| 1 | /* Copyright (C) 2016 Povilas Kanapickas <povilas@radix.lt> |
| 2 | |
| 3 | Distributed under the Boost Software License, Version 1.0. |
| 4 | (See accompanying file LICENSE_1_0.txt or copy at |
| 5 | http://www.boost.org/LICENSE_1_0.txt) |
| 6 | */ |
| 7 | |
| 8 | #ifndef LIBSIMDPP_SIMDPP_DETAIL_INSN_I_REDUCE_MUL_H |
| 9 | #define LIBSIMDPP_SIMDPP_DETAIL_INSN_I_REDUCE_MUL_H |
| 10 | |
| 11 | #ifndef LIBSIMDPP_SIMD_H |
| 12 | #error "This file must be included through simd.h" |
| 13 | #endif |
| 14 | |
| 15 | #include <simdpp/types.h> |
| 16 | #include <simdpp/core/extract.h> |
| 17 | #include <simdpp/core/f_mul.h> |
| 18 | #include <simdpp/core/i_mul.h> |
| 19 | #include <simdpp/core/move_l.h> |
| 20 | #include <simdpp/core/make_uint.h> |
| 21 | #include <simdpp/core/to_int32.h> |
| 22 | #include <simdpp/detail/mem_block.h> |
| 23 | |
| 24 | namespace simdpp { |
| 25 | namespace SIMDPP_ARCH_NAMESPACE { |
| 26 | |
| 27 | // forward declarations |
| 28 | template<unsigned N, class E> SIMDPP_INL |
| 29 | int32_t reduce_mul(const int16<N,E>& a); |
| 30 | template<unsigned N, class E> SIMDPP_INL |
| 31 | uint32_t reduce_mul(const uint16<N,E>& a); |
| 32 | template<unsigned N, class E> SIMDPP_INL |
| 33 | int32_t reduce_mul(const int32<N,E>& a); |
| 34 | template<unsigned N, class E> SIMDPP_INL |
| 35 | uint32_t reduce_mul(const uint32<N,E>& a); |
| 36 | |
| 37 | namespace detail { |
| 38 | namespace insn { |
| 39 | |
| 40 | static SIMDPP_INL |
| 41 | uint32_t i_reduce_mul(const uint16x8& a) |
| 42 | { |
| 43 | #if SIMDPP_USE_NULL |
| 44 | uint32_t r = a.el(0); |
| 45 | for (unsigned i = 1; i < a.length; i++) { |
| 46 | r *= a.el(i); |
| 47 | } |
| 48 | return r; |
| 49 | #elif SIMDPP_USE_SSE2 |
| 50 | uint32x4 ca = (uint32x4)a; |
| 51 | // shift data zeroing out bits |
| 52 | uint32x4 al = shift_r<16>(ca); |
| 53 | uint32x4 ah = shift_l<16>(ca); |
| 54 | // due to zeroing bits in previous steps, the result can be OR'ed |
| 55 | uint32x4 lo = _mm_mullo_epi16(ca.native(), al.native()); |
| 56 | uint32x4 hi = _mm_mulhi_epu16(ca.native(), ah.native()); |
| 57 | uint32x4 r = bit_or(lo, hi); |
| 58 | r = _mm_mul_epu32(r.native(), move4_l<1>(r).eval().native()); |
| 59 | r = _mm_mul_epu32(r.native(), move4_l<2>(r).eval().native()); |
| 60 | return extract<0>(r); |
| 61 | #elif SIMDPP_USE_NEON |
| 62 | uint32x4 r = vmull_u16(vget_low_u16(a.native()), |
| 63 | vget_high_u16(a.native())); |
| 64 | r = mul_lo(r, move4_l<2>(r)); |
| 65 | r = mul_lo(r, move4_l<1>(r)); |
| 66 | return extract<0>(r); |
| 67 | #elif SIMDPP_USE_ALTIVEC |
| 68 | uint16x8 a2 = move8_l<1>(a); |
| 69 | uint32x4 r = vec_mule(a2.native(), a.native()); |
| 70 | mem_block<uint32x4> b = r; |
| 71 | return b[0] * b[1] * b[2] * b[3]; |
| 72 | #elif SIMDPP_USE_MSA |
| 73 | uint32<8> a32 = to_uint32(a); |
| 74 | uint32<4> r = mul_lo(a32.vec(0), a32.vec(1)); |
| 75 | r = mul_lo(r, move4_l<2>(r)); |
| 76 | r = mul_lo(r, move4_l<1>(r)); |
| 77 | return extract<0>(r); |
| 78 | #endif |
| 79 | } |
| 80 | |
| 81 | #if SIMDPP_USE_AVX2 |
| 82 | static SIMDPP_INL |
| 83 | uint32_t i_reduce_mul(const uint16x16& a) |
| 84 | { |
| 85 | uint32x8 ca = (uint32x8) a; |
| 86 | // shift data zeroing out bits |
| 87 | uint32x8 al = shift_r<16>(ca); |
| 88 | uint32x8 ah = shift_l<16>(ca); |
| 89 | // due to zoreing bits in previous steps, the result can be OR'ed |
| 90 | uint32x8 lo = _mm256_mullo_epi16(ca.native(), al.native()); |
| 91 | uint32x8 hi = _mm256_mulhi_epu16(ca.native(), ah.native()); |
| 92 | uint32x8 r = bit_or(lo, hi); |
| 93 | r = _mm256_mul_epu32(r.native(), move4_l<1>(r).eval().native()); |
| 94 | uint32x4 r2 = _mm_mul_epu32(detail::extract128<0>(r).native(), |
| 95 | detail::extract128<1>(r).native()); |
| 96 | r2 = _mm_mul_epu32(r2.native(), move4_l<2>(r2).eval().native()); |
| 97 | return extract<0>(r2); |
| 98 | } |
| 99 | #endif |
| 100 | |
| 101 | #if SIMDPP_USE_AVX512BW |
| 102 | SIMDPP_INL uint32_t i_reduce_mul(const uint16<32>& a) |
| 103 | { |
| 104 | uint32<16> ca = (uint32<16>) a; |
| 105 | // shift data zeroing out bits |
| 106 | uint32<16> al = shift_r<16>(ca); |
| 107 | uint32<16> ah = shift_l<16>(ca); |
| 108 | // due to zeroing bits in previous steps, the result can be OR'ed |
| 109 | uint32<16> lo = _mm512_mullo_epi16(ca.native(), al.native()); |
| 110 | uint32<16> hi = _mm512_mulhi_epu16(ca.native(), ah.native()); |
| 111 | uint32<16> r = bit_or(lo, hi); |
| 112 | return reduce_mul(r); |
| 113 | } |
| 114 | #endif |
| 115 | |
| 116 | template<unsigned N> |
| 117 | SIMDPP_INL uint32_t i_reduce_mul(const uint16<N>& a) |
| 118 | { |
| 119 | #if SIMDPP_USE_NULL |
| 120 | uint32_t r = 1; |
| 121 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 122 | for (unsigned i = 0; i < a.base_length; i++) { |
| 123 | r *= a.vec(j).el(i); |
| 124 | } |
| 125 | } |
| 126 | return r; |
| 127 | #elif SIMDPP_USE_AVX512BW |
| 128 | uint32<16> prod = make_uint(1); |
| 129 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 130 | uint32<16> ca = (uint32<16>) a.vec(j); |
| 131 | // shift data zeroing out bits |
| 132 | uint32<16> al = shift_r<16>(ca); |
| 133 | uint32<16> ah = shift_l<16>(ca); |
| 134 | // due to zoreing bits in previous steps, the result can be OR'ed |
| 135 | uint32<16> lo = _mm512_mullo_epi16(ca.native(), al.native()); |
| 136 | uint32<16> hi = _mm512_mulhi_epu16(ca.native(), ah.native()); |
| 137 | uint32<16> iprod = bit_or(lo, hi); |
| 138 | iprod = _mm512_mul_epu32(iprod.native(), move4_l<1>(iprod).eval().native()); |
| 139 | prod = _mm512_mul_epu32(prod.native(), iprod.native()); |
| 140 | } |
| 141 | return reduce_mul(prod); |
| 142 | #elif SIMDPP_USE_AVX2 |
| 143 | uint32x8 prod = make_uint(1); |
| 144 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 145 | uint32x8 ca = (uint32x8) a.vec(j); |
| 146 | // shift data zeroing out bits |
| 147 | uint32x8 al = shift_r<16>(ca); |
| 148 | uint32x8 ah = shift_l<16>(ca); |
| 149 | // due to zoreing bits in previous steps, the result can be OR'ed |
| 150 | uint32x8 lo = _mm256_mullo_epi16(ca.native(), al.native()); |
| 151 | uint32x8 hi = _mm256_mulhi_epu16(ca.native(), ah.native()); |
| 152 | uint32x8 iprod = bit_or(lo, hi); |
| 153 | iprod = _mm256_mul_epu32(iprod.native(), move4_l<1>(iprod).eval().native()); |
| 154 | prod = _mm256_mul_epu32(prod.native(), iprod.native()); |
| 155 | } |
| 156 | uint32x4 r2 = _mm_mul_epu32(detail::extract128<0>(prod).native(), |
| 157 | detail::extract128<1>(prod).native()); |
| 158 | r2 = _mm_mul_epu32(r2.native(), move4_l<2>(r2).eval().native()); |
| 159 | return extract<0>(r2); |
| 160 | #elif SIMDPP_USE_SSE2 |
| 161 | uint32x4 prod = make_uint(1); |
| 162 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 163 | uint32x4 ca = (uint32x4) a.vec(j); |
| 164 | // shift data zeroing out bits |
| 165 | uint32x4 al = shift_r<16>(ca); |
| 166 | uint32x4 ah = shift_l<16>(ca); |
| 167 | // due to zoreing bits in previous steps, the result can be OR'ed |
| 168 | uint32x4 lo = _mm_mullo_epi16(ca.native(), al.native()); |
| 169 | uint32x4 hi = _mm_mulhi_epu16(ca.native(), ah.native()); |
| 170 | uint32x4 r = bit_or(lo, hi); |
| 171 | r = _mm_mul_epu32(r.native(), move4_l<1>(r).eval().native()); |
| 172 | prod = _mm_mul_epu32(prod.native(), r.native()); |
| 173 | } |
| 174 | prod = _mm_mul_epu32(prod.native(), move4_l<2>(prod).eval().native()); |
| 175 | return extract<0>(prod); |
| 176 | #elif SIMDPP_USE_NEON |
| 177 | uint32x4 prod = make_uint(1); |
| 178 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 179 | uint32x4 r = vmull_u16(vget_low_u16(a.vec(j).native()), |
| 180 | vget_high_u16(a.vec(j).native())); |
| 181 | prod = mul_lo(prod, r); |
| 182 | } |
| 183 | prod = mul_lo(prod, move4_l<2>(prod)); |
| 184 | prod = mul_lo(prod, move4_l<1>(prod)); |
| 185 | return extract<0>(prod); |
| 186 | #elif SIMDPP_USE_ALTIVEC |
| 187 | uint32_t r = i_reduce_mul(a.vec(0)); |
| 188 | for (unsigned j = 1; j < a.vec_length; ++j) { |
| 189 | r *= i_reduce_mul(a.vec(j)); |
| 190 | } |
| 191 | return r; |
| 192 | #elif SIMDPP_USE_MSA |
| 193 | uint32x4 prod = make_uint(1); |
| 194 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 195 | uint32<8> a32 = to_uint32(a.vec(j)); |
| 196 | prod = mul_lo(prod, mul_lo(a32.vec(0), a32.vec(1))); |
| 197 | } |
| 198 | prod = mul_lo(prod, move4_l<2>(prod)); |
| 199 | prod = mul_lo(prod, move4_l<1>(prod)); |
| 200 | return extract<0>(prod); |
| 201 | #endif |
| 202 | } |
| 203 | |
| 204 | // ----------------------------------------------------------------------------- |
| 205 | |
| 206 | static SIMDPP_INL |
| 207 | int32_t i_reduce_mul(const int16x8& a) |
| 208 | { |
| 209 | #if SIMDPP_USE_NULL |
| 210 | int32_t r = a.el(0); |
| 211 | for (unsigned i = 1; i < a.length; i++) { |
| 212 | r *= a.el(i); |
| 213 | } |
| 214 | return r; |
| 215 | #elif SIMDPP_USE_SSE2 |
| 216 | uint32x4 ca = (uint32x4) a; |
| 217 | // shift data zeroing out bits |
| 218 | uint32x4 al = shift_r<16>(ca); |
| 219 | uint32x4 ah = shift_l<16>(ca); |
| 220 | // due to zoreing bits in previous steps, the result can be OR'ed |
| 221 | uint32x4 lo = _mm_mullo_epi16(ca.native(), al.native()); |
| 222 | uint32x4 hi = _mm_mulhi_epi16(ca.native(), ah.native()); |
| 223 | uint32x4 r = bit_or(lo, hi); |
| 224 | r = _mm_mul_epu32(r.native(), move4_l<1>(r).eval().native()); |
| 225 | r = _mm_mul_epu32(r.native(), move4_l<2>(r).eval().native()); |
| 226 | return extract<0>(r); |
| 227 | #elif SIMDPP_USE_NEON |
| 228 | int32x4 r = vmull_s16(vget_low_s16(a.native()), vget_high_s16(a.native())); |
| 229 | r = mul_lo(r, move4_l<2>(r)); |
| 230 | r = mul_lo(r, move4_l<1>(r)); |
| 231 | return extract<0>(r); |
| 232 | #elif SIMDPP_USE_ALTIVEC |
| 233 | int16x8 a2 = move8_l<1>(a); |
| 234 | int32x4 r = vec_mule(a2.native(), a.native()); |
| 235 | mem_block<int32x4> b = r; |
| 236 | return b[0] * b[1] * b[2] * b[3]; |
| 237 | #elif SIMDPP_USE_MSA |
| 238 | int32<8> a32 = to_int32(a); |
| 239 | int32<4> r = mul_lo(a32.vec(0), a32.vec(1)); |
| 240 | r = mul_lo(r, move4_l<2>(r)); |
| 241 | r = mul_lo(r, move4_l<1>(r)); |
| 242 | return extract<0>(r); |
| 243 | #endif |
| 244 | } |
| 245 | |
| 246 | #if SIMDPP_USE_AVX2 |
| 247 | static SIMDPP_INL |
| 248 | int32_t i_reduce_mul(const int16x16& a) |
| 249 | { |
| 250 | uint32x8 ca = (uint32x8) a; |
| 251 | // shift data zeroing out bits |
| 252 | uint32x8 al = shift_r<16>(ca); |
| 253 | uint32x8 ah = shift_l<16>(ca); |
| 254 | // due to zoreing bits in previous steps, the result can be OR'ed |
| 255 | uint32x8 lo = _mm256_mullo_epi16(ca.native(), al.native()); |
| 256 | uint32x8 hi = _mm256_mulhi_epi16(ca.native(), ah.native()); |
| 257 | uint32x8 r = bit_or(lo, hi); |
| 258 | r = _mm256_mul_epu32(r.native(), move4_l<1>(r).eval().native()); |
| 259 | uint32x4 r2 = _mm_mul_epu32(detail::extract128<0>(r).native(), |
| 260 | detail::extract128<1>(r).native()); |
| 261 | r2 = _mm_mul_epu32(r2.native(), move4_l<2>(r2).eval().native()); |
| 262 | return extract<0>(r2); |
| 263 | } |
| 264 | #endif |
| 265 | |
| 266 | #if SIMDPP_USE_AVX512BW |
| 267 | SIMDPP_INL int32_t i_reduce_mul(const int16<32>& a) |
| 268 | { |
| 269 | uint32<16> ca = (uint32<16>) a; |
| 270 | // shift data zeroing out bits |
| 271 | uint32<16> al = shift_r<16>(ca); |
| 272 | uint32<16> ah = shift_l<16>(ca); |
| 273 | // due to zoreing bits in previous steps, the result can be OR'ed |
| 274 | uint32<16> lo = _mm512_mullo_epi16(ca.native(), al.native()); |
| 275 | uint32<16> hi = _mm512_mulhi_epi16(ca.native(), ah.native()); |
| 276 | uint32<16> r = bit_or(lo, hi); |
| 277 | return reduce_mul(r); |
| 278 | } |
| 279 | #endif |
| 280 | |
| 281 | template<unsigned N> |
| 282 | SIMDPP_INL int32_t i_reduce_mul(const int16<N>& a) |
| 283 | { |
| 284 | #if SIMDPP_USE_NULL |
| 285 | uint32_t r = 1; |
| 286 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 287 | for (unsigned i = 0; i < a.base_length; i++) { |
| 288 | r *= a.vec(j).el(i); |
| 289 | } |
| 290 | } |
| 291 | return r; |
| 292 | #elif SIMDPP_USE_AVX512BW |
| 293 | uint32<16> prod = make_uint(1); |
| 294 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 295 | uint32<16> ca = (uint32<16>) a.vec(j); |
| 296 | // shift data zeroing out bits |
| 297 | uint32<16> al = shift_r<16>(ca); |
| 298 | uint32<16> ah = shift_l<16>(ca); |
| 299 | // due to zoreing bits in previous steps, the result can be OR'ed |
| 300 | uint32<16> lo = _mm512_mullo_epi16(ca.native(), al.native()); |
| 301 | uint32<16> hi = _mm512_mulhi_epi16(ca.native(), ah.native()); |
| 302 | uint32<16> iprod = bit_or(lo, hi); |
| 303 | iprod = _mm512_mul_epu32(iprod.native(), move4_l<1>(iprod).eval().native()); |
| 304 | prod = _mm512_mul_epu32(prod.native(), iprod.native()); |
| 305 | } |
| 306 | return reduce_mul(prod); |
| 307 | #elif SIMDPP_USE_AVX2 |
| 308 | uint32x8 prod = make_uint(1); |
| 309 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 310 | uint32x8 ca = (uint32x8) a.vec(j); |
| 311 | // shift data zeroing out bits |
| 312 | uint32x8 al = shift_r<16>(ca); |
| 313 | uint32x8 ah = shift_l<16>(ca); |
| 314 | // due to zoreing bits in previous steps, the result can be OR'ed |
| 315 | uint32x8 lo = _mm256_mullo_epi16(ca.native(), al.native()); |
| 316 | uint32x8 hi = _mm256_mulhi_epi16(ca.native(), ah.native()); |
| 317 | uint32x8 iprod = bit_or(lo, hi); |
| 318 | iprod = _mm256_mul_epu32(iprod.native(), move4_l<1>(iprod).eval().native()); |
| 319 | prod = _mm256_mul_epu32(prod.native(), iprod.native()); |
| 320 | } |
| 321 | uint32x4 r2 = _mm_mul_epu32(detail::extract128<0>(prod).native(), |
| 322 | detail::extract128<1>(prod).native()); |
| 323 | r2 = _mm_mul_epu32(r2.native(), move4_l<2>(r2).eval().native()); |
| 324 | return extract<0>(r2); |
| 325 | #elif SIMDPP_USE_SSE2 |
| 326 | uint32x4 prod = make_uint(1); |
| 327 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 328 | uint32x4 ca = (uint32x4) a.vec(j); |
| 329 | // shift data zeroing out bits |
| 330 | uint32x4 al = shift_r<16>(ca); |
| 331 | uint32x4 ah = shift_l<16>(ca); |
| 332 | // due to zoreing bits in previous steps, the result can be OR'ed |
| 333 | uint32x4 lo = _mm_mullo_epi16(ca.native(), al.native()); |
| 334 | uint32x4 hi = _mm_mulhi_epi16(ca.native(), ah.native()); |
| 335 | uint32x4 r = bit_or(lo, hi); |
| 336 | r = _mm_mul_epu32(r.native(), move4_l<1>(r).eval().native()); |
| 337 | prod = _mm_mul_epu32(prod.native(), r.native()); |
| 338 | } |
| 339 | prod = _mm_mul_epu32(prod.native(), move4_l<2>(prod).eval().native()); |
| 340 | return extract<0>(prod); |
| 341 | #elif SIMDPP_USE_NEON |
| 342 | int32x4 prod = make_uint(1); |
| 343 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 344 | int32x4 r = vmull_s16(vget_low_s16(a.vec(j).native()), |
| 345 | vget_high_s16(a.vec(j).native())); |
| 346 | prod = mul_lo(prod, r); |
| 347 | } |
| 348 | prod = mul_lo(prod, move4_l<2>(prod)); |
| 349 | prod = mul_lo(prod, move4_l<1>(prod)); |
| 350 | return extract<0>(prod); |
| 351 | #elif SIMDPP_USE_ALTIVEC |
| 352 | int32_t r = i_reduce_mul(a.vec(0)); |
| 353 | for (unsigned j = 1; j < a.vec_length; ++j) { |
| 354 | r *= i_reduce_mul(a.vec(j)); |
| 355 | } |
| 356 | return r; |
| 357 | #elif SIMDPP_USE_MSA |
| 358 | int32x4 prod = make_uint(1); |
| 359 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 360 | int32<8> a32 = to_int32(a.vec(j)); |
| 361 | prod = mul_lo(prod, mul_lo(a32.vec(0), a32.vec(1))); |
| 362 | } |
| 363 | prod = mul_lo(prod, move4_l<2>(prod)); |
| 364 | prod = mul_lo(prod, move4_l<1>(prod)); |
| 365 | return extract<0>(prod); |
| 366 | #endif |
| 367 | } |
| 368 | |
| 369 | // ----------------------------------------------------------------------------- |
| 370 | |
| 371 | static SIMDPP_INL |
| 372 | uint32_t i_reduce_mul(const uint32x4& a) |
| 373 | { |
| 374 | #if SIMDPP_USE_NULL |
| 375 | uint32_t r = a.el(0); |
| 376 | for (unsigned i = 1; i < a.length; i++) { |
| 377 | r *= a.el(i); |
| 378 | } |
| 379 | return r; |
| 380 | #elif SIMDPP_USE_SSE2 |
| 381 | uint32x4 r = _mm_mul_epu32(a.native(), move4_l<1>(a).eval().native()); |
| 382 | r = _mm_mul_epu32(r.native(), move4_l<2>(r).eval().native()); |
| 383 | return extract<0>(r); |
| 384 | #elif SIMDPP_USE_NEON || SIMDPP_USE_MSA |
| 385 | uint32x4 r = a; |
| 386 | r = mul_lo(r, move4_l<2>(r)); |
| 387 | r = mul_lo(r, move4_l<1>(r)); |
| 388 | return extract<0>(r); |
| 389 | #elif SIMDPP_USE_ALTIVEC |
| 390 | mem_block<uint32x4> b = a; |
| 391 | return b[0] * b[1] * b[2] * b[3]; |
| 392 | #endif |
| 393 | } |
| 394 | |
| 395 | #if SIMDPP_USE_AVX2 |
| 396 | static SIMDPP_INL |
| 397 | uint32_t i_reduce_mul(const uint32x8& a) |
| 398 | { |
| 399 | uint32x8 ra = _mm256_mul_epu32(a.native(), move4_l<1>(a).eval().native()); |
| 400 | uint32x4 r = _mm_mul_epu32(detail::extract128<0>(ra).native(), |
| 401 | detail::extract128<1>(ra).native()); |
| 402 | r = _mm_mul_epu32(r.native(), move4_l<2>(r).eval().native()); |
| 403 | return extract<0>(r); |
| 404 | } |
| 405 | #endif |
| 406 | |
| 407 | #if SIMDPP_USE_AVX512F |
| 408 | static SIMDPP_INL |
| 409 | uint32_t i_reduce_mul(const uint32<16>& a) |
| 410 | { |
| 411 | return i_reduce_mul(mul_lo(extract256<0>(a), extract256<1>(a))); |
| 412 | } |
| 413 | #endif |
| 414 | |
| 415 | template<unsigned N> |
| 416 | SIMDPP_INL uint32_t i_reduce_mul(const uint32<N>& a) |
| 417 | { |
| 418 | #if SIMDPP_USE_NULL |
| 419 | uint32_t r = 1; |
| 420 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 421 | for (unsigned i = 0; i < a.base_length; i++) { |
| 422 | r *= a.vec(j).el(i); |
| 423 | } |
| 424 | } |
| 425 | return r; |
| 426 | #elif SIMDPP_USE_AVX2 |
| 427 | uint32x8 prod = make_uint(1); |
| 428 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 429 | uint32x8 ai = a.vec(j); |
| 430 | uint32x8 ra = _mm256_mul_epu32(ai.native(), move4_l<1>(ai).eval().native()); |
| 431 | prod = _mm256_mul_epu32(prod.native(), ra.native()); |
| 432 | } |
| 433 | uint32x4 r = _mm_mul_epu32(detail::extract128<0>(prod).native(), |
| 434 | detail::extract128<1>(prod).native()); |
| 435 | r = _mm_mul_epu32(r.native(), move4_l<2>(r).eval().native()); |
| 436 | return extract<0>(r); |
| 437 | #elif SIMDPP_USE_SSE2 |
| 438 | uint32x4 r = make_uint(1); |
| 439 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 440 | uint32x4 ai = a.vec(j); |
| 441 | uint32x4 ra = _mm_mul_epu32(ai.native(), move4_l<1>(ai).eval().native()); |
| 442 | r = _mm_mul_epu32(r.native(), ra.native()); |
| 443 | } |
| 444 | r = _mm_mul_epu32(r.native(), move4_l<2>(r).eval().native()); |
| 445 | return extract<0>(r); |
| 446 | #elif SIMDPP_USE_NEON || SIMDPP_USE_MSA |
| 447 | uint32x4 prod = make_uint(1); |
| 448 | for (unsigned j = 0; j < a.vec_length; ++j) { |
| 449 | prod = mul_lo(prod, a.vec(j)); |
| 450 | } |
| 451 | prod = mul_lo(prod, move4_l<2>(prod)); |
| 452 | prod = mul_lo(prod, move4_l<1>(prod)); |
| 453 | return extract<0>(prod); |
| 454 | #elif SIMDPP_USE_ALTIVEC |
| 455 | uint32_t r = i_reduce_mul(a.vec(0)); |
| 456 | for (unsigned j = 1; j < a.vec_length; ++j) { |
| 457 | r *= i_reduce_mul(a.vec(j)); |
| 458 | } |
| 459 | return r; |
| 460 | #endif |
| 461 | } |
| 462 | |
| 463 | // ----------------------------------------------------------------------------- |
| 464 | |
| 465 | |
| 466 | } // namespace insn |
| 467 | } // namespace detail |
| 468 | } // namespace SIMDPP_ARCH_NAMESPACE |
| 469 | } // namespace simdpp |
| 470 | |
| 471 | #endif |
| 472 | |
| 473 | |