| 1 | /* Copyright (C) 2017 Povilas Kanapickas <povilas@radix.lt> |
| 2 | |
| 3 | Distributed under the Boost Software License, Version 1.0. |
| 4 | (See accompanying file LICENSE_1_0.txt or copy at |
| 5 | http://www.boost.org/LICENSE_1_0.txt) |
| 6 | */ |
| 7 | |
| 8 | #ifndef LIBSIMDPP_SIMDPP_CORE_I_SHIFT_R_V_H |
| 9 | #define LIBSIMDPP_SIMDPP_CORE_I_SHIFT_R_V_H |
| 10 | |
| 11 | #ifndef LIBSIMDPP_SIMD_H |
| 12 | #error "This file must be included through simd.h" |
| 13 | #endif |
| 14 | |
| 15 | #include <simdpp/types.h> |
| 16 | #include <simdpp/detail/null/math.h> |
| 17 | #include <simdpp/detail/insn/i_shift.h> |
| 18 | #include <simdpp/detail/shuffle/shuffle_mask.h> |
| 19 | #include <simdpp/core/i_neg.h> |
| 20 | #include <simdpp/core/i_mul.h> |
| 21 | #include <simdpp/core/permute_bytes16.h> |
| 22 | #include <simdpp/detail/vector_array_macros.h> |
| 23 | |
| 24 | namespace simdpp { |
| 25 | namespace SIMDPP_ARCH_NAMESPACE { |
| 26 | namespace detail { |
| 27 | namespace insn { |
| 28 | |
| 29 | // emulates 8-bit variable shift using 16-bit variable shift |
| 30 | template<class U8> SIMDPP_INL |
| 31 | U8 v_emul_shift_r_u8_using_v16(const U8& a, const U8& count) |
| 32 | { |
| 33 | using U16 = typename same_width<U8>::u16; |
| 34 | |
| 35 | U16 a16; a16 = a; |
| 36 | U16 c16; c16 = count; |
| 37 | |
| 38 | U16 select_mask = make_uint(0x00ff); |
| 39 | U16 a_lo = bit_and(a16, select_mask); |
| 40 | U16 a_hi = a16; |
| 41 | U16 c_lo = bit_and(c16, select_mask); |
| 42 | U16 c_hi = shift_r<8>(c16); |
| 43 | a_lo = shift_r(a_lo, c_lo); |
| 44 | a_hi = shift_r(a_hi, c_hi); |
| 45 | a_hi = bit_andnot(a_hi, select_mask); |
| 46 | |
| 47 | a16 = bit_or(a_lo, a_hi); |
| 48 | return (U8) a16; |
| 49 | } |
| 50 | |
| 51 | // emulates 8-bit variable shift using permute_bytes16 and 16-bit multiplication |
| 52 | template<class U8> SIMDPP_INL |
| 53 | U8 v_emul_shift_r_u8_using_mul(const U8& a, const U8& count) |
| 54 | { |
| 55 | using U16 = typename same_width<U8>::u16; |
| 56 | |
| 57 | // Variable shift is implemented by reusing shifter in 16-bit unsigned |
| 58 | // multiplication. The result is obtained by computing 1 << (8-countN) |
| 59 | // for each element from a, multiplying each element by that number and |
| 60 | // selecting the high half of the result. |
| 61 | U8 mulshift_mask = make_uint(0x80, 0x40, 0x20, 0x10, |
| 62 | 0x08, 0x04, 0x02, 0x01, |
| 63 | 0x00, 0x00, 0x00, 0x00, |
| 64 | 0x00, 0x00, 0x00, 0x00); |
| 65 | U16 mulshift = (U16) permute_bytes16(mulshift_mask, count); |
| 66 | U16 a16; a16 = a; |
| 67 | U16 a16_lo, a16_hi, mulshift_lo, mulshift_hi; |
| 68 | U16 select_mask = make_uint(0x00ff); |
| 69 | |
| 70 | // Move the element values to the high byte of the 16-bit elements and the |
| 71 | // shift values to the low 9 bits. The 9-th bit is needed because in order |
| 72 | // to shift by 0 the element values need to be multiplied by 0x100. |
| 73 | // The results will have the high byte clear which will help composing the |
| 74 | // result back to a single vector. |
| 75 | a16_lo = shift_l<8>(a16); |
| 76 | mulshift_lo = bit_and(mulshift, select_mask); |
| 77 | mulshift_lo = shift_l<1>(mulshift_lo); |
| 78 | a16_hi = bit_andnot(a16, select_mask); |
| 79 | mulshift_hi = shift_l<1>(shift_r<8>(mulshift)); |
| 80 | |
| 81 | a16_lo = mul_hi(a16_lo, mulshift_lo); |
| 82 | a16_hi = mul_hi(a16_hi, mulshift_hi); |
| 83 | |
| 84 | a16_hi = shift_l<8>(a16_hi); |
| 85 | a16 = bit_or(a16_lo, a16_hi); |
| 86 | return (U8) a16; |
| 87 | } |
| 88 | |
| 89 | static SIMDPP_INL |
| 90 | uint8<16> i_shift_r_v(const uint8<16>& a, const uint8<16>& count) |
| 91 | { |
| 92 | #if SIMDPP_USE_NULL |
| 93 | return detail::null::shift_r_v(a, count); |
| 94 | #elif SIMDPP_USE_AVX512BW && SIMDPP_USE_AVX512VL |
| 95 | return v_emul_shift_r_u8_using_v16(a, count); |
| 96 | #elif SIMDPP_USE_SSSE3 |
| 97 | return v_emul_shift_r_u8_using_mul(a, count); |
| 98 | #elif SIMDPP_USE_NEON |
| 99 | int8<16> qcount = neg((int8<16>)count); |
| 100 | return vshlq_u8(a.native(), qcount.native()); |
| 101 | #elif SIMDPP_USE_ALTIVEC |
| 102 | return vec_sr(a.native(), count.native()); |
| 103 | #elif SIMDPP_USE_MSA |
| 104 | return (v16u8) __msa_srl_b((v16i8)a.native(), (v16i8)count.native()); |
| 105 | #else |
| 106 | return SIMDPP_NOT_IMPLEMENTED2(a, count); |
| 107 | #endif |
| 108 | } |
| 109 | |
| 110 | #if SIMDPP_USE_AVX2 |
| 111 | static SIMDPP_INL |
| 112 | uint8<32> i_shift_r_v(const uint8<32>& a, const uint8<32>& count) |
| 113 | { |
| 114 | #if SIMDPP_USE_AVX512BW && SIMDPP_USE_AVX512VL |
| 115 | return v_emul_shift_r_u8_using_v16(a, count); |
| 116 | #else |
| 117 | return v_emul_shift_r_u8_using_mul(a, count); |
| 118 | #endif |
| 119 | } |
| 120 | #endif |
| 121 | |
| 122 | #if SIMDPP_USE_AVX512BW |
| 123 | static SIMDPP_INL |
| 124 | uint8<64> i_shift_r_v(const uint8<64>& a, const uint8<64>& count) |
| 125 | { |
| 126 | return v_emul_shift_r_u8_using_v16(a, count); |
| 127 | } |
| 128 | #endif |
| 129 | |
| 130 | // ----------------------------------------------------------------------------- |
| 131 | |
| 132 | // emulates 8-bit variable shift using 16-bit variable shift |
| 133 | template<class I8, class U8> SIMDPP_INL |
| 134 | I8 v_emul_shift_r_i8_using_v16(const I8& a, const U8& count) |
| 135 | { |
| 136 | using I16 = typename same_width<I8>::i16; |
| 137 | using U16 = typename same_width<I8>::u16; |
| 138 | |
| 139 | U16 a16; a16 = a; |
| 140 | U16 c16; c16 = count; |
| 141 | |
| 142 | U16 select_mask = make_uint(0x00ff); |
| 143 | U16 a_lo = shift_l<8>(a16); |
| 144 | U16 a_hi = a16; |
| 145 | U16 c_lo = bit_and(c16, select_mask); |
| 146 | U16 c_hi = shift_r<8>(c16); |
| 147 | a_lo = shift_r((I16)a_lo, c_lo); |
| 148 | a_hi = shift_r((I16)a_hi, c_hi); |
| 149 | |
| 150 | a_lo = shift_r<8>(a_lo); |
| 151 | a_hi = bit_andnot(a_hi, select_mask); |
| 152 | a16 = bit_or(a_lo, a_hi); |
| 153 | |
| 154 | return (I8) a16; |
| 155 | } |
| 156 | |
| 157 | template<class I8, class U8> SIMDPP_INL |
| 158 | I8 v_emul_shift_r_i8_using_mul(const I8& a, const U8& count) |
| 159 | { |
| 160 | using U16 = typename same_width<U8>::u16; |
| 161 | using I16 = typename same_width<U8>::i16; |
| 162 | |
| 163 | // Variable shift is implemented by reusing shifter in 16-bit signed |
| 164 | // multiplication. The result is obtained by computing 1 << (8-countN) |
| 165 | // for each element from a, multiplying each element by that number and |
| 166 | // selecting the high half of the result. |
| 167 | U8 mulshift_mask = make_uint(0x80, 0x40, 0x20, 0x10, |
| 168 | 0x08, 0x04, 0x02, 0x01, |
| 169 | 0x00, 0x00, 0x00, 0x00, |
| 170 | 0x00, 0x00, 0x00, 0x00); |
| 171 | U16 mulshift = (U16) permute_bytes16(mulshift_mask, count); |
| 172 | U16 a16; a16 = a; |
| 173 | U16 a16_lo, a16_hi, mulshift_lo, mulshift_hi; |
| 174 | U16 select_mask = make_uint(0x00ff); |
| 175 | |
| 176 | // Move the element values to the high byte of the 16-bit elements and the |
| 177 | // shift values to the low 9 bits. The 9-th bit is needed because in order |
| 178 | // to shift by 0 the element values need to be multiplied by 0x100. |
| 179 | // Note that the results may have nonzero high byte because this is signed |
| 180 | // multiplication. |
| 181 | a16_lo = shift_l<8>(a16); |
| 182 | mulshift_lo = bit_and(mulshift, select_mask); |
| 183 | mulshift_lo = shift_l<1>(mulshift_lo); |
| 184 | a16_hi = bit_andnot(a16, select_mask); |
| 185 | mulshift_hi = shift_l<1>(shift_r<8>(mulshift)); |
| 186 | |
| 187 | a16_lo = mul_hi((I16)a16_lo, (I16)mulshift_lo); |
| 188 | a16_hi = mul_hi((I16)a16_hi, (I16)mulshift_hi); |
| 189 | |
| 190 | a16_hi = shift_l<8>(a16_hi); |
| 191 | a16_lo = bit_and(a16_lo, select_mask); |
| 192 | a16 = bit_or(a16_lo, a16_hi); |
| 193 | return (U8) a16; |
| 194 | } |
| 195 | |
| 196 | static SIMDPP_INL |
| 197 | int8<16> i_shift_r_v(const int8<16>& a, const uint8<16>& count) |
| 198 | { |
| 199 | #if SIMDPP_USE_NULL |
| 200 | return detail::null::shift_r_v(a, count); |
| 201 | #elif SIMDPP_USE_AVX512BW && SIMDPP_USE_AVX512VL |
| 202 | return v_emul_shift_r_i8_using_v16(a, count); |
| 203 | #elif SIMDPP_USE_SSSE3 |
| 204 | return v_emul_shift_r_i8_using_mul(a, count); |
| 205 | #elif SIMDPP_USE_NEON |
| 206 | int8<16> qcount = neg((int8<16>)count); |
| 207 | return vshlq_s8(a.native(), qcount.native()); |
| 208 | #elif SIMDPP_USE_ALTIVEC |
| 209 | return vec_sra(a.native(), count.native()); |
| 210 | #elif SIMDPP_USE_MSA |
| 211 | return __msa_sra_b(a.native(), (v16i8) count.native()); |
| 212 | #else |
| 213 | return SIMDPP_NOT_IMPLEMENTED2(a, count); |
| 214 | #endif |
| 215 | } |
| 216 | |
| 217 | #if SIMDPP_USE_AVX2 |
| 218 | static SIMDPP_INL |
| 219 | int8<32> i_shift_r_v(const int8<32>& a, const uint8<32>& count) |
| 220 | { |
| 221 | #if SIMDPP_USE_AVX512BW && SIMDPP_USE_AVX512VL |
| 222 | return v_emul_shift_r_i8_using_v16(a, count); |
| 223 | #else |
| 224 | return v_emul_shift_r_i8_using_mul(a, count); |
| 225 | #endif |
| 226 | } |
| 227 | #endif |
| 228 | |
| 229 | #if SIMDPP_USE_AVX512BW |
| 230 | static SIMDPP_INL |
| 231 | int8<64> i_shift_r_v(const int8<64>& a, const uint8<64>& count) |
| 232 | { |
| 233 | return v_emul_shift_r_i8_using_v16(a, count); |
| 234 | } |
| 235 | #endif |
| 236 | |
| 237 | // ----------------------------------------------------------------------------- |
| 238 | |
| 239 | // emulates 16-bit variable shift using permute_bytes16 and 16-bit multiplication |
| 240 | template<class U16> |
| 241 | U16 v_emul_shift_r_u16_using_mul(const U16& a, const U16& count) |
| 242 | { |
| 243 | using U8 = typename same_width<U16>::u8; |
| 244 | using M16 = typename U16::mask_vector_type; |
| 245 | // Variable shift is implemented by reusing shifter in 16-bit unsigned |
| 246 | // multiplication. The result is obtained by computing 1 << (16-countN-1) |
| 247 | // for each element from a, multiplying each element by that number and |
| 248 | // selecting the high half of the result. Note that the highest shift |
| 249 | // available when using 16-bit multiplication is 15, which needs to be |
| 250 | // worked around by extra instructions. |
| 251 | M16 is_same = cmp_eq(count, 0); |
| 252 | M16 is_zero = cmp_gt(count, 15); |
| 253 | |
| 254 | U8 mulshift_mask = make_uint(0x00, 0x80, 0x40, 0x20, |
| 255 | 0x10, 0x08, 0x04, 0x02, |
| 256 | 0x01, 0x00, 0x00, 0x00, |
| 257 | 0x00, 0x00, 0x00, 0x00); |
| 258 | |
| 259 | // permute_bytes16 permutes 8-bit elements instead of 16 which would be |
| 260 | // optimal in this case. We need to construct the selector in special way |
| 261 | // for 8-bit permutation. |
| 262 | // The 4-th is toggled bit so that the high byte takes zeros from the |
| 263 | // mulshift mask when the shift count is higher than 8. |
| 264 | U16 qcount = bit_or(count, shift_l<8>(count)); |
| 265 | qcount = bit_xor(qcount, 0x0008); |
| 266 | |
| 267 | U16 mulshift = (U16) permute_bytes16(mulshift_mask, (U8) qcount); |
| 268 | U16 res = mul_hi(a, mulshift); |
| 269 | res = blend(a, res, is_same); |
| 270 | res = bit_andnot(res, is_zero); |
| 271 | return res; |
| 272 | } |
| 273 | |
| 274 | static SIMDPP_INL |
| 275 | uint16<8> i_shift_r_v(const uint16<8>& a, const uint16<8>& count) |
| 276 | { |
| 277 | #if SIMDPP_USE_NULL |
| 278 | return detail::null::shift_r_v(a, count); |
| 279 | #elif SIMDPP_USE_AVX512BW && SIMDPP_USE_AVX512VL |
| 280 | return _mm_srlv_epi16(a.native(), count.native()); |
| 281 | #elif SIMDPP_USE_SSSE3 |
| 282 | return v_emul_shift_r_u16_using_mul(a, count); |
| 283 | #elif SIMDPP_USE_NEON |
| 284 | int16<8> qcount = neg((int16<8>)count); |
| 285 | return vshlq_u16(a.native(), qcount.native()); |
| 286 | #elif SIMDPP_USE_ALTIVEC |
| 287 | return vec_sr(a.native(), count.native()); |
| 288 | #elif SIMDPP_USE_MSA |
| 289 | return (v8u16) __msa_srl_h((v8i16)a.native(), (v8i16)count.native()); |
| 290 | #else |
| 291 | return SIMDPP_NOT_IMPLEMENTED2(a, count); |
| 292 | #endif |
| 293 | } |
| 294 | |
| 295 | #if SIMDPP_USE_AVX2 |
| 296 | static SIMDPP_INL |
| 297 | uint16<16> i_shift_r_v(const uint16<16>& a, const uint16<16>& count) |
| 298 | { |
| 299 | #if SIMDPP_USE_AVX512BW && SIMDPP_USE_AVX512VL |
| 300 | return _mm256_srlv_epi16(a.native(), count.native()); |
| 301 | #else |
| 302 | return v_emul_shift_r_u16_using_mul(a, count); |
| 303 | #endif |
| 304 | } |
| 305 | #endif |
| 306 | |
| 307 | #if SIMDPP_USE_AVX512BW |
| 308 | SIMDPP_INL uint16<32> i_shift_r_v(const uint16<32>& a, const uint16<32>& count) |
| 309 | { |
| 310 | return _mm512_srlv_epi16(a.native(), count.native()); |
| 311 | } |
| 312 | #endif |
| 313 | |
| 314 | // ----------------------------------------------------------------------------- |
| 315 | |
| 316 | static SIMDPP_INL |
| 317 | int16<8> i_shift_r_v(const int16<8>& a, const uint16<8>& count) |
| 318 | { |
| 319 | #if SIMDPP_USE_NULL |
| 320 | return detail::null::shift_r_v(a, count); |
| 321 | #elif SIMDPP_USE_AVX512BW && SIMDPP_USE_AVX512VL |
| 322 | return _mm_srav_epi16(a.native(), count.native()); |
| 323 | #elif SIMDPP_USE_AVX512BW |
| 324 | __m512i a512 = _mm512_castsi128_si512(a.native()); |
| 325 | __m512i count512 = _mm512_castsi128_si512(count.native()); |
| 326 | return _mm512_castsi512_si128(_mm512_srav_epi16(a512, count512)); |
| 327 | #elif SIMDPP_USE_NEON |
| 328 | int16<8> qcount = neg((int16<8>)count); |
| 329 | return vshlq_s16(a.native(), qcount.native()); |
| 330 | #elif SIMDPP_USE_ALTIVEC |
| 331 | return vec_sra(a.native(), count.native()); |
| 332 | #elif SIMDPP_USE_MSA |
| 333 | return __msa_sra_h(a.native(), (v8i16) count.native()); |
| 334 | #else |
| 335 | return SIMDPP_NOT_IMPLEMENTED2(a, count); |
| 336 | #endif |
| 337 | } |
| 338 | |
| 339 | #if SIMDPP_USE_AVX2 |
| 340 | static SIMDPP_INL |
| 341 | int16<16> i_shift_r_v(const int16<16>& a, const uint16<16>& count) |
| 342 | { |
| 343 | #if SIMDPP_USE_AVX512BW && SIMDPP_USE_AVX512VL |
| 344 | return _mm256_srav_epi16(a.native(), count.native()); |
| 345 | #elif SIMDPP_USE_AVX512BW |
| 346 | __m512i a512 = _mm512_castsi256_si512(a.native()); |
| 347 | __m512i count512 = _mm512_castsi256_si512(count.native()); |
| 348 | return _mm512_castsi512_si256(_mm512_srav_epi16(a512, count512)); |
| 349 | #else |
| 350 | return SIMDPP_NOT_IMPLEMENTED2(a, count); |
| 351 | #endif |
| 352 | } |
| 353 | #endif |
| 354 | |
| 355 | #if SIMDPP_USE_AVX512BW |
| 356 | SIMDPP_INL int16<32> i_shift_r_v(const int16<32>& a, const uint16<32>& count) |
| 357 | { |
| 358 | return _mm512_srav_epi16(a.native(), count.native()); |
| 359 | } |
| 360 | #endif |
| 361 | |
| 362 | // ----------------------------------------------------------------------------- |
| 363 | |
| 364 | static SIMDPP_INL |
| 365 | uint32<4> i_shift_r_v(const uint32<4>& a, const uint32<4>& count) |
| 366 | { |
| 367 | #if SIMDPP_USE_NULL |
| 368 | return detail::null::shift_r_v(a, count); |
| 369 | #elif SIMDPP_USE_AVX2 |
| 370 | return _mm_srlv_epi32(a.native(), count.native()); |
| 371 | #elif SIMDPP_USE_SSE2 |
| 372 | uint32<4> count0 = count; |
| 373 | #if SIMDPP_USE_SSE4_1 |
| 374 | uint32<4> zero = make_zero(); |
| 375 | count0 = _mm_blend_epi16(count0.native(), zero.native(), 0xcc); |
| 376 | #else |
| 377 | uint32<4> mask = make_uint(0xffffffff, 0, 0xffffffff, 0); |
| 378 | count0 = bit_and(count0, mask); |
| 379 | #endif |
| 380 | uint32<4> count1 = _mm_srli_epi64(count.native(), 32); |
| 381 | uint32<4> count2 = _mm_srli_si128(count0.native(), 8); |
| 382 | uint32<4> count3 = _mm_srli_si128(count.native(), 12); |
| 383 | |
| 384 | __m128i a0 = _mm_srl_epi32(a.native(), count0.native()); |
| 385 | __m128i a1 = _mm_srl_epi32(a.native(), count1.native()); |
| 386 | __m128i a2 = _mm_srl_epi32(a.native(), count2.native()); |
| 387 | __m128i a3 = _mm_srl_epi32(a.native(), count3.native()); |
| 388 | #if SIMDPP_USE_SSE4_1 |
| 389 | a0 = _mm_blend_epi16(a0, a1, 0x0c); |
| 390 | a2 = _mm_blend_epi16(a2, a3, 0xc0); |
| 391 | a0 = _mm_blend_epi16(a0, a2, 0xf0); |
| 392 | #else |
| 393 | __m128 f0 = _mm_shuffle_ps(_mm_castsi128_ps(a0), |
| 394 | _mm_castsi128_ps(a1), |
| 395 | SIMDPP_SHUFFLE_MASK_4x4(0, 0, 1, 1)); |
| 396 | __m128 f1 = _mm_shuffle_ps(_mm_castsi128_ps(a2), |
| 397 | _mm_castsi128_ps(a3), |
| 398 | SIMDPP_SHUFFLE_MASK_4x4(2, 2, 3, 3)); |
| 399 | f0 = _mm_shuffle_ps(f0, f1, SIMDPP_SHUFFLE_MASK_4x4(0, 2, 0, 2)); |
| 400 | a0 = _mm_castps_si128(f0); |
| 401 | #endif |
| 402 | return a0; |
| 403 | #elif SIMDPP_USE_NEON |
| 404 | int32<4> qcount = neg((int32<4>)count); |
| 405 | return vshlq_u32(a.native(), qcount.native()); |
| 406 | #elif SIMDPP_USE_ALTIVEC |
| 407 | return vec_sr(a.native(), count.native()); |
| 408 | #elif SIMDPP_USE_MSA |
| 409 | return (v4u32) __msa_srl_w((v4i32)a.native(), (v4i32)count.native()); |
| 410 | #endif |
| 411 | } |
| 412 | |
| 413 | #if SIMDPP_USE_AVX2 |
| 414 | static SIMDPP_INL |
| 415 | uint32<8> i_shift_r_v(const uint32<8>& a, const uint32<8>& count) |
| 416 | { |
| 417 | return _mm256_srlv_epi32(a.native(), count.native()); |
| 418 | } |
| 419 | #endif |
| 420 | |
| 421 | #if SIMDPP_USE_AVX512F |
| 422 | static SIMDPP_INL |
| 423 | uint32<16> i_shift_r_v(const uint32<16>& a, const uint32<16>& count) |
| 424 | { |
| 425 | return _mm512_srlv_epi32(a.native(), count.native()); |
| 426 | } |
| 427 | #endif |
| 428 | |
| 429 | // ----------------------------------------------------------------------------- |
| 430 | |
| 431 | static SIMDPP_INL |
| 432 | int32<4> i_shift_r_v(const int32<4>& a, const uint32<4>& count) |
| 433 | { |
| 434 | #if SIMDPP_USE_NULL |
| 435 | return detail::null::shift_r_v(a, count); |
| 436 | #elif SIMDPP_USE_AVX2 |
| 437 | return _mm_srav_epi32(a.native(), count.native()); |
| 438 | #elif SIMDPP_USE_SSE2 |
| 439 | uint32<4> count0 = count; |
| 440 | #if SIMDPP_USE_SSE4_1 |
| 441 | uint32<4> zero = make_zero(); |
| 442 | count0 = _mm_blend_epi16(count0.native(), zero.native(), 0xcc); |
| 443 | #else |
| 444 | uint32<4> mask = make_uint(0xffffffff, 0, 0xffffffff, 0); |
| 445 | count0 = bit_and(count0, mask); |
| 446 | #endif |
| 447 | uint32<4> count1 = _mm_srli_epi64(count.native(), 32); |
| 448 | uint32<4> count2 = _mm_srli_si128(count0.native(), 8); |
| 449 | uint32<4> count3 = _mm_srli_si128(count.native(), 12); |
| 450 | |
| 451 | __m128i a0 = _mm_sra_epi32(a.native(), count0.native()); |
| 452 | __m128i a1 = _mm_sra_epi32(a.native(), count1.native()); |
| 453 | __m128i a2 = _mm_sra_epi32(a.native(), count2.native()); |
| 454 | __m128i a3 = _mm_sra_epi32(a.native(), count3.native()); |
| 455 | #if SIMDPP_USE_SSE4_1 |
| 456 | a0 = _mm_blend_epi16(a0, a1, 0x0c); |
| 457 | a2 = _mm_blend_epi16(a2, a3, 0xc0); |
| 458 | a0 = _mm_blend_epi16(a0, a2, 0xf0); |
| 459 | #else |
| 460 | __m128 f0 = _mm_shuffle_ps(_mm_castsi128_ps(a0), |
| 461 | _mm_castsi128_ps(a1), |
| 462 | SIMDPP_SHUFFLE_MASK_4x4(0, 0, 1, 1)); |
| 463 | __m128 f1 = _mm_shuffle_ps(_mm_castsi128_ps(a2), |
| 464 | _mm_castsi128_ps(a3), |
| 465 | SIMDPP_SHUFFLE_MASK_4x4(2, 2, 3, 3)); |
| 466 | f0 = _mm_shuffle_ps(f0, f1, SIMDPP_SHUFFLE_MASK_4x4(0, 2, 0, 2)); |
| 467 | a0 = _mm_castps_si128(f0); |
| 468 | #endif |
| 469 | return a0; |
| 470 | #elif SIMDPP_USE_NEON |
| 471 | int32<4> qcount = neg((int32<4>)count); |
| 472 | return vshlq_s32(a.native(), qcount.native()); |
| 473 | #elif SIMDPP_USE_ALTIVEC |
| 474 | return vec_sra(a.native(), count.native()); |
| 475 | #elif SIMDPP_USE_MSA |
| 476 | return __msa_sra_w(a.native(), (v4i32)count.native()); |
| 477 | #endif |
| 478 | } |
| 479 | |
| 480 | #if SIMDPP_USE_AVX2 |
| 481 | static SIMDPP_INL |
| 482 | int32<8> i_shift_r_v(const int32<8>& a, const uint32<8>& count) |
| 483 | { |
| 484 | return _mm256_srav_epi32(a.native(), count.native()); |
| 485 | } |
| 486 | #endif |
| 487 | |
| 488 | #if SIMDPP_USE_AVX512F |
| 489 | static SIMDPP_INL |
| 490 | int32<16> i_shift_r_v(const int32<16>& a, const uint32<16>& count) |
| 491 | { |
| 492 | return _mm512_srav_epi32(a.native(), count.native()); |
| 493 | } |
| 494 | #endif |
| 495 | |
| 496 | // ----------------------------------------------------------------------------- |
| 497 | |
| 498 | template<class V, class U> SIMDPP_INL |
| 499 | V i_shift_r_v(const V& a, const U& b) |
| 500 | { |
| 501 | SIMDPP_VEC_ARRAY_IMPL2(V, i_shift_r_v, a, b); |
| 502 | } |
| 503 | |
| 504 | } // namespace insn |
| 505 | } // namespace detail |
| 506 | } // namespace SIMDPP_ARCH_NAMESPACE |
| 507 | } // namespace simdpp |
| 508 | |
| 509 | #endif |
| 510 | |