssbond1(spintet, splitseg); |
17866 | fnextself(spintet); |
17867 | } while (spintet.tet != searchtet.tet); |
17868 | } else { |
17869 | // Collision! Should not happen. |
17870 | assert(0); |
17871 | } |
17872 | } else { |
17873 | if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
17874 | // Split the segment. |
17875 | // Create a new point. |
17876 | makepoint(&steinpt, FREESEGVERTEX); |
17877 | //setpointtype(newpt, FREESEGVERTEX); |
17878 | getsteinerptonsegment(&splitseg, refpt, steinpt); |
17879 | ivf.iloc = (int) OUTSIDE; |
17880 | ivf.rejflag = 0; |
17881 | if (!insertpoint_cdt(steinpt, &searchtet, &splitsh, &splitseg, &ivf, |
17882 | cavpoints, cavfaces, cavshells, newtets, |
17883 | crosstets, misfaces)) { |
17884 | assert(0); |
17885 | } |
17886 | st_segref_count++; |
17887 | if (steinerleft > 0) steinerleft--; |
17888 | } else { |
17889 | // Maybe a PLC problem. |
17890 | assert(0); |
17891 | } |
17892 | } |
17893 | } // while |
17894 | |
17895 | if (b->verbose > 2) { |
17896 | printf(" Added %ld Steiner points.\n" , points->items - baknum); |
17897 | } |
17898 | } |
17899 | |
17900 | /////////////////////////////////////////////////////////////////////////////// |
17901 | // // |
17902 | // constrainedfacets() Recover constrained facets in a CDT. // |
17903 | // // |
17904 | // All unrecovered subfaces are queued in 'subfacestack'. // |
17905 | // // |
17906 | /////////////////////////////////////////////////////////////////////////////// |
17907 | |
17908 | void tetgenmesh::constrainedfacets() |
17909 | { |
17910 | arraypool *tg_crosstets, *tg_topnewtets, *tg_botnewtets; |
17911 | arraypool *tg_topfaces, *tg_botfaces, *tg_midfaces; |
17912 | arraypool *tg_topshells, *tg_botshells, *tg_facfaces; |
17913 | arraypool *tg_toppoints, *tg_botpoints; |
17914 | arraypool *tg_missingshs, *tg_missingshbds, *tg_missingshverts; |
17915 | triface searchtet, neightet, crossedge; |
17916 | face searchsh, *parysh, *parysh1; |
17917 | face *paryseg; |
17918 | point *parypt; |
17919 | enum interresult dir; |
17920 | int facetcount; |
17921 | int success; |
17922 | int t1ver; |
17923 | int i, j; |
17924 | |
17925 | // Initialize arrays. |
17926 | tg_crosstets = new arraypool(sizeof(triface), 10); |
17927 | tg_topnewtets = new arraypool(sizeof(triface), 10); |
17928 | tg_botnewtets = new arraypool(sizeof(triface), 10); |
17929 | tg_topfaces = new arraypool(sizeof(triface), 10); |
17930 | tg_botfaces = new arraypool(sizeof(triface), 10); |
17931 | tg_midfaces = new arraypool(sizeof(triface), 10); |
17932 | tg_toppoints = new arraypool(sizeof(point), 8); |
17933 | tg_botpoints = new arraypool(sizeof(point), 8); |
17934 | tg_facfaces = new arraypool(sizeof(face), 10); |
17935 | tg_topshells = new arraypool(sizeof(face), 10); |
17936 | tg_botshells = new arraypool(sizeof(face), 10); |
17937 | tg_missingshs = new arraypool(sizeof(face), 10); |
17938 | tg_missingshbds = new arraypool(sizeof(face), 10); |
17939 | tg_missingshverts = new arraypool(sizeof(point), 8); |
17940 | // This is a global array used by refineregion(). |
17941 | encseglist = new arraypool(sizeof(face), 4); |
17942 | |
17943 | facetcount = 0; |
17944 | |
17945 | while (subfacstack->objects > 0l) { |
17946 | |
17947 | subfacstack->objects--; |
17948 | parysh = (face *) fastlookup(subfacstack, subfacstack->objects); |
17949 | searchsh = *parysh; |
17950 | |
17951 | if (searchsh.sh[3] == NULL) continue; // It is dead. |
17952 | if (isshtet(searchsh)) continue; // It is recovered. |
17953 | |
17954 | // Collect all unrecovered subfaces which are co-facet. |
17955 | smarktest(searchsh); |
17956 | tg_facfaces->newindex((void **) &parysh); |
17957 | *parysh = searchsh; |
17958 | for (i = 0; i < tg_facfaces->objects; i++) { |
17959 | parysh = (face *) fastlookup(tg_facfaces, i); |
17960 | for (j = 0; j < 3; j++) { |
17961 | if (!isshsubseg(*parysh)) { |
17962 | spivot(*parysh, searchsh); |
17963 | assert(searchsh.sh != NULL); // SELF_CHECK |
17964 | if (!smarktested(searchsh)) { |
17965 | if (!isshtet(searchsh)) { |
17966 | smarktest(searchsh); |
17967 | tg_facfaces->newindex((void **) &parysh1); |
17968 | *parysh1 = searchsh; |
17969 | } |
17970 | } |
17971 | } |
17972 | senextself(*parysh); |
17973 | } // j |
17974 | } // i |
17975 | // Have found all facet subfaces. Unmark them. |
17976 | for (i = 0; i < tg_facfaces->objects; i++) { |
17977 | parysh = (face *) fastlookup(tg_facfaces, i); |
17978 | sunmarktest(*parysh); |
17979 | } |
17980 | |
17981 | if (b->verbose > 2) { |
17982 | printf(" Recovering facet #%d: %ld subfaces.\n" , facetcount + 1, |
17983 | tg_facfaces->objects); |
17984 | } |
17985 | facetcount++; |
17986 | |
17987 | while (tg_facfaces->objects > 0l) { |
17988 | |
17989 | tg_facfaces->objects--; |
17990 | parysh = (face *) fastlookup(tg_facfaces, tg_facfaces->objects); |
17991 | searchsh = *parysh; |
17992 | |
17993 | if (searchsh.sh[3] == NULL) continue; // It is dead. |
17994 | if (isshtet(searchsh)) continue; // It is recovered. |
17995 | |
17996 | searchtet.tet = NULL; |
17997 | dir = scoutsubface(&searchsh, &searchtet); |
17998 | if (dir == SHAREFACE) continue; // The subface is inserted. |
17999 | |
18000 | // The subface is missing. Form the missing region. |
18001 | // Re-use 'tg_crosstets' for 'adjtets'. |
18002 | formregion(&searchsh, tg_missingshs, tg_missingshbds, tg_missingshverts); |
18003 | |
18004 | if (scoutcrossedge(searchtet, tg_missingshbds, tg_missingshs)) { |
18005 | // Save this crossing edge, will be used by fillcavity(). |
18006 | crossedge = searchtet; |
18007 | // Form a cavity of crossing tets. |
18008 | success = formcavity(&searchtet, tg_missingshs, tg_crosstets, |
18009 | tg_topfaces, tg_botfaces, tg_toppoints, |
18010 | tg_botpoints); |
18011 | if (success) { |
18012 | if (!b->flipinsert) { |
18013 | // Tetrahedralize the top part. Re-use 'tg_midfaces'. |
18014 | delaunizecavity(tg_toppoints, tg_topfaces, tg_topshells, |
18015 | tg_topnewtets, tg_crosstets, tg_midfaces); |
18016 | // Tetrahedralize the bottom part. Re-use 'tg_midfaces'. |
18017 | delaunizecavity(tg_botpoints, tg_botfaces, tg_botshells, |
18018 | tg_botnewtets, tg_crosstets, tg_midfaces); |
18019 | // Fill the cavity with new tets. |
18020 | success = fillcavity(tg_topshells, tg_botshells, tg_midfaces, |
18021 | tg_missingshs, tg_topnewtets, tg_botnewtets, |
18022 | &crossedge); |
18023 | if (success) { |
18024 | // Cavity is remeshed. Delete old tets and outer new tets. |
18025 | carvecavity(tg_crosstets, tg_topnewtets, tg_botnewtets); |
18026 | } else { |
18027 | restorecavity(tg_crosstets, tg_topnewtets, tg_botnewtets, |
18028 | tg_missingshbds); |
18029 | } |
18030 | } else { |
18031 | // Use the flip algorithm of Shewchuk to recover the subfaces. |
18032 | flipinsertfacet(tg_crosstets, tg_toppoints, tg_botpoints, |
18033 | tg_missingshverts); |
18034 | // Recover the missing region. |
18035 | success = fillregion(tg_missingshs, tg_missingshbds, tg_topshells); |
18036 | assert(success); |
18037 | // Clear working lists. |
18038 | tg_crosstets->restart(); |
18039 | tg_topfaces->restart(); |
18040 | tg_botfaces->restart(); |
18041 | tg_toppoints->restart(); |
18042 | tg_botpoints->restart(); |
18043 | } // b->flipinsert |
18044 | |
18045 | if (success) { |
18046 | // Recover interior subfaces. |
18047 | for (i = 0; i < caveencshlist->objects; i++) { |
18048 | parysh = (face *) fastlookup(caveencshlist, i); |
18049 | dir = scoutsubface(parysh, &searchtet); |
18050 | if (dir != SHAREFACE) { |
18051 | // Add this face at the end of the list, so it will be |
18052 | // processed immediately. |
18053 | tg_facfaces->newindex((void **) &parysh1); |
18054 | *parysh1 = *parysh; |
18055 | } |
18056 | } |
18057 | caveencshlist->restart(); |
18058 | // Recover interior segments. This should always be recovered. |
18059 | for (i = 0; i < caveencseglist->objects; i++) { |
18060 | paryseg = (face *) fastlookup(caveencseglist, i); |
18061 | dir = scoutsegment(sorg(*paryseg),sdest(*paryseg),&searchtet, |
18062 | NULL, NULL); |
18063 | assert(dir == SHAREEDGE); |
18064 | // Insert this segment. |
18065 | if (!issubseg(searchtet)) { |
18066 | // Let the segment remember an adjacent tet. |
18067 | sstbond1(*paryseg, searchtet); |
18068 | // Bond the segment to all tets containing it. |
18069 | neightet = searchtet; |
18070 | do { |
18071 | tssbond1(neightet, *paryseg); |
18072 | fnextself(neightet); |
18073 | } while (neightet.tet != searchtet.tet); |
18074 | } else { |
18075 | // Collision! Should not happen. |
18076 | assert(0); |
18077 | } |
18078 | } |
18079 | caveencseglist->restart(); |
18080 | } // success - remesh cavity |
18081 | } // success - form cavity |
18082 | } else { |
18083 | // Recover subfaces by retriangulate the surface mesh. |
18084 | // Re-use tg_topshells for newshs. |
18085 | success = fillregion(tg_missingshs, tg_missingshbds, tg_topshells); |
18086 | } |
18087 | |
18088 | // Unmarktest all points of the missing region. |
18089 | for (i = 0; i < tg_missingshverts->objects; i++) { |
18090 | parypt = (point *) fastlookup(tg_missingshverts, i); |
18091 | punmarktest(*parypt); |
18092 | } |
18093 | tg_missingshverts->restart(); |
18094 | tg_missingshbds->restart(); |
18095 | tg_missingshs->restart(); |
18096 | |
18097 | if (!success) { |
18098 | // The missing region can not be recovered. Refine it. |
18099 | refineregion(recentsh, tg_toppoints, tg_topfaces, tg_topshells, |
18100 | tg_topnewtets, tg_crosstets, tg_midfaces); |
18101 | // Clean the current list of facet subfaces. |
18102 | // tg_facfaces->restart(); |
18103 | } |
18104 | } // while (tg_facfaces->objects) |
18105 | |
18106 | } // while ((subfacstack->objects) |
18107 | |
18108 | // Accumulate the dynamic memory. |
18109 | totalworkmemory += (tg_crosstets->totalmemory + tg_topnewtets->totalmemory + |
18110 | tg_botnewtets->totalmemory + tg_topfaces->totalmemory + |
18111 | tg_botfaces->totalmemory + tg_midfaces->totalmemory + |
18112 | tg_toppoints->totalmemory + tg_botpoints->totalmemory + |
18113 | tg_facfaces->totalmemory + tg_topshells->totalmemory + |
18114 | tg_botshells->totalmemory + tg_missingshs->totalmemory + |
18115 | tg_missingshbds->totalmemory + |
18116 | tg_missingshverts->totalmemory + |
18117 | encseglist->totalmemory); |
18118 | |
18119 | // Delete arrays. |
18120 | delete tg_crosstets; |
18121 | delete tg_topnewtets; |
18122 | delete tg_botnewtets; |
18123 | delete tg_topfaces; |
18124 | delete tg_botfaces; |
18125 | delete tg_midfaces; |
18126 | delete tg_toppoints; |
18127 | delete tg_botpoints; |
18128 | delete tg_facfaces; |
18129 | delete tg_topshells; |
18130 | delete tg_botshells; |
18131 | delete tg_missingshs; |
18132 | delete tg_missingshbds; |
18133 | delete tg_missingshverts; |
18134 | delete encseglist; |
18135 | } |
18136 | |
18137 | /////////////////////////////////////////////////////////////////////////////// |
18138 | // // |
18139 | // constraineddelaunay() Create a constrained Delaunay tetrahedralization.// |
18140 | // // |
18141 | /////////////////////////////////////////////////////////////////////////////// |
18142 | |
18143 | void tetgenmesh::constraineddelaunay(clock_t& tv) |
18144 | { |
18145 | face searchsh, *parysh; |
18146 | face searchseg, *paryseg; |
18147 | int s, i; |
18148 | |
18149 | // Statistics. |
18150 | long bakfillregioncount; |
18151 | long bakcavitycount, bakcavityexpcount; |
18152 | long bakseg_ref_count; |
18153 | |
18154 | if (!b->quiet) { |
18155 | printf("Constrained Delaunay...\n" ); |
18156 | } |
18157 | |
18158 | makesegmentendpointsmap(); |
18159 | |
18160 | if (b->verbose) { |
18161 | printf(" Delaunizing segments.\n" ); |
18162 | } |
18163 | |
18164 | checksubsegflag = 1; |
18165 | |
18166 | // Put all segments into the list (in random order). |
18167 | subsegs->traversalinit(); |
18168 | for (i = 0; i < subsegs->items; i++) { |
18169 | s = randomnation(i + 1); |
18170 | // Move the s-th seg to the i-th. |
18171 | subsegstack->newindex((void **) &paryseg); |
18172 | *paryseg = * (face *) fastlookup(subsegstack, s); |
18173 | // Put i-th seg to be the s-th. |
18174 | searchseg.sh = shellfacetraverse(subsegs); |
18175 | //sinfect(searchseg); // Only save it once. |
18176 | paryseg = (face *) fastlookup(subsegstack, s); |
18177 | *paryseg = searchseg; |
18178 | } |
18179 | |
18180 | // Recover non-Delaunay segments. |
18181 | delaunizesegments(); |
18182 | |
18183 | if (b->verbose) { |
18184 | printf(" Inserted %ld Steiner points.\n" , st_segref_count); |
18185 | } |
18186 | |
18187 | tv = clock(); |
18188 | |
18189 | if (b->verbose) { |
18190 | printf(" Constraining facets.\n" ); |
18191 | } |
18192 | |
18193 | // Subfaces will be introduced. |
18194 | checksubfaceflag = 1; |
18195 | |
18196 | bakfillregioncount = fillregioncount; |
18197 | bakcavitycount = cavitycount; |
18198 | bakcavityexpcount = cavityexpcount; |
18199 | bakseg_ref_count = st_segref_count; |
18200 | |
18201 | // Randomly order the subfaces. |
18202 | subfaces->traversalinit(); |
18203 | for (i = 0; i < subfaces->items; i++) { |
18204 | s = randomnation(i + 1); |
18205 | // Move the s-th subface to the i-th. |
18206 | subfacstack->newindex((void **) &parysh); |
18207 | *parysh = * (face *) fastlookup(subfacstack, s); |
18208 | // Put i-th subface to be the s-th. |
18209 | searchsh.sh = shellfacetraverse(subfaces); |
18210 | parysh = (face *) fastlookup(subfacstack, s); |
18211 | *parysh = searchsh; |
18212 | } |
18213 | |
18214 | // Recover facets. |
18215 | constrainedfacets(); |
18216 | |
18217 | if (b->verbose) { |
18218 | if (fillregioncount > bakfillregioncount) { |
18219 | printf(" Remeshed %ld regions.\n" , fillregioncount-bakfillregioncount); |
18220 | } |
18221 | if (cavitycount > bakcavitycount) { |
18222 | printf(" Remeshed %ld cavities" , cavitycount - bakcavitycount); |
18223 | if (cavityexpcount - bakcavityexpcount) { |
18224 | printf(" (%ld enlarged)" , cavityexpcount - bakcavityexpcount); |
18225 | } |
18226 | printf(".\n" ); |
18227 | } |
18228 | if (st_segref_count + st_facref_count - bakseg_ref_count > 0) { |
18229 | printf(" Inserted %ld (%ld, %ld) refine points.\n" , |
18230 | st_segref_count + st_facref_count - bakseg_ref_count, |
18231 | st_segref_count - bakseg_ref_count, st_facref_count); |
18232 | } |
18233 | } |
18234 | } |
18235 | |
18236 | //// //// |
18237 | //// //// |
18238 | //// constrained_cxx ////////////////////////////////////////////////////////// |
18239 | |
18240 | //// steiner_cxx ////////////////////////////////////////////////////////////// |
18241 | //// //// |
18242 | //// //// |
18243 | |
18244 | /////////////////////////////////////////////////////////////////////////////// |
18245 | // // |
18246 | // checkflipeligibility() A call back function for boundary recovery. // |
18247 | // // |
18248 | // 'fliptype' indicates which elementary flip will be performed: 1 : 2-to-3, // |
18249 | // and 2 : 3-to-2, respectively. // |
18250 | // // |
18251 | // 'pa, ..., pe' are the vertices involved in this flip, where [a,b,c] is // |
18252 | // the flip face, and [d,e] is the flip edge. NOTE: 'pc' may be 'dummypoint',// |
18253 | // other points must not be 'dummypoint'. // |
18254 | // // |
18255 | /////////////////////////////////////////////////////////////////////////////// |
18256 | |
18257 | int tetgenmesh::checkflipeligibility(int fliptype, point pa, point pb, |
18258 | point pc, point pd, point pe, |
18259 | int level, int edgepivot, |
18260 | flipconstraints* fc) |
18261 | { |
18262 | point tmppts[3]; |
18263 | enum interresult dir; |
18264 | int types[2], poss[4]; |
18265 | int intflag; |
18266 | int rejflag = 0; |
18267 | int i; |
18268 | |
18269 | if (fc->seg[0] != NULL) { |
18270 | // A constraining edge is given (e.g., for edge recovery). |
18271 | if (fliptype == 1) { |
18272 | // A 2-to-3 flip: [a,b,c] => [e,d,a], [e,d,b], [e,d,c]. |
18273 | tmppts[0] = pa; |
18274 | tmppts[1] = pb; |
18275 | tmppts[2] = pc; |
18276 | for (i = 0; i < 3 && !rejflag; i++) { |
18277 | if (tmppts[i] != dummypoint) { |
18278 | // Test if the face [e,d,#] intersects the edge. |
18279 | intflag = tri_edge_test(pe, pd, tmppts[i], fc->seg[0], fc->seg[1], |
18280 | NULL, 1, types, poss); |
18281 | if (intflag == 2) { |
18282 | // They intersect at a single point. |
18283 | dir = (enum interresult) types[0]; |
18284 | if (dir == ACROSSFACE) { |
18285 | // The interior of [e,d,#] intersect the segment. |
18286 | rejflag = 1; |
18287 | } else if (dir == ACROSSEDGE) { |
18288 | if (poss[0] == 0) { |
18289 | // The interior of [e,d] intersect the segment. |
18290 | // Since [e,d] is the newly created edge. Reject this flip. |
18291 | rejflag = 1; |
18292 | } |
18293 | } |
18294 | } else if (intflag == 4) { |
18295 | // They may intersect at either a point or a line segment. |
18296 | dir = (enum interresult) types[0]; |
18297 | if (dir == ACROSSEDGE) { |
18298 | if (poss[0] == 0) { |
18299 | // The interior of [e,d] intersect the segment. |
18300 | // Since [e,d] is the newly created edge. Reject this flip. |
18301 | rejflag = 1; |
18302 | } |
18303 | } |
18304 | } |
18305 | } // if (tmppts[0] != dummypoint) |
18306 | } // i |
18307 | } else if (fliptype == 2) { |
18308 | // A 3-to-2 flip: [e,d,a], [e,d,b], [e,d,c] => [a,b,c] |
18309 | if (pc != dummypoint) { |
18310 | // Check if the new face [a,b,c] intersect the edge in its interior. |
18311 | intflag = tri_edge_test(pa, pb, pc, fc->seg[0], fc->seg[1], NULL, |
18312 | 1, types, poss); |
18313 | if (intflag == 2) { |
18314 | // They intersect at a single point. |
18315 | dir = (enum interresult) types[0]; |
18316 | if (dir == ACROSSFACE) { |
18317 | // The interior of [a,b,c] intersect the segment. |
18318 | rejflag = 1; // Do not flip. |
18319 | } |
18320 | } else if (intflag == 4) { |
18321 | // [a,b,c] is coplanar with the edge. |
18322 | dir = (enum interresult) types[0]; |
18323 | if (dir == ACROSSEDGE) { |
18324 | // The boundary of [a,b,c] intersect the segment. |
18325 | rejflag = 1; // Do not flip. |
18326 | } |
18327 | } |
18328 | } // if (pc != dummypoint) |
18329 | } |
18330 | } // if (fc->seg[0] != NULL) |
18331 | |
18332 | if ((fc->fac[0] != NULL) && !rejflag) { |
18333 | // A constraining face is given (e.g., for face recovery). |
18334 | if (fliptype == 1) { |
18335 | // A 2-to-3 flip. |
18336 | // Test if the new edge [e,d] intersects the face. |
18337 | intflag = tri_edge_test(fc->fac[0], fc->fac[1], fc->fac[2], pe, pd, |
18338 | NULL, 1, types, poss); |
18339 | if (intflag == 2) { |
18340 | // They intersect at a single point. |
18341 | dir = (enum interresult) types[0]; |
18342 | if (dir == ACROSSFACE) { |
18343 | rejflag = 1; |
18344 | } else if (dir == ACROSSEDGE) { |
18345 | rejflag = 1; |
18346 | } |
18347 | } else if (intflag == 4) { |
18348 | // The edge [e,d] is coplanar with the face. |
18349 | // There may be two intersections. |
18350 | for (i = 0; i < 2 && !rejflag; i++) { |
18351 | dir = (enum interresult) types[i]; |
18352 | if (dir == ACROSSFACE) { |
18353 | rejflag = 1; |
18354 | } else if (dir == ACROSSEDGE) { |
18355 | rejflag = 1; |
18356 | } |
18357 | } |
18358 | } |
18359 | } // if (fliptype == 1) |
18360 | } // if (fc->fac[0] != NULL) |
18361 | |
18362 | if ((fc->remvert != NULL) && !rejflag) { |
18363 | // The vertex is going to be removed. Do not create a new edge which |
18364 | // contains this vertex. |
18365 | if (fliptype == 1) { |
18366 | // A 2-to-3 flip. |
18367 | if ((pd == fc->remvert) || (pe == fc->remvert)) { |
18368 | rejflag = 1; |
18369 | } |
18370 | } |
18371 | } |
18372 | |
18373 | if (fc->remove_large_angle && !rejflag) { |
18374 | // Remove a large dihedral angle. Do not create a new small angle. |
18375 | REAL cosmaxd = 0, diff; |
18376 | if (fliptype == 1) { |
18377 | // We assume that neither 'a' nor 'b' is dummypoint. |
18378 | assert((pa != dummypoint) && (pb != dummypoint)); // SELF_CHECK |
18379 | // A 2-to-3 flip: [a,b,c] => [e,d,a], [e,d,b], [e,d,c]. |
18380 | // The new tet [e,d,a,b] will be flipped later. Only two new tets: |
18381 | // [e,d,b,c] and [e,d,c,a] need to be checked. |
18382 | if ((pc != dummypoint) && (pe != dummypoint) && (pd != dummypoint)) { |
18383 | // Get the largest dihedral angle of [e,d,b,c]. |
18384 | tetalldihedral(pe, pd, pb, pc, NULL, &cosmaxd, NULL); |
18385 | diff = cosmaxd - fc->cosdihed_in; |
18386 | if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding. |
18387 | if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) { |
18388 | rejflag = 1; |
18389 | } else { |
18390 | // Record the largest new angle. |
18391 | if (cosmaxd < fc->cosdihed_out) { |
18392 | fc->cosdihed_out = cosmaxd; |
18393 | } |
18394 | // Get the largest dihedral angle of [e,d,c,a]. |
18395 | tetalldihedral(pe, pd, pc, pa, NULL, &cosmaxd, NULL); |
18396 | diff = cosmaxd - fc->cosdihed_in; |
18397 | if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding. |
18398 | if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) { |
18399 | rejflag = 1; |
18400 | } else { |
18401 | // Record the largest new angle. |
18402 | if (cosmaxd < fc->cosdihed_out) { |
18403 | fc->cosdihed_out = cosmaxd; |
18404 | } |
18405 | } |
18406 | } |
18407 | } // if (pc != dummypoint && ...) |
18408 | } else if (fliptype == 2) { |
18409 | // A 3-to-2 flip: [e,d,a], [e,d,b], [e,d,c] => [a,b,c] |
18410 | // We assume that neither 'e' nor 'd' is dummypoint. |
18411 | assert((pe != dummypoint) && (pd != dummypoint)); // SELF_CHECK |
18412 | if (level == 0) { |
18413 | // Both new tets [a,b,c,d] and [b,a,c,e] are new tets. |
18414 | if ((pa != dummypoint) && (pb != dummypoint) && (pc != dummypoint)) { |
18415 | // Get the largest dihedral angle of [a,b,c,d]. |
18416 | tetalldihedral(pa, pb, pc, pd, NULL, &cosmaxd, NULL); |
18417 | diff = cosmaxd - fc->cosdihed_in; |
18418 | if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding |
18419 | if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) { |
18420 | rejflag = 1; |
18421 | } else { |
18422 | // Record the largest new angle. |
18423 | if (cosmaxd < fc->cosdihed_out) { |
18424 | fc->cosdihed_out = cosmaxd; |
18425 | } |
18426 | // Get the largest dihedral angle of [b,a,c,e]. |
18427 | tetalldihedral(pb, pa, pc, pe, NULL, &cosmaxd, NULL); |
18428 | diff = cosmaxd - fc->cosdihed_in; |
18429 | if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0;// Rounding |
18430 | if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) { |
18431 | rejflag = 1; |
18432 | } else { |
18433 | // Record the largest new angle. |
18434 | if (cosmaxd < fc->cosdihed_out) { |
18435 | fc->cosdihed_out = cosmaxd; |
18436 | } |
18437 | } |
18438 | } |
18439 | } |
18440 | } else { // level > 0 |
18441 | assert(edgepivot != 0); |
18442 | if (edgepivot == 1) { |
18443 | // The new tet [a,b,c,d] will be flipped. Only check [b,a,c,e]. |
18444 | if ((pa != dummypoint) && (pb != dummypoint) && (pc != dummypoint)) { |
18445 | // Get the largest dihedral angle of [b,a,c,e]. |
18446 | tetalldihedral(pb, pa, pc, pe, NULL, &cosmaxd, NULL); |
18447 | diff = cosmaxd - fc->cosdihed_in; |
18448 | if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0;// Rounding |
18449 | if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) { |
18450 | rejflag = 1; |
18451 | } else { |
18452 | // Record the largest new angle. |
18453 | if (cosmaxd < fc->cosdihed_out) { |
18454 | fc->cosdihed_out = cosmaxd; |
18455 | } |
18456 | } |
18457 | } |
18458 | } else { |
18459 | assert(edgepivot == 2); |
18460 | // The new tet [b,a,c,e] will be flipped. Only check [a,b,c,d]. |
18461 | if ((pa != dummypoint) && (pb != dummypoint) && (pc != dummypoint)) { |
18462 | // Get the largest dihedral angle of [b,a,c,e]. |
18463 | tetalldihedral(pa, pb, pc, pd, NULL, &cosmaxd, NULL); |
18464 | diff = cosmaxd - fc->cosdihed_in; |
18465 | if (fabs(diff/fc->cosdihed_in) < b->epsilon) diff = 0.0;// Rounding |
18466 | if (diff <= 0) { //if (cosmaxd <= fc->cosdihed_in) { |
18467 | rejflag = 1; |
18468 | } else { |
18469 | // Record the largest new angle. |
18470 | if (cosmaxd < fc->cosdihed_out) { |
18471 | fc->cosdihed_out = cosmaxd; |
18472 | } |
18473 | } |
18474 | } |
18475 | } // edgepivot |
18476 | } // level |
18477 | } |
18478 | } |
18479 | |
18480 | return rejflag; |
18481 | } |
18482 | |
18483 | /////////////////////////////////////////////////////////////////////////////// |
18484 | // // |
18485 | // removeedgebyflips() Remove an edge by flips. // |
18486 | // // |
18487 | // 'flipedge' is a non-convex or flat edge [a,b,#,#] to be removed. // |
18488 | // // |
18489 | // The return value is a positive integer, it indicates whether the edge is // |
18490 | // removed or not. A value "2" means the edge is removed, otherwise, the // |
18491 | // edge is not removed and the value (must >= 3) is the current number of // |
18492 | // tets in the edge star. // |
18493 | // // |
18494 | /////////////////////////////////////////////////////////////////////////////// |
18495 | |
18496 | int tetgenmesh::removeedgebyflips(triface *flipedge, flipconstraints* fc) |
18497 | { |
18498 | triface *abtets, spintet; |
18499 | int t1ver; |
18500 | int n, nn, i; |
18501 | |
18502 | |
18503 | if (checksubsegflag) { |
18504 | // Do not flip a segment. |
18505 | if (issubseg(*flipedge)) { |
18506 | if (fc->collectencsegflag) { |
18507 | face checkseg, *paryseg; |
18508 | tsspivot1(*flipedge, checkseg); |
18509 | if (!sinfected(checkseg)) { |
18510 | // Queue this segment in list. |
18511 | sinfect(checkseg); |
18512 | caveencseglist->newindex((void **) &paryseg); |
18513 | *paryseg = checkseg; |
18514 | } |
18515 | } |
18516 | return 0; |
18517 | } |
18518 | } |
18519 | |
18520 | // Count the number of tets at edge [a,b]. |
18521 | n = 0; |
18522 | spintet = *flipedge; |
18523 | while (1) { |
18524 | n++; |
18525 | fnextself(spintet); |
18526 | if (spintet.tet == flipedge->tet) break; |
18527 | } |
18528 | assert(n >= 3); |
18529 | |
18530 | if ((b->flipstarsize > 0) && (n > b->flipstarsize)) { |
18531 | // The star size exceeds the limit. |
18532 | return 0; // Do not flip it. |
18533 | } |
18534 | |
18535 | // Allocate spaces. |
18536 | abtets = new triface[n]; |
18537 | // Collect the tets at edge [a,b]. |
18538 | spintet = *flipedge; |
18539 | i = 0; |
18540 | while (1) { |
18541 | abtets[i] = spintet; |
18542 | setelemcounter(abtets[i], 1); |
18543 | i++; |
18544 | fnextself(spintet); |
18545 | if (spintet.tet == flipedge->tet) break; |
18546 | } |
18547 | |
18548 | |
18549 | // Try to flip the edge (level = 0, edgepivot = 0). |
18550 | nn = flipnm(abtets, n, 0, 0, fc); |
18551 | |
18552 | |
18553 | if (nn > 2) { |
18554 | // Edge is not flipped. Unmarktest the remaining tets in Star(ab). |
18555 | for (i = 0; i < nn; i++) { |
18556 | setelemcounter(abtets[i], 0); |
18557 | } |
18558 | // Restore the input edge (needed by Lawson's flip). |
18559 | *flipedge = abtets[0]; |
18560 | } |
18561 | |
18562 | // Release the temporary allocated spaces. |
18563 | // NOTE: fc->unflip must be 0. |
18564 | int bakunflip = fc->unflip; |
18565 | fc->unflip = 0; |
18566 | flipnm_post(abtets, n, nn, 0, fc); |
18567 | fc->unflip = bakunflip; |
18568 | |
18569 | delete [] abtets; |
18570 | |
18571 | return nn; |
18572 | } |
18573 | |
18574 | /////////////////////////////////////////////////////////////////////////////// |
18575 | // // |
18576 | // removefacebyflips() Remove a face by flips. // |
18577 | // // |
18578 | // Return 1 if the face is removed. Otherwise, return 0. // |
18579 | // // |
18580 | // ASSUMPTIONS: // |
18581 | // - 'flipface' must not be a hull face. // |
18582 | // // |
18583 | /////////////////////////////////////////////////////////////////////////////// |
18584 | |
18585 | int tetgenmesh::removefacebyflips(triface *flipface, flipconstraints* fc) |
18586 | { |
18587 | if (checksubfaceflag) { |
18588 | if (issubface(*flipface)) { |
18589 | return 0; |
18590 | } |
18591 | } |
18592 | |
18593 | triface fliptets[3], flipedge; |
18594 | point pa, pb, pc, pd, pe; |
18595 | REAL ori; |
18596 | int reducflag = 0; |
18597 | |
18598 | fliptets[0] = *flipface; |
18599 | fsym(*flipface, fliptets[1]); |
18600 | pa = org(fliptets[0]); |
18601 | pb = dest(fliptets[0]); |
18602 | pc = apex(fliptets[0]); |
18603 | pd = oppo(fliptets[0]); |
18604 | pe = oppo(fliptets[1]); |
18605 | |
18606 | ori = orient3d(pa, pb, pd, pe); |
18607 | if (ori > 0) { |
18608 | ori = orient3d(pb, pc, pd, pe); |
18609 | if (ori > 0) { |
18610 | ori = orient3d(pc, pa, pd, pe); |
18611 | if (ori > 0) { |
18612 | // Found a 2-to-3 flip. |
18613 | reducflag = 1; |
18614 | } else { |
18615 | eprev(*flipface, flipedge); // [c,a] |
18616 | } |
18617 | } else { |
18618 | enext(*flipface, flipedge); // [b,c] |
18619 | } |
18620 | } else { |
18621 | flipedge = *flipface; // [a,b] |
18622 | } |
18623 | |
18624 | if (reducflag) { |
18625 | // A 2-to-3 flip is found. |
18626 | flip23(fliptets, 0, fc); |
18627 | return 1; |
18628 | } else { |
18629 | // Try to flip the selected edge of this face. |
18630 | if (removeedgebyflips(&flipedge, fc) == 2) { |
18631 | return 1; |
18632 | } |
18633 | } |
18634 | |
18635 | // Face is not removed. |
18636 | return 0; |
18637 | } |
18638 | |
18639 | /////////////////////////////////////////////////////////////////////////////// |
18640 | // // |
18641 | // recoveredge() Recover an edge in current tetrahedralization. // |
18642 | // // |
18643 | // If the edge is recovered, 'searchtet' returns a tet containing the edge. // |
18644 | // // |
18645 | // This edge may intersect a set of faces and edges in the mesh. All these // |
18646 | // faces or edges are needed to be removed. // |
18647 | // // |
18648 | // If the parameter 'fullsearch' is set, it tries to flip any face or edge // |
18649 | // that intersects the recovering edge. Otherwise, only the face or edge // |
18650 | // which is visible by 'startpt' is tried. // |
18651 | // // |
18652 | /////////////////////////////////////////////////////////////////////////////// |
18653 | |
18654 | int tetgenmesh::recoveredgebyflips(point startpt, point endpt, |
18655 | triface* searchtet, int fullsearch) |
18656 | { |
18657 | flipconstraints fc; |
18658 | enum interresult dir; |
18659 | |
18660 | fc.seg[0] = startpt; |
18661 | fc.seg[1] = endpt; |
18662 | fc.checkflipeligibility = 1; |
18663 | |
18664 | // The mainloop of the edge reocvery. |
18665 | while (1) { // Loop I |
18666 | |
18667 | // Search the edge from 'startpt'. |
18668 | point2tetorg(startpt, *searchtet); |
18669 | dir = finddirection(searchtet, endpt); |
18670 | if (dir == ACROSSVERT) { |
18671 | if (dest(*searchtet) == endpt) { |
18672 | return 1; // Edge is recovered. |
18673 | } else { |
18674 | terminatetetgen(this, 3); // // It may be a PLC problem. |
18675 | } |
18676 | } |
18677 | |
18678 | // The edge is missing. |
18679 | |
18680 | // Try to flip the first intersecting face/edge. |
18681 | enextesymself(*searchtet); // Go to the opposite face. |
18682 | if (dir == ACROSSFACE) { |
18683 | // A face is intersected with the segment. Try to flip it. |
18684 | if (removefacebyflips(searchtet, &fc)) { |
18685 | continue; |
18686 | } |
18687 | } else if (dir == ACROSSEDGE) { |
18688 | // An edge is intersected with the segment. Try to flip it. |
18689 | if (removeedgebyflips(searchtet, &fc) == 2) { |
18690 | continue; |
18691 | } |
18692 | } else { |
18693 | terminatetetgen(this, 3); // It may be a PLC problem. |
18694 | } |
18695 | |
18696 | // The edge is missing. |
18697 | |
18698 | if (fullsearch) { |
18699 | // Try to flip one of the faces/edges which intersects the edge. |
18700 | triface neightet, spintet; |
18701 | point pa, pb, pc, pd; |
18702 | badface bakface; |
18703 | enum interresult dir1; |
18704 | int types[2], poss[4], pos = 0; |
18705 | int success = 0; |
18706 | int t1ver; |
18707 | int i, j; |
18708 | |
18709 | // Loop through the sequence of intersecting faces/edges from |
18710 | // 'startpt' to 'endpt'. |
18711 | point2tetorg(startpt, *searchtet); |
18712 | dir = finddirection(searchtet, endpt); |
18713 | //assert(dir != ACROSSVERT); |
18714 | |
18715 | // Go to the face/edge intersecting the searching edge. |
18716 | enextesymself(*searchtet); // Go to the opposite face. |
18717 | // This face/edge has been tried in previous step. |
18718 | |
18719 | while (1) { // Loop I-I |
18720 | |
18721 | // Find the next intersecting face/edge. |
18722 | fsymself(*searchtet); |
18723 | if (dir == ACROSSFACE) { |
18724 | neightet = *searchtet; |
18725 | j = (neightet.ver & 3); // j is the current face number. |
18726 | for (i = j + 1; i < j + 4; i++) { |
18727 | neightet.ver = (i % 4); |
18728 | pa = org(neightet); |
18729 | pb = dest(neightet); |
18730 | pc = apex(neightet); |
18731 | pd = oppo(neightet); // The above point. |
18732 | if (tri_edge_test(pa,pb,pc,startpt,endpt, pd, 1, types, poss)) { |
18733 | dir = (enum interresult) types[0]; |
18734 | pos = poss[0]; |
18735 | break; |
18736 | } else { |
18737 | dir = DISJOINT; |
18738 | pos = 0; |
18739 | } |
18740 | } // i |
18741 | // There must be an intersection face/edge. |
18742 | assert(dir != DISJOINT); // SELF_CHECK |
18743 | } else { |
18744 | assert(dir == ACROSSEDGE); |
18745 | while (1) { // Loop I-I-I |
18746 | // Check the two opposite faces (of the edge) in 'searchtet'. |
18747 | for (i = 0; i < 2; i++) { |
18748 | if (i == 0) { |
18749 | enextesym(*searchtet, neightet); |
18750 | } else { |
18751 | eprevesym(*searchtet, neightet); |
18752 | } |
18753 | pa = org(neightet); |
18754 | pb = dest(neightet); |
18755 | pc = apex(neightet); |
18756 | pd = oppo(neightet); // The above point. |
18757 | if (tri_edge_test(pa,pb,pc,startpt,endpt,pd,1, types, poss)) { |
18758 | dir = (enum interresult) types[0]; |
18759 | pos = poss[0]; |
18760 | break; // for loop |
18761 | } else { |
18762 | dir = DISJOINT; |
18763 | pos = 0; |
18764 | } |
18765 | } // i |
18766 | if (dir != DISJOINT) { |
18767 | // Find an intersection face/edge. |
18768 | break; // Loop I-I-I |
18769 | } |
18770 | // No intersection. Rotate to the next tet at the edge. |
18771 | fnextself(*searchtet); |
18772 | } // while (1) // Loop I-I-I |
18773 | } |
18774 | |
18775 | // Adjust to the intersecting edge/vertex. |
18776 | for (i = 0; i < pos; i++) { |
18777 | enextself(neightet); |
18778 | } |
18779 | |
18780 | if (dir == SHAREVERT) { |
18781 | // Check if we have reached the 'endpt'. |
18782 | pd = org(neightet); |
18783 | if (pd == endpt) { |
18784 | // Failed to recover the edge. |
18785 | break; // Loop I-I |
18786 | } else { |
18787 | // We need to further check this case. It might be a PLC problem |
18788 | // or a Steiner point that was added at a bad location. |
18789 | assert(0); |
18790 | } |
18791 | } |
18792 | |
18793 | // The next to be flipped face/edge. |
18794 | *searchtet = neightet; |
18795 | |
18796 | // Bakup this face (tetrahedron). |
18797 | bakface.forg = org(*searchtet); |
18798 | bakface.fdest = dest(*searchtet); |
18799 | bakface.fapex = apex(*searchtet); |
18800 | bakface.foppo = oppo(*searchtet); |
18801 | |
18802 | // Try to flip this intersecting face/edge. |
18803 | if (dir == ACROSSFACE) { |
18804 | if (removefacebyflips(searchtet, &fc)) { |
18805 | success = 1; |
18806 | break; // Loop I-I |
18807 | } |
18808 | } else if (dir == ACROSSEDGE) { |
18809 | if (removeedgebyflips(searchtet, &fc) == 2) { |
18810 | success = 1; |
18811 | break; // Loop I-I |
18812 | } |
18813 | } else { |
18814 | assert(0); // A PLC problem. |
18815 | } |
18816 | |
18817 | // The face/edge is not flipped. |
18818 | if ((searchtet->tet == NULL) || |
18819 | (org(*searchtet) != bakface.forg) || |
18820 | (dest(*searchtet) != bakface.fdest) || |
18821 | (apex(*searchtet) != bakface.fapex) || |
18822 | (oppo(*searchtet) != bakface.foppo)) { |
18823 | // 'searchtet' was flipped. We must restore it. |
18824 | point2tetorg(bakface.forg, *searchtet); |
18825 | dir1 = finddirection(searchtet, bakface.fdest); |
18826 | if (dir1 == ACROSSVERT) { |
18827 | assert(dest(*searchtet) == bakface.fdest); |
18828 | spintet = *searchtet; |
18829 | while (1) { |
18830 | if (apex(spintet) == bakface.fapex) { |
18831 | // Found the face. |
18832 | *searchtet = spintet; |
18833 | break; |
18834 | } |
18835 | fnextself(spintet); |
18836 | if (spintet.tet == searchtet->tet) { |
18837 | searchtet->tet = NULL; |
18838 | break; // Not find. |
18839 | } |
18840 | } // while (1) |
18841 | if (searchtet->tet != NULL) { |
18842 | if (oppo(*searchtet) != bakface.foppo) { |
18843 | fsymself(*searchtet); |
18844 | if (oppo(*searchtet) != bakface.foppo) { |
18845 | assert(0); // Check this case. |
18846 | searchtet->tet = NULL; |
18847 | break; // Not find. |
18848 | } |
18849 | } |
18850 | } |
18851 | } else { |
18852 | searchtet->tet = NULL; // Not find. |
18853 | } |
18854 | if (searchtet->tet == NULL) { |
18855 | success = 0; // This face/edge has been destroyed. |
18856 | break; // Loop I-I |
18857 | } |
18858 | } |
18859 | } // while (1) // Loop I-I |
18860 | |
18861 | if (success) { |
18862 | // One of intersecting faces/edges is flipped. |
18863 | continue; |
18864 | } |
18865 | |
18866 | } // if (fullsearch) |
18867 | |
18868 | // The edge is missing. |
18869 | break; // Loop I |
18870 | |
18871 | } // while (1) // Loop I |
18872 | |
18873 | return 0; |
18874 | } |
18875 | |
18876 | /////////////////////////////////////////////////////////////////////////////// |
18877 | // // |
18878 | // add_steinerpt_in_schoenhardtpoly() Insert a Steiner point in a Schoen- // |
18879 | // hardt polyhedron. // |
18880 | // // |
18881 | // 'abtets' is an array of n tets which all share at the edge [a,b]. Let the // |
18882 | // tets are [a,b,p0,p1], [a,b,p1,p2], ..., [a,b,p_(n-2),p_(n-1)]. Moreover, // |
18883 | // the edge [p0,p_(n-1)] intersects all of the tets in 'abtets'. A special // |
18884 | // case is that the edge [p0,p_(n-1)] is coplanar with the edge [a,b]. // |
18885 | // Such set of tets arises when we want to recover an edge from 'p0' to 'p_ // |
18886 | // (n-1)', and the number of tets at [a,b] can not be reduced by any flip. // |
18887 | // // |
18888 | /////////////////////////////////////////////////////////////////////////////// |
18889 | |
18890 | int tetgenmesh::add_steinerpt_in_schoenhardtpoly(triface *abtets, int n, |
18891 | int chkencflag) |
18892 | { |
18893 | triface worktet, *parytet; |
18894 | triface faketet1, faketet2; |
18895 | point pc, pd, steinerpt; |
18896 | insertvertexflags ivf; |
18897 | optparameters opm; |
18898 | REAL vcd[3], sampt[3], smtpt[3]; |
18899 | REAL maxminvol = 0.0, minvol = 0.0, ori; |
18900 | int success, maxidx = 0; |
18901 | int it, i; |
18902 | |
18903 | |
18904 | pc = apex(abtets[0]); // pc = p0 |
18905 | pd = oppo(abtets[n-1]); // pd = p_(n-1) |
18906 | |
18907 | |
18908 | // Find an optimial point in edge [c,d]. It is visible by all outer faces |
18909 | // of 'abtets', and it maxmizes the min volume. |
18910 | |
18911 | // initialize the list of 2n boundary faces. |
18912 | for (i = 0; i < n; i++) { |
18913 | edestoppo(abtets[i], worktet); // [p_i,p_i+1,a] |
18914 | cavetetlist->newindex((void **) &parytet); |
18915 | *parytet = worktet; |
18916 | eorgoppo(abtets[i], worktet); // [p_i+1,p_i,b] |
18917 | cavetetlist->newindex((void **) &parytet); |
18918 | *parytet = worktet; |
18919 | } |
18920 | |
18921 | int N = 100; |
18922 | REAL stepi = 0.01; |
18923 | |
18924 | // Search the point along the edge [c,d]. |
18925 | for (i = 0; i < 3; i++) vcd[i] = pd[i] - pc[i]; |
18926 | |
18927 | // Sample N points in edge [c,d]. |
18928 | for (it = 1; it < N; it++) { |
18929 | for (i = 0; i < 3; i++) { |
18930 | sampt[i] = pc[i] + (stepi * (double) it) * vcd[i]; |
18931 | } |
18932 | for (i = 0; i < cavetetlist->objects; i++) { |
18933 | parytet = (triface *) fastlookup(cavetetlist, i); |
18934 | ori = orient3d(dest(*parytet), org(*parytet), apex(*parytet), sampt); |
18935 | if (i == 0) { |
18936 | minvol = ori; |
18937 | } else { |
18938 | if (minvol > ori) minvol = ori; |
18939 | } |
18940 | } // i |
18941 | if (it == 1) { |
18942 | maxminvol = minvol; |
18943 | maxidx = it; |
18944 | } else { |
18945 | if (maxminvol < minvol) { |
18946 | maxminvol = minvol; |
18947 | maxidx = it; |
18948 | } |
18949 | } |
18950 | } // it |
18951 | |
18952 | if (maxminvol <= 0) { |
18953 | cavetetlist->restart(); |
18954 | return 0; |
18955 | } |
18956 | |
18957 | for (i = 0; i < 3; i++) { |
18958 | smtpt[i] = pc[i] + (stepi * (double) maxidx) * vcd[i]; |
18959 | } |
18960 | |
18961 | // Create two faked tets to hold the two non-existing boundary faces: |
18962 | // [d,c,a] and [c,d,b]. |
18963 | maketetrahedron(&faketet1); |
18964 | setvertices(faketet1, pd, pc, org(abtets[0]), dummypoint); |
18965 | cavetetlist->newindex((void **) &parytet); |
18966 | *parytet = faketet1; |
18967 | maketetrahedron(&faketet2); |
18968 | setvertices(faketet2, pc, pd, dest(abtets[0]), dummypoint); |
18969 | cavetetlist->newindex((void **) &parytet); |
18970 | *parytet = faketet2; |
18971 | |
18972 | // Point smooth options. |
18973 | opm.max_min_volume = 1; |
18974 | opm.numofsearchdirs = 20; |
18975 | opm.searchstep = 0.001; |
18976 | opm.maxiter = 100; // Limit the maximum iterations. |
18977 | opm.initval = 0.0; // Initial volume is zero. |
18978 | |
18979 | // Try to relocate the point into the inside of the polyhedron. |
18980 | success = smoothpoint(smtpt, cavetetlist, 1, &opm); |
18981 | |
18982 | if (success) { |
18983 | while (opm.smthiter == 100) { |
18984 | // It was relocated and the prescribed maximum iteration reached. |
18985 | // Try to increase the search stepsize. |
18986 | opm.searchstep *= 10.0; |
18987 | //opm.maxiter = 100; // Limit the maximum iterations. |
18988 | opm.initval = opm.imprval; |
18989 | opm.smthiter = 0; // Init. |
18990 | smoothpoint(smtpt, cavetetlist, 1, &opm); |
18991 | } |
18992 | } // if (success) |
18993 | |
18994 | // Delete the two faked tets. |
18995 | tetrahedrondealloc(faketet1.tet); |
18996 | tetrahedrondealloc(faketet2.tet); |
18997 | |
18998 | cavetetlist->restart(); |
18999 | |
19000 | if (!success) { |
19001 | return 0; |
19002 | } |
19003 | |
19004 | |
19005 | // Insert the Steiner point. |
19006 | makepoint(&steinerpt, FREEVOLVERTEX); |
19007 | for (i = 0; i < 3; i++) steinerpt[i] = smtpt[i]; |
19008 | |
19009 | // Insert the created Steiner point. |
19010 | for (i = 0; i < n; i++) { |
19011 | infect(abtets[i]); |
19012 | caveoldtetlist->newindex((void **) &parytet); |
19013 | *parytet = abtets[i]; |
19014 | } |
19015 | worktet = abtets[0]; // No need point location. |
19016 | ivf.iloc = (int) INSTAR; |
19017 | ivf.chkencflag = chkencflag; |
19018 | ivf.assignmeshsize = b->metric; |
19019 | if (ivf.assignmeshsize) { |
19020 | // Search the tet containing 'steinerpt' for size interpolation. |
19021 | locate(steinerpt, &(abtets[0])); |
19022 | worktet = abtets[0]; |
19023 | } |
19024 | |
19025 | // Insert the new point into the tetrahedralization T. |
19026 | // Note that T is convex (nonconvex = 0). |
19027 | if (insertpoint(steinerpt, &worktet, NULL, NULL, &ivf)) { |
19028 | // The vertex has been inserted. |
19029 | st_volref_count++; |
19030 | if (steinerleft > 0) steinerleft--; |
19031 | return 1; |
19032 | } else { |
19033 | // Not inserted. |
19034 | pointdealloc(steinerpt); |
19035 | return 0; |
19036 | } |
19037 | } |
19038 | |
19039 | /////////////////////////////////////////////////////////////////////////////// |
19040 | // // |
19041 | // add_steinerpt_in_segment() Add a Steiner point inside a segment. // |
19042 | // // |
19043 | /////////////////////////////////////////////////////////////////////////////// |
19044 | |
19045 | int tetgenmesh::add_steinerpt_in_segment(face* misseg, int searchlevel) |
19046 | { |
19047 | triface searchtet; |
19048 | face *paryseg, candseg; |
19049 | point startpt, endpt, pc, pd; |
19050 | flipconstraints fc; |
19051 | enum interresult dir; |
19052 | REAL P[3], Q[3], tp, tq; |
19053 | REAL len, smlen = 0, split = 0, split_q = 0; |
19054 | int success; |
19055 | int i; |
19056 | (void)success; |
19057 | |
19058 | startpt = sorg(*misseg); |
19059 | endpt = sdest(*misseg); |
19060 | |
19061 | fc.seg[0] = startpt; |
19062 | fc.seg[1] = endpt; |
19063 | fc.checkflipeligibility = 1; |
19064 | fc.collectencsegflag = 1; |
19065 | |
19066 | point2tetorg(startpt, searchtet); |
19067 | dir = finddirection(&searchtet, endpt); |
19068 | //assert(dir != ACROSSVERT); |
19069 | |
19070 | // Try to flip the first intersecting face/edge. |
19071 | enextesymself(searchtet); // Go to the opposite face. |
19072 | |
19073 | int bak_fliplinklevel = b->fliplinklevel; |
19074 | b->fliplinklevel = searchlevel; |
19075 | |
19076 | if (dir == ACROSSFACE) { |
19077 | // A face is intersected with the segment. Try to flip it. |
19078 | success = removefacebyflips(&searchtet, &fc); |
19079 | assert(success == 0); |
19080 | } else if (dir == ACROSSEDGE) { |
19081 | // An edge is intersected with the segment. Try to flip it. |
19082 | success = removeedgebyflips(&searchtet, &fc); |
19083 | assert(success != 2); |
19084 | } else { |
19085 | terminatetetgen(this, 3); // It may be a PLC problem. |
19086 | } |
19087 | |
19088 | split = 0; |
19089 | for (i = 0; i < caveencseglist->objects; i++) { |
19090 | paryseg = (face *) fastlookup(caveencseglist, i); |
19091 | suninfect(*paryseg); |
19092 | // Calculate the shortest edge between the two lines. |
19093 | pc = sorg(*paryseg); |
19094 | pd = sdest(*paryseg); |
19095 | tp = tq = 0; |
19096 | if (linelineint(startpt, endpt, pc, pd, P, Q, &tp, &tq)) { |
19097 | // Does the shortest edge lie between the two segments? |
19098 | // Round tp and tq. |
19099 | if ((tp > 0) && (tq < 1)) { |
19100 | if (tp < 0.5) { |
19101 | if (tp < (b->epsilon * 1e+3)) tp = 0.0; |
19102 | } else { |
19103 | if ((1.0 - tp) < (b->epsilon * 1e+3)) tp = 1.0; |
19104 | } |
19105 | } |
19106 | if ((tp <= 0) || (tp >= 1)) continue; |
19107 | if ((tq > 0) && (tq < 1)) { |
19108 | if (tq < 0.5) { |
19109 | if (tq < (b->epsilon * 1e+3)) tq = 0.0; |
19110 | } else { |
19111 | if ((1.0 - tq) < (b->epsilon * 1e+3)) tq = 1.0; |
19112 | } |
19113 | } |
19114 | if ((tq <= 0) || (tq >= 1)) continue; |
19115 | // It is a valid shortest edge. Calculate its length. |
19116 | len = distance(P, Q); |
19117 | if (split == 0) { |
19118 | smlen = len; |
19119 | split = tp; |
19120 | split_q = tq; |
19121 | candseg = *paryseg; |
19122 | } else { |
19123 | if (len < smlen) { |
19124 | smlen = len; |
19125 | split = tp; |
19126 | split_q = tq; |
19127 | candseg = *paryseg; |
19128 | } |
19129 | } |
19130 | } |
19131 | } |
19132 | |
19133 | caveencseglist->restart(); |
19134 | b->fliplinklevel = bak_fliplinklevel; |
19135 | |
19136 | if (split == 0) { |
19137 | // Found no crossing segment. |
19138 | return 0; |
19139 | } |
19140 | |
19141 | face splitsh; |
19142 | face splitseg; |
19143 | point steinerpt, *parypt; |
19144 | insertvertexflags ivf; |
19145 | |
19146 | if (b->addsteiner_algo == 1) { |
19147 | // Split the segment at the closest point to a near segment. |
19148 | makepoint(&steinerpt, FREESEGVERTEX); |
19149 | for (i = 0; i < 3; i++) { |
19150 | steinerpt[i] = startpt[i] + split * (endpt[i] - startpt[i]); |
19151 | } |
19152 | } else { // b->addsteiner_algo == 2 |
19153 | for (i = 0; i < 3; i++) { |
19154 | P[i] = startpt[i] + split * (endpt[i] - startpt[i]); |
19155 | } |
19156 | pc = sorg(candseg); |
19157 | pd = sdest(candseg); |
19158 | for (i = 0; i < 3; i++) { |
19159 | Q[i] = pc[i] + split_q * (pd[i] - pc[i]); |
19160 | } |
19161 | makepoint(&steinerpt, FREEVOLVERTEX); |
19162 | for (i = 0; i < 3; i++) { |
19163 | steinerpt[i] = 0.5 * (P[i] + Q[i]); |
19164 | } |
19165 | } |
19166 | |
19167 | // We need to locate the point. Start searching from 'searchtet'. |
19168 | if (split < 0.5) { |
19169 | point2tetorg(startpt, searchtet); |
19170 | } else { |
19171 | point2tetorg(endpt, searchtet); |
19172 | } |
19173 | if (b->addsteiner_algo == 1) { |
19174 | splitseg = *misseg; |
19175 | spivot(*misseg, splitsh); |
19176 | } else { |
19177 | splitsh.sh = NULL; |
19178 | splitseg.sh = NULL; |
19179 | } |
19180 | ivf.iloc = (int) OUTSIDE; |
19181 | ivf.bowywat = 1; |
19182 | ivf.lawson = 0; |
19183 | ivf.rejflag = 0; |
19184 | ivf.chkencflag = 0; |
19185 | ivf.sloc = (int) ONEDGE; |
19186 | ivf.sbowywat = 1; |
19187 | ivf.splitbdflag = 0; |
19188 | ivf.validflag = 1; |
19189 | ivf.respectbdflag = 1; |
19190 | ivf.assignmeshsize = b->metric; |
19191 | |
19192 | if (!insertpoint(steinerpt, &searchtet, &splitsh, &splitseg, &ivf)) { |
19193 | pointdealloc(steinerpt); |
19194 | return 0; |
19195 | } |
19196 | |
19197 | if (b->addsteiner_algo == 1) { |
19198 | // Save this Steiner point (for removal). |
19199 | // Re-use the array 'subvertstack'. |
19200 | subvertstack->newindex((void **) &parypt); |
19201 | *parypt = steinerpt; |
19202 | st_segref_count++; |
19203 | } else { // b->addsteiner_algo == 2 |
19204 | // Queue the segment for recovery. |
19205 | subsegstack->newindex((void **) &paryseg); |
19206 | *paryseg = *misseg; |
19207 | st_volref_count++; |
19208 | } |
19209 | if (steinerleft > 0) steinerleft--; |
19210 | |
19211 | return 1; |
19212 | } |
19213 | |
19214 | /////////////////////////////////////////////////////////////////////////////// |
19215 | // // |
19216 | // addsteiner4recoversegment() Add a Steiner point for recovering a seg. // |
19217 | // // |
19218 | /////////////////////////////////////////////////////////////////////////////// |
19219 | |
19220 | int tetgenmesh::addsteiner4recoversegment(face* misseg, int splitsegflag) |
19221 | { |
19222 | triface *abtets, searchtet, spintet; |
19223 | face splitsh; |
19224 | face *paryseg; |
19225 | point startpt, endpt; |
19226 | point pa, pb, pd, steinerpt, *parypt; |
19227 | enum interresult dir; |
19228 | insertvertexflags ivf; |
19229 | int types[2], poss[4]; |
19230 | int n, endi, success; |
19231 | int t1ver; |
19232 | int i; |
19233 | |
19234 | startpt = sorg(*misseg); |
19235 | if (pointtype(startpt) == FREESEGVERTEX) { |
19236 | sesymself(*misseg); |
19237 | startpt = sorg(*misseg); |
19238 | } |
19239 | endpt = sdest(*misseg); |
19240 | |
19241 | // Try to recover the edge by adding Steiner points. |
19242 | point2tetorg(startpt, searchtet); |
19243 | dir = finddirection(&searchtet, endpt); |
19244 | enextself(searchtet); |
19245 | //assert(apex(searchtet) == startpt); |
19246 | |
19247 | if (dir == ACROSSFACE) { |
19248 | // The segment is crossing at least 3 faces. Find the common edge of |
19249 | // the first 3 crossing faces. |
19250 | esymself(searchtet); |
19251 | fsym(searchtet, spintet); |
19252 | pd = oppo(spintet); |
19253 | for (i = 0; i < 3; i++) { |
19254 | pa = org(spintet); |
19255 | pb = dest(spintet); |
19256 | //pc = apex(neightet); |
19257 | if (tri_edge_test(pa, pb, pd, startpt, endpt, NULL, 1, types, poss)) { |
19258 | break; // Found the edge. |
19259 | } |
19260 | enextself(spintet); |
19261 | eprevself(searchtet); |
19262 | } |
19263 | assert(i < 3); |
19264 | esymself(searchtet); |
19265 | } else { |
19266 | assert(dir == ACROSSEDGE); |
19267 | // PLC check. |
19268 | if (issubseg(searchtet)) { |
19269 | face checkseg; |
19270 | tsspivot1(searchtet, checkseg); |
19271 | printf("Found two segments intersect each other.\n" ); |
19272 | pa = farsorg(*misseg); |
19273 | pb = farsdest(*misseg); |
19274 | printf(" 1st: [%d,%d] %d.\n" , pointmark(pa), pointmark(pb), |
19275 | shellmark(*misseg)); |
19276 | pa = farsorg(checkseg); |
19277 | pb = farsdest(checkseg); |
19278 | printf(" 2nd: [%d,%d] %d.\n" , pointmark(pa), pointmark(pb), |
19279 | shellmark(checkseg)); |
19280 | terminatetetgen(this, 3); |
19281 | } |
19282 | } |
19283 | assert(apex(searchtet) == startpt); |
19284 | |
19285 | spintet = searchtet; |
19286 | n = 0; endi = -1; |
19287 | while (1) { |
19288 | // Check if the endpt appears in the star. |
19289 | if (apex(spintet) == endpt) { |
19290 | endi = n; // Remember the position of endpt. |
19291 | } |
19292 | n++; // Count a tet in the star. |
19293 | fnextself(spintet); |
19294 | if (spintet.tet == searchtet.tet) break; |
19295 | } |
19296 | assert(n >= 3); |
19297 | |
19298 | if (endi > 0) { |
19299 | // endpt is also in the edge star |
19300 | // Get all tets in the edge star. |
19301 | abtets = new triface[n]; |
19302 | spintet = searchtet; |
19303 | for (i = 0; i < n; i++) { |
19304 | abtets[i] = spintet; |
19305 | fnextself(spintet); |
19306 | } |
19307 | |
19308 | success = 0; |
19309 | |
19310 | if (dir == ACROSSFACE) { |
19311 | // Find a Steiner points inside the polyhedron. |
19312 | if (add_steinerpt_in_schoenhardtpoly(abtets, endi, 0)) { |
19313 | success = 1; |
19314 | } |
19315 | } else if (dir == ACROSSEDGE) { |
19316 | if (n > 4) { |
19317 | // In this case, 'abtets' is separated by the plane (containing the |
19318 | // two intersecting edges) into two parts, P1 and P2, where P1 |
19319 | // consists of 'endi' tets: abtets[0], abtets[1], ..., |
19320 | // abtets[endi-1], and P2 consists of 'n - endi' tets: |
19321 | // abtets[endi], abtets[endi+1], abtets[n-1]. |
19322 | if (endi > 2) { // P1 |
19323 | // There are at least 3 tets in the first part. |
19324 | if (add_steinerpt_in_schoenhardtpoly(abtets, endi, 0)) { |
19325 | success++; |
19326 | } |
19327 | } |
19328 | if ((n - endi) > 2) { // P2 |
19329 | // There are at least 3 tets in the first part. |
19330 | if (add_steinerpt_in_schoenhardtpoly(&(abtets[endi]), n - endi, 0)) { |
19331 | success++; |
19332 | } |
19333 | } |
19334 | } else { |
19335 | // In this case, a 4-to-4 flip should be re-cover the edge [c,d]. |
19336 | // However, there will be invalid tets (either zero or negtive |
19337 | // volume). Otherwise, [c,d] should already be recovered by the |
19338 | // recoveredge() function. |
19339 | terminatetetgen(this, 2); // Report a bug. |
19340 | } |
19341 | } else { |
19342 | terminatetetgen(this, 10); // A PLC problem. |
19343 | } |
19344 | |
19345 | delete [] abtets; |
19346 | |
19347 | if (success) { |
19348 | // Add the missing segment back to the recovering list. |
19349 | subsegstack->newindex((void **) &paryseg); |
19350 | *paryseg = *misseg; |
19351 | return 1; |
19352 | } |
19353 | } // if (endi > 0) |
19354 | |
19355 | if (!splitsegflag) { |
19356 | return 0; |
19357 | } |
19358 | |
19359 | if (b->verbose > 2) { |
19360 | printf(" Splitting segment (%d, %d)\n" , pointmark(startpt), |
19361 | pointmark(endpt)); |
19362 | } |
19363 | steinerpt = NULL; |
19364 | |
19365 | if (b->addsteiner_algo > 0) { // -Y/1 or -Y/2 |
19366 | if (add_steinerpt_in_segment(misseg, 3)) { |
19367 | return 1; |
19368 | } |
19369 | sesymself(*misseg); |
19370 | if (add_steinerpt_in_segment(misseg, 3)) { |
19371 | return 1; |
19372 | } |
19373 | sesymself(*misseg); |
19374 | } |
19375 | |
19376 | |
19377 | |
19378 | |
19379 | if (steinerpt == NULL) { |
19380 | // Split the segment at its midpoint. |
19381 | makepoint(&steinerpt, FREESEGVERTEX); |
19382 | for (i = 0; i < 3; i++) { |
19383 | steinerpt[i] = 0.5 * (startpt[i] + endpt[i]); |
19384 | } |
19385 | |
19386 | // We need to locate the point. |
19387 | assert(searchtet.tet != NULL); // Start searching from 'searchtet'. |
19388 | spivot(*misseg, splitsh); |
19389 | ivf.iloc = (int) OUTSIDE; |
19390 | ivf.bowywat = 1; |
19391 | ivf.lawson = 0; |
19392 | ivf.rejflag = 0; |
19393 | ivf.chkencflag = 0; |
19394 | ivf.sloc = (int) ONEDGE; |
19395 | ivf.sbowywat = 1; |
19396 | ivf.splitbdflag = 0; |
19397 | ivf.validflag = 1; |
19398 | ivf.respectbdflag = 1; |
19399 | ivf.assignmeshsize = b->metric; |
19400 | if (!insertpoint(steinerpt, &searchtet, &splitsh, misseg, &ivf)) { |
19401 | assert(0); |
19402 | } |
19403 | } // if (endi > 0) |
19404 | |
19405 | // Save this Steiner point (for removal). |
19406 | // Re-use the array 'subvertstack'. |
19407 | subvertstack->newindex((void **) &parypt); |
19408 | *parypt = steinerpt; |
19409 | |
19410 | st_segref_count++; |
19411 | if (steinerleft > 0) steinerleft--; |
19412 | |
19413 | return 1; |
19414 | } |
19415 | |
19416 | /////////////////////////////////////////////////////////////////////////////// |
19417 | // // |
19418 | // recoversegments() Recover all segments. // |
19419 | // // |
19420 | // All segments need to be recovered are in 'subsegstack'. // |
19421 | // // |
19422 | // This routine first tries to recover each segment by only using flips. If // |
19423 | // no flip is possible, and the flag 'steinerflag' is set, it then tries to // |
19424 | // insert Steiner points near or in the segment. // |
19425 | // // |
19426 | /////////////////////////////////////////////////////////////////////////////// |
19427 | |
19428 | int tetgenmesh::recoversegments(arraypool *misseglist, int fullsearch, |
19429 | int steinerflag) |
19430 | { |
19431 | triface searchtet, spintet; |
19432 | face sseg, *paryseg; |
19433 | point startpt, endpt; |
19434 | int success; |
19435 | int t1ver; |
19436 | long bak_inpoly_count = st_volref_count; |
19437 | long bak_segref_count = st_segref_count; |
19438 | |
19439 | if (b->verbose > 1) { |
19440 | printf(" Recover segments [%s level = %2d] #: %ld.\n" , |
19441 | (b->fliplinklevel > 0) ? "fixed" : "auto" , |
19442 | (b->fliplinklevel > 0) ? b->fliplinklevel : autofliplinklevel, |
19443 | subsegstack->objects); |
19444 | } |
19445 | |
19446 | // Loop until 'subsegstack' is empty. |
19447 | while (subsegstack->objects > 0l) { |
19448 | // seglist is used as a stack. |
19449 | subsegstack->objects--; |
19450 | paryseg = (face *) fastlookup(subsegstack, subsegstack->objects); |
19451 | sseg = *paryseg; |
19452 | |
19453 | // Check if this segment has been recovered. |
19454 | sstpivot1(sseg, searchtet); |
19455 | if (searchtet.tet != NULL) { |
19456 | continue; // Not a missing segment. |
19457 | } |
19458 | |
19459 | startpt = sorg(sseg); |
19460 | endpt = sdest(sseg); |
19461 | |
19462 | if (b->verbose > 2) { |
19463 | printf(" Recover segment (%d, %d).\n" , pointmark(startpt), |
19464 | pointmark(endpt)); |
19465 | } |
19466 | |
19467 | success = 0; |
19468 | |
19469 | if (recoveredgebyflips(startpt, endpt, &searchtet, 0)) { |
19470 | success = 1; |
19471 | } else { |
19472 | // Try to recover it from the other direction. |
19473 | if (recoveredgebyflips(endpt, startpt, &searchtet, 0)) { |
19474 | success = 1; |
19475 | } |
19476 | } |
19477 | |
19478 | if (!success && fullsearch) { |
19479 | if (recoveredgebyflips(startpt, endpt, &searchtet, fullsearch)) { |
19480 | success = 1; |
19481 | } |
19482 | } |
19483 | |
19484 | if (success) { |
19485 | // Segment is recovered. Insert it. |
19486 | // Let the segment remember an adjacent tet. |
19487 | sstbond1(sseg, searchtet); |
19488 | // Bond the segment to all tets containing it. |
19489 | spintet = searchtet; |
19490 | do { |
19491 | tssbond1(spintet, sseg); |
19492 | fnextself(spintet); |
19493 | } while (spintet.tet != searchtet.tet); |
19494 | } else { |
19495 | if (steinerflag > 0) { |
19496 | // Try to recover the segment but do not split it. |
19497 | if (addsteiner4recoversegment(&sseg, 0)) { |
19498 | success = 1; |
19499 | } |
19500 | if (!success && (steinerflag > 1)) { |
19501 | // Split the segment. |
19502 | addsteiner4recoversegment(&sseg, 1); |
19503 | success = 1; |
19504 | } |
19505 | } |
19506 | if (!success) { |
19507 | if (misseglist != NULL) { |
19508 | // Save this segment. |
19509 | misseglist->newindex((void **) &paryseg); |
19510 | *paryseg = sseg; |
19511 | } |
19512 | } |
19513 | } |
19514 | |
19515 | } // while (subsegstack->objects > 0l) |
19516 | |
19517 | if (steinerflag) { |
19518 | if (b->verbose > 1) { |
19519 | // Report the number of added Steiner points. |
19520 | if (st_volref_count > bak_inpoly_count) { |
19521 | printf(" Add %ld Steiner points in volume.\n" , |
19522 | st_volref_count - bak_inpoly_count); |
19523 | } |
19524 | if (st_segref_count > bak_segref_count) { |
19525 | printf(" Add %ld Steiner points in segments.\n" , |
19526 | st_segref_count - bak_segref_count); |
19527 | } |
19528 | } |
19529 | } |
19530 | |
19531 | return 0; |
19532 | } |
19533 | |
19534 | /////////////////////////////////////////////////////////////////////////////// |
19535 | // // |
19536 | // recoverfacebyflips() Recover a face by flips. // |
19537 | // // |
19538 | // If 'searchsh' is not NULL, it is a subface to be recovered. It is only // |
19539 | // used for checking self-intersections. // |
19540 | // // |
19541 | /////////////////////////////////////////////////////////////////////////////// |
19542 | |
19543 | int tetgenmesh::recoverfacebyflips(point pa, point pb, point pc, |
19544 | face *searchsh, triface* searchtet) |
19545 | { |
19546 | triface spintet, flipedge; |
19547 | point pd, pe; |
19548 | enum interresult dir; |
19549 | flipconstraints fc; |
19550 | int types[2], poss[4], intflag; |
19551 | int success, success1; |
19552 | int t1ver; |
19553 | int i, j; |
19554 | |
19555 | |
19556 | fc.fac[0] = pa; |
19557 | fc.fac[1] = pb; |
19558 | fc.fac[2] = pc; |
19559 | fc.checkflipeligibility = 1; |
19560 | success = 0; |
19561 | |
19562 | for (i = 0; i < 3 && !success; i++) { |
19563 | while (1) { |
19564 | // Get a tet containing the edge [a,b]. |
19565 | point2tetorg(fc.fac[i], *searchtet); |
19566 | dir = finddirection(searchtet, fc.fac[(i+1)%3]); |
19567 | //assert(dir == ACROSSVERT); |
19568 | assert(dest(*searchtet) == fc.fac[(i+1)%3]); |
19569 | // Search the face [a,b,c] |
19570 | spintet = *searchtet; |
19571 | while (1) { |
19572 | if (apex(spintet) == fc.fac[(i+2)%3]) { |
19573 | // Found the face. |
19574 | *searchtet = spintet; |
19575 | // Return the face [a,b,c]. |
19576 | for (j = i; j > 0; j--) { |
19577 | eprevself(*searchtet); |
19578 | } |
19579 | success = 1; |
19580 | break; |
19581 | } |
19582 | fnextself(spintet); |
19583 | if (spintet.tet == searchtet->tet) break; |
19584 | } // while (1) |
19585 | if (success) break; |
19586 | // The face is missing. Try to recover it. |
19587 | success1 = 0; |
19588 | // Find a crossing edge of this face. |
19589 | spintet = *searchtet; |
19590 | while (1) { |
19591 | pd = apex(spintet); |
19592 | pe = oppo(spintet); |
19593 | if ((pd != dummypoint) && (pe != dummypoint)) { |
19594 | // Check if [d,e] intersects [a,b,c] |
19595 | intflag = tri_edge_test(pa, pb, pc, pd, pe, NULL, 1, types, poss); |
19596 | if (intflag > 0) { |
19597 | // By our assumptions, they can only intersect at a single point. |
19598 | if (intflag == 2) { |
19599 | // Check the intersection type. |
19600 | dir = (enum interresult) types[0]; |
19601 | if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
19602 | // Go to the edge [d,e]. |
19603 | edestoppo(spintet, flipedge); // [d,e,a,b] |
19604 | if (searchsh != NULL) { |
19605 | // Check if [e,d] is a segment. |
19606 | if (issubseg(flipedge)) { |
19607 | if (!b->quiet) { |
19608 | face checkseg; |
19609 | tsspivot1(flipedge, checkseg); |
19610 | printf("Found a segment and a subface intersect.\n" ); |
19611 | pd = farsorg(checkseg); |
19612 | pe = farsdest(checkseg); |
19613 | printf(" 1st: [%d, %d] %d.\n" , pointmark(pd), |
19614 | pointmark(pe), shellmark(checkseg)); |
19615 | printf(" 2nd: [%d,%d,%d] %d\n" , pointmark(pa), |
19616 | pointmark(pb), pointmark(pc), shellmark(*searchsh)); |
19617 | } |
19618 | terminatetetgen(this, 3); |
19619 | } |
19620 | } |
19621 | // Try to flip the edge [d,e]. |
19622 | success1 = (removeedgebyflips(&flipedge, &fc) == 2); |
19623 | } else { |
19624 | if (dir == TOUCHFACE) { |
19625 | point touchpt, *parypt; |
19626 | if (poss[1] == 0) { |
19627 | touchpt = pd; // pd is a coplanar vertex. |
19628 | } else { |
19629 | touchpt = pe; // pe is a coplanar vertex. |
19630 | } |
19631 | if (pointtype(touchpt) == FREEVOLVERTEX) { |
19632 | // A volume Steiner point was added in this subface. |
19633 | // Split this subface by this point. |
19634 | face checksh, *parysh; |
19635 | int siloc = (int) ONFACE; |
19636 | int sbowat = 0; // Only split this subface. |
19637 | setpointtype(touchpt, FREEFACETVERTEX); |
19638 | sinsertvertex(touchpt, searchsh, NULL, siloc, sbowat, 0); |
19639 | st_volref_count--; |
19640 | st_facref_count++; |
19641 | // Queue this vertex for removal. |
19642 | subvertstack->newindex((void **) &parypt); |
19643 | *parypt = touchpt; |
19644 | // Queue new subfaces for recovery. |
19645 | // Put all new subfaces into stack for recovery. |
19646 | for (i = 0; i < caveshbdlist->objects; i++) { |
19647 | // Get an old subface at edge [a, b]. |
19648 | parysh = (face *) fastlookup(caveshbdlist, i); |
19649 | spivot(*parysh, checksh); // The new subface [a, b, p]. |
19650 | // Do not recover a deleted new face (degenerated). |
19651 | if (checksh.sh[3] != NULL) { |
19652 | subfacstack->newindex((void **) &parysh); |
19653 | *parysh = checksh; |
19654 | } |
19655 | } |
19656 | // Delete the old subfaces in sC(p). |
19657 | assert(caveshlist->objects == 1); |
19658 | for (i = 0; i < caveshlist->objects; i++) { |
19659 | parysh = (face *) fastlookup(caveshlist, i); |
19660 | shellfacedealloc(subfaces, parysh->sh); |
19661 | } |
19662 | // Clear working lists. |
19663 | caveshlist->restart(); |
19664 | caveshbdlist->restart(); |
19665 | cavesegshlist->restart(); |
19666 | // We can return this function. |
19667 | searchsh->sh = NULL; // It has been split. |
19668 | success1 = 0; |
19669 | success = 1; |
19670 | } else { |
19671 | // It should be a PLC problem. |
19672 | if (pointtype(touchpt) == FREESEGVERTEX) { |
19673 | // A segment and a subface intersect. |
19674 | } else if (pointtype(touchpt) == FREEFACETVERTEX) { |
19675 | // Two facets self-intersect. |
19676 | } |
19677 | terminatetetgen(this, 3); |
19678 | } |
19679 | } else { |
19680 | assert(0); // Unknown cases. Debug. |
19681 | } |
19682 | } |
19683 | break; |
19684 | } else { // intflag == 4. Coplanar case. |
19685 | // This may be an input PLC error. |
19686 | assert(0); |
19687 | } |
19688 | } // if (intflag > 0) |
19689 | } |
19690 | fnextself(spintet); |
19691 | assert(spintet.tet != searchtet->tet); |
19692 | } // while (1) |
19693 | if (!success1) break; |
19694 | } // while (1) |
19695 | } // i |
19696 | |
19697 | return success; |
19698 | } |
19699 | |
19700 | /////////////////////////////////////////////////////////////////////////////// |
19701 | // // |
19702 | // recoversubfaces() Recover all subfaces. // |
19703 | // // |
19704 | /////////////////////////////////////////////////////////////////////////////// |
19705 | |
19706 | int tetgenmesh::recoversubfaces(arraypool *misshlist, int steinerflag) |
19707 | { |
19708 | triface searchtet, neightet, spintet; |
19709 | face searchsh, neighsh, neineish, *parysh; |
19710 | face bdsegs[3]; |
19711 | point startpt, endpt, apexpt, *parypt; |
19712 | point steinerpt; |
19713 | enum interresult dir; |
19714 | insertvertexflags ivf; |
19715 | int success; |
19716 | int t1ver; |
19717 | int i, j; |
19718 | |
19719 | if (b->verbose > 1) { |
19720 | printf(" Recover subfaces [%s level = %2d] #: %ld.\n" , |
19721 | (b->fliplinklevel > 0) ? "fixed" : "auto" , |
19722 | (b->fliplinklevel > 0) ? b->fliplinklevel : autofliplinklevel, |
19723 | subfacstack->objects); |
19724 | } |
19725 | |
19726 | // Loop until 'subfacstack' is empty. |
19727 | while (subfacstack->objects > 0l) { |
19728 | |
19729 | subfacstack->objects--; |
19730 | parysh = (face *) fastlookup(subfacstack, subfacstack->objects); |
19731 | searchsh = *parysh; |
19732 | |
19733 | if (searchsh.sh[3] == NULL) continue; // Skip a dead subface. |
19734 | |
19735 | stpivot(searchsh, neightet); |
19736 | if (neightet.tet != NULL) continue; // Skip a recovered subface. |
19737 | |
19738 | |
19739 | if (b->verbose > 2) { |
19740 | printf(" Recover subface (%d, %d, %d).\n" ,pointmark(sorg(searchsh)), |
19741 | pointmark(sdest(searchsh)), pointmark(sapex(searchsh))); |
19742 | } |
19743 | |
19744 | // The three edges of the face need to be existed first. |
19745 | for (i = 0; i < 3; i++) { |
19746 | sspivot(searchsh, bdsegs[i]); |
19747 | if (bdsegs[i].sh != NULL) { |
19748 | // The segment must exist. |
19749 | sstpivot1(bdsegs[i], searchtet); |
19750 | if (searchtet.tet == NULL) { |
19751 | assert(0); |
19752 | } |
19753 | } else { |
19754 | // This edge is not a segment (due to a Steiner point). |
19755 | // Check whether it exists or not. |
19756 | success = 0; |
19757 | startpt = sorg(searchsh); |
19758 | endpt = sdest(searchsh); |
19759 | point2tetorg(startpt, searchtet); |
19760 | dir = finddirection(&searchtet, endpt); |
19761 | if (dir == ACROSSVERT) { |
19762 | if (dest(searchtet) == endpt) { |
19763 | success = 1; |
19764 | } else { |
19765 | //assert(0); // A PLC problem. |
19766 | terminatetetgen(this, 3); |
19767 | } |
19768 | } else { |
19769 | // The edge is missing. Try to recover it. |
19770 | if (recoveredgebyflips(startpt, endpt, &searchtet, 0)) { |
19771 | success = 1; |
19772 | } else { |
19773 | if (recoveredgebyflips(endpt, startpt, &searchtet, 0)) { |
19774 | success = 1; |
19775 | } |
19776 | } |
19777 | } |
19778 | if (success) { |
19779 | // Insert a temporary segment to protect this edge. |
19780 | makeshellface(subsegs, &(bdsegs[i])); |
19781 | setshvertices(bdsegs[i], startpt, endpt, NULL); |
19782 | smarktest2(bdsegs[i]); // It's a temporary segment. |
19783 | // Insert this segment into surface mesh. |
19784 | ssbond(searchsh, bdsegs[i]); |
19785 | spivot(searchsh, neighsh); |
19786 | if (neighsh.sh != NULL) { |
19787 | ssbond(neighsh, bdsegs[i]); |
19788 | } |
19789 | // Insert this segment into tetrahedralization. |
19790 | sstbond1(bdsegs[i], searchtet); |
19791 | // Bond the segment to all tets containing it. |
19792 | spintet = searchtet; |
19793 | do { |
19794 | tssbond1(spintet, bdsegs[i]); |
19795 | fnextself(spintet); |
19796 | } while (spintet.tet != searchtet.tet); |
19797 | } else { |
19798 | // An edge of this subface is missing. Can't recover this subface. |
19799 | // Delete any temporary segment that has been created. |
19800 | for (j = (i - 1); j >= 0; j--) { |
19801 | if (smarktest2ed(bdsegs[j])) { |
19802 | spivot(bdsegs[j], neineish); |
19803 | assert(neineish.sh != NULL); |
19804 | //if (neineish.sh != NULL) { |
19805 | ssdissolve(neineish); |
19806 | spivot(neineish, neighsh); |
19807 | if (neighsh.sh != NULL) { |
19808 | ssdissolve(neighsh); |
19809 | // There should be only two subfaces at this segment. |
19810 | spivotself(neighsh); // SELF_CHECK |
19811 | assert(neighsh.sh == neineish.sh); |
19812 | } |
19813 | //} |
19814 | sstpivot1(bdsegs[j], searchtet); |
19815 | assert(searchtet.tet != NULL); |
19816 | //if (searchtet.tet != NULL) { |
19817 | spintet = searchtet; |
19818 | while (1) { |
19819 | tssdissolve1(spintet); |
19820 | fnextself(spintet); |
19821 | if (spintet.tet == searchtet.tet) break; |
19822 | } |
19823 | //} |
19824 | shellfacedealloc(subsegs, bdsegs[j].sh); |
19825 | } |
19826 | } // j |
19827 | if (steinerflag) { |
19828 | // Add a Steiner point at the midpoint of this edge. |
19829 | if (b->verbose > 2) { |
19830 | printf(" Add a Steiner point in subedge (%d, %d).\n" , |
19831 | pointmark(startpt), pointmark(endpt)); |
19832 | } |
19833 | makepoint(&steinerpt, FREEFACETVERTEX); |
19834 | for (j = 0; j < 3; j++) { |
19835 | steinerpt[j] = 0.5 * (startpt[j] + endpt[j]); |
19836 | } |
19837 | |
19838 | point2tetorg(startpt, searchtet); // Start from 'searchtet'. |
19839 | ivf.iloc = (int) OUTSIDE; // Need point location. |
19840 | ivf.bowywat = 1; |
19841 | ivf.lawson = 0; |
19842 | ivf.rejflag = 0; |
19843 | ivf.chkencflag = 0; |
19844 | ivf.sloc = (int) ONEDGE; |
19845 | ivf.sbowywat = 1; // Allow flips in facet. |
19846 | ivf.splitbdflag = 0; |
19847 | ivf.validflag = 1; |
19848 | ivf.respectbdflag = 1; |
19849 | ivf.assignmeshsize = b->metric; |
19850 | if (!insertpoint(steinerpt, &searchtet, &searchsh, NULL, &ivf)) { |
19851 | assert(0); |
19852 | } |
19853 | // Save this Steiner point (for removal). |
19854 | // Re-use the array 'subvertstack'. |
19855 | subvertstack->newindex((void **) &parypt); |
19856 | *parypt = steinerpt; |
19857 | |
19858 | st_facref_count++; |
19859 | if (steinerleft > 0) steinerleft--; |
19860 | } // if (steinerflag) |
19861 | break; |
19862 | } |
19863 | } |
19864 | senextself(searchsh); |
19865 | } // i |
19866 | |
19867 | if (i == 3) { |
19868 | // Recover the subface. |
19869 | startpt = sorg(searchsh); |
19870 | endpt = sdest(searchsh); |
19871 | apexpt = sapex(searchsh); |
19872 | |
19873 | success = recoverfacebyflips(startpt,endpt,apexpt,&searchsh,&searchtet); |
19874 | |
19875 | // Delete any temporary segment that has been created. |
19876 | for (j = 0; j < 3; j++) { |
19877 | if (smarktest2ed(bdsegs[j])) { |
19878 | spivot(bdsegs[j], neineish); |
19879 | assert(neineish.sh != NULL); |
19880 | //if (neineish.sh != NULL) { |
19881 | ssdissolve(neineish); |
19882 | spivot(neineish, neighsh); |
19883 | if (neighsh.sh != NULL) { |
19884 | ssdissolve(neighsh); |
19885 | // There should be only two subfaces at this segment. |
19886 | spivotself(neighsh); // SELF_CHECK |
19887 | assert(neighsh.sh == neineish.sh); |
19888 | } |
19889 | //} |
19890 | sstpivot1(bdsegs[j], neightet); |
19891 | assert(neightet.tet != NULL); |
19892 | //if (neightet.tet != NULL) { |
19893 | spintet = neightet; |
19894 | while (1) { |
19895 | tssdissolve1(spintet); |
19896 | fnextself(spintet); |
19897 | if (spintet.tet == neightet.tet) break; |
19898 | } |
19899 | //} |
19900 | shellfacedealloc(subsegs, bdsegs[j].sh); |
19901 | } |
19902 | } // j |
19903 | |
19904 | if (success) { |
19905 | if (searchsh.sh != NULL) { |
19906 | // Face is recovered. Insert it. |
19907 | tsbond(searchtet, searchsh); |
19908 | fsymself(searchtet); |
19909 | sesymself(searchsh); |
19910 | tsbond(searchtet, searchsh); |
19911 | } |
19912 | } else { |
19913 | if (steinerflag) { |
19914 | // Add a Steiner point at the barycenter of this subface. |
19915 | if (b->verbose > 2) { |
19916 | printf(" Add a Steiner point in subface (%d, %d, %d).\n" , |
19917 | pointmark(startpt), pointmark(endpt), pointmark(apexpt)); |
19918 | } |
19919 | makepoint(&steinerpt, FREEFACETVERTEX); |
19920 | for (j = 0; j < 3; j++) { |
19921 | steinerpt[j] = (startpt[j] + endpt[j] + apexpt[j]) / 3.0; |
19922 | } |
19923 | |
19924 | point2tetorg(startpt, searchtet); // Start from 'searchtet'. |
19925 | ivf.iloc = (int) OUTSIDE; // Need point location. |
19926 | ivf.bowywat = 1; |
19927 | ivf.lawson = 0; |
19928 | ivf.rejflag = 0; |
19929 | ivf.chkencflag = 0; |
19930 | ivf.sloc = (int) ONFACE; |
19931 | ivf.sbowywat = 1; // Allow flips in facet. |
19932 | ivf.splitbdflag = 0; |
19933 | ivf.validflag = 1; |
19934 | ivf.respectbdflag = 1; |
19935 | ivf.assignmeshsize = b->metric; |
19936 | if (!insertpoint(steinerpt, &searchtet, &searchsh, NULL, &ivf)) { |
19937 | assert(0); |
19938 | } |
19939 | // Save this Steiner point (for removal). |
19940 | // Re-use the array 'subvertstack'. |
19941 | subvertstack->newindex((void **) &parypt); |
19942 | *parypt = steinerpt; |
19943 | |
19944 | st_facref_count++; |
19945 | if (steinerleft > 0) steinerleft--; |
19946 | } // if (steinerflag) |
19947 | } |
19948 | } else { |
19949 | success = 0; |
19950 | } |
19951 | |
19952 | if (!success) { |
19953 | if (misshlist != NULL) { |
19954 | // Save this subface. |
19955 | misshlist->newindex((void **) &parysh); |
19956 | *parysh = searchsh; |
19957 | } |
19958 | } |
19959 | |
19960 | } // while (subfacstack->objects > 0l) |
19961 | |
19962 | return 0; |
19963 | } |
19964 | |
19965 | /////////////////////////////////////////////////////////////////////////////// |
19966 | // // |
19967 | // getvertexstar() Return the star of a vertex. // |
19968 | // // |
19969 | // If the flag 'fullstar' is set, return the complete star of this vertex. // |
19970 | // Otherwise, only a part of the star which is bounded by facets is returned.// |
19971 | // // |
19972 | // 'tetlist' returns the list of tets in the star of the vertex 'searchpt'. // |
19973 | // Every tet in 'tetlist' is at the face opposing to 'searchpt'. // |
19974 | // // |
19975 | // 'vertlist' returns the list of vertices in the star (exclude 'searchpt'). // |
19976 | // // |
19977 | // 'shlist' returns the list of subfaces in the star. Each subface must face // |
19978 | // to the interior of this star. // |
19979 | // // |
19980 | /////////////////////////////////////////////////////////////////////////////// |
19981 | |
19982 | int tetgenmesh::getvertexstar(int fullstar, point searchpt, arraypool* tetlist, |
19983 | arraypool* vertlist, arraypool* shlist) |
19984 | { |
19985 | triface searchtet, neightet, *parytet; |
19986 | face checksh, *parysh; |
19987 | point pt, *parypt; |
19988 | int collectflag; |
19989 | int t1ver; |
19990 | int i, j; |
19991 | |
19992 | point2tetorg(searchpt, searchtet); |
19993 | |
19994 | // Go to the opposite face (the link face) of the vertex. |
19995 | enextesymself(searchtet); |
19996 | //assert(oppo(searchtet) == searchpt); |
19997 | infect(searchtet); // Collect this tet (link face). |
19998 | tetlist->newindex((void **) &parytet); |
19999 | *parytet = searchtet; |
20000 | if (vertlist != NULL) { |
20001 | // Collect three (link) vertices. |
20002 | j = (searchtet.ver & 3); // The current vertex index. |
20003 | for (i = 1; i < 4; i++) { |
20004 | pt = (point) searchtet.tet[4 + ((j + i) % 4)]; |
20005 | pinfect(pt); |
20006 | vertlist->newindex((void **) &parypt); |
20007 | *parypt = pt; |
20008 | } |
20009 | } |
20010 | |
20011 | collectflag = 1; |
20012 | esym(searchtet, neightet); |
20013 | if (issubface(neightet)) { |
20014 | if (shlist != NULL) { |
20015 | tspivot(neightet, checksh); |
20016 | if (!sinfected(checksh)) { |
20017 | // Collect this subface (link edge). |
20018 | sinfected(checksh); |
20019 | shlist->newindex((void **) &parysh); |
20020 | *parysh = checksh; |
20021 | } |
20022 | } |
20023 | if (!fullstar) { |
20024 | collectflag = 0; |
20025 | } |
20026 | } |
20027 | if (collectflag) { |
20028 | fsymself(neightet); // Goto the adj tet of this face. |
20029 | esymself(neightet); // Goto the oppo face of this vertex. |
20030 | // assert(oppo(neightet) == searchpt); |
20031 | infect(neightet); // Collect this tet (link face). |
20032 | tetlist->newindex((void **) &parytet); |
20033 | *parytet = neightet; |
20034 | if (vertlist != NULL) { |
20035 | // Collect its apex. |
20036 | pt = apex(neightet); |
20037 | pinfect(pt); |
20038 | vertlist->newindex((void **) &parypt); |
20039 | *parypt = pt; |
20040 | } |
20041 | } // if (collectflag) |
20042 | |
20043 | // Continue to collect all tets in the star. |
20044 | for (i = 0; i < tetlist->objects; i++) { |
20045 | searchtet = * (triface *) fastlookup(tetlist, i); |
20046 | // Note that 'searchtet' is a face opposite to 'searchpt', and the neighbor |
20047 | // tet at the current edge is already collected. |
20048 | // Check the neighbors at the other two edges of this face. |
20049 | for (j = 0; j < 2; j++) { |
20050 | collectflag = 1; |
20051 | enextself(searchtet); |
20052 | esym(searchtet, neightet); |
20053 | if (issubface(neightet)) { |
20054 | if (shlist != NULL) { |
20055 | tspivot(neightet, checksh); |
20056 | if (!sinfected(checksh)) { |
20057 | // Collect this subface (link edge). |
20058 | sinfected(checksh); |
20059 | shlist->newindex((void **) &parysh); |
20060 | *parysh = checksh; |
20061 | } |
20062 | } |
20063 | if (!fullstar) { |
20064 | collectflag = 0; |
20065 | } |
20066 | } |
20067 | if (collectflag) { |
20068 | fsymself(neightet); |
20069 | if (!infected(neightet)) { |
20070 | esymself(neightet); // Go to the face opposite to 'searchpt'. |
20071 | infect(neightet); |
20072 | tetlist->newindex((void **) &parytet); |
20073 | *parytet = neightet; |
20074 | if (vertlist != NULL) { |
20075 | // Check if a vertex is collected. |
20076 | pt = apex(neightet); |
20077 | if (!pinfected(pt)) { |
20078 | pinfect(pt); |
20079 | vertlist->newindex((void **) &parypt); |
20080 | *parypt = pt; |
20081 | } |
20082 | } |
20083 | } // if (!infected(neightet)) |
20084 | } // if (collectflag) |
20085 | } // j |
20086 | } // i |
20087 | |
20088 | |
20089 | // Uninfect the list of tets and vertices. |
20090 | for (i = 0; i < tetlist->objects; i++) { |
20091 | parytet = (triface *) fastlookup(tetlist, i); |
20092 | uninfect(*parytet); |
20093 | } |
20094 | |
20095 | if (vertlist != NULL) { |
20096 | for (i = 0; i < vertlist->objects; i++) { |
20097 | parypt = (point *) fastlookup(vertlist, i); |
20098 | puninfect(*parypt); |
20099 | } |
20100 | } |
20101 | |
20102 | if (shlist != NULL) { |
20103 | for (i = 0; i < shlist->objects; i++) { |
20104 | parysh = (face *) fastlookup(shlist, i); |
20105 | suninfect(*parysh); |
20106 | } |
20107 | } |
20108 | |
20109 | return (int) tetlist->objects; |
20110 | } |
20111 | |
20112 | /////////////////////////////////////////////////////////////////////////////// |
20113 | // // |
20114 | // getedge() Get a tetrahedron having the two endpoints. // |
20115 | // // |
20116 | // The method here is to search the second vertex in the link faces of the // |
20117 | // first vertex. The global array 'cavetetlist' is re-used for searching. // |
20118 | // // |
20119 | // This function is used for the case when the mesh is non-convex. Otherwise,// |
20120 | // the function finddirection() should be faster than this. // |
20121 | // // |
20122 | /////////////////////////////////////////////////////////////////////////////// |
20123 | |
20124 | int tetgenmesh::getedge(point e1, point e2, triface *tedge) |
20125 | { |
20126 | triface searchtet, neightet, *parytet; |
20127 | point pt; |
20128 | int done; |
20129 | int i, j; |
20130 | |
20131 | if (b->verbose > 2) { |
20132 | printf(" Get edge from %d to %d.\n" , pointmark(e1), pointmark(e2)); |
20133 | } |
20134 | |
20135 | // Quickly check if 'tedge' is just this edge. |
20136 | if (!isdeadtet(*tedge)) { |
20137 | if (org(*tedge) == e1) { |
20138 | if (dest(*tedge) == e2) { |
20139 | return 1; |
20140 | } |
20141 | } else if (org(*tedge) == e2) { |
20142 | if (dest(*tedge) == e1) { |
20143 | esymself(*tedge); |
20144 | return 1; |
20145 | } |
20146 | } |
20147 | } |
20148 | |
20149 | // Search for the edge [e1, e2]. |
20150 | point2tetorg(e1, *tedge); |
20151 | finddirection(tedge, e2); |
20152 | if (dest(*tedge) == e2) { |
20153 | return 1; |
20154 | } else { |
20155 | // Search for the edge [e2, e1]. |
20156 | point2tetorg(e2, *tedge); |
20157 | finddirection(tedge, e1); |
20158 | if (dest(*tedge) == e1) { |
20159 | esymself(*tedge); |
20160 | return 1; |
20161 | } |
20162 | } |
20163 | |
20164 | |
20165 | // Go to the link face of e1. |
20166 | point2tetorg(e1, searchtet); |
20167 | enextesymself(searchtet); |
20168 | //assert(oppo(searchtet) == e1); |
20169 | |
20170 | assert(cavebdrylist->objects == 0l); // It will re-use this list. |
20171 | arraypool *tetlist = cavebdrylist; |
20172 | |
20173 | // Search e2. |
20174 | for (i = 0; i < 3; i++) { |
20175 | pt = apex(searchtet); |
20176 | if (pt == e2) { |
20177 | // Found. 'searchtet' is [#,#,e2,e1]. |
20178 | eorgoppo(searchtet, *tedge); // [e1,e2,#,#]. |
20179 | return 1; |
20180 | } |
20181 | enextself(searchtet); |
20182 | } |
20183 | |
20184 | // Get the adjacent link face at 'searchtet'. |
20185 | fnext(searchtet, neightet); |
20186 | esymself(neightet); |
20187 | // assert(oppo(neightet) == e1); |
20188 | pt = apex(neightet); |
20189 | if (pt == e2) { |
20190 | // Found. 'neightet' is [#,#,e2,e1]. |
20191 | eorgoppo(neightet, *tedge); // [e1,e2,#,#]. |
20192 | return 1; |
20193 | } |
20194 | |
20195 | // Continue searching in the link face of e1. |
20196 | infect(searchtet); |
20197 | tetlist->newindex((void **) &parytet); |
20198 | *parytet = searchtet; |
20199 | infect(neightet); |
20200 | tetlist->newindex((void **) &parytet); |
20201 | *parytet = neightet; |
20202 | |
20203 | done = 0; |
20204 | |
20205 | for (i = 0; (i < tetlist->objects) && !done; i++) { |
20206 | parytet = (triface *) fastlookup(tetlist, i); |
20207 | searchtet = *parytet; |
20208 | for (j = 0; (j < 2) && !done; j++) { |
20209 | enextself(searchtet); |
20210 | fnext(searchtet, neightet); |
20211 | if (!infected(neightet)) { |
20212 | esymself(neightet); |
20213 | pt = apex(neightet); |
20214 | if (pt == e2) { |
20215 | // Found. 'neightet' is [#,#,e2,e1]. |
20216 | eorgoppo(neightet, *tedge); |
20217 | done = 1; |
20218 | } else { |
20219 | infect(neightet); |
20220 | tetlist->newindex((void **) &parytet); |
20221 | *parytet = neightet; |
20222 | } |
20223 | } |
20224 | } // j |
20225 | } // i |
20226 | |
20227 | // Uninfect the list of visited tets. |
20228 | for (i = 0; i < tetlist->objects; i++) { |
20229 | parytet = (triface *) fastlookup(tetlist, i); |
20230 | uninfect(*parytet); |
20231 | } |
20232 | tetlist->restart(); |
20233 | |
20234 | return done; |
20235 | } |
20236 | |
20237 | /////////////////////////////////////////////////////////////////////////////// |
20238 | // // |
20239 | // reduceedgesatvertex() Reduce the number of edges at a given vertex. // |
20240 | // // |
20241 | // 'endptlist' contains the endpoints of edges connecting at the vertex. // |
20242 | // // |
20243 | /////////////////////////////////////////////////////////////////////////////// |
20244 | |
20245 | int tetgenmesh::reduceedgesatvertex(point startpt, arraypool* endptlist) |
20246 | { |
20247 | triface searchtet; |
20248 | point *pendpt, *parypt; |
20249 | enum interresult dir; |
20250 | flipconstraints fc; |
20251 | int reduceflag; |
20252 | int count; |
20253 | int n, i, j; |
20254 | |
20255 | |
20256 | fc.remvert = startpt; |
20257 | fc.checkflipeligibility = 1; |
20258 | |
20259 | while (1) { |
20260 | |
20261 | count = 0; |
20262 | |
20263 | for (i = 0; i < endptlist->objects; i++) { |
20264 | pendpt = (point *) fastlookup(endptlist, i); |
20265 | if (*pendpt == dummypoint) { |
20266 | continue; // Do not reduce a virtual edge. |
20267 | } |
20268 | reduceflag = 0; |
20269 | // Find the edge. |
20270 | if (nonconvex) { |
20271 | if (getedge(startpt, *pendpt, &searchtet)) { |
20272 | dir = ACROSSVERT; |
20273 | } else { |
20274 | // The edge does not exist (was flipped). |
20275 | dir = INTERSECT; |
20276 | } |
20277 | } else { |
20278 | point2tetorg(startpt, searchtet); |
20279 | dir = finddirection(&searchtet, *pendpt); |
20280 | } |
20281 | if (dir == ACROSSVERT) { |
20282 | if (dest(searchtet) == *pendpt) { |
20283 | // Do not flip a segment. |
20284 | if (!issubseg(searchtet)) { |
20285 | n = removeedgebyflips(&searchtet, &fc); |
20286 | if (n == 2) { |
20287 | reduceflag = 1; |
20288 | } |
20289 | } |
20290 | } else { |
20291 | assert(0); // A plc problem. |
20292 | } |
20293 | } else { |
20294 | // The edge has been flipped. |
20295 | reduceflag = 1; |
20296 | } |
20297 | if (reduceflag) { |
20298 | count++; |
20299 | // Move the last vertex into this slot. |
20300 | j = endptlist->objects - 1; |
20301 | parypt = (point *) fastlookup(endptlist, j); |
20302 | *pendpt = *parypt; |
20303 | endptlist->objects--; |
20304 | i--; |
20305 | } |
20306 | } // i |
20307 | |
20308 | if (count == 0) { |
20309 | // No edge is reduced. |
20310 | break; |
20311 | } |
20312 | |
20313 | } // while (1) |
20314 | |
20315 | return (int) endptlist->objects; |
20316 | } |
20317 | |
20318 | /////////////////////////////////////////////////////////////////////////////// |
20319 | // // |
20320 | // removevertexbyflips() Remove a vertex by flips. // |
20321 | // // |
20322 | // This routine attempts to remove the given vertex 'rempt' (p) from the // |
20323 | // tetrahedralization (T) by a sequence of flips. // |
20324 | // // |
20325 | // The algorithm used here is a simple edge reduce method. Suppose there are // |
20326 | // n edges connected at p. We try to reduce the number of edges by flipping // |
20327 | // any edge (not a segment) that is connecting at p. // |
20328 | // // |
20329 | // Unless T is a Delaunay tetrahedralization, there is no guarantee that 'p' // |
20330 | // can be successfully removed. // |
20331 | // // |
20332 | /////////////////////////////////////////////////////////////////////////////// |
20333 | |
20334 | int tetgenmesh::removevertexbyflips(point steinerpt) |
20335 | { |
20336 | triface *fliptets = NULL, wrktets[4]; |
20337 | triface searchtet, spintet, neightet; |
20338 | face parentsh, spinsh, checksh; |
20339 | face leftseg, rightseg, checkseg; |
20340 | point lpt = NULL, rpt = NULL, apexpt; //, *parypt; |
20341 | flipconstraints fc; |
20342 | enum verttype vt; |
20343 | enum locateresult loc; |
20344 | int valence, removeflag; |
20345 | int slawson; |
20346 | int t1ver; |
20347 | int n, i; |
20348 | |
20349 | vt = pointtype(steinerpt); |
20350 | |
20351 | if (vt == FREESEGVERTEX) { |
20352 | sdecode(point2sh(steinerpt), leftseg); |
20353 | assert(leftseg.sh != NULL); |
20354 | leftseg.shver = 0; |
20355 | if (sdest(leftseg) == steinerpt) { |
20356 | senext(leftseg, rightseg); |
20357 | spivotself(rightseg); |
20358 | assert(rightseg.sh != NULL); |
20359 | rightseg.shver = 0; |
20360 | assert(sorg(rightseg) == steinerpt); |
20361 | } else { |
20362 | assert(sorg(leftseg) == steinerpt); |
20363 | rightseg = leftseg; |
20364 | senext2(rightseg, leftseg); |
20365 | spivotself(leftseg); |
20366 | assert(leftseg.sh != NULL); |
20367 | leftseg.shver = 0; |
20368 | assert(sdest(leftseg) == steinerpt); |
20369 | } |
20370 | lpt = sorg(leftseg); |
20371 | rpt = sdest(rightseg); |
20372 | if (b->verbose > 2) { |
20373 | printf(" Removing Steiner point %d in segment (%d, %d).\n" , |
20374 | pointmark(steinerpt), pointmark(lpt), pointmark(rpt)); |
20375 | |
20376 | } |
20377 | } else if (vt == FREEFACETVERTEX) { |
20378 | if (b->verbose > 2) { |
20379 | printf(" Removing Steiner point %d in facet.\n" , |
20380 | pointmark(steinerpt)); |
20381 | } |
20382 | } else if (vt == FREEVOLVERTEX) { |
20383 | if (b->verbose > 2) { |
20384 | printf(" Removing Steiner point %d in volume.\n" , |
20385 | pointmark(steinerpt)); |
20386 | } |
20387 | } else if (vt == VOLVERTEX) { |
20388 | if (b->verbose > 2) { |
20389 | printf(" Removing a point %d in volume.\n" , |
20390 | pointmark(steinerpt)); |
20391 | } |
20392 | } else { |
20393 | // It is not a Steiner point. |
20394 | return 0; |
20395 | } |
20396 | |
20397 | // Try to reduce the number of edges at 'p' by flips. |
20398 | getvertexstar(1, steinerpt, cavetetlist, cavetetvertlist, NULL); |
20399 | cavetetlist->restart(); // This list may be re-used. |
20400 | if (cavetetvertlist->objects > 3l) { |
20401 | valence = reduceedgesatvertex(steinerpt, cavetetvertlist); |
20402 | } else { |
20403 | valence = cavetetvertlist->objects; |
20404 | } |
20405 | assert(cavetetlist->objects == 0l); |
20406 | cavetetvertlist->restart(); |
20407 | |
20408 | removeflag = 0; |
20409 | |
20410 | if (valence == 4) { |
20411 | // Only 4 vertices (4 tets) left! 'p' is inside the convex hull of the 4 |
20412 | // vertices. This case is due to that 'p' is not exactly on the segment. |
20413 | point2tetorg(steinerpt, searchtet); |
20414 | loc = INTETRAHEDRON; |
20415 | removeflag = 1; |
20416 | } else if (valence == 5) { |
20417 | // There are 5 edges. |
20418 | if (vt == FREESEGVERTEX) { |
20419 | sstpivot1(leftseg, searchtet); |
20420 | if (org(searchtet) != steinerpt) { |
20421 | esymself(searchtet); |
20422 | } |
20423 | assert(org(searchtet) == steinerpt); |
20424 | assert(dest(searchtet) == lpt); |
20425 | i = 0; // Count the numbe of tet at the edge [p,lpt]. |
20426 | neightet.tet = NULL; // Init the face. |
20427 | spintet = searchtet; |
20428 | while (1) { |
20429 | i++; |
20430 | if (apex(spintet) == rpt) { |
20431 | // Remember the face containing the edge [lpt, rpt]. |
20432 | neightet = spintet; |
20433 | } |
20434 | fnextself(spintet); |
20435 | if (spintet.tet == searchtet.tet) break; |
20436 | } |
20437 | if (i == 3) { |
20438 | // This case has been checked below. |
20439 | } else if (i == 4) { |
20440 | // There are 4 tets sharing at [p,lpt]. There must be 4 tets sharing |
20441 | // at [p,rpt]. There must be a face [p, lpt, rpt]. |
20442 | if (apex(neightet) == rpt) { |
20443 | // The edge (segment) has been already recovered! |
20444 | // Check if a 6-to-2 flip is possible (to remove 'p'). |
20445 | // Let 'searchtet' be [p,d,a,b] |
20446 | esym(neightet, searchtet); |
20447 | enextself(searchtet); |
20448 | // Check if there are exactly three tets at edge [p,d]. |
20449 | wrktets[0] = searchtet; // [p,d,a,b] |
20450 | for (i = 0; i < 2; i++) { |
20451 | fnext(wrktets[i], wrktets[i+1]); // [p,d,b,c], [p,d,c,a] |
20452 | } |
20453 | if (apex(wrktets[0]) == oppo(wrktets[2])) { |
20454 | loc = ONFACE; |
20455 | removeflag = 1; |
20456 | } |
20457 | } |
20458 | } |
20459 | } else if (vt == FREEFACETVERTEX) { |
20460 | // It is possible to do a 6-to-2 flip to remove the vertex. |
20461 | point2tetorg(steinerpt, searchtet); |
20462 | // Get the three faces of 'searchtet' which share at p. |
20463 | // All faces has p as origin. |
20464 | wrktets[0] = searchtet; |
20465 | wrktets[1] = searchtet; |
20466 | esymself(wrktets[1]); |
20467 | enextself(wrktets[1]); |
20468 | wrktets[2] = searchtet; |
20469 | eprevself(wrktets[2]); |
20470 | esymself(wrktets[2]); |
20471 | // All internal edges of the six tets have valance either 3 or 4. |
20472 | // Get one edge which has valance 3. |
20473 | searchtet.tet = NULL; |
20474 | for (i = 0; i < 3; i++) { |
20475 | spintet = wrktets[i]; |
20476 | valence = 0; |
20477 | while (1) { |
20478 | valence++; |
20479 | fnextself(spintet); |
20480 | if (spintet.tet == wrktets[i].tet) break; |
20481 | } |
20482 | if (valence == 3) { |
20483 | // Found the edge. |
20484 | searchtet = wrktets[i]; |
20485 | break; |
20486 | } else { |
20487 | assert(valence == 4); |
20488 | } |
20489 | } |
20490 | assert(searchtet.tet != NULL); |
20491 | // Note, we do not detach the three subfaces at p. |
20492 | // They will be removed within a 4-to-1 flip. |
20493 | loc = ONFACE; |
20494 | removeflag = 1; |
20495 | } else { |
20496 | // assert(0); DEBUG IT |
20497 | } |
20498 | //removeflag = 1; |
20499 | } |
20500 | |
20501 | if (!removeflag) { |
20502 | if (vt == FREESEGVERTEX) { |
20503 | // Check is it possible to recover the edge [lpt,rpt]. |
20504 | // The condition to check is: Whether each tet containing 'leftseg' is |
20505 | // adjacent to a tet containing 'rightseg'. |
20506 | sstpivot1(leftseg, searchtet); |
20507 | if (org(searchtet) != steinerpt) { |
20508 | esymself(searchtet); |
20509 | } |
20510 | assert(org(searchtet) == steinerpt); |
20511 | assert(dest(searchtet) == lpt); |
20512 | spintet = searchtet; |
20513 | while (1) { |
20514 | // Go to the bottom face of this tet. |
20515 | eprev(spintet, neightet); |
20516 | esymself(neightet); // [steinerpt, p1, p2, lpt] |
20517 | // Get the adjacent tet. |
20518 | fsymself(neightet); // [p1, steinerpt, p2, rpt] |
20519 | if (oppo(neightet) != rpt) { |
20520 | // Found a non-matching adjacent tet. |
20521 | break; |
20522 | } |
20523 | fnextself(spintet); |
20524 | if (spintet.tet == searchtet.tet) { |
20525 | // 'searchtet' is [p,d,p1,p2]. |
20526 | loc = ONEDGE; |
20527 | removeflag = 1; |
20528 | break; |
20529 | } |
20530 | } |
20531 | } // if (vt == FREESEGVERTEX) |
20532 | } |
20533 | |
20534 | if (!removeflag) { |
20535 | if (vt == FREESEGVERTEX) { |
20536 | // Check if the edge [lpt, rpt] exists. |
20537 | if (getedge(lpt, rpt, &searchtet)) { |
20538 | // We have recovered this edge. Shift the vertex into the volume. |
20539 | // We can recover this edge if the subfaces are not recovered yet. |
20540 | if (!checksubfaceflag) { |
20541 | // Remove the vertex from the surface mesh. |
20542 | // This will re-create the segment [lpt, rpt] and re-triangulate |
20543 | // all the facets at the segment. |
20544 | // Detach the subsegments from their surrounding tets. |
20545 | for (i = 0; i < 2; i++) { |
20546 | checkseg = (i == 0) ? leftseg : rightseg; |
20547 | sstpivot1(checkseg, neightet); |
20548 | spintet = neightet; |
20549 | while (1) { |
20550 | tssdissolve1(spintet); |
20551 | fnextself(spintet); |
20552 | if (spintet.tet == neightet.tet) break; |
20553 | } |
20554 | sstdissolve1(checkseg); |
20555 | } // i |
20556 | slawson = 1; // Do lawson flip after removal. |
20557 | spivot(rightseg, parentsh); // 'rightseg' has p as its origin. |
20558 | sremovevertex(steinerpt, &parentsh, &rightseg, slawson); |
20559 | // Clear the list for new subfaces. |
20560 | caveshbdlist->restart(); |
20561 | // Insert the new segment. |
20562 | assert(org(searchtet) == lpt); |
20563 | assert(dest(searchtet) == rpt); |
20564 | sstbond1(rightseg, searchtet); |
20565 | spintet = searchtet; |
20566 | while (1) { |
20567 | tsspivot1(spintet, checkseg); // FOR DEBUG ONLY |
20568 | assert(checkseg.sh == NULL); // FOR DEBUG ONLY |
20569 | tssbond1(spintet, rightseg); |
20570 | fnextself(spintet); |
20571 | if (spintet.tet == searchtet.tet) break; |
20572 | } |
20573 | // The Steiner point has been shifted into the volume. |
20574 | setpointtype(steinerpt, FREEVOLVERTEX); |
20575 | st_segref_count--; |
20576 | st_volref_count++; |
20577 | return 1; |
20578 | } // if (!checksubfaceflag) |
20579 | } // if (getedge(...)) |
20580 | } // if (vt == FREESEGVERTEX) |
20581 | } // if (!removeflag) |
20582 | |
20583 | if (!removeflag) { |
20584 | return 0; |
20585 | } |
20586 | |
20587 | assert(org(searchtet) == steinerpt); |
20588 | |
20589 | if (vt == FREESEGVERTEX) { |
20590 | // Detach the subsegments from their surronding tets. |
20591 | for (i = 0; i < 2; i++) { |
20592 | checkseg = (i == 0) ? leftseg : rightseg; |
20593 | sstpivot1(checkseg, neightet); |
20594 | spintet = neightet; |
20595 | while (1) { |
20596 | tssdissolve1(spintet); |
20597 | fnextself(spintet); |
20598 | if (spintet.tet == neightet.tet) break; |
20599 | } |
20600 | sstdissolve1(checkseg); |
20601 | } // i |
20602 | if (checksubfaceflag) { |
20603 | // Detach the subfaces at the subsegments from their attached tets. |
20604 | for (i = 0; i < 2; i++) { |
20605 | checkseg = (i == 0) ? leftseg : rightseg; |
20606 | spivot(checkseg, parentsh); |
20607 | if (parentsh.sh != NULL) { |
20608 | spinsh = parentsh; |
20609 | while (1) { |
20610 | stpivot(spinsh, neightet); |
20611 | if (neightet.tet != NULL) { |
20612 | tsdissolve(neightet); |
20613 | } |
20614 | sesymself(spinsh); |
20615 | stpivot(spinsh, neightet); |
20616 | if (neightet.tet != NULL) { |
20617 | tsdissolve(neightet); |
20618 | } |
20619 | stdissolve(spinsh); |
20620 | spivotself(spinsh); // Go to the next subface. |
20621 | if (spinsh.sh == parentsh.sh) break; |
20622 | } |
20623 | } |
20624 | } // i |
20625 | } // if (checksubfaceflag) |
20626 | } |
20627 | |
20628 | if (loc == INTETRAHEDRON) { |
20629 | // Collect the four tets containing 'p'. |
20630 | fliptets = new triface[4]; |
20631 | fliptets[0] = searchtet; // [p,d,a,b] |
20632 | for (i = 0; i < 2; i++) { |
20633 | fnext(fliptets[i], fliptets[i+1]); // [p,d,b,c], [p,d,c,a] |
20634 | } |
20635 | eprev(fliptets[0], fliptets[3]); |
20636 | fnextself(fliptets[3]); // it is [a,p,b,c] |
20637 | eprevself(fliptets[3]); |
20638 | esymself(fliptets[3]); // [a,b,c,p]. |
20639 | // Remove p by a 4-to-1 flip. |
20640 | //flip41(fliptets, 1, 0, 0); |
20641 | flip41(fliptets, 1, &fc); |
20642 | //recenttet = fliptets[0]; |
20643 | } else if (loc == ONFACE) { |
20644 | // Let the original two tets be [a,b,c,d] and [b,a,c,e]. And p is in |
20645 | // face [a,b,c]. Let 'searchtet' be the tet [p,d,a,b]. |
20646 | // Collect the six tets containing 'p'. |
20647 | fliptets = new triface[6]; |
20648 | fliptets[0] = searchtet; // [p,d,a,b] |
20649 | for (i = 0; i < 2; i++) { |
20650 | fnext(fliptets[i], fliptets[i+1]); // [p,d,b,c], [p,d,c,a] |
20651 | } |
20652 | eprev(fliptets[0], fliptets[3]); |
20653 | fnextself(fliptets[3]); // [a,p,b,e] |
20654 | esymself(fliptets[3]); // [p,a,e,b] |
20655 | eprevself(fliptets[3]); // [e,p,a,b] |
20656 | for (i = 3; i < 5; i++) { |
20657 | fnext(fliptets[i], fliptets[i+1]); // [e,p,b,c], [e,p,c,a] |
20658 | } |
20659 | if (vt == FREEFACETVERTEX) { |
20660 | // We need to determine the location of three subfaces at p. |
20661 | valence = 0; // Re-use it. |
20662 | // Check if subfaces are all located in the lower three tets. |
20663 | // i.e., [e,p,a,b], [e,p,b,c], and [e,p,c,a]. |
20664 | for (i = 3; i < 6; i++) { |
20665 | if (issubface(fliptets[i])) valence++; |
20666 | } |
20667 | if (valence > 0) { |
20668 | assert(valence == 2); |
20669 | // We must do 3-to-2 flip in the upper part. We simply re-arrange |
20670 | // the six tets. |
20671 | for (i = 0; i < 3; i++) { |
20672 | esym(fliptets[i+3], wrktets[i]); |
20673 | esym(fliptets[i], fliptets[i+3]); |
20674 | fliptets[i] = wrktets[i]; |
20675 | } |
20676 | // Swap the last two pairs, i.e., [1]<->[[2], and [4]<->[5] |
20677 | wrktets[1] = fliptets[1]; |
20678 | fliptets[1] = fliptets[2]; |
20679 | fliptets[2] = wrktets[1]; |
20680 | wrktets[1] = fliptets[4]; |
20681 | fliptets[4] = fliptets[5]; |
20682 | fliptets[5] = wrktets[1]; |
20683 | } |
20684 | } |
20685 | // Remove p by a 6-to-2 flip, which is a combination of two flips: |
20686 | // a 3-to-2 (deletes the edge [e,p]), and |
20687 | // a 4-to-1 (deletes the vertex p). |
20688 | // First do a 3-to-2 flip on [e,p,a,b],[e,p,b,c],[e,p,c,a]. It creates |
20689 | // two new tets: [a,b,c,p] and [b,a,c,e]. The new tet [a,b,c,p] is |
20690 | // degenerate (has zero volume). It will be deleted in the followed |
20691 | // 4-to-1 flip. |
20692 | //flip32(&(fliptets[3]), 1, 0, 0); |
20693 | flip32(&(fliptets[3]), 1, &fc); |
20694 | // Second do a 4-to-1 flip on [p,d,a,b],[p,d,b,c],[p,d,c,a],[a,b,c,p]. |
20695 | // This creates a new tet [a,b,c,d]. |
20696 | //flip41(fliptets, 1, 0, 0); |
20697 | flip41(fliptets, 1, &fc); |
20698 | //recenttet = fliptets[0]; |
20699 | } else if (loc == ONEDGE) { |
20700 | // Let the original edge be [e,d] and p is in [e,d]. Assume there are n |
20701 | // tets sharing at edge [e,d] originally. We number the link vertices |
20702 | // of [e,d]: p_0, p_1, ..., p_n-1. 'searchtet' is [p,d,p_0,p_1]. |
20703 | // Count the number of tets at edge [e,p] and [p,d] (this is n). |
20704 | n = 0; |
20705 | spintet = searchtet; |
20706 | while (1) { |
20707 | n++; |
20708 | fnextself(spintet); |
20709 | if (spintet.tet == searchtet.tet) break; |
20710 | } |
20711 | assert(n >= 3); |
20712 | // Collect the 2n tets containing 'p'. |
20713 | fliptets = new triface[2 * n]; |
20714 | fliptets[0] = searchtet; // [p,b,p_0,p_1] |
20715 | for (i = 0; i < (n - 1); i++) { |
20716 | fnext(fliptets[i], fliptets[i+1]); // [p,d,p_i,p_i+1]. |
20717 | } |
20718 | eprev(fliptets[0], fliptets[n]); |
20719 | fnextself(fliptets[n]); // [p_0,p,p_1,e] |
20720 | esymself(fliptets[n]); // [p,p_0,e,p_1] |
20721 | eprevself(fliptets[n]); // [e,p,p_0,p_1] |
20722 | for (i = n; i < (2 * n - 1); i++) { |
20723 | fnext(fliptets[i], fliptets[i+1]); // [e,p,p_i,p_i+1]. |
20724 | } |
20725 | // Remove p by a 2n-to-n flip, it is a sequence of n flips: |
20726 | // - Do a 2-to-3 flip on |
20727 | // [p_0,p_1,p,d] and |
20728 | // [p,p_1,p_0,e]. |
20729 | // This produces: |
20730 | // [e,d,p_0,p_1], |
20731 | // [e,d,p_1,p] (degenerated), and |
20732 | // [e,d,p,p_0] (degenerated). |
20733 | wrktets[0] = fliptets[0]; // [p,d,p_0,p_1] |
20734 | eprevself(wrktets[0]); // [p_0,p,d,p_1] |
20735 | esymself(wrktets[0]); // [p,p_0,p_1,d] |
20736 | enextself(wrktets[0]); // [p_0,p_1,p,d] [0] |
20737 | wrktets[1] = fliptets[n]; // [e,p,p_0,p_1] |
20738 | enextself(wrktets[1]); // [p,p_0,e,p_1] |
20739 | esymself(wrktets[1]); // [p_0,p,p_1,e] |
20740 | eprevself(wrktets[1]); // [p_1,p_0,p,e] [1] |
20741 | //flip23(wrktets, 1, 0, 0); |
20742 | flip23(wrktets, 1, &fc); |
20743 | // Save the new tet [e,d,p,p_0] (degenerated). |
20744 | fliptets[n] = wrktets[2]; |
20745 | // Save the new tet [e,d,p_0,p_1]. |
20746 | fliptets[0] = wrktets[0]; |
20747 | // - Repeat from i = 1 to n-2: (n - 2) flips |
20748 | // - Do a 3-to-2 flip on |
20749 | // [p,p_i,d,e], |
20750 | // [p,p_i,e,p_i+1], and |
20751 | // [p,p_i,p_i+1,d]. |
20752 | // This produces: |
20753 | // [d,e,p_i+1,p_i], and |
20754 | // [e,d,p_i+1,p] (degenerated). |
20755 | for (i = 1; i < (n - 1); i++) { |
20756 | wrktets[0] = wrktets[1]; // [e,d,p_i,p] (degenerated). |
20757 | enextself(wrktets[0]); // [d,p_i,e,p] (...) |
20758 | esymself(wrktets[0]); // [p_i,d,p,e] (...) |
20759 | eprevself(wrktets[0]); // [p,p_i,d,e] (degenerated) [0]. |
20760 | wrktets[1] = fliptets[n+i]; // [e,p,p_i,p_i+1] |
20761 | enextself(wrktets[1]); // [p,p_i,e,p_i+1] [1] |
20762 | wrktets[2] = fliptets[i]; // [p,d,p_i,p_i+1] |
20763 | eprevself(wrktets[2]); // [p_i,p,d,p_i+1] |
20764 | esymself(wrktets[2]); // [p,p_i,p_i+1,d] [2] |
20765 | //flip32(wrktets, 1, 0, 0); |
20766 | flip32(wrktets, 1, &fc); |
20767 | // Save the new tet [e,d,p_i,p_i+1]. // FOR DEBUG ONLY |
20768 | fliptets[i] = wrktets[0]; // [d,e,p_i+1,p_i] // FOR DEBUG ONLY |
20769 | esymself(fliptets[i]); // [e,d,p_i,p_i+1] // FOR DEBUG ONLY |
20770 | } |
20771 | // - Do a 4-to-1 flip on |
20772 | // [p,p_0,e,d], [d,e,p_0,p], |
20773 | // [p,p_0,d,p_n-1], [e,p_n-1,p_0,p], |
20774 | // [p,p_0,p_n-1,e], [p_0,p_n-1,d,p], and |
20775 | // [e,d,p_n-1,p]. |
20776 | // This produces |
20777 | // [e,d,p_n-1,p_0] and |
20778 | // deletes p. |
20779 | wrktets[3] = wrktets[1]; // [e,d,p_n-1,p] (degenerated) [3] |
20780 | wrktets[0] = fliptets[n]; // [e,d,p,p_0] (degenerated) |
20781 | eprevself(wrktets[0]); // [p,e,d,p_0] (...) |
20782 | esymself(wrktets[0]); // [e,p,p_0,d] (...) |
20783 | enextself(wrktets[0]); // [p,p_0,e,d] (degenerated) [0] |
20784 | wrktets[1] = fliptets[n-1]; // [p,d,p_n-1,p_0] |
20785 | esymself(wrktets[1]); // [d,p,p_0,p_n-1] |
20786 | enextself(wrktets[1]); // [p,p_0,d,p_n-1] [1] |
20787 | wrktets[2] = fliptets[2*n-1]; // [e,p,p_n-1,p_0] |
20788 | enextself(wrktets[2]); // [p_p_n-1,e,p_0] |
20789 | esymself(wrktets[2]); // [p_n-1,p,p_0,e] |
20790 | enextself(wrktets[2]); // [p,p_0,p_n-1,e] [2] |
20791 | //flip41(wrktets, 1, 0, 0); |
20792 | flip41(wrktets, 1, &fc); |
20793 | // Save the new tet [e,d,p_n-1,p_0] // FOR DEBUG ONLY |
20794 | fliptets[n-1] = wrktets[0]; // [e,d,p_n-1,p_0] // FOR DEBUG ONLY |
20795 | //recenttet = fliptets[0]; |
20796 | } else { |
20797 | assert(0); // Unknown location. |
20798 | } // if (iloc == ...) |
20799 | |
20800 | delete [] fliptets; |
20801 | |
20802 | if (vt == FREESEGVERTEX) { |
20803 | // Remove the vertex from the surface mesh. |
20804 | // This will re-create the segment [lpt, rpt] and re-triangulate |
20805 | // all the facets at the segment. |
20806 | // Only do lawson flip when subfaces are not recovery yet. |
20807 | slawson = (checksubfaceflag ? 0 : 1); |
20808 | spivot(rightseg, parentsh); // 'rightseg' has p as its origin. |
20809 | sremovevertex(steinerpt, &parentsh, &rightseg, slawson); |
20810 | |
20811 | // The original segment is returned in 'rightseg'. |
20812 | rightseg.shver = 0; |
20813 | assert(sorg(rightseg) == lpt); |
20814 | assert(sdest(rightseg) == rpt); |
20815 | |
20816 | // Insert the new segment. |
20817 | point2tetorg(lpt, searchtet); |
20818 | finddirection(&searchtet, rpt); |
20819 | assert(dest(searchtet) == rpt); |
20820 | sstbond1(rightseg, searchtet); |
20821 | spintet = searchtet; |
20822 | while (1) { |
20823 | tsspivot1(spintet, checkseg); // FOR DEBUG ONLY |
20824 | assert(checkseg.sh == NULL); // FOR DEBUG ONLY |
20825 | tssbond1(spintet, rightseg); |
20826 | fnextself(spintet); |
20827 | if (spintet.tet == searchtet.tet) break; |
20828 | } |
20829 | |
20830 | if (checksubfaceflag) { |
20831 | // Insert subfaces at segment [lpt,rpt] into the tetrahedralization. |
20832 | spivot(rightseg, parentsh); |
20833 | if (parentsh.sh != NULL) { |
20834 | spinsh = parentsh; |
20835 | while (1) { |
20836 | if (sorg(spinsh) != lpt) { |
20837 | sesymself(spinsh); |
20838 | assert(sorg(spinsh) == lpt); |
20839 | } |
20840 | assert(sdest(spinsh) == rpt); |
20841 | apexpt = sapex(spinsh); |
20842 | // Find the adjacent tet of [lpt,rpt,apexpt]; |
20843 | spintet = searchtet; |
20844 | while (1) { |
20845 | if (apex(spintet) == apexpt) { |
20846 | tsbond(spintet, spinsh); |
20847 | sesymself(spinsh); // Get to another side of this face. |
20848 | fsym(spintet, neightet); |
20849 | tsbond(neightet, spinsh); |
20850 | sesymself(spinsh); // Get back to the original side. |
20851 | break; |
20852 | } |
20853 | fnextself(spintet); |
20854 | assert(spintet.tet != searchtet.tet); |
20855 | //if (spintet.tet == searchtet.tet) break; |
20856 | } |
20857 | spivotself(spinsh); |
20858 | if (spinsh.sh == parentsh.sh) break; |
20859 | } |
20860 | } |
20861 | } // if (checksubfaceflag) |
20862 | |
20863 | // Clear the set of new subfaces. |
20864 | caveshbdlist->restart(); |
20865 | } // if (vt == FREESEGVERTEX) |
20866 | |
20867 | // The point has been removed. |
20868 | if (pointtype(steinerpt) != UNUSEDVERTEX) { |
20869 | setpointtype(steinerpt, UNUSEDVERTEX); |
20870 | unuverts++; |
20871 | } |
20872 | if (vt != VOLVERTEX) { |
20873 | // Update the correspinding counters. |
20874 | if (vt == FREESEGVERTEX) { |
20875 | st_segref_count--; |
20876 | } else if (vt == FREEFACETVERTEX) { |
20877 | st_facref_count--; |
20878 | } else if (vt == FREEVOLVERTEX) { |
20879 | st_volref_count--; |
20880 | } |
20881 | if (steinerleft > 0) steinerleft++; |
20882 | } |
20883 | |
20884 | return 1; |
20885 | } |
20886 | |
20887 | /////////////////////////////////////////////////////////////////////////////// |
20888 | // // |
20889 | // suppressbdrysteinerpoint() Suppress a boundary Steiner point // |
20890 | // // |
20891 | /////////////////////////////////////////////////////////////////////////////// |
20892 | |
20893 | int tetgenmesh::suppressbdrysteinerpoint(point steinerpt) |
20894 | { |
20895 | face parentsh, spinsh, *parysh; |
20896 | face leftseg, rightseg; |
20897 | point lpt = NULL, rpt = NULL; |
20898 | int i; |
20899 | |
20900 | verttype vt = pointtype(steinerpt); |
20901 | |
20902 | if (vt == FREESEGVERTEX) { |
20903 | sdecode(point2sh(steinerpt), leftseg); |
20904 | leftseg.shver = 0; |
20905 | if (sdest(leftseg) == steinerpt) { |
20906 | senext(leftseg, rightseg); |
20907 | spivotself(rightseg); |
20908 | assert(rightseg.sh != NULL); |
20909 | rightseg.shver = 0; |
20910 | assert(sorg(rightseg) == steinerpt); |
20911 | } else { |
20912 | assert(sorg(leftseg) == steinerpt); |
20913 | rightseg = leftseg; |
20914 | senext2(rightseg, leftseg); |
20915 | spivotself(leftseg); |
20916 | assert(leftseg.sh != NULL); |
20917 | leftseg.shver = 0; |
20918 | assert(sdest(leftseg) == steinerpt); |
20919 | } |
20920 | lpt = sorg(leftseg); |
20921 | rpt = sdest(rightseg); |
20922 | if (b->verbose > 2) { |
20923 | printf(" Suppressing Steiner point %d in segment (%d, %d).\n" , |
20924 | pointmark(steinerpt), pointmark(lpt), pointmark(rpt)); |
20925 | } |
20926 | // Get all subfaces at the left segment [lpt, steinerpt]. |
20927 | spivot(leftseg, parentsh); |
20928 | spinsh = parentsh; |
20929 | while (1) { |
20930 | cavesegshlist->newindex((void **) &parysh); |
20931 | *parysh = spinsh; |
20932 | // Orient the face consistently. |
20933 | if (sorg(*parysh)!= sorg(parentsh)) sesymself(*parysh); |
20934 | spivotself(spinsh); |
20935 | if (spinsh.sh == NULL) break; |
20936 | if (spinsh.sh == parentsh.sh) break; |
20937 | } |
20938 | if (cavesegshlist->objects < 2) { |
20939 | // It is a single segment. Not handle it yet. |
20940 | cavesegshlist->restart(); |
20941 | return 0; |
20942 | } |
20943 | } else if (vt == FREEFACETVERTEX) { |
20944 | if (b->verbose > 2) { |
20945 | printf(" Suppressing Steiner point %d from facet.\n" , |
20946 | pointmark(steinerpt)); |
20947 | } |
20948 | sdecode(point2sh(steinerpt), parentsh); |
20949 | // A facet Steiner point. There are exactly two sectors. |
20950 | for (i = 0; i < 2; i++) { |
20951 | cavesegshlist->newindex((void **) &parysh); |
20952 | *parysh = parentsh; |
20953 | sesymself(parentsh); |
20954 | } |
20955 | } else { |
20956 | return 0; |
20957 | } |
20958 | |
20959 | triface searchtet, neightet, *parytet; |
20960 | point pa, pb, pc, pd; |
20961 | REAL v1[3], v2[3], len, u; |
20962 | |
20963 | REAL startpt[3] = {0,}, samplept[3] = {0,}, candpt[3] = {0,}; |
20964 | REAL ori, minvol, smallvol; |
20965 | int samplesize; |
20966 | int it, j, k; |
20967 | |
20968 | int n = (int) cavesegshlist->objects; |
20969 | point *newsteiners = new point[n]; |
20970 | for (i = 0; i < n; i++) newsteiners[i] = NULL; |
20971 | |
20972 | // Search for each sector an interior vertex. |
20973 | for (i = 0; i < cavesegshlist->objects; i++) { |
20974 | parysh = (face *) fastlookup(cavesegshlist, i); |
20975 | stpivot(*parysh, searchtet); |
20976 | // Skip it if it is outside. |
20977 | if (ishulltet(searchtet)) continue; |
20978 | // Get the "half-ball". Tets in 'cavetetlist' all contain 'steinerpt' as |
20979 | // opposite. Subfaces in 'caveshlist' all contain 'steinerpt' as apex. |
20980 | // Moreover, subfaces are oriented towards the interior of the ball. |
20981 | setpoint2tet(steinerpt, encode(searchtet)); |
20982 | getvertexstar(0, steinerpt, cavetetlist, NULL, caveshlist); |
20983 | // Calculate the searching vector. |
20984 | pa = sorg(*parysh); |
20985 | pb = sdest(*parysh); |
20986 | pc = sapex(*parysh); |
20987 | facenormal(pa, pb, pc, v1, 1, NULL); |
20988 | len = sqrt(dot(v1, v1)); |
20989 | assert(len > 0.0); |
20990 | v1[0] /= len; |
20991 | v1[1] /= len; |
20992 | v1[2] /= len; |
20993 | if (vt == FREESEGVERTEX) { |
20994 | parysh = (face *) fastlookup(cavesegshlist, (i + 1) % n); |
20995 | pd = sapex(*parysh); |
20996 | facenormal(pb, pa, pd, v2, 1, NULL); |
20997 | len = sqrt(dot(v2, v2)); |
20998 | assert(len > 0.0); |
20999 | v2[0] /= len; |
21000 | v2[1] /= len; |
21001 | v2[2] /= len; |
21002 | // Average the two vectors. |
21003 | v1[0] = 0.5 * (v1[0] + v2[0]); |
21004 | v1[1] = 0.5 * (v1[1] + v2[1]); |
21005 | v1[2] = 0.5 * (v1[2] + v2[2]); |
21006 | } |
21007 | // Search the intersection of the ray starting from 'steinerpt' to |
21008 | // the search direction 'v1' and the shell of the half-ball. |
21009 | // - Construct an endpoint. |
21010 | len = distance(pa, pb); |
21011 | v2[0] = steinerpt[0] + len * v1[0]; |
21012 | v2[1] = steinerpt[1] + len * v1[1]; |
21013 | v2[2] = steinerpt[2] + len * v1[2]; |
21014 | for (j = 0; j < cavetetlist->objects; j++) { |
21015 | parytet = (triface *) fastlookup(cavetetlist, j); |
21016 | pa = org(*parytet); |
21017 | pb = dest(*parytet); |
21018 | pc = apex(*parytet); |
21019 | // Test if the ray startpt->v2 lies in the cone: where 'steinerpt' |
21020 | // is the apex, and three sides are defined by the triangle |
21021 | // [pa, pb, pc]. |
21022 | ori = orient3d(steinerpt, pa, pb, v2); |
21023 | if (ori >= 0) { |
21024 | ori = orient3d(steinerpt, pb, pc, v2); |
21025 | if (ori >= 0) { |
21026 | ori = orient3d(steinerpt, pc, pa, v2); |
21027 | if (ori >= 0) { |
21028 | // Found! Calculate the intersection. |
21029 | planelineint(pa, pb, pc, steinerpt, v2, startpt, &u); |
21030 | assert(u != 0.0); |
21031 | break; |
21032 | } |
21033 | } |
21034 | } |
21035 | } // j |
21036 | assert(j < cavetetlist->objects); // There must be an intersection. |
21037 | // Close the ball by adding the subfaces. |
21038 | for (j = 0; j < caveshlist->objects; j++) { |
21039 | parysh = (face *) fastlookup(caveshlist, j); |
21040 | stpivot(*parysh, neightet); |
21041 | cavetetlist->newindex((void **) &parytet); |
21042 | *parytet = neightet; |
21043 | } |
21044 | // Search a best point inside the segment [startpt, steinerpt]. |
21045 | it = 0; |
21046 | samplesize = 100; |
21047 | v1[0] = steinerpt[0] - startpt[0]; |
21048 | v1[1] = steinerpt[1] - startpt[1]; |
21049 | v1[2] = steinerpt[2] - startpt[2]; |
21050 | minvol = -1.0; |
21051 | while (it < 3) { |
21052 | for (j = 1; j < samplesize - 1; j++) { |
21053 | samplept[0] = startpt[0] + ((REAL) j / (REAL) samplesize) * v1[0]; |
21054 | samplept[1] = startpt[1] + ((REAL) j / (REAL) samplesize) * v1[1]; |
21055 | samplept[2] = startpt[2] + ((REAL) j / (REAL) samplesize) * v1[2]; |
21056 | // Find the minimum volume for 'samplept'. |
21057 | smallvol = -1; |
21058 | for (k = 0; k < cavetetlist->objects; k++) { |
21059 | parytet = (triface *) fastlookup(cavetetlist, k); |
21060 | pa = org(*parytet); |
21061 | pb = dest(*parytet); |
21062 | pc = apex(*parytet); |
21063 | ori = orient3d(pb, pa, pc, samplept); |
21064 | if (ori <= 0) { |
21065 | break; // An invalid tet. |
21066 | } |
21067 | if (smallvol == -1) { |
21068 | smallvol = ori; |
21069 | } else { |
21070 | if (ori < smallvol) smallvol = ori; |
21071 | } |
21072 | } // k |
21073 | if (k == cavetetlist->objects) { |
21074 | // Found a valid point. Remember it. |
21075 | if (minvol == -1.0) { |
21076 | candpt[0] = samplept[0]; |
21077 | candpt[1] = samplept[1]; |
21078 | candpt[2] = samplept[2]; |
21079 | minvol = smallvol; |
21080 | } else { |
21081 | if (minvol < smallvol) { |
21082 | // It is a better location. Remember it. |
21083 | candpt[0] = samplept[0]; |
21084 | candpt[1] = samplept[1]; |
21085 | candpt[2] = samplept[2]; |
21086 | minvol = smallvol; |
21087 | } else { |
21088 | // No improvement of smallest volume. |
21089 | // Since we are searching along the line [startpt, steinerpy], |
21090 | // The smallest volume can only be decreased later. |
21091 | break; |
21092 | } |
21093 | } |
21094 | } |
21095 | } // j |
21096 | if (minvol > 0) break; |
21097 | samplesize *= 10; |
21098 | it++; |
21099 | } // while (it < 3) |
21100 | if (minvol == -1.0) { |
21101 | // Failed to find a valid point. |
21102 | cavetetlist->restart(); |
21103 | caveshlist->restart(); |
21104 | break; |
21105 | } |
21106 | // Create a new Steiner point inside this section. |
21107 | makepoint(&(newsteiners[i]), FREEVOLVERTEX); |
21108 | newsteiners[i][0] = candpt[0]; |
21109 | newsteiners[i][1] = candpt[1]; |
21110 | newsteiners[i][2] = candpt[2]; |
21111 | cavetetlist->restart(); |
21112 | caveshlist->restart(); |
21113 | } // i |
21114 | |
21115 | if (i < cavesegshlist->objects) { |
21116 | // Failed to suppress the vertex. |
21117 | for (; i > 0; i--) { |
21118 | if (newsteiners[i - 1] != NULL) { |
21119 | pointdealloc(newsteiners[i - 1]); |
21120 | } |
21121 | } |
21122 | delete [] newsteiners; |
21123 | cavesegshlist->restart(); |
21124 | return 0; |
21125 | } |
21126 | |
21127 | // Remove p from the segment or the facet. |
21128 | triface newtet, newface, spintet; |
21129 | face newsh, neighsh; |
21130 | face *splitseg, checkseg; |
21131 | int slawson = 0; // Do not do flip afterword. |
21132 | int t1ver; |
21133 | |
21134 | if (vt == FREESEGVERTEX) { |
21135 | // Detach 'leftseg' and 'rightseg' from their adjacent tets. |
21136 | // These two subsegments will be deleted. |
21137 | sstpivot1(leftseg, neightet); |
21138 | spintet = neightet; |
21139 | while (1) { |
21140 | tssdissolve1(spintet); |
21141 | fnextself(spintet); |
21142 | if (spintet.tet == neightet.tet) break; |
21143 | } |
21144 | sstpivot1(rightseg, neightet); |
21145 | spintet = neightet; |
21146 | while (1) { |
21147 | tssdissolve1(spintet); |
21148 | fnextself(spintet); |
21149 | if (spintet.tet == neightet.tet) break; |
21150 | } |
21151 | } |
21152 | |
21153 | // Loop through all sectors bounded by facets at this segment. |
21154 | // Within each sector, create a new Steiner point 'np', and replace 'p' |
21155 | // by 'np' for all tets in this sector. |
21156 | for (i = 0; i < cavesegshlist->objects; i++) { |
21157 | parysh = (face *) fastlookup(cavesegshlist, i); |
21158 | // 'parysh' is the face [lpt, steinerpt, #]. |
21159 | stpivot(*parysh, neightet); |
21160 | // Get all tets in this sector. |
21161 | setpoint2tet(steinerpt, encode(neightet)); |
21162 | getvertexstar(0, steinerpt, cavetetlist, NULL, caveshlist); |
21163 | if (!ishulltet(neightet)) { |
21164 | // Within each tet in the ball, replace 'p' by 'np'. |
21165 | for (j = 0; j < cavetetlist->objects; j++) { |
21166 | parytet = (triface *) fastlookup(cavetetlist, j); |
21167 | setoppo(*parytet, newsteiners[i]); |
21168 | } // j |
21169 | // Point to a parent tet. |
21170 | parytet = (triface *) fastlookup(cavetetlist, 0); |
21171 | setpoint2tet(newsteiners[i], (tetrahedron) (parytet->tet)); |
21172 | st_volref_count++; |
21173 | if (steinerleft > 0) steinerleft--; |
21174 | } |
21175 | // Disconnect the set of boundary faces. They're temporarily open faces. |
21176 | // They will be connected to the new tets after 'p' is removed. |
21177 | for (j = 0; j < caveshlist->objects; j++) { |
21178 | // Get a boundary face. |
21179 | parysh = (face *) fastlookup(caveshlist, j); |
21180 | stpivot(*parysh, neightet); |
21181 | //assert(apex(neightet) == newpt); |
21182 | // Clear the connection at this face. |
21183 | dissolve(neightet); |
21184 | tsdissolve(neightet); |
21185 | } |
21186 | // Clear the working lists. |
21187 | cavetetlist->restart(); |
21188 | caveshlist->restart(); |
21189 | } // i |
21190 | cavesegshlist->restart(); |
21191 | |
21192 | if (vt == FREESEGVERTEX) { |
21193 | spivot(rightseg, parentsh); // 'rightseg' has p as its origin. |
21194 | splitseg = &rightseg; |
21195 | } else { |
21196 | if (sdest(parentsh) == steinerpt) { |
21197 | senextself(parentsh); |
21198 | } else if (sapex(parentsh) == steinerpt) { |
21199 | senext2self(parentsh); |
21200 | } |
21201 | assert(sorg(parentsh) == steinerpt); |
21202 | splitseg = NULL; |
21203 | } |
21204 | sremovevertex(steinerpt, &parentsh, splitseg, slawson); |
21205 | |
21206 | if (vt == FREESEGVERTEX) { |
21207 | // The original segment is returned in 'rightseg'. |
21208 | rightseg.shver = 0; |
21209 | } |
21210 | |
21211 | // For each new subface, create two new tets at each side of it. |
21212 | // Both of the two new tets have its opposite be dummypoint. |
21213 | for (i = 0; i < caveshbdlist->objects; i++) { |
21214 | parysh = (face *) fastlookup(caveshbdlist, i); |
21215 | sinfect(*parysh); // Mark it for connecting new tets. |
21216 | newsh = *parysh; |
21217 | pa = sorg(newsh); |
21218 | pb = sdest(newsh); |
21219 | pc = sapex(newsh); |
21220 | maketetrahedron(&newtet); |
21221 | maketetrahedron(&neightet); |
21222 | setvertices(newtet, pa, pb, pc, dummypoint); |
21223 | setvertices(neightet, pb, pa, pc, dummypoint); |
21224 | bond(newtet, neightet); |
21225 | tsbond(newtet, newsh); |
21226 | sesymself(newsh); |
21227 | tsbond(neightet, newsh); |
21228 | } |
21229 | // Temporarily increase the hullsize. |
21230 | hullsize += (caveshbdlist->objects * 2l); |
21231 | |
21232 | if (vt == FREESEGVERTEX) { |
21233 | // Connecting new tets at the recovered segment. |
21234 | spivot(rightseg, parentsh); |
21235 | assert(parentsh.sh != NULL); |
21236 | spinsh = parentsh; |
21237 | while (1) { |
21238 | if (sorg(spinsh) != lpt) sesymself(spinsh); |
21239 | // Get the new tet at this subface. |
21240 | stpivot(spinsh, newtet); |
21241 | tssbond1(newtet, rightseg); |
21242 | // Go to the other face at this segment. |
21243 | spivot(spinsh, neighsh); |
21244 | if (sorg(neighsh) != lpt) sesymself(neighsh); |
21245 | sesymself(neighsh); |
21246 | stpivot(neighsh, neightet); |
21247 | tssbond1(neightet, rightseg); |
21248 | sstbond1(rightseg, neightet); |
21249 | // Connecting two adjacent tets at this segment. |
21250 | esymself(newtet); |
21251 | esymself(neightet); |
21252 | // Connect the two tets (at rightseg) together. |
21253 | bond(newtet, neightet); |
21254 | // Go to the next subface. |
21255 | spivotself(spinsh); |
21256 | if (spinsh.sh == parentsh.sh) break; |
21257 | } |
21258 | } |
21259 | |
21260 | // Connecting new tets at new subfaces together. |
21261 | for (i = 0; i < caveshbdlist->objects; i++) { |
21262 | parysh = (face *) fastlookup(caveshbdlist, i); |
21263 | newsh = *parysh; |
21264 | //assert(sinfected(newsh)); |
21265 | // Each new subface contains two new tets. |
21266 | for (k = 0; k < 2; k++) { |
21267 | stpivot(newsh, newtet); |
21268 | for (j = 0; j < 3; j++) { |
21269 | // Check if this side is open. |
21270 | esym(newtet, newface); |
21271 | if (newface.tet[newface.ver & 3] == NULL) { |
21272 | // An open face. Connect it to its adjacent tet. |
21273 | sspivot(newsh, checkseg); |
21274 | if (checkseg.sh != NULL) { |
21275 | // A segment. It must not be the recovered segment. |
21276 | tssbond1(newtet, checkseg); |
21277 | sstbond1(checkseg, newtet); |
21278 | } |
21279 | spivot(newsh, neighsh); |
21280 | if (neighsh.sh != NULL) { |
21281 | // The adjacent subface exists. It's not a dangling segment. |
21282 | if (sorg(neighsh) != sdest(newsh)) sesymself(neighsh); |
21283 | stpivot(neighsh, neightet); |
21284 | if (sinfected(neighsh)) { |
21285 | esymself(neightet); |
21286 | assert(neightet.tet[neightet.ver & 3] == NULL); |
21287 | } else { |
21288 | // Search for an open face at this edge. |
21289 | spintet = neightet; |
21290 | while (1) { |
21291 | esym(spintet, searchtet); |
21292 | fsym(searchtet, spintet); |
21293 | if (spintet.tet == NULL) break; |
21294 | assert(spintet.tet != neightet.tet); |
21295 | } |
21296 | // Found an open face at 'searchtet'. |
21297 | neightet = searchtet; |
21298 | } |
21299 | } else { |
21300 | // The edge (at 'newsh') is a dangling segment. |
21301 | assert(checkseg.sh != NULL); |
21302 | // Get an adjacent tet at this segment. |
21303 | sstpivot1(checkseg, neightet); |
21304 | assert(!isdeadtet(neightet)); |
21305 | if (org(neightet) != sdest(newsh)) esymself(neightet); |
21306 | assert((org(neightet) == sdest(newsh)) && |
21307 | (dest(neightet) == sorg(newsh))); |
21308 | // Search for an open face at this edge. |
21309 | spintet = neightet; |
21310 | while (1) { |
21311 | esym(spintet, searchtet); |
21312 | fsym(searchtet, spintet); |
21313 | if (spintet.tet == NULL) break; |
21314 | assert(spintet.tet != neightet.tet); |
21315 | } |
21316 | // Found an open face at 'searchtet'. |
21317 | neightet = searchtet; |
21318 | } |
21319 | pc = apex(newface); |
21320 | if (apex(neightet) == steinerpt) { |
21321 | // Exterior case. The 'neightet' is a hull tet which contain |
21322 | // 'steinerpt'. It will be deleted after 'steinerpt' is removed. |
21323 | assert(pc == dummypoint); |
21324 | caveoldtetlist->newindex((void **) &parytet); |
21325 | *parytet = neightet; |
21326 | // Connect newface to the adjacent hull tet of 'neightet', which |
21327 | // has the same edge as 'newface', and does not has 'steinerpt'. |
21328 | fnextself(neightet); |
21329 | } else { |
21330 | if (pc == dummypoint) { |
21331 | if (apex(neightet) != dummypoint) { |
21332 | setapex(newface, apex(neightet)); |
21333 | // A hull tet has turned into an interior tet. |
21334 | hullsize--; // Must update the hullsize. |
21335 | } |
21336 | } |
21337 | } |
21338 | bond(newface, neightet); |
21339 | } // if (newface.tet[newface.ver & 3] == NULL) |
21340 | enextself(newtet); |
21341 | senextself(newsh); |
21342 | } // j |
21343 | sesymself(newsh); |
21344 | } // k |
21345 | } // i |
21346 | |
21347 | // Unmark all new subfaces. |
21348 | for (i = 0; i < caveshbdlist->objects; i++) { |
21349 | parysh = (face *) fastlookup(caveshbdlist, i); |
21350 | suninfect(*parysh); |
21351 | } |
21352 | caveshbdlist->restart(); |
21353 | |
21354 | if (caveoldtetlist->objects > 0l) { |
21355 | // Delete hull tets which contain 'steinerpt'. |
21356 | for (i = 0; i < caveoldtetlist->objects; i++) { |
21357 | parytet = (triface *) fastlookup(caveoldtetlist, i); |
21358 | tetrahedrondealloc(parytet->tet); |
21359 | } |
21360 | // Must update the hullsize. |
21361 | hullsize -= caveoldtetlist->objects; |
21362 | caveoldtetlist->restart(); |
21363 | } |
21364 | |
21365 | setpointtype(steinerpt, UNUSEDVERTEX); |
21366 | unuverts++; |
21367 | if (vt == FREESEGVERTEX) { |
21368 | st_segref_count--; |
21369 | } else { // vt == FREEFACETVERTEX |
21370 | st_facref_count--; |
21371 | } |
21372 | if (steinerleft > 0) steinerleft++; // We've removed a Steiner points. |
21373 | |
21374 | |
21375 | point *parypt; |
21376 | int steinercount = 0; |
21377 | |
21378 | int bak_fliplinklevel = b->fliplinklevel; |
21379 | b->fliplinklevel = 100000; // Unlimited flip level. |
21380 | |
21381 | // Try to remove newly added Steiner points. |
21382 | for (i = 0; i < n; i++) { |
21383 | if (newsteiners[i] != NULL) { |
21384 | if (!removevertexbyflips(newsteiners[i])) { |
21385 | if (b->nobisect_param > 0) { // Not -Y0 |
21386 | // Save it in subvertstack for removal. |
21387 | subvertstack->newindex((void **) &parypt); |
21388 | *parypt = newsteiners[i]; |
21389 | } |
21390 | steinercount++; |
21391 | } |
21392 | } |
21393 | } |
21394 | |
21395 | b->fliplinklevel = bak_fliplinklevel; |
21396 | |
21397 | if (steinercount > 0) { |
21398 | if (b->verbose > 2) { |
21399 | printf(" Added %d interior Steiner points.\n" , steinercount); |
21400 | } |
21401 | } |
21402 | |
21403 | delete [] newsteiners; |
21404 | |
21405 | return 1; |
21406 | } |
21407 | |
21408 | |
21409 | /////////////////////////////////////////////////////////////////////////////// |
21410 | // // |
21411 | // suppresssteinerpoints() Suppress Steiner points. // |
21412 | // // |
21413 | // All Steiner points have been saved in 'subvertstack' in the routines // |
21414 | // carveholes() and suppresssteinerpoint(). // |
21415 | // Each Steiner point is either removed or shifted into the interior. // |
21416 | // // |
21417 | /////////////////////////////////////////////////////////////////////////////// |
21418 | |
21419 | int tetgenmesh::suppresssteinerpoints() |
21420 | { |
21421 | |
21422 | if (!b->quiet) { |
21423 | printf("Suppressing Steiner points ...\n" ); |
21424 | } |
21425 | |
21426 | point rempt, *parypt; |
21427 | |
21428 | int bak_fliplinklevel = b->fliplinklevel; |
21429 | b->fliplinklevel = 100000; // Unlimited flip level. |
21430 | int suppcount = 0, remcount = 0; |
21431 | int i; |
21432 | |
21433 | // Try to suppress boundary Steiner points. |
21434 | for (i = 0; i < subvertstack->objects; i++) { |
21435 | parypt = (point *) fastlookup(subvertstack, i); |
21436 | rempt = *parypt; |
21437 | if (pointtype(rempt) != UNUSEDVERTEX) { |
21438 | if ((pointtype(rempt) == FREESEGVERTEX) || |
21439 | (pointtype(rempt) == FREEFACETVERTEX)) { |
21440 | if (suppressbdrysteinerpoint(rempt)) { |
21441 | suppcount++; |
21442 | } |
21443 | } |
21444 | } |
21445 | } // i |
21446 | |
21447 | if (suppcount > 0) { |
21448 | if (b->verbose) { |
21449 | printf(" Suppressed %d boundary Steiner points.\n" , suppcount); |
21450 | } |
21451 | } |
21452 | |
21453 | if (b->nobisect_param > 0) { // -Y1 |
21454 | for (i = 0; i < subvertstack->objects; i++) { |
21455 | parypt = (point *) fastlookup(subvertstack, i); |
21456 | rempt = *parypt; |
21457 | if (pointtype(rempt) != UNUSEDVERTEX) { |
21458 | if (pointtype(rempt) == FREEVOLVERTEX) { |
21459 | if (removevertexbyflips(rempt)) { |
21460 | remcount++; |
21461 | } |
21462 | } |
21463 | } |
21464 | } |
21465 | } |
21466 | |
21467 | if (remcount > 0) { |
21468 | if (b->verbose) { |
21469 | printf(" Removed %d interior Steiner points.\n" , remcount); |
21470 | } |
21471 | } |
21472 | |
21473 | b->fliplinklevel = bak_fliplinklevel; |
21474 | |
21475 | if (b->nobisect_param > 1) { // -Y2 |
21476 | // Smooth interior Steiner points. |
21477 | optparameters opm; |
21478 | triface *parytet; |
21479 | point *ppt; |
21480 | REAL ori; |
21481 | int smtcount, count, ivcount; |
21482 | int nt, j; |
21483 | |
21484 | // Point smooth options. |
21485 | opm.max_min_volume = 1; |
21486 | opm.numofsearchdirs = 20; |
21487 | opm.searchstep = 0.001; |
21488 | opm.maxiter = 30; // Limit the maximum iterations. |
21489 | |
21490 | smtcount = 0; |
21491 | |
21492 | do { |
21493 | |
21494 | nt = 0; |
21495 | |
21496 | while (1) { |
21497 | count = 0; |
21498 | ivcount = 0; // Clear the inverted count. |
21499 | |
21500 | for (i = 0; i < subvertstack->objects; i++) { |
21501 | parypt = (point *) fastlookup(subvertstack, i); |
21502 | rempt = *parypt; |
21503 | if (pointtype(rempt) == FREEVOLVERTEX) { |
21504 | getvertexstar(1, rempt, cavetetlist, NULL, NULL); |
21505 | // Calculate the initial smallest volume (maybe zero or negative). |
21506 | for (j = 0; j < cavetetlist->objects; j++) { |
21507 | parytet = (triface *) fastlookup(cavetetlist, j); |
21508 | ppt = (point *) &(parytet->tet[4]); |
21509 | ori = orient3dfast(ppt[1], ppt[0], ppt[2], ppt[3]); |
21510 | if (j == 0) { |
21511 | opm.initval = ori; |
21512 | } else { |
21513 | if (opm.initval > ori) opm.initval = ori; |
21514 | } |
21515 | } |
21516 | if (smoothpoint(rempt, cavetetlist, 1, &opm)) { |
21517 | count++; |
21518 | } |
21519 | if (opm.imprval <= 0.0) { |
21520 | ivcount++; // The mesh contains inverted elements. |
21521 | } |
21522 | cavetetlist->restart(); |
21523 | } |
21524 | } // i |
21525 | |
21526 | smtcount += count; |
21527 | |
21528 | if (count == 0) { |
21529 | // No point has been smoothed. |
21530 | break; |
21531 | } |
21532 | |
21533 | nt++; |
21534 | if (nt > 2) { |
21535 | break; // Already three iterations. |
21536 | } |
21537 | } // while |
21538 | |
21539 | if (ivcount > 0) { |
21540 | // There are inverted elements! |
21541 | if (opm.maxiter > 0) { |
21542 | // Set unlimited smoothing steps. Try again. |
21543 | opm.numofsearchdirs = 30; |
21544 | opm.searchstep = 0.0001; |
21545 | opm.maxiter = -1; |
21546 | continue; |
21547 | } |
21548 | } |
21549 | |
21550 | break; |
21551 | } while (1); // Additional loop for (ivcount > 0) |
21552 | |
21553 | if (ivcount > 0) { |
21554 | printf("BUG Report! The mesh contain inverted elements.\n" ); |
21555 | } |
21556 | |
21557 | if (b->verbose) { |
21558 | if (smtcount > 0) { |
21559 | printf(" Smoothed %d Steiner points.\n" , smtcount); |
21560 | } |
21561 | } |
21562 | } // -Y2 |
21563 | |
21564 | subvertstack->restart(); |
21565 | |
21566 | return 1; |
21567 | } |
21568 | |
21569 | /////////////////////////////////////////////////////////////////////////////// |
21570 | // // |
21571 | // recoverboundary() Recover segments and facets. // |
21572 | // // |
21573 | /////////////////////////////////////////////////////////////////////////////// |
21574 | |
21575 | void tetgenmesh::recoverboundary(clock_t& tv) |
21576 | { |
21577 | arraypool *misseglist, *misshlist; |
21578 | arraypool *bdrysteinerptlist; |
21579 | face searchsh, *parysh; |
21580 | face searchseg, *paryseg; |
21581 | point rempt, *parypt; |
21582 | long ms; // The number of missing segments/subfaces. |
21583 | int nit; // The number of iterations. |
21584 | int s, i; |
21585 | |
21586 | // Counters. |
21587 | long bak_segref_count, bak_facref_count, bak_volref_count; |
21588 | |
21589 | if (!b->quiet) { |
21590 | printf("Recovering boundaries...\n" ); |
21591 | } |
21592 | |
21593 | |
21594 | if (b->verbose) { |
21595 | printf(" Recovering segments.\n" ); |
21596 | } |
21597 | |
21598 | // Segments will be introduced. |
21599 | checksubsegflag = 1; |
21600 | |
21601 | misseglist = new arraypool(sizeof(face), 8); |
21602 | bdrysteinerptlist = new arraypool(sizeof(point), 8); |
21603 | |
21604 | // In random order. |
21605 | subsegs->traversalinit(); |
21606 | for (i = 0; i < subsegs->items; i++) { |
21607 | s = randomnation(i + 1); |
21608 | // Move the s-th seg to the i-th. |
21609 | subsegstack->newindex((void **) &paryseg); |
21610 | *paryseg = * (face *) fastlookup(subsegstack, s); |
21611 | // Put i-th seg to be the s-th. |
21612 | searchseg.sh = shellfacetraverse(subsegs); |
21613 | paryseg = (face *) fastlookup(subsegstack, s); |
21614 | *paryseg = searchseg; |
21615 | } |
21616 | |
21617 | // The init number of missing segments. |
21618 | ms = subsegs->items; |
21619 | nit = 0; |
21620 | if (b->fliplinklevel < 0) { |
21621 | autofliplinklevel = 1; // Init value. |
21622 | } |
21623 | |
21624 | // First, trying to recover segments by only doing flips. |
21625 | while (1) { |
21626 | recoversegments(misseglist, 0, 0); |
21627 | |
21628 | if (misseglist->objects > 0) { |
21629 | if (b->fliplinklevel >= 0) { |
21630 | break; |
21631 | } else { |
21632 | if (misseglist->objects >= ms) { |
21633 | nit++; |
21634 | if (nit >= 3) { |
21635 | //break; |
21636 | // Do the last round with unbounded flip link level. |
21637 | b->fliplinklevel = 100000; |
21638 | } |
21639 | } else { |
21640 | ms = misseglist->objects; |
21641 | if (nit > 0) { |
21642 | nit--; |
21643 | } |
21644 | } |
21645 | for (i = 0; i < misseglist->objects; i++) { |
21646 | subsegstack->newindex((void **) &paryseg); |
21647 | *paryseg = * (face *) fastlookup(misseglist, i); |
21648 | } |
21649 | misseglist->restart(); |
21650 | autofliplinklevel+=b->fliplinklevelinc; |
21651 | } |
21652 | } else { |
21653 | // All segments are recovered. |
21654 | break; |
21655 | } |
21656 | } // while (1) |
21657 | |
21658 | if (b->verbose) { |
21659 | printf(" %ld (%ld) segments are recovered (missing).\n" , |
21660 | subsegs->items - misseglist->objects, misseglist->objects); |
21661 | } |
21662 | |
21663 | if (misseglist->objects > 0) { |
21664 | // Second, trying to recover segments by doing more flips (fullsearch). |
21665 | while (misseglist->objects > 0) { |
21666 | ms = misseglist->objects; |
21667 | for (i = 0; i < misseglist->objects; i++) { |
21668 | subsegstack->newindex((void **) &paryseg); |
21669 | *paryseg = * (face *) fastlookup(misseglist, i); |
21670 | } |
21671 | misseglist->restart(); |
21672 | |
21673 | recoversegments(misseglist, 1, 0); |
21674 | |
21675 | if (misseglist->objects < ms) { |
21676 | // The number of missing segments is reduced. |
21677 | continue; |
21678 | } else { |
21679 | break; |
21680 | } |
21681 | } |
21682 | if (b->verbose) { |
21683 | printf(" %ld (%ld) segments are recovered (missing).\n" , |
21684 | subsegs->items - misseglist->objects, misseglist->objects); |
21685 | } |
21686 | } |
21687 | |
21688 | if (misseglist->objects > 0) { |
21689 | // Third, trying to recover segments by doing more flips (fullsearch) |
21690 | // and adding Steiner points in the volume. |
21691 | while (misseglist->objects > 0) { |
21692 | ms = misseglist->objects; |
21693 | for (i = 0; i < misseglist->objects; i++) { |
21694 | subsegstack->newindex((void **) &paryseg); |
21695 | *paryseg = * (face *) fastlookup(misseglist, i); |
21696 | } |
21697 | misseglist->restart(); |
21698 | |
21699 | recoversegments(misseglist, 1, 1); |
21700 | |
21701 | if (misseglist->objects < ms) { |
21702 | // The number of missing segments is reduced. |
21703 | continue; |
21704 | } else { |
21705 | break; |
21706 | } |
21707 | } |
21708 | if (b->verbose) { |
21709 | printf(" Added %ld Steiner points in volume.\n" , st_volref_count); |
21710 | } |
21711 | } |
21712 | |
21713 | if (misseglist->objects > 0) { |
21714 | // Last, trying to recover segments by doing more flips (fullsearch), |
21715 | // and adding Steiner points in the volume, and splitting segments. |
21716 | long bak_inpoly_count = st_volref_count; //st_inpoly_count; |
21717 | for (i = 0; i < misseglist->objects; i++) { |
21718 | subsegstack->newindex((void **) &paryseg); |
21719 | *paryseg = * (face *) fastlookup(misseglist, i); |
21720 | } |
21721 | misseglist->restart(); |
21722 | |
21723 | recoversegments(misseglist, 1, 2); |
21724 | |
21725 | if (b->verbose) { |
21726 | printf(" Added %ld Steiner points in segments.\n" , st_segref_count); |
21727 | if (st_volref_count > bak_inpoly_count) { |
21728 | printf(" Added another %ld Steiner points in volume.\n" , |
21729 | st_volref_count - bak_inpoly_count); |
21730 | } |
21731 | } |
21732 | assert(misseglist->objects == 0l); |
21733 | } |
21734 | |
21735 | |
21736 | if (st_segref_count > 0) { |
21737 | // Try to remove the Steiner points added in segments. |
21738 | bak_segref_count = st_segref_count; |
21739 | bak_volref_count = st_volref_count; |
21740 | for (i = 0; i < subvertstack->objects; i++) { |
21741 | // Get the Steiner point. |
21742 | parypt = (point *) fastlookup(subvertstack, i); |
21743 | rempt = *parypt; |
21744 | if (!removevertexbyflips(rempt)) { |
21745 | // Save it in list. |
21746 | bdrysteinerptlist->newindex((void **) &parypt); |
21747 | *parypt = rempt; |
21748 | } |
21749 | } |
21750 | if (b->verbose) { |
21751 | if (st_segref_count < bak_segref_count) { |
21752 | if (bak_volref_count < st_volref_count) { |
21753 | printf(" Suppressed %ld Steiner points in segments.\n" , |
21754 | st_volref_count - bak_volref_count); |
21755 | } |
21756 | if ((st_segref_count + (st_volref_count - bak_volref_count)) < |
21757 | bak_segref_count) { |
21758 | printf(" Removed %ld Steiner points in segments.\n" , |
21759 | bak_segref_count - |
21760 | (st_segref_count + (st_volref_count - bak_volref_count))); |
21761 | } |
21762 | } |
21763 | } |
21764 | subvertstack->restart(); |
21765 | } |
21766 | |
21767 | |
21768 | tv = clock(); |
21769 | |
21770 | if (b->verbose) { |
21771 | printf(" Recovering facets.\n" ); |
21772 | } |
21773 | |
21774 | // Subfaces will be introduced. |
21775 | checksubfaceflag = 1; |
21776 | |
21777 | misshlist = new arraypool(sizeof(face), 8); |
21778 | |
21779 | // Randomly order the subfaces. |
21780 | subfaces->traversalinit(); |
21781 | for (i = 0; i < subfaces->items; i++) { |
21782 | s = randomnation(i + 1); |
21783 | // Move the s-th subface to the i-th. |
21784 | subfacstack->newindex((void **) &parysh); |
21785 | *parysh = * (face *) fastlookup(subfacstack, s); |
21786 | // Put i-th subface to be the s-th. |
21787 | searchsh.sh = shellfacetraverse(subfaces); |
21788 | parysh = (face *) fastlookup(subfacstack, s); |
21789 | *parysh = searchsh; |
21790 | } |
21791 | |
21792 | ms = subfaces->items; |
21793 | nit = 0; |
21794 | b->fliplinklevel = -1; // Init. |
21795 | if (b->fliplinklevel < 0) { |
21796 | autofliplinklevel = 1; // Init value. |
21797 | } |
21798 | |
21799 | while (1) { |
21800 | recoversubfaces(misshlist, 0); |
21801 | |
21802 | if (misshlist->objects > 0) { |
21803 | if (b->fliplinklevel >= 0) { |
21804 | break; |
21805 | } else { |
21806 | if (misshlist->objects >= ms) { |
21807 | nit++; |
21808 | if (nit >= 3) { |
21809 | //break; |
21810 | // Do the last round with unbounded flip link level. |
21811 | b->fliplinklevel = 100000; |
21812 | } |
21813 | } else { |
21814 | ms = misshlist->objects; |
21815 | if (nit > 0) { |
21816 | nit--; |
21817 | } |
21818 | } |
21819 | for (i = 0; i < misshlist->objects; i++) { |
21820 | subfacstack->newindex((void **) &parysh); |
21821 | *parysh = * (face *) fastlookup(misshlist, i); |
21822 | } |
21823 | misshlist->restart(); |
21824 | autofliplinklevel+=b->fliplinklevelinc; |
21825 | } |
21826 | } else { |
21827 | // All subfaces are recovered. |
21828 | break; |
21829 | } |
21830 | } // while (1) |
21831 | |
21832 | if (b->verbose) { |
21833 | printf(" %ld (%ld) subfaces are recovered (missing).\n" , |
21834 | subfaces->items - misshlist->objects, misshlist->objects); |
21835 | } |
21836 | |
21837 | if (misshlist->objects > 0) { |
21838 | // There are missing subfaces. Add Steiner points. |
21839 | for (i = 0; i < misshlist->objects; i++) { |
21840 | subfacstack->newindex((void **) &parysh); |
21841 | *parysh = * (face *) fastlookup(misshlist, i); |
21842 | } |
21843 | misshlist->restart(); |
21844 | |
21845 | recoversubfaces(NULL, 1); |
21846 | |
21847 | if (b->verbose) { |
21848 | printf(" Added %ld Steiner points in facets.\n" , st_facref_count); |
21849 | } |
21850 | } |
21851 | |
21852 | |
21853 | if (st_facref_count > 0) { |
21854 | // Try to remove the Steiner points added in facets. |
21855 | bak_facref_count = st_facref_count; |
21856 | for (i = 0; i < subvertstack->objects; i++) { |
21857 | // Get the Steiner point. |
21858 | parypt = (point *) fastlookup(subvertstack, i); |
21859 | rempt = *parypt; |
21860 | if (!removevertexbyflips(*parypt)) { |
21861 | // Save it in list. |
21862 | bdrysteinerptlist->newindex((void **) &parypt); |
21863 | *parypt = rempt; |
21864 | } |
21865 | } |
21866 | if (b->verbose) { |
21867 | if (st_facref_count < bak_facref_count) { |
21868 | printf(" Removed %ld Steiner points in facets.\n" , |
21869 | bak_facref_count - st_facref_count); |
21870 | } |
21871 | } |
21872 | subvertstack->restart(); |
21873 | } |
21874 | |
21875 | |
21876 | if (bdrysteinerptlist->objects > 0) { |
21877 | if (b->verbose) { |
21878 | printf(" %ld Steiner points remained in boundary.\n" , |
21879 | bdrysteinerptlist->objects); |
21880 | } |
21881 | } // if |
21882 | |
21883 | |
21884 | // Accumulate the dynamic memory. |
21885 | totalworkmemory += (misseglist->totalmemory + misshlist->totalmemory + |
21886 | bdrysteinerptlist->totalmemory); |
21887 | |
21888 | delete bdrysteinerptlist; |
21889 | delete misseglist; |
21890 | delete misshlist; |
21891 | } |
21892 | |
21893 | //// //// |
21894 | //// //// |
21895 | //// steiner_cxx ////////////////////////////////////////////////////////////// |
21896 | |
21897 | |
21898 | //// reconstruct_cxx ////////////////////////////////////////////////////////// |
21899 | //// //// |
21900 | //// //// |
21901 | |
21902 | /////////////////////////////////////////////////////////////////////////////// |
21903 | // // |
21904 | // carveholes() Remove tetrahedra not in the mesh domain. // |
21905 | // // |
21906 | /////////////////////////////////////////////////////////////////////////////// |
21907 | |
21908 | |
21909 | void tetgenmesh::carveholes() |
21910 | { |
21911 | arraypool *tetarray, *hullarray; |
21912 | triface tetloop, neightet, *parytet, *parytet1; |
21913 | triface *regiontets = NULL; |
21914 | face checksh, *parysh; |
21915 | face checkseg; |
21916 | point ptloop, *parypt; |
21917 | int t1ver; |
21918 | int i, j, k; |
21919 | |
21920 | if (!b->quiet) { |
21921 | if (b->convex) { |
21922 | printf("Marking exterior tetrahedra ...\n" ); |
21923 | } else { |
21924 | printf("Removing exterior tetrahedra ...\n" ); |
21925 | } |
21926 | } |
21927 | |
21928 | // Initialize the pool of exterior tets. |
21929 | tetarray = new arraypool(sizeof(triface), 10); |
21930 | hullarray = new arraypool(sizeof(triface), 10); |
21931 | |
21932 | // Collect unprotected tets and hull tets. |
21933 | tetrahedrons->traversalinit(); |
21934 | tetloop.ver = 11; // The face opposite to dummypoint. |
21935 | tetloop.tet = alltetrahedrontraverse(); |
21936 | while (tetloop.tet != (tetrahedron *) NULL) { |
21937 | if (ishulltet(tetloop)) { |
21938 | // Is this side protected by a subface? |
21939 | if (!issubface(tetloop)) { |
21940 | // Collect an unprotected hull tet and tet. |
21941 | infect(tetloop); |
21942 | hullarray->newindex((void **) &parytet); |
21943 | *parytet = tetloop; |
21944 | // tetloop's face number is 11 & 3 = 3. |
21945 | decode(tetloop.tet[3], neightet); |
21946 | if (!infected(neightet)) { |
21947 | infect(neightet); |
21948 | tetarray->newindex((void **) &parytet); |
21949 | *parytet = neightet; |
21950 | } |
21951 | } |
21952 | } |
21953 | tetloop.tet = alltetrahedrontraverse(); |
21954 | } |
21955 | |
21956 | if (in->numberofholes > 0) { |
21957 | // Mark as infected any tets inside volume holes. |
21958 | for (i = 0; i < 3 * in->numberofholes; i += 3) { |
21959 | // Search a tet containing the i-th hole point. |
21960 | neightet.tet = NULL; |
21961 | randomsample(&(in->holelist[i]), &neightet); |
21962 | if (locate(&(in->holelist[i]), &neightet) != OUTSIDE) { |
21963 | // The tet 'neightet' contain this point. |
21964 | if (!infected(neightet)) { |
21965 | infect(neightet); |
21966 | tetarray->newindex((void **) &parytet); |
21967 | *parytet = neightet; |
21968 | // Add its adjacent tet if it is not protected. |
21969 | if (!issubface(neightet)) { |
21970 | decode(neightet.tet[neightet.ver & 3], tetloop); |
21971 | if (!infected(tetloop)) { |
21972 | infect(tetloop); |
21973 | if (ishulltet(tetloop)) { |
21974 | hullarray->newindex((void **) &parytet); |
21975 | } else { |
21976 | tetarray->newindex((void **) &parytet); |
21977 | } |
21978 | *parytet = tetloop; |
21979 | } |
21980 | } |
21981 | else { |
21982 | // It is protected. Check if its adjacent tet is a hull tet. |
21983 | decode(neightet.tet[neightet.ver & 3], tetloop); |
21984 | if (ishulltet(tetloop)) { |
21985 | // It is hull tet, add it into the list. Moreover, the subface |
21986 | // is dead, i.e., both sides are in exterior. |
21987 | if (!infected(tetloop)) { |
21988 | infect(tetloop); |
21989 | hullarray->newindex((void **) &parytet); |
21990 | *parytet = tetloop; |
21991 | } |
21992 | } |
21993 | if (infected(tetloop)) { |
21994 | // Both sides of this subface are in exterior. |
21995 | tspivot(neightet, checksh); |
21996 | sinfect(checksh); // Only queue it once. |
21997 | subfacstack->newindex((void **) &parysh); |
21998 | *parysh = checksh; |
21999 | } |
22000 | } |
22001 | } // if (!infected(neightet)) |
22002 | } else { |
22003 | // A hole point locates outside of the convex hull. |
22004 | if (!b->quiet) { |
22005 | printf("Warning: The %d-th hole point " , i/3 + 1); |
22006 | printf("lies outside the convex hull.\n" ); |
22007 | } |
22008 | } |
22009 | } // i |
22010 | } // if (in->numberofholes > 0) |
22011 | |
22012 | if (b->regionattrib && (in->numberofregions > 0)) { // -A option. |
22013 | // Record the tetrahedra that contains the region points for assigning |
22014 | // region attributes after the holes have been carved. |
22015 | regiontets = new triface[in->numberofregions]; |
22016 | // Mark as marktested any tetrahedra inside volume regions. |
22017 | for (i = 0; i < 5 * in->numberofregions; i += 5) { |
22018 | // Search a tet containing the i-th region point. |
22019 | neightet.tet = NULL; |
22020 | randomsample(&(in->regionlist[i]), &neightet); |
22021 | if (locate(&(in->regionlist[i]), &neightet) != OUTSIDE) { |
22022 | regiontets[i/5] = neightet; |
22023 | } else { |
22024 | if (!b->quiet) { |
22025 | printf("Warning: The %d-th region point " , i/5+1); |
22026 | printf("lies outside the convex hull.\n" ); |
22027 | } |
22028 | regiontets[i/5].tet = NULL; |
22029 | } |
22030 | } |
22031 | } |
22032 | |
22033 | // Collect all exterior tets (in concave place and in holes). |
22034 | for (i = 0; i < tetarray->objects; i++) { |
22035 | parytet = (triface *) fastlookup(tetarray, i); |
22036 | j = (parytet->ver & 3); // j is the current face number. |
22037 | // Check the other three adjacent tets. |
22038 | for (k = 1; k < 4; k++) { |
22039 | decode(parytet->tet[(j + k) % 4], neightet); |
22040 | // neightet may be a hull tet. |
22041 | if (!infected(neightet)) { |
22042 | // Is neightet protected by a subface. |
22043 | if (!issubface(neightet)) { |
22044 | // Not proected. Collect it. (It must not be a hull tet). |
22045 | infect(neightet); |
22046 | tetarray->newindex((void **) &parytet1); |
22047 | *parytet1 = neightet; |
22048 | } else { |
22049 | // Protected. Check if it is a hull tet. |
22050 | if (ishulltet(neightet)) { |
22051 | // A hull tet. Collect it. |
22052 | infect(neightet); |
22053 | hullarray->newindex((void **) &parytet1); |
22054 | *parytet1 = neightet; |
22055 | // Both sides of this subface are exterior. |
22056 | tspivot(neightet, checksh); |
22057 | // Queue this subface (to be deleted later). |
22058 | assert(!sinfected(checksh)); |
22059 | sinfect(checksh); // Only queue it once. |
22060 | subfacstack->newindex((void **) &parysh); |
22061 | *parysh = checksh; |
22062 | } |
22063 | } |
22064 | } else { |
22065 | // Both sides of this face are in exterior. |
22066 | // If there is a subface. It should be collected. |
22067 | if (issubface(neightet)) { |
22068 | tspivot(neightet, checksh); |
22069 | if (!sinfected(checksh)) { |
22070 | sinfect(checksh); |
22071 | subfacstack->newindex((void **) &parysh); |
22072 | *parysh = checksh; |
22073 | } |
22074 | } |
22075 | } |
22076 | } // j, k |
22077 | } // i |
22078 | |
22079 | if (b->regionattrib && (in->numberofregions > 0)) { |
22080 | // Re-check saved region tets to see if they lie outside. |
22081 | for (i = 0; i < in->numberofregions; i++) { |
22082 | if (infected(regiontets[i])) { |
22083 | if (b->verbose) { |
22084 | printf("Warning: The %d-th region point " , i+1); |
22085 | printf("lies in the exterior of the domain.\n" ); |
22086 | } |
22087 | regiontets[i].tet = NULL; |
22088 | } |
22089 | } |
22090 | } |
22091 | |
22092 | // Collect vertices which point to infected tets. These vertices |
22093 | // may get deleted after the removal of exterior tets. |
22094 | // If -Y1 option is used, collect all Steiner points for removal. |
22095 | // The lists 'cavetetvertlist' and 'subvertstack' are re-used. |
22096 | points->traversalinit(); |
22097 | ptloop = pointtraverse(); |
22098 | while (ptloop != NULL) { |
22099 | if ((pointtype(ptloop) != UNUSEDVERTEX) && |
22100 | (pointtype(ptloop) != DUPLICATEDVERTEX)) { |
22101 | decode(point2tet(ptloop), neightet); |
22102 | if (infected(neightet)) { |
22103 | cavetetvertlist->newindex((void **) &parypt); |
22104 | *parypt = ptloop; |
22105 | } |
22106 | if (b->nobisect && (b->nobisect_param > 0)) { // -Y1 |
22107 | // Queue it if it is a Steiner point. |
22108 | if (pointmark(ptloop) > |
22109 | (in->numberofpoints - (in->firstnumber ? 0 : 1))) { |
22110 | subvertstack->newindex((void **) &parypt); |
22111 | *parypt = ptloop; |
22112 | } |
22113 | } |
22114 | } |
22115 | ptloop = pointtraverse(); |
22116 | } |
22117 | |
22118 | if (!b->convex && (tetarray->objects > 0l)) { // No -c option. |
22119 | // Remove exterior tets. Hull tets are updated. |
22120 | arraypool *newhullfacearray; |
22121 | triface hulltet, casface; |
22122 | point pa, pb, pc; |
22123 | |
22124 | newhullfacearray = new arraypool(sizeof(triface), 10); |
22125 | |
22126 | // Create and save new hull tets. |
22127 | for (i = 0; i < tetarray->objects; i++) { |
22128 | parytet = (triface *) fastlookup(tetarray, i); |
22129 | for (j = 0; j < 4; j++) { |
22130 | decode(parytet->tet[j], tetloop); |
22131 | if (!infected(tetloop)) { |
22132 | // Found a new hull face (must be a subface). |
22133 | tspivot(tetloop, checksh); |
22134 | maketetrahedron(&hulltet); |
22135 | pa = org(tetloop); |
22136 | pb = dest(tetloop); |
22137 | pc = apex(tetloop); |
22138 | setvertices(hulltet, pb, pa, pc, dummypoint); |
22139 | bond(tetloop, hulltet); |
22140 | // Update the subface-to-tet map. |
22141 | sesymself(checksh); |
22142 | tsbond(hulltet, checksh); |
22143 | // Update the segment-to-tet map. |
22144 | for (k = 0; k < 3; k++) { |
22145 | if (issubseg(tetloop)) { |
22146 | tsspivot1(tetloop, checkseg); |
22147 | tssbond1(hulltet, checkseg); |
22148 | sstbond1(checkseg, hulltet); |
22149 | } |
22150 | enextself(tetloop); |
22151 | eprevself(hulltet); |
22152 | } |
22153 | // Update the point-to-tet map. |
22154 | setpoint2tet(pa, (tetrahedron) tetloop.tet); |
22155 | setpoint2tet(pb, (tetrahedron) tetloop.tet); |
22156 | setpoint2tet(pc, (tetrahedron) tetloop.tet); |
22157 | // Save the exterior tet at this hull face. It still holds pointer |
22158 | // to the adjacent interior tet. Use it to connect new hull tets. |
22159 | newhullfacearray->newindex((void **) &parytet1); |
22160 | parytet1->tet = parytet->tet; |
22161 | parytet1->ver = j; |
22162 | } // if (!infected(tetloop)) |
22163 | } // j |
22164 | } // i |
22165 | |
22166 | // Connect new hull tets. |
22167 | for (i = 0; i < newhullfacearray->objects; i++) { |
22168 | parytet = (triface *) fastlookup(newhullfacearray, i); |
22169 | fsym(*parytet, neightet); |
22170 | // Get the new hull tet. |
22171 | fsym(neightet, hulltet); |
22172 | for (j = 0; j < 3; j++) { |
22173 | esym(hulltet, casface); |
22174 | if (casface.tet[casface.ver & 3] == NULL) { |
22175 | // Since the boundary of the domain may not be a manifold, we |
22176 | // find the adjacent hull face by traversing the tets in the |
22177 | // exterior (which are all infected tets). |
22178 | neightet = *parytet; |
22179 | while (1) { |
22180 | fnextself(neightet); |
22181 | if (!infected(neightet)) break; |
22182 | } |
22183 | if (!ishulltet(neightet)) { |
22184 | // An interior tet. Get the new hull tet. |
22185 | fsymself(neightet); |
22186 | esymself(neightet); |
22187 | } |
22188 | // Bond them together. |
22189 | bond(casface, neightet); |
22190 | } |
22191 | enextself(hulltet); |
22192 | enextself(*parytet); |
22193 | } // j |
22194 | } // i |
22195 | |
22196 | if (subfacstack->objects > 0l) { |
22197 | // Remove all subfaces which do not attach to any tetrahedron. |
22198 | // Segments which are not attached to any subfaces and tets |
22199 | // are deleted too. |
22200 | face casingout, casingin; |
22201 | long delsegcount = 0l; |
22202 | |
22203 | for (i = 0; i < subfacstack->objects; i++) { |
22204 | parysh = (face *) fastlookup(subfacstack, i); |
22205 | if (i == 0) { |
22206 | if (b->verbose) { |
22207 | printf("Warning: Removing an open face (%d, %d, %d)\n" , |
22208 | pointmark(sorg(*parysh)), pointmark(sdest(*parysh)), |
22209 | pointmark(sapex(*parysh))); |
22210 | } |
22211 | } |
22212 | // Dissolve this subface from face links. |
22213 | for (j = 0; j < 3; j++) { |
22214 | spivot(*parysh, casingout); |
22215 | sspivot(*parysh, checkseg); |
22216 | if (casingout.sh != NULL) { |
22217 | casingin = casingout; |
22218 | while (1) { |
22219 | spivot(casingin, checksh); |
22220 | if (checksh.sh == parysh->sh) break; |
22221 | casingin = checksh; |
22222 | } |
22223 | if (casingin.sh != casingout.sh) { |
22224 | // Update the link: ... -> casingin -> casingout ->... |
22225 | sbond1(casingin, casingout); |
22226 | } else { |
22227 | // Only one subface at this edge is left. |
22228 | sdissolve(casingout); |
22229 | } |
22230 | if (checkseg.sh != NULL) { |
22231 | // Make sure the segment does not connect to a dead one. |
22232 | ssbond(casingout, checkseg); |
22233 | } |
22234 | } else { |
22235 | if (checkseg.sh != NULL) { |
22236 | // The segment is also dead. |
22237 | if (delsegcount == 0) { |
22238 | if (b->verbose) { |
22239 | printf("Warning: Removing a dangling segment (%d, %d)\n" , |
22240 | pointmark(sorg(checkseg)), pointmark(sdest(checkseg))); |
22241 | } |
22242 | } |
22243 | shellfacedealloc(subsegs, checkseg.sh); |
22244 | delsegcount++; |
22245 | } |
22246 | } |
22247 | senextself(*parysh); |
22248 | } // j |
22249 | // Delete this subface. |
22250 | shellfacedealloc(subfaces, parysh->sh); |
22251 | } // i |
22252 | if (b->verbose) { |
22253 | printf(" Deleted %ld subfaces.\n" , subfacstack->objects); |
22254 | if (delsegcount > 0) { |
22255 | printf(" Deleted %ld segments.\n" , delsegcount); |
22256 | } |
22257 | } |
22258 | subfacstack->restart(); |
22259 | } // if (subfacstack->objects > 0l) |
22260 | |
22261 | if (cavetetvertlist->objects > 0l) { |
22262 | // Some vertices may lie in exterior. Marke them as UNUSEDVERTEX. |
22263 | long delvertcount = unuverts; |
22264 | long delsteinercount = 0l; |
22265 | |
22266 | for (i = 0; i < cavetetvertlist->objects; i++) { |
22267 | parypt = (point *) fastlookup(cavetetvertlist, i); |
22268 | decode(point2tet(*parypt), neightet); |
22269 | if (infected(neightet)) { |
22270 | // Found an exterior vertex. |
22271 | if (pointmark(*parypt) > |
22272 | (in->numberofpoints - (in->firstnumber ? 0 : 1))) { |
22273 | // A Steiner point. |
22274 | if (pointtype(*parypt) == FREESEGVERTEX) { |
22275 | st_segref_count--; |
22276 | } else if (pointtype(*parypt) == FREEFACETVERTEX) { |
22277 | st_facref_count--; |
22278 | } else { |
22279 | assert(pointtype(*parypt) == FREEVOLVERTEX); |
22280 | st_volref_count--; |
22281 | } |
22282 | delsteinercount++; |
22283 | if (steinerleft > 0) steinerleft++; |
22284 | } |
22285 | setpointtype(*parypt, UNUSEDVERTEX); |
22286 | unuverts++; |
22287 | } |
22288 | } |
22289 | |
22290 | if (b->verbose) { |
22291 | if (unuverts > delvertcount) { |
22292 | if (delsteinercount > 0l) { |
22293 | if (unuverts > (delvertcount + delsteinercount)) { |
22294 | printf(" Removed %ld exterior input vertices.\n" , |
22295 | unuverts - delvertcount - delsteinercount); |
22296 | } |
22297 | printf(" Removed %ld exterior Steiner vertices.\n" , |
22298 | delsteinercount); |
22299 | } else { |
22300 | printf(" Removed %ld exterior input vertices.\n" , |
22301 | unuverts - delvertcount); |
22302 | } |
22303 | } |
22304 | } |
22305 | cavetetvertlist->restart(); |
22306 | // Comment: 'subvertstack' will be cleaned in routine |
22307 | // suppresssteinerpoints(). |
22308 | } // if (cavetetvertlist->objects > 0l) |
22309 | |
22310 | // Update the hull size. |
22311 | hullsize += (newhullfacearray->objects - hullarray->objects); |
22312 | |
22313 | // Delete all exterior tets and old hull tets. |
22314 | for (i = 0; i < tetarray->objects; i++) { |
22315 | parytet = (triface *) fastlookup(tetarray, i); |
22316 | tetrahedrondealloc(parytet->tet); |
22317 | } |
22318 | tetarray->restart(); |
22319 | |
22320 | for (i = 0; i < hullarray->objects; i++) { |
22321 | parytet = (triface *) fastlookup(hullarray, i); |
22322 | tetrahedrondealloc(parytet->tet); |
22323 | } |
22324 | hullarray->restart(); |
22325 | |
22326 | delete newhullfacearray; |
22327 | } // if (!b->convex && (tetarray->objects > 0l)) |
22328 | |
22329 | if (b->convex && (tetarray->objects > 0l)) { // With -c option |
22330 | // In this case, all exterior tets get a region marker '-1'. |
22331 | assert(b->regionattrib > 0); // -A option must be enabled. |
22332 | int attrnum = numelemattrib - 1; |
22333 | |
22334 | for (i = 0; i < tetarray->objects; i++) { |
22335 | parytet = (triface *) fastlookup(tetarray, i); |
22336 | setelemattribute(parytet->tet, attrnum, -1); |
22337 | } |
22338 | tetarray->restart(); |
22339 | |
22340 | for (i = 0; i < hullarray->objects; i++) { |
22341 | parytet = (triface *) fastlookup(hullarray, i); |
22342 | uninfect(*parytet); |
22343 | } |
22344 | hullarray->restart(); |
22345 | |
22346 | if (subfacstack->objects > 0l) { |
22347 | for (i = 0; i < subfacstack->objects; i++) { |
22348 | parysh = (face *) fastlookup(subfacstack, i); |
22349 | suninfect(*parysh); |
22350 | } |
22351 | subfacstack->restart(); |
22352 | } |
22353 | |
22354 | if (cavetetvertlist->objects > 0l) { |
22355 | cavetetvertlist->restart(); |
22356 | } |
22357 | } // if (b->convex && (tetarray->objects > 0l)) |
22358 | |
22359 | if (b->regionattrib) { // With -A option. |
22360 | if (!b->quiet) { |
22361 | printf("Spreading region attributes.\n" ); |
22362 | } |
22363 | REAL volume; |
22364 | int attr, maxattr = 0; // Choose a small number here. |
22365 | int attrnum = numelemattrib - 1; |
22366 | // Comment: The element region marker is at the end of the list of |
22367 | // the element attributes. |
22368 | int regioncount = 0; |
22369 | |
22370 | // If has user-defined region attributes. |
22371 | if (in->numberofregions > 0) { |
22372 | // Spread region attributes. |
22373 | for (i = 0; i < 5 * in->numberofregions; i += 5) { |
22374 | if (regiontets[i/5].tet != NULL) { |
22375 | attr = (int) in->regionlist[i + 3]; |
22376 | if (attr > maxattr) { |
22377 | maxattr = attr; |
22378 | } |
22379 | volume = in->regionlist[i + 4]; |
22380 | tetarray->restart(); // Re-use this array. |
22381 | infect(regiontets[i/5]); |
22382 | tetarray->newindex((void **) &parytet); |
22383 | *parytet = regiontets[i/5]; |
22384 | // Collect and set attrs for all tets of this region. |
22385 | for (j = 0; j < tetarray->objects; j++) { |
22386 | parytet = (triface *) fastlookup(tetarray, j); |
22387 | tetloop = *parytet; |
22388 | setelemattribute(tetloop.tet, attrnum, attr); |
22389 | if (b->varvolume) { // If has -a option. |
22390 | setvolumebound(tetloop.tet, volume); |
22391 | } |
22392 | for (k = 0; k < 4; k++) { |
22393 | decode(tetloop.tet[k], neightet); |
22394 | // Is the adjacent already checked? |
22395 | if (!infected(neightet)) { |
22396 | // Is this side protected by a subface? |
22397 | if (!issubface(neightet)) { |
22398 | infect(neightet); |
22399 | tetarray->newindex((void **) &parytet); |
22400 | *parytet = neightet; |
22401 | } |
22402 | } |
22403 | } // k |
22404 | } // j |
22405 | regioncount++; |
22406 | } // if (regiontets[i/5].tet != NULL) |
22407 | } // i |
22408 | } |
22409 | |
22410 | // Set attributes for all tetrahedra. |
22411 | attr = maxattr + 1; |
22412 | tetrahedrons->traversalinit(); |
22413 | tetloop.tet = tetrahedrontraverse(); |
22414 | while (tetloop.tet != (tetrahedron *) NULL) { |
22415 | if (!infected(tetloop)) { |
22416 | // An unmarked region. |
22417 | tetarray->restart(); // Re-use this array. |
22418 | infect(tetloop); |
22419 | tetarray->newindex((void **) &parytet); |
22420 | *parytet = tetloop; |
22421 | // Find and mark all tets. |
22422 | for (j = 0; j < tetarray->objects; j++) { |
22423 | parytet = (triface *) fastlookup(tetarray, j); |
22424 | tetloop = *parytet; |
22425 | setelemattribute(tetloop.tet, attrnum, attr); |
22426 | for (k = 0; k < 4; k++) { |
22427 | decode(tetloop.tet[k], neightet); |
22428 | // Is the adjacent tet already checked? |
22429 | if (!infected(neightet)) { |
22430 | // Is this side protected by a subface? |
22431 | if (!issubface(neightet)) { |
22432 | infect(neightet); |
22433 | tetarray->newindex((void **) &parytet); |
22434 | *parytet = neightet; |
22435 | } |
22436 | } |
22437 | } // k |
22438 | } // j |
22439 | attr++; // Increase the attribute. |
22440 | regioncount++; |
22441 | } |
22442 | tetloop.tet = tetrahedrontraverse(); |
22443 | } |
22444 | // Until here, every tet has a region attribute. |
22445 | |
22446 | // Uninfect processed tets. |
22447 | tetrahedrons->traversalinit(); |
22448 | tetloop.tet = tetrahedrontraverse(); |
22449 | while (tetloop.tet != (tetrahedron *) NULL) { |
22450 | uninfect(tetloop); |
22451 | tetloop.tet = tetrahedrontraverse(); |
22452 | } |
22453 | |
22454 | if (b->verbose) { |
22455 | //assert(regioncount > 0); |
22456 | if (regioncount > 1) { |
22457 | printf(" Found %d subdomains.\n" , regioncount); |
22458 | } else { |
22459 | printf(" Found %d domain.\n" , regioncount); |
22460 | } |
22461 | } |
22462 | } // if (b->regionattrib) |
22463 | |
22464 | if (regiontets != NULL) { |
22465 | delete [] regiontets; |
22466 | } |
22467 | delete tetarray; |
22468 | delete hullarray; |
22469 | |
22470 | if (!b->convex) { // No -c option |
22471 | // The mesh is non-convex now. |
22472 | nonconvex = 1; |
22473 | |
22474 | // Push all hull tets into 'flipstack'. |
22475 | tetrahedrons->traversalinit(); |
22476 | tetloop.ver = 11; // The face opposite to dummypoint. |
22477 | tetloop.tet = alltetrahedrontraverse(); |
22478 | while (tetloop.tet != (tetrahedron *) NULL) { |
22479 | if ((point) tetloop.tet[7] == dummypoint) { |
22480 | fsym(tetloop, neightet); |
22481 | flippush(flipstack, &neightet); |
22482 | } |
22483 | tetloop.tet = alltetrahedrontraverse(); |
22484 | } |
22485 | |
22486 | flipconstraints fc; |
22487 | fc.enqflag = 2; |
22488 | long sliver_peel_count = lawsonflip3d(&fc); |
22489 | |
22490 | if (sliver_peel_count > 0l) { |
22491 | if (b->verbose) { |
22492 | printf(" Removed %ld hull slivers.\n" , sliver_peel_count); |
22493 | } |
22494 | } |
22495 | unflipqueue->restart(); |
22496 | } // if (!b->convex) |
22497 | } |
22498 | |
22499 | /////////////////////////////////////////////////////////////////////////////// |
22500 | // // |
22501 | // reconstructmesh() Reconstruct a tetrahedral mesh. // |
22502 | // // |
22503 | /////////////////////////////////////////////////////////////////////////////// |
22504 | |
22505 | void tetgenmesh::reconstructmesh() |
22506 | { |
22507 | tetrahedron *ver2tetarray; |
22508 | point *idx2verlist; |
22509 | triface tetloop, checktet, prevchktet; |
22510 | triface hulltet, face1, face2; |
22511 | tetrahedron tptr; |
22512 | face subloop, neighsh, nextsh; |
22513 | face segloop; |
22514 | shellface sptr; |
22515 | point p[4], q[3]; |
22516 | REAL ori, attrib, volume; |
22517 | REAL angtol, ang; |
22518 | int , marker = 0; |
22519 | int bondflag; |
22520 | int t1ver; |
22521 | int idx, i, j, k; |
22522 | |
22523 | if (!b->quiet) { |
22524 | printf("Reconstructing mesh ...\n" ); |
22525 | } |
22526 | |
22527 | if (b->convex) { // -c option. |
22528 | // Assume the mesh is convex. Exterior tets have region attribute -1. |
22529 | assert(in->numberoftetrahedronattributes > 0); |
22530 | } else { |
22531 | // Assume the mesh is non-convex. |
22532 | nonconvex = 1; |
22533 | } |
22534 | |
22535 | // Create a map from indices to vertices. |
22536 | makeindex2pointmap(idx2verlist); |
22537 | // 'idx2verlist' has length 'in->numberofpoints + 1'. |
22538 | if (in->firstnumber == 1) { |
22539 | idx2verlist[0] = dummypoint; // Let 0th-entry be dummypoint. |
22540 | } |
22541 | |
22542 | // Allocate an array that maps each vertex to its adjacent tets. |
22543 | ver2tetarray = new tetrahedron[in->numberofpoints + 1]; |
22544 | //for (i = 0; i < in->numberofpoints + 1; i++) { |
22545 | for (i = in->firstnumber; i < in->numberofpoints + in->firstnumber; i++) { |
22546 | setpointtype(idx2verlist[i], VOLVERTEX); // initial type. |
22547 | ver2tetarray[i] = NULL; |
22548 | } |
22549 | |
22550 | // Create the tetrahedra and connect those that share a common face. |
22551 | for (i = 0; i < in->numberoftetrahedra; i++) { |
22552 | // Get the four vertices. |
22553 | idx = i * in->numberofcorners; |
22554 | for (j = 0; j < 4; j++) { |
22555 | p[j] = idx2verlist[in->tetrahedronlist[idx++]]; |
22556 | } |
22557 | // Check the orientation. |
22558 | ori = orient3d(p[0], p[1], p[2], p[3]); |
22559 | if (ori > 0.0) { |
22560 | // Swap the first two vertices. |
22561 | q[0] = p[0]; p[0] = p[1]; p[1] = q[0]; |
22562 | } else if (ori == 0.0) { |
22563 | if (!b->quiet) { |
22564 | printf("Warning: Tet #%d is degenerate.\n" , i + in->firstnumber); |
22565 | } |
22566 | } |
22567 | // Create a new tetrahedron. |
22568 | maketetrahedron(&tetloop); // tetloop.ver = 11. |
22569 | setvertices(tetloop, p[0], p[1], p[2], p[3]); |
22570 | // Set element attributes if they exist. |
22571 | for (j = 0; j < in->numberoftetrahedronattributes; j++) { |
22572 | idx = i * in->numberoftetrahedronattributes; |
22573 | attrib = in->tetrahedronattributelist[idx + j]; |
22574 | setelemattribute(tetloop.tet, j, attrib); |
22575 | } |
22576 | // If -a switch is used (with no number follows) Set a volume |
22577 | // constraint if it exists. |
22578 | if (b->varvolume) { |
22579 | if (in->tetrahedronvolumelist != (REAL *) NULL) { |
22580 | volume = in->tetrahedronvolumelist[i]; |
22581 | } else { |
22582 | volume = -1.0; |
22583 | } |
22584 | setvolumebound(tetloop.tet, volume); |
22585 | } |
22586 | // Try connecting this tet to others that share the common faces. |
22587 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
22588 | p[3] = oppo(tetloop); |
22589 | // Look for other tets having this vertex. |
22590 | idx = pointmark(p[3]); |
22591 | tptr = ver2tetarray[idx]; |
22592 | // Link the current tet to the next one in the stack. |
22593 | tetloop.tet[8 + tetloop.ver] = tptr; |
22594 | // Push the current tet onto the stack. |
22595 | ver2tetarray[idx] = encode(tetloop); |
22596 | decode(tptr, checktet); |
22597 | if (checktet.tet != NULL) { |
22598 | p[0] = org(tetloop); // a |
22599 | p[1] = dest(tetloop); // b |
22600 | p[2] = apex(tetloop); // c |
22601 | prevchktet = tetloop; |
22602 | do { |
22603 | q[0] = org(checktet); // a' |
22604 | q[1] = dest(checktet); // b' |
22605 | q[2] = apex(checktet); // c' |
22606 | // Check the three faces at 'd' in 'checktet'. |
22607 | bondflag = 0; |
22608 | for (j = 0; j < 3; j++) { |
22609 | // Go to the face [b',a',d], or [c',b',d], or [a',c',d]. |
22610 | esym(checktet, face2); |
22611 | if (face2.tet[face2.ver & 3] == NULL) { |
22612 | k = ((j + 1) % 3); |
22613 | if (q[k] == p[0]) { // b', c', a' = a |
22614 | if (q[j] == p[1]) { // a', b', c' = b |
22615 | // [#,#,d] is matched to [b,a,d]. |
22616 | esym(tetloop, face1); |
22617 | bond(face1, face2); |
22618 | bondflag++; |
22619 | } |
22620 | } |
22621 | if (q[k] == p[1]) { // b',c',a' = b |
22622 | if (q[j] == p[2]) { // a',b',c' = c |
22623 | // [#,#,d] is matched to [c,b,d]. |
22624 | enext(tetloop, face1); |
22625 | esymself(face1); |
22626 | bond(face1, face2); |
22627 | bondflag++; |
22628 | } |
22629 | } |
22630 | if (q[k] == p[2]) { // b',c',a' = c |
22631 | if (q[j] == p[0]) { // a',b',c' = a |
22632 | // [#,#,d] is matched to [a,c,d]. |
22633 | eprev(tetloop, face1); |
22634 | esymself(face1); |
22635 | bond(face1, face2); |
22636 | bondflag++; |
22637 | } |
22638 | } |
22639 | } else { |
22640 | bondflag++; |
22641 | } |
22642 | enextself(checktet); |
22643 | } // j |
22644 | // Go to the next tet in the link. |
22645 | tptr = checktet.tet[8 + checktet.ver]; |
22646 | if (bondflag == 3) { |
22647 | // All three faces at d in 'checktet' have been connected. |
22648 | // It can be removed from the link. |
22649 | prevchktet.tet[8 + prevchktet.ver] = tptr; |
22650 | } else { |
22651 | // Bakup the previous tet in the link. |
22652 | prevchktet = checktet; |
22653 | } |
22654 | decode(tptr, checktet); |
22655 | } while (checktet.tet != NULL); |
22656 | } // if (checktet.tet != NULL) |
22657 | } // for (tetloop.ver = 0; ... |
22658 | } // i |
22659 | |
22660 | // Remember a tet of the mesh. |
22661 | recenttet = tetloop; |
22662 | |
22663 | // Create hull tets, create the point-to-tet map, and clean up the |
22664 | // temporary spaces used in each tet. |
22665 | hullsize = tetrahedrons->items; |
22666 | |
22667 | tetrahedrons->traversalinit(); |
22668 | tetloop.tet = tetrahedrontraverse(); |
22669 | while (tetloop.tet != (tetrahedron *) NULL) { |
22670 | tptr = encode(tetloop); |
22671 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
22672 | if (tetloop.tet[tetloop.ver] == NULL) { |
22673 | // Create a hull tet. |
22674 | maketetrahedron(&hulltet); |
22675 | p[0] = org(tetloop); |
22676 | p[1] = dest(tetloop); |
22677 | p[2] = apex(tetloop); |
22678 | setvertices(hulltet, p[1], p[0], p[2], dummypoint); |
22679 | bond(tetloop, hulltet); |
22680 | // Try connecting this to others that share common hull edges. |
22681 | for (j = 0; j < 3; j++) { |
22682 | fsym(hulltet, face2); |
22683 | while (1) { |
22684 | if (face2.tet == NULL) break; |
22685 | esymself(face2); |
22686 | if (apex(face2) == dummypoint) break; |
22687 | fsymself(face2); |
22688 | } |
22689 | if (face2.tet != NULL) { |
22690 | // Found an adjacent hull tet. |
22691 | assert(face2.tet[face2.ver & 3] == NULL); |
22692 | esym(hulltet, face1); |
22693 | bond(face1, face2); |
22694 | } |
22695 | enextself(hulltet); |
22696 | } |
22697 | //hullsize++; |
22698 | } |
22699 | // Create the point-to-tet map. |
22700 | setpoint2tet((point) (tetloop.tet[4 + tetloop.ver]), tptr); |
22701 | // Clean the temporary used space. |
22702 | tetloop.tet[8 + tetloop.ver] = NULL; |
22703 | } |
22704 | tetloop.tet = tetrahedrontraverse(); |
22705 | } |
22706 | |
22707 | hullsize = tetrahedrons->items - hullsize; |
22708 | |
22709 | // Subfaces will be inserted into the mesh. |
22710 | if (in->trifacelist != NULL) { |
22711 | // A .face file is given. It may contain boundary faces. Insert them. |
22712 | for (i = 0; i < in->numberoftrifaces; i++) { |
22713 | // Is it a subface? |
22714 | if (in->trifacemarkerlist != NULL) { |
22715 | marker = in->trifacemarkerlist[i]; |
22716 | } else { |
22717 | // Face markers are not available. Assume all of them are subfaces. |
22718 | marker = 1; |
22719 | } |
22720 | if (marker > 0) { |
22721 | idx = i * 3; |
22722 | for (j = 0; j < 3; j++) { |
22723 | p[j] = idx2verlist[in->trifacelist[idx++]]; |
22724 | } |
22725 | // Search the subface. |
22726 | bondflag = 0; |
22727 | // Make sure all vertices are in the mesh. Avoid crash. |
22728 | for (j = 0; j < 3; j++) { |
22729 | decode(point2tet(p[j]), checktet); |
22730 | if (checktet.tet == NULL) break; |
22731 | } |
22732 | if ((j == 3) && getedge(p[0], p[1], &checktet)) { |
22733 | tetloop = checktet; |
22734 | q[2] = apex(checktet); |
22735 | while (1) { |
22736 | if (apex(tetloop) == p[2]) { |
22737 | // Found the face. |
22738 | // Check if there exist a subface already? |
22739 | tspivot(tetloop, neighsh); |
22740 | if (neighsh.sh != NULL) { |
22741 | // Found a duplicated subface. |
22742 | // This happens when the mesh was generated by other mesher. |
22743 | bondflag = 0; |
22744 | } else { |
22745 | bondflag = 1; |
22746 | } |
22747 | break; |
22748 | } |
22749 | fnextself(tetloop); |
22750 | if (apex(tetloop) == q[2]) break; |
22751 | } |
22752 | } |
22753 | if (bondflag) { |
22754 | // Create a new subface. |
22755 | makeshellface(subfaces, &subloop); |
22756 | setshvertices(subloop, p[0], p[1], p[2]); |
22757 | // Create the point-to-subface map. |
22758 | sptr = sencode(subloop); |
22759 | for (j = 0; j < 3; j++) { |
22760 | setpointtype(p[j], FACETVERTEX); // initial type. |
22761 | setpoint2sh(p[j], sptr); |
22762 | } |
22763 | if (in->trifacemarkerlist != NULL) { |
22764 | setshellmark(subloop, in->trifacemarkerlist[i]); |
22765 | } |
22766 | // Insert the subface into the mesh. |
22767 | tsbond(tetloop, subloop); |
22768 | fsymself(tetloop); |
22769 | sesymself(subloop); |
22770 | tsbond(tetloop, subloop); |
22771 | } else { |
22772 | if (!b->quiet) { |
22773 | if (neighsh.sh == NULL) { |
22774 | printf("Warning: Subface #%d [%d,%d,%d] is missing.\n" , |
22775 | i + in->firstnumber, pointmark(p[0]), pointmark(p[1]), |
22776 | pointmark(p[2])); |
22777 | } else { |
22778 | printf("Warning: Ignore a dunplicated subface #%d [%d,%d,%d].\n" , |
22779 | i + in->firstnumber, pointmark(p[0]), pointmark(p[1]), |
22780 | pointmark(p[2])); |
22781 | } |
22782 | } |
22783 | } // if (bondflag) |
22784 | } // if (marker > 0) |
22785 | } // i |
22786 | } // if (in->trifacelist) |
22787 | |
22788 | // Indentify subfaces from the mesh. |
22789 | // Create subfaces for hull faces (if they're not subface yet) and |
22790 | // interior faces which separate two different materials. |
22791 | eextras = in->numberoftetrahedronattributes; |
22792 | tetrahedrons->traversalinit(); |
22793 | tetloop.tet = tetrahedrontraverse(); |
22794 | while (tetloop.tet != (tetrahedron *) NULL) { |
22795 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
22796 | tspivot(tetloop, neighsh); |
22797 | if (neighsh.sh == NULL) { |
22798 | bondflag = 0; |
22799 | fsym(tetloop, checktet); |
22800 | if (ishulltet(checktet)) { |
22801 | // A hull face. |
22802 | if (!b->convex) { |
22803 | bondflag = 1; // Insert a hull subface. |
22804 | } |
22805 | } else { |
22806 | if (eextras > 0) { |
22807 | if (elemattribute(tetloop.tet, eextras - 1) != |
22808 | elemattribute(checktet.tet, eextras - 1)) { |
22809 | bondflag = 1; // Insert an interior interface. |
22810 | } |
22811 | } |
22812 | } |
22813 | if (bondflag) { |
22814 | // Create a new subface. |
22815 | makeshellface(subfaces, &subloop); |
22816 | p[0] = org(tetloop); |
22817 | p[1] = dest(tetloop); |
22818 | p[2] = apex(tetloop); |
22819 | setshvertices(subloop, p[0], p[1], p[2]); |
22820 | // Create the point-to-subface map. |
22821 | sptr = sencode(subloop); |
22822 | for (j = 0; j < 3; j++) { |
22823 | setpointtype(p[j], FACETVERTEX); // initial type. |
22824 | setpoint2sh(p[j], sptr); |
22825 | } |
22826 | setshellmark(subloop, 0); // Default marker. |
22827 | // Insert the subface into the mesh. |
22828 | tsbond(tetloop, subloop); |
22829 | sesymself(subloop); |
22830 | tsbond(checktet, subloop); |
22831 | } // if (bondflag) |
22832 | } // if (neighsh.sh == NULL) |
22833 | } |
22834 | tetloop.tet = tetrahedrontraverse(); |
22835 | } |
22836 | |
22837 | // Connect subfaces together. |
22838 | subfaces->traversalinit(); |
22839 | subloop.shver = 0; |
22840 | subloop.sh = shellfacetraverse(subfaces); |
22841 | while (subloop.sh != (shellface *) NULL) { |
22842 | for (i = 0; i < 3; i++) { |
22843 | spivot(subloop, neighsh); |
22844 | if (neighsh.sh == NULL) { |
22845 | // Form a subface ring by linking all subfaces at this edge. |
22846 | // Traversing all faces of the tets at this edge. |
22847 | stpivot(subloop, tetloop); |
22848 | q[2] = apex(tetloop); |
22849 | neighsh = subloop; |
22850 | while (1) { |
22851 | fnextself(tetloop); |
22852 | tspivot(tetloop, nextsh); |
22853 | if (nextsh.sh != NULL) { |
22854 | // Link neighsh <= nextsh. |
22855 | sbond1(neighsh, nextsh); |
22856 | neighsh = nextsh; |
22857 | } |
22858 | if (apex(tetloop) == q[2]) { |
22859 | assert(nextsh.sh == subloop.sh); // It's a ring. |
22860 | break; |
22861 | } |
22862 | } // while (1) |
22863 | } // if (neighsh.sh == NULL) |
22864 | senextself(subloop); |
22865 | } |
22866 | subloop.sh = shellfacetraverse(subfaces); |
22867 | } |
22868 | |
22869 | |
22870 | // Segments will be introduced. |
22871 | if (in->edgelist != NULL) { |
22872 | // A .edge file is given. It may contain boundary edges. Insert them. |
22873 | for (i = 0; i < in->numberofedges; i++) { |
22874 | // Is it a segment? |
22875 | if (in->edgemarkerlist != NULL) { |
22876 | marker = in->edgemarkerlist[i]; |
22877 | } else { |
22878 | // Edge markers are not available. Assume all of them are segments. |
22879 | marker = 1; |
22880 | } |
22881 | if (marker != 0) { |
22882 | // Insert a segment. |
22883 | idx = i * 2; |
22884 | for (j = 0; j < 2; j++) { |
22885 | p[j] = idx2verlist[in->edgelist[idx++]]; |
22886 | } |
22887 | // Make sure all vertices are in the mesh. Avoid crash. |
22888 | for (j = 0; j < 2; j++) { |
22889 | decode(point2tet(p[j]), checktet); |
22890 | if (checktet.tet == NULL) break; |
22891 | } |
22892 | // Search the segment. |
22893 | if ((j == 2) && getedge(p[0], p[1], &checktet)) { |
22894 | // Create a new subface. |
22895 | makeshellface(subsegs, &segloop); |
22896 | setshvertices(segloop, p[0], p[1], NULL); |
22897 | // Create the point-to-segment map. |
22898 | sptr = sencode(segloop); |
22899 | for (j = 0; j < 2; j++) { |
22900 | setpointtype(p[j], RIDGEVERTEX); // initial type. |
22901 | setpoint2sh(p[j], sptr); |
22902 | } |
22903 | if (in->edgemarkerlist != NULL) { |
22904 | setshellmark(segloop, marker); |
22905 | } |
22906 | // Insert the segment into the mesh. |
22907 | tetloop = checktet; |
22908 | q[2] = apex(checktet); |
22909 | subloop.sh = NULL; |
22910 | while (1) { |
22911 | tssbond1(tetloop, segloop); |
22912 | tspivot(tetloop, subloop); |
22913 | if (subloop.sh != NULL) { |
22914 | ssbond1(subloop, segloop); |
22915 | sbond1(segloop, subloop); |
22916 | } |
22917 | fnextself(tetloop); |
22918 | if (apex(tetloop) == q[2]) break; |
22919 | } // while (1) |
22920 | // Remember an adjacent tet for this segment. |
22921 | sstbond1(segloop, tetloop); |
22922 | } else { |
22923 | if (!b->quiet) { |
22924 | printf("Warning: Segment #%d [%d,%d] is missing.\n" , |
22925 | i + in->firstnumber, pointmark(p[0]), pointmark(p[1])); |
22926 | } |
22927 | } |
22928 | } // if (marker != 0) |
22929 | } // i |
22930 | } // if (in->edgelist) |
22931 | |
22932 | // Identify segments from the mesh. |
22933 | // Create segments for non-manifold edges (which are shared by more |
22934 | // than two subfaces), and for non-coplanar edges, i.e., two subfaces |
22935 | // form an dihedral angle > 'b->facet_ang_tol' (degree). |
22936 | angtol = b->facet_ang_tol / 180.0 * PI; |
22937 | subfaces->traversalinit(); |
22938 | subloop.shver = 0; |
22939 | subloop.sh = shellfacetraverse(subfaces); |
22940 | while (subloop.sh != (shellface *) NULL) { |
22941 | for (i = 0; i < 3; i++) { |
22942 | sspivot(subloop, segloop); |
22943 | if (segloop.sh == NULL) { |
22944 | // Check if this edge is a segment. |
22945 | bondflag = 0; |
22946 | // Counter the number of subfaces at this edge. |
22947 | idx = 0; |
22948 | nextsh = subloop; |
22949 | while (1) { |
22950 | idx++; |
22951 | spivotself(nextsh); |
22952 | if (nextsh.sh == subloop.sh) break; |
22953 | } |
22954 | if (idx != 2) { |
22955 | // It's a non-manifold edge. Insert a segment. |
22956 | p[0] = sorg(subloop); |
22957 | p[1] = sdest(subloop); |
22958 | bondflag = 1; |
22959 | } else { |
22960 | spivot(subloop, neighsh); |
22961 | if (shellmark(subloop) != shellmark(neighsh)) { |
22962 | // It's an interior interface. Insert a segment. |
22963 | p[0] = sorg(subloop); |
22964 | p[1] = sdest(subloop); |
22965 | bondflag = 1; |
22966 | } else { |
22967 | if (!b->convex) { |
22968 | // Check the dihedral angle formed by the two subfaces. |
22969 | p[0] = sorg(subloop); |
22970 | p[1] = sdest(subloop); |
22971 | p[2] = sapex(subloop); |
22972 | p[3] = sapex(neighsh); |
22973 | ang = facedihedral(p[0], p[1], p[2], p[3]); |
22974 | if (ang > PI) ang = 2 * PI - ang; |
22975 | if (ang < angtol) { |
22976 | bondflag = 1; |
22977 | } |
22978 | } |
22979 | } |
22980 | } |
22981 | if (bondflag) { |
22982 | // Create a new segment. |
22983 | makeshellface(subsegs, &segloop); |
22984 | setshvertices(segloop, p[0], p[1], NULL); |
22985 | // Create the point-to-segment map. |
22986 | sptr = sencode(segloop); |
22987 | for (j = 0; j < 2; j++) { |
22988 | setpointtype(p[j], RIDGEVERTEX); // initial type. |
22989 | setpoint2sh(p[j], sptr); |
22990 | } |
22991 | setshellmark(segloop, 0); // Initially has no marker. |
22992 | // Insert the subface into the mesh. |
22993 | stpivot(subloop, tetloop); |
22994 | q[2] = apex(tetloop); |
22995 | while (1) { |
22996 | tssbond1(tetloop, segloop); |
22997 | tspivot(tetloop, neighsh); |
22998 | if (neighsh.sh != NULL) { |
22999 | ssbond1(neighsh, segloop); |
23000 | } |
23001 | fnextself(tetloop); |
23002 | if (apex(tetloop) == q[2]) break; |
23003 | } // while (1) |
23004 | // Remember an adjacent tet for this segment. |
23005 | sstbond1(segloop, tetloop); |
23006 | sbond1(segloop, subloop); |
23007 | } // if (bondflag) |
23008 | } // if (neighsh.sh == NULL) |
23009 | senextself(subloop); |
23010 | } // i |
23011 | subloop.sh = shellfacetraverse(subfaces); |
23012 | } |
23013 | |
23014 | // Remember the number of input segments. |
23015 | insegments = subsegs->items; |
23016 | |
23017 | if (!b->nobisect || checkconstraints) { |
23018 | // Mark Steiner points on segments and facets. |
23019 | // - all vertices which remaining type FEACTVERTEX become |
23020 | // Steiner points in facets (= FREEFACERVERTEX). |
23021 | // - vertices on segment need to be checked. |
23022 | face* segperverlist; |
23023 | int* idx2seglist; |
23024 | face parentseg, nextseg; |
23025 | verttype vt; |
23026 | REAL area, len, l1, l2; |
23027 | int fmarker; |
23028 | |
23029 | makepoint2submap(subsegs, idx2seglist, segperverlist); |
23030 | |
23031 | points->traversalinit(); |
23032 | point ptloop = pointtraverse(); |
23033 | while (ptloop != NULL) { |
23034 | vt = pointtype(ptloop); |
23035 | if (vt == VOLVERTEX) { |
23036 | setpointtype(ptloop, FREEVOLVERTEX); |
23037 | st_volref_count++; |
23038 | } else if (vt == FACETVERTEX) { |
23039 | setpointtype(ptloop, FREEFACETVERTEX); |
23040 | st_facref_count++; |
23041 | } else if (vt == RIDGEVERTEX) { |
23042 | idx = pointmark(ptloop) - in->firstnumber; |
23043 | if ((idx2seglist[idx + 1] - idx2seglist[idx]) == 2) { |
23044 | i = idx2seglist[idx]; |
23045 | parentseg = segperverlist[i]; |
23046 | nextseg = segperverlist[i + 1]; |
23047 | sesymself(nextseg); |
23048 | p[0] = sorg(nextseg); |
23049 | p[1] = sdest(parentseg); |
23050 | // Check if three points p[0], ptloop, p[2] are (nearly) collinear. |
23051 | len = distance(p[0], p[1]); |
23052 | l1 = distance(p[0], ptloop); |
23053 | l2 = distance(ptloop, p[1]); |
23054 | if (((l1 + l2 - len) / len) < b->epsilon) { |
23055 | // They are (nearly) collinear. |
23056 | setpointtype(ptloop, FREESEGVERTEX); |
23057 | // Connect nextseg and parentseg together at ptloop. |
23058 | senextself(nextseg); |
23059 | senext2self(parentseg); |
23060 | sbond(nextseg, parentseg); |
23061 | st_segref_count++; |
23062 | } |
23063 | } |
23064 | } |
23065 | ptloop = pointtraverse(); |
23066 | } |
23067 | |
23068 | // Are there area constraints? |
23069 | if (b->quality && (in->facetconstraintlist != (REAL *) NULL)) { |
23070 | // Set maximum area constraints on facets. |
23071 | for (i = 0; i < in->numberoffacetconstraints; i++) { |
23072 | fmarker = (int) in->facetconstraintlist[i * 2]; |
23073 | area = in->facetconstraintlist[i * 2 + 1]; |
23074 | subfaces->traversalinit(); |
23075 | subloop.sh = shellfacetraverse(subfaces); |
23076 | while (subloop.sh != NULL) { |
23077 | if (shellmark(subloop) == fmarker) { |
23078 | setareabound(subloop, area); |
23079 | } |
23080 | subloop.sh = shellfacetraverse(subfaces); |
23081 | } |
23082 | } |
23083 | } |
23084 | |
23085 | // Are there length constraints? |
23086 | if (b->quality && (in->segmentconstraintlist != (REAL *) NULL)) { |
23087 | // Set maximum length constraints on segments. |
23088 | int e1, e2; |
23089 | for (i = 0; i < in->numberofsegmentconstraints; i++) { |
23090 | e1 = (int) in->segmentconstraintlist[i * 3]; |
23091 | e2 = (int) in->segmentconstraintlist[i * 3 + 1]; |
23092 | len = in->segmentconstraintlist[i * 3 + 2]; |
23093 | // Search for edge [e1, e2]. |
23094 | idx = e1 - in->firstnumber; |
23095 | for (j = idx2seglist[idx]; j < idx2seglist[idx + 1]; j++) { |
23096 | parentseg = segperverlist[j]; |
23097 | if (pointmark(sdest(parentseg)) == e2) { |
23098 | setareabound(parentseg, len); |
23099 | break; |
23100 | } |
23101 | } |
23102 | } |
23103 | } |
23104 | |
23105 | delete [] idx2seglist; |
23106 | delete [] segperverlist; |
23107 | } |
23108 | |
23109 | |
23110 | // Set global flags. |
23111 | checksubsegflag = 1; |
23112 | checksubfaceflag = 1; |
23113 | |
23114 | delete [] idx2verlist; |
23115 | delete [] ver2tetarray; |
23116 | } |
23117 | |
23118 | /////////////////////////////////////////////////////////////////////////////// |
23119 | // // |
23120 | // scoutpoint() Search a point in mesh. // |
23121 | // // |
23122 | // This function searches the point in a mesh whose domain may be not convex.// |
23123 | // In case of a convex domain, the locate() function is sufficient. // |
23124 | // // |
23125 | // If 'randflag' is used, randomly select a start searching tet. Otherwise, // |
23126 | // start searching directly from 'searchtet'. // |
23127 | // // |
23128 | /////////////////////////////////////////////////////////////////////////////// |
23129 | |
23130 | int tetgenmesh::scoutpoint(point searchpt, triface *searchtet, int randflag) |
23131 | { |
23132 | point pa, pb, pc, pd; |
23133 | enum locateresult loc = OUTSIDE; |
23134 | REAL vol, ori1, ori2 = 0, ori3 = 0, ori4 = 0; |
23135 | int t1ver; |
23136 | |
23137 | |
23138 | // Randomly select a good starting tet. |
23139 | if (randflag) { |
23140 | randomsample(searchpt, searchtet); |
23141 | } else { |
23142 | if (searchtet->tet == NULL) { |
23143 | *searchtet = recenttet; |
23144 | } |
23145 | } |
23146 | loc = locate(searchpt, searchtet); |
23147 | |
23148 | if (loc == OUTSIDE) { |
23149 | if (b->convex) { // -c option |
23150 | // The point lies outside of the convex hull. |
23151 | return (int) loc; |
23152 | } |
23153 | // Test if it lies nearly on the hull face. |
23154 | // Reuse vol, ori1. |
23155 | pa = org(*searchtet); |
23156 | pb = dest(*searchtet); |
23157 | pc = apex(*searchtet); |
23158 | vol = triarea(pa, pb, pc); |
23159 | ori1 = orient3dfast(pa, pb, pc, searchpt); |
23160 | if (fabs(ori1 / vol) < b->epsilon) { |
23161 | loc = ONFACE; // On face (or on edge, or on vertex). |
23162 | fsymself(*searchtet); |
23163 | } |
23164 | } |
23165 | |
23166 | if (loc != OUTSIDE) { |
23167 | // Round the result of location. |
23168 | pa = org(*searchtet); |
23169 | pb = dest(*searchtet); |
23170 | pc = apex(*searchtet); |
23171 | pd = oppo(*searchtet); |
23172 | vol = orient3dfast(pa, pb, pc, pd); |
23173 | ori1 = orient3dfast(pa, pb, pc, searchpt); |
23174 | ori2 = orient3dfast(pb, pa, pd, searchpt); |
23175 | ori3 = orient3dfast(pc, pb, pd, searchpt); |
23176 | ori4 = orient3dfast(pa, pc, pd, searchpt); |
23177 | if (fabs(ori1 / vol) < b->epsilon) ori1 = 0; |
23178 | if (fabs(ori2 / vol) < b->epsilon) ori2 = 0; |
23179 | if (fabs(ori3 / vol) < b->epsilon) ori3 = 0; |
23180 | if (fabs(ori4 / vol) < b->epsilon) ori4 = 0; |
23181 | } else { // if (loc == OUTSIDE) { |
23182 | // Do a brute force search for the point (with rounding). |
23183 | tetrahedrons->traversalinit(); |
23184 | searchtet->tet = tetrahedrontraverse(); |
23185 | while (searchtet->tet != NULL) { |
23186 | pa = org(*searchtet); |
23187 | pb = dest(*searchtet); |
23188 | pc = apex(*searchtet); |
23189 | pd = oppo(*searchtet); |
23190 | |
23191 | vol = orient3dfast(pa, pb, pc, pd); |
23192 | if (vol < 0) { |
23193 | ori1 = orient3dfast(pa, pb, pc, searchpt); |
23194 | if (fabs(ori1 / vol) < b->epsilon) ori1 = 0; // Rounding. |
23195 | if (ori1 <= 0) { |
23196 | ori2 = orient3dfast(pb, pa, pd, searchpt); |
23197 | if (fabs(ori2 / vol) < b->epsilon) ori2 = 0; |
23198 | if (ori2 <= 0) { |
23199 | ori3 = orient3dfast(pc, pb, pd, searchpt); |
23200 | if (fabs(ori3 / vol) < b->epsilon) ori3 = 0; |
23201 | if (ori3 <= 0) { |
23202 | ori4 = orient3dfast(pa, pc, pd, searchpt); |
23203 | if (fabs(ori4 / vol) < b->epsilon) ori4 = 0; |
23204 | if (ori4 <= 0) { |
23205 | // Found the tet. Return its location. |
23206 | break; |
23207 | } // ori4 |
23208 | } // ori3 |
23209 | } // ori2 |
23210 | } // ori1 |
23211 | } |
23212 | |
23213 | searchtet->tet = tetrahedrontraverse(); |
23214 | } // while (searchtet->tet != NULL) |
23215 | nonregularcount++; // Re-use this counter. |
23216 | } |
23217 | |
23218 | if (searchtet->tet != NULL) { |
23219 | // Return the point location. |
23220 | if (ori1 == 0) { // on face [a,b,c] |
23221 | if (ori2 == 0) { // on edge [a,b]. |
23222 | if (ori3 == 0) { // on vertex [b]. |
23223 | assert(ori4 != 0); |
23224 | enextself(*searchtet); // [b,c,a,d] |
23225 | loc = ONVERTEX; |
23226 | } else { |
23227 | if (ori4 == 0) { // on vertex [a] |
23228 | loc = ONVERTEX; // [a,b,c,d] |
23229 | } else { |
23230 | loc = ONEDGE; // [a,b,c,d] |
23231 | } |
23232 | } |
23233 | } else { // ori2 != 0 |
23234 | if (ori3 == 0) { // on edge [b,c] |
23235 | if (ori4 == 0) { // on vertex [c] |
23236 | eprevself(*searchtet); // [c,a,b,d] |
23237 | loc = ONVERTEX; |
23238 | } else { |
23239 | enextself(*searchtet); // [b,c,a,d] |
23240 | loc = ONEDGE; |
23241 | } |
23242 | } else { // ori3 != 0 |
23243 | if (ori4 == 0) { // on edge [c,a] |
23244 | eprevself(*searchtet); // [c,a,b,d] |
23245 | loc = ONEDGE; |
23246 | } else { |
23247 | loc = ONFACE; |
23248 | } |
23249 | } |
23250 | } |
23251 | } else { // ori1 != 0 |
23252 | if (ori2 == 0) { // on face [b,a,d] |
23253 | esymself(*searchtet); // [b,a,d,c] |
23254 | if (ori3 == 0) { // on edge [b,d] |
23255 | eprevself(*searchtet); // [d,b,a,c] |
23256 | if (ori4 == 0) { // on vertex [d] |
23257 | loc = ONVERTEX; |
23258 | } else { |
23259 | loc = ONEDGE; |
23260 | } |
23261 | } else { // ori3 != 0 |
23262 | if (ori4 == 0) { // on edge [a,d] |
23263 | enextself(*searchtet); // [a,d,b,c] |
23264 | loc = ONEDGE; |
23265 | } else { |
23266 | loc = ONFACE; |
23267 | } |
23268 | } |
23269 | } else { // ori2 != 0 |
23270 | if (ori3 == 0) { // on face [c,b,d] |
23271 | enextself(*searchtet); |
23272 | esymself(*searchtet); |
23273 | if (ori4 == 0) { // on edge [c,d] |
23274 | eprevself(*searchtet); |
23275 | loc = ONEDGE; |
23276 | } else { |
23277 | loc = ONFACE; |
23278 | } |
23279 | } else { |
23280 | if (ori4 == 0) { // on face [a,c,d] |
23281 | eprevself(*searchtet); |
23282 | esymself(*searchtet); |
23283 | loc = ONFACE; |
23284 | } else { // inside tet [a,b,c,d] |
23285 | loc = INTETRAHEDRON; |
23286 | } // ori4 |
23287 | } // ori3 |
23288 | } // ori2 |
23289 | } // ori1 |
23290 | } else { |
23291 | loc = OUTSIDE; |
23292 | } |
23293 | |
23294 | return (int) loc; |
23295 | } |
23296 | |
23297 | /////////////////////////////////////////////////////////////////////////////// |
23298 | // // |
23299 | // getpointmeshsize() Interpolate the mesh size at given point. // |
23300 | // // |
23301 | // 'iloc' indicates the location of the point w.r.t. 'searchtet'. The size // |
23302 | // is obtained by linear interpolation on the vertices of the tet. // |
23303 | // // |
23304 | /////////////////////////////////////////////////////////////////////////////// |
23305 | |
23306 | REAL tetgenmesh::getpointmeshsize(point searchpt, triface *searchtet, int iloc) |
23307 | { |
23308 | point *pts, pa, pb, pc; |
23309 | REAL volume, vol[4], wei[4]; |
23310 | REAL size; |
23311 | int i; |
23312 | |
23313 | size = 0; |
23314 | |
23315 | if (iloc == (int) INTETRAHEDRON) { |
23316 | pts = (point *) &(searchtet->tet[4]); |
23317 | assert(pts[3] != dummypoint); |
23318 | // Only do interpolation if all vertices have non-zero sizes. |
23319 | if ((pts[0][pointmtrindex] > 0) && (pts[1][pointmtrindex] > 0) && |
23320 | (pts[2][pointmtrindex] > 0) && (pts[3][pointmtrindex] > 0)) { |
23321 | // P1 interpolation. |
23322 | volume = orient3dfast(pts[0], pts[1], pts[2], pts[3]); |
23323 | vol[0] = orient3dfast(searchpt, pts[1], pts[2], pts[3]); |
23324 | vol[1] = orient3dfast(pts[0], searchpt, pts[2], pts[3]); |
23325 | vol[2] = orient3dfast(pts[0], pts[1], searchpt, pts[3]); |
23326 | vol[3] = orient3dfast(pts[0], pts[1], pts[2], searchpt); |
23327 | for (i = 0; i < 4; i++) { |
23328 | wei[i] = fabs(vol[i] / volume); |
23329 | size += (wei[i] * pts[i][pointmtrindex]); |
23330 | } |
23331 | } |
23332 | } else if (iloc == (int) ONFACE) { |
23333 | pa = org(*searchtet); |
23334 | pb = dest(*searchtet); |
23335 | pc = apex(*searchtet); |
23336 | if ((pa[pointmtrindex] > 0) && (pb[pointmtrindex] > 0) && |
23337 | (pc[pointmtrindex] > 0)) { |
23338 | volume = triarea(pa, pb, pc); |
23339 | vol[0] = triarea(searchpt, pb, pc); |
23340 | vol[1] = triarea(pa, searchpt, pc); |
23341 | vol[2] = triarea(pa, pb, searchpt); |
23342 | size = (vol[0] / volume) * pa[pointmtrindex] |
23343 | + (vol[1] / volume) * pb[pointmtrindex] |
23344 | + (vol[2] / volume) * pc[pointmtrindex]; |
23345 | } |
23346 | } else if (iloc == (int) ONEDGE) { |
23347 | pa = org(*searchtet); |
23348 | pb = dest(*searchtet); |
23349 | if ((pa[pointmtrindex] > 0) && (pb[pointmtrindex] > 0)) { |
23350 | volume = distance(pa, pb); |
23351 | vol[0] = distance(searchpt, pb); |
23352 | vol[1] = distance(pa, searchpt); |
23353 | size = (vol[0] / volume) * pa[pointmtrindex] |
23354 | + (vol[1] / volume) * pb[pointmtrindex]; |
23355 | } |
23356 | } else if (iloc == (int) ONVERTEX) { |
23357 | pa = org(*searchtet); |
23358 | if (pa[pointmtrindex] > 0) { |
23359 | size = pa[pointmtrindex]; |
23360 | } |
23361 | } |
23362 | |
23363 | return size; |
23364 | } |
23365 | |
23366 | /////////////////////////////////////////////////////////////////////////////// |
23367 | // // |
23368 | // interpolatemeshsize() Interpolate the mesh size from a background mesh // |
23369 | // (source) to the current mesh (destination). // |
23370 | // // |
23371 | /////////////////////////////////////////////////////////////////////////////// |
23372 | |
23373 | void tetgenmesh::interpolatemeshsize() |
23374 | { |
23375 | triface searchtet; |
23376 | point ploop; |
23377 | REAL minval = 0.0, maxval = 0.0; |
23378 | int iloc; |
23379 | int count; |
23380 | |
23381 | if (!b->quiet) { |
23382 | printf("Interpolating mesh size ...\n" ); |
23383 | } |
23384 | |
23385 | long bak_nonregularcount = nonregularcount; |
23386 | nonregularcount = 0l; // Count the number of (slow) global searches. |
23387 | long baksmaples = bgm->samples; |
23388 | bgm->samples = 3l; |
23389 | count = 0; // Count the number of interpolated points. |
23390 | |
23391 | // Interpolate sizes for all points in the current mesh. |
23392 | points->traversalinit(); |
23393 | ploop = pointtraverse(); |
23394 | while (ploop != NULL) { |
23395 | // Search a tet in bgm which containing this point. |
23396 | searchtet.tet = NULL; |
23397 | iloc = bgm->scoutpoint(ploop, &searchtet, 1); // randflag = 1 |
23398 | if (iloc != (int) OUTSIDE) { |
23399 | // Interpolate the mesh size. |
23400 | ploop[pointmtrindex] = bgm->getpointmeshsize(ploop, &searchtet, iloc); |
23401 | setpoint2bgmtet(ploop, bgm->encode(searchtet)); |
23402 | if (count == 0) { |
23403 | // This is the first interpolated point. |
23404 | minval = maxval = ploop[pointmtrindex]; |
23405 | } else { |
23406 | if (ploop[pointmtrindex] < minval) { |
23407 | minval = ploop[pointmtrindex]; |
23408 | } |
23409 | if (ploop[pointmtrindex] > maxval) { |
23410 | maxval = ploop[pointmtrindex]; |
23411 | } |
23412 | } |
23413 | count++; |
23414 | } else { |
23415 | if (!b->quiet) { |
23416 | printf("Warnning: Failed to locate point %d in source mesh.\n" , |
23417 | pointmark(ploop)); |
23418 | } |
23419 | } |
23420 | ploop = pointtraverse(); |
23421 | } |
23422 | |
23423 | if (b->verbose) { |
23424 | printf(" Interoplated %d points.\n" , count); |
23425 | if (nonregularcount > 0l) { |
23426 | printf(" Performed %ld brute-force searches.\n" , nonregularcount); |
23427 | } |
23428 | printf(" Size rangle [%.17g, %.17g].\n" , minval, maxval); |
23429 | } |
23430 | |
23431 | bgm->samples = baksmaples; |
23432 | nonregularcount = bak_nonregularcount; |
23433 | } |
23434 | |
23435 | /////////////////////////////////////////////////////////////////////////////// |
23436 | // // |
23437 | // insertconstrainedpoints() Insert a list of points into the mesh. // |
23438 | // // |
23439 | // Assumption: The bounding box of the insert point set should be no larger // |
23440 | // than the bounding box of the mesh. (Required by point sorting). // |
23441 | // // |
23442 | /////////////////////////////////////////////////////////////////////////////// |
23443 | |
23444 | void tetgenmesh::insertconstrainedpoints(point *insertarray, int arylen, |
23445 | int rejflag) |
23446 | { |
23447 | triface searchtet, spintet; |
23448 | face splitsh; |
23449 | face splitseg; |
23450 | insertvertexflags ivf; |
23451 | flipconstraints fc; |
23452 | int randflag = 0; |
23453 | int t1ver; |
23454 | int i; |
23455 | |
23456 | if (b->verbose) { |
23457 | printf(" Inserting %d constrained points\n" , arylen); |
23458 | } |
23459 | |
23460 | if (b->no_sort) { // -b/1 option. |
23461 | if (b->verbose) { |
23462 | printf(" Using the input order.\n" ); |
23463 | } |
23464 | } else { |
23465 | if (b->verbose) { |
23466 | printf(" Permuting vertices.\n" ); |
23467 | } |
23468 | point swappoint; |
23469 | int randindex; |
23470 | srand(arylen); |
23471 | for (i = 0; i < arylen; i++) { |
23472 | randindex = rand() % (i + 1); |
23473 | swappoint = insertarray[i]; |
23474 | insertarray[i] = insertarray[randindex]; |
23475 | insertarray[randindex] = swappoint; |
23476 | } |
23477 | if (b->brio_hilbert) { // -b1 option |
23478 | if (b->verbose) { |
23479 | printf(" Sorting vertices.\n" ); |
23480 | } |
23481 | hilbert_init(in->mesh_dim); |
23482 | int ngroup = 0; |
23483 | brio_multiscale_sort(insertarray, arylen, b->brio_threshold, |
23484 | b->brio_ratio, &ngroup); |
23485 | } else { // -b0 option. |
23486 | randflag = 1; |
23487 | } // if (!b->brio_hilbert) |
23488 | } // if (!b->no_sort) |
23489 | |
23490 | long bak_nonregularcount = nonregularcount; |
23491 | nonregularcount = 0l; |
23492 | long baksmaples = samples; |
23493 | samples = 3l; // Use at least 3 samples. Updated in randomsample(). |
23494 | |
23495 | long bak_seg_count = st_segref_count; |
23496 | long bak_fac_count = st_facref_count; |
23497 | long bak_vol_count = st_volref_count; |
23498 | |
23499 | // Initialize the insertion parameters. |
23500 | if (b->incrflip) { // -l option |
23501 | // Use incremental flip algorithm. |
23502 | ivf.bowywat = 0; |
23503 | ivf.lawson = 1; |
23504 | ivf.validflag = 0; // No need to validate the cavity. |
23505 | fc.enqflag = 2; |
23506 | } else { |
23507 | // Use Bowyer-Watson algorithm. |
23508 | ivf.bowywat = 1; |
23509 | ivf.lawson = 0; |
23510 | ivf.validflag = 1; // Validate the B-W cavity. |
23511 | } |
23512 | ivf.rejflag = rejflag; |
23513 | ivf.chkencflag = 0; |
23514 | ivf.sloc = (int) INSTAR; |
23515 | ivf.sbowywat = 3; |
23516 | ivf.splitbdflag = 1; |
23517 | ivf.respectbdflag = 1; |
23518 | ivf.assignmeshsize = b->metric; |
23519 | |
23520 | encseglist = new arraypool(sizeof(face), 8); |
23521 | encshlist = new arraypool(sizeof(badface), 8); |
23522 | |
23523 | // Insert the points. |
23524 | for (i = 0; i < arylen; i++) { |
23525 | // Find the location of the inserted point. |
23526 | // Do not use 'recenttet', since the mesh may be non-convex. |
23527 | searchtet.tet = NULL; |
23528 | ivf.iloc = scoutpoint(insertarray[i], &searchtet, randflag); |
23529 | |
23530 | // Decide the right type for this point. |
23531 | setpointtype(insertarray[i], FREEVOLVERTEX); // Default. |
23532 | splitsh.sh = NULL; |
23533 | splitseg.sh = NULL; |
23534 | if (ivf.iloc == (int) ONEDGE) { |
23535 | if (issubseg(searchtet)) { |
23536 | tsspivot1(searchtet, splitseg); |
23537 | setpointtype(insertarray[i], FREESEGVERTEX); |
23538 | //ivf.rejflag = 0; |
23539 | } else { |
23540 | // Check if it is a subface edge. |
23541 | spintet = searchtet; |
23542 | while (1) { |
23543 | if (issubface(spintet)) { |
23544 | tspivot(spintet, splitsh); |
23545 | setpointtype(insertarray[i], FREEFACETVERTEX); |
23546 | //ivf.rejflag |= 1; |
23547 | break; |
23548 | } |
23549 | fnextself(spintet); |
23550 | if (spintet.tet == searchtet.tet) break; |
23551 | } |
23552 | } |
23553 | } else if (ivf.iloc == (int) ONFACE) { |
23554 | if (issubface(searchtet)) { |
23555 | tspivot(searchtet, splitsh); |
23556 | setpointtype(insertarray[i], FREEFACETVERTEX); |
23557 | //ivf.rejflag |= 1; |
23558 | } |
23559 | } |
23560 | |
23561 | // Now insert the point. |
23562 | if (insertpoint(insertarray[i], &searchtet, &splitsh, &splitseg, &ivf)) { |
23563 | if (flipstack != NULL) { |
23564 | // There are queued faces. Use flips to recover Delaunayness. |
23565 | lawsonflip3d(&fc); |
23566 | // There may be unflippable edges. Ignore them. |
23567 | unflipqueue->restart(); |
23568 | } |
23569 | // Update the Steiner counters. |
23570 | if (pointtype(insertarray[i]) == FREESEGVERTEX) { |
23571 | st_segref_count++; |
23572 | } else if (pointtype(insertarray[i]) == FREEFACETVERTEX) { |
23573 | st_facref_count++; |
23574 | } else { |
23575 | st_volref_count++; |
23576 | } |
23577 | } else { |
23578 | // Point is not inserted. |
23579 | //pointdealloc(insertarray[i]); |
23580 | setpointtype(insertarray[i], UNUSEDVERTEX); |
23581 | unuverts++; |
23582 | encseglist->restart(); |
23583 | encshlist->restart(); |
23584 | } |
23585 | } // i |
23586 | |
23587 | delete encseglist; |
23588 | delete encshlist; |
23589 | |
23590 | if (b->verbose) { |
23591 | printf(" Inserted %ld (%ld, %ld, %ld) vertices.\n" , |
23592 | st_segref_count + st_facref_count + st_volref_count - |
23593 | (bak_seg_count + bak_fac_count + bak_vol_count), |
23594 | st_segref_count - bak_seg_count, st_facref_count - bak_fac_count, |
23595 | st_volref_count - bak_vol_count); |
23596 | if (nonregularcount > 0l) { |
23597 | printf(" Performed %ld brute-force searches.\n" , nonregularcount); |
23598 | } |
23599 | } |
23600 | |
23601 | nonregularcount = bak_nonregularcount; |
23602 | samples = baksmaples; |
23603 | } |
23604 | |
23605 | void tetgenmesh::insertconstrainedpoints(tetgenio *addio) |
23606 | { |
23607 | point *insertarray, newpt; |
23608 | REAL x, y, z, w; |
23609 | int index, attribindex, mtrindex; |
23610 | int arylen, i, j; |
23611 | |
23612 | if (!b->quiet) { |
23613 | printf("Inserting constrained points ...\n" ); |
23614 | } |
23615 | |
23616 | insertarray = new point[addio->numberofpoints]; |
23617 | arylen = 0; |
23618 | index = 0; |
23619 | attribindex = 0; |
23620 | mtrindex = 0; |
23621 | |
23622 | for (i = 0; i < addio->numberofpoints; i++) { |
23623 | x = addio->pointlist[index++]; |
23624 | y = addio->pointlist[index++]; |
23625 | z = addio->pointlist[index++]; |
23626 | // Test if this point lies inside the bounding box. |
23627 | if ((x < xmin) || (x > xmax) || (y < ymin) || (y > ymax) || |
23628 | (z < zmin) || (z > zmax)) { |
23629 | if (b->verbose) { |
23630 | printf("Warning: Point #%d lies outside the bounding box. Ignored\n" , |
23631 | i + in->firstnumber); |
23632 | } |
23633 | continue; |
23634 | } |
23635 | makepoint(&newpt, UNUSEDVERTEX); |
23636 | newpt[0] = x; |
23637 | newpt[1] = y; |
23638 | newpt[2] = z; |
23639 | // Read the point attributes. (Including point weights.) |
23640 | for (j = 0; j < addio->numberofpointattributes; j++) { |
23641 | newpt[3 + j] = addio->pointattributelist[attribindex++]; |
23642 | } |
23643 | // Read the point metric tensor. |
23644 | for (j = 0; j < addio->numberofpointmtrs; j++) { |
23645 | newpt[pointmtrindex + j] = addio->pointmtrlist[mtrindex++]; |
23646 | } |
23647 | if (b->weighted) { // -w option |
23648 | if (addio->numberofpointattributes > 0) { |
23649 | // The first point attribute is its weight. |
23650 | w = newpt[3]; |
23651 | } else { |
23652 | // No given weight available. Default choose the maximum |
23653 | // absolute value among its coordinates. |
23654 | w = fabs(x); |
23655 | if (w < fabs(y)) w = fabs(y); |
23656 | if (w < fabs(z)) w = fabs(z); |
23657 | } |
23658 | if (b->weighted_param == 0) { |
23659 | newpt[3] = x * x + y * y + z * z - w; // Weighted DT. |
23660 | } else { // -w1 option |
23661 | newpt[3] = w; // Regular tetrahedralization. |
23662 | } |
23663 | } |
23664 | insertarray[arylen] = newpt; |
23665 | arylen++; |
23666 | } // i |
23667 | |
23668 | // Insert the points. |
23669 | int rejflag = 0; // Do not check encroachment. |
23670 | if (b->metric) { // -m option. |
23671 | rejflag |= 4; // Reject it if it lies in some protecting balls. |
23672 | } |
23673 | |
23674 | insertconstrainedpoints(insertarray, arylen, rejflag); |
23675 | |
23676 | delete [] insertarray; |
23677 | } |
23678 | |
23679 | /////////////////////////////////////////////////////////////////////////////// |
23680 | // // |
23681 | // meshcoarsening() Deleting (selected) vertices. // |
23682 | // // |
23683 | /////////////////////////////////////////////////////////////////////////////// |
23684 | |
23685 | void tetgenmesh::collectremovepoints(arraypool *remptlist) |
23686 | { |
23687 | point ptloop, *parypt; |
23688 | verttype vt; |
23689 | |
23690 | // If a mesh sizing function is given. Collect vertices whose mesh size |
23691 | // is greater than its smallest edge length. |
23692 | if (b->metric) { // -m option |
23693 | REAL len, smlen; |
23694 | int i; |
23695 | points->traversalinit(); |
23696 | ptloop = pointtraverse(); |
23697 | while (ptloop != NULL) { |
23698 | if (ptloop[pointmtrindex] > 0) { |
23699 | // Get the smallest edge length at this vertex. |
23700 | getvertexstar(1, ptloop, cavetetlist, cavetetvertlist, NULL); |
23701 | parypt = (point *) fastlookup(cavetetvertlist, 0); |
23702 | smlen = distance(ptloop, *parypt); |
23703 | for (i = 1; i < cavetetvertlist->objects; i++) { |
23704 | parypt = (point *) fastlookup(cavetetvertlist, i); |
23705 | len = distance(ptloop, *parypt); |
23706 | if (len < smlen) { |
23707 | smlen = len; |
23708 | } |
23709 | } |
23710 | cavetetvertlist->restart(); |
23711 | cavetetlist->restart(); |
23712 | if (smlen < ptloop[pointmtrindex]) { |
23713 | pinfect(ptloop); |
23714 | remptlist->newindex((void **) &parypt); |
23715 | *parypt = ptloop; |
23716 | } |
23717 | } |
23718 | ptloop = pointtraverse(); |
23719 | } |
23720 | if (b->verbose > 1) { |
23721 | printf(" Coarsen %ld oversized points.\n" , remptlist->objects); |
23722 | } |
23723 | } |
23724 | |
23725 | // If 'in->pointmarkerlist' exists, Collect vertices with markers '-1'. |
23726 | if (in->pointmarkerlist != NULL) { |
23727 | long bak_count = remptlist->objects; |
23728 | points->traversalinit(); |
23729 | ptloop = pointtraverse(); |
23730 | int index = 0; |
23731 | while (ptloop != NULL) { |
23732 | if (index < in->numberofpoints) { |
23733 | if (in->pointmarkerlist[index] == -1) { |
23734 | pinfect(ptloop); |
23735 | remptlist->newindex((void **) &parypt); |
23736 | *parypt = ptloop; |
23737 | } |
23738 | } else { |
23739 | // Remaining are not input points. Stop here. |
23740 | break; |
23741 | } |
23742 | index++; |
23743 | ptloop = pointtraverse(); |
23744 | } |
23745 | if (b->verbose > 1) { |
23746 | printf(" Coarsen %ld marked points.\n" , remptlist->objects - bak_count); |
23747 | } |
23748 | } // if (in->pointmarkerlist != NULL) |
23749 | |
23750 | if (b->coarsen_param > 0) { // -R1/# |
23751 | // Remove a coarsen_percent number of interior points. |
23752 | assert((b->coarsen_percent > 0) && (b->coarsen_percent <= 1.0)); |
23753 | if (b->verbose > 1) { |
23754 | printf(" Coarsen %g percent of interior points.\n" , |
23755 | b->coarsen_percent * 100.0); |
23756 | } |
23757 | arraypool *intptlist = new arraypool(sizeof(point *), 10); |
23758 | // Count the total number of interior points. |
23759 | points->traversalinit(); |
23760 | ptloop = pointtraverse(); |
23761 | while (ptloop != NULL) { |
23762 | vt = pointtype(ptloop); |
23763 | if ((vt == VOLVERTEX) || (vt == FREEVOLVERTEX) || |
23764 | (vt == FREEFACETVERTEX) || (vt == FREESEGVERTEX)) { |
23765 | intptlist->newindex((void **) &parypt); |
23766 | *parypt = ptloop; |
23767 | } |
23768 | ptloop = pointtraverse(); |
23769 | } |
23770 | if (intptlist->objects > 0l) { |
23771 | // Sort the list of points randomly. |
23772 | point *parypt_i, swappt; |
23773 | int randindex, i; |
23774 | srand(intptlist->objects); |
23775 | for (i = 0; i < intptlist->objects; i++) { |
23776 | randindex = rand() % (i + 1); // randomnation(i + 1); |
23777 | parypt_i = (point *) fastlookup(intptlist, i); |
23778 | parypt = (point *) fastlookup(intptlist, randindex); |
23779 | // Swap this two points. |
23780 | swappt = *parypt_i; |
23781 | *parypt_i = *parypt; |
23782 | *parypt = swappt; |
23783 | } |
23784 | int remcount = (int) ((REAL) intptlist->objects * b->coarsen_percent); |
23785 | // Return the first remcount points. |
23786 | for (i = 0; i < remcount; i++) { |
23787 | parypt_i = (point *) fastlookup(intptlist, i); |
23788 | if (!pinfected(*parypt_i)) { |
23789 | pinfected(*parypt_i); |
23790 | remptlist->newindex((void **) &parypt); |
23791 | *parypt = *parypt_i; |
23792 | } |
23793 | } |
23794 | } |
23795 | delete intptlist; |
23796 | } |
23797 | |
23798 | // Unmark all collected vertices. |
23799 | for (int i = 0; i < remptlist->objects; i++) { |
23800 | parypt = (point *) fastlookup(remptlist, i); |
23801 | puninfect(*parypt); |
23802 | } |
23803 | } |
23804 | |
23805 | void tetgenmesh::meshcoarsening() |
23806 | { |
23807 | arraypool *remptlist; |
23808 | |
23809 | if (!b->quiet) { |
23810 | printf("Mesh coarsening ...\n" ); |
23811 | } |
23812 | |
23813 | // Collect the set of points to be removed |
23814 | remptlist = new arraypool(sizeof(point *), 10); |
23815 | collectremovepoints(remptlist); |
23816 | |
23817 | if (remptlist->objects == 0l) { |
23818 | delete remptlist; |
23819 | return; |
23820 | } |
23821 | |
23822 | if (b->verbose) { |
23823 | if (remptlist->objects > 0l) { |
23824 | printf(" Removing %ld points...\n" , remptlist->objects); |
23825 | } |
23826 | } |
23827 | |
23828 | point *parypt, *plastpt; |
23829 | long ms = remptlist->objects; |
23830 | int nit = 0; |
23831 | int bak_fliplinklevel = b->fliplinklevel; |
23832 | b->fliplinklevel = -1; |
23833 | autofliplinklevel = 1; // Init value. |
23834 | int i; |
23835 | |
23836 | while (1) { |
23837 | |
23838 | if (b->verbose > 1) { |
23839 | printf(" Removing points [%s level = %2d] #: %ld.\n" , |
23840 | (b->fliplinklevel > 0) ? "fixed" : "auto" , |
23841 | (b->fliplinklevel > 0) ? b->fliplinklevel : autofliplinklevel, |
23842 | remptlist->objects); |
23843 | } |
23844 | |
23845 | // Remove the list of points. |
23846 | for (i = 0; i < remptlist->objects; i++) { |
23847 | parypt = (point *) fastlookup(remptlist, i); |
23848 | assert(pointtype(*parypt) != UNUSEDVERTEX); |
23849 | if (removevertexbyflips(*parypt)) { |
23850 | // Move the last entry to the current place. |
23851 | plastpt = (point *) fastlookup(remptlist, remptlist->objects - 1); |
23852 | *parypt = *plastpt; |
23853 | remptlist->objects--; |
23854 | i--; |
23855 | } |
23856 | } |
23857 | |
23858 | if (remptlist->objects > 0l) { |
23859 | if (b->fliplinklevel >= 0) { |
23860 | break; // We have tried all levels. |
23861 | } |
23862 | if (remptlist->objects == ms) { |
23863 | nit++; |
23864 | if (nit >= 3) { |
23865 | // Do the last round with unbounded flip link level. |
23866 | b->fliplinklevel = 100000; |
23867 | } |
23868 | } else { |
23869 | ms = remptlist->objects; |
23870 | if (nit > 0) { |
23871 | nit--; |
23872 | } |
23873 | } |
23874 | autofliplinklevel+=b->fliplinklevelinc; |
23875 | } else { |
23876 | // All points are removed. |
23877 | break; |
23878 | } |
23879 | } // while (1) |
23880 | |
23881 | if (remptlist->objects > 0l) { |
23882 | if (b->verbose) { |
23883 | printf(" %ld points are not removed !\n" , remptlist->objects); |
23884 | } |
23885 | } |
23886 | |
23887 | b->fliplinklevel = bak_fliplinklevel; |
23888 | delete remptlist; |
23889 | } |
23890 | |
23891 | //// //// |
23892 | //// //// |
23893 | //// reconstruct_cxx ////////////////////////////////////////////////////////// |
23894 | |
23895 | //// refine_cxx /////////////////////////////////////////////////////////////// |
23896 | //// //// |
23897 | //// //// |
23898 | |
23899 | /////////////////////////////////////////////////////////////////////////////// |
23900 | // // |
23901 | // makefacetverticesmap() Create a map from facet to its vertices. // |
23902 | // // |
23903 | // All facets will be indexed (starting from 0). The map is saved in two // |
23904 | // global arrays: 'idx2facetlist' and 'facetverticeslist'. // |
23905 | // // |
23906 | /////////////////////////////////////////////////////////////////////////////// |
23907 | |
23908 | void tetgenmesh::makefacetverticesmap() |
23909 | { |
23910 | arraypool *facetvertexlist, *vertlist, **paryvertlist; |
23911 | face subloop, neighsh, *parysh, *parysh1; |
23912 | point pa, *ppt, *parypt; |
23913 | verttype vt; |
23914 | int facetindex, totalvertices; |
23915 | int i, j, k; |
23916 | |
23917 | if (b->verbose) { |
23918 | printf(" Creating the facet vertices map.\n" ); |
23919 | } |
23920 | |
23921 | facetvertexlist = new arraypool(sizeof(arraypool *), 10); |
23922 | facetindex = totalvertices = 0; |
23923 | |
23924 | subfaces->traversalinit(); |
23925 | subloop.sh = shellfacetraverse(subfaces); |
23926 | while (subloop.sh != NULL) { |
23927 | if (!sinfected(subloop)) { |
23928 | // A new facet. Create its vertices list. |
23929 | vertlist = new arraypool(sizeof(point *), 8); |
23930 | ppt = (point *) &(subloop.sh[3]); |
23931 | for (k = 0; k < 3; k++) { |
23932 | vt = pointtype(ppt[k]); |
23933 | if ((vt != FREESEGVERTEX) && (vt != FREEFACETVERTEX)) { |
23934 | pinfect(ppt[k]); |
23935 | vertlist->newindex((void **) &parypt); |
23936 | *parypt = ppt[k]; |
23937 | } |
23938 | } |
23939 | sinfect(subloop); |
23940 | caveshlist->newindex((void **) &parysh); |
23941 | *parysh = subloop; |
23942 | for (i = 0; i < caveshlist->objects; i++) { |
23943 | parysh = (face *) fastlookup(caveshlist, i); |
23944 | setfacetindex(*parysh, facetindex); |
23945 | for (j = 0; j < 3; j++) { |
23946 | if (!isshsubseg(*parysh)) { |
23947 | spivot(*parysh, neighsh); |
23948 | assert(neighsh.sh != NULL); |
23949 | if (!sinfected(neighsh)) { |
23950 | pa = sapex(neighsh); |
23951 | if (!pinfected(pa)) { |
23952 | vt = pointtype(pa); |
23953 | if ((vt != FREESEGVERTEX) && (vt != FREEFACETVERTEX)) { |
23954 | pinfect(pa); |
23955 | vertlist->newindex((void **) &parypt); |
23956 | *parypt = pa; |
23957 | } |
23958 | } |
23959 | sinfect(neighsh); |
23960 | caveshlist->newindex((void **) &parysh1); |
23961 | *parysh1 = neighsh; |
23962 | } |
23963 | } |
23964 | senextself(*parysh); |
23965 | } |
23966 | } // i |
23967 | totalvertices += (int) vertlist->objects; |
23968 | // Uninfect facet vertices. |
23969 | for (k = 0; k < vertlist->objects; k++) { |
23970 | parypt = (point *) fastlookup(vertlist, k); |
23971 | puninfect(*parypt); |
23972 | } |
23973 | caveshlist->restart(); |
23974 | // Save this vertex list. |
23975 | facetvertexlist->newindex((void **) &paryvertlist); |
23976 | *paryvertlist = vertlist; |
23977 | facetindex++; |
23978 | } |
23979 | subloop.sh = shellfacetraverse(subfaces); |
23980 | } |
23981 | |
23982 | // All subfaces are infected. Uninfect them. |
23983 | subfaces->traversalinit(); |
23984 | subloop.sh = shellfacetraverse(subfaces); |
23985 | while (subloop.sh != NULL) { |
23986 | assert(sinfected(subloop)); |
23987 | suninfect(subloop); |
23988 | subloop.sh = shellfacetraverse(subfaces); |
23989 | } |
23990 | |
23991 | if (b->verbose) { |
23992 | printf(" Found %ld facets.\n" , facetvertexlist->objects); |
23993 | } |
23994 | |
23995 | idx2facetlist = new int[facetindex + 1]; |
23996 | facetverticeslist = new point[totalvertices]; |
23997 | |
23998 | totalworkmemory += ((facetindex + 1) * sizeof(int) + |
23999 | totalvertices * sizeof(point *)); |
24000 | |
24001 | idx2facetlist[0] = 0; |
24002 | for (i = 0, k = 0; i < facetindex; i++) { |
24003 | paryvertlist = (arraypool **) fastlookup(facetvertexlist, i); |
24004 | vertlist = *paryvertlist; |
24005 | idx2facetlist[i + 1] = (idx2facetlist[i] + (int) vertlist->objects); |
24006 | for (j = 0; j < vertlist->objects; j++) { |
24007 | parypt = (point *) fastlookup(vertlist, j); |
24008 | facetverticeslist[k] = *parypt; |
24009 | k++; |
24010 | } |
24011 | } |
24012 | assert(k == totalvertices); |
24013 | |
24014 | // Free the lists. |
24015 | for (i = 0; i < facetvertexlist->objects; i++) { |
24016 | paryvertlist = (arraypool **) fastlookup(facetvertexlist, i); |
24017 | vertlist = *paryvertlist; |
24018 | delete vertlist; |
24019 | } |
24020 | delete facetvertexlist; |
24021 | } |
24022 | |
24023 | /////////////////////////////////////////////////////////////////////////////// |
24024 | // // |
24025 | // Check whether two segments, or a segment and a facet, or two facets are // |
24026 | // adjacent to each other. // |
24027 | // // |
24028 | /////////////////////////////////////////////////////////////////////////////// |
24029 | |
24030 | int tetgenmesh::segsegadjacent(face *seg1, face *seg2) |
24031 | { |
24032 | int segidx1 = getfacetindex(*seg1); |
24033 | int segidx2 = getfacetindex(*seg2); |
24034 | |
24035 | if (segidx1 == segidx2) return 0; |
24036 | |
24037 | point pa1 = segmentendpointslist[segidx1 * 2]; |
24038 | point pb1 = segmentendpointslist[segidx1 * 2 + 1]; |
24039 | point pa2 = segmentendpointslist[segidx2 * 2]; |
24040 | point pb2 = segmentendpointslist[segidx2 * 2 + 1]; |
24041 | |
24042 | if ((pa1 == pa2) || (pa1 == pb2) || (pb1 == pa2) || (pb1 == pb2)) { |
24043 | return 1; |
24044 | } |
24045 | return 0; |
24046 | } |
24047 | |
24048 | int tetgenmesh::segfacetadjacent(face *subseg, face *subsh) |
24049 | { |
24050 | int segidx = getfacetindex(*subseg); |
24051 | point pa = segmentendpointslist[segidx * 2]; |
24052 | point pb = segmentendpointslist[segidx * 2 + 1]; |
24053 | |
24054 | pinfect(pa); |
24055 | pinfect(pb); |
24056 | |
24057 | int fidx = getfacetindex(*subsh); |
24058 | int count = 0, i; |
24059 | |
24060 | for (i = idx2facetlist[fidx]; i < idx2facetlist[fidx+1]; i++) { |
24061 | if (pinfected(facetverticeslist[i])) count++; |
24062 | } |
24063 | |
24064 | puninfect(pa); |
24065 | puninfect(pb); |
24066 | |
24067 | return count == 1; |
24068 | } |
24069 | |
24070 | int tetgenmesh::facetfacetadjacent(face *subsh1, face *subsh2) |
24071 | { |
24072 | int count = 0, i; |
24073 | |
24074 | int fidx1 = getfacetindex(*subsh1); |
24075 | int fidx2 = getfacetindex(*subsh2); |
24076 | |
24077 | if (fidx1 == fidx2) return 0; |
24078 | |
24079 | for (i = idx2facetlist[fidx1]; i < idx2facetlist[fidx1+1]; i++) { |
24080 | pinfect(facetverticeslist[i]); |
24081 | } |
24082 | |
24083 | for (i = idx2facetlist[fidx2]; i < idx2facetlist[fidx2+1]; i++) { |
24084 | if (pinfected(facetverticeslist[i])) count++; |
24085 | } |
24086 | |
24087 | // Uninfect the vertices. |
24088 | for (i = idx2facetlist[fidx1]; i < idx2facetlist[fidx1+1]; i++) { |
24089 | puninfect(facetverticeslist[i]); |
24090 | } |
24091 | |
24092 | return count > 0; |
24093 | } |
24094 | |
24095 | /////////////////////////////////////////////////////////////////////////////// |
24096 | // // |
24097 | // checkseg4encroach() Check if an edge is encroached upon by a point. // |
24098 | // // |
24099 | /////////////////////////////////////////////////////////////////////////////// |
24100 | |
24101 | int tetgenmesh::checkseg4encroach(point pa, point pb, point checkpt) |
24102 | { |
24103 | // Check if the point lies inside the diametrical sphere of this seg. |
24104 | REAL v1[3], v2[3]; |
24105 | |
24106 | v1[0] = pa[0] - checkpt[0]; |
24107 | v1[1] = pa[1] - checkpt[1]; |
24108 | v1[2] = pa[2] - checkpt[2]; |
24109 | v2[0] = pb[0] - checkpt[0]; |
24110 | v2[1] = pb[1] - checkpt[1]; |
24111 | v2[2] = pb[2] - checkpt[2]; |
24112 | |
24113 | if (dot(v1, v2) < 0) { |
24114 | // Inside. |
24115 | if (b->metric) { // -m option. |
24116 | if ((pa[pointmtrindex] > 0) && (pb[pointmtrindex] > 0)) { |
24117 | // The projection of 'checkpt' lies inside the segment [a,b]. |
24118 | REAL prjpt[3], u, v, t; |
24119 | projpt2edge(checkpt, pa, pb, prjpt); |
24120 | // Interoplate the mesh size at the location 'prjpt'. |
24121 | u = distance(pa, pb); |
24122 | v = distance(pa, prjpt); |
24123 | t = v / u; |
24124 | // 'u' is the mesh size at 'prjpt' |
24125 | u = pa[pointmtrindex] + t * (pb[pointmtrindex] - pa[pointmtrindex]); |
24126 | v = distance(checkpt, prjpt); |
24127 | if (v < u) { |
24128 | return 1; // Encroached prot-ball! |
24129 | } |
24130 | } else { |
24131 | return 1; // NO protecting ball. Encroached. |
24132 | } |
24133 | } else { |
24134 | return 1; // Inside! Encroached. |
24135 | } |
24136 | } |
24137 | |
24138 | return 0; |
24139 | } |
24140 | |
24141 | /////////////////////////////////////////////////////////////////////////////// |
24142 | // // |
24143 | // checkseg4split() Check if we need to split a segment. // |
24144 | // // |
24145 | // A segment needs to be split if it is in the following case: // |
24146 | // (1) It is encroached by an existing vertex. // |
24147 | // (2) It has bad quality (too long). // |
24148 | // (3) Its length is larger than the mesh sizes at its endpoints. // |
24149 | // // |
24150 | // Return 1 if it needs to be split, otherwise, return 0. 'pencpt' returns // |
24151 | // an encroaching point if there exists. 'qflag' returns '1' if the segment // |
24152 | // has a length larger than the desired edge length. // |
24153 | // // |
24154 | /////////////////////////////////////////////////////////////////////////////// |
24155 | |
24156 | int tetgenmesh::checkseg4split(face *chkseg, point& encpt, int& qflag) |
24157 | { |
24158 | REAL ccent[3], len, r; |
24159 | int i; |
24160 | |
24161 | point forg = sorg(*chkseg); |
24162 | point fdest = sdest(*chkseg); |
24163 | |
24164 | // Initialize the return values. |
24165 | encpt = NULL; |
24166 | qflag = 0; |
24167 | |
24168 | len = distance(forg, fdest); |
24169 | r = 0.5 * len; |
24170 | for (i = 0; i < 3; i++) { |
24171 | ccent[i] = 0.5 * (forg[i] + fdest[i]); |
24172 | } |
24173 | |
24174 | // First check its quality. |
24175 | if (checkconstraints && (areabound(*chkseg) > 0.0)) { |
24176 | if (len > areabound(*chkseg)) { |
24177 | qflag = 1; |
24178 | return 1; |
24179 | } |
24180 | } |
24181 | |
24182 | if (b->fixedvolume) { |
24183 | if ((len * len * len) > b->maxvolume) { |
24184 | qflag = 1; |
24185 | return 1; |
24186 | } |
24187 | } |
24188 | |
24189 | if (b->metric) { // -m option. Check mesh size. |
24190 | // Check if the ccent lies outside one of the prot.balls at vertices. |
24191 | if (((forg[pointmtrindex] > 0) && (r > forg[pointmtrindex])) || |
24192 | ((fdest[pointmtrindex]) > 0 && (r > fdest[pointmtrindex]))) { |
24193 | qflag = 1; // Enforce mesh size. |
24194 | return 1; |
24195 | } |
24196 | } |
24197 | |
24198 | |
24199 | // Second check if it is encroached. |
24200 | // Comment: There may exist more than one encroaching points of this segment. |
24201 | // The 'encpt' returns the one which is closet to it. |
24202 | triface searchtet, spintet; |
24203 | point eapex; |
24204 | REAL d, diff, smdist = 0; |
24205 | int t1ver; |
24206 | |
24207 | sstpivot1(*chkseg, searchtet); |
24208 | spintet = searchtet; |
24209 | while (1) { |
24210 | eapex = apex(spintet); |
24211 | if (eapex != dummypoint) { |
24212 | d = distance(ccent, eapex); |
24213 | diff = d - r; |
24214 | if (fabs(diff) / r < b->epsilon) diff = 0.0; // Rounding. |
24215 | if (diff < 0) { |
24216 | // This segment is encroached by eapex. |
24217 | if (useinsertradius) { |
24218 | if (encpt == NULL) { |
24219 | encpt = eapex; |
24220 | smdist = d; |
24221 | } else { |
24222 | // Choose the closet encroaching point. |
24223 | if (d < smdist) { |
24224 | encpt = eapex; |
24225 | smdist = d; |
24226 | } |
24227 | } |
24228 | } else { |
24229 | encpt = eapex; |
24230 | break; |
24231 | } |
24232 | } |
24233 | } |
24234 | fnextself(spintet); |
24235 | if (spintet.tet == searchtet.tet) break; |
24236 | } // while (1) |
24237 | |
24238 | if (encpt != NULL) { |
24239 | return 1; |
24240 | } |
24241 | |
24242 | return 0; // No need to split it. |
24243 | } |
24244 | |
24245 | /////////////////////////////////////////////////////////////////////////////// |
24246 | // // |
24247 | // splitsegment() Split a segment. // |
24248 | // // |
24249 | // The segment 'splitseg' is intended to be split. It will be split if it // |
24250 | // is in one of the following cases: // |
24251 | // (1) It is encroached by an existing vertex 'encpt != NULL'; or // |
24252 | // (2) It is in bad quality 'qflag == 1'; or // |
24253 | // (3) Its length is larger than the mesh sizes at its endpoints. // |
24254 | // // |
24255 | /////////////////////////////////////////////////////////////////////////////// |
24256 | |
24257 | int tetgenmesh::splitsegment(face *splitseg, point encpt, REAL rrp, |
24258 | point encpt1, point encpt2, int qflag, |
24259 | int chkencflag) |
24260 | { |
24261 | point pa = sorg(*splitseg); |
24262 | point pb = sdest(*splitseg); |
24263 | |
24264 | |
24265 | |
24266 | if ((encpt == NULL) && (qflag == 0)) { |
24267 | if (useinsertradius) { |
24268 | // Do not split this segment if the length is smaller than the smaller |
24269 | // insertion radius at its endpoints. |
24270 | REAL len = distance(pa, pb); |
24271 | REAL smrrv = getpointinsradius(pa); |
24272 | REAL rrv = getpointinsradius(pb); |
24273 | if (rrv > 0) { |
24274 | if (smrrv > 0) { |
24275 | if (rrv < smrrv) { |
24276 | smrrv = rrv; |
24277 | } |
24278 | } else { |
24279 | smrrv = rrv; |
24280 | } |
24281 | } |
24282 | if (smrrv > 0) { |
24283 | if ((fabs(smrrv - len) / len) < b->epsilon) smrrv = len; |
24284 | if (len < smrrv) { |
24285 | return 0; |
24286 | } |
24287 | } |
24288 | } |
24289 | } |
24290 | |
24291 | if (b->nobisect) { // With -Y option. |
24292 | // Only split this segment if it is allowed to be split. |
24293 | if (checkconstraints) { |
24294 | // Check if it has a non-zero length bound. |
24295 | if (areabound(*splitseg) == 0) { |
24296 | // It is not allowed. However, if all of facets containing this seg |
24297 | // is allowed to be split, we still split it. |
24298 | face parentsh, spinsh; |
24299 | //splitseg.shver = 0; |
24300 | spivot(*splitseg, parentsh); |
24301 | if (parentsh.sh == NULL) { |
24302 | return 0; // A dangling segment. Do not split it. |
24303 | } |
24304 | spinsh = parentsh; |
24305 | while (1) { |
24306 | if (areabound(spinsh) == 0) break; |
24307 | spivotself(spinsh); |
24308 | if (spinsh.sh == parentsh.sh) break; |
24309 | } |
24310 | if (areabound(spinsh) == 0) { |
24311 | // All facets at this seg are not allowed to be split. |
24312 | return 0; // Do not split it. |
24313 | } |
24314 | } |
24315 | } else { |
24316 | return 0; // Do not split this segment. |
24317 | } |
24318 | } // if (b->nobisect) |
24319 | |
24320 | triface searchtet; |
24321 | face searchsh; |
24322 | point newpt; |
24323 | insertvertexflags ivf; |
24324 | |
24325 | makepoint(&newpt, FREESEGVERTEX); |
24326 | getsteinerptonsegment(splitseg, encpt, newpt); |
24327 | |
24328 | // Split the segment by the Bowyer-Watson algorithm. |
24329 | sstpivot1(*splitseg, searchtet); |
24330 | ivf.iloc = (int) ONEDGE; |
24331 | // Use Bowyer-Watson algorithm. Preserve subsegments and subfaces; |
24332 | ivf.bowywat = 3; |
24333 | ivf.validflag = 1; // Validate the B-W cavity. |
24334 | ivf.lawson = 2; // Do flips to recover Delaunayness. |
24335 | ivf.rejflag = 0; // Do not check encroachment of new segments/facets. |
24336 | if (b->metric) { |
24337 | ivf.rejflag |= 4; // Do check encroachment of protecting balls. |
24338 | } |
24339 | ivf.chkencflag = chkencflag; |
24340 | ivf.sloc = (int) INSTAR; // ivf.iloc; |
24341 | ivf.sbowywat = 3; // ivf.bowywat; // Surface mesh options. |
24342 | ivf.splitbdflag = 1; |
24343 | ivf.respectbdflag = 1; |
24344 | ivf.assignmeshsize = b->metric; |
24345 | ivf.smlenflag = useinsertradius; |
24346 | |
24347 | |
24348 | if (insertpoint(newpt, &searchtet, &searchsh, splitseg, &ivf)) { |
24349 | st_segref_count++; |
24350 | if (steinerleft > 0) steinerleft--; |
24351 | if (useinsertradius) { |
24352 | // Update 'rv' (to be the shortest distance). |
24353 | REAL rv = ivf.smlen, rp; |
24354 | if (pointtype(ivf.parentpt) == FREESEGVERTEX) { |
24355 | face parentseg1, parentseg2; |
24356 | sdecode(point2sh(newpt), parentseg1); |
24357 | sdecode(point2sh(ivf.parentpt), parentseg2); |
24358 | if (segsegadjacent(&parentseg1, &parentseg2)) { |
24359 | rp = getpointinsradius(ivf.parentpt); |
24360 | if (rv < rp) { |
24361 | rv = rp; // The relaxed insertion radius of 'newpt'. |
24362 | } |
24363 | } |
24364 | } else if (pointtype(ivf.parentpt) == FREEFACETVERTEX) { |
24365 | face parentseg, parentsh; |
24366 | sdecode(point2sh(newpt), parentseg); |
24367 | sdecode(point2sh(ivf.parentpt), parentsh); |
24368 | if (segfacetadjacent(&parentseg, &parentsh)) { |
24369 | rp = getpointinsradius(ivf.parentpt); |
24370 | if (rv < rp) { |
24371 | rv = rp; // The relaxed insertion radius of 'newpt'. |
24372 | } |
24373 | } |
24374 | } |
24375 | setpointinsradius(newpt, rv); |
24376 | } |
24377 | if (flipstack != NULL) { |
24378 | flipconstraints fc; |
24379 | fc.chkencflag = chkencflag; |
24380 | fc.enqflag = 2; |
24381 | lawsonflip3d(&fc); |
24382 | unflipqueue->restart(); |
24383 | } |
24384 | return 1; |
24385 | } else { |
24386 | // Point is not inserted. |
24387 | pointdealloc(newpt); |
24388 | return 0; |
24389 | } |
24390 | } |
24391 | |
24392 | /////////////////////////////////////////////////////////////////////////////// |
24393 | // // |
24394 | // repairencsegs() Repair encroached (sub) segments. // |
24395 | // // |
24396 | /////////////////////////////////////////////////////////////////////////////// |
24397 | |
24398 | void tetgenmesh::repairencsegs(int chkencflag) |
24399 | { |
24400 | face *bface; |
24401 | point encpt = NULL; |
24402 | int qflag = 0; |
24403 | |
24404 | // Loop until the pool 'badsubsegs' is empty. Note that steinerleft == -1 |
24405 | // if an unlimited number of Steiner points is allowed. |
24406 | while ((badsubsegs->items > 0) && (steinerleft != 0)) { |
24407 | badsubsegs->traversalinit(); |
24408 | bface = (face *) badsubsegs->traverse(); |
24409 | while ((bface != NULL) && (steinerleft != 0)) { |
24410 | // Skip a deleleted element. |
24411 | if (bface->shver >= 0) { |
24412 | // A queued segment may have been deleted (split). |
24413 | if ((bface->sh != NULL) && (bface->sh[3] != NULL)) { |
24414 | // A queued segment may have been processed. |
24415 | if (smarktest2ed(*bface)) { |
24416 | sunmarktest2(*bface); |
24417 | if (checkseg4split(bface, encpt, qflag)) { |
24418 | splitsegment(bface, encpt, 0, NULL, NULL, qflag, chkencflag); |
24419 | } |
24420 | } |
24421 | } |
24422 | // Remove this entry from list. |
24423 | bface->shver = -1; // Signal it as a deleted element. |
24424 | badsubsegs->dealloc((void *) bface); |
24425 | } |
24426 | bface = (face *) badsubsegs->traverse(); |
24427 | } |
24428 | } |
24429 | |
24430 | if (badsubsegs->items > 0) { |
24431 | if (steinerleft == 0) { |
24432 | if (b->verbose) { |
24433 | printf("The desired number of Steiner points is reached.\n" ); |
24434 | } |
24435 | } else { |
24436 | assert(0); // Unknown case. |
24437 | } |
24438 | badsubsegs->traversalinit(); |
24439 | bface = (face *) badsubsegs->traverse(); |
24440 | while (bface != NULL) { |
24441 | // Skip a deleleted element. |
24442 | if (bface->shver >= 0) { |
24443 | if ((bface->sh != NULL) && (bface->sh[3] != NULL)) { |
24444 | if (smarktest2ed(*bface)) { |
24445 | sunmarktest2(*bface); |
24446 | } |
24447 | } |
24448 | } |
24449 | bface = (face *) badsubsegs->traverse(); |
24450 | } |
24451 | badsubsegs->restart(); |
24452 | } |
24453 | } |
24454 | |
24455 | /////////////////////////////////////////////////////////////////////////////// |
24456 | // // |
24457 | // enqueuesubface() Queue a subface or a subsegment for encroachment chk. // |
24458 | // // |
24459 | /////////////////////////////////////////////////////////////////////////////// |
24460 | |
24461 | void tetgenmesh::enqueuesubface(memorypool *pool, face *chkface) |
24462 | { |
24463 | if (!smarktest2ed(*chkface)) { |
24464 | smarktest2(*chkface); // Only queue it once. |
24465 | face *queface = (face *) pool->alloc(); |
24466 | *queface = *chkface; |
24467 | } |
24468 | } |
24469 | |
24470 | /////////////////////////////////////////////////////////////////////////////// |
24471 | // // |
24472 | // checkfac4encroach() Check if a subface is encroached by a point. // |
24473 | // // |
24474 | /////////////////////////////////////////////////////////////////////////////// |
24475 | |
24476 | int tetgenmesh::checkfac4encroach(point pa, point pb, point pc, point checkpt, |
24477 | REAL* cent, REAL* r) |
24478 | { |
24479 | REAL rd, len; |
24480 | |
24481 | circumsphere(pa, pb, pc, NULL, cent, &rd); |
24482 | assert(rd != 0); |
24483 | len = distance(cent, checkpt); |
24484 | if ((fabs(len - rd) / rd) < b->epsilon) len = rd; // Rounding. |
24485 | |
24486 | if (len < rd) { |
24487 | // The point lies inside the circumsphere of this face. |
24488 | if (b->metric) { // -m option. |
24489 | if ((pa[pointmtrindex] > 0) && (pb[pointmtrindex] > 0) && |
24490 | (pc[pointmtrindex] > 0)) { |
24491 | // Get the projection of 'checkpt' in the plane of pa, pb, and pc. |
24492 | REAL prjpt[3], n[3]; |
24493 | REAL a, a1, a2, a3; |
24494 | projpt2face(checkpt, pa, pb, pc, prjpt); |
24495 | // Get the face area of [a,b,c]. |
24496 | facenormal(pa, pb, pc, n, 1, NULL); |
24497 | a = sqrt(dot(n,n)); |
24498 | // Get the face areas of [a,b,p], [b,c,p], and [c,a,p]. |
24499 | facenormal(pa, pb, prjpt, n, 1, NULL); |
24500 | a1 = sqrt(dot(n,n)); |
24501 | facenormal(pb, pc, prjpt, n, 1, NULL); |
24502 | a2 = sqrt(dot(n,n)); |
24503 | facenormal(pc, pa, prjpt, n, 1, NULL); |
24504 | a3 = sqrt(dot(n,n)); |
24505 | if ((fabs(a1 + a2 + a3 - a) / a) < b->epsilon) { |
24506 | // This face contains the projection. |
24507 | // Get the mesh size at the location of the projection point. |
24508 | rd = a1 / a * pc[pointmtrindex] |
24509 | + a2 / a * pa[pointmtrindex] |
24510 | + a3 / a * pb[pointmtrindex]; |
24511 | len = distance(prjpt, checkpt); |
24512 | if (len < rd) { |
24513 | return 1; // Encroached. |
24514 | } |
24515 | } |
24516 | } else { |
24517 | return 1; // No protecting ball. Encroached. |
24518 | } |
24519 | } else { |
24520 | *r = rd; |
24521 | return 1; // Encroached. |
24522 | } |
24523 | } |
24524 | |
24525 | return 0; |
24526 | } |
24527 | |
24528 | /////////////////////////////////////////////////////////////////////////////// |
24529 | // // |
24530 | // checkfac4split() Check if a subface needs to be split. // |
24531 | // // |
24532 | // A subface needs to be split if it is in the following case: // |
24533 | // (1) It is encroached by an existing vertex. // |
24534 | // (2) It has bad quality (has a small angle, -q). // |
24535 | // (3) It's area is larger than a prescribed value (.var). // |
24536 | // // |
24537 | // Return 1 if it needs to be split, otherwise, return 0. // |
24538 | // 'chkfac' represents its longest edge. // |
24539 | // // |
24540 | /////////////////////////////////////////////////////////////////////////////// |
24541 | |
24542 | int tetgenmesh::checkfac4split(face *chkfac, point& encpt, int& qflag, |
24543 | REAL *cent) |
24544 | { |
24545 | point pa, pb, pc; |
24546 | REAL area, rd, len; |
24547 | REAL A[4][4], rhs[4], D; |
24548 | int indx[4]; |
24549 | int i; |
24550 | |
24551 | encpt = NULL; |
24552 | qflag = 0; |
24553 | |
24554 | pa = sorg(*chkfac); |
24555 | pb = sdest(*chkfac); |
24556 | pc = sapex(*chkfac); |
24557 | |
24558 | // Compute the coefficient matrix A (3x3). |
24559 | A[0][0] = pb[0] - pa[0]; |
24560 | A[0][1] = pb[1] - pa[1]; |
24561 | A[0][2] = pb[2] - pa[2]; // vector V1 (pa->pb) |
24562 | A[1][0] = pc[0] - pa[0]; |
24563 | A[1][1] = pc[1] - pa[1]; |
24564 | A[1][2] = pc[2] - pa[2]; // vector V2 (pa->pc) |
24565 | cross(A[0], A[1], A[2]); // vector V3 (V1 X V2) |
24566 | |
24567 | area = 0.5 * sqrt(dot(A[2], A[2])); // The area of [a,b,c]. |
24568 | |
24569 | // Compute the right hand side vector b (3x1). |
24570 | rhs[0] = 0.5 * dot(A[0], A[0]); // edge [a,b] |
24571 | rhs[1] = 0.5 * dot(A[1], A[1]); // edge [a,c] |
24572 | rhs[2] = 0.0; |
24573 | |
24574 | // Solve the 3 by 3 equations use LU decomposition with partial |
24575 | // pivoting and backward and forward substitute. |
24576 | if (!lu_decmp(A, 3, indx, &D, 0)) { |
24577 | // A degenerate triangle. |
24578 | assert(0); |
24579 | } |
24580 | |
24581 | lu_solve(A, 3, indx, rhs, 0); |
24582 | cent[0] = pa[0] + rhs[0]; |
24583 | cent[1] = pa[1] + rhs[1]; |
24584 | cent[2] = pa[2] + rhs[2]; |
24585 | rd = sqrt(rhs[0] * rhs[0] + rhs[1] * rhs[1] + rhs[2] * rhs[2]); |
24586 | |
24587 | if (checkconstraints && (areabound(*chkfac) > 0.0)) { |
24588 | // Check if the subface has too big area. |
24589 | if (area > areabound(*chkfac)) { |
24590 | qflag = 1; |
24591 | return 1; |
24592 | } |
24593 | } |
24594 | |
24595 | if (b->fixedvolume) { |
24596 | if ((area * sqrt(area)) > b->maxvolume) { |
24597 | qflag = 1; |
24598 | return 1; |
24599 | } |
24600 | } |
24601 | |
24602 | if (b->varvolume) { |
24603 | triface adjtet; |
24604 | REAL volbnd; |
24605 | int t1ver; |
24606 | |
24607 | stpivot(*chkfac, adjtet); |
24608 | if (!ishulltet(adjtet)) { |
24609 | volbnd = volumebound(adjtet.tet); |
24610 | if ((volbnd > 0) && (area * sqrt(area)) > volbnd) { |
24611 | qflag = 1; |
24612 | return 1; |
24613 | } |
24614 | } |
24615 | fsymself(adjtet); |
24616 | if (!ishulltet(adjtet)) { |
24617 | volbnd = volumebound(adjtet.tet); |
24618 | if ((volbnd > 0) && (area * sqrt(area)) > volbnd) { |
24619 | qflag = 1; |
24620 | return 1; |
24621 | } |
24622 | } |
24623 | } |
24624 | |
24625 | if (b->metric) { // -m option. Check mesh size. |
24626 | // Check if the ccent lies outside one of the prot.balls at vertices. |
24627 | if (((pa[pointmtrindex] > 0) && (rd > pa[pointmtrindex])) || |
24628 | ((pb[pointmtrindex] > 0) && (rd > pb[pointmtrindex])) || |
24629 | ((pc[pointmtrindex] > 0) && (rd > pc[pointmtrindex]))) { |
24630 | qflag = 1; // Enforce mesh size. |
24631 | return 1; |
24632 | } |
24633 | } |
24634 | |
24635 | triface searchtet; |
24636 | REAL smlen = 0; |
24637 | |
24638 | // Check if this subface is locally encroached. |
24639 | for (i = 0; i < 2; i++) { |
24640 | stpivot(*chkfac, searchtet); |
24641 | if (!ishulltet(searchtet)) { |
24642 | len = distance(oppo(searchtet), cent); |
24643 | if ((fabs(len - rd) / rd) < b->epsilon) len = rd;// Rounding. |
24644 | if (len < rd) { |
24645 | if (smlen == 0) { |
24646 | smlen = len; |
24647 | encpt = oppo(searchtet); |
24648 | } else { |
24649 | if (len < smlen) { |
24650 | smlen = len; |
24651 | encpt = oppo(searchtet); |
24652 | } |
24653 | } |
24654 | //return 1; |
24655 | } |
24656 | } |
24657 | sesymself(*chkfac); |
24658 | } |
24659 | |
24660 | return encpt != NULL; //return 0; |
24661 | } |
24662 | |
24663 | /////////////////////////////////////////////////////////////////////////////// |
24664 | // // |
24665 | // splitsubface() Split a subface. // |
24666 | // // |
24667 | // The subface may be encroached, or in bad-quality. It is split at its cir- // |
24668 | // cumcenter ('ccent'). Do not split it if 'ccent' encroaches upon any seg- // |
24669 | // ment. Instead, one of the encroached segments is split. It is possible // |
24670 | // that none of the encroached segments can be split. // |
24671 | // // |
24672 | // The return value indicates whether a new point is inserted (> 0) or not // |
24673 | // (= 0). Furthermore, it is inserted on an encroached segment (= 1) or // |
24674 | // in-side the facet (= 2). // |
24675 | // // |
24676 | // 'encpt' is a vertex encroaching upon this subface, i.e., it causes the // |
24677 | // split of this subface. If 'encpt' is NULL, then the cause of the split // |
24678 | // this subface is a rejected tet circumcenter 'p', and 'encpt1' is the // |
24679 | // parent of 'p'. // |
24680 | // // |
24681 | /////////////////////////////////////////////////////////////////////////////// |
24682 | |
24683 | int tetgenmesh::splitsubface(face *splitfac, point encpt, point encpt1, |
24684 | int qflag, REAL *ccent, int chkencflag) |
24685 | { |
24686 | point pa = sorg(*splitfac); |
24687 | point pb = sdest(*splitfac); |
24688 | point pc = sapex(*splitfac); |
24689 | |
24690 | |
24691 | |
24692 | if (b->nobisect) { // With -Y option. |
24693 | if (checkconstraints) { |
24694 | // Only split if it is allowed to be split. |
24695 | // Check if this facet has a non-zero constraint. |
24696 | if (areabound(*splitfac) == 0) { |
24697 | return 0; // Do not split it. |
24698 | } |
24699 | } else { |
24700 | return 0; |
24701 | } |
24702 | } // if (b->nobisect) |
24703 | |
24704 | face searchsh; |
24705 | insertvertexflags ivf; |
24706 | point newpt; |
24707 | REAL rv = 0., rp; // Insertion radius of newpt. |
24708 | int i; |
24709 | |
24710 | // Initialize the inserting point. |
24711 | makepoint(&newpt, FREEFACETVERTEX); |
24712 | // Split the subface at its circumcenter. |
24713 | for (i = 0; i < 3; i++) newpt[i] = ccent[i]; |
24714 | |
24715 | if (useinsertradius) { |
24716 | if (encpt != NULL) { |
24717 | rv = distance(newpt, encpt); |
24718 | if (pointtype(encpt) == FREESEGVERTEX) { |
24719 | face parentseg; |
24720 | sdecode(point2sh(encpt), parentseg); |
24721 | if (segfacetadjacent(&parentseg, splitfac)) { |
24722 | rp = getpointinsradius(encpt); |
24723 | if (rv < (sqrt(2.0) * rp)) { |
24724 | // This insertion may cause no termination. |
24725 | pointdealloc(newpt); |
24726 | return 0; // Reject the insertion of newpt. |
24727 | } |
24728 | } |
24729 | } else if (pointtype(encpt) == FREEFACETVERTEX) { |
24730 | face parentsh; |
24731 | sdecode(point2sh(encpt), parentsh); |
24732 | if (facetfacetadjacent(&parentsh, splitfac)) { |
24733 | rp = getpointinsradius(encpt); |
24734 | if (rv < rp) { |
24735 | pointdealloc(newpt); |
24736 | return 0; // Reject the insertion of newpt. |
24737 | } |
24738 | } |
24739 | } |
24740 | } |
24741 | } // if (useinsertradius) |
24742 | |
24743 | // Search a subface which contains 'newpt'. |
24744 | searchsh = *splitfac; |
24745 | // Calculate an above point. It lies above the plane containing |
24746 | // the subface [a,b,c], and save it in dummypoint. Moreover, |
24747 | // the vector cent->dummypoint is the normal of the plane. |
24748 | calculateabovepoint4(newpt, pa, pb, pc); |
24749 | // Parameters: 'aflag' = 1, - above point exists. |
24750 | // 'cflag' = 0, - non-convex, check co-planarity of the result. |
24751 | // 'rflag' = 0, - no need to round the locating result. |
24752 | ivf.iloc = (int) slocate(newpt, &searchsh, 1, 0, 0); |
24753 | |
24754 | if (!((ivf.iloc == (int) ONFACE) || (ivf.iloc == (int) ONEDGE))) { |
24755 | pointdealloc(newpt); |
24756 | return 0; |
24757 | } |
24758 | |
24759 | |
24760 | triface searchtet; |
24761 | face *paryseg; |
24762 | int splitflag; |
24763 | |
24764 | // Insert the point. |
24765 | stpivot(searchsh, searchtet); |
24766 | //assert((ivf.iloc == (int) ONFACE) || (ivf.iloc == (int) ONEDGE)); |
24767 | // Use Bowyer-Watson algorithm. Preserve subsegments and subfaces; |
24768 | ivf.bowywat = 3; |
24769 | ivf.lawson = 2; |
24770 | ivf.rejflag = 1; // Do check the encroachment of segments. |
24771 | if (b->metric) { |
24772 | ivf.rejflag |= 4; // Do check encroachment of protecting balls. |
24773 | } |
24774 | ivf.chkencflag = chkencflag; |
24775 | ivf.sloc = (int) INSTAR; // ivf.iloc; |
24776 | ivf.sbowywat = 3; // ivf.bowywat; |
24777 | ivf.splitbdflag = 1; |
24778 | ivf.validflag = 1; |
24779 | ivf.respectbdflag = 1; |
24780 | ivf.assignmeshsize = b->metric; |
24781 | |
24782 | ivf.refineflag = 2; |
24783 | ivf.refinesh = searchsh; |
24784 | ivf.smlenflag = useinsertradius; // Update the insertion radius. |
24785 | |
24786 | |
24787 | if (insertpoint(newpt, &searchtet, &searchsh, NULL, &ivf)) { |
24788 | st_facref_count++; |
24789 | if (steinerleft > 0) steinerleft--; |
24790 | if (useinsertradius) { |
24791 | // Update 'rv' (to be the shortest distance). |
24792 | rv = ivf.smlen; |
24793 | if (pointtype(ivf.parentpt) == FREESEGVERTEX) { |
24794 | face parentseg, parentsh; |
24795 | sdecode(point2sh(ivf.parentpt), parentseg); |
24796 | sdecode(point2sh(newpt), parentsh); |
24797 | if (segfacetadjacent(&parentseg, &parentsh)) { |
24798 | rp = getpointinsradius(ivf.parentpt); |
24799 | if (rv < (sqrt(2.0) * rp)) { |
24800 | rv = sqrt(2.0) * rp; // The relaxed insertion radius of 'newpt'. |
24801 | } |
24802 | } |
24803 | } else if (pointtype(ivf.parentpt) == FREEFACETVERTEX) { |
24804 | face parentsh1, parentsh2; |
24805 | sdecode(point2sh(ivf.parentpt), parentsh1); |
24806 | sdecode(point2sh(newpt), parentsh2); |
24807 | if (facetfacetadjacent(&parentsh1, &parentsh2)) { |
24808 | rp = getpointinsradius(ivf.parentpt); |
24809 | if (rv < rp) { |
24810 | rv = rp; // The relaxed insertion radius of 'newpt'. |
24811 | } |
24812 | } |
24813 | } |
24814 | setpointinsradius(newpt, rv); |
24815 | } // if (useinsertradius) |
24816 | if (flipstack != NULL) { |
24817 | flipconstraints fc; |
24818 | fc.chkencflag = chkencflag; |
24819 | fc.enqflag = 2; |
24820 | lawsonflip3d(&fc); |
24821 | unflipqueue->restart(); |
24822 | } |
24823 | return 1; |
24824 | } else { |
24825 | // Point was not inserted. |
24826 | pointdealloc(newpt); |
24827 | if (ivf.iloc == (int) ENCSEGMENT) { |
24828 | // Select an encroached segment and split it. |
24829 | splitflag = 0; |
24830 | for (i = 0; i < encseglist->objects; i++) { |
24831 | paryseg = (face *) fastlookup(encseglist, i); |
24832 | if (splitsegment(paryseg, NULL, rv, encpt, encpt1, qflag, |
24833 | chkencflag | 1)) { |
24834 | splitflag = 1; // A point is inserted on a segment. |
24835 | break; |
24836 | } |
24837 | } |
24838 | encseglist->restart(); |
24839 | if (splitflag) { |
24840 | // Some segments may need to be repaired. |
24841 | repairencsegs(chkencflag | 1); |
24842 | // Queue this subface if it is still alive and not queued. |
24843 | //if ((splitfac->sh != NULL) && (splitfac->sh[3] != NULL)) { |
24844 | // // Only queue it if 'qflag' is set. |
24845 | // if (qflag) { |
24846 | // enqueuesubface(badsubfacs, splitfac); |
24847 | // } |
24848 | //} |
24849 | } |
24850 | return splitflag; |
24851 | } else { |
24852 | return 0; |
24853 | } |
24854 | } |
24855 | } |
24856 | |
24857 | /////////////////////////////////////////////////////////////////////////////// |
24858 | // // |
24859 | // repairencfacs() Repair encroached subfaces. // |
24860 | // // |
24861 | /////////////////////////////////////////////////////////////////////////////// |
24862 | |
24863 | void tetgenmesh::repairencfacs(int chkencflag) |
24864 | { |
24865 | face *bface; |
24866 | point encpt = NULL; |
24867 | int qflag = 0; |
24868 | REAL ccent[3]; |
24869 | |
24870 | // Loop until the pool 'badsubfacs' is empty. Note that steinerleft == -1 |
24871 | // if an unlimited number of Steiner points is allowed. |
24872 | while ((badsubfacs->items > 0) && (steinerleft != 0)) { |
24873 | badsubfacs->traversalinit(); |
24874 | bface = (face *) badsubfacs->traverse(); |
24875 | while ((bface != NULL) && (steinerleft != 0)) { |
24876 | // Skip a deleted element. |
24877 | if (bface->shver >= 0) { |
24878 | // A queued subface may have been deleted (split). |
24879 | if ((bface->sh != NULL) && (bface->sh[3] != NULL)) { |
24880 | // A queued subface may have been processed. |
24881 | if (smarktest2ed(*bface)) { |
24882 | sunmarktest2(*bface); |
24883 | if (checkfac4split(bface, encpt, qflag, ccent)) { |
24884 | splitsubface(bface, encpt, NULL, qflag, ccent, chkencflag); |
24885 | } |
24886 | } |
24887 | } |
24888 | bface->shver = -1; // Signal it as a deleted element. |
24889 | badsubfacs->dealloc((void *) bface); // Remove this entry from list. |
24890 | } |
24891 | bface = (face *) badsubfacs->traverse(); |
24892 | } |
24893 | } |
24894 | |
24895 | if (badsubfacs->items > 0) { |
24896 | if (steinerleft == 0) { |
24897 | if (b->verbose) { |
24898 | printf("The desired number of Steiner points is reached.\n" ); |
24899 | } |
24900 | } else { |
24901 | assert(0); // Unknown case. |
24902 | } |
24903 | badsubfacs->traversalinit(); |
24904 | bface = (face *) badsubfacs->traverse(); |
24905 | while (bface != NULL) { |
24906 | // Skip a deleted element. |
24907 | if (bface->shver >= 0) { |
24908 | if ((bface->sh != NULL) && (bface->sh[3] != NULL)) { |
24909 | if (smarktest2ed(*bface)) { |
24910 | sunmarktest2(*bface); |
24911 | } |
24912 | } |
24913 | } |
24914 | bface = (face *) badsubfacs->traverse(); |
24915 | } |
24916 | badsubfacs->restart(); |
24917 | } |
24918 | } |
24919 | |
24920 | /////////////////////////////////////////////////////////////////////////////// |
24921 | // // |
24922 | // enqueuetetrahedron() Queue a tetrahedron for quality check. // |
24923 | // // |
24924 | /////////////////////////////////////////////////////////////////////////////// |
24925 | |
24926 | void tetgenmesh::enqueuetetrahedron(triface *chktet) |
24927 | { |
24928 | if (!marktest2ed(*chktet)) { |
24929 | marktest2(*chktet); // Only queue it once. |
24930 | triface *quetet = (triface *) badtetrahedrons->alloc(); |
24931 | *quetet = *chktet; |
24932 | } |
24933 | } |
24934 | |
24935 | /////////////////////////////////////////////////////////////////////////////// |
24936 | // // |
24937 | // checktet4split() Check if the tet needs to be split. // |
24938 | // // |
24939 | /////////////////////////////////////////////////////////////////////////////// |
24940 | |
24941 | int tetgenmesh::checktet4split(triface *chktet, int &qflag, REAL *ccent) |
24942 | { |
24943 | point pa, pb, pc, pd, *ppt; |
24944 | REAL vda[3], vdb[3], vdc[3]; |
24945 | REAL vab[3], vbc[3], vca[3]; |
24946 | REAL N[4][3], L[4], cosd[6], elen[6]; |
24947 | REAL maxcosd, vol, volbnd, smlen = 0, rd; |
24948 | REAL A[4][4], rhs[4], D; |
24949 | int indx[4]; |
24950 | int i, j; |
24951 | |
24952 | if (b->convex) { // -c |
24953 | // Skip this tet if it lies in the exterior. |
24954 | if (elemattribute(chktet->tet, numelemattrib - 1) == -1.0) { |
24955 | return 0; |
24956 | } |
24957 | } |
24958 | |
24959 | qflag = 0; |
24960 | |
24961 | pd = (point) chktet->tet[7]; |
24962 | if (pd == dummypoint) { |
24963 | return 0; // Do not split a hull tet. |
24964 | } |
24965 | |
24966 | pa = (point) chktet->tet[4]; |
24967 | pb = (point) chktet->tet[5]; |
24968 | pc = (point) chktet->tet[6]; |
24969 | |
24970 | // Get the edge vectors vda: d->a, vdb: d->b, vdc: d->c. |
24971 | // Set the matrix A = [vda, vdb, vdc]^T. |
24972 | for (i = 0; i < 3; i++) A[0][i] = vda[i] = pa[i] - pd[i]; |
24973 | for (i = 0; i < 3; i++) A[1][i] = vdb[i] = pb[i] - pd[i]; |
24974 | for (i = 0; i < 3; i++) A[2][i] = vdc[i] = pc[i] - pd[i]; |
24975 | |
24976 | // Get the other edge vectors. |
24977 | for (i = 0; i < 3; i++) vab[i] = pb[i] - pa[i]; |
24978 | for (i = 0; i < 3; i++) vbc[i] = pc[i] - pb[i]; |
24979 | for (i = 0; i < 3; i++) vca[i] = pa[i] - pc[i]; |
24980 | |
24981 | if (!lu_decmp(A, 3, indx, &D, 0)) { |
24982 | // A degenerated tet (vol = 0). |
24983 | // This is possible due to the use of exact arithmetic. We temporarily |
24984 | // leave this tet. It should be fixed by mesh optimization. |
24985 | return 0; |
24986 | } |
24987 | |
24988 | // Check volume if '-a#' and '-a' options are used. |
24989 | if (b->varvolume || b->fixedvolume) { |
24990 | vol = fabs(A[indx[0]][0] * A[indx[1]][1] * A[indx[2]][2]) / 6.0; |
24991 | if (b->fixedvolume) { |
24992 | if (vol > b->maxvolume) { |
24993 | qflag = 1; |
24994 | } |
24995 | } |
24996 | if (!qflag && b->varvolume) { |
24997 | volbnd = volumebound(chktet->tet); |
24998 | if ((volbnd > 0.0) && (vol > volbnd)) { |
24999 | qflag = 1; |
25000 | } |
25001 | } |
25002 | if (qflag == 1) { |
25003 | // Calculate the circumcenter of this tet. |
25004 | rhs[0] = 0.5 * dot(vda, vda); |
25005 | rhs[1] = 0.5 * dot(vdb, vdb); |
25006 | rhs[2] = 0.5 * dot(vdc, vdc); |
25007 | lu_solve(A, 3, indx, rhs, 0); |
25008 | for (i = 0; i < 3; i++) ccent[i] = pd[i] + rhs[i]; |
25009 | return 1; |
25010 | } |
25011 | } |
25012 | |
25013 | if (b->metric) { // -m option. Check mesh size. |
25014 | // Calculate the circumradius of this tet. |
25015 | rhs[0] = 0.5 * dot(vda, vda); |
25016 | rhs[1] = 0.5 * dot(vdb, vdb); |
25017 | rhs[2] = 0.5 * dot(vdc, vdc); |
25018 | lu_solve(A, 3, indx, rhs, 0); |
25019 | for (i = 0; i < 3; i++) ccent[i] = pd[i] + rhs[i]; |
25020 | rd = sqrt(dot(rhs, rhs)); |
25021 | // Check if the ccent lies outside one of the prot.balls at vertices. |
25022 | ppt = (point *) &(chktet->tet[4]); |
25023 | for (i = 0; i < 4; i++) { |
25024 | if (ppt[i][pointmtrindex] > 0) { |
25025 | if (rd > ppt[i][pointmtrindex]) { |
25026 | qflag = 1; // Enforce mesh size. |
25027 | return 1; |
25028 | } |
25029 | } |
25030 | } |
25031 | } |
25032 | |
25033 | if (in->tetunsuitable != NULL) { |
25034 | // Execute the user-defined meshing sizing evaluation. |
25035 | if ((*(in->tetunsuitable))(pa, pb, pc, pd, NULL, 0)) { |
25036 | // Calculate the circumcenter of this tet. |
25037 | rhs[0] = 0.5 * dot(vda, vda); |
25038 | rhs[1] = 0.5 * dot(vdb, vdb); |
25039 | rhs[2] = 0.5 * dot(vdc, vdc); |
25040 | lu_solve(A, 3, indx, rhs, 0); |
25041 | for (i = 0; i < 3; i++) ccent[i] = pd[i] + rhs[i]; |
25042 | return 1; |
25043 | } |
25044 | } |
25045 | |
25046 | if (useinsertradius) { |
25047 | // Do not split this tet if the shortest edge is shorter than the |
25048 | // insertion radius of one of its endpoints. |
25049 | triface checkedge; |
25050 | point e1, e2; |
25051 | REAL rrv, smrrv; |
25052 | |
25053 | // Get the shortest edge of this tet. |
25054 | checkedge.tet = chktet->tet; |
25055 | for (i = 0; i < 6; i++) { |
25056 | checkedge.ver = edge2ver[i]; |
25057 | e1 = org(checkedge); |
25058 | e2 = dest(checkedge); |
25059 | elen[i] = distance(e1, e2); |
25060 | if (i == 0) { |
25061 | smlen = elen[i]; |
25062 | j = 0; |
25063 | } else { |
25064 | if (elen[i] < smlen) { |
25065 | smlen = elen[i]; |
25066 | j = i; |
25067 | } |
25068 | } |
25069 | } |
25070 | // Check if the edge is too short. |
25071 | checkedge.ver = edge2ver[j]; |
25072 | // Get the smallest rrv of e1 and e2. |
25073 | // Note: if rrv of e1 and e2 is zero. Do not use it. |
25074 | e1 = org(checkedge); |
25075 | smrrv = getpointinsradius(e1); |
25076 | e2 = dest(checkedge); |
25077 | rrv = getpointinsradius(e2); |
25078 | if (rrv > 0) { |
25079 | if (smrrv > 0) { |
25080 | if (rrv < smrrv) { |
25081 | smrrv = rrv; |
25082 | } |
25083 | } else { |
25084 | smrrv = rrv; |
25085 | } |
25086 | } |
25087 | if (smrrv > 0) { |
25088 | // To avoid rounding error, round smrrv before doing comparison. |
25089 | if ((fabs(smrrv - smlen) / smlen) < b->epsilon) { |
25090 | smrrv = smlen; |
25091 | } |
25092 | if (smrrv > smlen) { |
25093 | return 0; |
25094 | } |
25095 | } |
25096 | } // if (useinsertradius) |
25097 | |
25098 | // Check the radius-edge ratio. Set by -q#. |
25099 | if (b->minratio > 0) { |
25100 | // Calculate the circumcenter and radius of this tet. |
25101 | rhs[0] = 0.5 * dot(vda, vda); |
25102 | rhs[1] = 0.5 * dot(vdb, vdb); |
25103 | rhs[2] = 0.5 * dot(vdc, vdc); |
25104 | lu_solve(A, 3, indx, rhs, 0); |
25105 | for (i = 0; i < 3; i++) ccent[i] = pd[i] + rhs[i]; |
25106 | rd = sqrt(dot(rhs, rhs)); |
25107 | if (!useinsertradius) { |
25108 | // Calculate the shortest edge length. |
25109 | elen[0] = dot(vda, vda); |
25110 | elen[1] = dot(vdb, vdb); |
25111 | elen[2] = dot(vdc, vdc); |
25112 | elen[3] = dot(vab, vab); |
25113 | elen[4] = dot(vbc, vbc); |
25114 | elen[5] = dot(vca, vca); |
25115 | smlen = elen[0]; //sidx = 0; |
25116 | for (i = 1; i < 6; i++) { |
25117 | if (smlen > elen[i]) { |
25118 | smlen = elen[i]; //sidx = i; |
25119 | } |
25120 | } |
25121 | smlen = sqrt(smlen); |
25122 | } |
25123 | D = rd / smlen; |
25124 | if (D > b->minratio) { |
25125 | // A bad radius-edge ratio. |
25126 | return 1; |
25127 | } |
25128 | } |
25129 | |
25130 | // Check the minimum dihedral angle. Set by -qq#. |
25131 | if (b->mindihedral > 0) { |
25132 | // Compute the 4 face normals (N[0], ..., N[3]). |
25133 | for (j = 0; j < 3; j++) { |
25134 | for (i = 0; i < 3; i++) N[j][i] = 0.0; |
25135 | N[j][j] = 1.0; // Positive means the inside direction |
25136 | lu_solve(A, 3, indx, N[j], 0); |
25137 | } |
25138 | for (i = 0; i < 3; i++) N[3][i] = - N[0][i] - N[1][i] - N[2][i]; |
25139 | // Normalize the normals. |
25140 | for (i = 0; i < 4; i++) { |
25141 | L[i] = sqrt(dot(N[i], N[i])); |
25142 | assert(L[i] > 0); |
25143 | //if (L[i] > 0.0) { |
25144 | for (j = 0; j < 3; j++) N[i][j] /= L[i]; |
25145 | //} |
25146 | } |
25147 | // Calculate the six dihedral angles. |
25148 | cosd[0] = -dot(N[0], N[1]); // Edge cd, bd, bc. |
25149 | cosd[1] = -dot(N[0], N[2]); |
25150 | cosd[2] = -dot(N[0], N[3]); |
25151 | cosd[3] = -dot(N[1], N[2]); // Edge ad, ac |
25152 | cosd[4] = -dot(N[1], N[3]); |
25153 | cosd[5] = -dot(N[2], N[3]); // Edge ab |
25154 | // Get the smallest dihedral angle. |
25155 | //maxcosd = mincosd = cosd[0]; |
25156 | maxcosd = cosd[0]; |
25157 | for (i = 1; i < 6; i++) { |
25158 | //if (cosd[i] > maxcosd) maxcosd = cosd[i]; |
25159 | maxcosd = (cosd[i] > maxcosd ? cosd[i] : maxcosd); |
25160 | //mincosd = (cosd[i] < mincosd ? cosd[i] : maxcosd); |
25161 | } |
25162 | if (maxcosd > cosmindihed) { |
25163 | // Calculate the circumcenter of this tet. |
25164 | // A bad dihedral angle. |
25165 | //if ((b->quality & 1) == 0) { |
25166 | rhs[0] = 0.5 * dot(vda, vda); |
25167 | rhs[1] = 0.5 * dot(vdb, vdb); |
25168 | rhs[2] = 0.5 * dot(vdc, vdc); |
25169 | lu_solve(A, 3, indx, rhs, 0); |
25170 | for (i = 0; i < 3; i++) ccent[i] = pd[i] + rhs[i]; |
25171 | //*rd = sqrt(dot(rhs, rhs)); |
25172 | //} |
25173 | return 1; |
25174 | } |
25175 | } |
25176 | |
25177 | return 0; |
25178 | } |
25179 | |
25180 | /////////////////////////////////////////////////////////////////////////////// |
25181 | // // |
25182 | // splittetrahedron() Split a tetrahedron. // |
25183 | // // |
25184 | /////////////////////////////////////////////////////////////////////////////// |
25185 | |
25186 | int tetgenmesh::splittetrahedron(triface* splittet, int qflag, REAL *ccent, |
25187 | int chkencflag) |
25188 | { |
25189 | triface searchtet; |
25190 | face *paryseg; |
25191 | point newpt; |
25192 | badface *bface; |
25193 | insertvertexflags ivf; |
25194 | int splitflag; |
25195 | int i; |
25196 | |
25197 | |
25198 | |
25199 | REAL rv = 0.; // Insertion radius of 'newpt'. |
25200 | |
25201 | makepoint(&newpt, FREEVOLVERTEX); |
25202 | for (i = 0; i < 3; i++) newpt[i] = ccent[i]; |
25203 | |
25204 | if (useinsertradius) { |
25205 | rv = distance(newpt, org(*splittet)); |
25206 | setpointinsradius(newpt, rv); |
25207 | } |
25208 | |
25209 | searchtet = *splittet; |
25210 | ivf.iloc = (int) OUTSIDE; |
25211 | // Use Bowyer-Watson algorithm. Preserve subsegments and subfaces; |
25212 | ivf.bowywat = 3; |
25213 | ivf.lawson = 2; |
25214 | ivf.rejflag = 3; // Do check for encroached segments and subfaces. |
25215 | if (b->metric) { |
25216 | ivf.rejflag |= 4; // Reject it if it lies in some protecting balls. |
25217 | } |
25218 | ivf.chkencflag = chkencflag; |
25219 | ivf.sloc = ivf.sbowywat = 0; // No use. |
25220 | ivf.splitbdflag = 0; // No use. |
25221 | ivf.validflag = 1; |
25222 | ivf.respectbdflag = 1; |
25223 | ivf.assignmeshsize = b->metric; |
25224 | |
25225 | ivf.refineflag = 1; |
25226 | ivf.refinetet = *splittet; |
25227 | |
25228 | |
25229 | if (insertpoint(newpt, &searchtet, NULL, NULL, &ivf)) { |
25230 | // Vertex is inserted. |
25231 | st_volref_count++; |
25232 | if (steinerleft > 0) steinerleft--; |
25233 | if (flipstack != NULL) { |
25234 | flipconstraints fc; |
25235 | fc.chkencflag = chkencflag; |
25236 | fc.enqflag = 2; |
25237 | lawsonflip3d(&fc); |
25238 | unflipqueue->restart(); |
25239 | } |
25240 | return 1; |
25241 | } else { |
25242 | // Point is not inserted. |
25243 | pointdealloc(newpt); |
25244 | // Check if there are encroached segments/subfaces. |
25245 | if (ivf.iloc == (int) ENCSEGMENT) { |
25246 | splitflag = 0; |
25247 | //if (!b->nobisect) { // not -Y option |
25248 | if (!b->nobisect || checkconstraints) { |
25249 | // Select an encroached segment and split it. |
25250 | for (i = 0; i < encseglist->objects; i++) { |
25251 | paryseg = (face *) fastlookup(encseglist, i); |
25252 | if (splitsegment(paryseg, NULL, rv, org(*splittet), NULL, qflag, |
25253 | chkencflag | 3)) { |
25254 | splitflag = 1; // A point is inserted on a segment. |
25255 | break; |
25256 | } |
25257 | } |
25258 | } // if (!b->nobisect) |
25259 | encseglist->restart(); |
25260 | if (splitflag) { |
25261 | // Some segments may need to be repaired. |
25262 | repairencsegs(chkencflag | 3); |
25263 | // Some subfaces may need to be repaired. |
25264 | repairencfacs(chkencflag | 2); |
25265 | // Queue the tet if it is still alive and not queued. |
25266 | if ((splittet->tet != NULL) && (splittet->tet[4] != NULL)) { |
25267 | enqueuetetrahedron(splittet); |
25268 | } |
25269 | } |
25270 | return splitflag; |
25271 | } else if (ivf.iloc == (int) ENCSUBFACE) { |
25272 | splitflag = 0; |
25273 | //if (!b->nobisect) { // not -Y option |
25274 | if (!b->nobisect || checkconstraints) { |
25275 | // Select an encroached subface and split it. |
25276 | for (i = 0; i < encshlist->objects; i++) { |
25277 | bface = (badface *) fastlookup(encshlist, i); |
25278 | if (splitsubface(&(bface->ss), NULL, org(*splittet), qflag, |
25279 | bface->cent, chkencflag | 2)){ |
25280 | splitflag = 1; // A point is inserted on a subface or a segment. |
25281 | break; |
25282 | } |
25283 | } |
25284 | } // if (!b->nobisect) |
25285 | encshlist->restart(); |
25286 | if (splitflag) { |
25287 | assert(badsubsegs->items == 0l); |
25288 | // Some subfaces may need to be repaired. |
25289 | repairencfacs(chkencflag | 2); |
25290 | // Queue the tet if it is still alive. |
25291 | if ((splittet->tet != NULL) && (splittet->tet[4] != NULL)) { |
25292 | enqueuetetrahedron(splittet); |
25293 | } |
25294 | } |
25295 | return splitflag; |
25296 | } |
25297 | return 0; |
25298 | } |
25299 | } |
25300 | |
25301 | /////////////////////////////////////////////////////////////////////////////// |
25302 | // // |
25303 | // repairbadtets() Repair bad quality tetrahedra. // |
25304 | // // |
25305 | /////////////////////////////////////////////////////////////////////////////// |
25306 | |
25307 | void tetgenmesh::repairbadtets(int chkencflag) |
25308 | { |
25309 | triface *bface; |
25310 | REAL ccent[3]; |
25311 | int qflag = 0; |
25312 | |
25313 | |
25314 | // Loop until the pool 'badsubfacs' is empty. Note that steinerleft == -1 |
25315 | // if an unlimited number of Steiner points is allowed. |
25316 | while ((badtetrahedrons->items > 0) && (steinerleft != 0)) { |
25317 | badtetrahedrons->traversalinit(); |
25318 | bface = (triface *) badtetrahedrons->traverse(); |
25319 | while ((bface != NULL) && (steinerleft != 0)) { |
25320 | // Skip a deleted element. |
25321 | if (bface->ver >= 0) { |
25322 | // A queued tet may have been deleted. |
25323 | if (!isdeadtet(*bface)) { |
25324 | // A queued tet may have been processed. |
25325 | if (marktest2ed(*bface)) { |
25326 | unmarktest2(*bface); |
25327 | if (checktet4split(bface, qflag, ccent)) { |
25328 | splittetrahedron(bface, qflag, ccent, chkencflag); |
25329 | } |
25330 | } |
25331 | } |
25332 | bface->ver = -1; // Signal it as a deleted element. |
25333 | badtetrahedrons->dealloc((void *) bface); |
25334 | } |
25335 | bface = (triface *) badtetrahedrons->traverse(); |
25336 | } |
25337 | } |
25338 | |
25339 | if (badtetrahedrons->items > 0) { |
25340 | if (steinerleft == 0) { |
25341 | if (b->verbose) { |
25342 | printf("The desired number of Steiner points is reached.\n" ); |
25343 | } |
25344 | } else { |
25345 | assert(0); // Unknown case. |
25346 | } |
25347 | // Unmark all queued tet. |
25348 | badtetrahedrons->traversalinit(); |
25349 | bface = (triface *) badtetrahedrons->traverse(); |
25350 | while (bface != NULL) { |
25351 | // Skip a deleted element. |
25352 | if (bface->ver >= 0) { |
25353 | if (!isdeadtet(*bface)) { |
25354 | if (marktest2ed(*bface)) { |
25355 | unmarktest2(*bface); |
25356 | } |
25357 | } |
25358 | } |
25359 | bface = (triface *) badtetrahedrons->traverse(); |
25360 | } |
25361 | // Clear the pool. |
25362 | badtetrahedrons->restart(); |
25363 | } |
25364 | } |
25365 | |
25366 | /////////////////////////////////////////////////////////////////////////////// |
25367 | // // |
25368 | // delaunayrefinement() Refine the mesh by Delaunay refinement. // |
25369 | // // |
25370 | /////////////////////////////////////////////////////////////////////////////// |
25371 | |
25372 | void tetgenmesh::delaunayrefinement() |
25373 | { |
25374 | triface checktet; |
25375 | face checksh; |
25376 | face checkseg; |
25377 | long steinercount; |
25378 | int chkencflag; |
25379 | |
25380 | long bak_segref_count, bak_facref_count, bak_volref_count; |
25381 | long bak_flipcount = flip23count + flip32count + flip44count; |
25382 | |
25383 | if (!b->quiet) { |
25384 | printf("Refining mesh...\n" ); |
25385 | } |
25386 | |
25387 | if (b->verbose) { |
25388 | printf(" Min radiu-edge ratio = %g.\n" , b->minratio); |
25389 | printf(" Min dihedral angle = %g.\n" , b->mindihedral); |
25390 | //printf(" Min Edge length = %g.\n", b->minedgelength); |
25391 | } |
25392 | |
25393 | steinerleft = b->steinerleft; // Upperbound of # Steiner points (by -S#). |
25394 | if (steinerleft > 0) { |
25395 | // Check if we've already used up the given number of Steiner points. |
25396 | steinercount = st_segref_count + st_facref_count + st_volref_count; |
25397 | if (steinercount < steinerleft) { |
25398 | steinerleft -= steinercount; |
25399 | } else { |
25400 | if (!b->quiet) { |
25401 | printf("\nWarning: " ); |
25402 | printf("The desired number of Steiner points (%d) has reached.\n\n" , |
25403 | b->steinerleft); |
25404 | } |
25405 | return; // No more Steiner points. |
25406 | } |
25407 | } |
25408 | |
25409 | if (useinsertradius) { |
25410 | if ((b->plc && b->nobisect) || b->refine) { // '-pY' or '-r' option. |
25411 | makesegmentendpointsmap(); |
25412 | } |
25413 | makefacetverticesmap(); |
25414 | } |
25415 | |
25416 | |
25417 | encseglist = new arraypool(sizeof(face), 8); |
25418 | encshlist = new arraypool(sizeof(badface), 8); |
25419 | |
25420 | |
25421 | //if (!b->nobisect) { // if no '-Y' option |
25422 | if (!b->nobisect || checkconstraints) { |
25423 | if (b->verbose) { |
25424 | printf(" Splitting encroached subsegments.\n" ); |
25425 | } |
25426 | |
25427 | chkencflag = 1; // Only check encroaching subsegments. |
25428 | steinercount = points->items; |
25429 | |
25430 | // Initialize the pool of encroached subsegments. |
25431 | badsubsegs = new memorypool(sizeof(face), b->shellfaceperblock, |
25432 | sizeof(void *), 0); |
25433 | |
25434 | // Add all segments into the pool. |
25435 | subsegs->traversalinit(); |
25436 | checkseg.sh = shellfacetraverse(subsegs); |
25437 | while (checkseg.sh != (shellface *) NULL) { |
25438 | enqueuesubface(badsubsegs, &checkseg); |
25439 | checkseg.sh = shellfacetraverse(subsegs); |
25440 | } |
25441 | |
25442 | // Split all encroached segments. |
25443 | repairencsegs(chkencflag); |
25444 | |
25445 | if (b->verbose) { |
25446 | printf(" Added %ld Steiner points.\n" , points->items - steinercount); |
25447 | } |
25448 | |
25449 | if (b->reflevel > 1) { // '-D2' option |
25450 | if (b->verbose) { |
25451 | printf(" Splitting encroached subfaces.\n" ); |
25452 | } |
25453 | |
25454 | chkencflag = 2; // Only check encroaching subfaces. |
25455 | steinercount = points->items; |
25456 | bak_segref_count = st_segref_count; |
25457 | bak_facref_count = st_facref_count; |
25458 | |
25459 | // Initialize the pool of encroached subfaces. |
25460 | badsubfacs = new memorypool(sizeof(face), b->shellfaceperblock, |
25461 | sizeof(void *), 0); |
25462 | |
25463 | // Add all subfaces into the pool. |
25464 | subfaces->traversalinit(); |
25465 | checksh.sh = shellfacetraverse(subfaces); |
25466 | while (checksh.sh != (shellface *) NULL) { |
25467 | enqueuesubface(badsubfacs, &checksh); |
25468 | checksh.sh = shellfacetraverse(subfaces); |
25469 | } |
25470 | |
25471 | // Split all encroached subfaces. |
25472 | repairencfacs(chkencflag); |
25473 | |
25474 | if (b->verbose) { |
25475 | printf(" Added %ld (%ld,%ld) Steiner points.\n" , |
25476 | points->items-steinercount, st_segref_count-bak_segref_count, |
25477 | st_facref_count-bak_facref_count); |
25478 | } |
25479 | } // if (b->reflevel > 1) |
25480 | } // if (!b->nobisect) |
25481 | |
25482 | if (b->reflevel > 2) { // '-D3' option (The default option) |
25483 | if (b->verbose) { |
25484 | printf(" Splitting bad quality tets.\n" ); |
25485 | } |
25486 | |
25487 | chkencflag = 4; // Only check tetrahedra. |
25488 | steinercount = points->items; |
25489 | bak_segref_count = st_segref_count; |
25490 | bak_facref_count = st_facref_count; |
25491 | bak_volref_count = st_volref_count; |
25492 | |
25493 | // The cosine value of the min dihedral angle (-qq) for tetrahedra. |
25494 | cosmindihed = cos(b->mindihedral / 180.0 * PI); |
25495 | |
25496 | // Initialize the pool of bad quality tetrahedra. |
25497 | badtetrahedrons = new memorypool(sizeof(triface), b->tetrahedraperblock, |
25498 | sizeof(void *), 0); |
25499 | // Add all tetrahedra (no hull tets) into the pool. |
25500 | tetrahedrons->traversalinit(); |
25501 | checktet.tet = tetrahedrontraverse(); |
25502 | while (checktet.tet != NULL) { |
25503 | enqueuetetrahedron(&checktet); |
25504 | checktet.tet = tetrahedrontraverse(); |
25505 | } |
25506 | |
25507 | // Split all bad quality tetrahedra. |
25508 | repairbadtets(chkencflag); |
25509 | |
25510 | if (b->verbose) { |
25511 | printf(" Added %ld (%ld,%ld,%ld) Steiner points.\n" , |
25512 | points->items - steinercount, |
25513 | st_segref_count - bak_segref_count, |
25514 | st_facref_count - bak_facref_count, |
25515 | st_volref_count - bak_volref_count); |
25516 | } |
25517 | } // if (b->reflevel > 2) |
25518 | |
25519 | if (b->verbose) { |
25520 | if (flip23count + flip32count + flip44count > bak_flipcount) { |
25521 | printf(" Performed %ld flips.\n" , flip23count + flip32count + |
25522 | flip44count - bak_flipcount); |
25523 | } |
25524 | } |
25525 | |
25526 | if (steinerleft == 0) { |
25527 | if (!b->quiet) { |
25528 | printf("\nWarnning: " ); |
25529 | printf("The desired number of Steiner points (%d) is reached.\n\n" , |
25530 | b->steinerleft); |
25531 | } |
25532 | } |
25533 | |
25534 | |
25535 | delete encseglist; |
25536 | delete encshlist; |
25537 | |
25538 | //if (!b->nobisect) { |
25539 | if (!b->nobisect || checkconstraints) { |
25540 | totalworkmemory += (badsubsegs->maxitems * badsubsegs->itembytes); |
25541 | delete badsubsegs; |
25542 | if (b->reflevel > 1) { |
25543 | totalworkmemory += (badsubfacs->maxitems * badsubfacs->itembytes); |
25544 | delete badsubfacs; |
25545 | } |
25546 | } |
25547 | if (b->reflevel > 2) { |
25548 | totalworkmemory += (badtetrahedrons->maxitems*badtetrahedrons->itembytes); |
25549 | delete badtetrahedrons; |
25550 | } |
25551 | } |
25552 | |
25553 | //// //// |
25554 | //// //// |
25555 | //// refine_cxx /////////////////////////////////////////////////////////////// |
25556 | |
25557 | //// optimize_cxx ///////////////////////////////////////////////////////////// |
25558 | //// //// |
25559 | //// //// |
25560 | |
25561 | /////////////////////////////////////////////////////////////////////////////// |
25562 | // // |
25563 | // lawsonflip3d() A three-dimensional Lawson's algorithm. // |
25564 | // // |
25565 | /////////////////////////////////////////////////////////////////////////////// |
25566 | |
25567 | long tetgenmesh::lawsonflip3d(flipconstraints *fc) |
25568 | { |
25569 | triface fliptets[5], neightet, hulltet; |
25570 | face checksh, casingout; |
25571 | badface *popface, *bface; |
25572 | point pd, pe, *pts; |
25573 | REAL sign, ori; |
25574 | long flipcount, totalcount = 0l; |
25575 | long sliver_peels = 0l; |
25576 | int t1ver; |
25577 | int i; |
25578 | |
25579 | |
25580 | while (1) { |
25581 | |
25582 | if (b->verbose > 2) { |
25583 | printf(" Lawson flip %ld faces.\n" , flippool->items); |
25584 | } |
25585 | flipcount = 0l; |
25586 | |
25587 | while (flipstack != (badface *) NULL) { |
25588 | // Pop a face from the stack. |
25589 | popface = flipstack; |
25590 | fliptets[0] = popface->tt; |
25591 | flipstack = flipstack->nextitem; // The next top item in stack. |
25592 | flippool->dealloc((void *) popface); |
25593 | |
25594 | // Skip it if it is a dead tet (destroyed by previous flips). |
25595 | if (isdeadtet(fliptets[0])) continue; |
25596 | // Skip it if it is not the same tet as we saved. |
25597 | if (!facemarked(fliptets[0])) continue; |
25598 | |
25599 | unmarkface(fliptets[0]); |
25600 | |
25601 | if (ishulltet(fliptets[0])) continue; |
25602 | |
25603 | fsym(fliptets[0], fliptets[1]); |
25604 | if (ishulltet(fliptets[1])) { |
25605 | if (nonconvex) { |
25606 | // Check if 'fliptets[0]' it is a hull sliver. |
25607 | tspivot(fliptets[0], checksh); |
25608 | for (i = 0; i < 3; i++) { |
25609 | if (!isshsubseg(checksh)) { |
25610 | spivot(checksh, casingout); |
25611 | //assert(casingout.sh != NULL); |
25612 | if (sorg(checksh) != sdest(casingout)) sesymself(casingout); |
25613 | stpivot(casingout, neightet); |
25614 | if (neightet.tet == fliptets[0].tet) { |
25615 | // Found a hull sliver 'neightet'. Let it be [e,d,a,b], where |
25616 | // [e,d,a] and [d,e,b] are hull faces. |
25617 | edestoppo(neightet, hulltet); // [a,b,e,d] |
25618 | fsymself(hulltet); // [b,a,e,#] |
25619 | if (oppo(hulltet) == dummypoint) { |
25620 | pe = org(neightet); |
25621 | if ((pointtype(pe) == FREEFACETVERTEX) || |
25622 | (pointtype(pe) == FREESEGVERTEX)) { |
25623 | removevertexbyflips(pe); |
25624 | } |
25625 | } else { |
25626 | eorgoppo(neightet, hulltet); // [b,a,d,e] |
25627 | fsymself(hulltet); // [a,b,d,#] |
25628 | if (oppo(hulltet) == dummypoint) { |
25629 | pd = dest(neightet); |
25630 | if ((pointtype(pd) == FREEFACETVERTEX) || |
25631 | (pointtype(pd) == FREESEGVERTEX)) { |
25632 | removevertexbyflips(pd); |
25633 | } |
25634 | } else { |
25635 | // Perform a 3-to-2 flip to remove the sliver. |
25636 | fliptets[0] = neightet; // [e,d,a,b] |
25637 | fnext(fliptets[0], fliptets[1]); // [e,d,b,c] |
25638 | fnext(fliptets[1], fliptets[2]); // [e,d,c,a] |
25639 | flip32(fliptets, 1, fc); |
25640 | // Update counters. |
25641 | flip32count--; |
25642 | flip22count--; |
25643 | sliver_peels++; |
25644 | if (fc->remove_ndelaunay_edge) { |
25645 | // Update the volume (must be decreased). |
25646 | //assert(fc->tetprism_vol_sum <= 0); |
25647 | tetprism_vol_sum += fc->tetprism_vol_sum; |
25648 | fc->tetprism_vol_sum = 0.0; // Clear it. |
25649 | } |
25650 | } |
25651 | } |
25652 | break; |
25653 | } // if (neightet.tet == fliptets[0].tet) |
25654 | } // if (!isshsubseg(checksh)) |
25655 | senextself(checksh); |
25656 | } // i |
25657 | } // if (nonconvex) |
25658 | continue; |
25659 | } |
25660 | |
25661 | if (checksubfaceflag) { |
25662 | // Do not flip if it is a subface. |
25663 | if (issubface(fliptets[0])) continue; |
25664 | } |
25665 | |
25666 | // Test whether the face is locally Delaunay or not. |
25667 | pts = (point *) fliptets[1].tet; |
25668 | sign = insphere_s(pts[4], pts[5], pts[6], pts[7], oppo(fliptets[0])); |
25669 | |
25670 | if (sign < 0) { |
25671 | // A non-Delaunay face. Try to flip it. |
25672 | pd = oppo(fliptets[0]); |
25673 | pe = oppo(fliptets[1]); |
25674 | |
25675 | // Check the convexity of its three edges. Stop checking either a |
25676 | // locally non-convex edge (ori < 0) or a flat edge (ori = 0) is |
25677 | // encountered, and 'fliptet' represents that edge. |
25678 | for (i = 0; i < 3; i++) { |
25679 | ori = orient3d(org(fliptets[0]), dest(fliptets[0]), pd, pe); |
25680 | if (ori <= 0) break; |
25681 | enextself(fliptets[0]); |
25682 | } |
25683 | |
25684 | if (ori > 0) { |
25685 | // A 2-to-3 flip is found. |
25686 | // [0] [a,b,c,d], |
25687 | // [1] [b,a,c,e]. no dummypoint. |
25688 | flip23(fliptets, 0, fc); |
25689 | flipcount++; |
25690 | if (fc->remove_ndelaunay_edge) { |
25691 | // Update the volume (must be decreased). |
25692 | //assert(fc->tetprism_vol_sum <= 0); |
25693 | tetprism_vol_sum += fc->tetprism_vol_sum; |
25694 | fc->tetprism_vol_sum = 0.0; // Clear it. |
25695 | } |
25696 | continue; |
25697 | } else { // ori <= 0 |
25698 | // The edge ('fliptets[0]' = [a',b',c',d]) is non-convex or flat, |
25699 | // where the edge [a',b'] is one of [a,b], [b,c], and [c,a]. |
25700 | if (checksubsegflag) { |
25701 | // Do not flip if it is a segment. |
25702 | if (issubseg(fliptets[0])) continue; |
25703 | } |
25704 | // Check if there are three or four tets sharing at this edge. |
25705 | esymself(fliptets[0]); // [b,a,d,c] |
25706 | for (i = 0; i < 3; i++) { |
25707 | fnext(fliptets[i], fliptets[i+1]); |
25708 | } |
25709 | if (fliptets[3].tet == fliptets[0].tet) { |
25710 | // A 3-to-2 flip is found. (No hull tet.) |
25711 | flip32(fliptets, 0, fc); |
25712 | flipcount++; |
25713 | if (fc->remove_ndelaunay_edge) { |
25714 | // Update the volume (must be decreased). |
25715 | //assert(fc->tetprism_vol_sum <= 0); |
25716 | tetprism_vol_sum += fc->tetprism_vol_sum; |
25717 | fc->tetprism_vol_sum = 0.0; // Clear it. |
25718 | } |
25719 | continue; |
25720 | } else { |
25721 | // There are more than 3 tets at this edge. |
25722 | fnext(fliptets[3], fliptets[4]); |
25723 | if (fliptets[4].tet == fliptets[0].tet) { |
25724 | // There are exactly 4 tets at this edge. |
25725 | if (nonconvex) { |
25726 | if (apex(fliptets[3]) == dummypoint) { |
25727 | // This edge is locally non-convex on the hull. |
25728 | // It can be removed by a 4-to-4 flip. |
25729 | ori = 0; |
25730 | } |
25731 | } // if (nonconvex) |
25732 | if (ori == 0) { |
25733 | // A 4-to-4 flip is found. (Two hull tets may be involved.) |
25734 | // Current tets in 'fliptets': |
25735 | // [0] [b,a,d,c] (d may be newpt) |
25736 | // [1] [b,a,c,e] |
25737 | // [2] [b,a,e,f] (f may be dummypoint) |
25738 | // [3] [b,a,f,d] |
25739 | esymself(fliptets[0]); // [a,b,c,d] |
25740 | // A 2-to-3 flip replaces face [a,b,c] by edge [e,d]. |
25741 | // This creates a degenerate tet [e,d,a,b] (tmpfliptets[0]). |
25742 | // It will be removed by the followed 3-to-2 flip. |
25743 | flip23(fliptets, 0, fc); // No hull tet. |
25744 | fnext(fliptets[3], fliptets[1]); |
25745 | fnext(fliptets[1], fliptets[2]); |
25746 | // Current tets in 'fliptets': |
25747 | // [0] [...] |
25748 | // [1] [b,a,d,e] (degenerated, d may be new point). |
25749 | // [2] [b,a,e,f] (f may be dummypoint) |
25750 | // [3] [b,a,f,d] |
25751 | // A 3-to-2 flip replaces edge [b,a] by face [d,e,f]. |
25752 | // Hull tets may be involved (f may be dummypoint). |
25753 | flip32(&(fliptets[1]), (apex(fliptets[3]) == dummypoint), fc); |
25754 | flipcount++; |
25755 | flip23count--; |
25756 | flip32count--; |
25757 | flip44count++; |
25758 | if (fc->remove_ndelaunay_edge) { |
25759 | // Update the volume (must be decreased). |
25760 | //assert(fc->tetprism_vol_sum <= 0); |
25761 | tetprism_vol_sum += fc->tetprism_vol_sum; |
25762 | fc->tetprism_vol_sum = 0.0; // Clear it. |
25763 | } |
25764 | continue; |
25765 | } // if (ori == 0) |
25766 | } |
25767 | } |
25768 | } // if (ori <= 0) |
25769 | |
25770 | // This non-Delaunay face is unflippable. Save it. |
25771 | unflipqueue->newindex((void **) &bface); |
25772 | bface->tt = fliptets[0]; |
25773 | bface->forg = org(fliptets[0]); |
25774 | bface->fdest = dest(fliptets[0]); |
25775 | bface->fapex = apex(fliptets[0]); |
25776 | } // if (sign < 0) |
25777 | } // while (flipstack) |
25778 | |
25779 | if (b->verbose > 2) { |
25780 | if (flipcount > 0) { |
25781 | printf(" Performed %ld flips.\n" , flipcount); |
25782 | } |
25783 | } |
25784 | // Accumulate the counter of flips. |
25785 | totalcount += flipcount; |
25786 | |
25787 | assert(flippool->items == 0l); |
25788 | // Return if no unflippable faces left. |
25789 | if (unflipqueue->objects == 0l) break; |
25790 | // Return if no flip has been performed. |
25791 | if (flipcount == 0l) break; |
25792 | |
25793 | // Try to flip the unflippable faces. |
25794 | for (i = 0; i < unflipqueue->objects; i++) { |
25795 | bface = (badface *) fastlookup(unflipqueue, i); |
25796 | if (!isdeadtet(bface->tt) && |
25797 | (org(bface->tt) == bface->forg) && |
25798 | (dest(bface->tt) == bface->fdest) && |
25799 | (apex(bface->tt) == bface->fapex)) { |
25800 | flippush(flipstack, &(bface->tt)); |
25801 | } |
25802 | } |
25803 | unflipqueue->restart(); |
25804 | |
25805 | } // while (1) |
25806 | |
25807 | if (b->verbose > 2) { |
25808 | if (totalcount > 0) { |
25809 | printf(" Performed %ld flips.\n" , totalcount); |
25810 | } |
25811 | if (sliver_peels > 0) { |
25812 | printf(" Removed %ld hull slivers.\n" , sliver_peels); |
25813 | } |
25814 | if (unflipqueue->objects > 0l) { |
25815 | printf(" %ld unflippable edges remained.\n" , unflipqueue->objects); |
25816 | } |
25817 | } |
25818 | |
25819 | return totalcount + sliver_peels; |
25820 | } |
25821 | |
25822 | /////////////////////////////////////////////////////////////////////////////// |
25823 | // // |
25824 | // recoverdelaunay() Recovery the locally Delaunay property. // |
25825 | // // |
25826 | /////////////////////////////////////////////////////////////////////////////// |
25827 | |
25828 | void tetgenmesh::recoverdelaunay() |
25829 | { |
25830 | arraypool *flipqueue, *nextflipqueue, *swapqueue; |
25831 | triface tetloop, neightet, *parytet; |
25832 | badface *bface, *parybface; |
25833 | point *ppt; |
25834 | flipconstraints fc; |
25835 | int i, j; |
25836 | |
25837 | if (!b->quiet) { |
25838 | printf("Recovering Delaunayness...\n" ); |
25839 | } |
25840 | |
25841 | tetprism_vol_sum = 0.0; // Initialize it. |
25842 | |
25843 | // Put all interior faces of the mesh into 'flipstack'. |
25844 | tetrahedrons->traversalinit(); |
25845 | tetloop.tet = tetrahedrontraverse(); |
25846 | while (tetloop.tet != NULL) { |
25847 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
25848 | decode(tetloop.tet[tetloop.ver], neightet); |
25849 | if (!facemarked(neightet)) { |
25850 | flippush(flipstack, &tetloop); |
25851 | } |
25852 | } |
25853 | ppt = (point *) &(tetloop.tet[4]); |
25854 | tetprism_vol_sum += tetprismvol(ppt[0], ppt[1], ppt[2], ppt[3]); |
25855 | tetloop.tet = tetrahedrontraverse(); |
25856 | } |
25857 | |
25858 | // Calulate a relatively lower bound for small improvement. |
25859 | // Used to avoid rounding error in volume calculation. |
25860 | fc.bak_tetprism_vol = tetprism_vol_sum * b->epsilon * 1e-3; |
25861 | |
25862 | if (b->verbose) { |
25863 | printf(" Initial obj = %.17g\n" , tetprism_vol_sum); |
25864 | } |
25865 | |
25866 | if (b->verbose > 1) { |
25867 | printf(" Recover Delaunay [Lawson] : %ld\n" , flippool->items); |
25868 | } |
25869 | |
25870 | // First only use the basic Lawson's flip. |
25871 | fc.remove_ndelaunay_edge = 1; |
25872 | fc.enqflag = 2; |
25873 | |
25874 | lawsonflip3d(&fc); |
25875 | |
25876 | if (b->verbose > 1) { |
25877 | printf(" obj (after Lawson) = %.17g\n" , tetprism_vol_sum); |
25878 | } |
25879 | |
25880 | if (unflipqueue->objects == 0l) { |
25881 | return; // The mesh is Delaunay. |
25882 | } |
25883 | |
25884 | fc.unflip = 1; // Unflip if the edge is not flipped. |
25885 | fc.collectnewtets = 1; // new tets are returned in 'cavetetlist'. |
25886 | fc.enqflag = 0; |
25887 | |
25888 | autofliplinklevel = 1; // Init level. |
25889 | b->fliplinklevel = -1; // No fixed level. |
25890 | |
25891 | // For efficiency reason, we limit the maximium size of the edge star. |
25892 | int bakmaxflipstarsize = b->flipstarsize; |
25893 | b->flipstarsize = 10; // default |
25894 | |
25895 | flipqueue = new arraypool(sizeof(badface), 10); |
25896 | nextflipqueue = new arraypool(sizeof(badface), 10); |
25897 | |
25898 | // Swap the two flip queues. |
25899 | swapqueue = flipqueue; |
25900 | flipqueue = unflipqueue; |
25901 | unflipqueue = swapqueue; |
25902 | |
25903 | while (flipqueue->objects > 0l) { |
25904 | |
25905 | if (b->verbose > 1) { |
25906 | printf(" Recover Delaunay [level = %2d] #: %ld.\n" , |
25907 | autofliplinklevel, flipqueue->objects); |
25908 | } |
25909 | |
25910 | for (i = 0; i < flipqueue->objects; i++) { |
25911 | bface = (badface *) fastlookup(flipqueue, i); |
25912 | if (getedge(bface->forg, bface->fdest, &bface->tt)) { |
25913 | if (removeedgebyflips(&(bface->tt), &fc) == 2) { |
25914 | tetprism_vol_sum += fc.tetprism_vol_sum; |
25915 | fc.tetprism_vol_sum = 0.0; // Clear it. |
25916 | // Queue new faces for flips. |
25917 | for (j = 0; j < cavetetlist->objects; j++) { |
25918 | parytet = (triface *) fastlookup(cavetetlist, j); |
25919 | // A queued new tet may be dead. |
25920 | if (!isdeadtet(*parytet)) { |
25921 | for (parytet->ver = 0; parytet->ver < 4; parytet->ver++) { |
25922 | // Avoid queue a face twice. |
25923 | decode(parytet->tet[parytet->ver], neightet); |
25924 | if (!facemarked(neightet)) { |
25925 | flippush(flipstack, parytet); |
25926 | } |
25927 | } // parytet->ver |
25928 | } |
25929 | } // j |
25930 | cavetetlist->restart(); |
25931 | // Remove locally non-Delaunay faces. New non-Delaunay edges |
25932 | // may be found. They are saved in 'unflipqueue'. |
25933 | fc.enqflag = 2; |
25934 | lawsonflip3d(&fc); |
25935 | fc.enqflag = 0; |
25936 | // There may be unflipable faces. Add them in flipqueue. |
25937 | for (j = 0; j < unflipqueue->objects; j++) { |
25938 | bface = (badface *) fastlookup(unflipqueue, j); |
25939 | flipqueue->newindex((void **) &parybface); |
25940 | *parybface = *bface; |
25941 | } |
25942 | unflipqueue->restart(); |
25943 | } else { |
25944 | // Unable to remove this edge. Save it. |
25945 | nextflipqueue->newindex((void **) &parybface); |
25946 | *parybface = *bface; |
25947 | // Normally, it should be zero. |
25948 | //assert(fc.tetprism_vol_sum == 0.0); |
25949 | // However, due to rounding errors, a tiny value may appear. |
25950 | fc.tetprism_vol_sum = 0.0; |
25951 | } |
25952 | } |
25953 | } // i |
25954 | |
25955 | if (b->verbose > 1) { |
25956 | printf(" obj (after level %d) = %.17g.\n" , autofliplinklevel, |
25957 | tetprism_vol_sum); |
25958 | } |
25959 | flipqueue->restart(); |
25960 | |
25961 | // Swap the two flip queues. |
25962 | swapqueue = flipqueue; |
25963 | flipqueue = nextflipqueue; |
25964 | nextflipqueue = swapqueue; |
25965 | |
25966 | if (flipqueue->objects > 0l) { |
25967 | // default 'b->delmaxfliplevel' is 1. |
25968 | if (autofliplinklevel >= b->delmaxfliplevel) { |
25969 | // For efficiency reason, we do not search too far. |
25970 | break; |
25971 | } |
25972 | autofliplinklevel+=b->fliplinklevelinc; |
25973 | } |
25974 | } // while (flipqueue->objects > 0l) |
25975 | |
25976 | if (flipqueue->objects > 0l) { |
25977 | if (b->verbose > 1) { |
25978 | printf(" %ld non-Delaunay edges remained.\n" , flipqueue->objects); |
25979 | } |
25980 | } |
25981 | |
25982 | if (b->verbose) { |
25983 | printf(" Final obj = %.17g\n" , tetprism_vol_sum); |
25984 | } |
25985 | |
25986 | b->flipstarsize = bakmaxflipstarsize; |
25987 | delete flipqueue; |
25988 | delete nextflipqueue; |
25989 | } |
25990 | |
25991 | /////////////////////////////////////////////////////////////////////////////// |
25992 | // // |
25993 | // gettetrahedron() Get a tetrahedron which have the given vertices. // |
25994 | // // |
25995 | /////////////////////////////////////////////////////////////////////////////// |
25996 | |
25997 | int tetgenmesh::gettetrahedron(point pa, point pb, point pc, point pd, |
25998 | triface *searchtet) |
25999 | { |
26000 | triface spintet; |
26001 | int t1ver; |
26002 | |
26003 | if (getedge(pa, pb, searchtet)) { |
26004 | spintet = *searchtet; |
26005 | while (1) { |
26006 | if (apex(spintet) == pc) { |
26007 | *searchtet = spintet; |
26008 | break; |
26009 | } |
26010 | fnextself(spintet); |
26011 | if (spintet.tet == searchtet->tet) break; |
26012 | } |
26013 | if (apex(*searchtet) == pc) { |
26014 | if (oppo(*searchtet) == pd) { |
26015 | return 1; |
26016 | } else { |
26017 | fsymself(*searchtet); |
26018 | if (oppo(*searchtet) == pd) { |
26019 | return 1; |
26020 | } |
26021 | } |
26022 | } |
26023 | } |
26024 | |
26025 | return 0; |
26026 | } |
26027 | |
26028 | /////////////////////////////////////////////////////////////////////////////// |
26029 | // // |
26030 | // improvequalitybyflips() Improve the mesh quality by flips. // |
26031 | // // |
26032 | /////////////////////////////////////////////////////////////////////////////// |
26033 | |
26034 | long tetgenmesh::improvequalitybyflips() |
26035 | { |
26036 | arraypool *flipqueue, *nextflipqueue, *swapqueue; |
26037 | badface *bface, *parybface; |
26038 | triface *parytet; |
26039 | point *ppt; |
26040 | flipconstraints fc; |
26041 | REAL *cosdd, ncosdd[6], maxdd; |
26042 | long totalremcount, remcount; |
26043 | int remflag; |
26044 | int n, i, j, k; |
26045 | |
26046 | //assert(unflipqueue->objects > 0l); |
26047 | flipqueue = new arraypool(sizeof(badface), 10); |
26048 | nextflipqueue = new arraypool(sizeof(badface), 10); |
26049 | |
26050 | // Backup flip edge options. |
26051 | int bakautofliplinklevel = autofliplinklevel; |
26052 | int bakfliplinklevel = b->fliplinklevel; |
26053 | int bakmaxflipstarsize = b->flipstarsize; |
26054 | |
26055 | // Set flip edge options. |
26056 | autofliplinklevel = 1; |
26057 | b->fliplinklevel = -1; |
26058 | b->flipstarsize = 10; // b->optmaxflipstarsize; |
26059 | |
26060 | fc.remove_large_angle = 1; |
26061 | fc.unflip = 1; |
26062 | fc.collectnewtets = 1; |
26063 | fc.checkflipeligibility = 1; |
26064 | |
26065 | totalremcount = 0l; |
26066 | |
26067 | // Swap the two flip queues. |
26068 | swapqueue = flipqueue; |
26069 | flipqueue = unflipqueue; |
26070 | unflipqueue = swapqueue; |
26071 | |
26072 | while (flipqueue->objects > 0l) { |
26073 | |
26074 | remcount = 0l; |
26075 | |
26076 | while (flipqueue->objects > 0l) { |
26077 | if (b->verbose > 1) { |
26078 | printf(" Improving mesh qualiy by flips [%d]#: %ld.\n" , |
26079 | autofliplinklevel, flipqueue->objects); |
26080 | } |
26081 | |
26082 | for (k = 0; k < flipqueue->objects; k++) { |
26083 | bface = (badface *) fastlookup(flipqueue, k); |
26084 | if (gettetrahedron(bface->forg, bface->fdest, bface->fapex, |
26085 | bface->foppo, &bface->tt)) { |
26086 | //assert(!ishulltet(bface->tt)); |
26087 | // There are bad dihedral angles in this tet. |
26088 | if (bface->tt.ver != 11) { |
26089 | // The dihedral angles are permuted. |
26090 | // Here we simply re-compute them. Slow!!. |
26091 | ppt = (point *) & (bface->tt.tet[4]); |
26092 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent, |
26093 | &bface->key, NULL); |
26094 | bface->forg = ppt[0]; |
26095 | bface->fdest = ppt[1]; |
26096 | bface->fapex = ppt[2]; |
26097 | bface->foppo = ppt[3]; |
26098 | bface->tt.ver = 11; |
26099 | } |
26100 | if (bface->key == 0) { |
26101 | // Re-comput the quality values. Due to smoothing operations. |
26102 | ppt = (point *) & (bface->tt.tet[4]); |
26103 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent, |
26104 | &bface->key, NULL); |
26105 | } |
26106 | cosdd = bface->cent; |
26107 | remflag = 0; |
26108 | for (i = 0; (i < 6) && !remflag; i++) { |
26109 | if (cosdd[i] < cosmaxdihed) { |
26110 | // Found a large dihedral angle. |
26111 | bface->tt.ver = edge2ver[i]; // Go to the edge. |
26112 | fc.cosdihed_in = cosdd[i]; |
26113 | fc.cosdihed_out = 0.0; // 90 degree. |
26114 | n = removeedgebyflips(&(bface->tt), &fc); |
26115 | if (n == 2) { |
26116 | // Edge is flipped. |
26117 | remflag = 1; |
26118 | if (fc.cosdihed_out < cosmaxdihed) { |
26119 | // Queue new bad tets for further improvements. |
26120 | for (j = 0; j < cavetetlist->objects; j++) { |
26121 | parytet = (triface *) fastlookup(cavetetlist, j); |
26122 | if (!isdeadtet(*parytet)) { |
26123 | ppt = (point *) & (parytet->tet[4]); |
26124 | // Do not test a hull tet. |
26125 | if (ppt[3] != dummypoint) { |
26126 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], ncosdd, |
26127 | &maxdd, NULL); |
26128 | if (maxdd < cosmaxdihed) { |
26129 | // There are bad dihedral angles in this tet. |
26130 | nextflipqueue->newindex((void **) &parybface); |
26131 | parybface->tt.tet = parytet->tet; |
26132 | parybface->tt.ver = 11; |
26133 | parybface->forg = ppt[0]; |
26134 | parybface->fdest = ppt[1]; |
26135 | parybface->fapex = ppt[2]; |
26136 | parybface->foppo = ppt[3]; |
26137 | parybface->key = maxdd; |
26138 | for (n = 0; n < 6; n++) { |
26139 | parybface->cent[n] = ncosdd[n]; |
26140 | } |
26141 | } |
26142 | } // if (ppt[3] != dummypoint) |
26143 | } |
26144 | } // j |
26145 | } // if (fc.cosdihed_out < cosmaxdihed) |
26146 | cavetetlist->restart(); |
26147 | remcount++; |
26148 | } |
26149 | } |
26150 | } // i |
26151 | if (!remflag) { |
26152 | // An unremoved bad tet. Queue it again. |
26153 | unflipqueue->newindex((void **) &parybface); |
26154 | *parybface = *bface; |
26155 | } |
26156 | } // if (gettetrahedron(...)) |
26157 | } // k |
26158 | |
26159 | flipqueue->restart(); |
26160 | |
26161 | // Swap the two flip queues. |
26162 | swapqueue = flipqueue; |
26163 | flipqueue = nextflipqueue; |
26164 | nextflipqueue = swapqueue; |
26165 | } // while (flipqueues->objects > 0) |
26166 | |
26167 | if (b->verbose > 1) { |
26168 | printf(" Removed %ld bad tets.\n" , remcount); |
26169 | } |
26170 | totalremcount += remcount; |
26171 | |
26172 | if (unflipqueue->objects > 0l) { |
26173 | //if (autofliplinklevel >= b->optmaxfliplevel) { |
26174 | if (autofliplinklevel >= b->optlevel) { |
26175 | break; |
26176 | } |
26177 | autofliplinklevel+=b->fliplinklevelinc; |
26178 | //b->flipstarsize = 10 + (1 << (b->optlevel - 1)); |
26179 | } |
26180 | |
26181 | // Swap the two flip queues. |
26182 | swapqueue = flipqueue; |
26183 | flipqueue = unflipqueue; |
26184 | unflipqueue = swapqueue; |
26185 | } // while (flipqueues->objects > 0) |
26186 | |
26187 | // Restore original flip edge options. |
26188 | autofliplinklevel = bakautofliplinklevel; |
26189 | b->fliplinklevel = bakfliplinklevel; |
26190 | b->flipstarsize = bakmaxflipstarsize; |
26191 | |
26192 | delete flipqueue; |
26193 | delete nextflipqueue; |
26194 | |
26195 | return totalremcount; |
26196 | } |
26197 | |
26198 | /////////////////////////////////////////////////////////////////////////////// |
26199 | // // |
26200 | // smoothpoint() Moving a vertex to improve the mesh quality. // |
26201 | // // |
26202 | // 'smtpt' (p) is a point to be smoothed. Generally, it is a Steiner point. // |
26203 | // It may be not a vertex of the mesh. // |
26204 | // // |
26205 | // This routine tries to move 'p' inside its star until a selected objective // |
26206 | // function over all tetrahedra in the star is improved. The function may be // |
26207 | // the some quality measures, i.e., aspect ratio, maximum dihedral angel, or // |
26208 | // simply the volume of the tetrahedra. // |
26209 | // // |
26210 | // 'linkfacelist' contains the list of link faces of 'p'. Since a link face // |
26211 | // has two orientations, ccw or cw, with respect to 'p'. 'ccw' indicates // |
26212 | // the orientation is ccw (1) or not (0). // |
26213 | // // |
26214 | // 'opm' is a structure contains the parameters of the objective function. // |
26215 | // It is needed by the evaluation of the function value. // |
26216 | // // |
26217 | // The return value indicates weather the point is smoothed or not. // |
26218 | // // |
26219 | // ASSUMPTION: This routine assumes that all link faces are true faces, i.e, // |
26220 | // no face has 'dummypoint' as its vertex. // |
26221 | // // |
26222 | /////////////////////////////////////////////////////////////////////////////// |
26223 | |
26224 | int tetgenmesh::smoothpoint(point smtpt, arraypool *linkfacelist, int ccw, |
26225 | optparameters *opm) |
26226 | { |
26227 | triface *parytet, *parytet1, swaptet; |
26228 | point pa, pb, pc; |
26229 | REAL fcent[3], startpt[3], nextpt[3], bestpt[3]; |
26230 | REAL oldval, minval = 0.0, val; |
26231 | REAL maxcosd; // oldang, newang; |
26232 | REAL ori, diff; |
26233 | int numdirs, iter; |
26234 | int i, j, k; |
26235 | |
26236 | // Decide the number of moving directions. |
26237 | numdirs = (int) linkfacelist->objects; |
26238 | if (numdirs > opm->numofsearchdirs) { |
26239 | numdirs = opm->numofsearchdirs; // Maximum search directions. |
26240 | } |
26241 | |
26242 | // Set the initial value. |
26243 | if (!opm->max_min_volume) { |
26244 | assert(opm->initval >= 0.0); |
26245 | } |
26246 | opm->imprval = opm->initval; |
26247 | iter = 0; |
26248 | |
26249 | for (i = 0; i < 3; i++) { |
26250 | bestpt[i] = startpt[i] = smtpt[i]; |
26251 | } |
26252 | |
26253 | // Iterate until the obj function is not improved. |
26254 | while (1) { |
26255 | |
26256 | // Find the best next location. |
26257 | oldval = opm->imprval; |
26258 | |
26259 | for (i = 0; i < numdirs; i++) { |
26260 | // Randomly pick a link face (0 <= k <= objects - i - 1). |
26261 | k = (int) randomnation(linkfacelist->objects - i); |
26262 | parytet = (triface *) fastlookup(linkfacelist, k); |
26263 | // Calculate a new position from 'p' to the center of this face. |
26264 | pa = org(*parytet); |
26265 | pb = dest(*parytet); |
26266 | pc = apex(*parytet); |
26267 | for (j = 0; j < 3; j++) { |
26268 | fcent[j] = (pa[j] + pb[j] + pc[j]) / 3.0; |
26269 | } |
26270 | for (j = 0; j < 3; j++) { |
26271 | nextpt[j] = startpt[j] + opm->searchstep * (fcent[j] - startpt[j]); |
26272 | } |
26273 | // Calculate the largest minimum function value for the new location. |
26274 | for (j = 0; j < linkfacelist->objects; j++) { |
26275 | parytet = (triface *) fastlookup(linkfacelist, j); |
26276 | if (ccw) { |
26277 | pa = org(*parytet); |
26278 | pb = dest(*parytet); |
26279 | } else { |
26280 | pb = org(*parytet); |
26281 | pa = dest(*parytet); |
26282 | } |
26283 | pc = apex(*parytet); |
26284 | ori = orient3d(pa, pb, pc, nextpt); |
26285 | if (ori < 0.0) { |
26286 | // Calcuate the objective function value. |
26287 | if (opm->max_min_volume) { |
26288 | //val = -ori; |
26289 | val = - orient3dfast(pa, pb, pc, nextpt); |
26290 | } else if (opm->max_min_aspectratio) { |
26291 | val = tetaspectratio(pa, pb, pc, nextpt); |
26292 | } else if (opm->min_max_dihedangle) { |
26293 | tetalldihedral(pa, pb, pc, nextpt, NULL, &maxcosd, NULL); |
26294 | if (maxcosd < -1) maxcosd = -1.0; // Rounding. |
26295 | val = maxcosd + 1.0; // Make it be positive. |
26296 | } else { |
26297 | // Unknown objective function. |
26298 | val = 0.0; |
26299 | } |
26300 | } else { // ori >= 0.0; |
26301 | // An invalid new tet. |
26302 | // This may happen if the mesh contains inverted elements. |
26303 | if (opm->max_min_volume) { |
26304 | //val = -ori; |
26305 | val = - orient3dfast(pa, pb, pc, nextpt); |
26306 | } else { |
26307 | // Discard this point. |
26308 | break; // j |
26309 | } |
26310 | } // if (ori >= 0.0) |
26311 | // Stop looping when the object value is not improved. |
26312 | if (val <= opm->imprval) { |
26313 | break; // j |
26314 | } else { |
26315 | // Remember the smallest improved value. |
26316 | if (j == 0) { |
26317 | minval = val; |
26318 | } else { |
26319 | minval = (val < minval) ? val : minval; |
26320 | } |
26321 | } |
26322 | } // j |
26323 | if (j == linkfacelist->objects) { |
26324 | // The function value has been improved. |
26325 | opm->imprval = minval; |
26326 | // Save the new location of the point. |
26327 | for (j = 0; j < 3; j++) bestpt[j] = nextpt[j]; |
26328 | } |
26329 | // Swap k-th and (object-i-1)-th entries. |
26330 | j = linkfacelist->objects - i - 1; |
26331 | parytet = (triface *) fastlookup(linkfacelist, k); |
26332 | parytet1 = (triface *) fastlookup(linkfacelist, j); |
26333 | swaptet = *parytet1; |
26334 | *parytet1 = *parytet; |
26335 | *parytet = swaptet; |
26336 | } // i |
26337 | |
26338 | diff = opm->imprval - oldval; |
26339 | if (diff > 0.0) { |
26340 | // Is the function value improved effectively? |
26341 | if (opm->max_min_volume) { |
26342 | //if ((diff / oldval) < b->epsilon) diff = 0.0; |
26343 | } else if (opm->max_min_aspectratio) { |
26344 | if ((diff / oldval) < 1e-3) diff = 0.0; |
26345 | } else if (opm->min_max_dihedangle) { |
26346 | //oldang = acos(oldval - 1.0); |
26347 | //newang = acos(opm->imprval - 1.0); |
26348 | //if ((oldang - newang) < 0.00174) diff = 0.0; // about 0.1 degree. |
26349 | } else { |
26350 | // Unknown objective function. |
26351 | assert(0); // Not possible. |
26352 | } |
26353 | } |
26354 | |
26355 | if (diff > 0.0) { |
26356 | // Yes, move p to the new location and continue. |
26357 | for (j = 0; j < 3; j++) startpt[j] = bestpt[j]; |
26358 | iter++; |
26359 | if ((opm->maxiter > 0) && (iter >= opm->maxiter)) { |
26360 | // Maximum smoothing iterations reached. |
26361 | break; |
26362 | } |
26363 | } else { |
26364 | break; |
26365 | } |
26366 | |
26367 | } // while (1) |
26368 | |
26369 | if (iter > 0) { |
26370 | // The point has been smoothed. |
26371 | opm->smthiter = iter; // Remember the number of iterations. |
26372 | // The point has been smoothed. Update it to its new position. |
26373 | for (i = 0; i < 3; i++) smtpt[i] = startpt[i]; |
26374 | } |
26375 | |
26376 | return iter; |
26377 | } |
26378 | |
26379 | |
26380 | /////////////////////////////////////////////////////////////////////////////// |
26381 | // // |
26382 | // improvequalitysmoothing() Improve mesh quality by smoothing. // |
26383 | // // |
26384 | /////////////////////////////////////////////////////////////////////////////// |
26385 | |
26386 | long tetgenmesh::improvequalitybysmoothing(optparameters *opm) |
26387 | { |
26388 | arraypool *flipqueue, *swapqueue; |
26389 | triface *parytet; |
26390 | badface *bface, *parybface; |
26391 | point *ppt; |
26392 | long totalsmtcount, smtcount; |
26393 | int smtflag; |
26394 | int iter, i, j, k; |
26395 | |
26396 | //assert(unflipqueue->objects > 0l); |
26397 | flipqueue = new arraypool(sizeof(badface), 10); |
26398 | |
26399 | // Swap the two flip queues. |
26400 | swapqueue = flipqueue; |
26401 | flipqueue = unflipqueue; |
26402 | unflipqueue = swapqueue; |
26403 | |
26404 | totalsmtcount = 0l; |
26405 | iter = 0; |
26406 | |
26407 | while (flipqueue->objects > 0l) { |
26408 | |
26409 | smtcount = 0l; |
26410 | |
26411 | if (b->verbose > 1) { |
26412 | printf(" Improving mesh quality by smoothing [%d]#: %ld.\n" , |
26413 | iter, flipqueue->objects); |
26414 | } |
26415 | |
26416 | for (k = 0; k < flipqueue->objects; k++) { |
26417 | bface = (badface *) fastlookup(flipqueue, k); |
26418 | if (gettetrahedron(bface->forg, bface->fdest, bface->fapex, |
26419 | bface->foppo, &bface->tt)) { |
26420 | // Operate on it if it is not in 'unflipqueue'. |
26421 | if (!marktested(bface->tt)) { |
26422 | // Here we simply re-compute the quality. Since other smoothing |
26423 | // operation may have moved the vertices of this tet. |
26424 | ppt = (point *) & (bface->tt.tet[4]); |
26425 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent, |
26426 | &bface->key, NULL); |
26427 | if (bface->key < cossmtdihed) { // if (maxdd < cosslidihed) { |
26428 | // It is a sliver. Try to smooth its vertices. |
26429 | smtflag = 0; |
26430 | opm->initval = bface->key + 1.0; |
26431 | for (i = 0; (i < 4) && !smtflag; i++) { |
26432 | if (pointtype(ppt[i]) == FREEVOLVERTEX) { |
26433 | getvertexstar(1, ppt[i], cavetetlist, NULL, NULL); |
26434 | opm->searchstep = 0.001; // Search step size |
26435 | smtflag = smoothpoint(ppt[i], cavetetlist, 1, opm); |
26436 | if (smtflag) { |
26437 | while (opm->smthiter == opm->maxiter) { |
26438 | opm->searchstep *= 10.0; // Increase the step size. |
26439 | opm->initval = opm->imprval; |
26440 | opm->smthiter = 0; // reset |
26441 | smoothpoint(ppt[i], cavetetlist, 1, opm); |
26442 | } |
26443 | // This tet is modifed. |
26444 | smtcount++; |
26445 | if ((opm->imprval - 1.0) < cossmtdihed) { |
26446 | // There are slivers in new tets. Queue them. |
26447 | for (j = 0; j < cavetetlist->objects; j++) { |
26448 | parytet = (triface *) fastlookup(cavetetlist, j); |
26449 | assert(!isdeadtet(*parytet)); |
26450 | // Operate it if it is not in 'unflipqueue'. |
26451 | if (!marktested(*parytet)) { |
26452 | // Evaluate its quality. |
26453 | // Re-use ppt, bface->key, bface->cent. |
26454 | ppt = (point *) & (parytet->tet[4]); |
26455 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], |
26456 | bface->cent, &bface->key, NULL); |
26457 | if (bface->key < cossmtdihed) { |
26458 | // A new sliver. Queue it. |
26459 | marktest(*parytet); // It is in unflipqueue. |
26460 | unflipqueue->newindex((void **) &parybface); |
26461 | parybface->tt = *parytet; |
26462 | parybface->forg = ppt[0]; |
26463 | parybface->fdest = ppt[1]; |
26464 | parybface->fapex = ppt[2]; |
26465 | parybface->foppo = ppt[3]; |
26466 | parybface->tt.ver = 11; |
26467 | parybface->key = 0.0; |
26468 | } |
26469 | } |
26470 | } // j |
26471 | } // if ((opm->imprval - 1.0) < cossmtdihed) |
26472 | } // if (smtflag) |
26473 | cavetetlist->restart(); |
26474 | } // if (pointtype(ppt[i]) == FREEVOLVERTEX) |
26475 | } // i |
26476 | if (!smtflag) { |
26477 | // Didn't smooth. Queue it again. |
26478 | marktest(bface->tt); // It is in unflipqueue. |
26479 | unflipqueue->newindex((void **) &parybface); |
26480 | parybface->tt = bface->tt; |
26481 | parybface->forg = ppt[0]; |
26482 | parybface->fdest = ppt[1]; |
26483 | parybface->fapex = ppt[2]; |
26484 | parybface->foppo = ppt[3]; |
26485 | parybface->tt.ver = 11; |
26486 | parybface->key = 0.0; |
26487 | } |
26488 | } // if (maxdd < cosslidihed) |
26489 | } // if (!marktested(...)) |
26490 | } // if (gettetrahedron(...)) |
26491 | } // k |
26492 | |
26493 | flipqueue->restart(); |
26494 | |
26495 | // Unmark the tets in unflipqueue. |
26496 | for (i = 0; i < unflipqueue->objects; i++) { |
26497 | bface = (badface *) fastlookup(unflipqueue, i); |
26498 | unmarktest(bface->tt); |
26499 | } |
26500 | |
26501 | if (b->verbose > 1) { |
26502 | printf(" Smooth %ld points.\n" , smtcount); |
26503 | } |
26504 | totalsmtcount += smtcount; |
26505 | |
26506 | if (smtcount == 0l) { |
26507 | // No point has been smoothed. |
26508 | break; |
26509 | } else { |
26510 | iter++; |
26511 | if (iter == 2) { //if (iter >= b->optpasses) { |
26512 | break; |
26513 | } |
26514 | } |
26515 | |
26516 | // Swap the two flip queues. |
26517 | swapqueue = flipqueue; |
26518 | flipqueue = unflipqueue; |
26519 | unflipqueue = swapqueue; |
26520 | } // while |
26521 | |
26522 | delete flipqueue; |
26523 | |
26524 | return totalsmtcount; |
26525 | } |
26526 | |
26527 | /////////////////////////////////////////////////////////////////////////////// |
26528 | // // |
26529 | // splitsliver() Split a sliver. // |
26530 | // // |
26531 | /////////////////////////////////////////////////////////////////////////////// |
26532 | |
26533 | int tetgenmesh::splitsliver(triface *slitet, REAL cosd, int chkencflag) |
26534 | { |
26535 | triface *abtets; |
26536 | triface searchtet, spintet, *parytet; |
26537 | point pa, pb, steinerpt; |
26538 | optparameters opm; |
26539 | insertvertexflags ivf; |
26540 | REAL smtpt[3], midpt[3]; |
26541 | int success; |
26542 | int t1ver; |
26543 | int n, i; |
26544 | |
26545 | // 'slitet' is [c,d,a,b], where [c,d] has a big dihedral angle. |
26546 | // Go to the opposite edge [a,b]. |
26547 | edestoppo(*slitet, searchtet); // [a,b,c,d]. |
26548 | |
26549 | // Do not split a segment. |
26550 | if (issubseg(searchtet)) { |
26551 | return 0; |
26552 | } |
26553 | |
26554 | // Count the number of tets shared at [a,b]. |
26555 | // Do not split it if it is a hull edge. |
26556 | spintet = searchtet; |
26557 | n = 0; |
26558 | while (1) { |
26559 | if (ishulltet(spintet)) break; |
26560 | n++; |
26561 | fnextself(spintet); |
26562 | if (spintet.tet == searchtet.tet) break; |
26563 | } |
26564 | if (ishulltet(spintet)) { |
26565 | return 0; // It is a hull edge. |
26566 | } |
26567 | assert(n >= 3); |
26568 | |
26569 | // Get all tets at edge [a,b]. |
26570 | abtets = new triface[n]; |
26571 | spintet = searchtet; |
26572 | for (i = 0; i < n; i++) { |
26573 | abtets[i] = spintet; |
26574 | fnextself(spintet); |
26575 | } |
26576 | |
26577 | // Initialize the list of 2n boundary faces. |
26578 | for (i = 0; i < n; i++) { |
26579 | eprev(abtets[i], searchtet); |
26580 | esymself(searchtet); // [a,p_i,p_i+1]. |
26581 | cavetetlist->newindex((void **) &parytet); |
26582 | *parytet = searchtet; |
26583 | enext(abtets[i], searchtet); |
26584 | esymself(searchtet); // [p_i,b,p_i+1]. |
26585 | cavetetlist->newindex((void **) &parytet); |
26586 | *parytet = searchtet; |
26587 | } |
26588 | |
26589 | // Init the Steiner point at the midpoint of edge [a,b]. |
26590 | pa = org(abtets[0]); |
26591 | pb = dest(abtets[0]); |
26592 | for (i = 0; i < 3; i++) { |
26593 | smtpt[i] = midpt[i] = 0.5 * (pa[i] + pb[i]); |
26594 | } |
26595 | |
26596 | // Point smooth options. |
26597 | opm.min_max_dihedangle = 1; |
26598 | opm.initval = cosd + 1.0; // Initial volume is zero. |
26599 | opm.numofsearchdirs = 20; |
26600 | opm.searchstep = 0.001; |
26601 | opm.maxiter = 100; // Limit the maximum iterations. |
26602 | |
26603 | success = smoothpoint(smtpt, cavetetlist, 1, &opm); |
26604 | |
26605 | if (success) { |
26606 | while (opm.smthiter == opm.maxiter) { |
26607 | // It was relocated and the prescribed maximum iteration reached. |
26608 | // Try to increase the search stepsize. |
26609 | opm.searchstep *= 10.0; |
26610 | //opm.maxiter = 100; // Limit the maximum iterations. |
26611 | opm.initval = opm.imprval; |
26612 | opm.smthiter = 0; // Init. |
26613 | smoothpoint(smtpt, cavetetlist, 1, &opm); |
26614 | } |
26615 | } // if (success) |
26616 | |
26617 | cavetetlist->restart(); |
26618 | |
26619 | if (!success) { |
26620 | delete [] abtets; |
26621 | return 0; |
26622 | } |
26623 | |
26624 | |
26625 | // Insert the Steiner point. |
26626 | makepoint(&steinerpt, FREEVOLVERTEX); |
26627 | for (i = 0; i < 3; i++) steinerpt[i] = smtpt[i]; |
26628 | |
26629 | // Insert the created Steiner point. |
26630 | for (i = 0; i < n; i++) { |
26631 | infect(abtets[i]); |
26632 | caveoldtetlist->newindex((void **) &parytet); |
26633 | *parytet = abtets[i]; |
26634 | } |
26635 | |
26636 | searchtet = abtets[0]; // No need point location. |
26637 | if (b->metric) { |
26638 | locate(steinerpt, &searchtet); // For size interpolation. |
26639 | } |
26640 | |
26641 | delete [] abtets; |
26642 | |
26643 | ivf.iloc = (int) INSTAR; |
26644 | ivf.chkencflag = chkencflag; |
26645 | ivf.assignmeshsize = b->metric; |
26646 | |
26647 | |
26648 | if (insertpoint(steinerpt, &searchtet, NULL, NULL, &ivf)) { |
26649 | // The vertex has been inserted. |
26650 | st_volref_count++; |
26651 | if (steinerleft > 0) steinerleft--; |
26652 | return 1; |
26653 | } else { |
26654 | // The Steiner point is too close to an existing vertex. Reject it. |
26655 | pointdealloc(steinerpt); |
26656 | return 0; |
26657 | } |
26658 | } |
26659 | |
26660 | /////////////////////////////////////////////////////////////////////////////// |
26661 | // // |
26662 | // removeslivers() Remove slivers by adding Steiner points. // |
26663 | // // |
26664 | /////////////////////////////////////////////////////////////////////////////// |
26665 | |
26666 | long tetgenmesh::removeslivers(int chkencflag) |
26667 | { |
26668 | arraypool *flipqueue, *swapqueue; |
26669 | badface *bface, *parybface; |
26670 | triface slitet, *parytet; |
26671 | point *ppt; |
26672 | REAL cosdd[6], maxcosd; |
26673 | long totalsptcount, sptcount; |
26674 | int iter, i, j, k; |
26675 | |
26676 | //assert(unflipqueue->objects > 0l); |
26677 | flipqueue = new arraypool(sizeof(badface), 10); |
26678 | |
26679 | // Swap the two flip queues. |
26680 | swapqueue = flipqueue; |
26681 | flipqueue = unflipqueue; |
26682 | unflipqueue = swapqueue; |
26683 | |
26684 | totalsptcount = 0l; |
26685 | iter = 0; |
26686 | |
26687 | while ((flipqueue->objects > 0l) && (steinerleft != 0)) { |
26688 | |
26689 | sptcount = 0l; |
26690 | |
26691 | if (b->verbose > 1) { |
26692 | printf(" Splitting bad quality tets [%d]#: %ld.\n" , |
26693 | iter, flipqueue->objects); |
26694 | } |
26695 | |
26696 | for (k = 0; (k < flipqueue->objects) && (steinerleft != 0); k++) { |
26697 | bface = (badface *) fastlookup(flipqueue, k); |
26698 | if (gettetrahedron(bface->forg, bface->fdest, bface->fapex, |
26699 | bface->foppo, &bface->tt)) { |
26700 | if ((bface->key == 0) || (bface->tt.ver != 11)) { |
26701 | // Here we need to re-compute the quality. Since other smoothing |
26702 | // operation may have moved the vertices of this tet. |
26703 | ppt = (point *) & (bface->tt.tet[4]); |
26704 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent, |
26705 | &bface->key, NULL); |
26706 | } |
26707 | if (bface->key < cosslidihed) { |
26708 | // It is a sliver. Try to split it. |
26709 | slitet.tet = bface->tt.tet; |
26710 | //cosdd = bface->cent; |
26711 | for (j = 0; j < 6; j++) { |
26712 | if (bface->cent[j] < cosslidihed) { |
26713 | // Found a large dihedral angle. |
26714 | slitet.ver = edge2ver[j]; // Go to the edge. |
26715 | if (splitsliver(&slitet, bface->cent[j], chkencflag)) { |
26716 | sptcount++; |
26717 | break; |
26718 | } |
26719 | } |
26720 | } // j |
26721 | if (j < 6) { |
26722 | // A sliver is split. Queue new slivers. |
26723 | badtetrahedrons->traversalinit(); |
26724 | parytet = (triface *) badtetrahedrons->traverse(); |
26725 | while (parytet != NULL) { |
26726 | unmarktest2(*parytet); |
26727 | ppt = (point *) & (parytet->tet[4]); |
26728 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], cosdd, |
26729 | &maxcosd, NULL); |
26730 | if (maxcosd < cosslidihed) { |
26731 | // A new sliver. Queue it. |
26732 | unflipqueue->newindex((void **) &parybface); |
26733 | parybface->forg = ppt[0]; |
26734 | parybface->fdest = ppt[1]; |
26735 | parybface->fapex = ppt[2]; |
26736 | parybface->foppo = ppt[3]; |
26737 | parybface->tt.tet = parytet->tet; |
26738 | parybface->tt.ver = 11; |
26739 | parybface->key = maxcosd; |
26740 | for (i = 0; i < 6; i++) { |
26741 | parybface->cent[i] = cosdd[i]; |
26742 | } |
26743 | } |
26744 | parytet = (triface *) badtetrahedrons->traverse(); |
26745 | } |
26746 | badtetrahedrons->restart(); |
26747 | } else { |
26748 | // Didn't split. Queue it again. |
26749 | unflipqueue->newindex((void **) &parybface); |
26750 | *parybface = *bface; |
26751 | } // if (j == 6) |
26752 | } // if (bface->key < cosslidihed) |
26753 | } // if (gettetrahedron(...)) |
26754 | } // k |
26755 | |
26756 | flipqueue->restart(); |
26757 | |
26758 | if (b->verbose > 1) { |
26759 | printf(" Split %ld tets.\n" , sptcount); |
26760 | } |
26761 | totalsptcount += sptcount; |
26762 | |
26763 | if (sptcount == 0l) { |
26764 | // No point has been smoothed. |
26765 | break; |
26766 | } else { |
26767 | iter++; |
26768 | if (iter == 2) { //if (iter >= b->optpasses) { |
26769 | break; |
26770 | } |
26771 | } |
26772 | |
26773 | // Swap the two flip queues. |
26774 | swapqueue = flipqueue; |
26775 | flipqueue = unflipqueue; |
26776 | unflipqueue = swapqueue; |
26777 | } // while |
26778 | |
26779 | delete flipqueue; |
26780 | |
26781 | return totalsptcount; |
26782 | } |
26783 | |
26784 | /////////////////////////////////////////////////////////////////////////////// |
26785 | // // |
26786 | // optimizemesh() Optimize mesh for specified objective functions. // |
26787 | // // |
26788 | /////////////////////////////////////////////////////////////////////////////// |
26789 | |
26790 | void tetgenmesh::optimizemesh() |
26791 | { |
26792 | badface *parybface; |
26793 | triface checktet; |
26794 | point *ppt; |
26795 | int optpasses; |
26796 | optparameters opm; |
26797 | REAL ncosdd[6], maxdd; |
26798 | long totalremcount, remcount; |
26799 | long totalsmtcount, smtcount; |
26800 | long totalsptcount, sptcount; |
26801 | int chkencflag; |
26802 | int iter; |
26803 | int n; |
26804 | |
26805 | if (!b->quiet) { |
26806 | printf("Optimizing mesh...\n" ); |
26807 | } |
26808 | |
26809 | optpasses = ((1 << b->optlevel) - 1); |
26810 | |
26811 | if (b->verbose) { |
26812 | printf(" Optimization level = %d.\n" , b->optlevel); |
26813 | printf(" Optimization scheme = %d.\n" , b->optscheme); |
26814 | printf(" Number of iteration = %d.\n" , optpasses); |
26815 | printf(" Min_Max dihed angle = %g.\n" , b->optmaxdihedral); |
26816 | } |
26817 | |
26818 | totalsmtcount = totalsptcount = totalremcount = 0l; |
26819 | |
26820 | cosmaxdihed = cos(b->optmaxdihedral / 180.0 * PI); |
26821 | cossmtdihed = cos(b->optminsmtdihed / 180.0 * PI); |
26822 | cosslidihed = cos(b->optminslidihed / 180.0 * PI); |
26823 | |
26824 | int attrnum = numelemattrib - 1; |
26825 | |
26826 | // Put all bad tetrahedra into array. |
26827 | tetrahedrons->traversalinit(); |
26828 | checktet.tet = tetrahedrontraverse(); |
26829 | while (checktet.tet != NULL) { |
26830 | if (b->convex) { // -c |
26831 | // Skip this tet if it lies in the exterior. |
26832 | if (elemattribute(checktet.tet, attrnum) == -1.0) { |
26833 | checktet.tet = tetrahedrontraverse(); |
26834 | continue; |
26835 | } |
26836 | } |
26837 | ppt = (point *) & (checktet.tet[4]); |
26838 | tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], ncosdd, &maxdd, NULL); |
26839 | if (maxdd < cosmaxdihed) { |
26840 | // There are bad dihedral angles in this tet. |
26841 | unflipqueue->newindex((void **) &parybface); |
26842 | parybface->tt.tet = checktet.tet; |
26843 | parybface->tt.ver = 11; |
26844 | parybface->forg = ppt[0]; |
26845 | parybface->fdest = ppt[1]; |
26846 | parybface->fapex = ppt[2]; |
26847 | parybface->foppo = ppt[3]; |
26848 | parybface->key = maxdd; |
26849 | for (n = 0; n < 6; n++) { |
26850 | parybface->cent[n] = ncosdd[n]; |
26851 | } |
26852 | } |
26853 | checktet.tet = tetrahedrontraverse(); |
26854 | } |
26855 | |
26856 | totalremcount = improvequalitybyflips(); |
26857 | |
26858 | if ((unflipqueue->objects > 0l) && |
26859 | ((b->optscheme & 2) || (b->optscheme & 4))) { |
26860 | // The pool is only used by removeslivers(). |
26861 | badtetrahedrons = new memorypool(sizeof(triface), b->tetrahedraperblock, |
26862 | sizeof(void *), 0); |
26863 | |
26864 | // Smoothing options. |
26865 | opm.min_max_dihedangle = 1; |
26866 | opm.numofsearchdirs = 10; |
26867 | // opm.searchstep = 0.001; |
26868 | opm.maxiter = 30; // Limit the maximum iterations. |
26869 | //opm.checkencflag = 4; // Queue affected tets after smoothing. |
26870 | chkencflag = 4; // Queue affected tets after splitting a sliver. |
26871 | iter = 0; |
26872 | |
26873 | while (iter < optpasses) { |
26874 | smtcount = sptcount = remcount = 0l; |
26875 | if (b->optscheme & 2) { |
26876 | smtcount += improvequalitybysmoothing(&opm); |
26877 | totalsmtcount += smtcount; |
26878 | if (smtcount > 0l) { |
26879 | remcount = improvequalitybyflips(); |
26880 | totalremcount += remcount; |
26881 | } |
26882 | } |
26883 | if (unflipqueue->objects > 0l) { |
26884 | if (b->optscheme & 4) { |
26885 | sptcount += removeslivers(chkencflag); |
26886 | totalsptcount += sptcount; |
26887 | if (sptcount > 0l) { |
26888 | remcount = improvequalitybyflips(); |
26889 | totalremcount += remcount; |
26890 | } |
26891 | } |
26892 | } |
26893 | if (unflipqueue->objects > 0l) { |
26894 | if (remcount > 0l) { |
26895 | iter++; |
26896 | } else { |
26897 | break; |
26898 | } |
26899 | } else { |
26900 | break; |
26901 | } |
26902 | } // while (iter) |
26903 | |
26904 | delete badtetrahedrons; |
26905 | |
26906 | } |
26907 | |
26908 | if (unflipqueue->objects > 0l) { |
26909 | if (b->verbose > 1) { |
26910 | printf(" %ld bad tets remained.\n" , unflipqueue->objects); |
26911 | } |
26912 | unflipqueue->restart(); |
26913 | } |
26914 | |
26915 | if (b->verbose) { |
26916 | if (totalremcount > 0l) { |
26917 | printf(" Removed %ld edges.\n" , totalremcount); |
26918 | } |
26919 | if (totalsmtcount > 0l) { |
26920 | printf(" Smoothed %ld points.\n" , totalsmtcount); |
26921 | } |
26922 | if (totalsptcount > 0l) { |
26923 | printf(" Split %ld slivers.\n" , totalsptcount); |
26924 | } |
26925 | } |
26926 | } |
26927 | |
26928 | //// //// |
26929 | //// //// |
26930 | //// optimize_cxx ///////////////////////////////////////////////////////////// |
26931 | |
26932 | //// meshstat_cxx ///////////////////////////////////////////////////////////// |
26933 | //// //// |
26934 | //// //// |
26935 | |
26936 | /////////////////////////////////////////////////////////////////////////////// |
26937 | // // |
26938 | // printfcomma() Print a (large) number with the 'thousands separator'. // |
26939 | // // |
26940 | // The following code was simply copied from "stackoverflow". // |
26941 | // // |
26942 | /////////////////////////////////////////////////////////////////////////////// |
26943 | |
26944 | void tetgenmesh::printfcomma(unsigned long n) |
26945 | { |
26946 | unsigned long n2 = 0; |
26947 | int scale = 1; |
26948 | while (n >= 1000) { |
26949 | n2 = n2 + scale * (n % 1000); |
26950 | n /= 1000; |
26951 | scale *= 1000; |
26952 | } |
26953 | printf ("%ld" , n); |
26954 | while (scale != 1) { |
26955 | scale /= 1000; |
26956 | n = n2 / scale; |
26957 | n2 = n2 % scale; |
26958 | printf (",%03ld" , n); |
26959 | } |
26960 | } |
26961 | |
26962 | /////////////////////////////////////////////////////////////////////////////// |
26963 | // // |
26964 | // checkmesh() Test the mesh for topological consistency. // |
26965 | // // |
26966 | // If 'topoflag' is set, only check the topological connection of the mesh, // |
26967 | // i.e., do not report degenerated or inverted elements. // |
26968 | // // |
26969 | /////////////////////////////////////////////////////////////////////////////// |
26970 | |
26971 | int tetgenmesh::checkmesh(int topoflag) |
26972 | { |
26973 | triface tetloop, neightet, symtet; |
26974 | point pa, pb, pc, pd; |
26975 | REAL ori; |
26976 | int horrors, i; |
26977 | |
26978 | if (!b->quiet) { |
26979 | printf(" Checking consistency of mesh...\n" ); |
26980 | } |
26981 | |
26982 | horrors = 0; |
26983 | tetloop.ver = 0; |
26984 | // Run through the list of tetrahedra, checking each one. |
26985 | tetrahedrons->traversalinit(); |
26986 | tetloop.tet = alltetrahedrontraverse(); |
26987 | while (tetloop.tet != (tetrahedron *) NULL) { |
26988 | // Check all four faces of the tetrahedron. |
26989 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
26990 | pa = org(tetloop); |
26991 | pb = dest(tetloop); |
26992 | pc = apex(tetloop); |
26993 | pd = oppo(tetloop); |
26994 | if (tetloop.ver == 0) { // Only test for inversion once. |
26995 | if (!ishulltet(tetloop)) { // Only do test if it is not a hull tet. |
26996 | if (!topoflag) { |
26997 | ori = orient3d(pa, pb, pc, pd); |
26998 | if (ori >= 0.0) { |
26999 | printf(" !! !! %s " , ori > 0.0 ? "Inverted" : "Degenerated" ); |
27000 | printf(" (%d, %d, %d, %d) (ori = %.17g)\n" , pointmark(pa), |
27001 | pointmark(pb), pointmark(pc), pointmark(pd), ori); |
27002 | horrors++; |
27003 | } |
27004 | } |
27005 | } |
27006 | if (infected(tetloop)) { |
27007 | // This may be a bug. Report it. |
27008 | printf(" !! (%d, %d, %d, %d) is infected.\n" , pointmark(pa), |
27009 | pointmark(pb), pointmark(pc), pointmark(pd)); |
27010 | horrors++; |
27011 | } |
27012 | if (marktested(tetloop)) { |
27013 | // This may be a bug. Report it. |
27014 | printf(" !! (%d, %d, %d, %d) is marked.\n" , pointmark(pa), |
27015 | pointmark(pb), pointmark(pc), pointmark(pd)); |
27016 | horrors++; |
27017 | } |
27018 | } |
27019 | if (tetloop.tet[tetloop.ver] == NULL) { |
27020 | printf(" !! !! No neighbor at face (%d, %d, %d).\n" , pointmark(pa), |
27021 | pointmark(pb), pointmark(pc)); |
27022 | horrors++; |
27023 | } else { |
27024 | // Find the neighboring tetrahedron on this face. |
27025 | fsym(tetloop, neightet); |
27026 | // Check that the tetrahedron's neighbor knows it's a neighbor. |
27027 | fsym(neightet, symtet); |
27028 | if ((tetloop.tet != symtet.tet) || (tetloop.ver != symtet.ver)) { |
27029 | printf(" !! !! Asymmetric tetra-tetra bond:\n" ); |
27030 | if (tetloop.tet == symtet.tet) { |
27031 | printf(" (Right tetrahedron, wrong orientation)\n" ); |
27032 | } |
27033 | printf(" First: (%d, %d, %d, %d)\n" , pointmark(pa), |
27034 | pointmark(pb), pointmark(pc), pointmark(pd)); |
27035 | printf(" Second: (%d, %d, %d, %d)\n" , pointmark(org(neightet)), |
27036 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
27037 | pointmark(oppo(neightet))); |
27038 | horrors++; |
27039 | } |
27040 | // Check if they have the same edge (the bond() operation). |
27041 | if ((org(neightet) != pb) || (dest(neightet) != pa)) { |
27042 | printf(" !! !! Wrong edge-edge bond:\n" ); |
27043 | printf(" First: (%d, %d, %d, %d)\n" , pointmark(pa), |
27044 | pointmark(pb), pointmark(pc), pointmark(pd)); |
27045 | printf(" Second: (%d, %d, %d, %d)\n" , pointmark(org(neightet)), |
27046 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
27047 | pointmark(oppo(neightet))); |
27048 | horrors++; |
27049 | } |
27050 | // Check if they have the same apex. |
27051 | if (apex(neightet) != pc) { |
27052 | printf(" !! !! Wrong face-face bond:\n" ); |
27053 | printf(" First: (%d, %d, %d, %d)\n" , pointmark(pa), |
27054 | pointmark(pb), pointmark(pc), pointmark(pd)); |
27055 | printf(" Second: (%d, %d, %d, %d)\n" , pointmark(org(neightet)), |
27056 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
27057 | pointmark(oppo(neightet))); |
27058 | horrors++; |
27059 | } |
27060 | // Check if they have the same opposite. |
27061 | if (oppo(neightet) == pd) { |
27062 | printf(" !! !! Two identical tetra:\n" ); |
27063 | printf(" First: (%d, %d, %d, %d)\n" , pointmark(pa), |
27064 | pointmark(pb), pointmark(pc), pointmark(pd)); |
27065 | printf(" Second: (%d, %d, %d, %d)\n" , pointmark(org(neightet)), |
27066 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
27067 | pointmark(oppo(neightet))); |
27068 | horrors++; |
27069 | } |
27070 | } |
27071 | if (facemarked(tetloop)) { |
27072 | // This may be a bug. Report it. |
27073 | printf(" !! tetface (%d, %d, %d) %d is marked.\n" , pointmark(pa), |
27074 | pointmark(pb), pointmark(pc), pointmark(pd)); |
27075 | } |
27076 | } |
27077 | // Check the six edges of this tet. |
27078 | for (i = 0; i < 6; i++) { |
27079 | tetloop.ver = edge2ver[i]; |
27080 | if (edgemarked(tetloop)) { |
27081 | // This may be a bug. Report it. |
27082 | printf(" !! tetedge (%d, %d) %d, %d is marked.\n" , |
27083 | pointmark(org(tetloop)), pointmark(dest(tetloop)), |
27084 | pointmark(apex(tetloop)), pointmark(oppo(tetloop))); |
27085 | } |
27086 | } |
27087 | tetloop.tet = alltetrahedrontraverse(); |
27088 | } |
27089 | if (horrors == 0) { |
27090 | if (!b->quiet) { |
27091 | printf(" In my studied opinion, the mesh appears to be consistent.\n" ); |
27092 | } |
27093 | } else { |
27094 | printf(" !! !! !! !! %d %s witnessed.\n" , horrors, |
27095 | horrors > 1 ? "abnormity" : "abnormities" ); |
27096 | } |
27097 | |
27098 | return horrors; |
27099 | } |
27100 | |
27101 | /////////////////////////////////////////////////////////////////////////////// |
27102 | // // |
27103 | // checkshells() Test the boundary mesh for topological consistency. // |
27104 | // // |
27105 | /////////////////////////////////////////////////////////////////////////////// |
27106 | |
27107 | int tetgenmesh::checkshells() |
27108 | { |
27109 | triface neightet, symtet; |
27110 | face shloop, spinsh, nextsh; |
27111 | face checkseg; |
27112 | point pa, pb; |
27113 | int bakcount; |
27114 | int horrors, i; |
27115 | |
27116 | if (!b->quiet) { |
27117 | printf(" Checking consistency of the mesh boundary...\n" ); |
27118 | } |
27119 | horrors = 0; |
27120 | |
27121 | void **bakpathblock = subfaces->pathblock; |
27122 | void *bakpathitem = subfaces->pathitem; |
27123 | int bakpathitemsleft = subfaces->pathitemsleft; |
27124 | int bakalignbytes = subfaces->alignbytes; |
27125 | |
27126 | subfaces->traversalinit(); |
27127 | shloop.sh = shellfacetraverse(subfaces); |
27128 | while (shloop.sh != NULL) { |
27129 | shloop.shver = 0; |
27130 | for (i = 0; i < 3; i++) { |
27131 | // Check the face ring at this edge. |
27132 | pa = sorg(shloop); |
27133 | pb = sdest(shloop); |
27134 | spinsh = shloop; |
27135 | spivot(spinsh, nextsh); |
27136 | bakcount = horrors; |
27137 | while ((nextsh.sh != NULL) && (nextsh.sh != shloop.sh)) { |
27138 | if (nextsh.sh[3] == NULL) { |
27139 | printf(" !! !! Wrong subface-subface connection (Dead subface).\n" ); |
27140 | printf(" First: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) spinsh.sh, |
27141 | pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
27142 | pointmark(sapex(spinsh))); |
27143 | printf(" Second: x%" PRIxPTR " (DEAD)\n" , (uintptr_t) nextsh.sh); |
27144 | horrors++; |
27145 | break; |
27146 | } |
27147 | // check if they have the same edge. |
27148 | if (!(((sorg(nextsh) == pa) && (sdest(nextsh) == pb)) || |
27149 | ((sorg(nextsh) == pb) && (sdest(nextsh) == pa)))) { |
27150 | printf(" !! !! Wrong subface-subface connection.\n" ); |
27151 | printf(" First: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) spinsh.sh, |
27152 | pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
27153 | pointmark(sapex(spinsh))); |
27154 | printf(" Scond: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) nextsh.sh, |
27155 | pointmark(sorg(nextsh)), pointmark(sdest(nextsh)), |
27156 | pointmark(sapex(nextsh))); |
27157 | horrors++; |
27158 | break; |
27159 | } |
27160 | // Check they should not have the same apex. |
27161 | if (sapex(nextsh) == sapex(spinsh)) { |
27162 | printf(" !! !! Existing two duplicated subfaces.\n" ); |
27163 | printf(" First: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) spinsh.sh, |
27164 | pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
27165 | pointmark(sapex(spinsh))); |
27166 | printf(" Scond: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) nextsh.sh, |
27167 | pointmark(sorg(nextsh)), pointmark(sdest(nextsh)), |
27168 | pointmark(sapex(nextsh))); |
27169 | horrors++; |
27170 | break; |
27171 | } |
27172 | spinsh = nextsh; |
27173 | spivot(spinsh, nextsh); |
27174 | } |
27175 | // Check subface-subseg bond. |
27176 | sspivot(shloop, checkseg); |
27177 | if (checkseg.sh != NULL) { |
27178 | if (checkseg.sh[3] == NULL) { |
27179 | printf(" !! !! Wrong subface-subseg connection (Dead subseg).\n" ); |
27180 | printf(" Sub: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) shloop.sh, |
27181 | pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
27182 | pointmark(sapex(shloop))); |
27183 | printf(" Sub: x%" PRIxPTR " (Dead)\n" , (uintptr_t) checkseg.sh); |
27184 | horrors++; |
27185 | } else { |
27186 | if (!(((sorg(checkseg) == pa) && (sdest(checkseg) == pb)) || |
27187 | ((sorg(checkseg) == pb) && (sdest(checkseg) == pa)))) { |
27188 | printf(" !! !! Wrong subface-subseg connection.\n" ); |
27189 | printf(" Sub: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) shloop.sh, |
27190 | pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
27191 | pointmark(sapex(shloop))); |
27192 | printf(" Seg: x%" PRIxPTR " (%d, %d).\n" , (uintptr_t) checkseg.sh, |
27193 | pointmark(sorg(checkseg)), pointmark(sdest(checkseg))); |
27194 | horrors++; |
27195 | } |
27196 | } |
27197 | } |
27198 | if (horrors > bakcount) break; // An error detected. |
27199 | senextself(shloop); |
27200 | } |
27201 | // Check tet-subface connection. |
27202 | stpivot(shloop, neightet); |
27203 | if (neightet.tet != NULL) { |
27204 | if (neightet.tet[4] == NULL) { |
27205 | printf(" !! !! Wrong sub-to-tet connection (Dead tet)\n" ); |
27206 | printf(" Sub: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) shloop.sh, |
27207 | pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
27208 | pointmark(sapex(shloop))); |
27209 | printf(" Tet: x%" PRIxPTR " (DEAD)\n" , (uintptr_t) neightet.tet); |
27210 | horrors++; |
27211 | } else { |
27212 | if (!((sorg(shloop) == org(neightet)) && |
27213 | (sdest(shloop) == dest(neightet)))) { |
27214 | printf(" !! !! Wrong sub-to-tet connection\n" ); |
27215 | printf(" Sub: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) shloop.sh, |
27216 | pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
27217 | pointmark(sapex(shloop))); |
27218 | printf(" Tet: x%" PRIxPTR " (%d, %d, %d, %d).\n" , |
27219 | (uintptr_t) neightet.tet, pointmark(org(neightet)), |
27220 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
27221 | pointmark(oppo(neightet))); |
27222 | horrors++; |
27223 | } |
27224 | tspivot(neightet, spinsh); |
27225 | if (!((sorg(spinsh) == org(neightet)) && |
27226 | (sdest(spinsh) == dest(neightet)))) { |
27227 | printf(" !! !! Wrong tet-sub connection.\n" ); |
27228 | printf(" Sub: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) spinsh.sh, |
27229 | pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
27230 | pointmark(sapex(spinsh))); |
27231 | printf(" Tet: x%" PRIxPTR " (%d, %d, %d, %d).\n" , |
27232 | (uintptr_t) neightet.tet, pointmark(org(neightet)), |
27233 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
27234 | pointmark(oppo(neightet))); |
27235 | horrors++; |
27236 | } |
27237 | fsym(neightet, symtet); |
27238 | tspivot(symtet, spinsh); |
27239 | if (spinsh.sh != NULL) { |
27240 | if (!((sorg(spinsh) == org(symtet)) && |
27241 | (sdest(spinsh) == dest(symtet)))) { |
27242 | printf(" !! !! Wrong tet-sub connection.\n" ); |
27243 | printf(" Sub: x%" PRIxPTR " (%d, %d, %d).\n" , (uintptr_t) spinsh.sh, |
27244 | pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
27245 | pointmark(sapex(spinsh))); |
27246 | printf(" Tet: x%" PRIxPTR " (%d, %d, %d, %d).\n" , |
27247 | (uintptr_t) symtet.tet, pointmark(org(symtet)), |
27248 | pointmark(dest(symtet)), pointmark(apex(symtet)), |
27249 | pointmark(oppo(symtet))); |
27250 | horrors++; |
27251 | } |
27252 | } else { |
27253 | printf(" Warning: Broken tet-sub-tet connection.\n" ); |
27254 | } |
27255 | } |
27256 | } |
27257 | if (sinfected(shloop)) { |
27258 | // This may be a bug. report it. |
27259 | printf(" !! A infected subface: (%d, %d, %d).\n" , |
27260 | pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
27261 | pointmark(sapex(shloop))); |
27262 | } |
27263 | if (smarktested(shloop)) { |
27264 | // This may be a bug. report it. |
27265 | printf(" !! A marked subface: (%d, %d, %d).\n" , pointmark(sorg(shloop)), |
27266 | pointmark(sdest(shloop)), pointmark(sapex(shloop))); |
27267 | } |
27268 | shloop.sh = shellfacetraverse(subfaces); |
27269 | } |
27270 | |
27271 | if (horrors == 0) { |
27272 | if (!b->quiet) { |
27273 | printf(" Mesh boundaries connected correctly.\n" ); |
27274 | } |
27275 | } else { |
27276 | printf(" !! !! !! !! %d boundary connection viewed with horror.\n" , |
27277 | horrors); |
27278 | } |
27279 | |
27280 | subfaces->pathblock = bakpathblock; |
27281 | subfaces->pathitem = bakpathitem; |
27282 | subfaces->pathitemsleft = bakpathitemsleft; |
27283 | subfaces->alignbytes = bakalignbytes; |
27284 | |
27285 | return horrors; |
27286 | } |
27287 | |
27288 | /////////////////////////////////////////////////////////////////////////////// |
27289 | // // |
27290 | // checksegments() Check the connections between tetrahedra and segments. // |
27291 | // // |
27292 | /////////////////////////////////////////////////////////////////////////////// |
27293 | |
27294 | int tetgenmesh::checksegments() |
27295 | { |
27296 | triface tetloop, neightet, spintet; |
27297 | shellface *segs; |
27298 | face neighsh, spinsh, checksh; |
27299 | face sseg, checkseg; |
27300 | point pa, pb; |
27301 | int miscount; |
27302 | int t1ver; |
27303 | int horrors, i; |
27304 | |
27305 | |
27306 | if (!b->quiet) { |
27307 | printf(" Checking tet->seg connections...\n" ); |
27308 | } |
27309 | |
27310 | horrors = 0; |
27311 | tetrahedrons->traversalinit(); |
27312 | tetloop.tet = tetrahedrontraverse(); |
27313 | while (tetloop.tet != NULL) { |
27314 | // Loop the six edges of the tet. |
27315 | if (tetloop.tet[8] != NULL) { |
27316 | segs = (shellface *) tetloop.tet[8]; |
27317 | for (i = 0; i < 6; i++) { |
27318 | sdecode(segs[i], sseg); |
27319 | if (sseg.sh != NULL) { |
27320 | // Get the edge of the tet. |
27321 | tetloop.ver = edge2ver[i]; |
27322 | // Check if they are the same edge. |
27323 | pa = (point) sseg.sh[3]; |
27324 | pb = (point) sseg.sh[4]; |
27325 | if (!(((org(tetloop) == pa) && (dest(tetloop) == pb)) || |
27326 | ((org(tetloop) == pb) && (dest(tetloop) == pa)))) { |
27327 | printf(" !! Wrong tet-seg connection.\n" ); |
27328 | printf(" Tet: x%" PRIxPTR " (%d, %d, %d, %d) - Seg: x%" PRIxPTR " (%d, %d).\n" , |
27329 | (uintptr_t) tetloop.tet, pointmark(org(tetloop)), |
27330 | pointmark(dest(tetloop)), pointmark(apex(tetloop)), |
27331 | pointmark(oppo(tetloop)), (uintptr_t) sseg.sh, |
27332 | pointmark(pa), pointmark(pb)); |
27333 | horrors++; |
27334 | } else { |
27335 | // Loop all tets sharing at this edge. |
27336 | neightet = tetloop; |
27337 | do { |
27338 | tsspivot1(neightet, checkseg); |
27339 | if (checkseg.sh != sseg.sh) { |
27340 | printf(" !! Wrong tet->seg connection.\n" ); |
27341 | printf(" Tet: x%" PRIxPTR " (%d, %d, %d, %d) - " , |
27342 | (uintptr_t) neightet.tet, pointmark(org(neightet)), |
27343 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
27344 | pointmark(oppo(neightet))); |
27345 | if (checkseg.sh != NULL) { |
27346 | printf("Seg x%" PRIxPTR " (%d, %d).\n" , (uintptr_t) checkseg.sh, |
27347 | pointmark(sorg(checkseg)),pointmark(sdest(checkseg))); |
27348 | } else { |
27349 | printf("Seg: NULL.\n" ); |
27350 | } |
27351 | horrors++; |
27352 | } |
27353 | fnextself(neightet); |
27354 | } while (neightet.tet != tetloop.tet); |
27355 | } |
27356 | // Check the seg->tet pointer. |
27357 | sstpivot1(sseg, neightet); |
27358 | if (neightet.tet == NULL) { |
27359 | printf(" !! Wrong seg->tet connection (A NULL tet).\n" ); |
27360 | horrors++; |
27361 | } else { |
27362 | if (!(((org(neightet) == pa) && (dest(neightet) == pb)) || |
27363 | ((org(neightet) == pb) && (dest(neightet) == pa)))) { |
27364 | printf(" !! Wrong seg->tet connection (Wrong edge).\n" ); |
27365 | printf(" Tet: x%" PRIxPTR " (%d, %d, %d, %d) - Seg: x%" PRIxPTR " (%d, %d).\n" , |
27366 | (uintptr_t) neightet.tet, pointmark(org(neightet)), |
27367 | pointmark(dest(neightet)), pointmark(apex(neightet)), |
27368 | pointmark(oppo(neightet)), (uintptr_t) sseg.sh, |
27369 | pointmark(pa), pointmark(pb)); |
27370 | horrors++; |
27371 | } |
27372 | } |
27373 | } |
27374 | } |
27375 | } |
27376 | // Loop the six edge of this tet. |
27377 | neightet.tet = tetloop.tet; |
27378 | for (i = 0; i < 6; i++) { |
27379 | neightet.ver = edge2ver[i]; |
27380 | if (edgemarked(neightet)) { |
27381 | // A possible bug. Report it. |
27382 | printf(" !! A marked edge: (%d, %d, %d, %d) -- x%" PRIxPTR " %d.\n" , |
27383 | pointmark(org(neightet)), pointmark(dest(neightet)), |
27384 | pointmark(apex(neightet)), pointmark(oppo(neightet)), |
27385 | (uintptr_t) neightet.tet, neightet.ver); |
27386 | // Check if all tets at the edge are marked. |
27387 | spintet = neightet; |
27388 | while (1) { |
27389 | fnextself(spintet); |
27390 | if (!edgemarked(spintet)) { |
27391 | printf(" !! !! An unmarked edge (%d, %d, %d, %d) -- x%" PRIxPTR " %d.\n" , |
27392 | pointmark(org(spintet)), pointmark(dest(spintet)), |
27393 | pointmark(apex(spintet)), pointmark(oppo(spintet)), |
27394 | (uintptr_t) spintet.tet, spintet.ver); |
27395 | horrors++; |
27396 | } |
27397 | if (spintet.tet == neightet.tet) break; |
27398 | } |
27399 | } |
27400 | } |
27401 | tetloop.tet = tetrahedrontraverse(); |
27402 | } |
27403 | |
27404 | if (!b->quiet) { |
27405 | printf(" Checking seg->tet connections...\n" ); |
27406 | } |
27407 | |
27408 | miscount = 0; // Count the number of unrecovered segments. |
27409 | subsegs->traversalinit(); |
27410 | sseg.shver = 0; |
27411 | sseg.sh = shellfacetraverse(subsegs); |
27412 | while (sseg.sh != NULL) { |
27413 | pa = sorg(sseg); |
27414 | pb = sdest(sseg); |
27415 | spivot(sseg, neighsh); |
27416 | if (neighsh.sh != NULL) { |
27417 | spinsh = neighsh; |
27418 | while (1) { |
27419 | // Check seg-subface bond. |
27420 | if (((sorg(spinsh) == pa) && (sdest(spinsh) == pb)) || |
27421 | ((sorg(spinsh) == pb) && (sdest(spinsh) == pa))) { |
27422 | // Keep the same rotate direction. |
27423 | //if (sorg(spinsh) != pa) { |
27424 | // sesymself(spinsh); |
27425 | // printf(" !! Wrong ori at subface (%d, %d, %d) -- x%lx %d\n", |
27426 | // pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
27427 | // pointmark(sapex(spinsh)), (uintptr_t) spinsh.sh, |
27428 | // spinsh.shver); |
27429 | // horrors++; |
27430 | //} |
27431 | stpivot(spinsh, spintet); |
27432 | if (spintet.tet != NULL) { |
27433 | // Check if all tets at this segment. |
27434 | while (1) { |
27435 | tsspivot1(spintet, checkseg); |
27436 | if (checkseg.sh == NULL) { |
27437 | printf(" !! !! No seg at tet (%d, %d, %d, %d) -- x%" PRIxPTR " %d\n" , |
27438 | pointmark(org(spintet)), pointmark(dest(spintet)), |
27439 | pointmark(apex(spintet)), pointmark(oppo(spintet)), |
27440 | (uintptr_t) spintet.tet, spintet.ver); |
27441 | horrors++; |
27442 | } |
27443 | if (checkseg.sh != sseg.sh) { |
27444 | printf(" !! !! Wrong seg (%d, %d) at tet (%d, %d, %d, %d)\n" , |
27445 | pointmark(sorg(checkseg)), pointmark(sdest(checkseg)), |
27446 | pointmark(org(spintet)), pointmark(dest(spintet)), |
27447 | pointmark(apex(spintet)), pointmark(oppo(spintet))); |
27448 | horrors++; |
27449 | } |
27450 | fnextself(spintet); |
27451 | // Stop at the next subface. |
27452 | tspivot(spintet, checksh); |
27453 | if (checksh.sh != NULL) break; |
27454 | } // while (1) |
27455 | } |
27456 | } else { |
27457 | printf(" !! Wrong seg-subface (%d, %d, %d) -- x%" PRIxPTR " %d connect\n" , |
27458 | pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
27459 | pointmark(sapex(spinsh)), (uintptr_t) spinsh.sh, |
27460 | spinsh.shver); |
27461 | horrors++; |
27462 | break; |
27463 | } // if pa, pb |
27464 | spivotself(spinsh); |
27465 | if (spinsh.sh == NULL) break; // A dangling segment. |
27466 | if (spinsh.sh == neighsh.sh) break; |
27467 | } // while (1) |
27468 | } // if (neighsh.sh != NULL) |
27469 | // Count the number of "un-recovered" segments. |
27470 | sstpivot1(sseg, neightet); |
27471 | if (neightet.tet == NULL) { |
27472 | miscount++; |
27473 | } |
27474 | sseg.sh = shellfacetraverse(subsegs); |
27475 | } |
27476 | |
27477 | if (!b->quiet) { |
27478 | printf(" Checking seg->seg connections...\n" ); |
27479 | } |
27480 | |
27481 | points->traversalinit(); |
27482 | pa = pointtraverse(); |
27483 | while (pa != NULL) { |
27484 | if (pointtype(pa) == FREESEGVERTEX) { |
27485 | // There should be two subsegments connected at 'pa'. |
27486 | // Get a subsegment containing 'pa'. |
27487 | sdecode(point2sh(pa), sseg); |
27488 | if ((sseg.sh == NULL) || sseg.sh[3] == NULL) { |
27489 | printf(" !! Dead point-to-seg pointer at point %d.\n" , |
27490 | pointmark(pa)); |
27491 | horrors++; |
27492 | } else { |
27493 | sseg.shver = 0; |
27494 | if (sorg(sseg) != pa) { |
27495 | if (sdest(sseg) != pa) { |
27496 | printf(" !! Wrong point-to-seg pointer at point %d.\n" , |
27497 | pointmark(pa)); |
27498 | horrors++; |
27499 | } else { |
27500 | // Find the next subsegment at 'pa'. |
27501 | senext(sseg, checkseg); |
27502 | if ((checkseg.sh == NULL) || (checkseg.sh[3] == NULL)) { |
27503 | printf(" !! Dead seg-seg connection at point %d.\n" , |
27504 | pointmark(pa)); |
27505 | horrors++; |
27506 | } else { |
27507 | spivotself(checkseg); |
27508 | checkseg.shver = 0; |
27509 | if (sorg(checkseg) != pa) { |
27510 | printf(" !! Wrong seg-seg connection at point %d.\n" , |
27511 | pointmark(pa)); |
27512 | horrors++; |
27513 | } |
27514 | } |
27515 | } |
27516 | } else { |
27517 | // Find the previous subsegment at 'pa'. |
27518 | senext2(sseg, checkseg); |
27519 | if ((checkseg.sh == NULL) || (checkseg.sh[3] == NULL)) { |
27520 | printf(" !! Dead seg-seg connection at point %d.\n" , |
27521 | pointmark(pa)); |
27522 | horrors++; |
27523 | } else { |
27524 | spivotself(checkseg); |
27525 | checkseg.shver = 0; |
27526 | if (sdest(checkseg) != pa) { |
27527 | printf(" !! Wrong seg-seg connection at point %d.\n" , |
27528 | pointmark(pa)); |
27529 | horrors++; |
27530 | } |
27531 | } |
27532 | } |
27533 | } |
27534 | } |
27535 | pa = pointtraverse(); |
27536 | } |
27537 | |
27538 | if (horrors == 0) { |
27539 | printf(" Segments are connected properly.\n" ); |
27540 | } else { |
27541 | printf(" !! !! !! !! Found %d missing connections.\n" , horrors); |
27542 | } |
27543 | if (miscount > 0) { |
27544 | printf(" !! !! Found %d missing segments.\n" , miscount); |
27545 | } |
27546 | |
27547 | return horrors; |
27548 | } |
27549 | |
27550 | /////////////////////////////////////////////////////////////////////////////// |
27551 | // // |
27552 | // checkdelaunay() Ensure that the mesh is (constrained) Delaunay. // |
27553 | // // |
27554 | /////////////////////////////////////////////////////////////////////////////// |
27555 | |
27556 | int tetgenmesh::checkdelaunay() |
27557 | { |
27558 | triface tetloop; |
27559 | triface symtet; |
27560 | face checksh; |
27561 | point pa, pb, pc, pd, pe; |
27562 | REAL sign; |
27563 | int ndcount; // Count the non-locally Delaunay faces. |
27564 | int horrors; |
27565 | |
27566 | if (!b->quiet) { |
27567 | printf(" Checking Delaunay property of the mesh...\n" ); |
27568 | } |
27569 | |
27570 | ndcount = 0; |
27571 | horrors = 0; |
27572 | tetloop.ver = 0; |
27573 | // Run through the list of triangles, checking each one. |
27574 | tetrahedrons->traversalinit(); |
27575 | tetloop.tet = tetrahedrontraverse(); |
27576 | while (tetloop.tet != (tetrahedron *) NULL) { |
27577 | // Check all four faces of the tetrahedron. |
27578 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
27579 | fsym(tetloop, symtet); |
27580 | // Only do test if its adjoining tet is not a hull tet or its pointer |
27581 | // is larger (to ensure that each pair isn't tested twice). |
27582 | if (((point) symtet.tet[7] != dummypoint)&&(tetloop.tet < symtet.tet)) { |
27583 | pa = org(tetloop); |
27584 | pb = dest(tetloop); |
27585 | pc = apex(tetloop); |
27586 | pd = oppo(tetloop); |
27587 | pe = oppo(symtet); |
27588 | sign = insphere_s(pa, pb, pc, pd, pe); |
27589 | if (sign < 0.0) { |
27590 | ndcount++; |
27591 | if (checksubfaceflag) { |
27592 | tspivot(tetloop, checksh); |
27593 | } |
27594 | if (checksh.sh == NULL) { |
27595 | printf(" !! Non-locally Delaunay (%d, %d, %d) - %d, %d\n" , |
27596 | pointmark(pa), pointmark(pb), pointmark(pc), pointmark(pd), |
27597 | pointmark(pe)); |
27598 | horrors++; |
27599 | } |
27600 | } |
27601 | } |
27602 | } |
27603 | tetloop.tet = tetrahedrontraverse(); |
27604 | } |
27605 | |
27606 | if (horrors == 0) { |
27607 | if (!b->quiet) { |
27608 | if (ndcount > 0) { |
27609 | printf(" The mesh is constrained Delaunay.\n" ); |
27610 | } else { |
27611 | printf(" The mesh is Delaunay.\n" ); |
27612 | } |
27613 | } |
27614 | } else { |
27615 | printf(" !! !! !! !! Found %d non-Delaunay faces.\n" , horrors); |
27616 | } |
27617 | |
27618 | return horrors; |
27619 | } |
27620 | |
27621 | /////////////////////////////////////////////////////////////////////////////// |
27622 | // // |
27623 | // Check if the current tetrahedralization is (constrained) regular. // |
27624 | // // |
27625 | // The parameter 'type' determines which regularity should be checked: // |
27626 | // - 0: check the Delaunay property. // |
27627 | // - 1: check the Delaunay property with symbolic perturbation. // |
27628 | // - 2: check the regular property, the weights are stored in p[3]. // |
27629 | // - 3: check the regular property with symbolic perturbation. // |
27630 | // // |
27631 | /////////////////////////////////////////////////////////////////////////////// |
27632 | |
27633 | int tetgenmesh::checkregular(int type) |
27634 | { |
27635 | triface tetloop; |
27636 | triface symtet; |
27637 | face checksh; |
27638 | point p[5]; |
27639 | REAL sign; |
27640 | int ndcount; // Count the non-locally Delaunay faces. |
27641 | int horrors; |
27642 | |
27643 | if (!b->quiet) { |
27644 | printf(" Checking %s %s property of the mesh...\n" , |
27645 | (type & 2) == 0 ? "Delaunay" : "regular" , |
27646 | (type & 1) == 0 ? " " : "(s)" ); |
27647 | } |
27648 | |
27649 | // Make sure orient3d(p[1], p[0], p[2], p[3]) > 0; |
27650 | // Hence if (insphere(p[1], p[0], p[2], p[3], p[4]) > 0) means that |
27651 | // p[4] lies inside the circumsphere of p[1], p[0], p[2], p[3]. |
27652 | // The same if orient4d(p[1], p[0], p[2], p[3], p[4]) > 0 means that |
27653 | // p[4] lies below the oriented hyperplane passing through |
27654 | // p[1], p[0], p[2], p[3]. |
27655 | |
27656 | ndcount = 0; |
27657 | horrors = 0; |
27658 | tetloop.ver = 0; |
27659 | // Run through the list of triangles, checking each one. |
27660 | tetrahedrons->traversalinit(); |
27661 | tetloop.tet = tetrahedrontraverse(); |
27662 | while (tetloop.tet != (tetrahedron *) NULL) { |
27663 | // Check all four faces of the tetrahedron. |
27664 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
27665 | fsym(tetloop, symtet); |
27666 | // Only do test if its adjoining tet is not a hull tet or its pointer |
27667 | // is larger (to ensure that each pair isn't tested twice). |
27668 | if (((point) symtet.tet[7] != dummypoint)&&(tetloop.tet < symtet.tet)) { |
27669 | p[0] = org(tetloop); // pa |
27670 | p[1] = dest(tetloop); // pb |
27671 | p[2] = apex(tetloop); // pc |
27672 | p[3] = oppo(tetloop); // pd |
27673 | p[4] = oppo(symtet); // pe |
27674 | |
27675 | if (type == 0) { |
27676 | sign = insphere(p[1], p[0], p[2], p[3], p[4]); |
27677 | } else if (type == 1) { |
27678 | sign = insphere_s(p[1], p[0], p[2], p[3], p[4]); |
27679 | } else if (type == 2) { |
27680 | sign = orient4d(p[1], p[0], p[2], p[3], p[4], |
27681 | p[1][3], p[0][3], p[2][3], p[3][3], p[4][3]); |
27682 | } else { // type == 3 |
27683 | sign = orient4d_s(p[1], p[0], p[2], p[3], p[4], |
27684 | p[1][3], p[0][3], p[2][3], p[3][3], p[4][3]); |
27685 | } |
27686 | |
27687 | if (sign > 0.0) { |
27688 | ndcount++; |
27689 | if (checksubfaceflag) { |
27690 | tspivot(tetloop, checksh); |
27691 | } |
27692 | if (checksh.sh == NULL) { |
27693 | printf(" !! Non-locally %s (%d, %d, %d) - %d, %d\n" , |
27694 | (type & 2) == 0 ? "Delaunay" : "regular" , |
27695 | pointmark(p[0]), pointmark(p[1]), pointmark(p[2]), |
27696 | pointmark(p[3]), pointmark(p[4])); |
27697 | horrors++; |
27698 | } |
27699 | } |
27700 | } |
27701 | } |
27702 | tetloop.tet = tetrahedrontraverse(); |
27703 | } |
27704 | |
27705 | if (horrors == 0) { |
27706 | if (!b->quiet) { |
27707 | if (ndcount > 0) { |
27708 | printf(" The mesh is constrained %s.\n" , |
27709 | (type & 2) == 0 ? "Delaunay" : "regular" ); |
27710 | } else { |
27711 | printf(" The mesh is %s.\n" , (type & 2) == 0 ? "Delaunay" : "regular" ); |
27712 | } |
27713 | } |
27714 | } else { |
27715 | printf(" !! !! !! !! Found %d non-%s faces.\n" , horrors, |
27716 | (type & 2) == 0 ? "Delaunay" : "regular" ); |
27717 | } |
27718 | |
27719 | return horrors; |
27720 | } |
27721 | |
27722 | /////////////////////////////////////////////////////////////////////////////// |
27723 | // // |
27724 | // checkconforming() Ensure that the mesh is conforming Delaunay. // |
27725 | // // |
27726 | // If 'flag' is 1, only check subsegments. If 'flag' is 2, check subfaces. // |
27727 | // If 'flag' is 3, check both subsegments and subfaces. // |
27728 | // // |
27729 | /////////////////////////////////////////////////////////////////////////////// |
27730 | |
27731 | int tetgenmesh::checkconforming(int flag) |
27732 | { |
27733 | triface searchtet, neightet, spintet; |
27734 | face shloop; |
27735 | face segloop; |
27736 | point eorg, edest, eapex, pa, pb, pc; |
27737 | REAL cent[3], radius, dist, diff, rd, len; |
27738 | bool enq; |
27739 | int encsubsegs, encsubfaces; |
27740 | int t1ver; |
27741 | int i; |
27742 | |
27743 | REAL A[4][4], rhs[4], D; |
27744 | int indx[4]; |
27745 | REAL elen[3]; |
27746 | |
27747 | encsubsegs = 0; |
27748 | |
27749 | if (flag & 1) { |
27750 | if (!b->quiet) { |
27751 | printf(" Checking conforming property of segments...\n" ); |
27752 | } |
27753 | encsubsegs = 0; |
27754 | |
27755 | // Run through the list of subsegments, check each one. |
27756 | subsegs->traversalinit(); |
27757 | segloop.sh = shellfacetraverse(subsegs); |
27758 | while (segloop.sh != (shellface *) NULL) { |
27759 | eorg = (point) segloop.sh[3]; |
27760 | edest = (point) segloop.sh[4]; |
27761 | radius = 0.5 * distance(eorg, edest); |
27762 | for (i = 0; i < 3; i++) cent[i] = 0.5 * (eorg[i] + edest[i]); |
27763 | |
27764 | enq = false; |
27765 | sstpivot1(segloop, neightet); |
27766 | if (neightet.tet != NULL) { |
27767 | spintet = neightet; |
27768 | while (1) { |
27769 | eapex= apex(spintet); |
27770 | if (eapex != dummypoint) { |
27771 | dist = distance(eapex, cent); |
27772 | diff = dist - radius; |
27773 | if (fabs(diff) / radius <= b->epsilon) diff = 0.0; // Rounding. |
27774 | if (diff < 0) { |
27775 | enq = true; break; |
27776 | } |
27777 | } |
27778 | fnextself(spintet); |
27779 | if (spintet.tet == neightet.tet) break; |
27780 | } |
27781 | } |
27782 | if (enq) { |
27783 | printf(" !! !! Non-conforming segment: (%d, %d)\n" , |
27784 | pointmark(eorg), pointmark(edest)); |
27785 | encsubsegs++; |
27786 | } |
27787 | segloop.sh = shellfacetraverse(subsegs); |
27788 | } |
27789 | |
27790 | if (encsubsegs == 0) { |
27791 | if (!b->quiet) { |
27792 | printf(" The segments are conforming Delaunay.\n" ); |
27793 | } |
27794 | } else { |
27795 | printf(" !! !! %d subsegments are non-conforming.\n" , encsubsegs); |
27796 | } |
27797 | } // if (flag & 1) |
27798 | |
27799 | encsubfaces = 0; |
27800 | |
27801 | if (flag & 2) { |
27802 | if (!b->quiet) { |
27803 | printf(" Checking conforming property of subfaces...\n" ); |
27804 | } |
27805 | |
27806 | // Run through the list of subfaces, check each one. |
27807 | subfaces->traversalinit(); |
27808 | shloop.sh = shellfacetraverse(subfaces); |
27809 | while (shloop.sh != (shellface *) NULL) { |
27810 | pa = (point) shloop.sh[3]; |
27811 | pb = (point) shloop.sh[4]; |
27812 | pc = (point) shloop.sh[5]; |
27813 | |
27814 | // Compute the coefficient matrix A (3x3). |
27815 | A[0][0] = pb[0] - pa[0]; |
27816 | A[0][1] = pb[1] - pa[1]; |
27817 | A[0][2] = pb[2] - pa[2]; // vector V1 (pa->pb) |
27818 | A[1][0] = pc[0] - pa[0]; |
27819 | A[1][1] = pc[1] - pa[1]; |
27820 | A[1][2] = pc[2] - pa[2]; // vector V2 (pa->pc) |
27821 | cross(A[0], A[1], A[2]); // vector V3 (V1 X V2) |
27822 | |
27823 | // Compute the right hand side vector b (3x1). |
27824 | elen[0] = dot(A[0], A[0]); |
27825 | elen[1] = dot(A[1], A[1]); |
27826 | rhs[0] = 0.5 * elen[0]; |
27827 | rhs[1] = 0.5 * elen[1]; |
27828 | rhs[2] = 0.0; |
27829 | |
27830 | if (lu_decmp(A, 3, indx, &D, 0)) { |
27831 | lu_solve(A, 3, indx, rhs, 0); |
27832 | cent[0] = pa[0] + rhs[0]; |
27833 | cent[1] = pa[1] + rhs[1]; |
27834 | cent[2] = pa[2] + rhs[2]; |
27835 | rd = sqrt(rhs[0] * rhs[0] + rhs[1] * rhs[1] + rhs[2] * rhs[2]); |
27836 | |
27837 | // Check if this subface is encroached. |
27838 | for (i = 0; i < 2; i++) { |
27839 | stpivot(shloop, searchtet); |
27840 | if (!ishulltet(searchtet)) { |
27841 | len = distance(oppo(searchtet), cent); |
27842 | if ((fabs(len - rd) / rd) < b->epsilon) len = rd; // Rounding. |
27843 | if (len < rd) { |
27844 | printf(" !! !! Non-conforming subface: (%d, %d, %d)\n" , |
27845 | pointmark(pa), pointmark(pb), pointmark(pc)); |
27846 | encsubfaces++; |
27847 | enq = true; break; |
27848 | } |
27849 | } |
27850 | sesymself(shloop); |
27851 | } |
27852 | } |
27853 | shloop.sh = shellfacetraverse(subfaces); |
27854 | } |
27855 | |
27856 | if (encsubfaces == 0) { |
27857 | if (!b->quiet) { |
27858 | printf(" The subfaces are conforming Delaunay.\n" ); |
27859 | } |
27860 | } else { |
27861 | printf(" !! !! %d subfaces are non-conforming.\n" , encsubfaces); |
27862 | } |
27863 | } // if (flag & 2) |
27864 | |
27865 | return encsubsegs + encsubfaces; |
27866 | } |
27867 | |
27868 | /////////////////////////////////////////////////////////////////////////////// |
27869 | // // |
27870 | // qualitystatistics() Print statistics about the quality of the mesh. // |
27871 | // // |
27872 | /////////////////////////////////////////////////////////////////////////////// |
27873 | |
27874 | void tetgenmesh::qualitystatistics() |
27875 | { |
27876 | triface tetloop, neightet; |
27877 | point p[4]; |
27878 | char sbuf[128]; |
27879 | REAL radiusratiotable[12]; |
27880 | REAL aspectratiotable[12]; |
27881 | REAL A[4][4], rhs[4], D; |
27882 | REAL V[6][3], N[4][3], H[4]; // edge-vectors, face-normals, face-heights. |
27883 | REAL edgelength[6], alldihed[6], faceangle[3]; |
27884 | REAL shortest, longest; |
27885 | REAL smallestvolume, biggestvolume; |
27886 | REAL smallestratio, biggestratio; |
27887 | REAL smallestdiangle, biggestdiangle; |
27888 | REAL smallestfaangle, biggestfaangle; |
27889 | REAL total_tet_vol, total_tetprism_vol; |
27890 | REAL tetvol, minaltitude; |
27891 | REAL cirradius, minheightinv; // insradius; |
27892 | REAL shortlen, longlen; |
27893 | REAL tetaspect, tetradius; |
27894 | REAL smalldiangle, bigdiangle; |
27895 | REAL smallfaangle, bigfaangle; |
27896 | unsigned long radiustable[12]; |
27897 | unsigned long aspecttable[16]; |
27898 | unsigned long dihedangletable[18]; |
27899 | unsigned long faceangletable[18]; |
27900 | int indx[4]; |
27901 | int radiusindex; |
27902 | int aspectindex; |
27903 | int tendegree; |
27904 | int i, j; |
27905 | |
27906 | printf("Mesh quality statistics:\n\n" ); |
27907 | |
27908 | shortlen = longlen = 0.0; |
27909 | smalldiangle = bigdiangle = 0.0; |
27910 | total_tet_vol = 0.0; |
27911 | total_tetprism_vol = 0.0; |
27912 | |
27913 | radiusratiotable[0] = 0.707; radiusratiotable[1] = 1.0; |
27914 | radiusratiotable[2] = 1.1; radiusratiotable[3] = 1.2; |
27915 | radiusratiotable[4] = 1.4; radiusratiotable[5] = 1.6; |
27916 | radiusratiotable[6] = 1.8; radiusratiotable[7] = 2.0; |
27917 | radiusratiotable[8] = 2.5; radiusratiotable[9] = 3.0; |
27918 | radiusratiotable[10] = 10.0; radiusratiotable[11] = 0.0; |
27919 | |
27920 | aspectratiotable[0] = 1.5; aspectratiotable[1] = 2.0; |
27921 | aspectratiotable[2] = 2.5; aspectratiotable[3] = 3.0; |
27922 | aspectratiotable[4] = 4.0; aspectratiotable[5] = 6.0; |
27923 | aspectratiotable[6] = 10.0; aspectratiotable[7] = 15.0; |
27924 | aspectratiotable[8] = 25.0; aspectratiotable[9] = 50.0; |
27925 | aspectratiotable[10] = 100.0; aspectratiotable[11] = 0.0; |
27926 | |
27927 | for (i = 0; i < 12; i++) radiustable[i] = 0l; |
27928 | for (i = 0; i < 12; i++) aspecttable[i] = 0l; |
27929 | for (i = 0; i < 18; i++) dihedangletable[i] = 0l; |
27930 | for (i = 0; i < 18; i++) faceangletable[i] = 0l; |
27931 | |
27932 | minaltitude = xmax - xmin + ymax - ymin + zmax - zmin; |
27933 | minaltitude = minaltitude * minaltitude; |
27934 | shortest = minaltitude; |
27935 | longest = 0.0; |
27936 | smallestvolume = minaltitude; |
27937 | biggestvolume = 0.0; |
27938 | smallestratio = 1e+16; // minaltitude; |
27939 | biggestratio = 0.0; |
27940 | smallestdiangle = smallestfaangle = 180.0; |
27941 | biggestdiangle = biggestfaangle = 0.0; |
27942 | |
27943 | |
27944 | int attrnum = numelemattrib - 1; |
27945 | |
27946 | // Loop all elements, calculate quality parameters for each element. |
27947 | tetrahedrons->traversalinit(); |
27948 | tetloop.tet = tetrahedrontraverse(); |
27949 | while (tetloop.tet != (tetrahedron *) NULL) { |
27950 | |
27951 | if (b->convex) { |
27952 | // Skip tets in the exterior. |
27953 | if (elemattribute(tetloop.tet, attrnum) == -1.0) { |
27954 | tetloop.tet = tetrahedrontraverse(); |
27955 | continue; |
27956 | } |
27957 | } |
27958 | |
27959 | // Get four vertices: p0, p1, p2, p3. |
27960 | for (i = 0; i < 4; i++) p[i] = (point) tetloop.tet[4 + i]; |
27961 | |
27962 | // Get the tet volume. |
27963 | tetvol = orient3dfast(p[1], p[0], p[2], p[3]) / 6.0; |
27964 | total_tet_vol += tetvol; |
27965 | total_tetprism_vol += tetprismvol(p[0], p[1], p[2], p[3]); |
27966 | |
27967 | // Calculate the largest and smallest volume. |
27968 | if (tetvol < smallestvolume) { |
27969 | smallestvolume = tetvol; |
27970 | } |
27971 | if (tetvol > biggestvolume) { |
27972 | biggestvolume = tetvol; |
27973 | } |
27974 | |
27975 | // Set the edge vectors: V[0], ..., V[5] |
27976 | for (i = 0; i < 3; i++) V[0][i] = p[0][i] - p[3][i]; // V[0]: p3->p0. |
27977 | for (i = 0; i < 3; i++) V[1][i] = p[1][i] - p[3][i]; // V[1]: p3->p1. |
27978 | for (i = 0; i < 3; i++) V[2][i] = p[2][i] - p[3][i]; // V[2]: p3->p2. |
27979 | for (i = 0; i < 3; i++) V[3][i] = p[1][i] - p[0][i]; // V[3]: p0->p1. |
27980 | for (i = 0; i < 3; i++) V[4][i] = p[2][i] - p[1][i]; // V[4]: p1->p2. |
27981 | for (i = 0; i < 3; i++) V[5][i] = p[0][i] - p[2][i]; // V[5]: p2->p0. |
27982 | |
27983 | // Get the squares of the edge lengths. |
27984 | for (i = 0; i < 6; i++) edgelength[i] = dot(V[i], V[i]); |
27985 | |
27986 | // Calculate the longest and shortest edge length. |
27987 | for (i = 0; i < 6; i++) { |
27988 | if (i == 0) { |
27989 | shortlen = longlen = edgelength[i]; |
27990 | } else { |
27991 | shortlen = edgelength[i] < shortlen ? edgelength[i] : shortlen; |
27992 | longlen = edgelength[i] > longlen ? edgelength[i] : longlen; |
27993 | } |
27994 | if (edgelength[i] > longest) { |
27995 | longest = edgelength[i]; |
27996 | } |
27997 | if (edgelength[i] < shortest) { |
27998 | shortest = edgelength[i]; |
27999 | } |
28000 | } |
28001 | |
28002 | // Set the matrix A = [V[0], V[1], V[2]]^T. |
28003 | for (j = 0; j < 3; j++) { |
28004 | for (i = 0; i < 3; i++) A[j][i] = V[j][i]; |
28005 | } |
28006 | |
28007 | // Decompose A just once. |
28008 | if (lu_decmp(A, 3, indx, &D, 0)) { |
28009 | // Get the three faces normals. |
28010 | for (j = 0; j < 3; j++) { |
28011 | for (i = 0; i < 3; i++) rhs[i] = 0.0; |
28012 | rhs[j] = 1.0; // Positive means the inside direction |
28013 | lu_solve(A, 3, indx, rhs, 0); |
28014 | for (i = 0; i < 3; i++) N[j][i] = rhs[i]; |
28015 | } |
28016 | // Get the fourth face normal by summing up the first three. |
28017 | for (i = 0; i < 3; i++) N[3][i] = - N[0][i] - N[1][i] - N[2][i]; |
28018 | // Get the radius of the circumsphere. |
28019 | for (i = 0; i < 3; i++) rhs[i] = 0.5 * dot(V[i], V[i]); |
28020 | lu_solve(A, 3, indx, rhs, 0); |
28021 | cirradius = sqrt(dot(rhs, rhs)); |
28022 | // Normalize the face normals. |
28023 | for (i = 0; i < 4; i++) { |
28024 | // H[i] is the inverse of height of its corresponding face. |
28025 | H[i] = sqrt(dot(N[i], N[i])); |
28026 | for (j = 0; j < 3; j++) N[i][j] /= H[i]; |
28027 | } |
28028 | // Get the radius of the inscribed sphere. |
28029 | // insradius = 1.0 / (H[0] + H[1] + H[2] + H[3]); |
28030 | // Get the biggest H[i] (corresponding to the smallest height). |
28031 | minheightinv = H[0]; |
28032 | for (i = 1; i < 3; i++) { |
28033 | if (H[i] > minheightinv) minheightinv = H[i]; |
28034 | } |
28035 | } else { |
28036 | // A nearly degenerated tet. |
28037 | if (tetvol <= 0.0) { |
28038 | // assert(tetvol != 0.0); |
28039 | printf(" !! Warning: A %s tet (%d,%d,%d,%d).\n" , |
28040 | tetvol < 0 ? "inverted" : "degenerated" , pointmark(p[0]), |
28041 | pointmark(p[1]), pointmark(p[2]), pointmark(p[3])); |
28042 | // Skip it. |
28043 | tetloop.tet = tetrahedrontraverse(); |
28044 | continue; |
28045 | } |
28046 | // Calculate the four face normals. |
28047 | facenormal(p[2], p[1], p[3], N[0], 1, NULL); |
28048 | facenormal(p[0], p[2], p[3], N[1], 1, NULL); |
28049 | facenormal(p[1], p[0], p[3], N[2], 1, NULL); |
28050 | facenormal(p[0], p[1], p[2], N[3], 1, NULL); |
28051 | // Normalize the face normals. |
28052 | for (i = 0; i < 4; i++) { |
28053 | // H[i] is the twice of the area of the face. |
28054 | H[i] = sqrt(dot(N[i], N[i])); |
28055 | for (j = 0; j < 3; j++) N[i][j] /= H[i]; |
28056 | } |
28057 | // Get the biggest H[i] / tetvol (corresponding to the smallest height). |
28058 | minheightinv = (H[0] / tetvol); |
28059 | for (i = 1; i < 3; i++) { |
28060 | if ((H[i] / tetvol) > minheightinv) minheightinv = (H[i] / tetvol); |
28061 | } |
28062 | // Let the circumradius to be the half of its longest edge length. |
28063 | cirradius = 0.5 * sqrt(longlen); |
28064 | } |
28065 | |
28066 | // Get the dihedrals (in degree) at each edges. |
28067 | j = 0; |
28068 | for (i = 1; i < 4; i++) { |
28069 | alldihed[j] = -dot(N[0], N[i]); // Edge cd, bd, bc. |
28070 | if (alldihed[j] < -1.0) alldihed[j] = -1; // Rounding. |
28071 | else if (alldihed[j] > 1.0) alldihed[j] = 1; |
28072 | alldihed[j] = acos(alldihed[j]) / PI * 180.0; |
28073 | j++; |
28074 | } |
28075 | for (i = 2; i < 4; i++) { |
28076 | alldihed[j] = -dot(N[1], N[i]); // Edge ad, ac. |
28077 | if (alldihed[j] < -1.0) alldihed[j] = -1; // Rounding. |
28078 | else if (alldihed[j] > 1.0) alldihed[j] = 1; |
28079 | alldihed[j] = acos(alldihed[j]) / PI * 180.0; |
28080 | j++; |
28081 | } |
28082 | alldihed[j] = -dot(N[2], N[3]); // Edge ab. |
28083 | if (alldihed[j] < -1.0) alldihed[j] = -1; // Rounding. |
28084 | else if (alldihed[j] > 1.0) alldihed[j] = 1; |
28085 | alldihed[j] = acos(alldihed[j]) / PI * 180.0; |
28086 | |
28087 | // Calculate the largest and smallest dihedral angles. |
28088 | for (i = 0; i < 6; i++) { |
28089 | if (i == 0) { |
28090 | smalldiangle = bigdiangle = alldihed[i]; |
28091 | } else { |
28092 | smalldiangle = alldihed[i] < smalldiangle ? alldihed[i] : smalldiangle; |
28093 | bigdiangle = alldihed[i] > bigdiangle ? alldihed[i] : bigdiangle; |
28094 | } |
28095 | if (alldihed[i] < smallestdiangle) { |
28096 | smallestdiangle = alldihed[i]; |
28097 | } |
28098 | if (alldihed[i] > biggestdiangle) { |
28099 | biggestdiangle = alldihed[i]; |
28100 | } |
28101 | // Accumulate the corresponding number in the dihedral angle histogram. |
28102 | if (alldihed[i] < 5.0) { |
28103 | tendegree = 0; |
28104 | } else if (alldihed[i] >= 5.0 && alldihed[i] < 10.0) { |
28105 | tendegree = 1; |
28106 | } else if (alldihed[i] >= 80.0 && alldihed[i] < 110.0) { |
28107 | tendegree = 9; // Angles between 80 to 110 degree are in one entry. |
28108 | } else if (alldihed[i] >= 170.0 && alldihed[i] < 175.0) { |
28109 | tendegree = 16; |
28110 | } else if (alldihed[i] >= 175.0) { |
28111 | tendegree = 17; |
28112 | } else { |
28113 | tendegree = (int) (alldihed[i] / 10.); |
28114 | if (alldihed[i] < 80.0) { |
28115 | tendegree++; // In the left column. |
28116 | } else { |
28117 | tendegree--; // In the right column. |
28118 | } |
28119 | } |
28120 | dihedangletable[tendegree]++; |
28121 | } |
28122 | |
28123 | |
28124 | |
28125 | // Calculate the largest and smallest face angles. |
28126 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
28127 | fsym(tetloop, neightet); |
28128 | // Only do the calulation once for a face. |
28129 | if (((point) neightet.tet[7] == dummypoint) || |
28130 | (tetloop.tet < neightet.tet)) { |
28131 | p[0] = org(tetloop); |
28132 | p[1] = dest(tetloop); |
28133 | p[2] = apex(tetloop); |
28134 | faceangle[0] = interiorangle(p[0], p[1], p[2], NULL); |
28135 | faceangle[1] = interiorangle(p[1], p[2], p[0], NULL); |
28136 | faceangle[2] = PI - (faceangle[0] + faceangle[1]); |
28137 | // Translate angles into degrees. |
28138 | for (i = 0; i < 3; i++) { |
28139 | faceangle[i] = (faceangle[i] * 180.0) / PI; |
28140 | } |
28141 | // Calculate the largest and smallest face angles. |
28142 | for (i = 0; i < 3; i++) { |
28143 | if (i == 0) { |
28144 | smallfaangle = bigfaangle = faceangle[i]; |
28145 | } else { |
28146 | smallfaangle = faceangle[i] < smallfaangle ? |
28147 | faceangle[i] : smallfaangle; |
28148 | bigfaangle = faceangle[i] > bigfaangle ? faceangle[i] : bigfaangle; |
28149 | } |
28150 | if (faceangle[i] < smallestfaangle) { |
28151 | smallestfaangle = faceangle[i]; |
28152 | } |
28153 | if (faceangle[i] > biggestfaangle) { |
28154 | biggestfaangle = faceangle[i]; |
28155 | } |
28156 | tendegree = (int) (faceangle[i] / 10.); |
28157 | faceangletable[tendegree]++; |
28158 | } |
28159 | } |
28160 | } |
28161 | |
28162 | // Calculate aspect ratio and radius-edge ratio for this element. |
28163 | tetradius = cirradius / sqrt(shortlen); |
28164 | // tetaspect = sqrt(longlen) / (2.0 * insradius); |
28165 | tetaspect = sqrt(longlen) * minheightinv; |
28166 | // Remember the largest and smallest aspect ratio. |
28167 | if (tetaspect < smallestratio) { |
28168 | smallestratio = tetaspect; |
28169 | } |
28170 | if (tetaspect > biggestratio) { |
28171 | biggestratio = tetaspect; |
28172 | } |
28173 | // Accumulate the corresponding number in the aspect ratio histogram. |
28174 | aspectindex = 0; |
28175 | while ((tetaspect > aspectratiotable[aspectindex]) && (aspectindex < 11)) { |
28176 | aspectindex++; |
28177 | } |
28178 | aspecttable[aspectindex]++; |
28179 | radiusindex = 0; |
28180 | while ((tetradius > radiusratiotable[radiusindex]) && (radiusindex < 11)) { |
28181 | radiusindex++; |
28182 | } |
28183 | radiustable[radiusindex]++; |
28184 | |
28185 | tetloop.tet = tetrahedrontraverse(); |
28186 | } |
28187 | |
28188 | shortest = sqrt(shortest); |
28189 | longest = sqrt(longest); |
28190 | minaltitude = sqrt(minaltitude); |
28191 | |
28192 | printf(" Smallest volume: %16.5g | Largest volume: %16.5g\n" , |
28193 | smallestvolume, biggestvolume); |
28194 | printf(" Shortest edge: %16.5g | Longest edge: %16.5g\n" , |
28195 | shortest, longest); |
28196 | printf(" Smallest asp.ratio: %13.5g | Largest asp.ratio: %13.5g\n" , |
28197 | smallestratio, biggestratio); |
28198 | sprintf(sbuf, "%.17g" , biggestfaangle); |
28199 | if (strlen(sbuf) > 8) { |
28200 | sbuf[8] = '\0'; |
28201 | } |
28202 | printf(" Smallest facangle: %14.5g | Largest facangle: %s\n" , |
28203 | smallestfaangle, sbuf); |
28204 | sprintf(sbuf, "%.17g" , biggestdiangle); |
28205 | if (strlen(sbuf) > 8) { |
28206 | sbuf[8] = '\0'; |
28207 | } |
28208 | printf(" Smallest dihedral: %14.5g | Largest dihedral: %s\n\n" , |
28209 | smallestdiangle, sbuf); |
28210 | |
28211 | printf(" Aspect ratio histogram:\n" ); |
28212 | printf(" < %-6.6g : %8ld | %6.6g - %-6.6g : %8ld\n" , |
28213 | aspectratiotable[0], aspecttable[0], aspectratiotable[5], |
28214 | aspectratiotable[6], aspecttable[6]); |
28215 | for (i = 1; i < 5; i++) { |
28216 | printf(" %6.6g - %-6.6g : %8ld | %6.6g - %-6.6g : %8ld\n" , |
28217 | aspectratiotable[i - 1], aspectratiotable[i], aspecttable[i], |
28218 | aspectratiotable[i + 5], aspectratiotable[i + 6], |
28219 | aspecttable[i + 6]); |
28220 | } |
28221 | printf(" %6.6g - %-6.6g : %8ld | %6.6g - : %8ld\n" , |
28222 | aspectratiotable[4], aspectratiotable[5], aspecttable[5], |
28223 | aspectratiotable[10], aspecttable[11]); |
28224 | printf(" (A tetrahedron's aspect ratio is its longest edge length" ); |
28225 | printf(" divided by its\n" ); |
28226 | printf(" smallest side height)\n\n" ); |
28227 | |
28228 | printf(" Face angle histogram:\n" ); |
28229 | for (i = 0; i < 9; i++) { |
28230 | printf(" %3d - %3d degrees: %8ld | %3d - %3d degrees: %8ld\n" , |
28231 | i * 10, i * 10 + 10, faceangletable[i], |
28232 | i * 10 + 90, i * 10 + 100, faceangletable[i + 9]); |
28233 | } |
28234 | if (minfaceang != PI) { |
28235 | printf(" Minimum input face angle is %g (degree).\n" , |
28236 | minfaceang / PI * 180.0); |
28237 | } |
28238 | printf("\n" ); |
28239 | |
28240 | printf(" Dihedral angle histogram:\n" ); |
28241 | // Print the three two rows: |
28242 | printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n" , |
28243 | 0, 5, dihedangletable[0], 80, 110, dihedangletable[9]); |
28244 | printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n" , |
28245 | 5, 10, dihedangletable[1], 110, 120, dihedangletable[10]); |
28246 | // Print the third to seventh rows. |
28247 | for (i = 2; i < 7; i++) { |
28248 | printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n" , |
28249 | (i - 1) * 10, (i - 1) * 10 + 10, dihedangletable[i], |
28250 | (i - 1) * 10 + 110, (i - 1) * 10 + 120, dihedangletable[i + 9]); |
28251 | } |
28252 | // Print the last two rows. |
28253 | printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n" , |
28254 | 60, 70, dihedangletable[7], 170, 175, dihedangletable[16]); |
28255 | printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n" , |
28256 | 70, 80, dihedangletable[8], 175, 180, dihedangletable[17]); |
28257 | if (minfacetdihed != PI) { |
28258 | printf(" Minimum input dihedral angle is %g (degree).\n" , |
28259 | minfacetdihed / PI * 180.0); |
28260 | } |
28261 | printf("\n" ); |
28262 | |
28263 | printf("\n" ); |
28264 | } |
28265 | |
28266 | |
28267 | /////////////////////////////////////////////////////////////////////////////// |
28268 | // // |
28269 | // memorystatistics() Report the memory usage. // |
28270 | // // |
28271 | /////////////////////////////////////////////////////////////////////////////// |
28272 | |
28273 | void tetgenmesh::memorystatistics() |
28274 | { |
28275 | printf("Memory usage statistics:\n\n" ); |
28276 | |
28277 | // Count the number of blocks of tetrahedra. |
28278 | int tetblocks = 0; |
28279 | tetrahedrons->pathblock = tetrahedrons->firstblock; |
28280 | while (tetrahedrons->pathblock != NULL) { |
28281 | tetblocks++; |
28282 | tetrahedrons->pathblock = (void **) *(tetrahedrons->pathblock); |
28283 | } |
28284 | |
28285 | // Calculate the total memory (in bytes) used by storing meshes. |
28286 | unsigned long totalmeshmemory = 0l, totalt2shmemory = 0l; |
28287 | totalmeshmemory = points->maxitems * points->itembytes + |
28288 | tetrahedrons->maxitems * tetrahedrons->itembytes; |
28289 | if (b->plc || b->refine) { |
28290 | totalmeshmemory += (subfaces->maxitems * subfaces->itembytes + |
28291 | subsegs->maxitems * subsegs->itembytes); |
28292 | totalt2shmemory = (tet2subpool->maxitems * tet2subpool->itembytes + |
28293 | tet2segpool->maxitems * tet2segpool->itembytes); |
28294 | } |
28295 | |
28296 | unsigned long totalalgomemory = 0l; |
28297 | totalalgomemory = cavetetlist->totalmemory + cavebdrylist->totalmemory + |
28298 | caveoldtetlist->totalmemory + |
28299 | flippool->maxitems * flippool->itembytes; |
28300 | if (b->plc || b->refine) { |
28301 | totalalgomemory += (subsegstack->totalmemory + subfacstack->totalmemory + |
28302 | subvertstack->totalmemory + |
28303 | caveshlist->totalmemory + caveshbdlist->totalmemory + |
28304 | cavesegshlist->totalmemory + |
28305 | cavetetshlist->totalmemory + |
28306 | cavetetseglist->totalmemory + |
28307 | caveencshlist->totalmemory + |
28308 | caveencseglist->totalmemory + |
28309 | cavetetvertlist->totalmemory + |
28310 | unflipqueue->totalmemory); |
28311 | } |
28312 | |
28313 | printf(" Maximum number of tetrahedra: %ld\n" , tetrahedrons->maxitems); |
28314 | printf(" Maximum number of tet blocks (blocksize = %d): %d\n" , |
28315 | b->tetrahedraperblock, tetblocks); |
28316 | /* |
28317 | if (b->plc || b->refine) { |
28318 | printf(" Approximate memory for tetrahedral mesh (bytes): %ld\n", |
28319 | totalmeshmemory); |
28320 | |
28321 | printf(" Approximate memory for extra pointers (bytes): %ld\n", |
28322 | totalt2shmemory); |
28323 | } else { |
28324 | printf(" Approximate memory for tetrahedralization (bytes): %ld\n", |
28325 | totalmeshmemory); |
28326 | } |
28327 | printf(" Approximate memory for algorithms (bytes): %ld\n", |
28328 | totalalgomemory); |
28329 | printf(" Approximate memory for working arrays (bytes): %ld\n", |
28330 | totalworkmemory); |
28331 | printf(" Approximate total used memory (bytes): %ld\n", |
28332 | totalmeshmemory + totalt2shmemory + totalalgomemory + |
28333 | totalworkmemory); |
28334 | */ |
28335 | if (b->plc || b->refine) { |
28336 | printf(" Approximate memory for tetrahedral mesh (bytes): " ); |
28337 | printfcomma(totalmeshmemory); printf("\n" ); |
28338 | |
28339 | printf(" Approximate memory for extra pointers (bytes): " ); |
28340 | printfcomma(totalt2shmemory); printf("\n" ); |
28341 | } else { |
28342 | printf(" Approximate memory for tetrahedralization (bytes): " ); |
28343 | printfcomma(totalmeshmemory); printf("\n" ); |
28344 | } |
28345 | printf(" Approximate memory for algorithms (bytes): " ); |
28346 | printfcomma(totalalgomemory); printf("\n" ); |
28347 | printf(" Approximate memory for working arrays (bytes): " ); |
28348 | printfcomma(totalworkmemory); printf("\n" ); |
28349 | printf(" Approximate total used memory (bytes): " ); |
28350 | printfcomma(totalmeshmemory + totalt2shmemory + totalalgomemory + |
28351 | totalworkmemory); |
28352 | printf("\n" ); |
28353 | |
28354 | printf("\n" ); |
28355 | } |
28356 | |
28357 | /////////////////////////////////////////////////////////////////////////////// |
28358 | // // |
28359 | // statistics() Print all sorts of cool facts. // |
28360 | // // |
28361 | /////////////////////////////////////////////////////////////////////////////// |
28362 | |
28363 | void tetgenmesh::statistics() |
28364 | { |
28365 | long tetnumber, facenumber; |
28366 | |
28367 | printf("\nStatistics:\n\n" ); |
28368 | printf(" Input points: %d\n" , in->numberofpoints); |
28369 | if (b->refine) { |
28370 | printf(" Input tetrahedra: %d\n" , in->numberoftetrahedra); |
28371 | } |
28372 | if (b->plc) { |
28373 | printf(" Input facets: %d\n" , in->numberoffacets); |
28374 | printf(" Input segments: %ld\n" , insegments); |
28375 | printf(" Input holes: %d\n" , in->numberofholes); |
28376 | printf(" Input regions: %d\n" , in->numberofregions); |
28377 | } |
28378 | |
28379 | tetnumber = tetrahedrons->items - hullsize; |
28380 | facenumber = (tetnumber * 4l + hullsize) / 2l; |
28381 | |
28382 | if (b->weighted) { // -w option |
28383 | printf("\n Mesh points: %ld\n" , points->items - nonregularcount); |
28384 | } else { |
28385 | printf("\n Mesh points: %ld\n" , points->items); |
28386 | } |
28387 | printf(" Mesh tetrahedra: %ld\n" , tetnumber); |
28388 | printf(" Mesh faces: %ld\n" , facenumber); |
28389 | if (meshedges > 0l) { |
28390 | printf(" Mesh edges: %ld\n" , meshedges); |
28391 | } else { |
28392 | if (!nonconvex) { |
28393 | long vsize = points->items - dupverts - unuverts; |
28394 | if (b->weighted) vsize -= nonregularcount; |
28395 | meshedges = vsize + facenumber - tetnumber - 1; |
28396 | printf(" Mesh edges: %ld\n" , meshedges); |
28397 | } |
28398 | } |
28399 | |
28400 | if (b->plc || b->refine) { |
28401 | printf(" Mesh faces on facets: %ld\n" , subfaces->items); |
28402 | printf(" Mesh edges on segments: %ld\n" , subsegs->items); |
28403 | if (st_volref_count > 0l) { |
28404 | printf(" Steiner points inside domain: %ld\n" , st_volref_count); |
28405 | } |
28406 | if (st_facref_count > 0l) { |
28407 | printf(" Steiner points on facets: %ld\n" , st_facref_count); |
28408 | } |
28409 | if (st_segref_count > 0l) { |
28410 | printf(" Steiner points on segments: %ld\n" , st_segref_count); |
28411 | } |
28412 | } else { |
28413 | printf(" Convex hull faces: %ld\n" , hullsize); |
28414 | if (meshhulledges > 0l) { |
28415 | printf(" Convex hull edges: %ld\n" , meshhulledges); |
28416 | } |
28417 | } |
28418 | if (b->weighted) { // -w option |
28419 | printf(" Skipped non-regular points: %ld\n" , nonregularcount); |
28420 | } |
28421 | printf("\n" ); |
28422 | |
28423 | |
28424 | if (b->verbose > 0) { |
28425 | if (b->plc || b->refine) { // -p or -r |
28426 | if (tetrahedrons->items > 0l) { |
28427 | qualitystatistics(); |
28428 | } |
28429 | } |
28430 | if (tetrahedrons->items > 0l) { |
28431 | memorystatistics(); |
28432 | } |
28433 | } |
28434 | } |
28435 | |
28436 | //// //// |
28437 | //// //// |
28438 | //// meshstat_cxx ///////////////////////////////////////////////////////////// |
28439 | |
28440 | //// output_cxx /////////////////////////////////////////////////////////////// |
28441 | //// //// |
28442 | //// //// |
28443 | |
28444 | /////////////////////////////////////////////////////////////////////////////// |
28445 | // // |
28446 | // jettisonnodes() Jettison unused or duplicated vertices. // |
28447 | // // |
28448 | // Unused points are those input points which are outside the mesh domain or // |
28449 | // have no connection (isolated) to the mesh. Duplicated points exist for // |
28450 | // example if the input PLC is read from a .stl mesh file (marked during the // |
28451 | // Delaunay tetrahedralization step. This routine remove these points from // |
28452 | // points list. All existing points are reindexed. // |
28453 | // // |
28454 | /////////////////////////////////////////////////////////////////////////////// |
28455 | |
28456 | void tetgenmesh::jettisonnodes() |
28457 | { |
28458 | point pointloop; |
28459 | bool jetflag; |
28460 | int oldidx, newidx; |
28461 | int remcount; |
28462 | |
28463 | if (!b->quiet) { |
28464 | printf("Jettisoning redundant points.\n" ); |
28465 | } |
28466 | |
28467 | points->traversalinit(); |
28468 | pointloop = pointtraverse(); |
28469 | oldidx = newidx = 0; // in->firstnumber; |
28470 | remcount = 0; |
28471 | while (pointloop != (point) NULL) { |
28472 | jetflag = (pointtype(pointloop) == DUPLICATEDVERTEX) || |
28473 | (pointtype(pointloop) == UNUSEDVERTEX); |
28474 | if (jetflag) { |
28475 | // It is a duplicated or unused point, delete it. |
28476 | pointdealloc(pointloop); |
28477 | remcount++; |
28478 | } else { |
28479 | // Re-index it. |
28480 | setpointmark(pointloop, newidx + in->firstnumber); |
28481 | if (in->pointmarkerlist != (int *) NULL) { |
28482 | if (oldidx < in->numberofpoints) { |
28483 | // Re-index the point marker as well. |
28484 | in->pointmarkerlist[newidx] = in->pointmarkerlist[oldidx]; |
28485 | } |
28486 | } |
28487 | newidx++; |
28488 | } |
28489 | oldidx++; |
28490 | pointloop = pointtraverse(); |
28491 | } |
28492 | if (b->verbose) { |
28493 | printf(" %ld duplicated vertices are removed.\n" , dupverts); |
28494 | printf(" %ld unused vertices are removed.\n" , unuverts); |
28495 | } |
28496 | dupverts = 0l; |
28497 | unuverts = 0l; |
28498 | |
28499 | // The following line ensures that dead items in the pool of nodes cannot |
28500 | // be allocated for the new created nodes. This ensures that the input |
28501 | // nodes will occur earlier in the output files, and have lower indices. |
28502 | points->deaditemstack = (void *) NULL; |
28503 | } |
28504 | |
28505 | /////////////////////////////////////////////////////////////////////////////// |
28506 | // // |
28507 | // highorder() Create extra nodes for quadratic subparametric elements. // |
28508 | // // |
28509 | // 'highordertable' is an array (size = numberoftetrahedra * 6) for storing // |
28510 | // high-order nodes of each tetrahedron. This routine is used only when -o2 // |
28511 | // switch is used. // |
28512 | // // |
28513 | /////////////////////////////////////////////////////////////////////////////// |
28514 | |
28515 | void tetgenmesh::highorder() |
28516 | { |
28517 | triface tetloop, worktet, spintet; |
28518 | point *, *; |
28519 | point torg, tdest, newpoint; |
28520 | int highorderindex; |
28521 | int t1ver; |
28522 | int i, j; |
28523 | |
28524 | if (!b->quiet) { |
28525 | printf("Adding vertices for second-order tetrahedra.\n" ); |
28526 | } |
28527 | |
28528 | // Initialize the 'highordertable'. |
28529 | highordertable = new point[tetrahedrons->items * 6]; |
28530 | if (highordertable == (point *) NULL) { |
28531 | terminatetetgen(this, 1); |
28532 | } |
28533 | |
28534 | // This will overwrite the slot for element markers. |
28535 | highorderindex = 11; |
28536 | |
28537 | // The following line ensures that dead items in the pool of nodes cannot |
28538 | // be allocated for the extra nodes associated with high order elements. |
28539 | // This ensures that the primary nodes (at the corners of elements) will |
28540 | // occur earlier in the output files, and have lower indices, than the |
28541 | // extra nodes. |
28542 | points->deaditemstack = (void *) NULL; |
28543 | |
28544 | // Assign an entry for each tetrahedron to find its extra nodes. At the |
28545 | // mean while, initialize all extra nodes be NULL. |
28546 | i = 0; |
28547 | tetrahedrons->traversalinit(); |
28548 | tetloop.tet = tetrahedrontraverse(); |
28549 | while (tetloop.tet != (tetrahedron *) NULL) { |
28550 | tetloop.tet[highorderindex] = (tetrahedron) &highordertable[i]; |
28551 | for (j = 0; j < 6; j++) { |
28552 | highordertable[i + j] = (point) NULL; |
28553 | } |
28554 | i += 6; |
28555 | tetloop.tet = tetrahedrontraverse(); |
28556 | } |
28557 | |
28558 | // To create a unique node on each edge. Loop over all tetrahedra, and |
28559 | // look at the six edges of each tetrahedron. If the extra node in |
28560 | // the tetrahedron corresponding to this edge is NULL, create a node |
28561 | // for this edge, at the same time, set the new node into the extra |
28562 | // node lists of all other tetrahedra sharing this edge. |
28563 | tetrahedrons->traversalinit(); |
28564 | tetloop.tet = tetrahedrontraverse(); |
28565 | while (tetloop.tet != (tetrahedron *) NULL) { |
28566 | // Get the list of extra nodes. |
28567 | extralist = (point *) tetloop.tet[highorderindex]; |
28568 | worktet.tet = tetloop.tet; |
28569 | for (i = 0; i < 6; i++) { |
28570 | if (extralist[i] == (point) NULL) { |
28571 | // Go to the ith-edge. |
28572 | worktet.ver = edge2ver[i]; |
28573 | // Create a new point in the middle of this edge. |
28574 | torg = org(worktet); |
28575 | tdest = dest(worktet); |
28576 | makepoint(&newpoint, FREEVOLVERTEX); |
28577 | for (j = 0; j < 3 + numpointattrib; j++) { |
28578 | newpoint[j] = 0.5 * (torg[j] + tdest[j]); |
28579 | } |
28580 | // Interpolate its metrics. |
28581 | for (j = 0; j < in->numberofpointmtrs; j++) { |
28582 | newpoint[pointmtrindex + j] = |
28583 | 0.5 * (torg[pointmtrindex + j] + tdest[pointmtrindex + j]); |
28584 | } |
28585 | // Set this point into all extra node lists at this edge. |
28586 | spintet = worktet; |
28587 | while (1) { |
28588 | if (!ishulltet(spintet)) { |
28589 | adjextralist = (point *) spintet.tet[highorderindex]; |
28590 | adjextralist[ver2edge[spintet.ver]] = newpoint; |
28591 | } |
28592 | fnextself(spintet); |
28593 | if (spintet.tet == worktet.tet) break; |
28594 | } |
28595 | } // if (!extralist[i]) |
28596 | } // i |
28597 | tetloop.tet = tetrahedrontraverse(); |
28598 | } |
28599 | } |
28600 | |
28601 | /////////////////////////////////////////////////////////////////////////////// |
28602 | // // |
28603 | // numberedges() Count the number of edges, save in "meshedges". // |
28604 | // // |
28605 | // This routine is called when '-p' or '-r', and '-E' options are used. The // |
28606 | // total number of edges depends on the genus of the input surface mesh. // |
28607 | // // |
28608 | // NOTE: This routine must be called after outelements(). So all elements // |
28609 | // have been indexed. // |
28610 | // // |
28611 | /////////////////////////////////////////////////////////////////////////////// |
28612 | |
28613 | void tetgenmesh::numberedges() |
28614 | { |
28615 | triface worktet, spintet; |
28616 | int ishulledge; |
28617 | int t1ver; |
28618 | int i; |
28619 | |
28620 | meshedges = meshhulledges = 0l; |
28621 | |
28622 | tetrahedrons->traversalinit(); |
28623 | worktet.tet = tetrahedrontraverse(); |
28624 | while (worktet.tet != NULL) { |
28625 | // Count the number of Voronoi faces. Look at the six edges of this |
28626 | // tet. Count an edge only if this tet's index is smaller than |
28627 | // those of other non-hull tets which share this edge. |
28628 | for (i = 0; i < 6; i++) { |
28629 | worktet.ver = edge2ver[i]; |
28630 | ishulledge = 0; |
28631 | fnext(worktet, spintet); |
28632 | do { |
28633 | if (!ishulltet(spintet)) { |
28634 | if (elemindex(spintet.tet) < elemindex(worktet.tet)) break; |
28635 | } else { |
28636 | ishulledge = 1; |
28637 | } |
28638 | fnextself(spintet); |
28639 | } while (spintet.tet != worktet.tet); |
28640 | // Count this edge if no adjacent tets are smaller than this tet. |
28641 | if (spintet.tet == worktet.tet) { |
28642 | meshedges++; |
28643 | if (ishulledge) meshhulledges++; |
28644 | } |
28645 | } |
28646 | worktet.tet = tetrahedrontraverse(); |
28647 | } |
28648 | } |
28649 | |
28650 | /////////////////////////////////////////////////////////////////////////////// |
28651 | // // |
28652 | // outnodes() Output the points to a .node file or a tetgenio structure. // |
28653 | // // |
28654 | // Note: each point has already been numbered on input (the first index is // |
28655 | // 'in->firstnumber'). // |
28656 | // // |
28657 | /////////////////////////////////////////////////////////////////////////////// |
28658 | |
28659 | void tetgenmesh::outnodes(tetgenio* out) |
28660 | { |
28661 | FILE *outfile = NULL; |
28662 | char outnodefilename[FILENAMESIZE]; |
28663 | face parentsh; |
28664 | point pointloop; |
28665 | int , bmark, marker = 0, weightDT = 0; |
28666 | int coordindex, attribindex; |
28667 | int pointnumber, firstindex; |
28668 | int index, i; |
28669 | |
28670 | if (out == (tetgenio *) NULL) { |
28671 | strcpy(outnodefilename, b->outfilename); |
28672 | strcat(outnodefilename, ".node" ); |
28673 | } |
28674 | |
28675 | if (!b->quiet) { |
28676 | if (out == (tetgenio *) NULL) { |
28677 | printf("Writing %s.\n" , outnodefilename); |
28678 | } else { |
28679 | printf("Writing nodes.\n" ); |
28680 | } |
28681 | } |
28682 | |
28683 | nextras = numpointattrib; |
28684 | if (b->weighted) { // -w |
28685 | if (b->weighted_param == 0) weightDT = 1; // Weighted DT. |
28686 | } |
28687 | |
28688 | bmark = !b->nobound && in->pointmarkerlist; |
28689 | |
28690 | if (out == (tetgenio *) NULL) { |
28691 | outfile = fopen(outnodefilename, "w" ); |
28692 | if (outfile == (FILE *) NULL) { |
28693 | printf("File I/O Error: Cannot create file %s.\n" , outnodefilename); |
28694 | terminatetetgen(this, 1); |
28695 | } |
28696 | // Number of points, number of dimensions, number of point attributes, |
28697 | // and number of boundary markers (zero or one). |
28698 | fprintf(outfile, "%ld %d %d %d\n" , points->items, 3, nextras, bmark); |
28699 | } else { |
28700 | // Allocate space for 'pointlist'; |
28701 | out->pointlist = new REAL[points->items * 3]; |
28702 | if (out->pointlist == (REAL *) NULL) { |
28703 | printf("Error: Out of memory.\n" ); |
28704 | terminatetetgen(this, 1); |
28705 | } |
28706 | // Allocate space for 'pointattributelist' if necessary; |
28707 | if (nextras > 0) { |
28708 | out->pointattributelist = new REAL[points->items * nextras]; |
28709 | if (out->pointattributelist == (REAL *) NULL) { |
28710 | printf("Error: Out of memory.\n" ); |
28711 | terminatetetgen(this, 1); |
28712 | } |
28713 | } |
28714 | // Allocate space for 'pointmarkerlist' if necessary; |
28715 | if (bmark) { |
28716 | out->pointmarkerlist = new int[points->items]; |
28717 | if (out->pointmarkerlist == (int *) NULL) { |
28718 | printf("Error: Out of memory.\n" ); |
28719 | terminatetetgen(this, 1); |
28720 | } |
28721 | } |
28722 | if (b->psc) { |
28723 | out->pointparamlist = new tetgenio::pointparam[points->items]; |
28724 | if (out->pointparamlist == NULL) { |
28725 | printf("Error: Out of memory.\n" ); |
28726 | terminatetetgen(this, 1); |
28727 | } |
28728 | } |
28729 | out->numberofpoints = points->items; |
28730 | out->numberofpointattributes = nextras; |
28731 | coordindex = 0; |
28732 | attribindex = 0; |
28733 | } |
28734 | |
28735 | // Determine the first index (0 or 1). |
28736 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
28737 | |
28738 | points->traversalinit(); |
28739 | pointloop = pointtraverse(); |
28740 | pointnumber = firstindex; // in->firstnumber; |
28741 | index = 0; |
28742 | while (pointloop != (point) NULL) { |
28743 | if (bmark) { |
28744 | // Default the vertex has a zero marker. |
28745 | marker = 0; |
28746 | // Is it an input vertex? |
28747 | if (index < in->numberofpoints) { |
28748 | // Input point's marker is directly copied to output. |
28749 | marker = in->pointmarkerlist[index]; |
28750 | } else { |
28751 | if ((pointtype(pointloop) == FREESEGVERTEX) || |
28752 | (pointtype(pointloop) == FREEFACETVERTEX)) { |
28753 | sdecode(point2sh(pointloop), parentsh); |
28754 | if (parentsh.sh != NULL) { |
28755 | marker = shellmark(parentsh); |
28756 | if (pointtype(pointloop) == FREEFACETVERTEX) { |
28757 | if (in->facetmarkerlist != NULL) { |
28758 | marker = in->facetmarkerlist[marker - 1]; |
28759 | } |
28760 | } |
28761 | } |
28762 | } // if (pointtype(...)) |
28763 | } |
28764 | } |
28765 | if (out == (tetgenio *) NULL) { |
28766 | // Point number, x, y and z coordinates. |
28767 | fprintf(outfile, "%4d %.17g %.17g %.17g" , pointnumber, |
28768 | pointloop[0], pointloop[1], pointloop[2]); |
28769 | for (i = 0; i < nextras; i++) { |
28770 | // Write an attribute. |
28771 | if ((i == 0) && weightDT) { |
28772 | fprintf(outfile, " %.17g" , pointloop[0] * pointloop[0] + |
28773 | pointloop[1] * pointloop[1] + pointloop[2] * pointloop[2] |
28774 | - pointloop[3 + i]); |
28775 | } else { |
28776 | fprintf(outfile, " %.17g" , pointloop[3 + i]); |
28777 | } |
28778 | } |
28779 | if (bmark) { |
28780 | // Write the boundary marker. |
28781 | fprintf(outfile, " %d" , marker); |
28782 | } |
28783 | if (b->psc) { |
28784 | fprintf(outfile, " %.8g %.8g %d" , pointgeomuv(pointloop, 0), |
28785 | pointgeomuv(pointloop, 1), pointgeomtag(pointloop)); |
28786 | if (pointtype(pointloop) == RIDGEVERTEX) { |
28787 | fprintf(outfile, " 0" ); |
28788 | } else if (pointtype(pointloop) == ACUTEVERTEX) { |
28789 | fprintf(outfile, " 0" ); |
28790 | } else if (pointtype(pointloop) == FREESEGVERTEX) { |
28791 | fprintf(outfile, " 1" ); |
28792 | } else if (pointtype(pointloop) == FREEFACETVERTEX) { |
28793 | fprintf(outfile, " 2" ); |
28794 | } else if (pointtype(pointloop) == FREEVOLVERTEX) { |
28795 | fprintf(outfile, " 3" ); |
28796 | } else { |
28797 | fprintf(outfile, " -1" ); // Unknown type. |
28798 | } |
28799 | } |
28800 | fprintf(outfile, "\n" ); |
28801 | } else { |
28802 | // X, y, and z coordinates. |
28803 | out->pointlist[coordindex++] = pointloop[0]; |
28804 | out->pointlist[coordindex++] = pointloop[1]; |
28805 | out->pointlist[coordindex++] = pointloop[2]; |
28806 | // Point attributes. |
28807 | for (i = 0; i < nextras; i++) { |
28808 | // Output an attribute. |
28809 | if ((i == 0) && weightDT) { |
28810 | out->pointattributelist[attribindex++] = |
28811 | pointloop[0] * pointloop[0] + pointloop[1] * pointloop[1] + |
28812 | pointloop[2] * pointloop[2] - pointloop[3 + i]; |
28813 | } else { |
28814 | out->pointattributelist[attribindex++] = pointloop[3 + i]; |
28815 | } |
28816 | } |
28817 | if (bmark) { |
28818 | // Output the boundary marker. |
28819 | out->pointmarkerlist[index] = marker; |
28820 | } |
28821 | if (b->psc) { |
28822 | out->pointparamlist[index].uv[0] = pointgeomuv(pointloop, 0); |
28823 | out->pointparamlist[index].uv[1] = pointgeomuv(pointloop, 1); |
28824 | out->pointparamlist[index].tag = pointgeomtag(pointloop); |
28825 | if (pointtype(pointloop) == RIDGEVERTEX) { |
28826 | out->pointparamlist[index].type = 0; |
28827 | } else if (pointtype(pointloop) == ACUTEVERTEX) { |
28828 | out->pointparamlist[index].type = 0; |
28829 | } else if (pointtype(pointloop) == FREESEGVERTEX) { |
28830 | out->pointparamlist[index].type = 1; |
28831 | } else if (pointtype(pointloop) == FREEFACETVERTEX) { |
28832 | out->pointparamlist[index].type = 2; |
28833 | } else if (pointtype(pointloop) == FREEVOLVERTEX) { |
28834 | out->pointparamlist[index].type = 3; |
28835 | } else { |
28836 | out->pointparamlist[index].type = -1; // Unknown type. |
28837 | } |
28838 | } |
28839 | } |
28840 | pointloop = pointtraverse(); |
28841 | pointnumber++; |
28842 | index++; |
28843 | } |
28844 | |
28845 | if (out == (tetgenio *) NULL) { |
28846 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
28847 | fclose(outfile); |
28848 | } |
28849 | } |
28850 | |
28851 | /////////////////////////////////////////////////////////////////////////////// |
28852 | // // |
28853 | // outmetrics() Output the metric to a file (*.mtr) or a tetgenio obj. // |
28854 | // // |
28855 | /////////////////////////////////////////////////////////////////////////////// |
28856 | |
28857 | void tetgenmesh::outmetrics(tetgenio* out) |
28858 | { |
28859 | FILE *outfile = NULL; |
28860 | char outmtrfilename[FILENAMESIZE]; |
28861 | point ptloop; |
28862 | int mtrindex; |
28863 | |
28864 | if (out == (tetgenio *) NULL) { |
28865 | strcpy(outmtrfilename, b->outfilename); |
28866 | strcat(outmtrfilename, ".mtr" ); |
28867 | } |
28868 | |
28869 | if (!b->quiet) { |
28870 | if (out == (tetgenio *) NULL) { |
28871 | printf("Writing %s.\n" , outmtrfilename); |
28872 | } else { |
28873 | printf("Writing metrics.\n" ); |
28874 | } |
28875 | } |
28876 | |
28877 | if (out == (tetgenio *) NULL) { |
28878 | outfile = fopen(outmtrfilename, "w" ); |
28879 | if (outfile == (FILE *) NULL) { |
28880 | printf("File I/O Error: Cannot create file %s.\n" , outmtrfilename); |
28881 | terminatetetgen(this, 3); |
28882 | } |
28883 | // Number of points, number of point metrices, |
28884 | // fprintf(outfile, "%ld %d\n", points->items, sizeoftensor + 3); |
28885 | fprintf(outfile, "%ld %d\n" , points->items, 1); |
28886 | } else { |
28887 | // Allocate space for 'pointmtrlist' if necessary; |
28888 | // out->pointmtrlist = new REAL[points->items * (sizeoftensor + 3)]; |
28889 | out->pointmtrlist = new REAL[points->items]; |
28890 | if (out->pointmtrlist == (REAL *) NULL) { |
28891 | terminatetetgen(this, 1); |
28892 | } |
28893 | out->numberofpointmtrs = 1; // (sizeoftensor + 3); |
28894 | mtrindex = 0; |
28895 | } |
28896 | |
28897 | points->traversalinit(); |
28898 | ptloop = pointtraverse(); |
28899 | while (ptloop != (point) NULL) { |
28900 | if (out == (tetgenio *) NULL) { |
28901 | // for (i = 0; i < sizeoftensor; i++) { |
28902 | // fprintf(outfile, "%-16.8e ", ptloop[pointmtrindex + i]); |
28903 | // } |
28904 | fprintf(outfile, "%-16.8e\n" , ptloop[pointmtrindex]); |
28905 | } else { |
28906 | // for (i = 0; i < sizeoftensor; i++) { |
28907 | // out->pointmtrlist[mtrindex++] = ptloop[pointmtrindex + i]; |
28908 | // } |
28909 | out->pointmtrlist[mtrindex++] = ptloop[pointmtrindex]; |
28910 | } |
28911 | ptloop = pointtraverse(); |
28912 | } |
28913 | |
28914 | if (out == (tetgenio *) NULL) { |
28915 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
28916 | fclose(outfile); |
28917 | } |
28918 | } |
28919 | |
28920 | /////////////////////////////////////////////////////////////////////////////// |
28921 | // // |
28922 | // outelements() Output the tetrahedra to an .ele file or a tetgenio // |
28923 | // structure. // |
28924 | // // |
28925 | // This routine also indexes all tetrahedra (exclusing hull tets) (from in-> // |
28926 | // firstnumber). The total number of mesh edges is counted in 'meshedges'. // |
28927 | // // |
28928 | /////////////////////////////////////////////////////////////////////////////// |
28929 | |
28930 | void tetgenmesh::outelements(tetgenio* out) |
28931 | { |
28932 | FILE *outfile = NULL; |
28933 | char outelefilename[FILENAMESIZE]; |
28934 | tetrahedron* tptr; |
28935 | point p1, p2, p3, p4; |
28936 | point *; |
28937 | REAL *talist = NULL; |
28938 | int *tlist = NULL; |
28939 | long ntets; |
28940 | int firstindex, shift; |
28941 | int pointindex, attribindex; |
28942 | int highorderindex = 11; |
28943 | int elementnumber; |
28944 | int ; |
28945 | int i; |
28946 | |
28947 | if (out == (tetgenio *) NULL) { |
28948 | strcpy(outelefilename, b->outfilename); |
28949 | strcat(outelefilename, ".ele" ); |
28950 | } |
28951 | |
28952 | if (!b->quiet) { |
28953 | if (out == (tetgenio *) NULL) { |
28954 | printf("Writing %s.\n" , outelefilename); |
28955 | } else { |
28956 | printf("Writing elements.\n" ); |
28957 | } |
28958 | } |
28959 | |
28960 | // The number of tets excluding hull tets. |
28961 | ntets = tetrahedrons->items - hullsize; |
28962 | |
28963 | eextras = numelemattrib; |
28964 | if (out == (tetgenio *) NULL) { |
28965 | outfile = fopen(outelefilename, "w" ); |
28966 | if (outfile == (FILE *) NULL) { |
28967 | printf("File I/O Error: Cannot create file %s.\n" , outelefilename); |
28968 | terminatetetgen(this, 1); |
28969 | } |
28970 | // Number of tetras, points per tetra, attributes per tetra. |
28971 | fprintf(outfile, "%ld %d %d\n" , ntets, b->order == 1 ? 4 : 10, eextras); |
28972 | } else { |
28973 | // Allocate memory for output tetrahedra. |
28974 | out->tetrahedronlist = new int[ntets * (b->order == 1 ? 4 : 10)]; |
28975 | if (out->tetrahedronlist == (int *) NULL) { |
28976 | printf("Error: Out of memory.\n" ); |
28977 | terminatetetgen(this, 1); |
28978 | } |
28979 | // Allocate memory for output tetrahedron attributes if necessary. |
28980 | if (eextras > 0) { |
28981 | out->tetrahedronattributelist = new REAL[ntets * eextras]; |
28982 | if (out->tetrahedronattributelist == (REAL *) NULL) { |
28983 | printf("Error: Out of memory.\n" ); |
28984 | terminatetetgen(this, 1); |
28985 | } |
28986 | } |
28987 | out->numberoftetrahedra = ntets; |
28988 | out->numberofcorners = b->order == 1 ? 4 : 10; |
28989 | out->numberoftetrahedronattributes = eextras; |
28990 | tlist = out->tetrahedronlist; |
28991 | talist = out->tetrahedronattributelist; |
28992 | pointindex = 0; |
28993 | attribindex = 0; |
28994 | } |
28995 | |
28996 | // Determine the first index (0 or 1). |
28997 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
28998 | shift = 0; // Default no shift. |
28999 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
29000 | shift = 1; // Shift the output indices by 1. |
29001 | } |
29002 | |
29003 | tetrahedrons->traversalinit(); |
29004 | tptr = tetrahedrontraverse(); |
29005 | elementnumber = firstindex; // in->firstnumber; |
29006 | while (tptr != (tetrahedron *) NULL) { |
29007 | if (!b->reversetetori) { |
29008 | p1 = (point) tptr[4]; |
29009 | p2 = (point) tptr[5]; |
29010 | } else { |
29011 | p1 = (point) tptr[5]; |
29012 | p2 = (point) tptr[4]; |
29013 | } |
29014 | p3 = (point) tptr[6]; |
29015 | p4 = (point) tptr[7]; |
29016 | if (out == (tetgenio *) NULL) { |
29017 | // Tetrahedron number, indices for four points. |
29018 | fprintf(outfile, "%5d %5d %5d %5d %5d" , elementnumber, |
29019 | pointmark(p1) - shift, pointmark(p2) - shift, |
29020 | pointmark(p3) - shift, pointmark(p4) - shift); |
29021 | if (b->order == 2) { |
29022 | extralist = (point *) tptr[highorderindex]; |
29023 | // indices for six extra points. |
29024 | fprintf(outfile, " %5d %5d %5d %5d %5d %5d" , |
29025 | pointmark(extralist[0]) - shift, pointmark(extralist[1]) - shift, |
29026 | pointmark(extralist[2]) - shift, pointmark(extralist[3]) - shift, |
29027 | pointmark(extralist[4]) - shift, pointmark(extralist[5]) - shift); |
29028 | } |
29029 | for (i = 0; i < eextras; i++) { |
29030 | fprintf(outfile, " %.17g" , elemattribute(tptr, i)); |
29031 | } |
29032 | fprintf(outfile, "\n" ); |
29033 | } else { |
29034 | tlist[pointindex++] = pointmark(p1) - shift; |
29035 | tlist[pointindex++] = pointmark(p2) - shift; |
29036 | tlist[pointindex++] = pointmark(p3) - shift; |
29037 | tlist[pointindex++] = pointmark(p4) - shift; |
29038 | if (b->order == 2) { |
29039 | extralist = (point *) tptr[highorderindex]; |
29040 | tlist[pointindex++] = pointmark(extralist[0]) - shift; |
29041 | tlist[pointindex++] = pointmark(extralist[1]) - shift; |
29042 | tlist[pointindex++] = pointmark(extralist[2]) - shift; |
29043 | tlist[pointindex++] = pointmark(extralist[3]) - shift; |
29044 | tlist[pointindex++] = pointmark(extralist[4]) - shift; |
29045 | tlist[pointindex++] = pointmark(extralist[5]) - shift; |
29046 | } |
29047 | for (i = 0; i < eextras; i++) { |
29048 | talist[attribindex++] = elemattribute(tptr, i); |
29049 | } |
29050 | } |
29051 | // Remember the index of this element (for counting edges). |
29052 | setelemindex(tptr, elementnumber); |
29053 | tptr = tetrahedrontraverse(); |
29054 | elementnumber++; |
29055 | } |
29056 | |
29057 | |
29058 | if (out == (tetgenio *) NULL) { |
29059 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
29060 | fclose(outfile); |
29061 | } |
29062 | } |
29063 | |
29064 | /////////////////////////////////////////////////////////////////////////////// |
29065 | // // |
29066 | // outfaces() Output all faces to a .face file or a tetgenio object. // |
29067 | // // |
29068 | /////////////////////////////////////////////////////////////////////////////// |
29069 | |
29070 | void tetgenmesh::outfaces(tetgenio* out) |
29071 | { |
29072 | FILE *outfile = NULL; |
29073 | char facefilename[FILENAMESIZE]; |
29074 | triface tface, tsymface; |
29075 | face checkmark; |
29076 | point torg, tdest, tapex; |
29077 | long ntets, faces; |
29078 | int *elist = NULL, *emlist = NULL; |
29079 | int neigh1 = 0, neigh2 = 0; |
29080 | int faceid, marker = 0; |
29081 | int firstindex, shift; |
29082 | int facenumber; |
29083 | int index = 0; |
29084 | |
29085 | // For -o2 option. |
29086 | triface workface; |
29087 | point *, pp[3] = {0,0,0}; |
29088 | int highorderindex = 11; |
29089 | int o2index = 0, i; |
29090 | |
29091 | if (out == (tetgenio *) NULL) { |
29092 | strcpy(facefilename, b->outfilename); |
29093 | strcat(facefilename, ".face" ); |
29094 | } |
29095 | |
29096 | if (!b->quiet) { |
29097 | if (out == (tetgenio *) NULL) { |
29098 | printf("Writing %s.\n" , facefilename); |
29099 | } else { |
29100 | printf("Writing faces.\n" ); |
29101 | } |
29102 | } |
29103 | |
29104 | ntets = tetrahedrons->items - hullsize; |
29105 | faces = (ntets * 4l + hullsize) / 2l; |
29106 | |
29107 | if (out == (tetgenio *) NULL) { |
29108 | outfile = fopen(facefilename, "w" ); |
29109 | if (outfile == (FILE *) NULL) { |
29110 | printf("File I/O Error: Cannot create file %s.\n" , facefilename); |
29111 | terminatetetgen(this, 1); |
29112 | } |
29113 | fprintf(outfile, "%ld %d\n" , faces, !b->nobound); |
29114 | } else { |
29115 | // Allocate memory for 'trifacelist'. |
29116 | out->trifacelist = new int[faces * 3]; |
29117 | if (out->trifacelist == (int *) NULL) { |
29118 | printf("Error: Out of memory.\n" ); |
29119 | terminatetetgen(this, 1); |
29120 | } |
29121 | if (b->order == 2) { |
29122 | out->o2facelist = new int[faces * 3]; |
29123 | } |
29124 | // Allocate memory for 'trifacemarkerlist' if necessary. |
29125 | if (!b->nobound) { |
29126 | out->trifacemarkerlist = new int[faces]; |
29127 | if (out->trifacemarkerlist == (int *) NULL) { |
29128 | printf("Error: Out of memory.\n" ); |
29129 | terminatetetgen(this, 1); |
29130 | } |
29131 | } |
29132 | if (b->neighout > 1) { |
29133 | // '-nn' switch. |
29134 | out->adjtetlist = new int[faces * 2]; |
29135 | if (out->adjtetlist == (int *) NULL) { |
29136 | printf("Error: Out of memory.\n" ); |
29137 | terminatetetgen(this, 1); |
29138 | } |
29139 | } |
29140 | out->numberoftrifaces = faces; |
29141 | elist = out->trifacelist; |
29142 | emlist = out->trifacemarkerlist; |
29143 | } |
29144 | |
29145 | // Determine the first index (0 or 1). |
29146 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
29147 | shift = 0; // Default no shiftment. |
29148 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
29149 | shift = 1; // Shift the output indices by 1. |
29150 | } |
29151 | |
29152 | tetrahedrons->traversalinit(); |
29153 | tface.tet = tetrahedrontraverse(); |
29154 | facenumber = firstindex; // in->firstnumber; |
29155 | // To loop over the set of faces, loop over all tetrahedra, and look at |
29156 | // the four faces of each one. If its adjacent tet is a hull tet, |
29157 | // operate on the face, otherwise, operate on the face only if the |
29158 | // current tet has a smaller index than its neighbor. |
29159 | while (tface.tet != (tetrahedron *) NULL) { |
29160 | for (tface.ver = 0; tface.ver < 4; tface.ver ++) { |
29161 | fsym(tface, tsymface); |
29162 | if (ishulltet(tsymface) || |
29163 | (elemindex(tface.tet) < elemindex(tsymface.tet))) { |
29164 | torg = org(tface); |
29165 | tdest = dest(tface); |
29166 | tapex = apex(tface); |
29167 | if (b->order == 2) { // -o2 |
29168 | // Get the three extra vertices on edges. |
29169 | extralist = (point *) (tface.tet[highorderindex]); |
29170 | // The extra vertices are on edges opposite the corners. |
29171 | enext(tface, workface); |
29172 | for (i = 0; i < 3; i++) { |
29173 | pp[i] = extralist[ver2edge[workface.ver]]; |
29174 | enextself(workface); |
29175 | } |
29176 | } |
29177 | if (!b->nobound) { |
29178 | // Get the boundary marker of this face. |
29179 | if (b->plc || b->refine) { |
29180 | // Shell face is used. |
29181 | tspivot(tface, checkmark); |
29182 | if (checkmark.sh == NULL) { |
29183 | marker = 0; // It is an inner face. It's marker is 0. |
29184 | } else { |
29185 | if (in->facetmarkerlist) { |
29186 | // The facet marker is given, get it. |
29187 | faceid = shellmark(checkmark) - 1; |
29188 | marker = in->facetmarkerlist[faceid]; |
29189 | } else { |
29190 | marker = 1; // The default marker for subface is 1. |
29191 | } |
29192 | } |
29193 | } else { |
29194 | // Shell face is not used, only distinguish outer and inner face. |
29195 | marker = (int) ishulltet(tsymface); |
29196 | } |
29197 | } |
29198 | if (b->neighout > 1) { |
29199 | // '-nn' switch. Output adjacent tets indices. |
29200 | neigh1 = elemindex(tface.tet); |
29201 | if (!ishulltet(tsymface)) { |
29202 | neigh2 = elemindex(tsymface.tet); |
29203 | } else { |
29204 | neigh2 = -1; |
29205 | } |
29206 | } |
29207 | if (out == (tetgenio *) NULL) { |
29208 | // Face number, indices of three vertices. |
29209 | fprintf(outfile, "%5d %4d %4d %4d" , facenumber, |
29210 | pointmark(torg) - shift, pointmark(tdest) - shift, |
29211 | pointmark(tapex) - shift); |
29212 | if (b->order == 2) { // -o2 |
29213 | fprintf(outfile, " %4d %4d %4d" , pointmark(pp[0]) - shift, |
29214 | pointmark(pp[1]) - shift, pointmark(pp[2]) - shift); |
29215 | } |
29216 | if (!b->nobound) { |
29217 | // Output a boundary marker. |
29218 | fprintf(outfile, " %d" , marker); |
29219 | } |
29220 | if (b->neighout > 1) { |
29221 | fprintf(outfile, " %5d %5d" , neigh1, neigh2); |
29222 | } |
29223 | fprintf(outfile, "\n" ); |
29224 | } else { |
29225 | // Output indices of three vertices. |
29226 | elist[index++] = pointmark(torg) - shift; |
29227 | elist[index++] = pointmark(tdest) - shift; |
29228 | elist[index++] = pointmark(tapex) - shift; |
29229 | if (b->order == 2) { // -o2 |
29230 | out->o2facelist[o2index++] = pointmark(pp[0]) - shift; |
29231 | out->o2facelist[o2index++] = pointmark(pp[1]) - shift; |
29232 | out->o2facelist[o2index++] = pointmark(pp[2]) - shift; |
29233 | } |
29234 | if (!b->nobound) { |
29235 | emlist[facenumber - in->firstnumber] = marker; |
29236 | } |
29237 | if (b->neighout > 1) { |
29238 | out->adjtetlist[(facenumber - in->firstnumber) * 2] = neigh1; |
29239 | out->adjtetlist[(facenumber - in->firstnumber) * 2 + 1] = neigh2; |
29240 | } |
29241 | } |
29242 | facenumber++; |
29243 | } |
29244 | } |
29245 | tface.tet = tetrahedrontraverse(); |
29246 | } |
29247 | |
29248 | if (out == (tetgenio *) NULL) { |
29249 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
29250 | fclose(outfile); |
29251 | } |
29252 | } |
29253 | |
29254 | /////////////////////////////////////////////////////////////////////////////// |
29255 | // // |
29256 | // outhullfaces() Output hull faces to a .face file or a tetgenio object. // |
29257 | // // |
29258 | // The normal of each face is pointing to the outside of the domain. // |
29259 | // // |
29260 | /////////////////////////////////////////////////////////////////////////////// |
29261 | |
29262 | void tetgenmesh::outhullfaces(tetgenio* out) |
29263 | { |
29264 | FILE *outfile = NULL; |
29265 | char facefilename[FILENAMESIZE]; |
29266 | triface hulltet; |
29267 | point torg, tdest, tapex; |
29268 | int *elist = NULL; |
29269 | int firstindex, shift; |
29270 | int facenumber; |
29271 | int index; |
29272 | |
29273 | if (out == (tetgenio *) NULL) { |
29274 | strcpy(facefilename, b->outfilename); |
29275 | strcat(facefilename, ".face" ); |
29276 | } |
29277 | |
29278 | if (!b->quiet) { |
29279 | if (out == (tetgenio *) NULL) { |
29280 | printf("Writing %s.\n" , facefilename); |
29281 | } else { |
29282 | printf("Writing faces.\n" ); |
29283 | } |
29284 | } |
29285 | |
29286 | if (out == (tetgenio *) NULL) { |
29287 | outfile = fopen(facefilename, "w" ); |
29288 | if (outfile == (FILE *) NULL) { |
29289 | printf("File I/O Error: Cannot create file %s.\n" , facefilename); |
29290 | terminatetetgen(this, 1); |
29291 | } |
29292 | fprintf(outfile, "%ld 0\n" , hullsize); |
29293 | } else { |
29294 | // Allocate memory for 'trifacelist'. |
29295 | out->trifacelist = new int[hullsize * 3]; |
29296 | if (out->trifacelist == (int *) NULL) { |
29297 | printf("Error: Out of memory.\n" ); |
29298 | terminatetetgen(this, 1); |
29299 | } |
29300 | out->numberoftrifaces = hullsize; |
29301 | elist = out->trifacelist; |
29302 | index = 0; |
29303 | } |
29304 | |
29305 | // Determine the first index (0 or 1). |
29306 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
29307 | shift = 0; // Default no shiftment. |
29308 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
29309 | shift = 1; // Shift the output indices by 1. |
29310 | } |
29311 | |
29312 | tetrahedrons->traversalinit(); |
29313 | hulltet.tet = alltetrahedrontraverse(); |
29314 | facenumber = firstindex; |
29315 | while (hulltet.tet != (tetrahedron *) NULL) { |
29316 | if (ishulltet(hulltet)) { |
29317 | torg = (point) hulltet.tet[4]; |
29318 | tdest = (point) hulltet.tet[5]; |
29319 | tapex = (point) hulltet.tet[6]; |
29320 | if (out == (tetgenio *) NULL) { |
29321 | // Face number, indices of three vertices. |
29322 | fprintf(outfile, "%5d %4d %4d %4d" , facenumber, |
29323 | pointmark(torg) - shift, pointmark(tdest) - shift, |
29324 | pointmark(tapex) - shift); |
29325 | fprintf(outfile, "\n" ); |
29326 | } else { |
29327 | // Output indices of three vertices. |
29328 | elist[index++] = pointmark(torg) - shift; |
29329 | elist[index++] = pointmark(tdest) - shift; |
29330 | elist[index++] = pointmark(tapex) - shift; |
29331 | } |
29332 | facenumber++; |
29333 | } |
29334 | hulltet.tet = alltetrahedrontraverse(); |
29335 | } |
29336 | |
29337 | if (out == (tetgenio *) NULL) { |
29338 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
29339 | fclose(outfile); |
29340 | } |
29341 | } |
29342 | |
29343 | /////////////////////////////////////////////////////////////////////////////// |
29344 | // // |
29345 | // outsubfaces() Output subfaces (i.e. boundary faces) to a .face file or // |
29346 | // a tetgenio structure. // |
29347 | // // |
29348 | // The boundary faces are found in 'subfaces'. For listing triangle vertices // |
29349 | // in the same sense for all triangles in the mesh, the direction determined // |
29350 | // by right-hand rule is pointer to the inside of the volume. // |
29351 | // // |
29352 | /////////////////////////////////////////////////////////////////////////////// |
29353 | |
29354 | void tetgenmesh::outsubfaces(tetgenio* out) |
29355 | { |
29356 | FILE *outfile = NULL; |
29357 | char facefilename[FILENAMESIZE]; |
29358 | int *elist = NULL; |
29359 | int *emlist = NULL; |
29360 | int index = 0, index1 = 0, index2 = 0; |
29361 | triface abuttingtet; |
29362 | face faceloop; |
29363 | point torg, tdest, tapex; |
29364 | int faceid = 0, marker = 0; |
29365 | int firstindex, shift; |
29366 | int neigh1 = 0, neigh2 = 0; |
29367 | int facenumber; |
29368 | |
29369 | // For -o2 option. |
29370 | triface workface; |
29371 | point *, pp[3] = {0,0,0}; |
29372 | int highorderindex = 11; |
29373 | int o2index = 0, i; |
29374 | |
29375 | int t1ver; // used by fsymself() |
29376 | |
29377 | if (out == (tetgenio *) NULL) { |
29378 | strcpy(facefilename, b->outfilename); |
29379 | strcat(facefilename, ".face" ); |
29380 | } |
29381 | |
29382 | if (!b->quiet) { |
29383 | if (out == (tetgenio *) NULL) { |
29384 | printf("Writing %s.\n" , facefilename); |
29385 | } else { |
29386 | printf("Writing faces.\n" ); |
29387 | } |
29388 | } |
29389 | |
29390 | if (out == (tetgenio *) NULL) { |
29391 | outfile = fopen(facefilename, "w" ); |
29392 | if (outfile == (FILE *) NULL) { |
29393 | printf("File I/O Error: Cannot create file %s.\n" , facefilename); |
29394 | terminatetetgen(this, 3); |
29395 | } |
29396 | // Number of subfaces. |
29397 | fprintf(outfile, "%ld %d\n" , subfaces->items, !b->nobound); |
29398 | } else { |
29399 | // Allocate memory for 'trifacelist'. |
29400 | out->trifacelist = new int[subfaces->items * 3]; |
29401 | if (out->trifacelist == (int *) NULL) { |
29402 | terminatetetgen(this, 1); |
29403 | } |
29404 | if (b->order == 2) { |
29405 | out->o2facelist = new int[subfaces->items * 3]; |
29406 | } |
29407 | if (!b->nobound) { |
29408 | // Allocate memory for 'trifacemarkerlist'. |
29409 | out->trifacemarkerlist = new int[subfaces->items]; |
29410 | if (out->trifacemarkerlist == (int *) NULL) { |
29411 | terminatetetgen(this, 1); |
29412 | } |
29413 | } |
29414 | if (b->neighout > 1) { |
29415 | // '-nn' switch. |
29416 | out->adjtetlist = new int[subfaces->items * 2]; |
29417 | if (out->adjtetlist == (int *) NULL) { |
29418 | terminatetetgen(this, 1); |
29419 | } |
29420 | } |
29421 | out->numberoftrifaces = subfaces->items; |
29422 | elist = out->trifacelist; |
29423 | emlist = out->trifacemarkerlist; |
29424 | } |
29425 | |
29426 | // Determine the first index (0 or 1). |
29427 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
29428 | shift = 0; // Default no shiftment. |
29429 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
29430 | shift = 1; // Shift the output indices by 1. |
29431 | } |
29432 | |
29433 | subfaces->traversalinit(); |
29434 | faceloop.sh = shellfacetraverse(subfaces); |
29435 | facenumber = firstindex; // in->firstnumber; |
29436 | while (faceloop.sh != (shellface *) NULL) { |
29437 | stpivot(faceloop, abuttingtet); |
29438 | // If there is a tetrahedron containing this subface, orient it so |
29439 | // that the normal of this face points to inside of the volume by |
29440 | // right-hand rule. |
29441 | if (abuttingtet.tet != NULL) { |
29442 | if (ishulltet(abuttingtet)) { |
29443 | fsymself(abuttingtet); |
29444 | assert(!ishulltet(abuttingtet)); |
29445 | } |
29446 | } |
29447 | if (abuttingtet.tet != NULL) { |
29448 | torg = org(abuttingtet); |
29449 | tdest = dest(abuttingtet); |
29450 | tapex = apex(abuttingtet); |
29451 | if (b->order == 2) { // -o2 |
29452 | // Get the three extra vertices on edges. |
29453 | extralist = (point *) (abuttingtet.tet[highorderindex]); |
29454 | workface = abuttingtet; |
29455 | for (i = 0; i < 3; i++) { |
29456 | pp[i] = extralist[ver2edge[workface.ver]]; |
29457 | enextself(workface); |
29458 | } |
29459 | } |
29460 | } else { |
29461 | // This may happen when only a surface mesh be generated. |
29462 | torg = sorg(faceloop); |
29463 | tdest = sdest(faceloop); |
29464 | tapex = sapex(faceloop); |
29465 | if (b->order == 2) { // -o2 |
29466 | // There is no extra node list available. |
29467 | pp[0] = torg; |
29468 | pp[1] = tdest; |
29469 | pp[2] = tapex; |
29470 | } |
29471 | } |
29472 | if (!b->nobound) { |
29473 | if (b->refine) { // -r option. |
29474 | if (in->trifacemarkerlist) { |
29475 | marker = shellmark(faceloop); |
29476 | } else { |
29477 | marker = 1; // Default marker for a subface is 1. |
29478 | } |
29479 | } else { |
29480 | if (in->facetmarkerlist) { |
29481 | faceid = shellmark(faceloop) - 1; |
29482 | marker = in->facetmarkerlist[faceid]; |
29483 | } else { |
29484 | marker = 1; // Default marker for a subface is 1. |
29485 | } |
29486 | } |
29487 | } |
29488 | if (b->neighout > 1) { |
29489 | // '-nn' switch. Output adjacent tets indices. |
29490 | neigh1 = -1; |
29491 | neigh2 = -1; |
29492 | stpivot(faceloop, abuttingtet); |
29493 | if (abuttingtet.tet != NULL) { |
29494 | neigh1 = elemindex(abuttingtet.tet); |
29495 | fsymself(abuttingtet); |
29496 | if (!ishulltet(abuttingtet)) { |
29497 | neigh2 = elemindex(abuttingtet.tet); |
29498 | } |
29499 | } |
29500 | } |
29501 | if (out == (tetgenio *) NULL) { |
29502 | fprintf(outfile, "%5d %4d %4d %4d" , facenumber, |
29503 | pointmark(torg) - shift, pointmark(tdest) - shift, |
29504 | pointmark(tapex) - shift); |
29505 | if (b->order == 2) { // -o2 |
29506 | fprintf(outfile, " %4d %4d %4d" , pointmark(pp[0]) - shift, |
29507 | pointmark(pp[1]) - shift, pointmark(pp[2]) - shift); |
29508 | } |
29509 | if (!b->nobound) { |
29510 | fprintf(outfile, " %d" , marker); |
29511 | } |
29512 | if (b->neighout > 1) { |
29513 | fprintf(outfile, " %5d %5d" , neigh1, neigh2); |
29514 | } |
29515 | fprintf(outfile, "\n" ); |
29516 | } else { |
29517 | // Output three vertices of this face; |
29518 | elist[index++] = pointmark(torg) - shift; |
29519 | elist[index++] = pointmark(tdest) - shift; |
29520 | elist[index++] = pointmark(tapex) - shift; |
29521 | if (b->order == 2) { // -o2 |
29522 | out->o2facelist[o2index++] = pointmark(pp[0]) - shift; |
29523 | out->o2facelist[o2index++] = pointmark(pp[1]) - shift; |
29524 | out->o2facelist[o2index++] = pointmark(pp[2]) - shift; |
29525 | } |
29526 | if (!b->nobound) { |
29527 | emlist[index1++] = marker; |
29528 | } |
29529 | if (b->neighout > 1) { |
29530 | out->adjtetlist[index2++] = neigh1; |
29531 | out->adjtetlist[index2++] = neigh2; |
29532 | } |
29533 | } |
29534 | facenumber++; |
29535 | faceloop.sh = shellfacetraverse(subfaces); |
29536 | } |
29537 | |
29538 | if (out == (tetgenio *) NULL) { |
29539 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
29540 | fclose(outfile); |
29541 | } |
29542 | } |
29543 | |
29544 | /////////////////////////////////////////////////////////////////////////////// |
29545 | // // |
29546 | // outedges() Output all edges to a .edge file or a tetgenio object. // |
29547 | // // |
29548 | // Note: This routine must be called after outelements(), so that the total // |
29549 | // number of edges 'meshedges' has been counted. // |
29550 | // // |
29551 | /////////////////////////////////////////////////////////////////////////////// |
29552 | |
29553 | void tetgenmesh::outedges(tetgenio* out) |
29554 | { |
29555 | FILE *outfile = NULL; |
29556 | char edgefilename[FILENAMESIZE]; |
29557 | triface tetloop, worktet, spintet; |
29558 | face checkseg; |
29559 | point torg, tdest; |
29560 | int *elist = NULL, *emlist = NULL; |
29561 | int ishulledge; |
29562 | int firstindex, shift; |
29563 | int edgenumber, marker; |
29564 | int index = 0, index1 = 0, index2 = 0; |
29565 | int t1ver; |
29566 | int i; |
29567 | |
29568 | // For -o2 option. |
29569 | point *, pp = NULL; |
29570 | int highorderindex = 11; |
29571 | int o2index = 0; |
29572 | |
29573 | if (out == (tetgenio *) NULL) { |
29574 | strcpy(edgefilename, b->outfilename); |
29575 | strcat(edgefilename, ".edge" ); |
29576 | } |
29577 | |
29578 | if (!b->quiet) { |
29579 | if (out == (tetgenio *) NULL) { |
29580 | printf("Writing %s.\n" , edgefilename); |
29581 | } else { |
29582 | printf("Writing edges.\n" ); |
29583 | } |
29584 | } |
29585 | |
29586 | if (meshedges == 0l) { |
29587 | if (nonconvex) { |
29588 | numberedges(); // Count the edges. |
29589 | } else { |
29590 | // Use Euler's characteristic to get the numbe of edges. |
29591 | // It states V - E + F - C = 1, hence E = V + F - C - 1. |
29592 | long tsize = tetrahedrons->items - hullsize; |
29593 | long fsize = (tsize * 4l + hullsize) / 2l; |
29594 | long vsize = points->items - dupverts - unuverts; |
29595 | if (b->weighted) vsize -= nonregularcount; |
29596 | meshedges = vsize + fsize - tsize - 1; |
29597 | } |
29598 | } |
29599 | |
29600 | if (out == (tetgenio *) NULL) { |
29601 | outfile = fopen(edgefilename, "w" ); |
29602 | if (outfile == (FILE *) NULL) { |
29603 | printf("File I/O Error: Cannot create file %s.\n" , edgefilename); |
29604 | terminatetetgen(this, 1); |
29605 | } |
29606 | // Write the number of edges, boundary markers (0 or 1). |
29607 | fprintf(outfile, "%ld %d\n" , meshedges, !b->nobound); |
29608 | } else { |
29609 | // Allocate memory for 'edgelist'. |
29610 | out->edgelist = new int[meshedges * 2]; |
29611 | if (out->edgelist == (int *) NULL) { |
29612 | printf("Error: Out of memory.\n" ); |
29613 | terminatetetgen(this, 1); |
29614 | } |
29615 | if (b->order == 2) { // -o2 switch |
29616 | out->o2edgelist = new int[meshedges]; |
29617 | } |
29618 | if (!b->nobound) { |
29619 | out->edgemarkerlist = new int[meshedges]; |
29620 | } |
29621 | if (b->neighout > 1) { // '-nn' switch. |
29622 | out->edgeadjtetlist = new int[meshedges]; |
29623 | } |
29624 | out->numberofedges = meshedges; |
29625 | elist = out->edgelist; |
29626 | emlist = out->edgemarkerlist; |
29627 | } |
29628 | |
29629 | // Determine the first index (0 or 1). |
29630 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
29631 | shift = 0; // Default no shiftment. |
29632 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
29633 | shift = 1; // Shift (reduce) the output indices by 1. |
29634 | } |
29635 | |
29636 | tetrahedrons->traversalinit(); |
29637 | tetloop.tet = tetrahedrontraverse(); |
29638 | edgenumber = firstindex; // in->firstnumber; |
29639 | while (tetloop.tet != (tetrahedron *) NULL) { |
29640 | // Count the number of Voronoi faces. |
29641 | worktet.tet = tetloop.tet; |
29642 | for (i = 0; i < 6; i++) { |
29643 | worktet.ver = edge2ver[i]; |
29644 | ishulledge = 0; |
29645 | fnext(worktet, spintet); |
29646 | do { |
29647 | if (!ishulltet(spintet)) { |
29648 | if (elemindex(spintet.tet) < elemindex(worktet.tet)) break; |
29649 | } else { |
29650 | ishulledge = 1; |
29651 | } |
29652 | fnextself(spintet); |
29653 | } while (spintet.tet != worktet.tet); |
29654 | // Count this edge if no adjacent tets are smaller than this tet. |
29655 | if (spintet.tet == worktet.tet) { |
29656 | torg = org(worktet); |
29657 | tdest = dest(worktet); |
29658 | if (b->order == 2) { // -o2 |
29659 | // Get the extra vertex on this edge. |
29660 | extralist = (point *) worktet.tet[highorderindex]; |
29661 | pp = extralist[ver2edge[worktet.ver]]; |
29662 | } |
29663 | if (out == (tetgenio *) NULL) { |
29664 | fprintf(outfile, "%5d %4d %4d" , edgenumber, |
29665 | pointmark(torg) - shift, pointmark(tdest) - shift); |
29666 | if (b->order == 2) { // -o2 |
29667 | fprintf(outfile, " %4d" , pointmark(pp) - shift); |
29668 | } |
29669 | } else { |
29670 | // Output three vertices of this face; |
29671 | elist[index++] = pointmark(torg) - shift; |
29672 | elist[index++] = pointmark(tdest) - shift; |
29673 | if (b->order == 2) { // -o2 |
29674 | out->o2edgelist[o2index++] = pointmark(pp) - shift; |
29675 | } |
29676 | } |
29677 | if (!b->nobound) { |
29678 | if (b->plc || b->refine) { |
29679 | // Check if the edge is a segment. |
29680 | tsspivot1(worktet, checkseg); |
29681 | if (checkseg.sh != NULL) { |
29682 | marker = shellmark(checkseg); |
29683 | if (marker == 0) { // Does it have no marker? |
29684 | marker = 1; // Set the default marker for this segment. |
29685 | } |
29686 | } else { |
29687 | marker = 0; // It's not a segment. |
29688 | } |
29689 | } else { |
29690 | // Mark it if it is a hull edge. |
29691 | marker = ishulledge ? 1 : 0; |
29692 | } |
29693 | if (out == (tetgenio *) NULL) { |
29694 | fprintf(outfile, " %d" , marker); |
29695 | } else { |
29696 | emlist[index1++] = marker; |
29697 | } |
29698 | } |
29699 | if (b->neighout > 1) { // '-nn' switch. |
29700 | if (out == (tetgenio *) NULL) { |
29701 | fprintf(outfile, " %d" , elemindex(tetloop.tet)); |
29702 | } else { |
29703 | out->edgeadjtetlist[index2++] = elemindex(tetloop.tet); |
29704 | } |
29705 | } |
29706 | if (out == (tetgenio *) NULL) { |
29707 | fprintf(outfile, "\n" ); |
29708 | } |
29709 | edgenumber++; |
29710 | } |
29711 | } |
29712 | tetloop.tet = tetrahedrontraverse(); |
29713 | } |
29714 | |
29715 | if (out == (tetgenio *) NULL) { |
29716 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
29717 | fclose(outfile); |
29718 | } |
29719 | } |
29720 | |
29721 | /////////////////////////////////////////////////////////////////////////////// |
29722 | // // |
29723 | // outsubsegments() Output segments to a .edge file or a structure. // |
29724 | // // |
29725 | /////////////////////////////////////////////////////////////////////////////// |
29726 | |
29727 | void tetgenmesh::outsubsegments(tetgenio* out) |
29728 | { |
29729 | FILE *outfile = NULL; |
29730 | char edgefilename[FILENAMESIZE]; |
29731 | int *elist = NULL; |
29732 | int index, i; |
29733 | face edgeloop; |
29734 | point torg, tdest; |
29735 | int firstindex, shift; |
29736 | int marker; |
29737 | int edgenumber; |
29738 | |
29739 | // For -o2 option. |
29740 | triface workface, spintet; |
29741 | point *, pp = NULL; |
29742 | int highorderindex = 11; |
29743 | int o2index = 0; |
29744 | |
29745 | // For -nn option. |
29746 | int neigh = -1; |
29747 | int index2 = 0; |
29748 | |
29749 | int t1ver; // used by fsymself() |
29750 | |
29751 | if (out == (tetgenio *) NULL) { |
29752 | strcpy(edgefilename, b->outfilename); |
29753 | strcat(edgefilename, ".edge" ); |
29754 | } |
29755 | |
29756 | if (!b->quiet) { |
29757 | if (out == (tetgenio *) NULL) { |
29758 | printf("Writing %s.\n" , edgefilename); |
29759 | } else { |
29760 | printf("Writing edges.\n" ); |
29761 | } |
29762 | } |
29763 | |
29764 | if (out == (tetgenio *) NULL) { |
29765 | outfile = fopen(edgefilename, "w" ); |
29766 | if (outfile == (FILE *) NULL) { |
29767 | printf("File I/O Error: Cannot create file %s.\n" , edgefilename); |
29768 | terminatetetgen(this, 3); |
29769 | } |
29770 | // Number of subsegments. |
29771 | fprintf(outfile, "%ld 1\n" , subsegs->items); |
29772 | } else { |
29773 | // Allocate memory for 'edgelist'. |
29774 | out->edgelist = new int[subsegs->items * (b->order == 1 ? 2 : 3)]; |
29775 | if (out->edgelist == (int *) NULL) { |
29776 | terminatetetgen(this, 1); |
29777 | } |
29778 | if (b->order == 2) { |
29779 | out->o2edgelist = new int[subsegs->items]; |
29780 | } |
29781 | out->edgemarkerlist = new int[subsegs->items]; |
29782 | if (out->edgemarkerlist == (int *) NULL) { |
29783 | terminatetetgen(this, 1); |
29784 | } |
29785 | if (b->neighout > 1) { |
29786 | out->edgeadjtetlist = new int[subsegs->items]; |
29787 | } |
29788 | out->numberofedges = subsegs->items; |
29789 | elist = out->edgelist; |
29790 | } |
29791 | |
29792 | // Determine the first index (0 or 1). |
29793 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
29794 | shift = 0; // Default no shiftment. |
29795 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
29796 | shift = 1; // Shift the output indices by 1. |
29797 | } |
29798 | index = 0; |
29799 | i = 0; |
29800 | |
29801 | subsegs->traversalinit(); |
29802 | edgeloop.sh = shellfacetraverse(subsegs); |
29803 | edgenumber = firstindex; // in->firstnumber; |
29804 | while (edgeloop.sh != (shellface *) NULL) { |
29805 | torg = sorg(edgeloop); |
29806 | tdest = sdest(edgeloop); |
29807 | if ((b->order == 2) || (b->neighout > 1)) { |
29808 | sstpivot1(edgeloop, workface); |
29809 | if (workface.tet != NULL) { |
29810 | // We must find a non-hull tet. |
29811 | if (ishulltet(workface)) { |
29812 | spintet = workface; |
29813 | while (1) { |
29814 | fnextself(spintet); |
29815 | if (!ishulltet(spintet)) break; |
29816 | if (spintet.tet == workface.tet) break; |
29817 | } |
29818 | assert(!ishulltet(spintet)); |
29819 | workface = spintet; |
29820 | } |
29821 | } |
29822 | } |
29823 | if (b->order == 2) { // -o2 |
29824 | // Get the extra vertex on this edge. |
29825 | if (workface.tet != NULL) { |
29826 | extralist = (point *) workface.tet[highorderindex]; |
29827 | pp = extralist[ver2edge[workface.ver]]; |
29828 | } else { |
29829 | pp = torg; // There is no extra node available. |
29830 | } |
29831 | } |
29832 | if (b->neighout > 1) { // -nn |
29833 | if (workface.tet != NULL) { |
29834 | neigh = elemindex(workface.tet); |
29835 | } else { |
29836 | neigh = -1; |
29837 | } |
29838 | } |
29839 | marker = shellmark(edgeloop); |
29840 | if (marker == 0) { |
29841 | marker = 1; // Default marker of a boundary edge is 1. |
29842 | } |
29843 | if (out == (tetgenio *) NULL) { |
29844 | fprintf(outfile, "%5d %4d %4d" , edgenumber, |
29845 | pointmark(torg) - shift, pointmark(tdest) - shift); |
29846 | if (b->order == 2) { // -o2 |
29847 | fprintf(outfile, " %4d" , pointmark(pp) - shift); |
29848 | } |
29849 | fprintf(outfile, " %d" , marker); |
29850 | if (b->neighout > 1) { // -nn |
29851 | fprintf(outfile, " %4d" , neigh); |
29852 | } |
29853 | fprintf(outfile, "\n" ); |
29854 | } else { |
29855 | // Output three vertices of this face; |
29856 | elist[index++] = pointmark(torg) - shift; |
29857 | elist[index++] = pointmark(tdest) - shift; |
29858 | if (b->order == 2) { // -o2 |
29859 | out->o2edgelist[o2index++] = pointmark(pp) - shift; |
29860 | } |
29861 | out->edgemarkerlist[i++] = marker; |
29862 | if (b->neighout > 1) { // -nn |
29863 | out->edgeadjtetlist[index2++] = neigh; |
29864 | } |
29865 | } |
29866 | edgenumber++; |
29867 | edgeloop.sh = shellfacetraverse(subsegs); |
29868 | } |
29869 | |
29870 | if (out == (tetgenio *) NULL) { |
29871 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
29872 | fclose(outfile); |
29873 | } |
29874 | } |
29875 | |
29876 | /////////////////////////////////////////////////////////////////////////////// |
29877 | // // |
29878 | // outneighbors() Output tet neighbors to a .neigh file or a structure. // |
29879 | // // |
29880 | /////////////////////////////////////////////////////////////////////////////// |
29881 | |
29882 | void tetgenmesh::outneighbors(tetgenio* out) |
29883 | { |
29884 | FILE *outfile = NULL; |
29885 | char neighborfilename[FILENAMESIZE]; |
29886 | int *nlist = NULL; |
29887 | int index = 0; |
29888 | triface tetloop, tetsym; |
29889 | int neighbori[4]; |
29890 | int firstindex; |
29891 | int elementnumber; |
29892 | long ntets; |
29893 | |
29894 | if (out == (tetgenio *) NULL) { |
29895 | strcpy(neighborfilename, b->outfilename); |
29896 | strcat(neighborfilename, ".neigh" ); |
29897 | } |
29898 | |
29899 | if (!b->quiet) { |
29900 | if (out == (tetgenio *) NULL) { |
29901 | printf("Writing %s.\n" , neighborfilename); |
29902 | } else { |
29903 | printf("Writing neighbors.\n" ); |
29904 | } |
29905 | } |
29906 | |
29907 | ntets = tetrahedrons->items - hullsize; |
29908 | |
29909 | if (out == (tetgenio *) NULL) { |
29910 | outfile = fopen(neighborfilename, "w" ); |
29911 | if (outfile == (FILE *) NULL) { |
29912 | printf("File I/O Error: Cannot create file %s.\n" , neighborfilename); |
29913 | terminatetetgen(this, 1); |
29914 | } |
29915 | // Number of tetrahedra, four faces per tetrahedron. |
29916 | fprintf(outfile, "%ld %d\n" , ntets, 4); |
29917 | } else { |
29918 | // Allocate memory for 'neighborlist'. |
29919 | out->neighborlist = new int[ntets * 4]; |
29920 | if (out->neighborlist == (int *) NULL) { |
29921 | printf("Error: Out of memory.\n" ); |
29922 | terminatetetgen(this, 1); |
29923 | } |
29924 | nlist = out->neighborlist; |
29925 | } |
29926 | |
29927 | // Determine the first index (0 or 1). |
29928 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
29929 | |
29930 | tetrahedrons->traversalinit(); |
29931 | tetloop.tet = tetrahedrontraverse(); |
29932 | elementnumber = firstindex; // in->firstnumber; |
29933 | while (tetloop.tet != (tetrahedron *) NULL) { |
29934 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
29935 | fsym(tetloop, tetsym); |
29936 | if (!ishulltet(tetsym)) { |
29937 | neighbori[tetloop.ver] = elemindex(tetsym.tet); |
29938 | } else { |
29939 | neighbori[tetloop.ver] = -1; |
29940 | } |
29941 | } |
29942 | if (out == (tetgenio *) NULL) { |
29943 | // Tetrahedra number, neighboring tetrahedron numbers. |
29944 | fprintf(outfile, "%4d %4d %4d %4d %4d\n" , elementnumber, |
29945 | neighbori[0], neighbori[1], neighbori[2], neighbori[3]); |
29946 | } else { |
29947 | nlist[index++] = neighbori[0]; |
29948 | nlist[index++] = neighbori[1]; |
29949 | nlist[index++] = neighbori[2]; |
29950 | nlist[index++] = neighbori[3]; |
29951 | } |
29952 | tetloop.tet = tetrahedrontraverse(); |
29953 | elementnumber++; |
29954 | } |
29955 | |
29956 | if (out == (tetgenio *) NULL) { |
29957 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
29958 | fclose(outfile); |
29959 | } |
29960 | } |
29961 | |
29962 | /////////////////////////////////////////////////////////////////////////////// |
29963 | // // |
29964 | // outvoronoi() Output the Voronoi diagram to .v.node, .v.edge, v.face, // |
29965 | // and .v.cell. // |
29966 | // // |
29967 | // The Voronoi diagram is the geometric dual of the Delaunay triangulation. // |
29968 | // The Voronoi vertices are the circumcenters of Delaunay tetrahedra. Each // |
29969 | // Voronoi edge connects two Voronoi vertices at two sides of a common Dela- // |
29970 | // unay face. At a face of convex hull, it becomes a ray (goto the infinity).// |
29971 | // A Voronoi face is the convex hull of all Voronoi vertices around a common // |
29972 | // Delaunay edge. It is a closed polygon for any internal Delaunay edge. At a// |
29973 | // ridge, it is unbounded. Each Voronoi cell is the convex hull of all Vor- // |
29974 | // onoi vertices around a common Delaunay vertex. It is a polytope for any // |
29975 | // internal Delaunay vertex. It is an unbounded polyhedron for a Delaunay // |
29976 | // vertex belonging to the convex hull. // |
29977 | // // |
29978 | // NOTE: This routine is only used when the input is only a set of point. // |
29979 | // Comment: Special thanks to Victor Liu for finding and fixing few bugs. // |
29980 | // // |
29981 | /////////////////////////////////////////////////////////////////////////////// |
29982 | |
29983 | void tetgenmesh::outvoronoi(tetgenio* out) |
29984 | { |
29985 | FILE *outfile = NULL; |
29986 | char outfilename[FILENAMESIZE]; |
29987 | tetgenio::voroedge *vedge = NULL; |
29988 | tetgenio::vorofacet *vfacet = NULL; |
29989 | arraypool *tetlist, *ptlist; |
29990 | triface tetloop, worktet, spintet, firsttet; |
29991 | point pt[4], ploop, neipt; |
29992 | REAL ccent[3], infvec[3], vec1[3], vec2[3], L; |
29993 | long ntets, faces, edges; |
29994 | int *indexarray, *fidxs, *eidxs; |
29995 | int arraysize, *vertarray = NULL; |
29996 | int vpointcount, vedgecount, vfacecount, tcount; |
29997 | int ishullvert, ishullface; |
29998 | int index, shift, end1, end2; |
29999 | int i, j; |
30000 | |
30001 | int t1ver; // used by fsymself() |
30002 | |
30003 | // Output Voronoi vertices to .v.node file. |
30004 | if (out == (tetgenio *) NULL) { |
30005 | strcpy(outfilename, b->outfilename); |
30006 | strcat(outfilename, ".v.node" ); |
30007 | } |
30008 | |
30009 | if (!b->quiet) { |
30010 | if (out == (tetgenio *) NULL) { |
30011 | printf("Writing %s.\n" , outfilename); |
30012 | } else { |
30013 | printf("Writing Voronoi vertices.\n" ); |
30014 | } |
30015 | } |
30016 | |
30017 | // Determine the first index (0 or 1). |
30018 | shift = (b->zeroindex ? 0 : in->firstnumber); |
30019 | |
30020 | // Each face and edge of the tetrahedral mesh will be indexed for indexing |
30021 | // the Voronoi edges and facets. Indices of faces and edges are saved in |
30022 | // each tetrahedron (including hull tets). |
30023 | |
30024 | // Allocate the total space once. |
30025 | indexarray = new int[tetrahedrons->items * 10]; |
30026 | |
30027 | // Allocate space (10 integers) into each tetrahedron. It re-uses the slot |
30028 | // for element markers, flags. |
30029 | i = 0; |
30030 | tetrahedrons->traversalinit(); |
30031 | tetloop.tet = alltetrahedrontraverse(); |
30032 | while (tetloop.tet != NULL) { |
30033 | tetloop.tet[11] = (tetrahedron) &(indexarray[i * 10]); |
30034 | i++; |
30035 | tetloop.tet = alltetrahedrontraverse(); |
30036 | } |
30037 | |
30038 | // The number of tetrahedra (excluding hull tets) (Voronoi vertices). |
30039 | ntets = tetrahedrons->items - hullsize; |
30040 | // The number of Delaunay faces (Voronoi edges). |
30041 | faces = (4l * ntets + hullsize) / 2l; |
30042 | // The number of Delaunay edges (Voronoi faces). |
30043 | long vsize = points->items - dupverts - unuverts; |
30044 | if (b->weighted) vsize -= nonregularcount; |
30045 | edges = vsize + faces - ntets - 1; |
30046 | |
30047 | if (out == (tetgenio *) NULL) { |
30048 | outfile = fopen(outfilename, "w" ); |
30049 | if (outfile == (FILE *) NULL) { |
30050 | printf("File I/O Error: Cannot create file %s.\n" , outfilename); |
30051 | terminatetetgen(this, 3); |
30052 | } |
30053 | // Number of voronoi points, 3 dim, no attributes, no marker. |
30054 | fprintf(outfile, "%ld 3 0 0\n" , ntets); |
30055 | } else { |
30056 | // Allocate space for 'vpointlist'. |
30057 | out->numberofvpoints = (int) ntets; |
30058 | out->vpointlist = new REAL[out->numberofvpoints * 3]; |
30059 | if (out->vpointlist == (REAL *) NULL) { |
30060 | terminatetetgen(this, 1); |
30061 | } |
30062 | } |
30063 | |
30064 | // Output Voronoi vertices (the circumcenters of tetrahedra). |
30065 | tetrahedrons->traversalinit(); |
30066 | tetloop.tet = tetrahedrontraverse(); |
30067 | vpointcount = 0; // The (internal) v-index always starts from 0. |
30068 | index = 0; |
30069 | while (tetloop.tet != (tetrahedron *) NULL) { |
30070 | for (i = 0; i < 4; i++) { |
30071 | pt[i] = (point) tetloop.tet[4 + i]; |
30072 | setpoint2tet(pt[i], encode(tetloop)); |
30073 | } |
30074 | if (b->weighted) { |
30075 | orthosphere(pt[0], pt[1], pt[2], pt[3], pt[0][3], pt[1][3], pt[2][3], |
30076 | pt[3][3], ccent, NULL); |
30077 | } else { |
30078 | circumsphere(pt[0], pt[1], pt[2], pt[3], ccent, NULL); |
30079 | } |
30080 | if (out == (tetgenio *) NULL) { |
30081 | fprintf(outfile, "%4d %16.8e %16.8e %16.8e\n" , vpointcount + shift, |
30082 | ccent[0], ccent[1], ccent[2]); |
30083 | } else { |
30084 | out->vpointlist[index++] = ccent[0]; |
30085 | out->vpointlist[index++] = ccent[1]; |
30086 | out->vpointlist[index++] = ccent[2]; |
30087 | } |
30088 | setelemindex(tetloop.tet, vpointcount); |
30089 | vpointcount++; |
30090 | tetloop.tet = tetrahedrontraverse(); |
30091 | } |
30092 | |
30093 | if (out == (tetgenio *) NULL) { |
30094 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
30095 | fclose(outfile); |
30096 | } |
30097 | |
30098 | // Output Voronoi edges to .v.edge file. |
30099 | if (out == (tetgenio *) NULL) { |
30100 | strcpy(outfilename, b->outfilename); |
30101 | strcat(outfilename, ".v.edge" ); |
30102 | } |
30103 | |
30104 | if (!b->quiet) { |
30105 | if (out == (tetgenio *) NULL) { |
30106 | printf("Writing %s.\n" , outfilename); |
30107 | } else { |
30108 | printf("Writing Voronoi edges.\n" ); |
30109 | } |
30110 | } |
30111 | |
30112 | if (out == (tetgenio *) NULL) { |
30113 | outfile = fopen(outfilename, "w" ); |
30114 | if (outfile == (FILE *) NULL) { |
30115 | printf("File I/O Error: Cannot create file %s.\n" , outfilename); |
30116 | terminatetetgen(this, 3); |
30117 | } |
30118 | // Number of Voronoi edges, no marker. |
30119 | fprintf(outfile, "%ld 0\n" , faces); |
30120 | } else { |
30121 | // Allocate space for 'vpointlist'. |
30122 | out->numberofvedges = (int) faces; |
30123 | out->vedgelist = new tetgenio::voroedge[out->numberofvedges]; |
30124 | } |
30125 | |
30126 | // Output the Voronoi edges. |
30127 | tetrahedrons->traversalinit(); |
30128 | tetloop.tet = tetrahedrontraverse(); |
30129 | vedgecount = 0; // D-Face (V-edge) index (from zero). |
30130 | index = 0; // The Delaunay-face index. |
30131 | while (tetloop.tet != (tetrahedron *) NULL) { |
30132 | // Count the number of Voronoi edges. Look at the four faces of each |
30133 | // tetrahedron. Count the face if the tetrahedron's index is |
30134 | // smaller than its neighbor's or the neighbor is outside. |
30135 | end1 = elemindex(tetloop.tet); |
30136 | for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
30137 | fsym(tetloop, worktet); |
30138 | if (ishulltet(worktet) || |
30139 | (elemindex(tetloop.tet) < elemindex(worktet.tet))) { |
30140 | // Found a Voronoi edge. Operate on it. |
30141 | if (out == (tetgenio *) NULL) { |
30142 | fprintf(outfile, "%4d %4d" , vedgecount + shift, end1 + shift); |
30143 | } else { |
30144 | vedge = &(out->vedgelist[index++]); |
30145 | vedge->v1 = end1 + shift; |
30146 | } |
30147 | if (!ishulltet(worktet)) { |
30148 | end2 = elemindex(worktet.tet); |
30149 | } else { |
30150 | end2 = -1; |
30151 | } |
30152 | // Note that end2 may be -1 (worktet.tet is outside). |
30153 | if (end2 == -1) { |
30154 | // Calculate the out normal of this hull face. |
30155 | pt[0] = dest(worktet); |
30156 | pt[1] = org(worktet); |
30157 | pt[2] = apex(worktet); |
30158 | for (j = 0; j < 3; j++) vec1[j] = pt[1][j] - pt[0][j]; |
30159 | for (j = 0; j < 3; j++) vec2[j] = pt[2][j] - pt[0][j]; |
30160 | cross(vec1, vec2, infvec); |
30161 | // Normalize it. |
30162 | L = sqrt(infvec[0] * infvec[0] + infvec[1] * infvec[1] |
30163 | + infvec[2] * infvec[2]); |
30164 | if (L > 0) for (j = 0; j < 3; j++) infvec[j] /= L; |
30165 | if (out == (tetgenio *) NULL) { |
30166 | fprintf(outfile, " -1" ); |
30167 | fprintf(outfile, " %g %g %g\n" , infvec[0], infvec[1], infvec[2]); |
30168 | } else { |
30169 | vedge->v2 = -1; |
30170 | vedge->vnormal[0] = infvec[0]; |
30171 | vedge->vnormal[1] = infvec[1]; |
30172 | vedge->vnormal[2] = infvec[2]; |
30173 | } |
30174 | } else { |
30175 | if (out == (tetgenio *) NULL) { |
30176 | fprintf(outfile, " %4d\n" , end2 + shift); |
30177 | } else { |
30178 | vedge->v2 = end2 + shift; |
30179 | vedge->vnormal[0] = 0.0; |
30180 | vedge->vnormal[1] = 0.0; |
30181 | vedge->vnormal[2] = 0.0; |
30182 | } |
30183 | } |
30184 | // Save the V-edge index in this tet and its neighbor. |
30185 | fidxs = (int *) (tetloop.tet[11]); |
30186 | fidxs[tetloop.ver] = vedgecount; |
30187 | fidxs = (int *) (worktet.tet[11]); |
30188 | fidxs[worktet.ver & 3] = vedgecount; |
30189 | vedgecount++; |
30190 | } |
30191 | } // tetloop.ver |
30192 | tetloop.tet = tetrahedrontraverse(); |
30193 | } |
30194 | |
30195 | if (out == (tetgenio *) NULL) { |
30196 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
30197 | fclose(outfile); |
30198 | } |
30199 | |
30200 | // Output Voronoi faces to .v.face file. |
30201 | if (out == (tetgenio *) NULL) { |
30202 | strcpy(outfilename, b->outfilename); |
30203 | strcat(outfilename, ".v.face" ); |
30204 | } |
30205 | |
30206 | if (!b->quiet) { |
30207 | if (out == (tetgenio *) NULL) { |
30208 | printf("Writing %s.\n" , outfilename); |
30209 | } else { |
30210 | printf("Writing Voronoi faces.\n" ); |
30211 | } |
30212 | } |
30213 | |
30214 | if (out == (tetgenio *) NULL) { |
30215 | outfile = fopen(outfilename, "w" ); |
30216 | if (outfile == (FILE *) NULL) { |
30217 | printf("File I/O Error: Cannot create file %s.\n" , outfilename); |
30218 | terminatetetgen(this, 3); |
30219 | } |
30220 | // Number of Voronoi faces. |
30221 | fprintf(outfile, "%ld 0\n" , edges); |
30222 | } else { |
30223 | out->numberofvfacets = edges; |
30224 | out->vfacetlist = new tetgenio::vorofacet[out->numberofvfacets]; |
30225 | if (out->vfacetlist == (tetgenio::vorofacet *) NULL) { |
30226 | terminatetetgen(this, 1); |
30227 | } |
30228 | } |
30229 | |
30230 | // Output the Voronoi facets. |
30231 | tetrahedrons->traversalinit(); |
30232 | tetloop.tet = tetrahedrontraverse(); |
30233 | vfacecount = 0; // D-edge (V-facet) index (from zero). |
30234 | while (tetloop.tet != (tetrahedron *) NULL) { |
30235 | // Count the number of Voronoi faces. Look at the six edges of each |
30236 | // tetrahedron. Count the edge only if the tetrahedron's index is |
30237 | // smaller than those of all other tetrahedra that share the edge. |
30238 | worktet.tet = tetloop.tet; |
30239 | for (i = 0; i < 6; i++) { |
30240 | worktet.ver = edge2ver[i]; |
30241 | // Count the number of faces at this edge. If the edge is a hull edge, |
30242 | // the face containing dummypoint is also counted. |
30243 | //ishulledge = 0; // Is it a hull edge. |
30244 | tcount = 0; |
30245 | firsttet = worktet; |
30246 | spintet = worktet; |
30247 | while (1) { |
30248 | tcount++; |
30249 | fnextself(spintet); |
30250 | if (spintet.tet == worktet.tet) break; |
30251 | if (!ishulltet(spintet)) { |
30252 | if (elemindex(spintet.tet) < elemindex(worktet.tet)) break; |
30253 | } else { |
30254 | //ishulledge = 1; |
30255 | if (apex(spintet) == dummypoint) { |
30256 | // We make this V-edge appear in the end of the edge list. |
30257 | fnext(spintet, firsttet); |
30258 | } |
30259 | } |
30260 | } // while (1) |
30261 | if (spintet.tet == worktet.tet) { |
30262 | // Found a Voronoi facet. Operate on it. |
30263 | pt[0] = org(worktet); |
30264 | pt[1] = dest(worktet); |
30265 | end1 = pointmark(pt[0]) - in->firstnumber; // V-cell index |
30266 | end2 = pointmark(pt[1]) - in->firstnumber; |
30267 | if (out == (tetgenio *) NULL) { |
30268 | fprintf(outfile, "%4d %4d %4d %-2d " , vfacecount + shift, |
30269 | end1 + shift, end2 + shift, tcount); |
30270 | } else { |
30271 | vfacet = &(out->vfacetlist[vfacecount]); |
30272 | vfacet->c1 = end1 + shift; |
30273 | vfacet->c2 = end2 + shift; |
30274 | vfacet->elist = new int[tcount + 1]; |
30275 | vfacet->elist[0] = tcount; |
30276 | index = 1; |
30277 | } |
30278 | // Output V-edges of this V-facet. |
30279 | spintet = firsttet; //worktet; |
30280 | while (1) { |
30281 | fidxs = (int *) (spintet.tet[11]); |
30282 | if (apex(spintet) != dummypoint) { |
30283 | vedgecount = fidxs[spintet.ver & 3]; |
30284 | ishullface = 0; |
30285 | } else { |
30286 | ishullface = 1; // It's not a real face. |
30287 | } |
30288 | if (out == (tetgenio *) NULL) { |
30289 | fprintf(outfile, " %d" , !ishullface ? (vedgecount + shift) : -1); |
30290 | } else { |
30291 | vfacet->elist[index++] = !ishullface ? (vedgecount + shift) : -1; |
30292 | } |
30293 | // Save the V-facet index in this tet at this edge. |
30294 | eidxs = &(fidxs[4]); |
30295 | eidxs[ver2edge[spintet.ver]] = vfacecount; |
30296 | // Go to the next face. |
30297 | fnextself(spintet); |
30298 | if (spintet.tet == firsttet.tet) break; |
30299 | } // while (1) |
30300 | if (out == (tetgenio *) NULL) { |
30301 | fprintf(outfile, "\n" ); |
30302 | } |
30303 | vfacecount++; |
30304 | } // if (spintet.tet == worktet.tet) |
30305 | } // if (i = 0; i < 6; i++) |
30306 | tetloop.tet = tetrahedrontraverse(); |
30307 | } |
30308 | |
30309 | if (out == (tetgenio *) NULL) { |
30310 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
30311 | fclose(outfile); |
30312 | } |
30313 | |
30314 | // Output Voronoi cells to .v.cell file. |
30315 | if (out == (tetgenio *) NULL) { |
30316 | strcpy(outfilename, b->outfilename); |
30317 | strcat(outfilename, ".v.cell" ); |
30318 | } |
30319 | |
30320 | if (!b->quiet) { |
30321 | if (out == (tetgenio *) NULL) { |
30322 | printf("Writing %s.\n" , outfilename); |
30323 | } else { |
30324 | printf("Writing Voronoi cells.\n" ); |
30325 | } |
30326 | } |
30327 | |
30328 | if (out == (tetgenio *) NULL) { |
30329 | outfile = fopen(outfilename, "w" ); |
30330 | if (outfile == (FILE *) NULL) { |
30331 | printf("File I/O Error: Cannot create file %s.\n" , outfilename); |
30332 | terminatetetgen(this, 3); |
30333 | } |
30334 | // Number of Voronoi cells. |
30335 | fprintf(outfile, "%ld\n" , points->items - unuverts - dupverts); |
30336 | } else { |
30337 | out->numberofvcells = points->items - unuverts - dupverts; |
30338 | out->vcelllist = new int*[out->numberofvcells]; |
30339 | if (out->vcelllist == (int **) NULL) { |
30340 | terminatetetgen(this, 1); |
30341 | } |
30342 | } |
30343 | |
30344 | // Output Voronoi cells. |
30345 | tetlist = cavetetlist; |
30346 | ptlist = cavetetvertlist; |
30347 | points->traversalinit(); |
30348 | ploop = pointtraverse(); |
30349 | vpointcount = 0; |
30350 | while (ploop != (point) NULL) { |
30351 | if ((pointtype(ploop) != UNUSEDVERTEX) && |
30352 | (pointtype(ploop) != DUPLICATEDVERTEX) && |
30353 | (pointtype(ploop) != NREGULARVERTEX)) { |
30354 | getvertexstar(1, ploop, tetlist, ptlist, NULL); |
30355 | // Mark all vertices. Check if it is a hull vertex. |
30356 | ishullvert = 0; |
30357 | for (i = 0; i < ptlist->objects; i++) { |
30358 | neipt = * (point *) fastlookup(ptlist, i); |
30359 | if (neipt != dummypoint) { |
30360 | pinfect(neipt); |
30361 | } else { |
30362 | ishullvert = 1; |
30363 | } |
30364 | } |
30365 | tcount = (int) ptlist->objects; |
30366 | if (out == (tetgenio *) NULL) { |
30367 | fprintf(outfile, "%4d %-2d " , vpointcount + shift, tcount); |
30368 | } else { |
30369 | arraysize = tcount; |
30370 | vertarray = new int[arraysize + 1]; |
30371 | out->vcelllist[vpointcount] = vertarray; |
30372 | vertarray[0] = tcount; |
30373 | index = 1; |
30374 | } |
30375 | // List Voronoi facets bounding this cell. |
30376 | for (i = 0; i < tetlist->objects; i++) { |
30377 | worktet = * (triface *) fastlookup(tetlist, i); |
30378 | // Let 'worktet' be [a,b,c,d] where d = ploop. |
30379 | for (j = 0; j < 3; j++) { |
30380 | neipt = org(worktet); // neipt is a, or b, or c |
30381 | // Skip the dummypoint. |
30382 | if (neipt != dummypoint) { |
30383 | if (pinfected(neipt)) { |
30384 | // It's not processed yet. |
30385 | puninfect(neipt); |
30386 | // Go to the DT edge [a,d], or [b,d], or [c,d]. |
30387 | esym(worktet, spintet); |
30388 | enextself(spintet); |
30389 | // Get the V-face dual to this edge. |
30390 | eidxs = (int *) spintet.tet[11]; |
30391 | vfacecount = eidxs[4 + ver2edge[spintet.ver]]; |
30392 | if (out == (tetgenio *) NULL) { |
30393 | fprintf(outfile, " %d" , vfacecount + shift); |
30394 | } else { |
30395 | vertarray[index++] = vfacecount + shift; |
30396 | } |
30397 | } |
30398 | } |
30399 | enextself(worktet); |
30400 | } // j |
30401 | } // i |
30402 | if (ishullvert) { |
30403 | // Add a hull facet (-1) to the facet list. |
30404 | if (out == (tetgenio *) NULL) { |
30405 | fprintf(outfile, " -1" ); |
30406 | } else { |
30407 | vertarray[index++] = -1; |
30408 | } |
30409 | } |
30410 | if (out == (tetgenio *) NULL) { |
30411 | fprintf(outfile, "\n" ); |
30412 | } |
30413 | tetlist->restart(); |
30414 | ptlist->restart(); |
30415 | vpointcount++; |
30416 | } |
30417 | ploop = pointtraverse(); |
30418 | } |
30419 | |
30420 | // Delete the space for face/edge indices. |
30421 | delete [] indexarray; |
30422 | |
30423 | if (out == (tetgenio *) NULL) { |
30424 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
30425 | fclose(outfile); |
30426 | } |
30427 | } |
30428 | |
30429 | /////////////////////////////////////////////////////////////////////////////// |
30430 | // // |
30431 | // outsmesh() Write surface mesh to a .smesh file, which can be read and // |
30432 | // tetrahedralized by TetGen. // |
30433 | // // |
30434 | // You can specify a filename (without suffix) in 'smfilename'. If you don't // |
30435 | // supply a filename (let smfilename be NULL), the default name stored in // |
30436 | // 'tetgenbehavior' will be used. // |
30437 | // // |
30438 | /////////////////////////////////////////////////////////////////////////////// |
30439 | |
30440 | void tetgenmesh::outsmesh(char* smfilename) |
30441 | { |
30442 | FILE *outfile; |
30443 | char nodfilename[FILENAMESIZE]; |
30444 | char smefilename[FILENAMESIZE]; |
30445 | face faceloop; |
30446 | point p1, p2, p3; |
30447 | int firstindex, shift; |
30448 | int bmark; |
30449 | int faceid, marker; |
30450 | int i; |
30451 | |
30452 | if (smfilename != (char *) NULL && smfilename[0] != '\0') { |
30453 | strcpy(smefilename, smfilename); |
30454 | } else if (b->outfilename[0] != '\0') { |
30455 | strcpy(smefilename, b->outfilename); |
30456 | } else { |
30457 | strcpy(smefilename, "unnamed" ); |
30458 | } |
30459 | strcpy(nodfilename, smefilename); |
30460 | strcat(smefilename, ".smesh" ); |
30461 | strcat(nodfilename, ".node" ); |
30462 | |
30463 | if (!b->quiet) { |
30464 | printf("Writing %s.\n" , smefilename); |
30465 | } |
30466 | outfile = fopen(smefilename, "w" ); |
30467 | if (outfile == (FILE *) NULL) { |
30468 | printf("File I/O Error: Cannot create file %s.\n" , smefilename); |
30469 | return; |
30470 | } |
30471 | |
30472 | // Determine the first index (0 or 1). |
30473 | firstindex = b->zeroindex ? 0 : in->firstnumber; |
30474 | shift = 0; // Default no shiftment. |
30475 | if ((in->firstnumber == 1) && (firstindex == 0)) { |
30476 | shift = 1; // Shift the output indices by 1. |
30477 | } |
30478 | |
30479 | fprintf(outfile, "# %s. TetGen's input file.\n" , smefilename); |
30480 | fprintf(outfile, "\n# part 1: node list.\n" ); |
30481 | fprintf(outfile, "0 3 0 0 # nodes are found in %s.\n" , nodfilename); |
30482 | |
30483 | marker = 0; // avoid compile warning. |
30484 | bmark = !b->nobound && in->facetmarkerlist; |
30485 | |
30486 | fprintf(outfile, "\n# part 2: facet list.\n" ); |
30487 | // Number of facets, boundary marker. |
30488 | fprintf(outfile, "%ld %d\n" , subfaces->items, bmark); |
30489 | |
30490 | subfaces->traversalinit(); |
30491 | faceloop.sh = shellfacetraverse(subfaces); |
30492 | while (faceloop.sh != (shellface *) NULL) { |
30493 | p1 = sorg(faceloop); |
30494 | p2 = sdest(faceloop); |
30495 | p3 = sapex(faceloop); |
30496 | if (bmark) { |
30497 | faceid = shellmark(faceloop) - 1; |
30498 | if (faceid >= 0) { |
30499 | marker = in->facetmarkerlist[faceid]; |
30500 | } else { |
30501 | marker = 0; // This subface must be added manually later. |
30502 | } |
30503 | } |
30504 | fprintf(outfile, "3 %4d %4d %4d" , pointmark(p1) - shift, |
30505 | pointmark(p2) - shift, pointmark(p3) - shift); |
30506 | if (bmark) { |
30507 | fprintf(outfile, " %d" , marker); |
30508 | } |
30509 | fprintf(outfile, "\n" ); |
30510 | faceloop.sh = shellfacetraverse(subfaces); |
30511 | } |
30512 | |
30513 | // Copy input holelist. |
30514 | fprintf(outfile, "\n# part 3: hole list.\n" ); |
30515 | fprintf(outfile, "%d\n" , in->numberofholes); |
30516 | for (i = 0; i < in->numberofholes; i++) { |
30517 | fprintf(outfile, "%d %g %g %g\n" , i + in->firstnumber, |
30518 | in->holelist[i * 3], in->holelist[i * 3 + 1], |
30519 | in->holelist[i * 3 + 2]); |
30520 | } |
30521 | |
30522 | // Copy input regionlist. |
30523 | fprintf(outfile, "\n# part 4: region list.\n" ); |
30524 | fprintf(outfile, "%d\n" , in->numberofregions); |
30525 | for (i = 0; i < in->numberofregions; i++) { |
30526 | fprintf(outfile, "%d %g %g %g %d %g\n" , i + in->firstnumber, |
30527 | in->regionlist[i * 5], in->regionlist[i * 5 + 1], |
30528 | in->regionlist[i * 5 + 2], (int) in->regionlist[i * 5 + 3], |
30529 | in->regionlist[i * 5 + 4]); |
30530 | } |
30531 | |
30532 | fprintf(outfile, "# Generated by %s\n" , b->commandline); |
30533 | fclose(outfile); |
30534 | } |
30535 | |
30536 | /////////////////////////////////////////////////////////////////////////////// |
30537 | // // |
30538 | // outmesh2medit() Write mesh to a .mesh file, which can be read and // |
30539 | // rendered by Medit (a free mesh viewer from INRIA). // |
30540 | // // |
30541 | // You can specify a filename (without suffix) in 'mfilename'. If you don't // |
30542 | // supply a filename (let mfilename be NULL), the default name stored in // |
30543 | // 'tetgenbehavior' will be used. The output file will have the suffix .mesh.// |
30544 | // // |
30545 | /////////////////////////////////////////////////////////////////////////////// |
30546 | |
30547 | void tetgenmesh::outmesh2medit(char* mfilename) |
30548 | { |
30549 | FILE *outfile; |
30550 | char mefilename[FILENAMESIZE]; |
30551 | tetrahedron* tetptr; |
30552 | triface tface, tsymface; |
30553 | face segloop, checkmark; |
30554 | point ptloop, p1, p2, p3, p4; |
30555 | long ntets, faces; |
30556 | int pointnumber; |
30557 | int faceid, marker; |
30558 | int i; |
30559 | |
30560 | if (mfilename != (char *) NULL && mfilename[0] != '\0') { |
30561 | strcpy(mefilename, mfilename); |
30562 | } else if (b->outfilename[0] != '\0') { |
30563 | strcpy(mefilename, b->outfilename); |
30564 | } else { |
30565 | strcpy(mefilename, "unnamed" ); |
30566 | } |
30567 | strcat(mefilename, ".mesh" ); |
30568 | |
30569 | if (!b->quiet) { |
30570 | printf("Writing %s.\n" , mefilename); |
30571 | } |
30572 | outfile = fopen(mefilename, "w" ); |
30573 | if (outfile == (FILE *) NULL) { |
30574 | printf("File I/O Error: Cannot create file %s.\n" , mefilename); |
30575 | return; |
30576 | } |
30577 | |
30578 | fprintf(outfile, "MeshVersionFormatted 1\n" ); |
30579 | fprintf(outfile, "\n" ); |
30580 | fprintf(outfile, "Dimension\n" ); |
30581 | fprintf(outfile, "3\n" ); |
30582 | fprintf(outfile, "\n" ); |
30583 | |
30584 | fprintf(outfile, "\n# Set of mesh vertices\n" ); |
30585 | fprintf(outfile, "Vertices\n" ); |
30586 | fprintf(outfile, "%ld\n" , points->items); |
30587 | |
30588 | points->traversalinit(); |
30589 | ptloop = pointtraverse(); |
30590 | pointnumber = 1; // Medit need start number form 1. |
30591 | while (ptloop != (point) NULL) { |
30592 | // Point coordinates. |
30593 | fprintf(outfile, "%.17g %.17g %.17g" , ptloop[0], ptloop[1], ptloop[2]); |
30594 | if (in->numberofpointattributes > 0) { |
30595 | // Write an attribute, ignore others if more than one. |
30596 | fprintf(outfile, " %.17g\n" , ptloop[3]); |
30597 | } else { |
30598 | fprintf(outfile, " 0\n" ); |
30599 | } |
30600 | setpointmark(ptloop, pointnumber); |
30601 | ptloop = pointtraverse(); |
30602 | pointnumber++; |
30603 | } |
30604 | |
30605 | // Compute the number of faces. |
30606 | ntets = tetrahedrons->items - hullsize; |
30607 | faces = (ntets * 4l + hullsize) / 2l; |
30608 | |
30609 | fprintf(outfile, "\n# Set of Triangles\n" ); |
30610 | fprintf(outfile, "Triangles\n" ); |
30611 | fprintf(outfile, "%ld\n" , faces); |
30612 | |
30613 | tetrahedrons->traversalinit(); |
30614 | tface.tet = tetrahedrontraverse(); |
30615 | while (tface.tet != (tetrahedron *) NULL) { |
30616 | for (tface.ver = 0; tface.ver < 4; tface.ver ++) { |
30617 | fsym(tface, tsymface); |
30618 | if (ishulltet(tsymface) || |
30619 | (elemindex(tface.tet) < elemindex(tsymface.tet))) { |
30620 | p1 = org (tface); |
30621 | p2 = dest(tface); |
30622 | p3 = apex(tface); |
30623 | fprintf(outfile, "%5d %5d %5d" , |
30624 | pointmark(p1), pointmark(p2), pointmark(p3)); |
30625 | // Check if it is a subface. |
30626 | tspivot(tface, checkmark); |
30627 | if (checkmark.sh == NULL) { |
30628 | marker = 0; // It is an inner face. It's marker is 0. |
30629 | } else { |
30630 | if (in->facetmarkerlist) { |
30631 | // The facet marker is given, get it. |
30632 | faceid = shellmark(checkmark) - 1; |
30633 | marker = in->facetmarkerlist[faceid]; |
30634 | } else { |
30635 | marker = 1; // The default marker for subface is 1. |
30636 | } |
30637 | } |
30638 | fprintf(outfile, " %d\n" , marker); |
30639 | } |
30640 | } |
30641 | tface.tet = tetrahedrontraverse(); |
30642 | } |
30643 | |
30644 | fprintf(outfile, "\n# Set of Tetrahedra\n" ); |
30645 | fprintf(outfile, "Tetrahedra\n" ); |
30646 | fprintf(outfile, "%ld\n" , ntets); |
30647 | |
30648 | tetrahedrons->traversalinit(); |
30649 | tetptr = tetrahedrontraverse(); |
30650 | while (tetptr != (tetrahedron *) NULL) { |
30651 | if (!b->reversetetori) { |
30652 | p1 = (point) tetptr[4]; |
30653 | p2 = (point) tetptr[5]; |
30654 | } else { |
30655 | p1 = (point) tetptr[5]; |
30656 | p2 = (point) tetptr[4]; |
30657 | } |
30658 | p3 = (point) tetptr[6]; |
30659 | p4 = (point) tetptr[7]; |
30660 | fprintf(outfile, "%5d %5d %5d %5d" , |
30661 | pointmark(p1), pointmark(p2), pointmark(p3), pointmark(p4)); |
30662 | if (numelemattrib > 0) { |
30663 | fprintf(outfile, " %.17g" , elemattribute(tetptr, 0)); |
30664 | } else { |
30665 | fprintf(outfile, " 0" ); |
30666 | } |
30667 | fprintf(outfile, "\n" ); |
30668 | tetptr = tetrahedrontraverse(); |
30669 | } |
30670 | |
30671 | fprintf(outfile, "\nCorners\n" ); |
30672 | fprintf(outfile, "%d\n" , in->numberofpoints); |
30673 | |
30674 | for (i = 0; i < in->numberofpoints; i++) { |
30675 | fprintf(outfile, "%4d\n" , i + 1); |
30676 | } |
30677 | |
30678 | if (b->plc || b->refine) { |
30679 | fprintf(outfile, "\nEdges\n" ); |
30680 | fprintf(outfile, "%ld\n" , subsegs->items); |
30681 | |
30682 | subsegs->traversalinit(); |
30683 | segloop.sh = shellfacetraverse(subsegs); |
30684 | while (segloop.sh != (shellface *) NULL) { |
30685 | p1 = sorg(segloop); |
30686 | p2 = sdest(segloop); |
30687 | fprintf(outfile, "%5d %5d" , pointmark(p1), pointmark(p2)); |
30688 | marker = shellmark(segloop); |
30689 | fprintf(outfile, " %d\n" , marker); |
30690 | segloop.sh = shellfacetraverse(subsegs); |
30691 | } |
30692 | } |
30693 | |
30694 | fprintf(outfile, "\nEnd\n" ); |
30695 | fclose(outfile); |
30696 | } |
30697 | |
30698 | |
30699 | |
30700 | /////////////////////////////////////////////////////////////////////////////// |
30701 | // // |
30702 | // outmesh2vtk() Save mesh to file in VTK Legacy format. // |
30703 | // // |
30704 | // This function was contributed by Bryn Llyod from ETH, 2007. // |
30705 | // // |
30706 | /////////////////////////////////////////////////////////////////////////////// |
30707 | |
30708 | void tetgenmesh::outmesh2vtk(char* ofilename) |
30709 | { |
30710 | FILE *outfile; |
30711 | char vtkfilename[FILENAMESIZE]; |
30712 | point pointloop, p1, p2, p3, p4; |
30713 | tetrahedron* tptr; |
30714 | double x, y, z; |
30715 | int n1, n2, n3, n4; |
30716 | int nnodes = 4; |
30717 | int celltype = 10; |
30718 | |
30719 | if (b->order == 2) { |
30720 | printf(" Write VTK not implemented for order 2 elements \n" ); |
30721 | return; |
30722 | } |
30723 | |
30724 | int NEL = tetrahedrons->items - hullsize; |
30725 | int NN = points->items; |
30726 | |
30727 | if (ofilename != (char *) NULL && ofilename[0] != '\0') { |
30728 | strcpy(vtkfilename, ofilename); |
30729 | } else if (b->outfilename[0] != '\0') { |
30730 | strcpy(vtkfilename, b->outfilename); |
30731 | } else { |
30732 | strcpy(vtkfilename, "unnamed" ); |
30733 | } |
30734 | strcat(vtkfilename, ".vtk" ); |
30735 | |
30736 | if (!b->quiet) { |
30737 | printf("Writing %s.\n" , vtkfilename); |
30738 | } |
30739 | outfile = fopen(vtkfilename, "w" ); |
30740 | if (outfile == (FILE *) NULL) { |
30741 | printf("File I/O Error: Cannot create file %s.\n" , vtkfilename); |
30742 | return; |
30743 | } |
30744 | |
30745 | //always write big endian |
30746 | //bool ImALittleEndian = !testIsBigEndian(); |
30747 | |
30748 | fprintf(outfile, "# vtk DataFile Version 2.0\n" ); |
30749 | fprintf(outfile, "Unstructured Grid\n" ); |
30750 | fprintf(outfile, "ASCII\n" ); // BINARY |
30751 | fprintf(outfile, "DATASET UNSTRUCTURED_GRID\n" ); |
30752 | fprintf(outfile, "POINTS %d double\n" , NN); |
30753 | |
30754 | points->traversalinit(); |
30755 | pointloop = pointtraverse(); |
30756 | for(int id=0; id<NN && pointloop != (point) NULL; id++){ |
30757 | x = pointloop[0]; |
30758 | y = pointloop[1]; |
30759 | z = pointloop[2]; |
30760 | fprintf(outfile, "%.17g %.17g %.17g\n" , x, y, z); |
30761 | pointloop = pointtraverse(); |
30762 | } |
30763 | fprintf(outfile, "\n" ); |
30764 | |
30765 | fprintf(outfile, "CELLS %d %d\n" , NEL, NEL*(4+1)); |
30766 | //NEL rows, each has 1 type id + 4 node id's |
30767 | |
30768 | tetrahedrons->traversalinit(); |
30769 | tptr = tetrahedrontraverse(); |
30770 | //elementnumber = firstindex; // in->firstnumber; |
30771 | while (tptr != (tetrahedron *) NULL) { |
30772 | if (!b->reversetetori) { |
30773 | p1 = (point) tptr[4]; |
30774 | p2 = (point) tptr[5]; |
30775 | } else { |
30776 | p1 = (point) tptr[5]; |
30777 | p2 = (point) tptr[4]; |
30778 | } |
30779 | p3 = (point) tptr[6]; |
30780 | p4 = (point) tptr[7]; |
30781 | n1 = pointmark(p1) - in->firstnumber; |
30782 | n2 = pointmark(p2) - in->firstnumber; |
30783 | n3 = pointmark(p3) - in->firstnumber; |
30784 | n4 = pointmark(p4) - in->firstnumber; |
30785 | fprintf(outfile, "%d %4d %4d %4d %4d\n" , nnodes, n1, n2, n3, n4); |
30786 | tptr = tetrahedrontraverse(); |
30787 | } |
30788 | fprintf(outfile, "\n" ); |
30789 | |
30790 | fprintf(outfile, "CELL_TYPES %d\n" , NEL); |
30791 | for(int tid=0; tid<NEL; tid++){ |
30792 | fprintf(outfile, "%d\n" , celltype); |
30793 | } |
30794 | fprintf(outfile, "\n" ); |
30795 | |
30796 | if (numelemattrib > 0) { |
30797 | // Output tetrahedra region attributes. |
30798 | fprintf(outfile, "CELL_DATA %d\n" , NEL); |
30799 | fprintf(outfile, "SCALARS cell_scalars int 1\n" ); |
30800 | fprintf(outfile, "LOOKUP_TABLE default\n" ); |
30801 | tetrahedrons->traversalinit(); |
30802 | tptr = tetrahedrontraverse(); |
30803 | while (tptr != (tetrahedron *) NULL) { |
30804 | fprintf(outfile, "%d\n" , (int) elemattribute(tptr, numelemattrib - 1)); |
30805 | tptr = tetrahedrontraverse(); |
30806 | } |
30807 | fprintf(outfile, "\n" ); |
30808 | } |
30809 | |
30810 | fclose(outfile); |
30811 | } |
30812 | |
30813 | //// //// |
30814 | //// //// |
30815 | //// output_cxx /////////////////////////////////////////////////////////////// |
30816 | |
30817 | //// main_cxx ///////////////////////////////////////////////////////////////// |
30818 | //// //// |
30819 | //// //// |
30820 | |
30821 | /////////////////////////////////////////////////////////////////////////////// |
30822 | // // |
30823 | // tetrahedralize() The interface for users using TetGen library to // |
30824 | // generate tetrahedral meshes with all features. // |
30825 | // // |
30826 | // The sequence is roughly as follows. Many of these steps can be skipped, // |
30827 | // depending on the command line switches. // |
30828 | // // |
30829 | // - Initialize constants and parse the command line. // |
30830 | // - Read the vertices from a file and either // |
30831 | // - tetrahedralize them (no -r), or // |
30832 | // - read an old mesh from files and reconstruct it (-r). // |
30833 | // - Insert the boundary segments and facets (-p or -Y). // |
30834 | // - Read the holes (-p), regional attributes (-pA), and regional volume // |
30835 | // constraints (-pa). Carve the holes and concavities, and spread the // |
30836 | // regional attributes and volume constraints. // |
30837 | // - Enforce the constraints on minimum quality bound (-q) and maximum // |
30838 | // volume (-a), and a mesh size function (-m). // |
30839 | // - Optimize the mesh wrt. specified quality measures (-O and -o). // |
30840 | // - Write the output files and print the statistics. // |
30841 | // - Check the consistency of the mesh (-C). // |
30842 | // // |
30843 | /////////////////////////////////////////////////////////////////////////////// |
30844 | |
30845 | void tetrahedralize(tetgenbehavior *b, tetgenio *in, tetgenio *out, |
30846 | tetgenio *addin, tetgenio *bgmin) |
30847 | { |
30848 | tetgenmesh m; |
30849 | clock_t tv[12], ts[5]; // Timing informations (defined in time.h) |
30850 | REAL cps = (REAL) CLOCKS_PER_SEC; |
30851 | |
30852 | tv[0] = clock(); |
30853 | |
30854 | m.b = b; |
30855 | m.in = in; |
30856 | m.addin = addin; |
30857 | |
30858 | if (b->metric && bgmin && (bgmin->numberofpoints > 0)) { |
30859 | m.bgm = new tetgenmesh(); // Create an empty background mesh. |
30860 | m.bgm->b = b; |
30861 | m.bgm->in = bgmin; |
30862 | } |
30863 | |
30864 | m.initializepools(); |
30865 | m.transfernodes(); |
30866 | |
30867 | exactinit(b->verbose, b->noexact, b->nostaticfilter, |
30868 | m.xmax - m.xmin, m.ymax - m.ymin, m.zmax - m.zmin); |
30869 | |
30870 | tv[1] = clock(); |
30871 | |
30872 | if (b->refine) { // -r |
30873 | m.reconstructmesh(); |
30874 | } else { // -p |
30875 | m.incrementaldelaunay(ts[0]); |
30876 | } |
30877 | |
30878 | tv[2] = clock(); |
30879 | |
30880 | if (!b->quiet) { |
30881 | if (b->refine) { |
30882 | printf("Mesh reconstruction seconds: %g\n" , ((REAL)(tv[2]-tv[1])) / cps); |
30883 | } else { |
30884 | printf("Delaunay seconds: %g\n" , ((REAL)(tv[2]-tv[1])) / cps); |
30885 | if (b->verbose) { |
30886 | printf(" Point sorting seconds: %g\n" , ((REAL)(ts[0]-tv[1])) / cps); |
30887 | } |
30888 | } |
30889 | } |
30890 | |
30891 | if (b->plc && !b->refine) { // -p |
30892 | m.meshsurface(); |
30893 | |
30894 | ts[0] = clock(); |
30895 | |
30896 | if (!b->quiet) { |
30897 | printf("Surface mesh seconds: %g\n" , ((REAL)(ts[0]-tv[2])) / cps); |
30898 | } |
30899 | |
30900 | if (b->diagnose) { // -d |
30901 | m.detectinterfaces(); |
30902 | |
30903 | ts[1] = clock(); |
30904 | |
30905 | if (!b->quiet) { |
30906 | printf("Self-intersection seconds: %g\n" , ((REAL)(ts[1]-ts[0])) / cps); |
30907 | } |
30908 | |
30909 | // Only output when self-intersecting faces exist. |
30910 | if (m.subfaces->items > 0l) { |
30911 | m.outnodes(out); |
30912 | m.outsubfaces(out); |
30913 | } |
30914 | |
30915 | return; |
30916 | } |
30917 | } |
30918 | |
30919 | tv[3] = clock(); |
30920 | |
30921 | if ((b->metric) && (m.bgm != NULL)) { // -m |
30922 | m.bgm->initializepools(); |
30923 | m.bgm->transfernodes(); |
30924 | m.bgm->reconstructmesh(); |
30925 | |
30926 | ts[0] = clock(); |
30927 | |
30928 | if (!b->quiet) { |
30929 | printf("Background mesh reconstruct seconds: %g\n" , |
30930 | ((REAL)(ts[0] - tv[3])) / cps); |
30931 | } |
30932 | |
30933 | if (b->metric) { // -m |
30934 | m.interpolatemeshsize(); |
30935 | |
30936 | ts[1] = clock(); |
30937 | |
30938 | if (!b->quiet) { |
30939 | printf("Size interpolating seconds: %g\n" ,((REAL)(ts[1]-ts[0])) / cps); |
30940 | } |
30941 | } |
30942 | } |
30943 | |
30944 | tv[4] = clock(); |
30945 | |
30946 | if (b->plc && !b->refine) { // -p |
30947 | if (b->nobisect) { // -Y |
30948 | m.recoverboundary(ts[0]); |
30949 | } else { |
30950 | m.constraineddelaunay(ts[0]); |
30951 | } |
30952 | |
30953 | ts[1] = clock(); |
30954 | |
30955 | if (!b->quiet) { |
30956 | if (b->nobisect) { |
30957 | printf("Boundary recovery " ); |
30958 | } else { |
30959 | printf("Constrained Delaunay " ); |
30960 | } |
30961 | printf("seconds: %g\n" , ((REAL)(ts[1] - tv[4])) / cps); |
30962 | if (b->verbose) { |
30963 | printf(" Segment recovery seconds: %g\n" ,((REAL)(ts[0]-tv[4]))/ cps); |
30964 | printf(" Facet recovery seconds: %g\n" , ((REAL)(ts[1]-ts[0])) / cps); |
30965 | } |
30966 | } |
30967 | |
30968 | m.carveholes(); |
30969 | |
30970 | ts[2] = clock(); |
30971 | |
30972 | if (!b->quiet) { |
30973 | printf("Exterior tets removal seconds: %g\n" ,((REAL)(ts[2]-ts[1]))/cps); |
30974 | } |
30975 | |
30976 | if (b->nobisect) { // -Y |
30977 | if (m.subvertstack->objects > 0l) { |
30978 | m.suppresssteinerpoints(); |
30979 | |
30980 | ts[3] = clock(); |
30981 | |
30982 | if (!b->quiet) { |
30983 | printf("Steiner suppression seconds: %g\n" , |
30984 | ((REAL)(ts[3]-ts[2]))/cps); |
30985 | } |
30986 | } |
30987 | } |
30988 | } |
30989 | |
30990 | tv[5] = clock(); |
30991 | |
30992 | if (b->coarsen) { // -R |
30993 | m.meshcoarsening(); |
30994 | } |
30995 | |
30996 | tv[6] = clock(); |
30997 | |
30998 | if (!b->quiet) { |
30999 | if (b->coarsen) { |
31000 | printf("Mesh coarsening seconds: %g\n" , ((REAL)(tv[6] - tv[5])) / cps); |
31001 | } |
31002 | } |
31003 | |
31004 | if ((b->plc && b->nobisect) || b->coarsen) { |
31005 | m.recoverdelaunay(); |
31006 | } |
31007 | |
31008 | tv[7] = clock(); |
31009 | |
31010 | if (!b->quiet) { |
31011 | if ((b->plc && b->nobisect) || b->coarsen) { |
31012 | printf("Delaunay recovery seconds: %g\n" , ((REAL)(tv[7] - tv[6]))/cps); |
31013 | } |
31014 | } |
31015 | |
31016 | if ((b->plc || b->refine) && b->insertaddpoints) { // -i |
31017 | if ((addin != NULL) && (addin->numberofpoints > 0)) { |
31018 | m.insertconstrainedpoints(addin); |
31019 | } |
31020 | } |
31021 | |
31022 | tv[8] = clock(); |
31023 | |
31024 | if (!b->quiet) { |
31025 | if ((b->plc || b->refine) && b->insertaddpoints) { // -i |
31026 | if ((addin != NULL) && (addin->numberofpoints > 0)) { |
31027 | printf("Constrained points seconds: %g\n" , ((REAL)(tv[8]-tv[7]))/cps); |
31028 | } |
31029 | } |
31030 | } |
31031 | |
31032 | if (b->quality) { |
31033 | m.delaunayrefinement(); |
31034 | } |
31035 | |
31036 | tv[9] = clock(); |
31037 | |
31038 | if (!b->quiet) { |
31039 | if (b->quality) { |
31040 | printf("Refinement seconds: %g\n" , ((REAL)(tv[9] - tv[8])) / cps); |
31041 | } |
31042 | } |
31043 | |
31044 | if ((b->plc || b->refine) && (b->optlevel > 0)) { |
31045 | m.optimizemesh(); |
31046 | } |
31047 | |
31048 | tv[10] = clock(); |
31049 | |
31050 | if (!b->quiet) { |
31051 | if ((b->plc || b->refine) && (b->optlevel > 0)) { |
31052 | printf("Optimization seconds: %g\n" , ((REAL)(tv[10] - tv[9])) / cps); |
31053 | } |
31054 | } |
31055 | |
31056 | if (!b->nojettison && ((m.dupverts > 0) || (m.unuverts > 0) |
31057 | || (b->refine && (in->numberofcorners == 10)))) { |
31058 | m.jettisonnodes(); |
31059 | } |
31060 | |
31061 | if ((b->order == 2) && !b->convex) { |
31062 | m.highorder(); |
31063 | } |
31064 | |
31065 | if (!b->quiet) { |
31066 | printf("\n" ); |
31067 | } |
31068 | |
31069 | if (out != (tetgenio *) NULL) { |
31070 | out->firstnumber = in->firstnumber; |
31071 | out->mesh_dim = in->mesh_dim; |
31072 | } |
31073 | |
31074 | if (b->nonodewritten || b->noiterationnum) { |
31075 | if (!b->quiet) { |
31076 | printf("NOT writing a .node file.\n" ); |
31077 | } |
31078 | } else { |
31079 | m.outnodes(out); |
31080 | } |
31081 | |
31082 | if (b->noelewritten) { |
31083 | if (!b->quiet) { |
31084 | printf("NOT writing an .ele file.\n" ); |
31085 | } |
31086 | } else { |
31087 | if (m.tetrahedrons->items > 0l) { |
31088 | m.outelements(out); |
31089 | } |
31090 | } |
31091 | |
31092 | if (b->nofacewritten) { |
31093 | if (!b->quiet) { |
31094 | printf("NOT writing an .face file.\n" ); |
31095 | } |
31096 | } else { |
31097 | if (b->facesout) { |
31098 | if (m.tetrahedrons->items > 0l) { |
31099 | m.outfaces(out); // Output all faces. |
31100 | } |
31101 | } else { |
31102 | if (b->plc || b->refine) { |
31103 | if (m.subfaces->items > 0l) { |
31104 | m.outsubfaces(out); // Output boundary faces. |
31105 | } |
31106 | } else { |
31107 | if (m.tetrahedrons->items > 0l) { |
31108 | m.outhullfaces(out); // Output convex hull faces. |
31109 | } |
31110 | } |
31111 | } |
31112 | } |
31113 | |
31114 | |
31115 | if (b->nofacewritten) { |
31116 | if (!b->quiet) { |
31117 | printf("NOT writing an .edge file.\n" ); |
31118 | } |
31119 | } else { |
31120 | if (b->edgesout) { // -e |
31121 | m.outedges(out); // output all mesh edges. |
31122 | } else { |
31123 | if (b->plc || b->refine) { |
31124 | m.outsubsegments(out); // output subsegments. |
31125 | } |
31126 | } |
31127 | } |
31128 | |
31129 | if ((b->plc || b->refine) && b->metric) { // -m |
31130 | m.outmetrics(out); |
31131 | } |
31132 | |
31133 | if (!out && b->plc && |
31134 | ((b->object == tetgenbehavior::OFF) || |
31135 | (b->object == tetgenbehavior::PLY) || |
31136 | (b->object == tetgenbehavior::STL))) { |
31137 | m.outsmesh(b->outfilename); |
31138 | } |
31139 | |
31140 | if (!out && b->meditview) { |
31141 | m.outmesh2medit(b->outfilename); |
31142 | } |
31143 | |
31144 | |
31145 | if (!out && b->vtkview) { |
31146 | m.outmesh2vtk(b->outfilename); |
31147 | } |
31148 | |
31149 | if (b->neighout) { |
31150 | m.outneighbors(out); |
31151 | } |
31152 | |
31153 | if ((!(b->plc || b->refine)) && b->voroout) { |
31154 | m.outvoronoi(out); |
31155 | } |
31156 | |
31157 | |
31158 | tv[11] = clock(); |
31159 | |
31160 | if (!b->quiet) { |
31161 | printf("\nOutput seconds: %g\n" , ((REAL)(tv[11] - tv[10])) / cps); |
31162 | printf("Total running seconds: %g\n" , ((REAL)(tv[11] - tv[0])) / cps); |
31163 | } |
31164 | |
31165 | if (b->docheck) { |
31166 | m.checkmesh(0); |
31167 | if (b->plc || b->refine) { |
31168 | m.checkshells(); |
31169 | m.checksegments(); |
31170 | } |
31171 | if (b->docheck > 1) { |
31172 | m.checkdelaunay(); |
31173 | } |
31174 | } |
31175 | |
31176 | if (!b->quiet) { |
31177 | m.statistics(); |
31178 | } |
31179 | } |
31180 | |
31181 | #ifndef TETLIBRARY |
31182 | |
31183 | /////////////////////////////////////////////////////////////////////////////// |
31184 | // // |
31185 | // main() The command line interface of TetGen. // |
31186 | // // |
31187 | /////////////////////////////////////////////////////////////////////////////// |
31188 | |
31189 | int main(int argc, char *argv[]) |
31190 | |
31191 | #else // with TETLIBRARY |
31192 | |
31193 | /////////////////////////////////////////////////////////////////////////////// |
31194 | // // |
31195 | // tetrahedralize() The library interface of TetGen. // |
31196 | // // |
31197 | /////////////////////////////////////////////////////////////////////////////// |
31198 | |
31199 | void tetrahedralize(char *switches, tetgenio *in, tetgenio *out, |
31200 | tetgenio *addin, tetgenio *bgmin) |
31201 | |
31202 | #endif // not TETLIBRARY |
31203 | |
31204 | { |
31205 | tetgenbehavior b; |
31206 | |
31207 | #ifndef TETLIBRARY |
31208 | |
31209 | tetgenio in, addin, bgmin; |
31210 | |
31211 | if (!b.parse_commandline(argc, argv)) { |
31212 | terminatetetgen(NULL, 10); |
31213 | } |
31214 | |
31215 | // Read input files. |
31216 | if (b.refine) { // -r |
31217 | if (!in.load_tetmesh(b.infilename, (int) b.object)) { |
31218 | terminatetetgen(NULL, 10); |
31219 | } |
31220 | } else { // -p |
31221 | if (!in.load_plc(b.infilename, (int) b.object)) { |
31222 | terminatetetgen(NULL, 10); |
31223 | } |
31224 | } |
31225 | if (b.insertaddpoints) { // -i |
31226 | // Try to read a .a.node file. |
31227 | addin.load_node(b.addinfilename); |
31228 | } |
31229 | if (b.metric) { // -m |
31230 | // Try to read a background mesh in files .b.node, .b.ele. |
31231 | bgmin.load_tetmesh(b.bgmeshfilename, (int) b.object); |
31232 | } |
31233 | |
31234 | tetrahedralize(&b, &in, NULL, &addin, &bgmin); |
31235 | |
31236 | return 0; |
31237 | |
31238 | #else // with TETLIBRARY |
31239 | |
31240 | if (!b.parse_commandline(switches)) { |
31241 | terminatetetgen(NULL, 10); |
31242 | } |
31243 | tetrahedralize(&b, in, out, addin, bgmin); |
31244 | |
31245 | #endif // not TETLIBRARY |
31246 | } |
31247 | |
31248 | //// //// |
31249 | //// //// |
31250 | //// main_cxx ///////////////////////////////////////////////////////////////// |
31251 | |
31252 | #ifdef _MSC_VER |
31253 | # pragma warning(pop) |
31254 | #endif |
31255 | |