| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************//
|
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********//
|
| 3 | #pragma once
|
| 4 |
|
| 5 | #include "Utility/BsDynArray.h"
|
| 6 |
|
| 7 | namespace bs
|
| 8 | {
|
| 9 | /** @addtogroup General
|
| 10 | * @{
|
| 11 | */
|
| 12 |
|
| 13 | /** Nodes for the heap. */
|
| 14 | template <class K, class V>
|
| 15 | struct HeapNode
|
| 16 | {
|
| 17 | K key;
|
| 18 | V value;
|
| 19 | UINT32 index;
|
| 20 | };
|
| 21 |
|
| 22 | /**
|
| 23 | * Binary tree where each nodes is less than or equal to the data in its node's children.
|
| 24 | */
|
| 25 | template <class K, class V>
|
| 26 | class MinHeap
|
| 27 | {
|
| 28 | public:
|
| 29 | MinHeap() = default;
|
| 30 |
|
| 31 | MinHeap(const MinHeap<K, V>& other)
|
| 32 | {
|
| 33 | *this = other;
|
| 34 | }
|
| 35 |
|
| 36 | MinHeap(UINT32 elements)
|
| 37 | {
|
| 38 | resize(elements);
|
| 39 | }
|
| 40 |
|
| 41 | MinHeap<K, V>& operator= (const MinHeap<K, V>& other)
|
| 42 | {
|
| 43 | mSize = other.mSize;
|
| 44 | mNode = other.mNode;
|
| 45 | mPtr.resize(other.mPtr.size());
|
| 46 |
|
| 47 | for (auto& entry : mNode)
|
| 48 | mPtr[entry.index] = &entry;
|
| 49 |
|
| 50 | return *this;
|
| 51 | }
|
| 52 |
|
| 53 | HeapNode<K, V> operator[] (UINT32 index) { return mNode[index]; }
|
| 54 | const HeapNode<K, V> operator[] (UINT32 index) const { return mNode[index]; }
|
| 55 |
|
| 56 | bool empty() const { return mSize == 0; }
|
| 57 | UINT32 size() const { return mSize; }
|
| 58 |
|
| 59 | void minimum(K& key, V& value)
|
| 60 | {
|
| 61 | assert(mSize > 0);
|
| 62 |
|
| 63 | key = mPtr[0]->key;
|
| 64 | value = mPtr[0]->value;
|
| 65 | }
|
| 66 |
|
| 67 | HeapNode<K, V>* insert(const K& key, const V& value)
|
| 68 | {
|
| 69 | if (mSize == mNode.size())
|
| 70 | return nullptr;
|
| 71 |
|
| 72 | int child = mSize++;
|
| 73 | HeapNode<K, V>* node = mPtr[child];
|
| 74 |
|
| 75 | node->key = key;
|
| 76 | node->value = value;
|
| 77 |
|
| 78 | while (child > 0)
|
| 79 | {
|
| 80 | const int parent = (child - 1) / 2;
|
| 81 |
|
| 82 | if (mPtr[parent]->value <= value)
|
| 83 | break;
|
| 84 |
|
| 85 | mPtr[child] = mPtr[parent];
|
| 86 | mPtr[child]->index = child;
|
| 87 |
|
| 88 | mPtr[parent] = node;
|
| 89 | mPtr[parent]->index = parent;
|
| 90 |
|
| 91 | child = parent;
|
| 92 | }
|
| 93 |
|
| 94 | return mPtr[child];
|
| 95 | }
|
| 96 |
|
| 97 | void erase(K& key, V& value)
|
| 98 | {
|
| 99 | assert(mSize > 0);
|
| 100 |
|
| 101 | HeapNode<K, V>* root = mPtr[0];
|
| 102 | key = root->key;
|
| 103 | value = root->value;
|
| 104 |
|
| 105 | const int last = --mSize;
|
| 106 | HeapNode<K, V>* node = mPtr[last];
|
| 107 |
|
| 108 | int parent = 0;
|
| 109 | int child = 1;
|
| 110 |
|
| 111 | while (child <= last)
|
| 112 | {
|
| 113 | if (child < last)
|
| 114 | {
|
| 115 | const int child2 = child + 1;
|
| 116 |
|
| 117 | if (mPtr[child2]->value < mPtr[child]->value)
|
| 118 | child = child2;
|
| 119 | }
|
| 120 |
|
| 121 | if (node->value <= mPtr[child]->value)
|
| 122 | break;
|
| 123 |
|
| 124 | mPtr[parent] = mPtr[child];
|
| 125 | mPtr[parent]->index = parent;
|
| 126 |
|
| 127 | parent = child;
|
| 128 | child = 2 * child + 1;
|
| 129 | }
|
| 130 |
|
| 131 | mPtr[parent] = node;
|
| 132 | mPtr[parent]->index = parent;
|
| 133 |
|
| 134 | mPtr[last] = root;
|
| 135 | mPtr[last]->index = last;
|
| 136 | }
|
| 137 |
|
| 138 | void update(HeapNode<K, V>* node, const V& value)
|
| 139 | {
|
| 140 | if (!node)
|
| 141 | return;
|
| 142 |
|
| 143 | int parent = 0;
|
| 144 | int child = 0;
|
| 145 | int child2 = 0;
|
| 146 | int maxChild = 0;
|
| 147 |
|
| 148 | if (node->value < value)
|
| 149 | {
|
| 150 | node->value = value;
|
| 151 | parent = node->index;
|
| 152 | child = 2 * parent + 1;
|
| 153 |
|
| 154 | while (child < mSize)
|
| 155 | {
|
| 156 | child2 = child + 1;
|
| 157 | if (child2 < mSize)
|
| 158 | {
|
| 159 | if (mPtr[child]->value <= mPtr[child2]->value)
|
| 160 | maxChild = child;
|
| 161 | else
|
| 162 | maxChild = child2;
|
| 163 | }
|
| 164 | else
|
| 165 | maxChild = child;
|
| 166 |
|
| 167 | if (value <= mPtr[maxChild]->value)
|
| 168 | break;
|
| 169 |
|
| 170 | mPtr[parent] = mPtr[maxChild];
|
| 171 | mPtr[parent]->index = parent;
|
| 172 |
|
| 173 | mPtr[maxChild] = node;
|
| 174 | mPtr[maxChild]->index = maxChild;
|
| 175 |
|
| 176 | parent = maxChild;
|
| 177 | child = 2 * parent + 1;
|
| 178 | }
|
| 179 | }
|
| 180 | else if (value < node->value)
|
| 181 | {
|
| 182 | node->value = value;
|
| 183 | child = node->index;
|
| 184 |
|
| 185 | while (child > 0)
|
| 186 | {
|
| 187 | parent = (child - 1) / 2;
|
| 188 |
|
| 189 | if (mPtr[parent]->value <= value)
|
| 190 | break;
|
| 191 |
|
| 192 | mPtr[child] = mPtr[parent];
|
| 193 | mPtr[child]->index = child;
|
| 194 |
|
| 195 | mPtr[parent] = node;
|
| 196 | mPtr[parent]->index = parent;
|
| 197 |
|
| 198 | child = parent;
|
| 199 | }
|
| 200 | }
|
| 201 | }
|
| 202 |
|
| 203 | void resize(UINT32 elements)
|
| 204 | {
|
| 205 | mSize = 0;
|
| 206 | if (elements > 0)
|
| 207 | {
|
| 208 | mNode.resize(elements);
|
| 209 | mPtr.resize(elements);
|
| 210 |
|
| 211 | for (UINT32 i = 0; i < elements; ++i)
|
| 212 | {
|
| 213 | mPtr[i] = &mNode[i];
|
| 214 | mPtr[i]->index = i;
|
| 215 | }
|
| 216 | }
|
| 217 | else
|
| 218 | {
|
| 219 | mNode.clear();
|
| 220 | mPtr.clear();
|
| 221 | }
|
| 222 | }
|
| 223 |
|
| 224 | bool valid() const
|
| 225 | {
|
| 226 | for (int i = 0; i < (int)mSize; ++i)
|
| 227 | {
|
| 228 | int parent = (i - 1) / 2;
|
| 229 | if (parent > 0)
|
| 230 | {
|
| 231 | if (mPtr[i]->value < mPtr[parent]->value ||
|
| 232 | (int)mPtr[parent]->index != parent)
|
| 233 | return false;
|
| 234 | }
|
| 235 | }
|
| 236 |
|
| 237 | return true;
|
| 238 | }
|
| 239 |
|
| 240 | private:
|
| 241 | UINT32 mSize;
|
| 242 | DynArray<HeapNode<K, V>> mNode;
|
| 243 | DynArray<HeapNode<K, V>*> mPtr;
|
| 244 | };
|
| 245 |
|
| 246 | /** @} */
|
| 247 | } |