| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #include "Threading/BsTaskScheduler.h" |
| 4 | #include "Threading/BsThreadPool.h" |
| 5 | |
| 6 | namespace bs |
| 7 | { |
| 8 | Task::Task(const PrivatelyConstruct& dummy, const String& name, std::function<void()> taskWorker, |
| 9 | TaskPriority priority, SPtr<Task> dependency) |
| 10 | : mName(name), mPriority(priority), mTaskWorker(std::move(taskWorker)), mTaskDependency(std::move(dependency)) |
| 11 | { |
| 12 | |
| 13 | } |
| 14 | |
| 15 | SPtr<Task> Task::create(const String& name, std::function<void()> taskWorker, TaskPriority priority, |
| 16 | SPtr<Task> dependency) |
| 17 | { |
| 18 | return bs_shared_ptr_new<Task>(PrivatelyConstruct(), name, std::move(taskWorker), priority, std::move(dependency)); |
| 19 | } |
| 20 | |
| 21 | bool Task::isComplete() const |
| 22 | { |
| 23 | return mState == 2; |
| 24 | } |
| 25 | |
| 26 | bool Task::isCanceled() const |
| 27 | { |
| 28 | return mState == 3; |
| 29 | } |
| 30 | |
| 31 | bool Task::hasStarted() const |
| 32 | { |
| 33 | UINT32 state = mState; |
| 34 | |
| 35 | return state == 1 || state == 2; |
| 36 | } |
| 37 | |
| 38 | void Task::wait() |
| 39 | { |
| 40 | if(mParent != nullptr) |
| 41 | mParent->waitUntilComplete(this); |
| 42 | } |
| 43 | |
| 44 | void Task::cancel() |
| 45 | { |
| 46 | mState = 3; |
| 47 | } |
| 48 | |
| 49 | TaskGroup::TaskGroup(const PrivatelyConstruct& dummy, String name, std::function<void(UINT32)> taskWorker, |
| 50 | UINT32 count, TaskPriority priority, SPtr<Task> dependency) |
| 51 | : mName(std::move(name)), mCount(count), mPriority(priority), mTaskWorker(std::move(taskWorker)) |
| 52 | , mTaskDependency(std::move(dependency)) |
| 53 | { |
| 54 | |
| 55 | } |
| 56 | |
| 57 | SPtr<TaskGroup> TaskGroup::create(String name, std::function<void(UINT32)> taskWorker, UINT32 count, |
| 58 | TaskPriority priority, SPtr<Task> dependency) |
| 59 | { |
| 60 | return bs_shared_ptr_new<TaskGroup>(PrivatelyConstruct(), std::move(name), std::move(taskWorker), count, priority, |
| 61 | std::move(dependency)); |
| 62 | } |
| 63 | |
| 64 | bool TaskGroup::isComplete() const |
| 65 | { |
| 66 | return mNumRemainingTasks == 0; |
| 67 | } |
| 68 | |
| 69 | void TaskGroup::wait() |
| 70 | { |
| 71 | if(mParent != nullptr) |
| 72 | mParent->waitUntilComplete(this); |
| 73 | } |
| 74 | |
| 75 | TaskScheduler::TaskScheduler() |
| 76 | :mTaskQueue(&TaskScheduler::taskCompare) |
| 77 | { |
| 78 | mMaxActiveTasks = BS_THREAD_HARDWARE_CONCURRENCY; |
| 79 | |
| 80 | mTaskSchedulerThread = ThreadPool::instance().run("TaskScheduler" , std::bind(&TaskScheduler::runMain, this)); |
| 81 | } |
| 82 | |
| 83 | TaskScheduler::~TaskScheduler() |
| 84 | { |
| 85 | // Wait until all tasks complete |
| 86 | { |
| 87 | Lock activeTaskLock(mReadyMutex); |
| 88 | |
| 89 | while (mActiveTasks.size() > 0) |
| 90 | { |
| 91 | SPtr<Task> task = mActiveTasks[0]; |
| 92 | activeTaskLock.unlock(); |
| 93 | |
| 94 | task->wait(); |
| 95 | activeTaskLock.lock(); |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | // Start shutdown of the main queue worker and wait until it exits |
| 100 | { |
| 101 | Lock lock(mReadyMutex); |
| 102 | |
| 103 | mShutdown = true; |
| 104 | } |
| 105 | |
| 106 | mTaskReadyCond.notify_one(); |
| 107 | |
| 108 | mTaskSchedulerThread.blockUntilComplete(); |
| 109 | } |
| 110 | |
| 111 | void TaskScheduler::addTask(SPtr<Task> task) |
| 112 | { |
| 113 | Lock lock(mReadyMutex); |
| 114 | |
| 115 | assert(task->mState != 1 && "Task is already executing, it cannot be executed again until it finishes." ); |
| 116 | |
| 117 | task->mParent = this; |
| 118 | task->mTaskId = mNextTaskId++; |
| 119 | task->mState.store(0); // Reset state in case the task is getting re-queued |
| 120 | |
| 121 | mCheckTasks = true; |
| 122 | mTaskQueue.insert(std::move(task)); |
| 123 | |
| 124 | // Wake main scheduler thread |
| 125 | mTaskReadyCond.notify_one(); |
| 126 | } |
| 127 | |
| 128 | void TaskScheduler::addTaskGroup(const SPtr<TaskGroup>& taskGroup) |
| 129 | { |
| 130 | Lock lock(mReadyMutex); |
| 131 | |
| 132 | for(UINT32 i = 0; i < taskGroup->mCount; i++) |
| 133 | { |
| 134 | const auto worker = [i, taskGroup] |
| 135 | { |
| 136 | taskGroup->mTaskWorker(i); |
| 137 | --taskGroup->mNumRemainingTasks; |
| 138 | }; |
| 139 | |
| 140 | SPtr<Task> task = Task::create(taskGroup->mName, worker, taskGroup->mPriority, taskGroup->mTaskDependency); |
| 141 | task->mParent = this; |
| 142 | task->mTaskId = mNextTaskId++; |
| 143 | task->mState.store(0); // Reset state in case the task is getting re-queued |
| 144 | |
| 145 | mCheckTasks = true; |
| 146 | mTaskQueue.insert(std::move(task)); |
| 147 | } |
| 148 | |
| 149 | taskGroup->mParent = this; |
| 150 | |
| 151 | // Wake main scheduler thread |
| 152 | mTaskReadyCond.notify_one(); |
| 153 | } |
| 154 | |
| 155 | void TaskScheduler::addWorker() |
| 156 | { |
| 157 | Lock lock(mReadyMutex); |
| 158 | |
| 159 | mMaxActiveTasks++; |
| 160 | |
| 161 | // A spot freed up, queue new tasks on main scheduler thread if they exist |
| 162 | mTaskReadyCond.notify_one(); |
| 163 | } |
| 164 | |
| 165 | void TaskScheduler::removeWorker() |
| 166 | { |
| 167 | Lock lock(mReadyMutex); |
| 168 | |
| 169 | if(mMaxActiveTasks > 0) |
| 170 | mMaxActiveTasks--; |
| 171 | } |
| 172 | |
| 173 | void TaskScheduler::runMain() |
| 174 | { |
| 175 | while(true) |
| 176 | { |
| 177 | Lock lock(mReadyMutex); |
| 178 | |
| 179 | while((!mCheckTasks || (UINT32)mActiveTasks.size() >= mMaxActiveTasks) && !mShutdown) |
| 180 | mTaskReadyCond.wait(lock); |
| 181 | |
| 182 | mCheckTasks = false; |
| 183 | |
| 184 | if(mShutdown) |
| 185 | break; |
| 186 | |
| 187 | for(auto iter = mTaskQueue.begin(); iter != mTaskQueue.end();) |
| 188 | { |
| 189 | if ((UINT32)mActiveTasks.size() >= mMaxActiveTasks) |
| 190 | break; |
| 191 | |
| 192 | SPtr<Task> curTask = *iter; |
| 193 | |
| 194 | if(curTask->isCanceled()) |
| 195 | { |
| 196 | iter = mTaskQueue.erase(iter); |
| 197 | continue; |
| 198 | } |
| 199 | |
| 200 | if(curTask->mTaskDependency != nullptr && !curTask->mTaskDependency->isComplete()) |
| 201 | { |
| 202 | ++iter; |
| 203 | continue; |
| 204 | } |
| 205 | |
| 206 | // Spin until a thread becomes available. This happens primarily because our mActiveTask count and |
| 207 | // ThreadPool's thread idle count aren't synced, so while the task manager thinks it's free to run new |
| 208 | // tasks, the ThreadPool might still have those threads as running, meaning their allocation will fail. |
| 209 | // So we just spin here for a bit, in that rare case. |
| 210 | if(ThreadPool::instance().getNumAvailable() == 0) |
| 211 | { |
| 212 | mCheckTasks = true; |
| 213 | break; |
| 214 | } |
| 215 | |
| 216 | iter = mTaskQueue.erase(iter); |
| 217 | |
| 218 | curTask->mState.store(1); |
| 219 | mActiveTasks.push_back(curTask); |
| 220 | |
| 221 | ThreadPool::instance().run(curTask->mName, std::bind(&TaskScheduler::runTask, this, curTask)); |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | void TaskScheduler::runTask(SPtr<Task> task) |
| 227 | { |
| 228 | task->mTaskWorker(); |
| 229 | |
| 230 | { |
| 231 | Lock lock(mReadyMutex); |
| 232 | |
| 233 | auto findIter = std::find(mActiveTasks.begin(), mActiveTasks.end(), task); |
| 234 | if (findIter != mActiveTasks.end()) |
| 235 | mActiveTasks.erase(findIter); |
| 236 | } |
| 237 | |
| 238 | { |
| 239 | Lock lock(mCompleteMutex); |
| 240 | task->mState.store(2); |
| 241 | |
| 242 | mTaskCompleteCond.notify_all(); |
| 243 | } |
| 244 | |
| 245 | // Wake the main scheduler thread in case there are other tasks waiting or this task was someone's dependency |
| 246 | { |
| 247 | Lock lock(mReadyMutex); |
| 248 | |
| 249 | mCheckTasks = true; |
| 250 | mTaskReadyCond.notify_one(); |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | void TaskScheduler::waitUntilComplete(const Task* task) |
| 255 | { |
| 256 | if(task->isCanceled()) |
| 257 | return; |
| 258 | |
| 259 | if(task->mTaskDependency) |
| 260 | task->mTaskDependency->wait(); |
| 261 | |
| 262 | // If we haven't started executing the task yet, just execute it right here |
| 263 | SPtr<Task> queuedTask; |
| 264 | { |
| 265 | Lock lock(mReadyMutex); |
| 266 | |
| 267 | if(!task->hasStarted()) |
| 268 | { |
| 269 | auto iterFind = std::find_if(mTaskQueue.begin(), mTaskQueue.end(), |
| 270 | [task](const SPtr<Task>& x) { return x.get() == task; }); |
| 271 | |
| 272 | assert(iterFind != mTaskQueue.end()); |
| 273 | |
| 274 | queuedTask = *iterFind; |
| 275 | mTaskQueue.erase(iterFind); |
| 276 | |
| 277 | queuedTask->mState.store(1); |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | if(queuedTask) |
| 282 | { |
| 283 | runTask(queuedTask); |
| 284 | return; |
| 285 | } |
| 286 | |
| 287 | // Otherwise we wait until the task completes |
| 288 | { |
| 289 | Lock lock(mCompleteMutex); |
| 290 | |
| 291 | while(!task->isComplete()) |
| 292 | { |
| 293 | addWorker(); |
| 294 | mTaskCompleteCond.wait(lock); |
| 295 | removeWorker(); |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | void TaskScheduler::waitUntilComplete(const TaskGroup* taskGroup) |
| 301 | { |
| 302 | Lock lock(mCompleteMutex); |
| 303 | |
| 304 | while (taskGroup->mNumRemainingTasks > 0) |
| 305 | { |
| 306 | addWorker(); |
| 307 | mTaskCompleteCond.wait(lock); |
| 308 | removeWorker(); |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | bool TaskScheduler::taskCompare(const SPtr<Task>& lhs, const SPtr<Task>& rhs) |
| 313 | { |
| 314 | // If priority is the same, sort by the order the tasks were queued |
| 315 | if(lhs->mPriority == rhs->mPriority) |
| 316 | return lhs->mTaskId < rhs->mTaskId; |
| 317 | |
| 318 | // Otherwise the task with the higher priority always goes first |
| 319 | return lhs->mPriority > rhs->mPriority; |
| 320 | } |
| 321 | } |
| 322 | |